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ABSTRACT10

This paper extends the Eshelby’s problem of one inhomogeneity embedded in a homogeneous11

infinite domain to a bi-material infinite domain. The equivalent inclusion method (EIM) is used12

to simulate the inhomogeneity by an inclusion with a polynomial eigenstrain. The fundamental13

solution of a point force in a bi-material is used to formulate the domain integral over the inclusion.14

For a finite bi-material domain, the boundary integral equation (BIE) takes into account the15

boundary responses by a single domain instead of utilizing the conventional multi-region BIE16

scheme. The EIM can similarly be used, and the elastic field can be obtained with tailorable17

accuracy based on the order of the polynomial eigenstrain. The algorithm is particularly suitable to18

simulate a defect in thin film/substrate systems or other similar bi-layered materials. Particularly,19

the stress concentration of a microvoid embedded in a bi-layered solar panel is investigated. The20

size and location of the void referred to the interface exhibits considerable effects on the stress21

concentration factor. Numerical case studies demonstrate the effectiveness and accuracy of the22

algorithm, and parametric studies show the boundary effects on the stress concentration of a23

microvoid in a finite bi-material under a uniform far field strain.24
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INTRODUCTION25

The multi-layered systems have been widely utilized in versatile engineering and construc-26

tion aspects, such as asphalt pavements (Yin and Prieto-Muñoz 2013), thin film surface coatings27

with protective and functional purposes (Abu-Thabit 2020; Ruys and Sutton 2021), and composite28

laminates (Anbusagar et al. 2015; Rana and Fangueiro 2016). However, the defects during manu-29

facturing process, such as air voids, may significantly jeopardize the reliability and lifetime of the30

overall bi-material system. Sengab and Talreja (Sengab and Talreja 2016) summarized two main31

sources of those defects, (i) impurities and air evaporating during curing process; (ii) entrapment32

of air during manufacturing process. For example, in solar panel manufacturing (Yin et al. 2022b),33

any voids in a solar panel may disturb the light transmission, form hot spots under strong sunlight,34

and cause microcracks and failure of the solar panel. Even for a homogeneous encapsulate layer,35

the defects can cause stress concentrations leading to cracks and failure. Especially, when defects36

are close to the interface 𝑆, the discontinuity of stress across the interface augments the stress37

concentration and singularity effects. Therefore, high fidelity stress analysis may provide more38

insights to understand this phenomena.39

To investigate the stress transfer between layered materials, Stoney (Stoney 1909) proposed an40

approach with plate system assumptions, such as thick substrate to ignore bending stiffness of thin41

film, equal twist curvatures and spatially constant surviving stress (Ngo et al. 2007). Because the42

strong assumptions violate practical applications, several subsequent extensions have been proposed43

to relax them (Wikström et al. 1999; Park and Suresh 2000). However, the Stoney theory ignores44

the shear stress transfer, modified theories (Haftbaradaran et al. 2012; Zhang et al. 2021) have been45

proposed to consider the interfacial sliding effects. Since the above previous works assume two46

dissimilar homogeneous material phases, therefore those models cannot provide accurate analysis47

for bi-material system with defects. Regarding influence brought by micro defects, Katnam et al.48

(Katnam et al. 2011) investigates the formulation of air voids with two adhesive mixing techniques49

and used X-ray to detect and evaluate porosity; Omairey et al. (Omairey et al. 2021) summarized50

several failure modes of adhesive joints of composites, where adhesive defects and substrate defects51
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can cause high stress concentration leading to failures; Mishnaevsky (Mishnaevsky 2022) reported52

that even the defects in adhesive of the wind turbine blade may not dramatically disturb overall53

stress field, the local high stress concentration will lead to crack initiation.54

To understand the effects of defects, the equivalent inclusion method (EIM) (Eshelby 1957;55

Eshelby 1959) was proposed to replace the defects with same matrix material along with inelastic56

strain, eigenstrain, to be determined by equivalent stress equations. With solved eigenstrain, the57

elastic fields can be acquired through superposition of initial fields and disturbance of eigenstrain,58

which is domain integral of fundamental solution over the inhomogeneity. Thanks to the versatility59

of fundamental solutions, EIM has been widely extended to other problems, such as heat conduc-60

tion (Hatta and Taya 1986; Wu et al. 2021), dynamic elasticity (Song and Yin 2018), etc. The61

Eshelby’s solution of one inhomogeneity over the infinite matrix ignores the interactions among62

inhomogeneities themselves and the boundary (Liu and Yin 2014; Wu and Yin 2021). Based63

on EIM, pioneers developed micromechanical models, such as the dilute, Mori-Tanaka(Mori and64

Tanaka 1973; Kanit et al. 2003; Yin and Zhao 2016) and self-consistent models (Hershey 1954;65

Kroner 1958), which provides effective mechanical properties of composites and bridge the mi-66

crostructure and macroscopic behaviors. Other contributions on the homogenization schemes from67

linear elasticity to nonlinear rate-dependent problems can be found in (Zaoui 2002).68

In the literature, several previous works explore the stress intensity factors (SIFs) caused by69

cracks and interfacial defects. Rather than using the conventional FEM,Treifi andOyadiji (Treifi and70

Oyadiji 2013) proposed a fractal-like FEM to investigate SIFs of notch bodies with displacement71

interpolation functions. Bouhala et al. (Bouhala et al. 2013) developed crack-tip enrichment72

functions with extended FEM (XFEM) to study SIFs for cracks terminating at interface of bi-73

material; Pathak et al. (Pathak et al. 2011) combined element free Garlerkin method and XFEM74

on crack interaction problems. Kaddouri et al. (Kaddouri et al. 2006) studied a practical case with75

couple metal-ceramic on factors associated with perpendicular cracks to bi-material interface, such76

as distance of crack-tip to the interface.77

As for boundary element method (BEM) with Kelvin’s solution, the multi-region scheme is78
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commonly used that interface of inhomogeneity and interface of bi-material require surface mesh79

and continuity equations are built to formulate the boundary value problem (BVP) (Beer et al. 2008;80

Liu et al. 2011). Fortunately, the continuity equations on interfaces of bi-material or multi-layered81

material can bemathematically consideredwith the fundamental solutions. Walpole (Walpole 1996)82

derived fundamental solutions to two-jointed dissimilar isotropic half-spaces through method of83

images; Yue (Yue 1995) proposed Yue’s treatment, which is a generalized Kelvin’s solution to84

multi-layered material; and other contributions in the literature can be found in review (Liu et al.85

2011). Xiao et al. (Xiao et al. 2019) appliedYue’s treatment (Yue 2015) in BEM to investigate semi-86

infinite transversely isotropic domain, especially for simulation of rocks. For a bi-material system,87

Yue’s treatment can be reduced to explicit formulae, and Wu et al. (Wu et al. 2022) completed88

Walpole’s solution and applied it for analysis of bi-material system. The above works, though,89

save efforts in discretizing bi-material interface, when the number of inhomogeneity increases,90

dimension scale varies or close to boundary, the multi-region scheme on inhomogeneity requires91

both considerable computational resources and preparation process.92

In our recentwork (Yin et al. 2022a), the algorithm of inclusion-based boundary elementmethod93

(iBEM) is designed to handle drastically increase of DOFs in simulation of composites. Using94

technique of fundamental solution, the material mismatch between inhomogeneity and matrix can95

be simulated with eigenstrain field without mesh of subdomains. Compared with Eshelby’s uniform96

eigenstrain assumption in (Eshelby 1957), eigenstrain is presented by Taylor series expansion at97

the centroid of inhomogeneity (Mura 1987). The algorithm iBEM combines the BEM and EIM,98

where the boundary effects and interactions between inhomogeneities are considered in BEMglobal99

matrix and equivalent stress equations, respectively. Solving the system of linear equations, the100

boundary responses and eigenstrain field can be obtained. The advantages of iBEM are: (i) for101

each inhomogeneity, the number of DOFs is fixed, 6, 24, 60 for uniform, linear and quadratic order,102

respectively; (ii) avoid any subdomain mesh, including bi-material interface and inhomogeneity103

and potential numerical errors brought by them; (iii) the merit of BEM and fundamental solution104

is retained that internal fields are expressed in boundary and domain integrals.105
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This paper aims to perform elastic analysis of an inhomogeneity embedded a bi-material system106

through the single-domain iBEM implemented with bi-material fundamental solution. In the107

following, the problem of a bi-material system with an inhomogeneity is firstly proposed, and then108

the fundamental solutions of bi-material, domain integrals over spherical inhomogeneity and global109

matrix of iBEM are introduced. Subsequently, the aforementioned iBEM is verified with FEM for110

a benchmark comparison. Applying the solution to a solar module containing a glass layer over111

a concrete panel, when a microvoild is embedded in the substrate, the SIFs are investigated with112

various distance to the bi-material interface. Finally, some conclusive remarks are discussed.113

PROBLEM STATEMENT114

Consider a domain D embedded with one subdomain Ω1 is composed of two dissimilar115

isotropic domain, where the upper phase D+ and the lower phase D− generally exhibits different116

material properties C′ and C′′, respectively. For instance, the stiffness tensor of D+ is C′
𝑖 𝑗𝑚𝑛 =117

𝜆′𝛿𝑖 𝑗 𝛿𝑚𝑛 + 𝜇
′(𝛿𝑖𝑚𝛿 𝑗𝑛 + 𝛿𝑖𝑛𝛿 𝑗𝑚), where 𝜆

′ and 𝜇′ are lame constants of D+. The dimensions of the118

bi-material system are defined in Fig.1 that, (i) 𝑇1 and 𝑇2 are thickness ofD
+ andD−, respectively;119

(ii) 𝑙 and 𝑏 are length and width. Shown in Fig. 1,D is subjected to prescribed boundary conditions,120

where 𝑡𝑖 and 𝑢𝑖 represents surface traction and displacement, respectively. Without the loss of any121

generality, the bi-material interface 𝑆 is chosen as parallel to plane 𝑥1 − 𝑥2 at 𝑥3 = 0. In the122

following, two assumptions are made: (i) the embedded subdomain is filled with an isotropic123

material and its stiffness tensor 𝐶𝐼𝑖 𝑗𝑚𝑛; (ii) the bi-material and subdomain interfaces are perfect124

without any debonding behavior, which satisfy the continuity equations on both displacement and125

normal traction shown in Eq. (1).126

𝑢𝑖 (x+) = 𝑢𝑖 (x−), 𝜎𝑖 𝑗 (x+)𝑛 𝑗 (x+) = 𝜎𝑖 𝑗 (x−)𝑛 𝑗 (x−) (1)127

where “+" and “-" represents the inward and outward side of the bi-material interface 𝑆 or subdomain128

interface, respectively; n is the unit surface normal vector. Subsequently, the BVP can be formulated129

and it can be solved through the conventional multi-region scheme with interface mesh, which130
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commonly demands high computational costs due to the singularity and discontinuity along the131

interface. This paper proposes an alternative method in which the fundamental solution for a bi-132

material infinite domain is directly applied to Eshelby’s equivalent inclusion method and boundary133

integral method.134

FORMULATION135

Fundamental Solutions136

Considering a two-jointed dissimilar half-spaces, the displacements at field point x can be137

expressed through the superposition of Kelvin’s solution and image terms (Walpole 1996). The138

Green’s function define the displacement response of any field point x caused by unit excitation at139

source point x′. Given a unit concentrated force 𝑓 𝑗 (x′) = 𝑛 𝑗 𝛿(x′) (𝛿(x′) is the Dirac delta function)140

in the direction n, the displacement variation can be expressed as,141

𝑢𝑖 (x′) = 𝐺𝑖 𝑗 (x, x′) 𝑓 𝑗 (x′) (2)142

Due to the position of image terms, the fundamental solution differs whether source point x′ and143

field point x are in the same material phase.144

𝐺
𝑦
𝑖 𝑗 (x, x

′) =
1

4𝜋𝜇𝑤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝛿𝑖 𝑗 𝜙 −
𝜓,𝑖 𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖 𝑗 + 𝜒𝐵

𝑦 (𝛿𝑖3𝛿 𝑗𝑘 − 𝛿𝑖𝑘𝛿 𝑗3)𝛼
𝑦
,𝑘

− 𝐶𝑦𝑥3
[
𝑄𝐽𝜓,𝑖 𝑗3 + 4(1 − 𝜈

𝑤)𝛿 𝑗3𝜙,𝑖 + 2(1 − 2𝜈
𝑤)𝛿𝑖3𝑄𝐽𝜙, 𝑗 −𝑄𝐽𝑥3𝜙,𝑖 𝑗

]
− 𝐷𝑦𝑄𝐼𝑄𝐽𝜓, 𝑗𝑖 − (𝐺𝑦 + 𝐵𝑦)𝑄𝐽𝛽

𝑦
,𝑖 𝑗

𝑥′
3
𝑥3 ≥ 0

(𝛿𝑖 𝑗 𝜙 −
𝜓,𝑖 𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖 𝑗 + 𝜒𝐵

𝑦 (𝛿𝑖3𝛿 𝑗𝑘 − 𝛿𝑖𝑘𝛿 𝑗3)𝛼
𝑦
,𝑘

− 𝐷𝑦𝜓,𝑖 𝑗 − 𝜒𝑥3𝐹
𝑦𝛼
𝑦
,𝑖 𝑗 − (𝐺𝑦 + 𝐵𝑦)𝑄𝐼 𝛽

𝑦
, 𝑗𝑖

𝑥′
3
𝑥3 < 0

(3)145

146

where the coeffcient 𝜒 = 1, and superscripts 𝑤 =′ and 𝑦 = 𝑢 when 𝑥′
3
≥ 0; and 𝜒 = −1, 𝑤 =′′147

and 𝑦 = 𝑙 when 𝑥′
3
< 0; Q = (1, 1,−1) is created for image terms through the interface 𝑆 and the148
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dummy index rule does not apply to capitalized ones; 𝜓 = |x − x′| is the Garlerkin distance vector149

and 𝜙 = 𝜓−1;
𝛿𝑖 𝑗𝜙
4𝜋𝜇𝑤 −

𝜓,𝑖 𝑗

16𝜋(1−𝜈𝑤) is the Kelvin’s solution of infinite space; (.) stands for image source150

points, such that 𝜓 = |x − x′| and x′ = (𝑥′
1
, 𝑥′
2
,−𝑥′

3
); 𝐴𝑢 − 𝐺𝑢 are material constants related to the151

upper phase D+,152

𝐴𝑢 =
𝜇′ − 𝜇′′

𝜇′ + 𝜇′′
, 𝐵𝑢 =

2𝜇′(1 − 2𝜈′) (𝜇′ − 𝜇′′)

(𝜇′ + 𝜇′′) (𝜇′ + 𝜇′′(3 − 4𝜈′))

𝐶𝑢 =
𝜇′ − 𝜇′′

2(1 − 𝜈′) (𝜇′ + (3 − 4𝜈′)𝜇′′)
, 𝐷𝑢 =

3 − 4𝜈′

2
𝐶

𝐹𝑢 =
2𝜇′(𝜇′(1 − 2𝜈′′) − 𝜇′′(1 − 2𝜈′))

(𝜇′ + 𝜇′′(3 − 4𝜈′)) (𝜇′′ + 𝜇′(3 − 4𝜈′′))

𝐺𝑢 =
𝜇′(𝜇′′(1 − 2𝜈′′) (3 − 4𝜈′) − 𝜇′(1 − 2𝜈′) (3 − 4𝜈′′))

(𝜇′ + 𝜇′′(3 − 4𝜈′)) (𝜇′′ + 𝜇′(3 − 4𝜈′′))

(4)153

Similarly, coefficients 𝐴𝑙 − 𝐺𝑙 can be obtained by switching two material phases, i.e. 𝐴𝑙 = 𝜇′′−𝜇′

𝜇′′+𝜇′ .154

The other components in fundamental solution are listed below,155

𝛼𝑢 = ln[𝑥′3 − 𝑥3 + 𝜓], 𝛼𝑢 = ln[𝑥′3 + 𝑥3 + 𝜓]

𝛽𝑢 = (𝑥′3 − 𝑥3)𝛼
𝑢 − 𝜓, 𝛽

𝑢
= (𝑥′3 + 𝑥3)𝛼

𝑢 − 𝜓

𝛼𝑙 = ln[−𝑥′3 + 𝑥3 + 𝜓], 𝛼𝑙 = ln[−𝑥′3 − 𝑥3 + 𝜓]

𝛽𝑙 = (−𝑥′3 + 𝑥3)𝛼
𝑙 − 𝜓, 𝛽

𝑙
= (−𝑥′3 − 𝑥3)𝛼

𝑙 − 𝜓

(5)156

The 𝛼 functions are also known as Bousinesq’s displacement potentials, which are elaborated in157

Section "Domain Integral". According to Eqs.(2-4), when C′ = C′′, the coefficients 𝐴−𝐺 vanishes158

and the fundamental solution reduce to Kelvin’s solution; When one material phase exhibits zero159

stiffness, the fundamental solution reduces to the Mindlin’s problem (Yin et al. 2022a).160

One Inclusion in Two-jointed Dissimilar Half-spaces161

Consider an infinite domain D composed of two-jointed dissimilar half-spaces, and one sub-162

domain Ω𝐼 is subjected to eigenstrain 𝜀∗𝑖 𝑗 (x). Notice that although in Eshelby’s work (Eshelby163

1957; Eshelby 1959) the eigenstrain is constant over the subdomain, the eigenstrain indeed can164

vary spatially. Mura (Mura 1987) found that under interactions of inhomogeneities, the eigenstrain165
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is not uniform anymore, and thus proposed to use the Taylor series expansion at the center of the166

subdomain to approximate eigenstrain as Eq.(6),167

𝜀∗𝑖 𝑗 (x) = 𝜀𝐼0∗𝑖 𝑗 + (𝑥𝑝 − 𝑥
𝐼𝑐
𝑝 )𝜀

𝐼1∗
𝑖 𝑗 𝑝 + (𝑥𝑝 − 𝑥

𝐼𝑐
𝑝 ) (𝑥𝑞 − 𝑥

𝐼𝑐
𝑞 )𝜀

𝐼2∗
𝑖 𝑗 𝑝𝑞 (6)168

where x𝐼𝑐 is centroid of Ω𝐼 subdomain; 𝜀𝐼0∗, 𝜀𝐼1∗ and 𝜀𝐼2∗ are uniform, linear and quadratic

components of polynomial to approximate the eigenstrain. The disturbance displacement and

strain field caused by eigenstrain can be obtained through the technique of Green’s function as

follows:

𝑢𝑖 (x) =
∫
Ω𝐼

𝜕𝐺𝑖 𝑗 (x, x′)
𝜕𝑥′𝑚

𝜀∗𝑘𝑙 (x′)𝐶𝑗𝑚𝑘𝑙 (x′) 𝑑𝑉 (x′) = 𝑔𝑖𝑘𝑙𝜀𝐼0∗𝑘𝑙 + 𝑔𝑖𝑘𝑙 𝑝𝜀
𝐼1∗
𝑘𝑙 𝑝 + 𝑔𝑖𝑘𝑙 𝑝𝑞𝜀

𝐼2∗
𝑘𝑙 𝑝𝑞 (7)

169

𝜀𝑖 𝑗 (x) = 𝑆𝑖 𝑗 𝑘𝑙𝜀𝐼0∗𝑘𝑙 + 𝑆𝑖 𝑗 𝑘𝑙 𝑝𝜀
𝐼1∗
𝑘𝑙 𝑝 + 𝑆𝑖 𝑗 𝑘𝑙 𝑝𝑞𝜀

𝐼2∗
𝑘𝑙 𝑝𝑞 (8)170

where 𝑔𝑖𝑘𝑙 𝑝𝑞... =
∫
Ω𝐼
𝐺𝑖 𝑗,𝑚′𝐶𝑗𝑚𝑘𝑙 (𝑥

′
𝑝 − 𝑥

𝐼𝑐
𝑝 ) (𝑥

′
𝑞 − 𝑥

𝐼𝑐
𝑞 ) 𝑑𝑉 (x′) is Eshelby’s tensor for displacement;171

𝑆𝑝𝑞..𝑖 𝑗 𝑘𝑙 =
𝑔𝑖𝑘𝑙 𝑝𝑞..., 𝑗+𝑔 𝑗𝑘𝑙 𝑝𝑞..,𝑖

2
is Eshelby’s tensor for strain; indices 𝑝, 𝑞 mean that polynomial-172

form terms are involved, i.e 𝜓𝑝 = (𝑥′𝑝 − 𝑥
𝐼𝑐
𝑝 )𝜓. Notice that comparing with Kelvin’s solution,173

𝐺𝑖 𝑗,𝑚′ = −𝐺𝑖 𝑗,𝑚 does not hold for bi-material fundamental solution and the partial derivatives are174

provided in Appendix I.175

Domain Integrals of Fundamental Solution with Polynomial Terms176

In Eq.(3), the fundamental solution is obtained through superposition of Kelvin’s solution177

and image terms. As for Kelvin’s solution, let Φ and Ψ denote domain integrals of 𝜙 and 𝜓,178

respectively. In 1891, Dyson (Dyson 1891) derived the general form domain integrals of elliptical179

shell with various density functions. Later Moschovidis and Mura (Moschovidis and Mura 1975)180

summarized Dyson’s work and defined 𝐼 and𝑉 functions to derive harmonicΦ𝑝𝑞... and biharmonic181

Ψ𝑝𝑞... potentials, which will not be repeated below.182

In terms of the image parts, let Θ and Λ denote the domain integrals of 𝛼 and 𝛽, respectively.183

Walpole (Walpole 1997) firstly presentΘ andΛ based on its definition of Bousinesq’s displacement184
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potential and Liu et al. (Liu et al. 2015) extended them up to quadratic order (Θ𝑝𝑞,Λ𝑝𝑞). However,185

the authors only considered cases of 𝑥′
3
> 0, thus in the following, we shall complete all cases of186

domain integrals with more simplified definitions.187

In Eq.(5), four types of 𝛼 and 𝛽 functions are defined and the use of them is up to locations188

of source and field points. Following definition of displacement potentials, the functions can be189

rewritten as,190

𝛼𝑢 =
∫ −∞

𝑥3

𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡 𝛼𝑢 =
∫ 𝑥3

∞

𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡

𝛼𝑙 =
∫ 𝑥3

∞

𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡 𝛼𝑙 =
∫ −∞

𝑥3

𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡

(9)191

where, only finite part of Eq.(9) are considered since infinite constant vanishes during partial192

differentiation. Similarly, 𝛽 functions can be written as Eq.(9) with the same integral limits but193

switch integral functions from 𝜙 or 𝜙 to 𝛼 or 𝛼, respectively. Because both 𝛼 and 𝛽 functions are194

defined through integrals along the third axis with respect to field point, one can interchange the195

sequence of integral, taking Θ𝑢 as an example,196

Θ𝑢 =
∫
Ω𝐼

𝛼𝑢 𝑑𝑉 (x′) =
∫ −∞

𝑥3

∫
Ω𝐼

𝜙 𝑑𝑉 (x′) 𝑑𝑡 =
∫ −∞

𝑥3

Φ(𝑥1, 𝑥2, 𝑡) 𝑑𝑡

Λ𝑢 =
∫
Ω𝐼

𝛽𝑢 𝑑𝑉 (x′) =
∫ −∞

𝑥3

∫
Ω𝐼

𝛼𝑢 𝑑𝑉 (x′) 𝑑𝑡 =
∫ −∞

𝑥3

Θ𝑢 (𝑥1, 𝑥2, 𝑡) 𝑑𝑡
(10)197

Notice that for the integral with respect to 𝑡 along the third axis does not include any integral198

points inside the subdomain, hence, only the exterior branch ofΦ andΘ𝑢 is retained. Following the199

same fashion, other Θ, Λ and their polynomial involved functions can be derived. In the following,200

their integrals are provided as below. The superscript 𝑠 represents 4 types of functions defined in201

Eq.(9), which is up to locations of source and field points. 𝜙𝑠 = 𝜙, 𝜓𝑠 = 𝜓 when 𝑥′
3
𝑥3 ≥ 0 and202

𝜙𝑠 = 𝜙, 𝜓𝑠 = 𝜓 when 𝑥′
3
𝑥3 < 0203

Uniform Domain Integrals Θ and Λ204

Θ𝑠 =
4𝜋𝑎3

3
𝛼𝑠 & Λ𝑠 =

4𝜋𝑎3

3
𝛽𝑠 (11)205
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Linear Domain Integrals Θ𝑝 and Λ𝑝206

Θ𝑠𝑝 =
4𝜋𝑎5

15

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝛼𝑠,𝑝 𝑝 ≠ 3

𝜙𝑠 𝑝 = 3

& Λ𝑠𝑝 =
4𝜋𝑎5

15

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝛽𝑠,𝑝 𝑝 ≠ 3

𝛼𝑠 𝑝 = 3

(12)207

Quadratic Domain Integrals Θ𝑝𝑞 and Λ𝑝𝑞208

Θ𝑠𝑝𝑞 =
4𝜋𝑎5

105

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝑎2𝛼𝑠,𝑞 (𝛼
𝑠
,𝑝 + ln[𝜓

𝑠] ,𝑝) + 𝛿𝑝𝑞 [7𝛼
𝑠 + 𝑎2𝜙𝑠𝛾𝑠] 𝑝, 𝑞 ≠ 3

−𝑎2𝜙𝑠,𝑝 𝑝 ≠ 3, 𝑞 = 3

𝑎2𝜙𝑠,3 + 7𝛼
𝑠 𝑝 = 𝑞 = 3

(13)209

and210

Λ𝑠𝑝𝑞 =
4𝜋𝑎5

105

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝑎2(𝑥𝑝 − 𝑥
𝐼𝑐
𝑝 )𝛾

𝑠
,𝑞 + 𝛿𝑝𝑞 [7𝛽

𝑠 − 𝑎2𝛾𝑠] 𝑝, 𝑞 ≠ 3

−𝑎2𝛼𝑠,𝑝 𝑝 ≠ 3, 𝑞 = 3

𝑎2𝛼𝑠,3 + 7𝛽
𝑠 𝑝 = 𝑞 = 3

(14)211

where 𝛾𝑠 is argument of the logarithmic function (𝛼𝑠). When𝛼𝑠 = 𝛼𝑢, we can obtain 𝛾𝑠 = 𝑥′
3
−𝑥3+𝜓.212

One Inhomogeneity in a Bounded Bi-material Domain213

In the last subsection, the disturbance frompolynomial-form eigenstrain can be obtained through214

the explicit domain integral of fundamental solution over the spherical subdomain Ω𝐼 . Combining215

with the conventional BEM, the elastic field is superposition of boundary responses with BIEs and216

disturbance of eigenstrain with Eq.(7) and Eq.(8), and the displacement of arbitrary field point x217

within D+ can be expressed as,218

𝑢𝑖 (x) = −

∫
𝜕D𝑡

𝑇𝑖 𝑗 (x, x′)𝑢 𝑗 (x′)𝑑x′ +
∫
𝜕D𝑢

𝐺𝑖 𝑗 (x, x′)𝑡 𝑗 (x′)𝑑x′ +
∫
Ω𝐼

𝜕𝐺𝑖 𝑗 (x, x′)
𝜕𝑥′𝑚

𝜀∗𝑘𝑙 (x′)𝐶𝑗𝑚𝑘𝑙 (x′) 𝑑𝑉 (x′)

= −

𝑁𝐸∑
𝑒=1

𝐻𝑖 𝑗𝑢
𝑒
𝑗 +

𝑁𝐸∑
𝑒=1

𝑈𝑖 𝑗 𝑡
𝑒
𝑗 + 𝑔𝑖𝑘𝑙𝜀

𝐼0∗
𝑘𝑙 + 𝑔𝑖𝑘𝑙 𝑝𝜀

𝐼1∗
𝑘𝑙 𝑝 + 𝑔𝑖𝑘𝑙 𝑝𝑞𝜀

𝐼2∗
𝑘𝑙 𝑝𝑞

(15)

219
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where 𝐺𝑖 𝑗 and 𝑇𝑖 𝑗 =
C𝑖𝑚𝑘𝑙 (x′) (𝐺𝑘 𝑗,𝑙′+𝐺𝑙 𝑗 ,𝑘′ )

2
𝑛𝑚 (x′) are fundamental solution to displacement and220

traction, respectively. With boundary surface mesh, the BIEs are expressed in a discretization form221

(Beer et al. 2008) that 𝐻𝑖 𝑗 =
∫
𝑆𝑒
𝑇𝑚𝑖 (x, x′)𝑁𝑚 𝑗 (x′) 𝑑𝑆 and 𝑈𝑖 𝑗 =

∫
𝑆𝑒
𝑈𝑚𝑖 (x, x′)𝑁𝑚 𝑗 (x′) 𝑑𝑆; 𝑁𝐸 is222

the number of elements; the superscript 𝑒 represents nodal values of boundary displacements and223

surface tractions in the 𝑒𝑡ℎ element. In Eq.(15), the interactions between subdomains and boundary224

are involved to displacement of BEM. Since the continuity conditions of bi-material interface 𝑆225

has been analytically considered in the fundamental solutions, one can solve the boundary response226

similar to a homogeneous matrix.227

Unlike inclusion problems with prescribed eigenstrain, when the Ω𝐼 is filled with different228

material C 𝐼 , the eigenstrain is yet to be determined with equivalent stress conditions. Mura (Mura229

1987) proposed the conditions for polynomial-form eigenstrain to simulate material mismatch,230

C𝑤𝑖 𝑗 𝑘𝑙 (𝜀
𝑏
𝑘𝑙 + 𝜀

′
𝑘𝑙 − 𝜀

𝐼0∗
𝑘𝑙 ) = C 𝐼𝑖 𝑗 𝑘𝑙 (𝜀

𝑏
𝑘𝑙 + 𝜀

′
𝑘𝑙)

C𝑤𝑖 𝑗 𝑘𝑙 (𝜀
𝑏
𝑘𝑙,𝑚 + 𝜀′𝑘𝑙,𝑚 − 𝜀𝐼1∗𝑘𝑙𝑚) = C 𝐼𝑖 𝑗 𝑘𝑙 (𝜀

𝑏
𝑘𝑙,𝑚 + 𝜀′𝑘𝑙,𝑚)

1

2!
C𝑤𝑖 𝑗 𝑘𝑙 (𝜀

𝑏
𝑘𝑙,𝑚𝑛 + 𝜀

′
𝑘𝑙,𝑚𝑛 − 2𝜀

𝐼2∗
𝑘𝑙𝑚𝑛) =

1

2!
C 𝐼𝑖 𝑗 𝑘𝑙 (𝜀

𝑏
𝑘𝑙,𝑚𝑛 + 𝜀

′
𝑘𝑙,𝑚𝑛)

(16)231

Because the inhomogeneity may be located in either the upper phaseD+ or the lower phaseD−, in232

Eq.(16), the superscript 𝑤 =′ when Ω𝐼 is located is located in D+ and 𝑤 =′′ when Ω𝐼 is located is233

located in D− . 𝜀𝑏𝑖 𝑗 is strain contributed by BIEs of boundary response with Eq.(20) in Appendix234

I; 𝜀′𝑖 𝑗 is disturbed strain field expressed in Eq.(8). As indicated in Eq.(16), the interaction of235

inhomogeneities are taken into account in equivalent stress conditions that one inhomogeneity can236

disturb stress field of another inhomogeneity. Therefore, assembling the conventional BEMmatrix,237

collecting eigenstrain effects on boundary nodes and the stress equivalent equations, the iBEM238

global system of linear equations will be shown in Eq. (19) of Appendix I.239

240

Discussion and extension to ellipsoidal inhomogeneity241

In this article, the above single-domain iBEMalgorithm aims to save efforts in handling of trivial242
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procedures for domain discretization of the inhomogeneities. As for the industrial applications,243

Koenigsberger et al. (Königsberger et al. 2020) proposed a novel scheme on combination of244

Dvorak’s transformation field analysis and Eshelby’s method to investigate poro-elastic properties245

of cement paste, where the ellipsoidal Eshelby’s tensor is introduced relating eigenstresses. In246

(Buchner et al. 2021) demonstrated experimental investigation on the effective elastic and thermal247

properties of clay bricks and various shapes of defects, i.e mesopores, quartz, are considered. Since248

the algorithm is based on the bi-material Green’s function, and particularly the polynomial-form249

Eshelby’s tensor used in equivalent stress conditions. Therefore, the limitations of the algorithm250

is the same limitation in the domain integral of the Green’s function. Shown in Section “Domain251

integrals of fundamental solution with polynomial terms", the components of spherical Eshelby’s252

tensor are derived by interchanging the integral sequence. Following the same fashion, (i) the253

domain integralsΦ andΨ over an ellipsoidal region can be found in (Dyson 1891) and (Moschovidis254

and Mura 1975); (ii) the domain integrals Θ and Λ can be derived by partial integration along the255

third axis given integral limits. Notice that although Mura (Mura 1987) proposed the Taylor series256

expansion of eigenstrain to handle interactions of ellipsoidal inhomogeneities, when the ratios257

of axes of ellipsoid become too large / small, even quadratic eigenstrain terms may not provide258

accurate solution due to large variations of eigenstrain.259

NUMERICAL VERIFICATION260

The aforementioned algorithm is implemented to software package of iBEM to predict local261

fields of composites with prescribed boundary conditions. In order to validate the algorithm and262

illustrate how solutions with 3 orders of polynomial eigenstrain performs, a numerical case study263

with Robin’s boundary condition is set up. Eshelby’s solution of an inhomogeneity embedded in264

infinite space provides insight of uniform eigenstrain distribution. Actually, for a two-jointed half-265

spaces, if the inhomogeneity is far from the bi-material interface 𝑆, the image terms in fundamental266

solution Eq.(3) and its domain integral vanishes rapidly, which provides minor effects on stress267

disturbance. As a consequence, the elastic fields become similar to Eshelby’s solution of infinite268

space. Therefore, the inhomogeneity will be placed close to the interface 𝑆 to observe interfacial269
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effects on elastic fields. For spherical inhomogeneities, the intensity of interaction is commonly270

judged by the ratio 𝑑 = ℎ/𝑎, where 𝑎 is radius and ℎ is distance from the centroid to interface.271

Following the definition of Fig.1, the dimensions and boundary conditions are set as: (i) the width272

𝑏, length 𝑙 and two thickness 𝑇1, 𝑇2 are set as 1 m; (ii) the inhomogeneity with radius 𝑎 = 0.1 m is273

placed in D−, where the distances ℎ to interface 𝑆 are ℎ = 1.1𝑎, 2𝑎 and 3𝑎; (iii) shown in Fig.2,274

the top surface of D+ is subjected uniform downward pressure 1 MPa; and the displacement of275

bottom surface ofD− is constrained; all other four surfaces are free of traction. The shear modulus276

and Poisson’s ratio for two material are 𝜇′ = 0.4 MPa, 𝜈′ = 0.25 and 𝜇′′ = 0.8 MPa and 𝜈′′ = 0.1,277

respectively.278

Shown in Fig.3(a) and Fig.3(b), the elastic fields 𝑢3 and 𝜎33 are compared with FEM with279

different ratio of distance. Because the disturbance by the inhomogeneity vanishes rapidly, the280

[−3, 3]𝑎 around the inhomogeneity is considered. In simulation, 1000 quadrilateral boundary281

elements are used in iBEM and 2, 189, 461 tetrahedral elements are used in FEM. Regarding 𝑢3,282

the curves agree well with FEM except minor discrepancy is observed in the second branch of283

case ℎ/𝑎 = 1.1. In terms of stress comparison, the main discrepancy between iBEM and FEM284

exists at the interface between inhomogeneity Ω𝐼 and matrix, which can be interpreted as intensive285

interfacial effects. Indicated in Fig.3(c), the stress concentration factors are compared in the vertical286

hoop of sphere and the maximum 𝜎𝜃𝜃 changes with intensivity of interfacial effects, specifically, in287

the case ℎ/𝑎 = 1.1, the angle shifts near 14 degree. As the ℎ/𝑎 increases, both stress concentration288

and angle shift decreases, which will be elaborated in "Ratio of Distance". In Fig.3(d), the stress289

𝜎33 (ℎ/𝑎 = 1.2) is compared along the center line among uniform, linear and quadratic series290

expansion. It is observed that the assumption of uniform distribution (Eshelby’s solution) cannot291

predict the variation of elastic fields. The linear terms improves the accuracy but exhibit obvious292

discrepancy in the neighborhood of the inhomogeneity. Therefore, the introduction to quadratic293

term is necessary in improvement of accuracy of solution. In the comparison among uniform, linear294

and quadratic order terms, as shown in Fig. 3(d), the accuracy of predictions improves with the295

increase of polynomial order. Such phenomenon indicates that due to the existence of interfacial296
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effects, none of the numerical solution (uniform, linear and quadratic) is exact solution and so does297

the FEM. Back to Fig. 3(c), except the curve ℎ/𝑎 = 1.1, the other two cases ℎ/𝑎 = 2 and ℎ/𝑎 = 3298

agree well with FEM. When the interfacial effects dominate, much more disturbance is observed,299

therefore, the disturbance also make the eigenstrain field more complex, which is the reason why300

even quadratic eigenstrains cannot provide adequately accuracy as iBEM exhibits an angle lag.301

When the distance ratio ℎ/𝑎 increases and interfacial effects decrease accordingly, the uniform302

term gradually dominates the solution. In such case, only uniform term alone can provide accurate303

results (Wu and Yin 2021). Although the iBEM algorithm has enabled three tailorable accuracy304

options, in the following, quadratic term is applied to ensure reliable and accurate analysis.305

CASE STUDY OF STRESS CONCENTRATION FACTORS306

In the previous section, the iBEM algorithm has been validated with FEM with three cases of307

different distance ratios in a bi-material system. In this section, the algorithm is further utilized to308

investigate elastic fields and stress concentration factors of a specific industrial application with a309

microvoid 𝑎 = 2.5 × 10−6m in the sunslate. Because of the thin adhesive layer, the sunslate can be310

considered as a bi-material system with 𝑙 = 𝑏 = 0.1 m of (i) glass (𝐸′ = 72GPa, 𝜈′ = 0.2, 𝑇1) and311

(ii) concrete panels (𝐸′′ = 36GPa, 𝜈′′ = 0.2, 𝑇2) (Yin et al. 2022b), as shown in Fig.1. The sunslate312

is subjected to downward pressure and thermal loads, which can be decomposed of superposition313

of free expansion and applied pressure for mismatch of thermal expansion coefficient (Yin and314

Prieto-Muñoz 2013), as shown in Fig.2. Since the free expansion does not result in variation of315

stress, this paper focus the second parts and the applied loads are set as 1MPa, which can be easily316

extended for other values of loads in linear elastic stage.317

Ratio of Distance318

The interfacial effects are judged through ratio of distance between the inhomogeneity and inter-319

face 𝑆. In this subsection, 8 ratio of distances are considered as ℎ/𝑎 = 1.1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3320

and the microvoid is placed in lower and upper phase for overall 16 cases. In Fig.4(a) and Fig.4(b),321

the stresses 𝜎𝜃𝜃 are plotted versus the vertical hoop angle 𝜃 ∈ [−90◦, 90◦] when the microvoid is322

located in upper and lower phase, respectively. Comparing the angle of maximum stress, when323
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ℎ/𝑎 increases and interfacial effects decrease, the angle gradually decreases accordingly. If ℎ/𝑎 is324

large enough, the contribution from image terms in fundamental solutions vanishes and angle of325

maximum stress changes as zero, which is similar to a infinite space problem but with disturbed326

elastic fields due to the existence of the other phase. Obviously, the material mismatch influence327

the stress concentration as well. Indicated in Fig.4(a) and Fig.4(b), when microvoid is embedded328

in D+, the change of distance ratio exhibits larger variation of both angle shifts and stress concen-329

tration factor. In Fig.5(a), the angle shift in D+ is over 3 times than that of D−, which explains330

larger material mismatch amplify interfacial effects. Fig.4(c) shows the displacement 𝑢3 of 6 cases331

of microvoid under uniform downward pressure 1 MPa on the vertical hoop. When the distance332

between microvoid and bottom surface decreases, the displacement 𝑢3 decreases accordingly due333

to constraint of bottom surface. When angle 𝜃 = −90◦ and microvoid is embedded in D+, the334

differences between case “h/a = 1.1 - Upper" and “h/a = 1.2 - Upper" is larger than other angles.335

Such phenomenon is caused by interfacial effects associated with softer material concrete in D−.336

Similarly, when angle 𝜃 = 90◦ and microvoid is embedded in D−, opposite trend is observed.337

Shown in Fig.4(d), under horizontal pressure, the distance ratio has minor effects on stress concen-338

tration and angle shifts, which can be interpreted as the direction of load is perpendicular to 𝑥3.339

Fig.5(b) exhibits the variation of stress concentration factor versus ℎ/𝑎 with two types of loads and340

positions of microvoid. When ℎ/𝑎 increases, the stress concentration factors tends to be constant,341

which is similar to Kelvin’s problem.342

Ratio of Shear Moduli343

This subsection aims to present how ratio of shear moduli influence the stress concentration344

caused by the microvoid. Discussed in "Ratio of distance" section, besides the interfacial effects,345

the material mismatch also contribute to stress concentration. To avoid such factors, the microvoid346

is placed in the upper phase D+ with distance ratio ℎ/𝑎 = 1.2 and the material properties of the347

upper phase remain the same (𝐸′ = 72GPa,𝜈′ = 0.2). 9 ratios of shear moduli 𝜇
′

𝜇′′ are considered as348

0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 and 20. Shown in Fig.6(a) and Fig.6(b), the stress concentration factors349

increases with 𝜇′/𝜇′′ and angle of maximum hoop stress shifts to negative range. When 𝜇′/𝜇′′350
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is small, the stiffer lower phase restrict the displacements and vice versa; consequently, as partial351

derivatives of displacements, the stress concentration factor is smaller and angle of maximum stress352

shifts to positive range. In Fig.6(c), when 𝜇′/𝜇′′ = 1, the fundamental solution reduces to Kelvin’s353

solution, the stress concentration factor under vertical load is close to 2. Fig.6(d) plots the angle of354

maximum stress versus ratios of shear moduli and vertical load case has larger variations because355

the loading direction is perpendicular to the interface 𝑆. The angles of maximum stress in two356

curves are close to 5◦, which is caused by non-uniformity of strain field around the microvoid (not357

a far-field uniform strain).358

Ratio of Thickness359

This subsection aims to investigate thickness ratio effects on the stress concentration behavior360

caused by the microvoid. Following the "Ratio of shear moduli", the microvoid is placed inD+ with361

distance ratio ℎ/𝑎 = 1.2 and 6 ratios 1, 2, 5, 10, 15 and 20 are selected. Fig.7(a) plots the vertical362

hoop stress with hoop angle. It is noticed that when 𝑇1/𝑇2 ≤ 10 and the ratio increases, the negative363

stress concentration factor decreases and positive stress concentration factor increases obviously.364

However, from case 15 and case 20, the trend reverses that case 20 has similar stress distribution as365

case 5; case 15 exists between case 10 and 5. Such phenomenon is caused by the elastic behavior of366

thin panels or plates. When the thickness ratio 𝑇1/𝑇2 ≤ 10, under horizontal pressure, the primary367

forces forD+ are bending and shear; as thickness ratio exceeds 10, the lateral shearing deformation368

become neglecting, which explains the maximum negative stress concentration increases due to369

elastic behavior change. Fig.7(b) indicates the trend of stress concentration factor discussed above.370

Under horizontal pressure, the horizontal hoop stress has similar trends as the other two curves.371

Notice that, unlike distance ratio and shear moduli ratio, the thickness ratio seldom change the372

angle of maximum negative/positive hoop stress. Because the angle shifts of maximum hoop stress373

is generally considered as interfacial effects, the smaller distance ratio, larger material mismatch374

and shear moduli ratio can augment such effects. However, the change of stress distribution with375

thickness ratios is mainly caused by the elastic behavior of the bi-material system itself.376

16 Wu, June 2, 2023



CONCLUSIONS377

The algorithm of the single domain inclusion-based boundary element method has been applied378

to investigate the elastic fields of bi-material system embedded with one microvoid. The algorithm379

has been verified by FEM with case study of void embedded in a two-cuboid bi-material system380

with different distance ratios. Along with the numerical verification, the iBEMwith uniform, linear381

and quadratic terms are compared with FEM and provide tailorable accuracy upon readers’ needs.382

Thanks to the fundamental solution of bi-material, and explicit domain integrals, the conventional383

boundary value problem with interface and subdomain can be solved similarly to a homogeneous384

solid. In this paper, the algorithm has been applied to study the stress concentration issues arisen385

in a Sunslate and parametric studies are conducted on effects brought by distance ratio, shear386

modulus ratio and thickness ratio and loading conditions. The algorithm is particularly suitable for387

understanding, designing and conducting virtual experiments on a thin-film system with potential388

defects.389
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APPENDIX I.397

Method of images in Walpole’s solution and its modified form398

This appendix subsection aims to provide details and discussion of fundamental solution by399

Walpole (Walpole 1996). For a perfect bounded bi-material interface, the continuity conditions in400

Eq. (1) on displacements and tractions need to be satisfied. The method of images is a typical401

mathematical tool to solve partial differential equations that a mirror image source is artificially402

created to handle the continuity conditions of the interfacewithout extending the domain of function.403

Haberman (Haberman 2021) illustrated the method through semi-infinite solution to Poisson’s404

equation in Chapter 9.5.8 and transient heat transfer in Chapter 11.5.3. Walpole (Walpole 1996)405

wrote the fundamental solution (displacement) in terms of two branches, which are determined by406

positions of field and source points. Subsequently, similar to Boussinesq’s solution and Mindlin’s407

problem, the potential functions are assumed as partial integration with respect to the third axis,408

where part of Kelvin’s solution and nuclei of strain are applied. According to the continuity409

conditions, the coefficients associated with material constants can be determined.410

The original form of bi-material elastic fundamental solution can be applied to investigated induced411

elastic fields caused by loads at any arbitrary interior point. However, its application to Eshelby’s412

problem is not complicated and trivial as Eshelby’s tensor leads domain integrals with the free413

source terms, i.e 𝑥′
3
. It is possible to represent the free source terms with Garlekin’s distance vector,414

for example, the domain integral of 𝑥′
3
𝜙 can altered as

∫
Ω
(𝑥′
3
− 𝑥3) + 𝑥3𝜙𝑑x′ = −Ψ,3 + 𝑥3Φ, which415

simplifies the domain integral expressions.416

Partial Derivatives of Domain Integrals417

It is noted that with image terms, partial differentiation process changes accordingly, say418

𝛼𝑢,𝑖′ = −𝑄𝐼𝛼
𝑢, we provide the first order derivative of fundamental solution to obtain Eshelby’s419

tensor for displacement with quadratic order polynomial,420
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(1) When 𝑥′
3
𝑥3 ≥ 0,421

4𝜋𝜇𝑤
∫
Ω
(𝑥′𝑝 − 𝑥

𝑐
𝑝) (𝑥

′
𝑞 − 𝑥

𝑐
𝑞)𝐺𝑖 𝑗,𝑚′ 𝑑𝑉 (x′)

= (−𝛿𝑖 𝑗Φ𝑝𝑞,𝑚 +
Ψ𝑝𝑞,𝑖 𝑗𝑚
4(1 − 𝜈𝑤)

) −𝑄𝑃𝑄𝑄

{
𝐴𝑦𝛿𝑖 𝑗𝑄𝑀Φ𝑝𝑞,𝑚 − 𝜒𝐵𝑦𝑄𝑀 (𝛿𝑖3Θ

𝑦

𝑝𝑞, 𝑗𝑚 − 𝛿 𝑗3Θ
𝑦

𝑝𝑞,𝑖𝑚)

− 𝐶𝑦𝑥3𝑄𝑀

[
−𝑄𝐽Ψ𝑝𝑞,𝑖 𝑗3𝑚 − 4(1 − 𝜈𝑤)𝛿 𝑗3Φ𝑝𝑞,𝑖𝑚 − 2(1 − 2𝜈𝑤)𝛿𝑖3𝑄𝐽Φ𝑝𝑞, 𝑗𝑚 + 𝑥3𝑄𝐽Φ𝑝𝑞,𝑖 𝑗𝑚

]
+𝑄𝐽𝑄𝑀

[
𝐷𝑐𝑄𝐼Ψ𝑝𝑞,𝑖 𝑗𝑚 + (𝐺𝑦 + 𝐵𝑦)Λ

𝑦

𝑝𝑞,𝑖 𝑗𝑚

]}
(17)

422

(2) When 𝑥′
3
𝑥3 < 0,423

4𝜋𝜇𝑤
∫
Ω
(𝑥′𝑝 − 𝑥

𝑐
𝑝) (𝑥

′
𝑞 − 𝑥

𝑐
𝑞)𝐺𝑖 𝑗,𝑚′ 𝑑𝑉 (x′)

= (−𝛿𝑖 𝑗Φ𝑝𝑞,𝑚 +
Ψ𝑝𝑞,𝑖 𝑗𝑚
4(1 − 𝜈𝑤)

) − 𝐴𝑦𝛿𝑖 𝑗Φ𝑝𝑞,𝑚 − 𝜒𝐵𝑦 (𝛿𝑖3Θ
𝑦
𝑝𝑞, 𝑗𝑚 − 𝛿 𝑗3Θ

𝑦
𝑝𝑞,𝑖𝑚)

+ 𝐷𝑦Ψ𝑝𝑞,𝑖 𝑗𝑚 + 𝜒𝑥3𝐹
𝑦Θ𝑐𝑝𝑞,𝑖 𝑗𝑚 + (𝐺𝑦 + 𝐵𝑦)𝑄𝐼Λ

𝑦
𝑝𝑞,𝑖 𝑗𝑚

(18)424

For other higher order derivatives to obtain Eshelby’s tensor for strain is straightforward because425

the partial differentiation is with respect to 𝑥𝑛 not 𝑥
′
𝑛.426

Global Matrix of iBEM427

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H + 𝐻 . . . −𝑔0𝐼 −𝑔1𝐼 −𝑔2𝐼 . . .

...
...

...
...

...
...

Δ𝐶𝐼𝐻1𝐼 . . . Δ𝐶𝐼𝑆0𝐼 Δ𝐶𝐼𝑆1𝐼 Δ𝐶𝐼𝑆2𝐼 . . .

Δ𝐶𝐼𝐻2𝐼 . . . Δ𝐶𝐼𝑆0𝐼
′

Δ𝐶𝐼𝑆1𝐼
′

Δ𝐶𝐼𝑆2𝐼
′
. . .

Δ𝐶𝐼𝐻3𝐼 . . . Δ𝐶𝐼𝑆0𝐼
′′

Δ𝐶𝐼𝑆1𝐼
′′

Δ𝐶𝐼𝑆2𝐼
′′
. . .

...
...

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3∗𝑁𝑁+𝑠∗𝑁𝐼)×(3∗𝑁𝑁+𝑠∗𝑁𝐼)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢

...

𝜀∗0𝐼

𝜀∗1𝐼

𝜀∗2𝐼

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3∗𝑁𝑁+𝑠∗𝑁𝐼)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑈

...

−Δ𝐶𝐼𝑈1𝐼

−Δ𝐶𝐼𝑈2𝐼

−Δ𝐶𝐼𝑈3𝐼

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3∗𝑁𝑁+𝑠∗𝑁𝐼)×(3∗𝑁𝑁)

[
𝑡
]

(3∗𝑁𝑁)

(19)
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where 𝑠 is determined order of polynomial by users, as 6, 24, 60 for uniform, linear and quadratic;428

H is a diagonal matrix applied in conventional BEM to eliminate strong singularities with method429

of rigid body motion for static problems; 𝐻 and𝑈 are coefficients calculated by discretized BIE in430

Eq.(15); 𝑔 and 𝑆 are Eshelby’s tensor for displacement and strain (with uniform, linear and quadratic431

order), respectively; 𝐻1𝐼 , 𝐻2𝐼 , 𝐻3𝐼 and𝑈1𝐼 ,𝑈2𝐼 ,𝑈3𝐼 are coefficients calculated by discretized BIE432

in Eq.(20) below for strain, first order partial derivative of strain and second order partial derivatives433

of strain, respectively. They are used in equivalent stress conditions as Eq.(16).434

𝑈0𝐼𝑖 𝑗𝑚 =
1

2

∫
𝑆𝑒

(𝐻𝑖𝑘, 𝑗 (x, x′) + 𝐻𝑗𝑘,𝑖 (x, x′))𝑁𝑚𝑘 (x′) 𝑑𝑆

𝐻0𝐼𝑖 𝑗𝑚 =
1

2

∫
𝑆𝑒

(𝑇𝑖𝑘, 𝑗 (x, x′) + 𝑇𝑗𝑘,𝑖 (x, x′))𝑁𝑚𝑘 (x′) 𝑑𝑆
(20)435

Similarly, other higher order partial derivatives can be obtained, i.e,𝑈2𝐼𝑖 𝑗𝑚𝑛𝑟 =
1
2

∫
𝑆𝑒
(𝐻𝑖𝑘, 𝑗𝑛𝑟 (x, x′) +436

𝐻𝑗𝑘,𝑖𝑛𝑟 (x, x′))𝑁𝑚𝑘 (x′) 𝑑𝑆.437

438
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APPENDIX II. COMPUTATIONAL TESTS BETWEEN IBEM AND FEM439

This appendix section aims to provide details in computational efficiency and accuracy compar-440

ison between the proposed iBEM programmed by authors and FEM using a commercial software441

ANSYS. Regarding the accuracy and convergence, two aspects are discussed, (a) a convergence442

analysis of FEM through refinement of elements around the inhomogeneity; and (b) an error analy-443

sis concerning the differences between iBEM and FEM (convergent results). As for the efficiency,444

three main aspects are considered, (i) preparation stage, such as generation of geometric specifica-445

tion ,surface (iBEM) / volume (FEM) domain discretization; (ii) construction and solving process,446

such as computation of global matrix and solution time; and (iii)a comparison occupancy test of447

CPU and RAM in two methods.448

Without the loss of any generality, this section follows "Numerical Verification" that all material449

properties are retained and the ratio of distance ℎ/𝑎 = 1.5, where the inhomogeneity with radius450

𝑎 = 0.1 m is located in the lower phaseD−. For BEM surface mesh, 4-node bi-linear quadrilateral451

elements with 4 Gauss integral points are used with adaptive subdivision integration scheme452

following (Eberwien et al. 2005). Regarding FEM volume mesh, 10-node quadratic tetrahedral453

elements are used due to expected larger variation of displacements.454

455

Accuracy test456

Shown as Fig. 8, in order to use fewer elements, the neighbor box (dimension 0.4×0.4×0.3 m)457

with the spherical inhomogeneity and the rest region of the matrix are treated with two mesh sizes.458

Four internal size steps are selected as 0.04, 0.015, 0.008 and 0.006 m, while the uniform external459

mesh size is 0.04 m. When the internal mesh size decreases, the number of elements increase460

accordingly as 41, 4906, 50, 9469, 114, 7928 and 232, 6729. Indicated in Fig. 9(a), the stress461

concentration factor 𝜎𝜃𝜃/𝜎
0
33
gradually converges as the differences between size steps decrease.462

Particularly, size step 0.006 and 0.008 exhibit very minor discrepancies, and the two curves also463

agree well with results in iBEM. Considering the larger differences in Fig. 3(c), when the distance464

ratio ℎ/𝑎 increase, the variation in eigenstrain decreases accordingly, which can provide good465
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predictions. Fig. 9(b) indicates the errors between iBEM and two FEM curves, although there are466

some differences, considering the maximum stress concentration factor is 1.94, the errors between467

two methods are acceptable.468

469

Efficiency test470

Shown as Table. 1, FEM and iBEM-quadratic used 2 and 8 cores, respectively. We keep471

the default setting of ANSYS, which limits participation of more cores, so that the solving time472

will be shorter. Since the solving process contains calculation, assignment of coefficients and473

matrix decomposition, the solution time is not linearly proportional to number of cores, because474

assignment of coefficients is partially a single-thread process. Although Table. 1 indicates iBEM475

package occupies all cores of the CPU, it uses “Eigen" library, where the process decomposition476

of matrix is not fully multi-core. The iBEM-quadratic exhibit apparent advantages on RAM usage477

over FEM, because the degree of freedom is a constant as 3, 060. Regarding the mesh process,478

iBEM only require the surface mesh, which avoids trivial process on the inhomogeneity and its479

neighbor region as shown in Fig. 8 (d). In addition, FEM require specification of models, such480

as importing from AutoCAD or creating in its own geometry editors, which requires more efforts.481

Considering all above factors, iBEM would be an efficient and computational resource friendly482

scheme.483
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TABLE 1. Comparison of efficiency among iBEM with quadratic terms and FEM with four
internal size steps

CPU Usage (cores) RAM Usage (Gb) Mesh time (s) Solving time (s)

FEM-0.04 2 2.22 17 48

FEM-0.015 2 3.51 27 58

FEM-0.008 2 7.65 39 133

FEM-0.006 2 12.60 72 326

iBEM-quadratic 8 0.58 5 10.2

CPU: i7-9700K (8 cores) RAM: 2933mHz
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Fig. 1. Schematic plot of a bi-material system D (a) subjected to mixed prescribed boundary

conditions embedded with one inhomogeneity Ω𝐼

Fig. 2. Downward pressure and horizontal pressure loading cases and vertical/horizontal for stress
comparison
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(a) (b)

(c) (d)

Fig. 3. Variation and comparison with FEM of elastic fields disturbed by void versus distance ratio
ℎ/𝑎 (a) 𝑢3, (b) ratio of normal stress 𝜎33/𝜎

0
33
along the center line; (c) stress concentration factor

along the vertical hoop [−90, 90]◦; (d) comparison of uniform, linear and quadratic polynomial
eigenstrain expansion along the center line
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(a) (b)

(c) (d)

Fig. 4. Variation of elastic fields disturbed by the microvid versus 8 distance ratios, (a) vertical
hoop stress 𝜎𝜃𝜃 and Ω𝐼 ∈ D+ (b) vertical hoop stress 𝜎𝜃𝜃 and Ω𝐼 ∈ D− (c) displacement 𝑢3 under
uniform downward pressure 1 MPa; (d) vertical hoop stress 𝜎𝜃𝜃 under two horizontal pressure 1
MPa

34 Wu, June 2, 2023



(a) (b)

Fig. 5. Variation of stress concentration versus 8 distance ratios, (a) angle shifts under uniform
downward pressure 1MPa and (b) stress concentration factors under uniform downward / horizontal

pressure 1MPa
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(a) (b)

(c) (d)

Fig. 6. Variation of elastic fields disturbed by microvoid versus ratios of shear moduli 𝜇′/𝜇′′,
(a) vertical hoop stress 𝜎𝜃𝜃 under uniform downward pressure; (b) vertical hoop stress 𝜎𝜃𝜃 under
horizontal pressure; (c) stress concentration factor;(d) angle shifts of maximum hoop stress of two

loading cases

36 Wu, June 2, 2023



(a) (b)

Fig. 7. Variation of elastic fields disturbed by microvoid under horizontal pressure versus thickness
ratio 𝑇1/𝑇2, (a) vertical hoop stress 𝜎𝜃𝜃; (b) stress concentration factor
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(a) (b)

(c) (d)

Fig. 8. Comparison of FEM volume discretization of four internal size steps, (a) 0.04, (b) 0.015,
(c) 0.008 and (d) 0.006 m

38 Wu, June 2, 2023



(a) (b)

Fig. 9. (a) Comparison of stress concentration factor 𝜎𝜃𝜃/𝜎033 among iBEM and FEM with four
internal size steps; (b) Error analysis of stress concentration factor 𝜎𝜃𝜃/𝜎

0
33
between iBEM and

FEM with 0.015 and 0.006 size steps
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