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Moiré quantum matter results from stacking two or more 
atomically thin materials with a lattice mismatch or at 
a relative twist angle1. Motivated by the discovery of 

magic-angle twisted bilayer graphene (MATBG)2,3, in the past few 
years moiré systems with different types of constituent layers and 
structures have been created, hosting a number of correlated and 
topological states. Phenomena including but not limited to corre-
lated insulators, quantum anomalous Hall effect, ferromagnetism, 
and generalized Wigner crystals have been discovered and repro-
duced in various new moiré systems4–19. However, for the first few 
years robust and reproducible moiré superconductivity was seen 
only in MATBG3,20,21, despite reports of signatures of superconduc-
tivity in a few other systems5,6,8,9,11,15,22,23.

More recently, robust and highly tuneable superconductivity 
has been demonstrated in magic-angle twisted trilayer graphene 
(MATTG)24,25. Remarkably, the superconductivity in MATTG per-
sists up to in-plane magnetic fields ~3 times larger than the Pauli 
limit for conventional BCS superconductors26, whereas the critical 
magnetic field in MATBG did not substantially violate its nominal 
Pauli limit3. The similarities and differences between MATBG and 
MATTG raise the question of what the key ingredients needed to 
realize robust moiré superconductivity are, and whether the two 
systems may be part of a larger family of new superconductors. 
Practically, it would be desirable to find a reliable way to construct 
new moiré superconductors, as the existence of flat bands alone 
does not guarantee superconductivity, as demonstrated in several 
other graphene-based moiré systems7–12. Such investigations could 
also substantially help in understanding of the mechanism underly-
ing these superconductors.

When two layers of monolayer graphene (MLG) are twisted at 
a small angle27–29, hybridization between the Dirac bands in the 
graphene layers can give rise to unique flat bands where the Fermi 
velocity vanishes. This happens when the twist angle is close to a 
series of ‘magic’ angles. Such twisted bilayer graphene structure, 
with the first ‘magic’ angle of around 1.1°, has been intensively 

studied, providing insights into the nature of the correlated states, 
non-trivial topology and superconductivity2,3,20,21,30–36. It has been 
theoretically shown37 that for three or more twisted layers of gra-
phene, there are similar series of ‘magic’ angles if the layers are 
alternatively twisted by (θ, −θ, θ, …) (Fig. 1a). The values of such 
angles can be analytically computed from the bilayer value in the 
chiral limit, where the interlayer hopping at AA sites is turned off37. 
As illustrated in Fig. 1b, they are in fact elegantly related by simple 
trigonometric transformations, that is the largest magic angle can 
be expressed as θN = θ∞cos π

N+1, where N is the number of layers 
and θ∞ = 2θN=2 is the asymptotic limit of the largest magic angle as 
N → ∞. As N increases, the magic angle increases and the moiré 
length scale decreases. The real magic-angle values deviate slightly 
from the values in the chiral limit. Figure 1d–g shows the electronic 
bands corresponding to two layers to five layers calculated using 
a continuum model28. In these calculations, we used twist angles 
that are the same as the respective devices we measured, which are 
all close to the respective magic angles. Notably, all these ‘magic’ 
structures host a pair of flat bands with extremely small disper-
sion. MATBG, which is the first in the series, has a single pair of 
flat bands near zero energy that are isolated from all other disper-
sive bands, whereas for the structures with N > 2 layers, there are  
extra bands that form N − 2 additional Dirac points at low ener-
gies (per valley and spin). Due to the presence of these extra bands 
in N > 2 layers, the electronic structures are strongly modified  
upon application of an out-of-plane displacement field, which tends 
to hybridize the flat bands with other dispersive bands (Extended 
Data Fig. 1).

This ‘family’ of magic-angle moiré structures shares a number 
of common properties. Regardless of the number of layers, these 
structures have a single moiré periodicity determined by θ, and 
each flat band hosts a density of ns = 8θ2/

√

3a2 (including valley 
and spin degeneracies), where a = 0.246 nm is the lattice constant 
of graphene. It is therefore convenient to use ν = 4n/ns, −4 < ν < 4 
to describe the carrier density n within the flat bands. All members  
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of the family globally retain the C2z symmetry of graphene (see 
Methods for discussion of atomic alignment). For odd N, the 
atomic structure has an out-of-plane mirror symmetry Mz, whereas 
for even N this is replaced by a C2 rotation axis that lies in the x–y 
plane. In previous works2,3,24,25, MATBG and MATTG have both 
been shown to exhibit correlated insulator/resistive states at ν = ±2, 
as well as superconductivity in the vicinity of these states, with criti-
cal temperatures up to ~3 K. As the flat bands in magic-angle struc-
tures with N > 2 can be mathematically mapped onto those in N = 2 

(MATBG), it might be expected that these are also potential hosts 
of superconductivity.

We fabricated and measured high-quality magic-angle tetralayer 
and pentalayer graphene devices (MAT4G and MAT5G, respec-
tively) and observed robust superconductivity in both systems, thus 
establishing alternating twist magic-angle multilayer graphene as a 
new ‘family’ of robust moiré superconductors. We measured mul-
tiple MAT4G and MAT5G devices (Extended Data Figs. 2–4) and, 
remarkably, nearly all showed robust superconductivity (Methods 
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Fig. 1 | Magic-angle multilayer graphene. a, Twisted multilayer graphene with alternating twist angles θMN and −θMN between the adjacent layers, where 
θMN is the magic angle θM specific to an N-layer structure. b, In the chiral limit, θMN can be obtained for any N from the asymptotic value θM∞ = 2.2°, by a 
simple trigonometric transformation. c, Dependence of the moiré wavelength λ on the twist angle. Note that we only consider structures with atomic 
alignment between the nth and (n + 2)th layers (L), so that a single moiré wavelength can be defined37. d–g, Single-particle band structures for TBG (d), 
TTG (e), T4G (f) and T5G (g), respectively, at representative angles near their respective magic angle. The flat bands that are shared by all systems are 
colour-coded with grey. The flat bands in MATBG are isolated from all other dispersive bands by band insulators, whereas N > 2 structures have extra 
bands coexisting with them. The extra bands consist of either pristine Dirac-like bands or non-magic-angle-like TBG bands, depending on N. h, Resistivity 
ρ versus temperature T curves for MATBG (filling factor ν = −2.32), MATTG (ν = −2.4 and electric displacement field D/ε0 = −0.44 V nm−1), MAT4G 
(ν = 2.37 and D/ε0 = −0.32 V nm−1) and MAT5G (ν = 3.05 and D/ε0 = 0.23 V nm−1) (N = 2, 3, 4, 5), showing superconducting transitions in all four systems 
at their respective magic angle. Their twist angles correspond to the same values used for the calculations in 1d–g, which are indicated in 1c as well. The 
normal-state resistivities of MAT4G and MAT5G are smaller than MATBG and MATTG, probably due to the presence of the extra dispersive bands. Data 
shown for MAT4G and MAT5G are from device 4B and device 5A, respectively (see Extended Data Figs. 2–4 for the list of devices).
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and Extended Data Figs. 2, 4 and 5). Our device yield for MATTG 
superconducting devices is also very high, which may indicate that 
the superconducting phase in magic-angle systems with N > 2 is less 
susceptible to relaxation than is the case for MATBG (for which 
about 50% of devices relax towards smaller angles and thus are not 
superconducting). In general, one expects moiré structures with 
more layers and larger twist angles to be intrinsically less susceptible 
to mechanical relaxation38,39. Figure 1h shows representative resis-
tivity versus temperature curves for all four members of the family. 
These curves have been chosen for filling factors and displacement 
fields where the Berezinskii–Kosterlitz–Thouless transition temper-
ature TBKT was around the maximum for each device. In particular, 
for the new members MAT4G and MAT5G, TBKT is ~2 K and ~2.2 K, 
respectively.

The normal-state resistivity in MAT4G and MAT5G is consid-
erably lower than that in MATBG and MATTG, possibly due to 
the presence of extra highly dispersive Dirac bands, which provide 
parallel conducting channels. Figure 2a,b shows the ν–T phase dia-
grams of MAT4G and MAT5G, respectively (see Extended Data Fig. 
4 for other devices). The range of filling factors in which the super-
conductivity appears in MAT4G and MAT5G is generally wider 
than in MATBG and MATTG, starting close to ν = ±1 and reach-
ing beyond ν = ±3. In particular, superconductivity in MAT5G 
extends to or can even reach beyond ν = +4 (Extended Data Fig. 2). 
Considering that MATTG also had a wider dome compared with 
MATBG24,25, this observation suggests that increasing the number 
of layers could possibly increase the phase space robustness of the 
superconductivity. However, one should also note that for N > 2, ν 
does not indicate the filling factor of the flat bands, because some 
of the carriers induced by the gates fill the dispersive bands. This 
effect should be more pronounced as N increases, as the number of 
additional dispersive Dirac bands is N − 2. Moreover, as N increases, 
an inhomogeneous distribution of charge carriers among the layers 
could alter the effective filling factor in the flat band (Methods and 
Extended Data Fig. 6). In addition, the correlated resistive states at 
ν = ±2, if present, are less resistive than those in MATTG24, in some 
cases even absent in the phase diagram (see Extended Data Fig. 2 for 
the full ν–D phase space for the systems), in contrast to the relatively 
insulating states observed in MATBG2,20,21. This trend again might 
be attributed to the presence of additional Dirac bands at the Fermi 
level corresponding to ν = ±2 as N increases. The presence of such 
bands would make the overall structure gapless even if the flat band 
opens a correlated gap.

To further confirm the superconductivity in the ‘magic’ fam-
ily, we measured the voltage–current (V–I) characteristics in both 
MAT4G and MAT5G (Fig. 2d,e). The sharp switching behaviour in 
the V–I curves in all the devices (Extended Data Fig. 4) confirms the 
true, robust superconductivity in these new members of the family. 
In addition, we also performed measurements of the critical current 
versus perpendicular magnetic field, which reveal a Fraunhofer-like 
oscillation pattern (Fig. 2c, for MAT4G device). We note that due to 
the absence of strongly insulating states in these multilayer systems, 
the Fraunhofer-like pattern could only be obtained by constructing a 
gate-defined Josephson junction, as previously done in MATBG40,41 
(Methods and Extended Data Fig. 7). The Ginzburg–Landau coher-
ence length measured in MAT4G is short, at around 20 nm (see 
Extended Data Fig. 4 for other devices and Methods for discussion), 
suggesting relatively strong coupling, as observed in MATTG24. 
Similar to MATTG, all of these properties are further tuneable upon 
application of the electric displacement field D (see Extended Data 
Fig. 2 for the full ν–D map). Extending the measurements to higher 
temperature (Fig. 2g,h), we find that the superconducting transi-
tion in these systems is relatively narrow in temperature, especially 
compared with MATBG, which typically exhibits very wide transi-
tions. At higher temperatures, the resistivity does not show a strong 
temperature dependence, unlike the steep linear-in-temperature 

behaviour previously found in MATBG42,43. The weak linear-in-T 
behaviour observed might be the result of contributions stemming 
from both the flat bands and dispersive bands (the latter being 
very weakly T dependent44), although further theoretical work and 
experiments are needed to determine whether there are signatures 
of strange metal behaviour in these large N devices.

One way to obtain deeper insights into the underlying mecha-
nisms and possible differences between the family members is 
through the response to magnetic fields applied parallel to the 
two-dimensional (2D) plane of the sample (B∥). Typically, magnetic 
fields suppress superconductivity either by inducing vortices or by 
closing the gap via the Zeeman effect acting on the spin compo-
nent of the Cooper pairs. The former effect is largely absent for B∥ 
applied to a 2D superconductor, whereas the latter effect leads to 
a nominal Pauli paramagnetic limit, BP = (1.86 T K−1) × Tc, where Tc 
is the critical temperature for superconductivity, for conventional 
spin-singlet superconductors with negligible spin–orbit interac-
tions. In MATBG, it has been shown that the critical in-plane 
magnetic field Bc∥ is not substantially larger than BP, and supercon-
ductivity vanishes around such a field3. In MATTG, on the other 
hand, the effect of B∥ is much weaker26, and superconductivity can 
persist up to fields ~3 times larger than the nominal Pauli limit. 
This large discrepancy between MATBG and MATTG, which are 
close siblings in the family, may originate for a variety of reasons, 
including the role of in-plane orbital effects45, a difference in super-
conducting pairing symmetry and/or different Cooper pair spin 
configurations. Moreover, the response of the superconducting state 
in MATBG under different B∥ directions shows an interesting spon-
taneous breaking of rotational symmetry46. While the moiré lattice 
in MATBG possesses a sixfold rotational symmetry, Bc∥ shows only 
a two-fold symmetry (Fig. 3a), suggesting that a spontaneous nem-
atic ordering occurs in the superconducting state. Examining these 
phenomena across other members of the family could thus help elu-
cidate their underlying origin and provide information regarding 
the nature of the superconductivity.

Figure 3b–d shows longitudinal resistance Rxx as a function of 
the magnitude and direction of B∥ up to 1 T, for MATTG, MAT4G 
and MAT5G, respectively (see Methods for sample tilt calibration 
details). In all three systems, the superconductor to normal-state 
transition does not display any visible dependence on the direc-
tion of B∥, evidenced by the contours at different resistance val-
ues all being roughly circular (with random irregularities due to 
measurement noise). This is in stark contrast to MATBG (Fig. 3a), 
where elongated elliptical contours can be clearly seen, indicating 
a two-fold anisotropy of the Bc∥. We note that these measurements 
are taken near the boundary of the superconducting domes, since at 
optimal doping the superconducting state does not turn to a normal 
state even when B∥ = 1 T is applied, which is the highest available 
field in our vector magnet for the sample mounting configuration 
required for measuring the angle-dependent critical field.

To obtain Bc∥ at base temperature, we rotated the samples so 
that an in-plane field up to 10 T could be applied. These high-field 
measurements reveal violation of the Pauli limit in both MAT4G 
and MAT5G, to a similar extent as in MATTG26. Figure 3e–g 
shows Rxx versus B∥ and T for the hole-doped and electron-doped 
sides of MAT4G, and electron-doped side of MAT5G, respec-
tively, with the constant-Rxx contour and their respective fit to the 
Ginzburg–Landau expression T ∝ 1− αB2

∥
, where α is a fitting 

parameter (see Methods for details of fitting and Extended Data 
Fig. 8 for additional data). Three different contours at 10%, 20% 
and 30% of the normal-state Rxx were chosen for the analysis. The 
zero-temperature critical field Bc∥(0) obtained by extrapolating the 
fit shows values that consistently exceed the Pauli limit by a fac-
tor of ~2 in all samples that we measured, as well as across all the 
superconducting domes, as shown in Fig. 3h,i. Such consistency 
suggests that the Pauli limit violation is probably inherent to the 
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superconducting state in MATTG, MAT4G and MAT5G, rather 
than the result of spin–orbit coupling or strong coupling effects 
(see ref. 26 for a discussion of these effects).

Our experiments clearly establish that, while all members of the 
magic-angle graphene family show similarities that are likely to 
originate from their respective flat band physics, such as the range 
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of density where superconductivity is strongest, the in-plane mag-
netic field response sharply distinguishes N = 2 (that is MATBG) 
from family members with N > 2. This is surprising, as from a sym-
metry point of view, members with even N share the same in-plane 
C2 rotation symmetry and members with odd N share the same 
mirror symmetry Mz. One would thus expect that systems with 
even layers and odd layers behave similarly within their respec-
tive groups, while distinct across them. These observations do not 
depend substantially on the presence or absence of a displacement 
field (Methods and Extended Data Fig. 9), and are therefore neces-
sarily intrinsic to their respective flat bands, even though all of these 
can be mapped to the MATBG ones37.

Here we attempt to give a possible unified explanation of these 
experimental findings by considering orbital effects in an in-plane 
magnetic field. Both the strong violation of the nominal Pauli limit 
and the absence of nematicity in the magic-angle structures with 
N > 2 layers could be accounted for by a reduced in-plane orbital 
effect as a result of symmetry. In 2D superconductors such as the 
magic-angle family, while B∥ does not induce vortices, the effec-
tive momentum boost experienced when electrons tunnel between 
different layers (proportional to B∥ and the interlayer distance) 

can distort the shape of the Fermi surface, and this can act as a 
pair-breaking effect for superconductivity. This was considered for 
MATBG45,46 and the pair-breaking effect has a similar magnitude 
to that resulting from spin Zeeman effect, with an effective g-factor 
around 2. In other words, the in-plane orbital effect in MATBG 
could account for the suppression of superconductivity at fields of 
the order of the nominal Pauli limit.

When more layers are added, however, the in-plane orbital effects 
between layers tend to cancel each other out, rather than being 
additive. This is conceptually sketched in Fig. 4a. If we consider any 
internal layer in the stack, for example a layer twisted at −θ/2, the 
electrons that tunnel from the layers above it and below it (both 
of which are at angle θ/2) would experience opposite momentum 
boost. From a perturbation theory point of view, the first-order 
effect on the spectrum, proportional to B∥, would be partially or 
fully cancelled depending on N (see Methods for full derivation). 
In Fig. 4b, we calculated the mean orbital g-factor, gorb, in the flat 
bands of magic-angle structures with N = 2, 3, 4, 5, 6, in the absence 
and presence of a displacement field (Methods; note that a similar 
calculation and interpretation was recently made independently in a 
theoretical work47). To interpret the role of gorb, a system with gorb = 2 
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Fig. 3 | In-plane magnetic field dependence of the superconducting states. a–d, Polar maps of the in-plane magnetic field response of Rxx in MATBG, 
MATTG, MAT4G (device 4C) and MAT5G (device 5B), at ν = −1.74 and T = 0.07 K (a), ν = −3.26 and T = 0.1 K (b), ν = −3.09 and T = 0.2 K (c) and ν = 2.11 
and T = 0.2 K (d). MATBG shows an anisotropic response with two-fold symmetry in its in-plane critical field, while the other three systems do not show 
any anisotropy. e–g, B∥–T phase diagram at (ν, D/ε0) = (−2.72, 0.23 V nm−1) (e) and (2.33, −0.32 V nm−1) (f) in MAT4G (device 4B), and (3.25, 0.25 V nm−1) 
in MAT5G (device 5B) (g). The data points denote constant-resistance contours at 10%, 20% and 30% of the zero-field normal-state resistance. Solid 
curves are fit to the Ginzburg–Landau expression T ∝ 1− αB2

∥
 (α is a fitting parameter). We find the critical magnetic fields Bc∥(0) by extrapolating the 

contours to zero temperature. The coloured ticks on the B∥ axis represent the corresponding nominal Pauli limit for each threshold. We note that in e and f 
there are some hints of re-entrant superconducting behaviour at high field26. h,i, Pauli violation ratio (PVR), the ratio between Bc∥(0) and the nominal Pauli 
limit, across ν in MAT4G (device 4B, h) and MAT5G (device 5B, i). In both systems, PVR is around 2–3.
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would have its critical field at the Pauli limit and gorb < 2 would lead 
to Pauli limit violation. MATBG has a gorb ≲ 2. For odd N, the mir-
ror symmetry (Mz) of the system prohibits the in-plane magnetic 
fields from coupling to the system45,48, and gorb is strictly zero in the 
absence of a displacement field. For even N ≥ 4, although a finite 
value of gorb is allowed by symmetry, our calculations show that gorb 
is greatly suppressed compared with MATBG. Therefore, the trend 
of gorb with N qualitatively explains why all N > 2 structures violate 
the Pauli limit while N = 2 does not. When a displacement field is 
turned on, we find that the difference between even/odd N dimin-
ishes, but the orbital g-factors for all N > 2 structures are still consid-
erably smaller than that in MATBG. We note that as N increases, the 
distribution of the displacement field becomes highly non-uniform 
across the stack due to electrostatic screening from outer layers, and 
we have taken a simple approximation to account for such effect 
(Methods and Extended Data Figs. 1 and 6).

Such differences in the orbital coupling might also determine the 
appearance of nematicity throughout the family. Figure 4c–f shows 
the calculated Fermi surfaces of K and K′ valleys upon application 
of B∥. The momentum boosts induced by B∥ are opposite for K and 
K′ valleys. For N = 2 (MATBG), this results in sizeable distortion 
of the Fermi surface, which provides a means for B∥ to couple to 
the superconducting order parameter, and this coupling is depen-
dent on the direction of B∥. This could lead to the observed two-fold 
nematicity when further pinning from strain or other many-body 
effects such as density waves is considered46. In contrast, for the 
N > 2 structures, the Fermi surfaces in the two valleys have mini-
mal distortion (without a displacement field), and thus there is no 
direct coupling between B∥ and the orbital part of the superconduct-
ing order parameter. While B∥ could still couple to the spin degree 
of freedom, weak spin–orbit interaction in these graphene systems 

prevents coupling to the orbital part, and hence no nematicity or 
other types of anisotropic phases are likely to develop.

In the above discussions the role of electron spins was deliber-
ately neglected, but we can consider this now. For N > 3, the Cooper 
pairs clearly cannot be spin-singlets, or the Zeeman effect would 
suppress superconductivity at the Pauli limit. Since the supercon-
ducting states are otherwise similar across the family, there is a pos-
sibility that even MATBG is a non-spin-singlet superconductor, and 
the apparent conformance to the Pauli limit could be a result of the 
orbital effect as discussed above, with similar gorb to that of the spin 
Zeeman effect. Similar considerations were proposed in a recent 
theoretical work45.

We note that although this mechanism can qualitatively capture 
the effect of in-plane magnetic fields on the magic-angle super-
conductor family, there are still remaining puzzles. While the gorb 
for odd N are expected to be zero and the critical magnetic field 
should be infinitely large in principle, experimentally we find Pauli 
limit violations of ~3 in MATTG and ~2 in MAT5G. Furthermore, 
the theoretically calculated gorb strongly depends on the applied dis-
placement field, whereas the measured Pauli limit violation has only 
minor variations with the displacement field. For N ≥ 3, the distri-
bution of the displacement field among the layers could be inter-
twined with the correlation effects in the system, and a spontaneous 
internal displacement field could exist in principle even when no 
external displacement field is applied. Slight discrepancies among 
the twist angles between the layers could introduce further correc-
tions to the displacement field effects. Numerically accounting for 
these aspects in our calculation is beyond the scope of this work and 
we hope that these issues will be clarified by future research.

The discovery of superconductivity in all members of the 
magic-angle family from N = 2 to N = 5 has profound implications 
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Fig. 4 | In-plane magnetic field orbital effect. a, Schematic showing cancellation of the orbital effect under B∥ in the alternating twist structures. Solid blue 
and red lines represent graphene layers with alternating twist angles, and the arrowed loops show that the direction of the momentum boost for hopping 
between adjacent pairs of layers is opposite. For the internal layers in N > 2 structures, this results in a greatly reduced in-plane orbital effect (see Methods 
for mathematical derivation). b, Calculated orbital g-factor, gorb, for N-layer MATNG. Both at zero and finite D, MATBG has the highest coupling to the 
in-plane field, whereas systems with N > 2 have much smaller gorb. Finite D breaks Mz and leads to increased gorb compared with the case of D = 0. c–f, 
Calculated Fermi contours at K and K′ valleys of MATBG (c), MATTG (d), MAT4G (e) and MAT5G (f) near their magic angles under B∥. The magnetic field 
is along the horizontal direction and the magnitude is set to 20 T to exaggerate the effect. The Fermi surface is distorted differently for K and K′ valleys. For 
MATBG, this leads to a considerable orbital pair-breaking effect, whereas for N > 2 structures such distortion is minimal.
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on its mechanism. The presence of superconductivity regardless of 
the number of layers implies that the peculiar flat band that all these 
systems share is likely to play a crucial role in forming robust super-
conductivity. Moreover, the C2zT symmetry that all these structures 
share could also be an important ingredient behind the robust-
ness of the superconductivity, as most moiré systems studied so far 
lacking such symmetry do not seem to be robust superconductors. 
These findings put strong constraints on the theories for the pos-
sible underlying mechanisms for the unusually strong superconduc-
tivity in this moiré family.
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Methods
Sample fabrication. We fabricated all MATNG devices using the ‘cut & stack’ 
method described in detail in our previous work33. We first exfoliated single-crystal 
hBN (30–80 nm thick) and monolayer graphene flakes on silicon substrates 
(with 285 nm dry oxide), which were screened with optical microscopy for 
contaminations and defects. A large graphene flake was laser-cut, with a ~1 μm 
beam diameter, into N (= 4, 5) adjacent pieces, each 10–20 μm in size. We then 
used the standard dry transfer technique with poly(bisphenol A carbonate)/
polydimethylsiloxane to pick up the top hBN flake and subsequently N graphene 
flakes, alternatively rotated by θ and −θ. The stack was eventually released on a 
bottom hBN flake, which had been pre-transferred onto a Pd–Au alloy bottom gate 
and heat annealed in forming gas at 300 °C. The Hall-bar geometry was defined 
with electron beam lithography and reactive ion etching. Top gate and electrical 
contacts were made from thermally evaporated chromium and gold.

In total we fabricated and measured four MAT4G and six MAT5G devices 
(referring to samples with working electrical contacts and gates). Among 
them, three of the MAT4G devices and all six MAT5G devices showed robust 
superconductivity. Extended Data Figure 2 shows the ν–D phase diagram of 
MAT4G devices 4A, 4B and 4C and MAT5G devices 5A, 5B, 5C, 5D and 5E, 
which we have thoroughly measured. Previously, we fabricated and measured 
four MATTG devices, which all exhibited robust superconductivity. In contrast, 
MATBG devices undergo twist angle relaxation during fabrication much more 
frequently, which gives a total yield of roughly 50% at best. This difference 
might indicate that MATNG structures with N > 2 are much more robust against 
relaxation and/or have more robust parameter-space superconducting phase space.

Measurement setup. Transport data in MATNG were measured in a dilution 
refrigerator equipped with a triple-axis vector-type magnet. All sample wires have 
multistage low-pass filters. Current through the sample and the four-probe voltage 
were first amplified by 1 × 107 V A−1 and 1,000, respectively, using Ithaco current 
and voltage pre-amplifiers, and then measured with Stanford Research SR830 or 
SR860 lock-in amplifiers. The lock-in frequency is typically between 10 Hz and 
20 Hz. We used current excitation of ~1–5 nA for resistance measurements. For 
d.c. bias measurements, we used a BabyDAC passing through a 10 MΩ resistor to 
provide the d.c. bias current, and measured the d.c. voltage with a Keysight 34461A 
digital multimeter connected to the voltage pre-amplifier.

In the temperature-dependent colour maps (Figs. 2a,b and 3e–g and Extended 
Data Figs. 4d–i, 8e,f, 9b and 9d), since the raw data were taken at non-regular 
intervals in temperature, we first interpolated the data into a regular grid in T 
before plotting. We checked that no artefacts were introduced by this interpolation.

Analysis of Ginzburg–Landau coherence length. The Ginzburg–Landau 
coherence length in MAT4G and MAT5G was extracted from the B⊥dependence of 
the critical temperature Tc. We first extracted the mean-field Tc at zero B⊥ by fitting 
the high-temperature part of the data to a straight line r(T) = AT + B, and then 
found the intersection of Rxx(T) with p × r(T), where p is the percentage of normal 
resistance. The Ginzburg–Landau coherence length ξGL was then obtained from 
linear fitting of Tc against B⊥, and the x intercept is equal to Φ0/(2πξ2GL), where 
Φ0 = h/2e is the superconducting flux quantum. The different thresholds yielded 
slightly different but consistent coherence lengths, which we plotted in Fig. 2f as 
the data points (30%) and error bars (25%, 35%). This procedure is the same as 
performed in our previous work (ref. 24).

Field calibration. Since measurements of both Pauli limit violation and rotational 
symmetry breaking were performed in a triple-axis magnet, careful calibration was 
necessary to make sure that any magnetic field component perpendicular to the 
sample due to sample tilt is compensated. For Pauli limit violation measurements, 
the sample was mounted parallel to the z axis and we used the z-axis magnet to 
apply large magnetic fields up to 10 T, while using the x-axis magnet to compensate 
for any sample tilt. For rotational symmetry breaking measurements, we mounted 
the sample parallel to the x–y plane and applied magnetic fields up to a magnitude 
of 1 T along any direction in this plane, while using the z-axis magnet to apply the 
compensation field.

In both cases, we used the MATNG sample itself as a sensitive field sensor, 
because the resistance Rxx is very sensitive to B⊥ when it is doped near the edge 
of the superconducting dome. Detailed calibration methods were published in 
previous works26,46. For the Pauli limit violation measurements, the residual B⊥ after 
the calibration procedure is typically less than ±5 mT when B∥ = 10 T is applied. For 
the rotational symmetry breaking measurements, the residual B⊥ is typically less 
than 2 mT when B∥ = 1 T is applied. These residual fields are small enough that they 
do not have any appreciable effect on the measured data.

Analysis of Pauli violation ratio. To extract the Pauli violation ratio (PVR), 
we first extracted the normal-state resistance similar to the coherence length 
analysis above, by fitting the high-temperature part of the data with a straight 
line r(T) = aT + b. Since in both MAT4G and MAT5G the slope of the 
linear-in-temperature component (a) is fairly small (Fig. 2g,h), in many cases 
r(T) can simply be replaced by a constant resistance value measured above Tc, and 
this method was used for device 4C shown in Extended Data Fig. 8e. For a given 

percentage p, we found the intersection of the zero-field resistance curve with 
p × r(T), which defines resistance Rp

N  and temperature Tp
c(0). We used Rp

N  to define 
the resistance contours in Fig. 3e–g and fit each contour to T = Tp

c(0)(1 − αpB2
∥) 

from Tp
c(0) down to lowest temperature we could measure, where αp is a fitting 

parameter. The zero-temperature critical field was obtained through extrapolation, 
Bp
c(0) = α−1/2

p . The corresponding PVR is then PVRp = Bp
c(0)/[1.86 TK−1Tp

c(0)]. 
This procedure was independently performed for each ν and p = 10%, 20%, 30%. 
We found that the choice of the threshold percentage makes no qualitative 
difference in the extracted PVR.

Band structure and orbital g-factor in MATNG. We calculated the band 
structures using the continuum model that is extended from twisted bilayer 
graphene28,29. The Hamiltonian of the system can be formally written as

H0(k) =
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where σ±θ/2 are Pauli matrices that are rotated by angles ±θ/2, T is an interlayer 
coupling matrix identical to that in twisted bilayer graphene, vF is the Fermi 
velocity in monolayer graphene and ℏ is the reduced Planck constant. Each row/
column here represents one layer in the system. The sign in the last element of 
the matrix is determined by whether N is odd (+) or even (−). For simplicity, 
only direct tunnelling between adjacent layers is considered. We numerically 
diagonalized this Hamiltonian for different wave vectors k in the mini Brillouin 
zone of the superlattice corresponding to twist angle θ and obtained the energy 
dispersions, which are plotted in Fig. 1d–g for N = 2, 3, 4, 5 near their magic angles, 
respectively. The spectrum was calculated and plotted for the K valley only. The 
spectrum of the K′ valley is related to the K spectrum by time-reversal symmetry, 
and thus can by obtained simply by taking k → −k. The parameters we used are AB 
site hopping amplitude w = 0.1 eV and AA site hopping amplitude w′ = 0.08 eV.

To include the effect of an in-plane magnetic field B = Bn̂, where n̂ is 
the direction of the field and satisfies n̂ · ẑ = 0 ( ẑ is unit vector along the 
perpendicular direction), we can pick the gauge A = zBn̂ × ẑ, such that ∇ × A = B. 
Through minimal coupling substitution k → k + e

h̄A and defining t̂ = n̂ × ẑ, one 
can write the Hamiltonian in the field as

H(k, B) =
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where d is the interlayer distance. Conceptually, the application of an in-plane B 
corresponds to shifting the Dirac cones in each layer before hybridizing them, 
by an amount Δk = edBt̂/h̄ between adjacent layers. This is commonly called 
a ‘momentum boost’. Since the time-reversal symmetry is now broken, the K′ 
valley spectrum needs to be obtained separately by replacing all k with −k in the 
Hamiltonian above.

To obtain the orbital g-factor gorb, we obtained the spectrum in both K and 
K′ valleys and calculated |EK(k, B) − EK′ (−k, B)|, averaged over the entire 
Brillouin zone and as a function of B. We call this quantity ΔE(B). In all of these 
calculations, we set the direction of the field to be along the x axis for simplicity. 
ΔE(B) characterizes the magnitude of the orbital depairing effect assuming that 
the superconducting Cooper pairs are formed by electrons with momentum k in 
the K valley and −k in the K′ valley, that is an intervalley pairing. We obtained an 
average gorb from its leading order dependence on B: ΔE(B) = gorbμBB + O(B2). 
The Brillouin zone averaging was carried out only in the flat bands in each 
MATNG system, and the resulting gorb is plotted in Fig. 4b.

Without displacement field, this calculation shows that all MATNG with odd N 
have zero gorb and those with even N have gorb that quickly decays with increasing N. 
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We can understand this effect from a simple perturbation theory argument. If we 
write the above Hamiltonian as H(k, B) = H0(k) + BH′(k), where

H′(k) = vFed
2
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First-order perturbation theory predicts an energy shift

ΔE = E(k, B) − E(k, 0) = B ⟨ψ0(k)|H
′
(k) |ψ0(k)⟩ ,

where |ψ0(k)⟩ is an eigenstate of H0(k). To evaluate this expression for the flat 
bands at its largest magic angle and taking the chiral limit assumption (setting w′ to 
zero), we quote an expression from ref. 37,

|ψ0(k)⟩ =
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〉

 constitutes a corresponding eigenstate of MATBG due to the 
mapping between the flat bands in MATNG and MATBG, and m is an integer. 
We chose to normalize all |ψ0(k)⟩ to one. Using this mapping relationship, we can 
reduce equation (4) to

ΔE = vFedB
2
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If we denote
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which are quantities weakly dependent on N, then we can further write

ΔE =
∑

0<l≤N odd
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This result can be obtained from an argument based on mirror symmetry as well45,48.
If N is even,
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As N increases, the prefactor approaches zero rapidly and asymptotically behaves 
as ~π2(N + 1)−3 when N is large. When N = 2, the prefactor evaluates to one and 
ΔE is the largest. As we increase to N = 4, 6, 8, …, it becomes 0.106, 0.033, 0.015, 
respectively. These estimations qualitatively explain why all N > 2 MATNG systems 
exhibit much smaller in-plane orbital effect and gorb than MATBG, regardless of 
whether N is even or odd.

Inhomogeneous gating across layers in multilayer graphene systems. Typically, 
electrostatic gating in atomically thin materials is considered to be geometric, 
that is the charge density and electric displacement field within the material are 
assumed to be simply related to top and bottom gate voltages Vtg and Vbg by

n =
1
e
(

ctgVtg + cbgVbg
)

,

D =
1
2
(

−ctgVtg + cbgVbg
)

,

where ctg and cbg are capacitance per area of top and bottom dielectrics, respectively. 
Since the material is thin, the charge density and displacement field can be 
assumed to be uniform across the thickness. However, as more layers are added, 
electrostatic screening by the outer layers becomes non-negligible and creates a 
non-uniform distribution of charge density and displacement field among the 
graphene layers. This distribution will in turn alter the electronic dispersion of the 
system. Solving for both band dispersion and charge distribution simultaneously 
and self-consistently requires a Hartree–Fock type calculation for each Vtg and Vbg, 
which is a challenging computation task and beyond the scope of this work.

Instead, we included the zeroth order effect of such non-uniform screening 
into the continuum model by treating each graphene layer as a metal with 
constant density of states (DOS) D = dn/dμ (μ is the chemical potential), and 
then considered the screening of the electric field by them. The screening effect 
was incorporated by modelling the graphene stack as a capacitor network, as 
illustrated in Extended Data Fig. 6b. Here cg = ϵ0/d represents the geometric 
capacitance between the graphene layers, and cq = e2D represents the quantum 
capacitance of each graphene layer (all discussions below assume unit area). 
The voltage across cq equals −μ/e, and the charge stored on cq, which equals 
∫−μ/e
0 cqdvq = −e

∫ μ
0 Ddμ = −en, is exactly the charge density on the graphene 

layer. The voltage on the left node of each cq, which we denote vi, represents the 
electrostatic potential of the ith graphene layer, while the voltage on the right node, 
which equals −μei/e, is zero because they are grounded. μei is the electrochemical 
potential of the ith layer and by definition μei = μi − evi. This relationship is 
guaranteed by the Kirchhoff voltage law in the circuit formulation.

The solution of this capacitor network vT =
[

v1v2…vN
]T  satisfies

























cq + cg + ctg −cg 0 … 0

−cg cq + 2cg −cg … 0

0 −cg cq + 2cg … 0

...
...

...
. . .

...

0 0 0 … cq + cg + cbg

























v =

























ctgvtg

0

0

...

cbgvbg

























.

Since typically ctg, cbg ≪ cq, cg, they can be dropped from the left side of the matrix. 
We can thus write
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where ntg and nbg are the electron density induced by the top and bottom gates, 
respectively.

To consider an external displacement field from differential gating, we set 
ntg = −nbg = D/e and solve equation (20) numerically to obtain the electrostatic 
potential on each layer vi. Extended Data Figure 6c shows vi solved for N = 2, …, 6. 
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An energy −evi was then added onto the corresponding diagonal terms in the 
continuum Hamiltonian, equation (1), to include the screened electrostatic effect 
into the continuum model. As an estimate of the mean density of states on each 
layer, we assumed D = ns/(NW), where ns is superlattice density and W ~ 20 meV 
is the approximate bandwidth for the flat bands (regardless of N). Examples of 
calculated MATNG band structures using the screened electrostatic potentials are 
shown in Extended Data Fig. 1 for N = 2, 3, 4, 5.

We note that while the continuum model can include the effect of non-uniform 
electrical displacement field as described above, it does not allow inclusion of 
information on the filling factor at the single-particle level. However, for large N 
MATNG structures, especially MAT5G, the inhomogeneous filling factor among 
layers could play an important role in its ν–D phase diagram, and may explain why 
superconductivity in MAT5G slightly extends beyond ν = 4. We hope that future 
numerical studies which self-consistently include both of the above effects can 
elucidate the whole picture.

Fraunhofer-like oscillation pattern. To see a clear Fraunhofer-like pattern in 
MAT4G, we fabricated a device with split top gates with a nominal gap of 150 nm. 
A picture of the device is shown in Extended Data Fig. 7a (the relevant contacts 
are labelled as JJ) and schematically illustrated in Extended Data Fig. 7b. Since 
MAT4G under the gap region is not covered by the top gate, it can be doped into 
a normal state (N) while the dual-gated regions are doped into superconductivity 
(S), thereby forming a ‘SNS’ Josephson junction. We note that in these types of 
2D Josephson junctions, the oscillation periodicity generally does not correspond 
to the junction area (that is defined by the gap between the split gates), as 2D 
superconductors do not exhibit the Meissner effect that expels all magnetic 
fields from the leads of the junction. This was previously observed in Josephson 
junctions made from MATBG40 and has a solid theoretical background (see, for 
example, ref. 49). In these junctions, the Fraunhofer oscillation period is determined 
by the width of the entire device w, approximately equalling ~1.8ϕ0/w2, where 
ϕ0 = h/2e is the flux quantum. Taking w ~ 2 μm, the period should be about 1 mT, 
which is qualitatively consistent with the visible modulations in Fig. 2c.

Discussion about other possible effects. In our understanding, the 
superconductivity across the magic family originates from a common but as yet 
undetermined mechanism, and the interaction effects in their respective flat bands 
are similar (for example, spontaneous flavour symmetry breaking at D = 0). Some 
of the apparent differences among the family can be at least partially attributed 
to one of three factors: (1) increasing magic angle with the number of layer N, 
(2) more Dirac-like/dispersive TBG-like bands coexisting with the flat bands 
as N increases and (3) different strengths of orbital coupling due to the mirror 
symmetry, as discussed in Fig. 4 in the main text. Since all structures are prepared 
on the same substrate (hBN), we do not expect the substrate to be a varying factor 
in these comparisons. Having larger magic angles and thus smaller moiré unit 
cells, the four-layer and five-layer structures should be less susceptible to strain and 
relaxation effects. However, having more interfaces also implies that there are more 
possible modes of twist angle disorder. Further studies are necessary to elucidate 
the roles of these effects.

In typical bulk superconductors, the pair-breaking effect is usually modelled 
by the Werthamer–Helfand–Hohenberg theory. We note, however, that this 
theory does not directly work for 2D superconductors in an in-plane magnetic 
field as there are no vortices. The observation of re-entrant superconducting 
states in MATTG and hints of these in MAT4G and MAT5G introduce further 
complications. We invite future works to develop a robust method to analyse these 
effects more quantitatively.

The resistive features at integer ν are generally robust, especially in relatively 
less disordered devices (defined by cleaner Landau levels). On the other hand, 
resistive states at fractional values appear to be dependent on the sample, possibly 

due to their different angles. One possible origin of these fractional features is the 
formation of charge density waves, which was identified in the recent scanning SET 
experiments on MATBG35.
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Extended Data Fig. 1 | Calculated band structure of MATNG in the presence of electric displacement field Dε0 = 0.5 V/nm. The calculation uses the 
screened electrostatic potential calculated as illustrated in Extended Data Fig. 6c. For all N>2 MATNG structures, the electric displacement field hybridizes 
the flat bands with other dispersive bands.
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Extended Data Fig. 2 | ν-D phase diagrams of MAT4G and MAT5G devices. Devices 4A-C shown in (a-c) are MAT4G devices, while Devices 5A-E 
shown in (d-i) are MAT5G devices. Device 5B-1 and 5B-2 are two different contacts from the same device that shares the same top gate and back gate. 
All measurements were performed at T ~ 200 mK. In all MAT5G devices, we find the superconductivity region to be either approaching or exceeding ν = 4, 
which is indicated by blue dashed lines in (d-i).
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Extended Data Fig. 3 | Landau fan diagrams of MAT4G and MAT5G devices. All measurements were performed at T ~ 200 mK.
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Extended Data Fig. 4 | Superconducting properties in other MAT4G and MAT5G devices. (a-c) Temperature-dependent Vxx − I curves in device 4A, 4C 
and 5D. (d-f) ν − T phase diagrams in device 4A, 4C and 5D. (g-i) TBKT and Ginzburg-Landau coherent length ξGL in device 4C, 5D and 5E. The error bars in 
(g-i) correspond to ξGL extracted using p=30% (point), 35% (lower bound), and 25% (upper bound).
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Extended Data Fig. 5 | ν-D map of BKT transition temperature in device 4B, 5A, 5B-1, and 5C. (a-d) TBKT as a function of ν and D in device 4B (a), 5A (b), 
5B-1 (c), and 5C (d).
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Extended Data Fig. 6 | Modeling layer-inhomogeneous screening in MATNG. (a) Schematic of N graphene layers being gated by a top gate (TG) and 
bottom gate (BG). The electric displacement field between the graphene layers is reduced compared to the field outside the stack due to screening. (b) 
By assuming a finite density of states D on each graphene layer, we model the N-layer system as a capacitor network, where cq = e2D is the quantum 
capacitance and cg = ε0/d is the geometric capacitance. (c) Calculated electrostatic potential vi on each layer for MATBG, MATTG, MAT4G, MAT5G and 
MAT6G (N = 2, …, 6), assuming bandwidth W=20 meV, and external displacement field Dε0 = 0.5V/nm. The twist angle is the same as in Fig. 4, except 
for 6L which is 1.99°. Here the midplane (the plane of the N+1

2 -th layer when N is odd and the midplane between N2-th layer and (N2 + 1)-th layer when N is 
even) is set to be zero both in layer position and in electrostatic potential. For comparison, the electrostatic potential without screening eDdx/ε0 is shown 
as the dashed line, where − (N−1)

2 < x < (N−1)
2  is the layer position (horizontal axis) and d=0.34 nm is the interlayer distance).
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Extended Data Fig. 7 | Typical optical microscope images for MAT4G and MAT5G devices. The illustration shows the split-gate geometry for the 
Josephson junction. Data from all contacts including the ones not shown in the figures exhibit robust superconductivity.
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Extended Data Fig. 8 | In-plane magnetic field response in other MAT4G and MAT5G devices. (a-d) Absence of rotational symmetry breaking in 
other MAT4G and MAT5G devices. The filling factors for (a-d) are ν = − 3.41, − 1.95, − 3.50, − 2.33, respectively, and the electric displacement fields are 
D
ε0

= 0.29V/nm,0.29V/nm,0V/nm,0V/nm, respectively. (d-e) Pauli limit violation in Device 4C measured at ν = 2.29 and Dε0 = 0V/nm (d) and Device 5E 
measured at ν = 2.59 and Dε0 = 0V/nm (e).
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Extended Data Fig. 9 | D-independent Pauli limit violation in MAT4G. (a-b) shows the D-B∥and D-T map of Rxx in device 4B. We find the critical in-plane 
field and critical temperature follow similar trend with D, indicating that the PVR, which is proportional to the ratio between them, is largely independent of 
D. (c-d) Same trend is observed in device 4C.
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