
adaPARL: Adaptive Privacy-Aware Reinforcement Learning for
Sequential DecisionMaking Human-in-the-Loop Systems
Mojtaba Taherisadr

University of California Irvine
Irvine, CA, USA
taherisa@uci.edu

Stelios Andrew Stavroulakis
University of California Irvine

Irvine, CA, USA
sstavrou@uci.edu

Salma Elmalaki
University of California Irvine

Irvine, CA, USA
salma.elmalaki@uci.edu

ABSTRACT

Reinforcement learning (RL) presents numerous benefits compared
to rule-based approaches in various applications. Privacy concerns
have grown with the widespread use of RL trained with privacy-
sensitive data in IoT devices, especially for human-in-the-loop sys-
tems. On the one hand, RL methods enhance the user experience by
trying to adapt to the highly dynamic nature of humans.On the other
hand, trained policies can leak the user’s private information. Recent
attention has been drawn to designing privacy-aware RL algorithms
while maintaining an acceptable system utility. A central challenge
in designing privacy-aware RL, especially for human-in-the-loop
systems, is that humans have intrinsic variability, and their prefer-
ences and behavior evolve. The effect of one privacy leak mitigation
can differ for the same human or across different humans over time.
Hence, we can not design one fixedmodel for privacy-aware RL that
fits all. To that end, we propose adaPARL, an adaptive approach
for privacy-aware RL, especially for human-in-the-loop IoT systems.
adaPARL provides a personalized privacy-utility trade-off depend-
ing on human behavior and preference. We validate the proposed
adaPARL on two IoT applications, namely (i) Human-in-the-Loop
Smart Home and (ii) Human-in-the-Loop Virtual Reality (VR) Smart
Classroom. Results obtained on these two applications validate the
generality of adaPARL and its ability to provide a personalized
privacy-utility trade-off. On average, adaPARL improves the utility
by 57%while reducing the privacy leak by 23% on average.
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1 INTRODUCTION

The emerging technologies of sensor networks and mobile comput-
ing give the promise ofmonitoring thehumans’ states and their inter-
actionswith the surroundings [40] and havemade it possible to envi-
sion the emergence of human-centered design of Internet-of-Things
(IoT) applications in various domains. This tight coupling between
human behavior and computing enables a radical change in human
life. By continuously developing a cognition about the environment
and the human state and adapting the environment accordingly, a
new paradigm for IoT systems provides the user with a personalized
experience, commonly named Human-in-the-Loop (HITL) systems.

The fundamental essence of designing HITL applications is learn-
ing the best adaptation to the environment,which is subjective to the
human interaction and response to this adaptation which vary from
one human to another [12]. Reinforcement Learning (RL) has proven
to be adequate for monitoring human intentions and responses to
provide such personalized adaptations [13, 26, 47]. Multisample RL
and adaptive scaling RL (ADAS-RL) can adapt to inter-and intra-
human variability among humans and the changes in their response
times under different autonomous actions [1, 15]. Amazon has used
personalized RL to adapt to students’ preferences for adaptive class
schedules [4]. Advances in deep learning with RL have been used to
decide which content to present to students at any given time based
on their cognitive memory models [45].

This increasing adoption of RL-based models in various HITL ap-
plications has paved theway to reformulate the trained policies with
constraints to address fairness [12], risk-sensitivity [21], safetyunder
exploration [27], and human variability [15]. Adapting to the human
often leads to systems where increased sophistication comes at the
expense of more privacy weaknesses. In particular, RL has the added
benefit of adapting to human variations to provide a personalized
experience. However, privacy concerns are raised since the optimal
trained policy holds a tight correlation between the human private
state and the adaptation actions provided by the RL-based HITL sys-
tem. For example, a smart NEST thermostat can automatically turn
onandoff theHVACequipment basedonusers’ presenceor domestic
activity [3]. Such coupling between human behaviors and decisions
taken by the HITL system can open a side channel, leaking sensitive
information about users’ daily behavioral patterns. In particular, a
malicious eavesdropper can infer a user’s private information only
by monitoring time-series data of the adaptation actions [14, 16].

One of the critical challenges in designing HITL systems stems
from the fact that the system’s utility might be at odds with hu-
man expectations and privacy-preserving needs. While previous
work in the literature addressing the problem of privacy leaks in
learning-based adaptation engines, especially within RL-based mod-
els, through studying the fundamental privacy-utility trade-off [55],
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HITL systems hold a different challenge. In particular, we argue that
privacy leak mitigation techniques should not be oblivious to the
fact that there are intrinsic human variations. One privacy-aware RL
model may cause severe degradation in the system utility from one
human’s perspective, while the samemodel can have acceptable util-
ity for another human. This stems from the fact that every human’s
response, behavior, and interaction with the HITL application is dif-
ferent (inter-human variation). Moreover, human behavior may
change over time, so even if we design an RL-based model that pre-
serves the privacy of a particular human, itmaynot be adequate after
some time as thehumanchanges (intra-humanvariations).Hence,
the concept of one privacy-aware model that fits all is inadequate
for HITL systems.

In this paper, we propose an adaptive privacy-aware algo-

rithm for RL-basedmodels to provide personalized privacy-

preservinghuman-in-the-loopIoTsystems.Weborrowfromthe
established theoreticalunderpinningofRLand information theory to
formulate the problem as a sequential decision-making problem that
maximizes the system utility with a personalized tunable regularizer
that limits private information leakage due to human adaptation.
We evaluate our proposed algorithm on two HITL IoT applications;
the first one in the domain of smart homes and the second one in the
domain of smart classrooms using Virtual Reality (VR).

2 RELATEDWORKANDCONTRIBUTION

Privacy has been a matter of concern for decades [44]. Indeed, a
plethora of work in the literature addresses privacy leaks andmitiga-
tion using a multitude of approaches. Game-theoretical approaches
have been used to formulate an objective function that maximizes
the utility andminimizes the privacy leaks [29]. Data encryption has
been proposed to mitigate side-channel attacks on the communica-
tion links between the edge and cloud services [38].Ourmotivation

behind the focus on RL methods stems from the following

two fundamental properties:

• Computational complexity and scalability: RL enjoy favor-
able computational scalability compared to other techniques
especially game theoretic approaches. In particular, several game-
theoretic approaches for sequential decision-making are known
to be intractable [20].
• Generalizability:RLenjoysauniqueability todirectlymodel the
impact of takendecisions, leverage temporal feedback in learning,
and improve the decision-making policy performance for a wide
set of systems which is particularly important for HITL systems.

2.1 Privacy-preserving RL

Various aspects of privacy-preservingRLproblemshavebeen consid-
ered and tackled, such as online learning with bandit feedback [36],
linear contextual bandits [22],and deep RL (DRL) [42]. Garcelon
et al. [23] formulated an algorithm that guarantees regret and pri-
vacy for the tabular setting. In the continuous state context,Wang et
al. [54] developed a variant ofQ-learning that canfind apolicywhere
the reward function satisfies the differential privacy constraints.

The work by Erdemir et al. [16] studied the privacy-utility trade-
off (PUT) in time-series data sharing. Existing approaches to PUT
mainly focus on a single data point; however, temporal correlations
in time-series data introduce new challenges. Methods that preserve

privacy for the current time may leak a significant amount of in-
formation at the trace level as the adversary can exploit temporal
correlations in a trace. They considered sharing the distorted version
of a user’s true data sequence with an untrusted third party.

Liu et al. [35] worked on the privacy of the reward function in RL
systems. They tried to make it difficult for an observer to determine
the reward function used. They presented twomodels for privacy-
preserving rewards. These models are based on dissimulation – a
deception that ‘hides the truth.’ They evaluated their models both
computationally and via human behavioral experiments. The as-
sumption in this study and other RL-based studies considering HITL
systems is that the human state and available actions are finite and
limited; otherwise, the implementation would be infeasible.

In this paper, we build upon work in the literature that exploited
the correlation in the time-series data between the human state and
adaptation action in RL with the assumption that HITL has finite
and limited human states and adaptation actions. However, we differ
fromthework in the literaturebyarguing that theRLpreservingalgo-
rithms should be adaptive to human variability in HITL IoT systems.

The closest to our approach is the work proposed by Cundy et
al. [11]. They proposed a regularizer based on the mutual informa-
tion (MI) between the sensitive state and the actions at a given time
step for sequential decision-making. They use an upper bound as
an estimation of MI to guarantee that the policy derived from an
RL algorithm satisfies the privacy constraint. They mathematically
prove the correctness of the algorithm and then implement it on pub-
licly available real-world data sets. The main difference between our
proposed work (adaPARL) and their approach is the adaptability
of the privacy policy to inter-human and intra-human variations. In
our experiments, we illustrate that using a constant upper bound
privacy constraint, without considering the human variations, can-
not efficiently satisfy a personalized privacy-utility trade-off in the
HITL IoT systems.

2.2 Paper Contributions

In this paper, we focus on sequential decision-making human-in-
the-loop IoT systems with finite state/action pairs. In particular, we
aim to address the potential privacy concerns that arise from se-
quential decision-making systems that interact with humans whose
behavior and preference vary across time. Our contributions can be
summarized as follows:
• Designing adaPARL - a privacy-aware RL-based algorithm for
sequential decision-making HITL IoT systems that mitigates the
privacy leaks adaptively based on human variability.
• Providing general design parameters in our proposed adaPARL
algorithm that can be tuned based on the application domain.
• Implementing the proposed adaPARL algorithm on two different
HITL IoT systems in the domains of a smart home (simulation)
and smart classroomwith Virtual Reality (VR) (real-world).
• Personalizing the trade-off between privacy mitigation and the
application’s utility.

3 HUMANMODELING

INREINFORCEMENT LEARNING

In the standard RL framework, a learning agent continuously inter-
acts with an environment. The agent selects an action based on the
current environment state, and the environment responds to this
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action by presenting a new state to the agent. This response is in the
form of a feedback reward presented to the agent. The agent seeks to
maximize the reward over time through its sequential decisions of
actions [50]. More formally, an RL agent interacts with an environ-
mentmodeled as theMarkovDecision Process (MDP) over a series of
time steps 𝑡 ∈ {0,1,2,...}. At each time step, the RL agent takes action
𝑎𝑡 ∈A based on the current environment state 𝑠𝑡 ∈S and receives a
reward 𝑟𝑡 :S×A→R in the same time step1. The dynamics underly-
ing the environment can be described as an MDP with state-to-state
transition probabilities, 𝑝 (𝑠′ |𝑠,𝑎) �𝑃𝑟 {S𝑡+1 =𝑠′ |S𝑡 =𝑠,A𝑡 =𝑎} and
expected rewards for state-action pairs as: 𝑟 (𝑠,𝑎) �E{R𝑡 |S𝑡 =𝑠,A𝑡 =

𝑎}. Through repeated interaction with the environment, the agent
tries to learn a state-action policy, 𝜋 (𝑠,𝑎) � 𝑃𝑟 {A𝑡 =𝑎 |S𝑡 = 𝑠} that
maximizes the estimated reward over time. In the special case of
deterministic policy, 𝜋 (𝑠) �𝑎 with probability=1 forS𝑡 =𝑠 .

3.1 Human as aMarkov Decision Process

Unique to the HITL systems is the integration of humans with the
environment.Modeling the human in away that captures the change
in behavior and preference is an open, challenging research question.
Borrowing up from the psychology literature, the behavior of the
changes in the human decision historicallywasmodeled through the
expected utility theorem (EUT) [39], which is based on an axiomatic
framework defined as completeness, transitivity, independence, and
continuity. Human is said to be rational if these four axioms hold.
However, the EUT-based models have shown that these axioms are
unrealistic and that human decisions tend to deviate from the axioms
of the EUT [53]. Another approach to modeling the human is using
the Partially Observed Markov Decision Process (POMDP) based
on the fact that even with advanced sensing technology, the actual
human state can not be measured [46]. Although POMDP aims to
capture the human state’s uncertainty, POMDP-based RL algorithms
are computationally intractable, hindering their practical use [41].
Hence, in this work, we model the change in the human state as a
Markov Decision Process (MDP) with unknown transition proba-
bilities 𝑝 (𝑠′ |𝑠,𝑎). This uncertainty in the transition from one state
to another can model the uncertainty and variability in the human
state, which is essential in HITL systems.

3.2 Q-learning Reinforcement Learning

Learning the optimal policy 𝜋 (𝑠,𝑎) —action per state that maximizes
the total reward—when the transitionprobabilities of theMDPmodel
are unknown can be solved using RL. By applying an action in a
particular state and observing the next state, the RL converges to the
optimal policy that maximizes the reward function. This type of RL
technique is called the Q-learning algorithm. The Q-learning algo-
rithm assigns a value for every state-action pair. For each state 𝑠 , the
Q-learning algorithmchooses an action𝑎 (among the set of allowable
actions) according to a particular policy. After an action 𝑎 is chosen
and applied to the environment, the Q-learning algorithm observes
the next state 𝑠′ of the environment and updates the q-value of the
pair (𝑠,𝑎) based on the observed reward 𝑟 (𝑠,𝑎) as follows:

𝑄 (𝑠,𝑎)←𝑄 (𝑠,𝑎)+𝛼 [𝑟 (𝑠,𝑎)+𝛾max
𝑎
𝑄 (𝑠′,𝑎)−𝑄 (𝑠,𝑎)] (1)

1Some RL convention expresses the reward for action𝑎𝑡 at time step 𝑡 in the next time
step 𝑟𝑡+1 .

State

Environment

Sensor Nodes

RL Agent
Reward

Actuator Nodes

Edge
CloudEavesdropper 

Desired Action Control Signal

(human & environment state)

Figure 1: Threat Model for RL-basedHITL IoT application.

The hyperparameters𝛾 and 𝛼 are known as the discount factor
and the learning step size, respectively. To choose an action,𝑎 at each
state 𝑠 , an 𝜖-greedy policy can be adopted. In the 𝜖-greedy policy, the
RL agent chooses the action that it believes has the best long-term
effect with probability 1−𝜖 , and it picks an action uniformly at ran-
dom; otherwise. In otherwords, at each time step, the RL agent flips a
biased coin and chooses the actionwith themaximum q-valuewith
probability 1−𝜖 or a random actionwith probability 𝜖 . This hyperpa-
rameter 𝜖 (also known as the exploration vs. exploitation parameter)
controls howmuch the RL agent is willing to explore new actions
that were not taken before versus relying on the best action that has
been learned so far. By updating 𝑄 (𝑠,𝑎), it is guaranteed that the
optimal policy 𝜋 will converge to a deterministic action 𝑎 per state 𝑠
that provides themaximum reward 𝑟 (𝑠,𝑎) in a finite time steps𝑇 [50].

4 THREATMODEL INRL-BASEDHITL IOT

Recent advances in edge devices’ power and memory capabilities
paved the way to accomplish relatively intensive computing on the
edge. Accordingly, in adaPARL, we can assume that the edge layer
can handle relatively intensive data processing, including raw data
processing and running an RL algorithm. Furthermore, synchroniz-
ing many IoT applications, especially in ubiquitous environments,
requires a central decision-making server at a cloud-based level.
Hence, the edge does not send the control actions directly to the
environment and has to share it first with the cloud for other con-
straints that the cloud may need to enforce, such as synchronizing
multiple IoT applications. This IoT edge-cloud computing model is
a typical architecture for many pervasive and ubiquitous IoT appli-
cations [5, 43, 48]. A pictorial figure for our proposed threat model
is shown in Figure 1, which can be summarized as follows:
• AnHITL IoT application collects information from the environ-
ment and the human interactingwith it throughmultiple sensors
on edge devices.
• AnRLagent—as explained inSection3—runson the edge to infer
the human and environment state and recommends the desired
adaptation action based on human preference and behavior.
• Only the desired action recommended by the RL agent is propa-
gated to a cloud-based server. In particular, the inferred environ-
ment or human states are not shared with the cloud. The edge is
a trusted entity.
• The cloud elects the appropriate control signals that can be based
on other enforced constraints and sends them to the actuator
nodes (edge devices) to adapt to the environment.

Hence, based on this threat model, our attack vector is as follows:
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• An eavesdropper is mounted in the cloud and has no access to
the edge devices (sensors or actuators) or the communication
channel between the edge and the cloud.
• The eavesdropper has access to the time-series data of the desired
actions in the cloud.
• Theeavesdropper can runanymachine learningmodel exploiting
this time-series data.
• The eavesdropper has prior knowledge of the application domain.
In this attack vector, even if the communication channel between

the edge and the cloud may be secured (e.g., by encryption), the
cloud still needs to decrypt the transferred packet — which contains
the desired action — to elect the control signals that are sent back
to the actuators at the edge for ubiquitous IoT applications. Hence,
the eavesdropper can observe and record the time-series data of the
desired actions of this IoT application.

Our goal in adaPARL is to provide a guarantee that limits the abil-
ity of an eavesdropper to infer the private state, even with unlimited
computational power and complete knowledge of the application
domain.

5 ADAPARL: ADAPTIVE PRIVACY-AWARERL

As explained in Section 3, the state in MDP holds information about
the environment, including sensitive information about the human
interacting with it, such as human mental state, location, gender, or
behavioral activity. The fact that the optimal policy 𝜋 (𝑠,𝑎) is a func-
tion of the state-action pairs can open a side channel that leaks the
privatehumanstate𝑠 .We formulate theproblemofprivacy-awareRL
as aMarkov decision process (MDP) that ensures privacy constraints.
In particular, we aim to learn a policy 𝜋 (𝑠,𝑎) at the edge, which max-
imizes the cumulative reward while constraining the privacy leak of
the sensitive private state to an eavesdropper mounted in the cloud.

5.1 State-Action Dependence

We draw on the information theory literature and leveragemutual
information (MI) to quantify the amount of correlation (or depen-
dence) between two random variables. In our problem, we use the
MI between state and action tomeasure how certain an eavesdropper
can infer a state from observed actions. MI provides a theoretical
bound on the inference capability of any learning algorithm. Gener-
ally speaking, the lower theMI between state and action is, the lower
the accuracy of any inference algorithm. Push into one extreme; if
the MI is zero, then no algorithm can infer the state frommonitored
actions. Hence, we consider theMImeasure 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ) for a particular
policy 𝜋 (𝑠,𝑎) as a quantifiable bound on the ability to obtain the
highest amount of information on 𝑠𝑡 by observing 𝑎𝑡 . In particular,
the amount of information leaked to the eavesdropper is bounded
by 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 )2.

Hence, we formulate the privacy-aware policy RL problem as a
regularized optimization problem that maximizes the cumulative re-
ward while maintaining a bound on them 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ). In particular, we
add an adaptive regularizer that penalizes the reward through a con-
straint on the value of 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ). Hence, the reward value 𝑟 (𝑠,𝑎) to cal-
culate the q-value as explained in Equation 1 can be formulated as:
2Since we focus on HITL IoT applications, the number of states and actions are finite
and limited asmentioned in Section 2. Hence, estimating theMI in this setup is tractable.

𝑟 (𝑠,𝑎)=
{
E{R𝑡 |S𝑡 =𝑠,A𝑡 =𝑎}, if 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 )<𝜆𝑡
(1−𝜁𝑡 )E{R𝑡 |S𝑡 =𝑠,A𝑡 =𝑎}−𝜁𝑡 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ), otherwise

(2)

Where 𝜁𝑡 ∈ [0, 1] is a design parameter regulating the trade-off
between the privacy leak mitigation and the application utility, com-
monly known as the privacy-utility tradeoff (PUT). The constraint
𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 )<𝜆𝑡 is used to set a boundary on the rise ofMI bypenalizing
the reward function. Unique to adaPARL is that the boundary 𝜆𝑡 is
adaptive and is human and application dependent, as wewill explain
in Section 6 and 7.

5.2 Adaptive Privacy-Aware Constraint

It is worth mentioning that penalizing the reward with 𝐼𝜋 should
be adaptive based on human variability. In particular, we make the
following observations:
• High intra-human variability: If the human behavior and pref-
erences frequently change with no particular pattern, the reward
received by the Q-learning agent will be a dynamic and time-
varying reward. This means the optimal policy 𝜋 (𝑠,𝑎) will take
more time to converge. Consequently, the value of 𝐼𝜋 will rise very
slowly as the agent learns the personalized policy 𝜋 (𝑠,𝑎).
• Low intra-human variability: In contrast, the reward will be
less dynamic if the human has repeated patterns with the same ex-
pected behavior and preference. Hence, the Q-learning agent will
learn the personalized policy 𝜋 (𝑠,𝑎) in less time. Consequently,
the value of 𝐼𝜋 will rise quickly.
• The maximum value of 𝐼𝜋 for a particular policy 𝜋 (𝑠,𝑎) depends
on the time-series of the state 𝑠𝑡 and the action 𝑎𝑡 which are ap-
plication dependent.
Based on these observations, the upper bound 𝜆𝑡 should be adap-

tive based on how the MI increases, which is correlated to human
variability. In particular, in adaPARL, we propose the following
adaption strategy to find the appropriate 𝜆𝑡 .

As the agent learns the optimal policy 𝜋 (𝑠,𝑎), it keeps track of a
time series of 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ). This time series is used to fit a higher-order
polynomial function of degree 2. Based on this fitted function, we
can approximate the growth rate and the maximum value that the
𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ) can reach. The upper bound 𝜆𝑡 is then set at a particular
percentage of this maximum value. This percentage – which we call
𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 – is a design parameter, as we will show in our evaluation.
Hence, the constraint on 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ) is not based on an absolute value
but ratheronhowtheagent learns,which ishuman-dependent (inter-
human variability). Intuitively, this means that we allow the agent
to learn to provide acceptable utility before it is penalized through
the privacy constraints 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ) < 𝜆𝑡 . Indeed, the fitted curve is
corrected over time through more interaction with the environment
and to track any changes in human behavior. Hence, the value of 𝜆𝑡
is also time-varying depending on the changes in human behavior
(intra-human variability)

5.3 adaPARLAlgorithm

Algorithm 1 summarizes the general adaPARL algorithm. Indeed
the reward function R(𝑠𝑡 ,𝑎𝑡 ) in adaPARL algorithm is application
dependent.Moreover, it is worthmentioning that theMI value (𝐼𝑡 ) in
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the algorithm is calculated over a time series of states (HS ) and ac-
tions (HA )which are basedon the sequential decision-makingof the
RL-agent at every time step 𝑡 . Hence, by using the reward shaping ap-
proach in the adaPARL algorithm with the adaptive MI regularizer,
the adaPARL agent learns to consider the consequences of choosing
an action 𝑎𝑡 at time step 𝑡 on the distribution of states 𝑠 at the future
time steps, which is human dependent. Eventually, adaPARL agent
will choose future action 𝑎𝑡 that decreases the dependency on 𝑠𝑡
for a particular human. To evaluate the proposed adaPARL algo-
rithm, we design HITL RL-based IoT applications and show that the
adaptation to human preferences is achieved. Afterward, we discuss
the privacy leaks that may occur due to the RL-based adaptation,
which is application dependent. Ultimately, we show how adaPARL

can mitigate privacy leaks and provide the privacy-utility trade-off
(PUT) that varies across different humans. Accordingly, we discuss
two IoT applications. The first one is in the domain of smart house
(Section 6), a simulation-based application to evaluate the different
design parameters in a controlled simulated environment. The sec-
ondone is in thedomainof smart classrooms (Section7) usingVirtual
Reality (VR), which is a real-world experiment. Through providing
these two different application scenarios, we aim to evaluate the
applicability and adaptability of the adaPARL in different situations
and on different people (inter- and intra-human variability) and to
emphasize the generalizability of adaPARL.
5.3.1 Generalizability of adaPARL. The generalizability of ada-
PARL comes from the two designed parameters, 𝜁𝑡 and 𝜆𝑡 . As ex-
plained in Section 5.2, the 𝜆𝑡 is set at a particular percentage of
the maximum value of 𝐼𝜋 (𝑎𝑡 ;𝑠𝑡 ). This percentage – which we call
𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 – is a design parameter correlated to human behavioral vari-
ations and provides the notion of personalized adaptation of privacy
leak mitigation. Moreover, the privacy-utility trade-off can be tuned
through the parameter 𝜁𝑡 , as explained in Section 5.1. Accordingly,
the adaPARL algorithm can be used and implemented in various
applications that need tuning of the privacy-utility trade-off.

6 APPLICATION 1: HUMAN-IN-THE-LOOP

SMARTHOME- A THERMAL SYSTEM

Recent work in the literature targets human-in-the-loop smart heat-
ing, ventilation, and air conditioning system (HVAC) while trying
to assist human satisfaction [30]. RL has been proposed to adapt the
HVAC set-point based on human activity [12]. A human-in-the-loop
HVAC system should take the human state and preferences into
the computation loop while calculating the HVAC set-point. For
example, the human body temperature decreases when the human
goes to sleep, while the body temperature increases when the hu-
man exercises and with stress and anxiety. Monitoring the human
state, sleep cycle, and physical activity are all possible with IoT edge
devices [34]. While the main purpose of this section is to evaluate
the privacy-utility trade-off provided by adaPARL, we first describe
the environment design and the RL agent used for this application.

6.1 SystemDesign & Implementation

Environment Design: We simulated thermodynamic model of a
house that considers the house’s geometry, the number of windows,
the roof pitch angle, and the type of insulation used. The house is
heated by a heater with an airflow of temperature 50◦𝑐 and cooled
by a cooler with an airflow of temperature 10◦. A thermostat allows

Algorithm 1 adaPARL algorithm
Q-Learning hyperparameters: 𝛼 ,𝛾 , 𝜖
adaPARL design parameters: 𝜁 , 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡

Require:

StatesS= {1, ... ,𝑆𝑛}, ActionsA= {1, ... ,𝑎𝑛}
Reward function R=S×A→R
Transition function T :S×A→S
Privacy-Utility trade-off 𝜁 ∈ [0,1]
Privacy mitigation upper bound 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∈ [0,1]
Mutual Information QueueMI= []
States History QueueHS = [], Actions History QueueHA = []
Learning rate 𝛼 ∈ [0,1], 𝛼 =0.01
Discounting factor𝛾 ∈ [0,1],𝛾 =0.001
𝜖-Greedy exploration strategy with decay 𝜖 ∈ [0,1],

max 𝜖 =0.9, min 𝜖 =0.1, decay=0.01
procedure adaPARL(S,A, R, T ,𝛾 , 𝛼 , 𝜖 , 𝜁 , 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 )

Initialize𝑄 :S×A→Rwith 0
time sample 𝑡 =0
Observe initial state 𝑠𝑡 ∈S
while true do

Apply 𝜋 (𝑠) according to the exploration strategy:
with probability 𝜖 : 𝜋 (𝑠 )← choose 𝑎 ∈ A at random,
with probability 1−𝜖 : 𝜋 (𝑠 )←argmax𝑎𝑄 (𝑠,𝑎))

𝑎𝑡←𝜋 (𝑠𝑡 ) ⊲ Choose a desired action
push 𝑎𝑡 toHA and push 𝑠𝑡 toHS
calculate 𝐼𝑡 (HS ;HA ) ⊲ Calculate Mutual Information
push 𝐼𝑡 toMI
𝑓 (𝐼𝑡 )= polynomial function of degree 2 fitted toMI
𝜆𝑡 = 𝑓𝑚𝑎𝑥 (𝐼𝑡 )×𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡
if 𝐼𝑡 < 𝜆𝑡 then

𝑟 (𝑠𝑡 ,𝑎𝑡 )=R(𝑠𝑡 ,𝑎𝑡 ) ⊲ Receive the performance reward
else ⊲ Penalize based on the privacy leak

𝑟 (𝑠𝑡 ,𝑎𝑡 )= (1−𝜁 )R(𝑠𝑡 ,𝑎𝑡 )−𝜁 𝐼𝑡 (𝑎𝑡 ;𝑠𝑡 )
end if

𝑠′𝑡←T (𝑠𝑡 ,𝑎𝑡 ) ⊲Observe the next state
𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 [𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 max𝑎 𝑄 (𝑠′𝑡 , 𝑎) −

𝑄 (𝑠𝑡 ,𝑎𝑡 )]
𝑠𝑡←𝑠′𝑡

endwhile

end procedure

fluctuation of 2.5◦𝑐 above and below the desired set-point, speci-
fying the temperature that must be maintained indoors [37]. The
desired set-point is controlled by an external controller that runs the
proposed adaPARL algorithm.

Simulated Human Model: We model the humans as a heat
sourcewith heat flow that depends on the average exhale breath tem-
perature (𝐸𝐵𝑇 ) and the respiratory minute volume (𝑅𝑀𝑉 ) [12]. The
𝑅𝑀𝑉 is the product of the breathing frequency (𝑓 ) and the volume of
gas exchangedduring the breathing cycle,which is highly dependent
on human activity. For example, 𝑅𝑀𝑉 ≈ 6 𝑙/𝑚 when the human is
resting while 𝑅𝑀𝑉 ≈ 12 𝑙/𝑚 represents a human performing mod-
erate exercise [8]. We simulated the behavior of three humans based
on their activity. The human activity is simulated by different values
of the 𝑅𝑀𝑉 [9] and the metabolic rate. We simulated four activity
classes, including three in-home activities and a “not at home” state.
Since some activities have close 𝑅𝑀𝑉 and their differences do not
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affect the primary goal of this study, we categorized the normal
human activities inside the house into three groups. The three in-
home activity categories arranged in ascending order of 𝑅𝑀𝑉 are
sleeping, relaxed (sitting, standing, reading, and watching TV), and
medium domestic work (washing dishes, cooking, and cleaning).
We randomize the behavior by having different choices of activities
in the same time slot to design different human daily behavior. We
assume that the age/sex/time of day has no significance in themodel.
We extended the thermal housemodel byMathworks [37] to include
a cooling system and a humanmodel3.

6.2 RL Design

To adapt the HVAC set-point based on the human activity and ther-
mal comfort level, we designed an RL as described below.
6.2.1 State andAction Space. State SpaceS: All combinations of
four distinct human activities,S= {(𝑎𝑐𝑡) :𝑎𝑐𝑡 ∈ [1,4]}, where 𝑎𝑐𝑡 is
the current human activity asmentioned in Section 6.1. Action Space
A: A discrete value for the set-point within the temperature range
[60,80] with a heater option or a cooling option:A= {𝑎 :𝑎 ∈ [60,80]}.
6.2.2 Designing the reward function. Reward R: We use the
Prediction Mean Vote (PMV) as an estimation for the human ther-
mal comfort [18]. The scale of PMV ranges from −3 (very cold) to 3
(very hot). According to ISO standard ASHRAE 55 [2], a PMV in the
range of [−0.5,0.5] for the interior space is recommended to achieve
thermal comfort. Estimating the PMV score is calculated based on
the knowledge of clothing insulation, the metabolic rate, the air
vapor pressure, the air temperature, and the mean radiant temper-
ature [18]. We use a simple reward value based on the comfort value
of the human dictated by the PMV. In particular, the comfortable
thermal sensation 𝑃𝑀𝑉 = [−0.5,0.5] receives positive and higher
rewards, and the discomfort levels of PMV receive negative rewards.
In practice, the PMV value can be estimated using edge devices, such
as black globe thermometers [7].
6.2.3 Hyperparameters selection. We briefly list some of the
hyperparameters in the design of the RL agent.
• Discount factor 𝛾 : In Equation 1, 𝛾 determines how much the
RL agent cares about rewards it receives in the distant future rela-
tive to the immediate reward. In our design, the q-value updates
only when the indoor temperature reaches the selected set-point
(the selected action 𝑎), independently of how long it takes for the
indoor temperature to reach this set-point which is dictated by
the thermal dynamics of the house. Hence, a low discount factor
𝛾 =0.001 is selected.
• Exploration vs. Exploitation 𝜖: Exploration is critical due to
the inter- and intra-human variability. Once the agent has the
appropriate information through interaction with the HITL en-
vironment, it is better to lower the exploration rate. Hence, every
time q_value is updated, as explained in Equation 1, we gradually
lower 𝜖 following an exponential decay of 0.01.

6.3 Human-in-the-Loop RLAdaptation

Wesimulated threedifferenthumans. Eachhumanhasbeendesigned
to have different life patterns.𝐻1’s life pattern follows an organized
pattern and is repeated weekly with limited randomness. 𝐻3 has
3While there are more sophisticated simulators for smart houses and smart buildings
that consider the energy consumption and the electric loads, such as EnergyPlus [24],
we opt for a simpler model of the thermal house to evaluate adaPARL.

a more random life pattern meaning that activities do not follow
a specific daily or weekly routine, and it contains numerous unex-
pected changes.𝐻2 containsmedium randomness, which in terms of
randomness stands in between𝐻1 and𝐻3. For example, a pictorial
image for the behavioral pattern of𝐻2 is shown in Figure 2, where
the human behavior alternates between 4 main activities (sleeping,
not at home, domestic activity, and relaxed). We run the simulator
for 8000 time step (𝑇𝑠 =6𝑚𝑖𝑛 simulation time). To elaborate on how
the designed RL-agent learned the best set-point per human activity,
we split the RL-agent actions into three different plots (for clarity)
based on the human activity at a particular time step, as shown in
Figure 4 for 𝐻2. In particular, as Figure 4 presents, approximately
after 350 hours (15 simulated days), the random selection of the
set-point decreased, indicating that the RL-agent started to learn the
appropriate set-point for this activity.
6.4 Information Leak

We evaluate the threat of the private information leak in this ap-
plication by assuming an eavesdropper who can monitor the time
series of actions decided by the RL agent. This is possible assuming
a smart thermostat system that uses a cloud-based service, such as
NEST [52] with a mounted spyware eavesdropper in the cloud.

State in the RLmodel (human activity) can be determined from
sensor nodes inside the house or wearable devices. RL model runs at
the edge (such as a mobile phone). The RL model sends the desired
set-point (action) to the cloud engine. In this model, the attacker is
located in the cloud engine,where the control signal is generated and
sent to the HVAC thermostat to control the environment (house).

Since the eavesdropper has no prior knowledge of human behav-
ior inside the house, unsupervised learning techniques can be used
to infer the hidden patterns. For example, if the eavesdropper uses
a clustering algorithm, such as𝐾-means, we can show that sensitive
information, such as occupancy and sleeping time, can be leaked.
Since the eavesdropperhasnoprior knowledgeof thehumanactivity,
the number of clusters is unknown. Hence, a common technique an
eavesdropper can do is to use the elbow point to determine the best
number of clusters. Figure 3 shows the elbow point result. Four clus-
ters are the most dominant result for the clustering numbers, which
equals the actual number of humanactivities in the simulationmodel.

Accordingly, we compare the ground truth (the actual behavior
of𝐻2 human in the simulation model) and the clustering results by
an eavesdropper (4 clusters) for each day respectively in Figure 2
top and bottom, respectively. As Figure 2 (bottom) illustrates, the
eavesdropper can cluster the actions (set-point)meaningfully, which
is correlated with the pattern of human activity. In this case, the
eavesdropper can achieve a clustering accuracy of 86%. This cluster-
ing results by the eavesdropper can show that approximately after 15
days (as illustrated in Figure 4), there are some information leaks on
the behavioral pattern of thehuman. Indeed the exact humanactivity
is not inferred. However, we show here that the eavesdropper can
infer some behavioral pattern of the human with the knowledge of
the application domain, such as when the humanmost likely goes
to sleep or when the human leaves the house or any changes in the
normal human daily behavior.

6.5 Privacy LeakMitigation with adaPARL

We evaluated adaPARL in adaptively mitigating the privacy leak
based on human behavior while providing a privacy-utility trade-off.
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Figure 2: Top: A human daily activity (𝐻2) inside a house across the 24
hours of the day for 40 days. act1, act2, act3, and act4 are sleeping, not at
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In particular, we compare adaPARLwith two approaches. The first
is a naive approach of randomizing some actions propagated to the
cloud by adding noise (sending random action instead of the RL de-
cided action). The second approach is what we call a “fixed privacy”
mitigation approach [11] which will be the baseline to which we
compare adaPARL. In all three approaches; randomization, fixed
privacy mitigation, and adaPARL; the main objective is to reduce
the MI to limit the eavesdropper’s ability to infer the correlation
between the state and the action pairs independently of the machine
learning algorithm used by the eavesdropper. Figure 8 shows the
summary for this comparison across different human behavior (as
explained in Section 6.3) which we explain in detail in this section.

6.5.1 Mitigation 1: Randomization. A biased coin with a proba-
bility𝑝 is used to decidewhether to randomize the currently selected
action 𝑎𝑡 . In particular, if 𝑝 =0.5, then 50% of the selected actions are
masked through randomization before being sent to the cloud. In
Figure 5 (Top), we show the clustering results as seen by an eaves-
dropper in the cloudwith𝑝 =0.5. The accuracy of clustering dropped
to65% compared to86%before randomization. Figure 6 (left) presents
the effect of adding randomization on the human comfort level 𝑃𝑀𝑉 .
After randomization, the 𝑃𝑀𝑉 histogram expands toward values
outside the acceptable range of human thermal comfort. As expected,
adding randomization decreases the eavesdropper’s ability to pre-
dict the human’s daily behavior. However, it comes at the cost of
reducing the applicationutilitymeasured by the𝑃𝑀𝑉 , where human
experiences more uncomfortable thermal comfort moments.

We evaluated different values of 𝑝 and their effect on the MI on
different human behavior. As seen in Figure 8 (row 2), the MI before
and after adding randomization (with𝑝 =0.5) to theRL actions across
8000 simulation time steps, where each time step is equivalent to a
simulated 6-minute in the systemmodel we described in Section 6.1.
As expected, adding randomization limits the MI. In particular, the
MI reaches 1.45 𝑏𝑖𝑡𝑠 on average for the simulated 3 humans without
mitigation. By adding randomization, the MI is decreased to a value
less than 1 𝑏𝑖𝑡𝑠 on average4.

To evaluate the privacy-utility trade-off using this approach, we
use the standard deviation (STD) of the 𝑃𝑀𝑉 as a measurement of
utility. In particular, as the value of the STD of the 𝑃𝑀𝑉 increases,
it indicates a low utility (more spread of 𝑃𝑀𝑉 value). We plot the
clustering accuracy as an indication of privacy leak vs. the STD of
the 𝑃𝑀𝑉 for different randomization values 𝑝 as shown in Figure 8
4The unit of MI value depends on the base of the logarithm. If base 2 is used, MI is
measured in bits.

(row 3). Increasing the randomization leads to better mitigation of
the privacy leak. However, this privacy leak mitigation costs higher
STD for 𝑃𝑀𝑉 , meaning that human experiences discomfort, indicat-
ing low application utility. While the clustering accuracy drops to
approximately 65% at 𝑝 =0.5, the STD of the 𝑃𝑀𝑉 exceeds 1, which
means 𝑃𝑀𝑉 values are more than 1 or less than −1, indicating high
discomfort levels of the 𝑃𝑀𝑉 . We chose not to increase 𝑝 more than
0.5 due to the increase in the STD of 𝑃𝑀𝑉 beyond 1.

6.5.2 Mitigation 2: adaPARL. While the first approach of adding
randomization can achieve acceptable privacy leakmitigation,we ar-
gue that thismitigationhas tobeadaptiveandnotoblivious tohuman
behavior. We compare the MI using adaPARLwith the randomiza-
tion approach in the same Figure 8 (row 2) using 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =80%. The
MI is reduced and limited to∼1𝑏𝑖𝑡𝑠 on average for the three humans.
As expected, the value of 𝜆 differs for the three humans. Across the
three humans, the MI before mitigation is different due to the dif-
ferent behavioral patterns (inter-human variability). Behavior
patterns represent the complexity and non-uniformity of human
activity in terms of repetition and order during the day. Amore com-
plex life pattern results inMI that grow slower (𝐻3), and the RL agent
requires a longer time to learn the policy 𝜋 (𝑠,𝑎) in contrast with a
more repetitive behavior (𝐻1). Hence, with 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =80%, the value
of 𝜆 differs depending on human behavior to provide adequate and
personalized regularization to the RL reward value. Below we evalu-
ate the design parameters 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 and 𝜁 as explained in adaPARL.
• Tuning 𝝀𝒑𝒆𝒓𝒄𝒆𝒏𝒕 : Using the same metrics we explained in Sec-
tion 6.5.1 to evaluate privacy-utility trade-off, we evaluated the
effect of different values of the design parameter 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 for the
threehumansas shown inFigure8 (row1)with𝜁 at0.6.Weobserve
that 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 80% shows a good compromise between privacy
mitigation and utility. Regarding privacymitigation, Figure 5 (Bot-
tom) presents the effect of adaPARLwith 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =80% on clus-
tering results compared with the randomization approach. As Fig-
ure 5 (Bottom) demonstrates, the eavesdropper is less likely to pre-
dicthumanactivityaftermitigation.Theclusteringaccuracydrops
to 50% for the human subjectwith regular activity (𝐻2)with𝜁 =0.6.
As for the application utility, Figure 6 (right) shows the histogram
of the total 𝑃𝑀𝑉 before mitigation and after using adaPARL for
the human with the regular activity schedule (𝐻2). After using
adaPARLwith 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =80%, the 𝑃𝑀𝑉 histogram around zero
(best thermal comfort) does not change dramatically, and also
the histogram values outside of the comfort zone decrease (in
comparison with randomization), which indicates that while the
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result of adaPARL with 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 80% as seen by the eavesdropper

with no access to the actual human behavior.

privacy of the human subject is preserved, the thermal comfort
of the subject is affected.
• Tuning 𝜻 : Similarly, as Figure 8 (row4) illustrates, by increasing 𝜁 ,
the utility (the STD of 𝑃𝑀𝑉 ) increases while clustering accuracy
drops on average across the three humans to 50% before the STD
of the 𝑃𝑀𝑉 exceeds 1. Hence, 𝜁 =0.6 provides a good compromise
for the privacy-utility trade-off.
• Tracking intra-human variability:As human behavior may
change over time, the value of 𝜆 has to adapt and can not be fixed
even for a single human. Figure 7 shows theMI for a humanwith a
routine behavioral life patternwith a growingMI at the beginning.
Human behavioral pattern changes to follow another growing
MI pattern. In particular, to simulate this change in behavior, we
switched between the behavior of𝐻2 and𝐻1 at runtime. As seen
in the figure, 𝜆 follows a newly fitted MI curve to follow these
changes in the human behavioral pattern.

6.5.3 Mitigation 3: Comparisonwith the baseline. We com-
pared adaPARLwith a baseline method proposed in [11] when the
reward value is regularized (penalized) by theMI from the beginning,
regardless of the shape of theMI (human behavior). In our setup, this
means 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =0. We call this approach a fixed privacy approach.
Figure 8 (row 5) provides this comparison across different values of
𝜁 . This early penalization hinders the RL agent from learning the
human comfort zone partially, and the STD of the 𝑃𝑀𝑉 grows faster
than adaPARL. In adaPARL, by tuning the parameter 𝜆, RL has
time to learn the human comfort zone, and the human experiences
less uncomfortable duration (with slower 𝑃𝑀𝑉 STD growth). This
pattern is followed for all three humans with different behavioral
patterns,whichmeans thatadaPARL can adapt to humanvariability
with less loss in the system utility compared to the baseline method.

6.6 Observations

In this section, we summarize the observations from application
1. Using adaPARLwith personalized 𝜆, we could achieve privacy
mitigation close to the baseline method with a smaller loss on the
application utility per human. In particular, adaPARL is able to
enhance the utility by 46% (STD of PMV) compared to randomiza-
tion and by 57% compared to the baseline method on average across
three different human behavior. In terms of privacy leak mitigation,
adaPARL reduces the privacy leak by 16% (the clustering accuracy)
compared to thebaselinemethodonaverage.Furthermore, compared
with the randomization, the privacy leak in adaPARL is decreased
by 38%. Moreover, by using the parameters 𝜆 and 𝜁 , adaPARL can
adapt to intra- and inter-human variability and regulate the privacy

utility trade-off. Results showed that when privacy leak is highly
mitigated (high values of 𝜁 , with 𝜁 =0.8), the utility is in the accept-
able range (−0.5≤𝑃𝑀𝑉 ≤ 0.5). Hence, adaPARLwas able to achieve
an acceptable performance even with high privacy requirements.

7 APPLICATION 2: HUMAN-IN-THE-LOOP

VIRTUALREALITY SMARTCLASSROOM

The first experiment provided insights into the effect of different de-
sign parameters in adaPARL in a controlled simulated environment.
Next, we design a real-world VR application to evaluate adaPARL.
Inspired by the recent paradigm shift in the education system post-
COVID-19 era and the need for personalized and remote education
setup, we selected a smart classroom IoT application using remote
instruction with VR. During elongated training/education periods,
especially in an online or remote environment, human performance
is prone to significantly decline [51] due to distractions, drowsiness,
and fatigue. In this experiment, an RL agent monitors these changes
in thehumanstateandprovidespersonalized feedback to improvehu-
man learning performance. The eavesdropper is located in the cloud
and has access to the actions taken by the RL model. As motivated
in Experiment 1 (Section 6), these adaptation actions are correlated
to the human private state (learning performance and mental state).

We first design the application and then show the correlation be-
tween the RL agent taken actions and the humanmental state. Lastly,
we apply mitigation techniques, including adaPARL, to mitigate
the private data leak.

7.1 SystemDesign and Implementation with VR

We incorporated 2 presentation modes (2D and 3D) to present the
lecture contents to the participants.We used the Virtual Reality (VR)
technologies for the 3D presentation mode because recent studies
showed that these new technologies would have a significant im-
pact on the learning [28], and workforce training sectors. Using a
VR device (Oculus device), we provided the 3D presentation, and
with the regular laptop screen, we provided the 2D visualization
mode. We chose the lecture contents from Khan Academy along
with their quizzes that cover topics on biology [31], chemistry [33],
and physics [32]. We asked 15 participants, all within the age range
of 20−30, to watch these lectures. Each lecture is stand-alone and
does not require any prior knowledge from the participants to be
understood. The participants’ main task was to watch the lecture
and pay attention to answer the questions regarding the content at
the end of the lecture. We provided the 3D version of these lectures
by converting them from 2D to 3D for VR presentation mode. Each
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Figure 6: 𝑃𝑀𝑉 histogram before and after mitigation. Left: randomizationmitigation with 𝑝 =0.5.
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which causes the change inMI curves.

Table 1: Human state is one of 8 states depending on the alertness

level (AL), fatigue level (FL), and vertigo level (VL).

AL 1 1 1 1 0 0 0 0
FL 1 1 0 0 1 1 0 0
VL 1 0 1 0 1 0 1 0
State S8 S7 S6 S5 S4 S3 S2 S1

lecture is ∼55minutes, in narrative style, and does not include any
quizzes or other interruptions in the middle of them.

We used EEGwearable devices tomonitor the human EEG signals
to infer the mental state related to learning. We used an EMOTIV
EPOC_X14channels portableEEGdevice. Before the experiment,we
presented a 10minutes 2D video presentation on a laptop screen to
measure their baseline mental state signals. We use every 10minute
duration of the EEG raw data to infer the human state regarding
their alertness and readiness to learn.While severalwearable devices
measure various physiological signals that can be used to infer the
human alert level or drowsiness level, we choose the EEG signal
due to the recent studies that showed the frontal lobe activation
of the brain could be used to infer the human ability to learn and
cognitive performance [17].We divided each lecture into 10minutes
videos that we call stages, with approximately 5 stages each lecture5.
Figure 9 shows the setup of the application.

7.2 RL Design

7.2.1 Human State Space. Albeit the beneficial aspects of VR
technologies in education and workplace training, humans react
differently to the VR environment. Some humans report vertigo
and cybersickness symptoms during exposure to VR [6], which can
affect the learning experience. We designed the human state as a
combination of three features, including alertness level (AL), fatigue
level (FL), and vertigo level (VL). Accordingly, we classify these three
features into binary classes to reduce our state space. In particular,
AL is classified as “Alert (1)” versus “Not Alert (0)”, FL is classified as
“Fatigue (1)” versus “Vigor (0)”, and VL is classified as “Not Vertigo
(1)” versus “Hypocalcemia (0)”.S refers to a tuple of 3 features:S=
{(𝐴𝐿,𝐹𝐿,𝑉𝐿) :𝐴𝐿 ∈ {0,1}, 𝐹𝐿 ∈ {0,1}, 𝑉 𝐿 ∈ {0,1}}. Table 1 illustrates
the state space. Each feature is classified based on a corresponding
threshold 𝛿𝐴𝐿, 𝛿𝐹𝐿,𝑎𝑛𝑑 𝛿𝑉𝐿 . If the feature’s measured value passes
the threshold, the class for the given feature is 1; otherwise, it is
0. Accordingly, the best human state for learning is 𝑆8, where the
human is alert and is not experiencing cybersickness (no fatigue and
vertigo). In contrast, the worst state is 𝑆1, where the human is not
alert and experiencing cybersickness (fatigue and vertigo).

Indeed, humans can transition between any of these states. It is
worth mentioning that these thresholds can be tuned based on the
application and participant. Below we describe how we infer the
human state and calculate these thresholds.
5The average attention span of the human is 10 to 15minutes.

• Alertness level (brain engagement) (𝐴𝐿): Tomeasure human
alertness and engagement during the learning process, spectro-
temporal EEG signal analysis can be used. One method recently
implemented toanalyze theEEGsignalduring the learningprocess
is fractal dimension [19]. Various methods have been developed
to calculate the fractal dimension, mainly based on the entropy
concept. In this experiment, we used the box-counting method to
calculate the fractal dimension [19] on the recorded EEG time se-
ries. Since the frontal lobe of the brain is responsible for cognitive
functions such as memory and problem solving [17], we used the
𝐹3 and 𝐹4 channels of the EEG device (located in the frontal lobe).
Weaveraged theoutcomesof these channels for our analysis.After
preprocessing (filtering andnoise removal) and fractal dimensions
analysis, we observed that the fractal dimension of the EEG signal
is higher in the 3D compared to the 2D videos. Since the fractal
dimension reflects the complexity of the signal, this result indi-
cates that the EEG signal is more complex in response to 3D visual
stimuli than 2D visual stimuli. In other words, the human brain
becomes more engaged with a stimulus when presented in the 3D
compared to the 2D.We used this measurement as the𝐴𝐿 state.
• Fatigue Level (𝐹𝐿):We define a measure for 𝐹𝐿 that exploits the
EEG signals. In particular, we useWavelet Packet Decomposition
(WPD) to decompose the EEG signal into its spectral sub-bands
with 1𝐻𝑧 resolution. Recent work in the literature showed that
fatigue anddrowsiness correlatewith the rangeof 8−14𝐻𝑧, which
ismostly the𝛼 band of the EEG signal [10]. Accordingly, we define
𝐹𝐿 as the power spectrum of the 𝛼 band. Similar to 𝐴𝐿, we col-
lected the data from 𝐹3& 𝐹4 channels and averaged the resulting
𝐹𝐿 from both channels.
• VertigoLevel (𝑉𝐿):Themost commonly reportedmeasure of ver-
tigo and cybersickness symptoms is the Simulator Sickness Ques-
tionnaire (SSQ). The SSQ was derived directly from the Pensacola
Motion Sickness Questionnaire (MSQ) [25]. TheMSQ consists of a
list of 25 to 30 symptoms, such as spinning, vertigo, andmay vomit.
Symptoms severity are rated on four levels, “none” (0), “slight”
(1), “moderate” (2), and “severe” (3). A total score was computed
by summing item scores. The highest score was determined to
specify emesis as the worst case of sickness. In particular, the SSQ
is a selection of 16-items from the MSQwith a different scoring
scheme. Based on three main subfactors of cybersickness, includ-
ing Nausea (𝑁 ), Oculomotor (𝑂), and Disorientation (𝐷), a Total
Score (TS) is computed, representing the overall severity of cyber-
sickness experienced by the subject. In particular,𝑇𝑆 can range
from 0 to 235.62 [49]. Participants were asked to fill out the SSQ
questionnaire, and we used it to calculate the𝑇𝑆 . The threshold
for𝑇𝑆 to consider it vertigo depends on the application [49]).
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Figure 8: Proposed adaPARL algorithm parameters analysis and privacy vs. utility trade-off. The first row provides privacy vs. utility trade-off by

considering different values of 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 for standard deviation (STD) of 𝑃𝑀𝑉 on the right vertical axis and clustering accuracy on the left vertical

axis. The second row depicts theMI growth rate for differentmitigation algorithms. The third row presents the privacy vs. utility trade-off for

the randomizationmitigation approach. The fourth row illustrates the privacy vs. utility trade-off for the adaPARL algorithm. On the right

vertical axis, it presents the STD of the 𝑃𝑀𝑉 and clustering accuracy on the left vertical axis across different values of design parameter 𝜁 on the

horizontal axis. The last row shows the privacy vs. utility trade-off comparison between adaPARL and baseline algorithm proposed in [11].

• Choosing the thresholds (𝛿𝐴𝐿 ,𝛿𝐹𝐿 ,𝛿𝑉𝐿):𝛿𝐴𝐿 wasdefinedbased
on the calculation of the𝐴𝐿.𝐴𝐿 correlates with the fractal dimen-
sion values calculated for the EEG signal. We compared each
calculated fractal dimension value with the baseline (measured
before the experiment). If the𝐴𝐿 exceeds the baseline (𝛿𝐴𝐿), the
human is classified as “Alert” (1), else the human is classified as
“Not Alert”(0).
We used the spectral power of the 𝛼 band to define the threshold
for 𝐹𝐿. 𝛿𝐹𝐿 is the midpoint of the 𝑡 measure, calculated based on
the 𝑝−𝑉𝑎𝑙𝑢𝑒𝑠 of the comparison of the𝛼 band of the baseline EEG
and the current stage EEG signals. If the 𝑡 measure exceeds 𝛿𝐹𝐿 ,

then the human is classified as “Fatigue” (0), or else the human is
classified as “Not Fatigue”(1).
We defined 𝛿𝑉𝐿 to be 𝑇𝑆𝑚𝑎𝑥

4 where 𝑇𝑆𝑚𝑎𝑥 = 235.62. If the mea-
sured𝑇𝑆 is bigger than the 𝛿𝑉𝐿 , the human is classified as “Not
Vertigo” (0), or else the human is classified as “Vertigo”(1). At the
end of each stage of the experiment, participants are asked to fill
out the SSQ, and using the questionnaire, we calculate𝑇𝑆 .

7.2.2 Action Space. The action spaceA in this VR application
includes the following actions: (1): Give a break to the human, (2):
Enable VRmode by switching from 2D to 3D, (3): Disable VRmode
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Figure 9: Left: EMOTIV Epoc_x and Oculus device worn by a partici-

pant. The laptop on the left casts the participant’s view on the Oculus

device, and the laptop on the right presents the live EEG signal col-

lected from the EMOTIV device. Right: Screenshot of the view of the

participant while watching biology content on an Oculus device with

an office background.

by switching from 3D to 2D, (4): Changing the content of the presen-
tation, and (5): No change to the learning environment.

In particular, enabling the VRmode increases brain engagement
and enhances learning performance. However, some humans may
experience cybersickness with exposure to VR; hence the RL agent
may need to switch back to regular 2D to reduce cybersickness
symptoms. Moreover, a break during a learning session may also be
needed to reduce drowsiness, cybersickness symptoms, or cognitive
load. Hence,A is bounded and discrete and can be within the range
[1,5]:A= {𝑎 :𝑎 ∈ [1,5],𝑎 ∈N}.
7.2.3 Reward. Weused the same definition of the reward function
explained in Section 5. The human performance in a quiz dictates
the reward value after every learning module, where the score in
this quiz is measured as a percentage. Quiz quantification applies
to 10multiple-choice questions uniformly as the 10/10 (100%) and
0/10 (0%) scores receive rewards 100 and 0, respectively.
7.3 Private Information Leak

As described in our threat model in Section 4, eavesdroppers in the
cloud can access the RL desired actions and run machine learning
algorithms to infer the participant’s private information. The human
state is calculated at the edge. The human mental state is private
information, and any gain by the attacker to this information is con-
sidered a privacy intrusion. Similar to the analysis we did in the first
application in Section 6, we monitor the MI between the RL action
and the participants’ state. Figure 10 illustrates theMI between taken
actions and states of a participant (solid red line referring to “before
mitigation”). The MI reaches approximately ≈ 1.5 𝑏𝑖𝑡𝑠 . A similar
approach for an eavesdropper we designed in the first application in
Section 6.4 can be deployed in this application. An eavesdropper can
use unsupervised learning techniques, such as clustering. Hence, we
will evaluate adaPARL’s ability to mitigate the private leak.
7.4 Privacy LeakMitigation with adaPARL

Asmentioned in the previous experiment, we aim to mitigate this
information leak using two approaches, action randomization, and
adaPARL.
7.4.1 Mitigation 1: Randomization. As a representative result,
by choosing random actions (𝑝 =0.5), Figure 10 depicts the random-
ization effect on MI between RL actions and one of the participant’s
states, which shows the decrease in MI from ≈1.5 𝑏𝑖𝑡𝑠 to less than
≈1 𝑏𝑖𝑡𝑠 . We evaluate the privacy-utility trade-off using action ran-
domization. In particular, we use the drop in the performance in
the quizzes as a utility metric. We use the human state prediction

accuracy using clustering (similar to application 1) as the privacy
leakmeasure.We emphasize here that even though the eavesdropper
may not know the actual human state, the change in the human state
(learning pattern) through observed actions can be inferred, which
can leak private information, such as the human attention span.

To study the effect of randomization 𝑝 without asking the partici-
pant to repeat the experiment 5 times, whichmay bias the results, we
used thedatawecollected fromtheonlineexperimentwith the15par-
ticipantsat𝑝 =0.5. Inparticular, fromtheonlineexperiment,weknew
thequiz performanceof a participant givena state-actionpair.Hence,
we change the value of𝑝 offline to generate different actions per state
and record the expected quiz performance. Figure 11 shows the effect
of parameter 𝑝 on utility-privacy trade-off for the randomization
algorithm for the participants (dotted lines) and the average (solid
line),which illustrates a reduction in the state prediction accuracy on
average to 60%with a 60%drop inutility (performance).Addingmore
random actions leads to lower performance in the quiz as the chosen
presentation mode is less likely to be optimal for the participant’s
current state. This trade-off shows how privacy protection increases
according to the randomization of the actions. It also demonstrates
that performance drops quickly after increasing randomization.
7.4.2 Mitigation 2: adaPARL. We tuned the parameter 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡
on 5 participants offline using a similar approach to application 1.
We used the same category of lecture content (i.e., biology) but not
the same content as the one we used in the online experiment to
prevent any content bias on the participants. The offline test resulted
in 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =85%. Hence, we set 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =85% across the 15 partici-
pants during theonline test. In Figure 10 (solid blue line),we showthe
MI between the actions and one of the participant’s states using ada-
PARL. As Figure 10 illustrates, theMI increases as the agent learns to
take corrective actions and then using 𝜆=1.06 (𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =85%) ada-
PARL regularized the growth of the MI as explained in Section 5.2.

Similar to the approach we used to study the effect of 𝑝 in the ran-
domization, we study the effect of 𝜁 . Figure 12 presents the percent-
age of performance drop and participants’ state prediction accuracy
by changing the values of 𝜁 for the participants (dotted lines) and its
average (solid line). Increasing the parameter 𝜁 decreases the eaves-
dropper’s ability to predict the participants’ state. The prediction
ability of the eavesdropper for 𝜁 = 0.6 decreases by ∼ 50%. At the
same time, the participant’s performance is higher than 75% (perfor-
mance drop is less than 25%), showing improvement in the trade-off
compared to the randomized actions. Table 2 provides the numeric
details of the trade-off parameter (𝜁 ) and 𝜆 (𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =85%) values
specific to each participant. adaPARL chooses different values of
𝜆 for each participant (inter-human variability).

7.5 Observations

Results from this application show that using the parameter 𝜁 ada-
PARL can mitigate the eavesdropper’s ability to predict the par-
ticipants’ state. Our results show that the prediction ability of the
eavesdropper for 𝜁 = 0.6 decreases by ∼ 50%. On the other hand,
the utility (participant’s performance in a quiz) is higher than 75%,
meaning thatadaPARL can improve the trade-off compared tousing
the randomization approach. Furthermore, adaPARL uses different
numeric values of 𝜆 for different participants, which shows that
adaPARL can provide adaption to inter-human variability. On av-
erage, the accuracy of the private state detection decreases to 44%
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Table 2: Privacy (State Prediction) vs. Utility (Performance Drop) trade-off and 𝜆 parameter results of adaPARL for all the 15 participants.
Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Ave

𝜆 (with 𝜆𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =85%) 1.06 1.11 0.98 0.97 1.03 0.93 1.02 1.01 1.04 0.95 0.91 1.02 1.16 0.89 0.96 1.01

State Prediction (%) 0.41 0.38 0.46 0.47 0.43 0.48 0.43 0.44 0.43 0.47 0.49 0.44 0.36 0.49 0.47 0.44

Performance Drop (%) 0.15 0.13 0.18 0.17 0.15 0.16 0.14 0.16 0.15 0.17 0.19 0.13 0.11 0.19 0.13 0.15

before the drop in participants’ performance (utility) passes 15%. In
contrast, in the randomization approach, the 20% drop in the utility
leads to a high privacy cost of 80% as indicated in the prediction
accuracy. In randomization, the privacy leak, which is the prediction
accuracy, never exceeds 65%, evenwith the degradation in the utility.
For instance, when the participants’ performance drops by over 60%,
the privacy leak is still 65%.

8 CONCLUSION

In this paper, we proposed adaPARL, an adaptive human-in-the-
loop privacy-aware RL algorithm that addresses the privacy chal-
lengesassociatedwithhumanvariability inRL-basedsystemstrained
with privacy-sensitive data in IoT applications. We adopted a typ-
ical edge-cloud threat model architecture where all the sensitive
human state inference is calculated on a trusted edge that hosts
the RL agent, and the cloud has only access to the desired control
actions where an eavesdropper is mounted. adaPARL provided an
adaptive and personalized threshold (𝜆) to regularize the reward
function of the RL agent, which changes its value at runtime based
on the changes in human behavior to mitigate the privacy leak. We
validated adaPARL on two Human-in-the-Loop IoT applications in
simulated (smart house) and real-world (VR smart classroom) envi-
ronments. We showed that adaPARL could achieve a personalized
privacy-utility trade-off through two tunable design parameters, 𝜁 ,
which provides the privacy-utility trade-off, and 𝜆, which provides
the adaptation to inter-human variability. In the first application,
on average, adaPARL improved the application utility over the
randomization approach by 43% and over the baseline approach by
57%. Furthermore, adaPARL reduced the privacy leak on average
by 23%. We implemented adaPARL in a real-world application and
demonstrated how adaPARL is capable of adapting to inter-human
variability. Thanks to the flexibility of its parameter (𝜆), adaPARL
was able to adapt to 15 different human participants.
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