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The discovery of correlated states and superconductivity in magic-angle twisted bilayer graphene (MATBG) established a new
platform to explore interaction-driven and topological phenomena. However, despite multitudes of correlated phases observed
in moiré systems, robust superconductivity appears the least common, found only in MATBG and more recently in magic-angle
twisted trilayer graphene. Here we report the experimental realization of superconducting magic-angle twisted four-layer and
five-layer graphene, hence establishing alternating twist magic-angle multilayer graphene as a robust family of moiré super-
conductors. This finding suggests that the flat bands shared by the members play a central role in the superconductivity. Our
measurements in parallel magnetic fields, in particular the investigation of Pauli limit violation and spontaneous rotational
symmetry breaking, reveal a clear distinction between the N=2 and N> 2-layer structures, consistent with the difference
between their orbital responses to magnetic fields. Our results expand the emergent family of moiré superconductors, provid-

ing new insight with potential implications for design of new superconducting materials platforms.

oiré quantum matter results from stacking two or more

atomically thin materials with a lattice mismatch or at

a relative twist angle’. Motivated by the discovery of
magic-angle twisted bilayer graphene (MATBG)*’, in the past few
years moiré systems with different types of constituent layers and
structures have been created, hosting a number of correlated and
topological states. Phenomena including but not limited to corre-
lated insulators, quantum anomalous Hall effect, ferromagnetism,
and generalized Wigner crystals have been discovered and repro-
duced in various new moiré systems*"*. However, for the first few
years robust and reproducible moiré superconductivity was seen
only in MATBG****, despite reports of signatures of superconduc-
tivity in a few other systems™5%1115:22:23,

More recently, robust and highly tuneable superconductivity
has been demonstrated in magic-angle twisted trilayer graphene
(MATTG)***. Remarkably, the superconductivity in MATTG per-
sists up to in-plane magnetic fields~3 times larger than the Pauli
limit for conventional BCS superconductors®, whereas the critical
magnetic field in MATBG did not substantially violate its nominal
Pauli limit®. The similarities and differences between MATBG and
MATTG raise the question of what the key ingredients needed to
realize robust moiré superconductivity are, and whether the two
systems may be part of a larger family of new superconductors.
Practically, it would be desirable to find a reliable way to construct
new moiré superconductors, as the existence of flat bands alone
does not guarantee superconductivity, as demonstrated in several
other graphene-based moiré systems’~'?. Such investigations could
also substantially help in understanding of the mechanism underly-
ing these superconductors.

When two layers of monolayer graphene (MLG) are twisted at
a small angle”~”, hybridization between the Dirac bands in the
graphene layers can give rise to unique flat bands where the Fermi
velocity vanishes. This happens when the twist angle is close to a
series of ‘magic’ angles. Such twisted bilayer graphene structure,
with the first ‘magic’ angle of around 1.1°, has been intensively

studied, providing insights into the nature of the correlated states,
non-trivial topology and superconductivity>******=* It has been
theoretically shown’ that for three or more twisted layers of gra-
phene, there are similar series of ‘magic’ angles if the layers are
alternatively twisted by (6,-0,6,...) (Fig. 1a). The values of such
angles can be analytically computed from the bilayer value in the
chiral limit, where the interlayer hopping at AA sites is turned off”".
As illustrated in Fig. 1b, they are in fact elegantly related by simple
trigonometric transformations, that is the largest magic angle can
be expressed as On = 0o cOs 77, where N is the number of layers
and 60,,=26,_, is the asymptotic limit of the largest magic angle as
N—o. As N increases, the magic angle increases and the moiré
length scale decreases. The real magic-angle values deviate slightly
from the values in the chiral limit. Figure 1d-g shows the electronic
bands corresponding to two layers to five layers calculated using
a continuum model®. In these calculations, we used twist angles
that are the same as the respective devices we measured, which are
all close to the respective magic angles. Notably, all these ‘magic’
structures host a pair of flat bands with extremely small disper-
sion. MATBG, which is the first in the series, has a single pair of
flat bands near zero energy that are isolated from all other disper-
sive bands, whereas for the structures with N> 2 layers, there are
extra bands that form N—2 additional Dirac points at low ener-
gies (per valley and spin). Due to the presence of these extra bands
in N>2 layers, the electronic structures are strongly modified
upon application of an out-of-plane displacement field, which tends
to hybridize the flat bands with other dispersive bands (Extended
Data Fig. 1).

This ‘family’ of magic-angle moiré structures shares a number
of common properties. Regardless of the number of layers, these
structures have a single moiré periodicity determined by 6, and
each flat band hosts a density of n, = 84%/v/34? (including valley
and spin degeneracies), where a=0.246nm is the lattice constant
of graphene. It is therefore convenient to use v=4n/n,—4<v<4
to describe the carrier density n within the flat bands. All members
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Fig. 1| Magic-angle multilayer graphene. a, Twisted multilayer graphene with alternating twist angles 6,,, and —6,,, between the adjacent layers, where
Oyn is the magic angle 6,, specific to an N-layer structure. b, In the chiral limit, 8,y can be obtained for any N from the asymptotic value 6,,,=2.2°, by a
simple trigonometric transformation. ¢, Dependence of the moiré wavelength 4 on the twist angle. Note that we only consider structures with atomic

alignment between the nth and (n+ 2)th layers (L), so that a single moiré wavelength can be defined*’. d-g, Single-particle band structures for TBG (d),
TTG (e), TAG (f) and T5G (g), respectively, at representative angles near their respective magic angle. The flat bands that are shared by all systems are
colour-coded with grey. The flat bands in MATBG are isolated from all other dispersive bands by band insulators, whereas N > 2 structures have extra
bands coexisting with them. The extra bands consist of either pristine Dirac-like bands or non-magic-angle-like TBG bands, depending on N. h, Resistivity
p versus temperature T curves for MATBG (filling factor v=—2.32), MATTG (v=—2.4 and electric displacement field D/e,=—0.44V nm™"), MAT4G
(v=2.37and D/e,=-0.32V nm™) and MAT5G (v=3.05 and D/g,=0.23V nm™) (N=2,3,4,5), showing superconducting transitions in all four systems
at their respective magic angle. Their twist angles correspond to the same values used for the calculations in 1d-g, which are indicated in Tc as well. The
normal-state resistivities of MAT4G and MAT5G are smaller than MATBG and MATTG, probably due to the presence of the extra dispersive bands. Data

shown for MAT4G and MATS5G are from device 4B and device 5A, respectively (see Extended Data Figs. 2-4 for the list of devices).

of the family globally retain the C,, symmetry of graphene (see
Methods for discussion of atomic alignment). For odd N, the
atomic structure has an out-of-plane mirror symmetry M,, whereas
for even N this is replaced by a C, rotation axis that lies in the x—y
plane. In previous works>*****, MATBG and MATTG have both
been shown to exhibit correlated insulator/resistive states at v =2,
as well as superconductivity in the vicinity of these states, with criti-
cal temperatures up to ~3 K. As the flat bands in magic-angle struc-
tures with N> 2 can be mathematically mapped onto those in N=2

(MATBG), it might be expected that these are also potential hosts
of superconductivity.

We fabricated and measured high-quality magic-angle tetralayer
and pentalayer graphene devices (MAT4G and MATS5G, respec-
tively) and observed robust superconductivity in both systems, thus
establishing alternating twist magic-angle multilayer graphene as a
new ‘family’ of robust moiré superconductors. We measured mul-
tiple MAT4G and MAT5G devices (Extended Data Figs. 2-4) and,
remarkably, nearly all showed robust superconductivity (Methods

878 NATURE MATERIALS | VOL 21| AUGUST 2022 | 877-883 | www.nature.com/naturematerials


http://www.nature.com/naturematerials

NATURE MATERIALS

and Extended Data Figs. 2, 4 and 5). Our device yield for MATTG
superconducting devices is also very high, which may indicate that
the superconducting phase in magic-angle systems with N> 2 is less
susceptible to relaxation than is the case for MATBG (for which
about 50% of devices relax towards smaller angles and thus are not
superconducting). In general, one expects moiré structures with
more layers and larger twist angles to be intrinsically less susceptible
to mechanical relaxation’®*. Figure 1h shows representative resis-
tivity versus temperature curves for all four members of the family.
These curves have been chosen for filling factors and displacement
fields where the Berezinskii-Kosterlitz—-Thouless transition temper-
ature Ty was around the maximum for each device. In particular,
for the new members MAT4G and MAT5G, Tyypis~2Kand ~2.2K,
respectively.

The normal-state resistivity in MAT4G and MAT5G is consid-
erably lower than that in MATBG and MATTG, possibly due to
the presence of extra highly dispersive Dirac bands, which provide
parallel conducting channels. Figure 2a,b shows the v-T phase dia-
grams of MAT4G and MAT5G, respectively (see Extended Data Fig.
4 for other devices). The range of filling factors in which the super-
conductivity appears in MAT4G and MAT5G is generally wider
than in MATBG and MATTG, starting close to v==+1 and reach-
ing beyond v=4+3. In particular, superconductivity in MAT5G
extends to or can even reach beyond v =+4 (Extended Data Fig. 2).
Considering that MATTG also had a wider dome compared with
MATBG***, this observation suggests that increasing the number
of layers could possibly increase the phase space robustness of the
superconductivity. However, one should also note that for N>2, v
does not indicate the filling factor of the flat bands, because some
of the carriers induced by the gates fill the dispersive bands. This
effect should be more pronounced as N increases, as the number of
additional dispersive Dirac bands is N— 2. Moreover, as N increases,
an inhomogeneous distribution of charge carriers among the layers
could alter the effective filling factor in the flat band (Methods and
Extended Data Fig. 6). In addition, the correlated resistive states at
v==2, if present, are less resistive than those in MATTG?, in some
cases even absent in the phase diagram (see Extended Data Fig. 2 for
the full v-D phase space for the systems), in contrast to the relatively
insulating states observed in MATBG>***'. This trend again might
be attributed to the presence of additional Dirac bands at the Fermi
level corresponding to v=+2 as N increases. The presence of such
bands would make the overall structure gapless even if the flat band
opens a correlated gap.

To further confirm the superconductivity in the ‘magic’ fam-
ily, we measured the voltage—current (V-I) characteristics in both
MAT4G and MAT5G (Fig. 2d,e). The sharp switching behaviour in
the V-I curves in all the devices (Extended Data Fig. 4) confirms the
true, robust superconductivity in these new members of the family.
In addition, we also performed measurements of the critical current
versus perpendicular magnetic field, which reveal a Fraunhofer-like
oscillation pattern (Fig. 2¢, for MAT4G device). We note that due to
the absence of strongly insulating states in these multilayer systems,
the Fraunhofer-like pattern could only be obtained by constructing a
gate-defined Josephson junction, as previously done in MATBG***!
(Methods and Extended Data Fig. 7). The Ginzburg-Landau coher-
ence length measured in MATA4G is short, at around 20nm (see
Extended Data Fig. 4 for other devices and Methods for discussion),
suggesting relatively strong coupling, as observed in MATTG™.
Similar to MATTG, all of these properties are further tuneable upon
application of the electric displacement field D (see Extended Data
Fig. 2 for the full »-D map). Extending the measurements to higher
temperature (Fig. 2g,h), we find that the superconducting transi-
tion in these systems is relatively narrow in temperature, especially
compared with MATBG, which typically exhibits very wide transi-
tions. At higher temperatures, the resistivity does not show a strong
temperature dependence, unlike the steep linear-in-temperature
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behaviour previously found in MATBG***. The weak linear-in-T
behaviour observed might be the result of contributions stemming
from both the flat bands and dispersive bands (the latter being
very weakly T dependent*), although further theoretical work and
experiments are needed to determine whether there are signatures
of strange metal behaviour in these large N devices.

One way to obtain deeper insights into the underlying mecha-
nisms and possible differences between the family members is
through the response to magnetic fields applied parallel to the
two-dimensional (2D) plane of the sample (B)). Typically, magnetic
fields suppress superconductivity either by inducing vortices or by
closing the gap via the Zeeman effect acting on the spin compo-
nent of the Cooper pairs. The former effect is largely absent for B,
applied to a 2D superconductor, whereas the latter effect leads to
a nominal Pauli paramagnetic limit, B,=(1.86 TK™") X T, where T,
is the critical temperature for superconductivity, for conventional
spin-singlet superconductors with negligible spin-orbit interac-
tions. In MATBG, it has been shown that the critical in-plane
magnetic field B, is not substantially larger than B,, and supercon-
ductivity vanishes around such a field>. In MATTG, on the other
hand, the effect of B is much weaker*, and superconductivity can
persist up to fields~3 times larger than the nominal Pauli limit.
This large discrepancy between MATBG and MATTG, which are
close siblings in the family, may originate for a variety of reasons,
including the role of in-plane orbital effects®, a difference in super-
conducting pairing symmetry and/or different Cooper pair spin
configurations. Moreover, the response of the superconducting state
in MATBG under different B directions shows an interesting spon-
taneous breaking of rotational symmetry*. While the moiré lattice
in MATBG possesses a sixfold rotational symmetry, B, shows only
a two-fold symmetry (Fig. 3a), suggesting that a spontaneous nem-
atic ordering occurs in the superconducting state. Examining these
phenomena across other members of the family could thus help elu-
cidate their underlying origin and provide information regarding
the nature of the superconductivity.

Figure 3b-d shows longitudinal resistance R,, as a function of
the magnitude and direction of B, up to 1T, for MATTG, MAT4G
and MATS5G, respectively (see Methods for sample tilt calibration
details). In all three systems, the superconductor to normal-state
transition does not display any visible dependence on the direc-
tion of B, evidenced by the contours at different resistance val-
ues all being roughly circular (with random irregularities due to
measurement noise). This is in stark contrast to MATBG (Fig. 3a),
where elongated elliptical contours can be clearly seen, indicating
a two-fold anisotropy of the B;. We note that these measurements
are taken near the boundary of the superconducting domes, since at
optimal doping the superconducting state does not turn to a normal
state even when B;=1T is applied, which is the highest available
field in our vector magnet for the sample mounting configuration
required for measuring the angle-dependent critical field.

To obtain B, at base temperature, we rotated the samples so
that an in-plane field up to 10 T could be applied. These high-field
measurements reveal violation of the Pauli limit in both MAT4G
and MATS5G, to a similar extent as in MATTG™. Figure 3e-g
shows R,, versus B, and T for the hole-doped and electron-doped
sides of MAT4G, and electron-doped side of MAT5G, respec-
tively, with the constant-R,, contour and their respective fit to the
Ginzburg-Landau expression T o< 1 — aBﬁ, where a is a fitting
parameter (see Methods for details of fitting and Extended Data
Fig. 8 for additional data). Three different contours at 10%, 20%
and 30% of the normal-state R,, were chosen for the analysis. The
zero-temperature critical field B, (0) obtained by extrapolating the
fit shows values that consistently exceed the Pauli limit by a fac-
tor of ~2 in all samples that we measured, as well as across all the
superconducting domes, as shown in Fig. 3h,i. Such consistency
suggests that the Pauli limit violation is probably inherent to the
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Fig. 2 | Robust superconductivity in MAT4G and MAT5G. Data are shown for device 4B and device 5B, respectively. a,b, Resistance R,, versus moiré filling
factor v and temperature T for MAT4G and MATS5G, respectively. The superconducting domes span a wide density range across the flat bands. Note that
in MATTG, MAT4G and MATS5G, v includes the filling of both the flat bands and the extra dispersive bands. ¢, Differential resistance dV,,/dl versus d.c. bias
current [ and small perpendicular magnetic field B,, showing Fraunhofer-like oscillations in B,. The data are measured in a split top gate geometry where the
middle non-gated region is tuned to a resistive state (N) while maintaining the superconductivity of the gated regions (S), thus forming an SNS Josephson
junction“®#, The junction is across the device 4A and 4B (Extended Data Fig. 7). d, Voltage (V) versus current (/) curves at T ranging from 220 mK to 4K
aty=-2.70 and D/e,=0.21V nm~"in MAT4G. e, Same measurement in MAT5G at v=3.48 and D/e,=0.24V nm~". f, Ginzburg-Landau coherence length
Eq versus v at D/e,=—0.32V nm~ in MAT4G, along with the extracted Berezinskii-Kosterlitz-Thouless transition temperature Tyr. They are overlaid on a
colour map of R,, versus v and T. &, reaches low values around 20 nm near optimal doping v~ 2.5. The extraction is performed with 25%, 30% and 35%

of normal-state resistance for the upper uncertainty bound, data point, and lower uncertainty bound, respectively (Methods). g h, R,, versus T curves in
MATA4G at D/e,=0.23V nm~"(g) and D/e,=—-0.32V nm~' (h) across v up to T=30K showing sharp superconducting transitions. The colour scale for the
curves matches the scale bar shown in the hole-doped (—=3.33 <v < —1.8) and electron-doped (1.4 < v < 3.27) plots at the top in a, respectively.

superconducting state in MATTG, MAT4G and MAT5G, rather Our experiments clearly establish that, while all members of the
than the result of spin-orbit coupling or strong coupling effects magic-angle graphene family show similarities that are likely to
(see ref. * for a discussion of these effects). originate from their respective flat band physics, such as the range
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Fig. 3 | In-plane magnetic field dependence of the superconducting states. a-d, Polar maps of the in-plane magnetic field response of R,, in MATBG,
MATTG, MATA4G (device 4C) and MAT5G (device 5B), atv=-174 and T=0.07K (a), v=-3.26 and T=0.1K (b),v=-3.09 and T=0.2K (¢) and v=2.11
and T=0.2K (d). MATBG shows an anisotropic response with two-fold symmetry in its in-plane critical field, while the other three systems do not show
any anisotropy. e-g, B,-T phase diagram at (v, D/g,) =(-2.72,0.23Vnm™) (e) and (2.33,-0.32V nm™) (f) in MAT4G (device 4B), and (3.25,0.25V nm™)
in MAT5G (device 5B) (g). The data points denote constant-resistance contours at 10%, 20% and 30% of the zero-field normal-state resistance. Solid
curves are fit to the Ginzburg-Landau expression T o< 1 — aBﬁ (ais afitting parameter). We find the critical magnetic fields B.,(0) by extrapolating the
contours to zero temperature. The coloured ticks on the B axis represent the corresponding nominal Pauli limit for each threshold. We note that in e and f
there are some hints of re-entrant superconducting behaviour at high field®. h,i, Pauli violation ratio (PVR), the ratio between B_,(0) and the nominal Pauli
limit, across v in MATA4G (device 4B, h) and MAT5G (device 5B, i). In both systems, PVR is around 2-3.

of density where superconductivity is strongest, the in-plane mag-
netic field response sharply distinguishes N=2 (that is MATBG)
from family members with N> 2. This is surprising, as from a sym-
metry point of view, members with even N share the same in-plane
C, rotation symmetry and members with odd N share the same
mirror symmetry M,. One would thus expect that systems with
even layers and odd layers behave similarly within their respec-
tive groups, while distinct across them. These observations do not
depend substantially on the presence or absence of a displacement
field (Methods and Extended Data Fig. 9), and are therefore neces-
sarily intrinsic to their respective flat bands, even though all of these
can be mapped to the MATBG ones™.

Here we attempt to give a possible unified explanation of these
experimental findings by considering orbital effects in an in-plane
magnetic field. Both the strong violation of the nominal Pauli limit
and the absence of nematicity in the magic-angle structures with
N> 2 layers could be accounted for by a reduced in-plane orbital
effect as a result of symmetry. In 2D superconductors such as the
magic-angle family, while B, does not induce vortices, the effec-
tive momentum boost experienced when electrons tunnel between
different layers (proportional to B, and the interlayer distance)
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can distort the shape of the Fermi surface, and this can act as a
pair-breaking effect for superconductivity. This was considered for
MATBG**#® and the pair-breaking effect has a similar magnitude
to that resulting from spin Zeeman effect, with an effective g-factor
around 2. In other words, the in-plane orbital effect in MATBG
could account for the suppression of superconductivity at fields of
the order of the nominal Pauli limit.

When more layers are added, however, the in-plane orbital effects
between layers tend to cancel each other out, rather than being
additive. This is conceptually sketched in Fig. 4a. If we consider any
internal layer in the stack, for example a layer twisted at —0/2, the
electrons that tunnel from the layers above it and below it (both
of which are at angle 6/2) would experience opposite momentum
boost. From a perturbation theory point of view, the first-order
effect on the spectrum, proportional to B, would be partially or
fully cancelled depending on N (see Methods for full derivation).
In Fig. 4b, we calculated the mean orbital g-factor, g,,, in the flat
bands of magic-angle structures with N=2,3,4,5,6, in the absence
and presence of a displacement field (Methods; note that a similar
calculation and interpretation was recently made independently in a
theoretical work"). To interpret the role of g, a system with g, =2

881


http://www.nature.com/naturematerials

ARTICLES NATURE MATERIALS
a c o d o
0B, 2L 6=1.08 3L0=157
012
612
o2
612
—612
EK(Q) -
Ep(-Q)—
b, e 4Lo=1.77° f 5L0=181°
Dley=0 @
D/ey=0.5V nm™ -~
o \
s 17
\ e
8
0 | é — | — e,,f—/*"
2 3 4 5 6

Number of layers

Fig. 4 | In-plane magnetic field orbital effect. a, Schematic showing cancellation of the orbital effect under By in the alternating twist structures. Solid blue
and red lines represent graphene layers with alternating twist angles, and the arrowed loops show that the direction of the momentum boost for hopping
between adjacent pairs of layers is opposite. For the internal layers in N> 2 structures, this results in a greatly reduced in-plane orbital effect (see Methods
for mathematical derivation). b, Calculated orbital g-factor, g, for N-layer MATNG. Both at zero and finite D, MATBG has the highest coupling to the
in-plane field, whereas systems with N> 2 have much smaller g,,. Finite D breaks M, and leads to increased g.,, compared with the case of D=0. c-f,
Calculated Fermi contours at K and K’ valleys of MATBG (c), MATTG (d), MATAG (e) and MAT5G (f) near their magic angles under B,. The magnetic field
is along the horizontal direction and the magnitude is set to 20 T to exaggerate the effect. The Fermi surface is distorted differently for K and K’ valleys. For
MATBG, this leads to a considerable orbital pair-breaking effect, whereas for N> 2 structures such distortion is minimal.

would have its critical field at the Pauli limit and g, <2 would lead
to Pauli limit violation. MATBG has a g,,, $2. For odd N, the mir-
ror symmetry (M,) of the system prohibits the in-plane magnetic
fields from coupling to the system'>*, and g, is strictly zero in the
absence of a displacement field. For even N >4, although a finite
value of g, is allowed by symmetry, our calculations show that g,
is greatly suppressed compared with MATBG. Therefore, the trend
of g, with N qualitatively explains why all N> 2 structures violate
the Pauli limit while N=2 does not. When a displacement field is
turned on, we find that the difference between even/odd N dimin-
ishes, but the orbital g-factors for all N> 2 structures are still consid-
erably smaller than that in MATBG. We note that as N increases, the
distribution of the displacement field becomes highly non-uniform
across the stack due to electrostatic screening from outer layers, and
we have taken a simple approximation to account for such effect
(Methods and Extended Data Figs. 1 and 6).

Such differences in the orbital coupling might also determine the
appearance of nematicity throughout the family. Figure 4c—f shows
the calculated Fermi surfaces of K and K’ valleys upon application
of B;. The momentum boosts induced by B, are opposite for K and
K’ valleys. For N=2 (MATBG), this results in sizeable distortion
of the Fermi surface, which provides a means for B, to couple to
the superconducting order parameter, and this coupling is depen-
dent on the direction of B. This could lead to the observed two-fold
nematicity when further pinning from strain or other many-body
effects such as density waves is considered®. In contrast, for the
N> 2 structures, the Fermi surfaces in the two valleys have mini-
mal distortion (without a displacement field), and thus there is no
direct coupling between By and the orbital part of the superconduct-
ing order parameter. While B, could still couple to the spin degree
of freedom, weak spin-orbit interaction in these graphene systems
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prevents coupling to the orbital part, and hence no nematicity or
other types of anisotropic phases are likely to develop.

In the above discussions the role of electron spins was deliber-
ately neglected, but we can consider this now. For N> 3, the Cooper
pairs clearly cannot be spin-singlets, or the Zeeman effect would
suppress superconductivity at the Pauli limit. Since the supercon-
ducting states are otherwise similar across the family, there is a pos-
sibility that even MATBG is a non-spin-singlet superconductor, and
the apparent conformance to the Pauli limit could be a result of the
orbital effect as discussed above, with similar g, to that of the spin
Zeeman effect. Similar considerations were proposed in a recent
theoretical work®.

We note that although this mechanism can qualitatively capture
the effect of in-plane magnetic fields on the magic-angle super-
conductor family, there are still remaining puzzles. While the g,
for odd N are expected to be zero and the critical magnetic field
should be infinitely large in principle, experimentally we find Pauli
limit violations of ~3 in MATTG and ~2 in MAT5G. Furthermore,
the theoretically calculated g, strongly depends on the applied dis-
placement field, whereas the measured Pauli limit violation has only
minor variations with the displacement field. For N> 3, the distri-
bution of the displacement field among the layers could be inter-
twined with the correlation effects in the system, and a spontaneous
internal displacement field could exist in principle even when no
external displacement field is applied. Slight discrepancies among
the twist angles between the layers could introduce further correc-
tions to the displacement field effects. Numerically accounting for
these aspects in our calculation is beyond the scope of this work and
we hope that these issues will be clarified by future research.

The discovery of superconductivity in all members of the
magic-angle family from N=2 to N=5 has profound implications
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on its mechanism. The presence of superconductivity regardless of
the number of layers implies that the peculiar flat band that all these
systems share is likely to play a crucial role in forming robust super-
conductivity. Moreover, the C,, T symmetry that all these structures
share could also be an important ingredient behind the robust-
ness of the superconductivity, as most moiré systems studied so far
lacking such symmetry do not seem to be robust superconductors.
These findings put strong constraints on the theories for the pos-
sible underlying mechanisms for the unusually strong superconduc-
tivity in this moiré family.
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Methods
Sample fabrication. We fabricated all MATNG devices using the ‘cut & stack’
method described in detail in our previous work®. We first exfoliated single-crystal
hBN (30-80 nm thick) and monolayer graphene flakes on silicon substrates
(with 285nm dry oxide), which were screened with optical microscopy for
contaminations and defects. A large graphene flake was laser-cut, with a~1 pm
beam diameter, into N (=4, 5) adjacent pieces, each 10-20 pm in size. We then
used the standard dry transfer technique with poly(bisphenol A carbonate)/
polydimethylsiloxane to pick up the top hBN flake and subsequently N graphene
flakes, alternatively rotated by @ and —6. The stack was eventually released on a
bottom hBN flake, which had been pre-transferred onto a Pd—Au alloy bottom gate
and heat annealed in forming gas at 300 °C. The Hall-bar geometry was defined
with electron beam lithography and reactive ion etching. Top gate and electrical
contacts were made from thermally evaporated chromium and gold.

In total we fabricated and measured four MAT4G and six MAT5G devices
(referring to samples with working electrical contacts and gates). Among
them, three of the MAT4G devices and all six MAT5G devices showed robust
superconductivity. Extended Data Figure 2 shows the v-D phase diagram of
MATA4G devices 4A, 4B and 4C and MAT5G devices 5A, 5B, 5C, 5D and 5E,
which we have thoroughly measured. Previously, we fabricated and measured
four MATTG devices, which all exhibited robust superconductivity. In contrast,
MATBG devices undergo twist angle relaxation during fabrication much more
frequently, which gives a total yield of roughly 50% at best. This difference
might indicate that MATNG structures with N> 2 are much more robust against
relaxation and/or have more robust parameter-space superconducting phase space.

Measurement setup. Transport data in MATNG were measured in a dilution
refrigerator equipped with a triple-axis vector-type magnet. All sample wires have
multistage low-pass filters. Current through the sample and the four-probe voltage
were first amplified by 1 X 107V A~! and 1,000, respectively, using Ithaco current
and voltage pre-amplifiers, and then measured with Stanford Research SR830 or
SR860 lock-in amplifiers. The lock-in frequency is typically between 10 Hzand

20 Hz. We used current excitation of ~1-5nA for resistance measurements. For
d.c. bias measurements, we used a BabyDAC passing through a 10 MQ resistor to
provide the d.c. bias current, and measured the d.c. voltage with a Keysight 34461A
digital multimeter connected to the voltage pre-amplifier.

In the temperature-dependent colour maps (Figs. 2a,b and 3e-g and Extended
Data Figs. 4d-i, 8e,f, 9b and 9d), since the raw data were taken at non-regular
intervals in temperature, we first interpolated the data into a regular grid in T
before plotting. We checked that no artefacts were introduced by this interpolation.

Analysis of Ginzburg-Landau coherence length. The Ginzburg-Landau
coherence length in MAT4G and MAT5G was extracted from the B, dependence of
the critical temperature T,. We first extracted the mean-field T, at zero B, by fitting
the high-temperature part of the data to a straight line 7(T) = AT+ B, and then
found the intersection of R,,(T) with p X r(T), where p is the percentage of normal
resistance. The Ginzburg-Landau coherence length £;; was then obtained from
linear fitting of T, against B, , and the x intercept is equal to ®o/(27&%; ), where
®,=h/2e is the superconducting flux quantum. The different thresholds yielded
slightly different but consistent coherence lengths, which we plotted in Fig. 2f as
the data points (30%) and error bars (25%, 35%). This procedure is the same as
performed in our previous work (ref.**).

Field calibration. Since measurements of both Pauli limit violation and rotational
symmetry breaking were performed in a triple-axis magnet, careful calibration was
necessary to make sure that any magnetic field component perpendicular to the
sample due to sample tilt is compensated. For Pauli limit violation measurements,
the sample was mounted parallel to the z axis and we used the z-axis magnet to
apply large magnetic fields up to 10T, while using the x-axis magnet to compensate
for any sample tilt. For rotational symmetry breaking measurements, we mounted
the sample parallel to the x-y plane and applied magnetic fields up to a magnitude
of 1T along any direction in this plane, while using the z-axis magnet to apply the
compensation field.

In both cases, we used the MATNG sample itself as a sensitive field sensor,
because the resistance R, is very sensitive to B, when it is doped near the edge
of the superconducting dome. Detailed calibration methods were published in
previous works”**. For the Pauli limit violation measurements, the residual B, after
the calibration procedure is typically less than +£5mT when B;=10T is applied. For
the rotational symmetry breaking measurements, the residual B, is typically less
than 2mT when B, =1T is applied. These residual fields are small enough that they
do not have any appreciable effect on the measured data.

Analysis of Pauli violation ratio. To extract the Pauli violation ratio (PVR),

we first extracted the normal-state resistance similar to the coherence length
analysis above, by fitting the high-temperature part of the data with a straight
line (T) =aT+b. Since in both MAT4G and MAT5G the slope of the
linear-in-temperature component (a) is fairly small (Fig. 2g,h), in many cases
r(T) can simply be replaced by a constant resistance value measured above T, and
this method was used for device 4C shown in Extended Data Fig. 8e. For a given

percentage p, we found the intersection of the zero-field resistance curve with
pxr(T), which defines resistance R, and temperature T (0). We used R, to define
the resistance contours in Fig. 3e-g and fit each contour to T = T2(0)(1 — aPB‘Z‘ )
from T¢(0) down to lowest temperature we could measure, where a, is a fitting
parameter. The zero-temperature critical field was obtained through extrapolation,
Bl(0) = a, . The corresponding PVR is then PVR” = B£(0)/[1.86 TK ™' T£(0)].
This procedure was independently performed for each v and p=10%, 20%, 30%.
We found that the choice of the threshold percentage makes no qualitative
difference in the extracted PVR.

Band structure and orbital g-factor in MATNG. We calculated the band
structures using the continuum model that is extended from twisted bilayer
graphene®®?. The Hamiltonian of the system can be formally written as

[Avee?? - k T 0 0 1
T* hvee~ %2 . k Tt 0
T 2k ..
Ho(k) = 0 hveo 0 )
L o0 0 0 hvpe 0 .k |

where 0*? are Pauli matrices that are rotated by angles +6/2, T is an interlayer
coupling matrix identical to that in twisted bilayer graphene, v is the Fermi
velocity in monolayer graphene and # is the reduced Planck constant. Each row/
column here represents one layer in the system. The sign in the last element of
the matrix is determined by whether Nis odd (+) or even (—). For simplicity,
only direct tunnelling between adjacent layers is considered. We numerically
diagonalized this Hamiltonian for different wave vectors k in the mini Brillouin
zone of the superlattice corresponding to twist angle 6 and obtained the energy
dispersions, which are plotted in Fig. 1d-g for N=2, 3,4, 5 near their magic angles,
respectively. The spectrum was calculated and plotted for the K valley only. The
spectrum of the K’ valley is related to the K spectrum by time-reversal symmetry,
and thus can by obtained simply by taking k — —k. The parameters we used are AB
site hopping amplitude w=0.1eV and AA site hopping amplitude w’ = 0.08 eV.
To include the effect of an in-plane magnetic field B = B, where 7 is
the direction of the field and satisfies 7 - Z = 0 (Z is unit vector along the
perpendicular direction), we can pick the gauge A = zB#i x 2, such that VX A=B.
Through minimal coupling substitution k — k + £A and defining { = 7 x 2, one
can write the Hamiltonian in the field as

H(k B) =
r ivee®? - (k 7
+ =L edBi/h) T 0 e 0
hvea 9 . (k
ol . T! 0
+ 522 edBi/h)
hvpa?? - (k
0 T . 0 ’
+ Y52 edBi/h)
hvpaie/z . (k
0 0 0 A
L — N=LedBi/h) |

where d is the interlayer distance. Conceptually, the application of an in-plane B
corresponds to shifting the Dirac cones in each layer before hybridizing them,
by an amount Ak = edBi/# between adjacent layers. This is commonly called
a ‘momentum boost. Since the time-reversal symmetry is now broken, the K’
valley spectrum needs to be obtained separately by replacing all k with —k in the
Hamiltonian above.

To obtain the orbital g-factor g,,, we obtained the spectrum in both K and
K’ valleys and calculated |Ex (k, B) — Egs (—k, B)|, averaged over the entire
Brillouin zone and as a function of B. We call this quantity AE(B). In all of these
calculations, we set the direction of the field to be along the x axis for simplicity.
AE(B) characterizes the magnitude of the orbital depairing effect assuming that
the superconducting Cooper pairs are formed by electrons with momentum k in
the K valley and —k in the K’ valley, that is an intervalley pairing. We obtained an
average g,,,, from its leading order dependence on B: AE(B) = gy upB + O(B).
The Brillouin zone averaging was carried out only in the flat bands in each
MATNG system, and the resulting g, is plotted in Fig. 4b.

Without displacement field, this calculation shows that all MATNG with odd N
have zero g, and those with even N have g, that quickly decays with increasing N.
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We can understand this effect from a simple perturbation theory argument. If we
write the above Hamiltonian as H(k, B) = Hy(k) + BH’ (k), where

vped
H'(k) = *5¢

[(N—1)6" .1 0 0 0 ]
0 (N=3)o 2.1 0 0
0 0 (N=5)e" .1 .. 0

L 0 0 0 . —(N=1)e*?? .|

First-order perturbation theory predicts an energy shift

AE = E(k, B) — E(k,0) = B (y, (k)| H' (k) |y, (K)),

where |y, (k)) is an eigenstate of H,(k). To evaluate this expression for the flat
bands at its largest magic angle and taking the chiral limit assumption (setting w’ to
zero), we quote an expression from ref. 7,

lwy)
ly2) (W) = N+l sin (z\zlr-?—nl) |V’34ATBG>
way = ||,
: Womir) = \/ w1 sin ((Zm“)n) |un" )
lwx)

where |I//MATBG> constitutes a corresponding eigenstate of MATBG due to the
mapping between the flat bands in MATNG and MATBG, and m is an integer.
We chose to normalize all |y, (k)) to one. Using this mapping relationship, we can
reduce equation (4) to

AE — @ Z 4N+1 21811’1 ( I;[»l) <l,/2/IATBG|0,()/2_

0<I<N even

’t‘ | ll/lz\/[ATBG>

+ X

4N+1 lem ( 1_1;1)<y/11\/[ATBG|0—0/2 tlyIMATBG>:|
0<I<N odd

If we denote

_ vred MATBG| _6/2 ;| MATBG

€1 = —— (V1 oty >
veed / \MATBG| —62 5| MATBG

€ = - 1789 o Sy, >,

which are quantities weakly dependent on N, then we can further write

AE= > 4NJrl lem (N+1)B&‘1
0<I<N odd

+ 4NJrl lem( 1) Bey
0<I<N even

If N is odd, noting that sin (N+1 ) = sin (W),

AE = 4Be; [~ (N — D)sin’ (g47) + ...

+(N — D)sin® (25)] /(N +1)

+4Be, [ (N — 3)sin’ (N+ ) + ..

(N — 3)sin? ( %:jﬁ”ﬂ /(N +1)

=0.

This result can be obtained from an argument based on mirror symmetry as well*>*.
If Nis even,

AE = 4Be¢; [—( —3)sm (N+l)+

+(N = D)sin® (£5)] /(N + 1)

+4Be, [ (N — 1)sin’ (N+1) + .

(N — 3)sin? (%)} /(N +1)
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1
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N+l|:

As N increases, the prefactor approaches zero rapidly and asymptotically behaves
as~m*(N+ 1)~ when N is large. When N'=2, the prefactor evaluates to one and

AE is the largest. As we increase to N=4,6,8, ..., it becomes 0.106, 0.033, 0.015,
respectively. These estimations qualitatively explain why all N> 2 MATNG systems
exhibit much smaller in-plane orbital effect and g, than MATBG, regardless of
whether N is even or odd.

cos (

cos? (N+1)} Bleme)

Inhomogeneous gating across layers in multilayer graphene systems. Typically,
electrostatic gating in atomically thin materials is considered to be geometric,
that is the charge density and electric displacement field within the material are
assumed to be simply related to top and bottom gate voltages V,, and V,, by

1
n=s (Clg Vig + cug ng) ’

1
D= 3 (*Cfgvtg + Cbgvbg)’

where ¢, and ¢, are capacitance per area of top and bottom dielectrics, respectively.
Since the material is thin, the charge density and displacement field can be
assumed to be uniform across the thickness. However, as more layers are added,
electrostatic screening by the outer layers becomes non-negligible and creates a
non-uniform distribution of charge density and displacement field among the
graphene layers. This distribution will in turn alter the electronic dispersion of the
system. Solving for both band dispersion and charge distribution simultaneously
and self-consistently requires a Hartree-Fock type calculation for each V;, and V,,,
which is a challenging computation task and beyond the scope of this work
Instead, we included the zeroth order effect of such non-uniform screening
into the continuum model by treating each graphene layer as a metal with
constant density of states (DOS) D = dn/du (u is the chemical potential), and
then considered the screening of the electric field by them. The screening effect
was incorporated by modelling the graphene stack as a capacitor network, as
illustrated in Extended Data Fig. 6b. Here ¢,=¢,/d represents the geometric
capacitance between the graphene layers, and Cq=¢€ 2D represents the quantum
capacitance of each graphene layer (all discussions below assume unit area).
The voltage across ¢, equals —u/e, and the charge stored on c,, which equals
‘[;)7;4/3 quvq —
layer. The voltage on the left node of each ¢, which we denote v;, represents the
electrostatic potential of the ith graphene layer, while the voltage on the right node,
which equals —u,/e, is zero because they are grounded. p,, is the electrochemical
potential of the ith layer and by definition =y, — ev,. This relationship is
guaranteed by the Kirchhoff voltage law in the circuit formulation.

—e [/ Ddu = —en, is exactly the charge density on the graphene

The solution of this capacitor network vi = [ VIVa.. VN } T satisfies
Cqt+cgt+eag —cg 0 0 CigVig
—Cg Ccq+2¢g —cg ... 0 0
0 — 2¢g ... 0 0
G Cqt2¢ V=
0 0 0 . Cq + ¢g + Cng CbgVbg

Since typically ¢, ¢, < ¢,
We can thus write

¢p they can be dropped from the left side of the matrix.

Cqt+cg —cg 0 .. 0 —emyg
—Cg Cqt+2¢g —cg ... 0 0
0 —Cg  Cqt+ 2 ... 0 v— 0

0 0 0 . gt —eMNpg

where n,, and n,, are the electron density induced by the top and bottom gates,
respectively.

To consider an external displacement field from differential gating, we set
= —n,,= D/e and solve equation (20) numerically to obtain the electrostatic
potential on each layer v,. Extended Data Figure 6¢ shows v, solved for N=2, ...,6.
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An energy —ev; was then added onto the corresponding diagonal terms in the
continuum Hamiltonian, equation (1), to include the screened electrostatic effect
into the continuum model. As an estimate of the mean density of states on each
layer, we assumed D = ny/(NW), where n, is superlattice density and W~20meV
is the approximate bandwidth for the flat bands (regardless of N). Examples of
calculated MATNG band structures using the screened electrostatic potentials are
shown in Extended Data Fig. 1 for N=2,3,4,5.

We note that while the continuum model can include the effect of non-uniform
electrical displacement field as described above, it does not allow inclusion of
information on the filling factor at the single-particle level. However, for large N
MATNG structures, especially MAT5G, the inhomogeneous filling factor among
layers could play an important role in its z—D phase diagram, and may explain why
superconductivity in MAT5G slightly extends beyond v =4. We hope that future
numerical studies which self-consistently include both of the above effects can
elucidate the whole picture.

Fraunhofer-like oscillation pattern. To see a clear Fraunhofer-like pattern in
MATA4G, we fabricated a device with split top gates with a nominal gap of 150 nm.
A picture of the device is shown in Extended Data Fig. 7a (the relevant contacts
are labelled as JJ) and schematically illustrated in Extended Data Fig. 7b. Since
MAT4G under the gap region is not covered by the top gate, it can be doped into
anormal state (N) while the dual-gated regions are doped into superconductivity
(S), thereby forming a ‘SNS’ Josephson junction. We note that in these types of
2D Josephson junctions, the oscillation periodicity generally does not correspond
to the junction area (that is defined by the gap between the split gates), as 2D
superconductors do not exhibit the Meissner effect that expels all magnetic

fields from the leads of the junction. This was previously observed in Josephson
junctions made from MATBG" and has a solid theoretical background (see, for
example, ref.*’). In these junctions, the Fraunhofer oscillation period is determined
by the width of the entire device w, approximately equalling ~1.8¢),/w?, where
¢o="h/2e is the flux quantum. Taking w ~ 2 pm, the period should be about 1 mT,
which is qualitatively consistent with the visible modulations in Fig. 2c.

Discussion about other possible effects. In our understanding, the
superconductivity across the magic family originates from a common but as yet
undetermined mechanism, and the interaction effects in their respective flat bands
are similar (for example, spontaneous flavour symmetry breaking at D=0). Some
of the apparent differences among the family can be at least partially attributed
to one of three factors: (1) increasing magic angle with the number of layer N,
(2) more Dirac-like/dispersive TBG-like bands coexisting with the flat bands
as N increases and (3) different strengths of orbital coupling due to the mirror
symmetry, as discussed in Fig. 4 in the main text. Since all structures are prepared
on the same substrate (hBN), we do not expect the substrate to be a varying factor
in these comparisons. Having larger magic angles and thus smaller moiré unit
cells, the four-layer and five-layer structures should be less susceptible to strain and
relaxation effects. However, having more interfaces also implies that there are more
possible modes of twist angle disorder. Further studies are necessary to elucidate
the roles of these effects.

In typical bulk superconductors, the pair-breaking effect is usually modelled
by the Werthamer-Helfand-Hohenberg theory. We note, however, that this
theory does not directly work for 2D superconductors in an in-plane magnetic
field as there are no vortices. The observation of re-entrant superconducting
states in MATTG and hints of these in MAT4G and MAT5G introduce further
complications. We invite future works to develop a robust method to analyse these
effects more quantitatively.

The resistive features at integer v are generally robust, especially in relatively
less disordered devices (defined by cleaner Landau levels). On the other hand,
resistive states at fractional values appear to be dependent on the sample, possibly

due to their different angles. One possible origin of these fractional features is the
formation of charge density waves, which was identified in the recent scanning SET
experiments on MATBG™.
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Extended Data Fig. 1| Calculated band structure of MATNG in the presence of electric displacement field % = 0.5 V/nm. The calculation uses the
screened electrostatic potential calculated as illustrated in Extended Data Fig. 6¢. For all N>2 MATNG structures, the electric displacement field hybridizes
the flat bands with other dispersive bands.
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Extended Data Fig. 2 | v-D phase diagrams of MAT4G and MAT5G devices. Devices 4A-C shown in (a-c) are MAT4G devices, while Devices 5A-E
shown in (d-i) are MAT5G devices. Device 5B-1and 5B-2 are two different contacts from the same device that shares the same top gate and back gate
All measurements were performed at T~200 mK. In all MAT5G devices, we find the superconductivity region to be either approaching or exceeding v =4,

which is indicated by blue dashed lines in (d-i).
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Extended Data Fig. 3 | Landau fan diagrams of MAT4G and MAT5G devices. All measurements were performed at T~200 mK.
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Extended Data Fig. 4 | Superconducting properties in other MAT4G and MATS5G devices. (a-c) Temperature-dependent V,,—/ curves in device 4A, 4C
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Extended Data Fig. 5 | v-D map of BKT transition temperature in device 4B, 5A, 5B-1, and 5C. (a-d) T as a function of v and D in device 4B (a), 5A (b),

5B-1(c), and 5C (d).
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Extended Data Fig. 6 | Modeling layer-inhomogeneous screening in MATNG. (a) Schematic of N graphene layers being gated by a top gate (TG) and
bottom gate (BG). The electric displacement field between the graphene layers is reduced compared to the field outside the stack due to screening. (b)
By assuming a finite density of states D on each graphene layer, we model the N-layer system as a capacitor network, where cq = e2D is the quantum
capacitance and c,=¢,/d is the geometric capacitance. (c) Calculated electrostatic potential v; on each layer for MATBG, MATTG, MAT4G, MAT5G and
MAT6G (N=2,...,6), assuming bandwidth W=20 meV, and external displacement field % = 0.5V/nm. The twist angle is the same as in Fig. 4, except
for 6L which is 1.99°. Here the midplane (the plane of the #—th layer when N is odd and the midplane between %—th layer and (% + 1)-th layer when N is
even) is set to be zero both in layer position and in electrostatic potential. For comparison, the electrostatic potential without screening eDdx/ e, is shown

as the dashed line, where —w <x< w is the layer position (horizontal axis) and d=0.34 nm is the interlayer distance).
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Extended Data Fig. 7 | Typical optical microscope images for MAT4G and MAT5G devices. The illustration shows the split-gate geometry for the
Josephson junction. Data from all contacts including the ones not shown in the figures exhibit robust superconductivity.
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Extended Data Fig. 8 | In-plane magnetic field response in other MAT4G and MAT5G devices. (a-d) Absence of rotational symmetry breaking in
other MATA4G and MATS5G devices. The filling factors for (a-d) are v=—3.41,—1.95, - 3.50, — 2.33, respectively, and the electric displacement fields are

o= = 0.29V,/nm, 0.29V,/nm, OV,/nm, OV,/nm, respectively. (d-e) Pauli limit violation in Device 4C measured at v=2.29 and D = 0V/nm (d) and Device 5E
measured at v=2.59 and D = 0V/nm (e).
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Extended Data Fig. 9 | D-independent Pauli limit violation in MAT4G. (a-b) shows the D-Bjand D-T map of R,, in device 4B. We find the critical in-plane
field and critical temperature follow similar trend with D, indicating that the PVR, which is proportional to the ratio between them, is largely independent of

D. (c-d) Same trend is observed in device 4C.
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