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ABSTRACT

This paper extends the Eshelby’s problem of one inhomogeneity embedded in a homogeneous
infinite domain to a bi-material infinite domain. The equivalent inclusion method (EIM) is used
to simulate the inhomogeneity by an inclusion with a polynomial eigenstrain. The fundamental
solution of a point force in a bi-material is used to formulate the domain integral over the inclusion.
For a finite bi-material domain, the boundary integral equation (BIE) takes into account the
boundary responses by a single domain instead of utilizing the conventional multi-region BIE
scheme. The EIM can similarly be used, and the elastic field can be obtained with tailorable
accuracy based on the order of the polynomial eigenstrain. The algorithm is particularly suitable to
simulate a defect in thin film/substrate systems or other similar bi-layered materials. Particularly,
the stress concentration of a microvoid embedded in a bi-layered solar panel is investigated. The
size and location of the void referred to the interface exhibits considerable effects on the stress
concentration factor. Numerical case studies demonstrate the effectiveness and accuracy of the
algorithm, and parametric studies show the boundary effects on the stress concentration of a

microvoid in a finite bi-material under a uniform far field strain.
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INTRODUCTION

The multi-layered systems have been widely utilized in versatile engineering and construc-
tion aspects, such as asphalt pavements (Yin and Prieto-Mufoz 2013), thin film surface coatings
with protective and functional purposes (Abu-Thabit 2020; Ruys and Sutton 2021), and composite
laminates (Anbusagar et al. 2015; Rana and Fangueiro 2016). However, the defects during manu-
facturing process, such as air voids, may significantly jeopardize the reliability and lifetime of the
overall bi-material system. Sengab and Talreja (Sengab and Talreja 2016) summarized two main
sources of those defects, (i) impurities and air evaporating during curing process; (i) entrapment
of air during manufacturing process. For example, in solar panel manufacturing (Yin et al. 2022b),
any voids in a solar panel may disturb the light transmission, form hot spots under strong sunlight,
and cause microcracks and failure of the solar panel. Even for a homogeneous encapsulate layer,
the defects can cause stress concentrations leading to cracks and failure. Especially, when defects
are close to the interface S, the discontinuity of stress across the interface augments the stress
concentration and singularity effects. Therefore, high fidelity stress analysis may provide more
insights to understand this phenomena.

To investigate the stress transfer between layered materials, Stoney (Stoney 1909) proposed an
approach with plate system assumptions, such as thick substrate to ignore bending stiffness of thin
film, equal twist curvatures and spatially constant surviving stress (Ngo et al. 2007). Because the
strong assumptions violate practical applications, several subsequent extensions have been proposed
to relax them (Wikstrom et al. 1999; Park and Suresh 2000). However, the Stoney theory ignores
the shear stress transfer, modified theories (Haftbaradaran et al. 2012; Zhang et al. 2021) have been
proposed to consider the interfacial sliding effects. Since the above previous works assume two
dissimilar homogeneous material phases, therefore those models cannot provide accurate analysis
for bi-material system with defects. Regarding influence brought by micro defects, Katnam et al.
(Katnam et al. 2011) investigates the formulation of air voids with two adhesive mixing techniques
and used X-ray to detect and evaluate porosity; Omairey et al. (Omairey et al. 2021) summarized

several failure modes of adhesive joints of composites, where adhesive defects and substrate defects

2 Wu, June 2, 2023



52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

can cause high stress concentration leading to failures; Mishnaevsky (Mishnaevsky 2022) reported
that even the defects in adhesive of the wind turbine blade may not dramatically disturb overall
stress field, the local high stress concentration will lead to crack initiation.

To understand the effects of defects, the equivalent inclusion method (EIM) (Eshelby 1957;
Eshelby 1959) was proposed to replace the defects with same matrix material along with inelastic
strain, eigenstrain, to be determined by equivalent stress equations. With solved eigenstrain, the
elastic fields can be acquired through superposition of initial fields and disturbance of eigenstrain,
which is domain integral of fundamental solution over the inhomogeneity. Thanks to the versatility
of fundamental solutions, EIM has been widely extended to other problems, such as heat conduc-
tion (Hatta and Taya 1986; Wu et al. 2021), dynamic elasticity (Song and Yin 2018), etc. The
Eshelby’s solution of one inhomogeneity over the infinite matrix ignores the interactions among
inhomogeneities themselves and the boundary (Liu and Yin 2014; Wu and Yin 2021). Based
on EIM, pioneers developed micromechanical models, such as the dilute, Mori-Tanaka(Mori and
Tanaka 1973; Kanit et al. 2003; Yin and Zhao 2016) and self-consistent models (Hershey 1954;
Kroner 1958), which provides effective mechanical properties of composites and bridge the mi-
crostructure and macroscopic behaviors. Other contributions on the homogenization schemes from
linear elasticity to nonlinear rate-dependent problems can be found in (Zaoui 2002).

In the literature, several previous works explore the stress intensity factors (SIFs) caused by
cracks and interfacial defects. Rather than using the conventional FEM, Treifi and Oyadiji (Treifi and
Oyadiji 2013) proposed a fractal-like FEM to investigate SIFs of notch bodies with displacement
interpolation functions. Bouhala et al. (Bouhala et al. 2013) developed crack-tip enrichment
functions with extended FEM (XFEM) to study SIFs for cracks terminating at interface of bi-
material; Pathak et al. (Pathak et al. 2011) combined element free Garlerkin method and XFEM
on crack interaction problems. Kaddouri et al. (Kaddouri et al. 2006) studied a practical case with
couple metal-ceramic on factors associated with perpendicular cracks to bi-material interface, such
as distance of crack-tip to the interface.

As for boundary element method (BEM) with Kelvin’s solution, the multi-region scheme is
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commonly used that interface of inhomogeneity and interface of bi-material require surface mesh
and continuity equations are built to formulate the boundary value problem (BVP) (Beer et al. 2008;
Liu et al. 2011). Fortunately, the continuity equations on interfaces of bi-material or multi-layered
material can be mathematically considered with the fundamental solutions. Walpole (Walpole 1996)
derived fundamental solutions to two-jointed dissimilar isotropic half-spaces through method of
images; Yue (Yue 1995) proposed Yue’s treatment, which is a generalized Kelvin’s solution to
multi-layered material; and other contributions in the literature can be found in review (Liu et al.
2011). Xiaoetal. (Xiaoetal. 2019) applied Yue’s treatment (Yue 2015) in BEM to investigate semi-
infinite transversely isotropic domain, especially for simulation of rocks. For a bi-material system,
Yue’s treatment can be reduced to explicit formulae, and Wu et al. (Wu et al. 2022) completed
Walpole’s solution and applied it for analysis of bi-material system. The above works, though,
save efforts in discretizing bi-material interface, when the number of inhomogeneity increases,
dimension scale varies or close to boundary, the multi-region scheme on inhomogeneity requires
both considerable computational resources and preparation process.

In our recent work (Yin et al. 2022a), the algorithm of inclusion-based boundary element method
(iBEM) is designed to handle drastically increase of DOFs in simulation of composites. Using
technique of fundamental solution, the material mismatch between inhomogeneity and matrix can
be simulated with eigenstrain field without mesh of subdomains. Compared with Eshelby’s uniform
eigenstrain assumption in (Eshelby 1957), eigenstrain is presented by Taylor series expansion at
the centroid of inhomogeneity (Mura 1987). The algorithm iBEM combines the BEM and EIM,
where the boundary effects and interactions between inhomogeneities are considered in BEM global
matrix and equivalent stress equations, respectively. Solving the system of linear equations, the
boundary responses and eigenstrain field can be obtained. The advantages of iBEM are: (i) for
each inhomogeneity, the number of DOFs is fixed, 6, 24, 60 for uniform, linear and quadratic order,
respectively; (ii) avoid any subdomain mesh, including bi-material interface and inhomogeneity
and potential numerical errors brought by them; (iii) the merit of BEM and fundamental solution

is retained that internal fields are expressed in boundary and domain integrals.
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This paper aims to perform elastic analysis of an inhomogeneity embedded a bi-material system
through the single-domain iBEM implemented with bi-material fundamental solution. In the
following, the problem of a bi-material system with an inhomogeneity is firstly proposed, and then
the fundamental solutions of bi-material, domain integrals over spherical inhomogeneity and global
matrix of iBEM are introduced. Subsequently, the aforementioned iBEM is verified with FEM for
a benchmark comparison. Applying the solution to a solar module containing a glass layer over
a concrete panel, when a microvoild is embedded in the substrate, the SIFs are investigated with

various distance to the bi-material interface. Finally, some conclusive remarks are discussed.

PROBLEM STATEMENT

Consider a domain 9 embedded with one subdomain €; is composed of two dissimilar
isotropic domain, where the upper phase D* and the lower phase D~ generally exhibits different
material properties C’ and C”, respectively. For instance, the stiffness tensor of D% is C’i’jmn =
A'6ij6mn + ' (Oim0 jn + 9ind jm), where A" and y” are lame constants of D*. The dimensions of the
bi-material system are defined in Fig.1 that, (i) 7} and 7, are thickness of D* and D, respectively;
(i1) / and b are length and width. Shown in Fig. 1, D is subjected to prescribed boundary conditions,
where #; and u; represents surface traction and displacement, respectively. Without the loss of any
generality, the bi-material interface S is chosen as parallel to plane x; — x; at x3 = 0. In the

following, two assumptions are made: (i) the embedded subdomain is filled with an isotropic

material and its stiffness tensor C lljmn, (i1) the bi-material and subdomain interfaces are perfect
without any debonding behavior, which satisfy the continuity equations on both displacement and

normal traction shown in Eq. (1).

ui(x) =ui(x7), oy (xX)n;(x7) = 0 (x)n; (x7) (1)

where “+" and ““-" represents the inward and outward side of the bi-material interface S or subdomain
interface, respectively; n is the unit surface normal vector. Subsequently, the BVP can be formulated

and it can be solved through the conventional multi-region scheme with interface mesh, which
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131 commonly demands high computational costs due to the singularity and discontinuity along the
132 interface. This paper proposes an alternative method in which the fundamental solution for a bi-
13 material infinite domain is directly applied to Eshelby’s equivalent inclusion method and boundary

134 integral method.

135 FORMULATION

13 Fundamental Solutions

137 Considering a two-jointed dissimilar half-spaces, the displacements at field point x can be
138 expressed through the superposition of Kelvin’s solution and image terms (Walpole 1996). The
139 Green’s function define the displacement response of any field point x caused by unit excitation at

140 source point X'. Given a unit concentrated force f;(x’) = n;0(x") (6(x’) is the Dirac delta function)

141 in the direction n, the displacement variation can be expressed as,
142 l/l,'(X,) = G’/ (X, X,)fj(X,) (2)
143 Due to the position of image terms, the fundamental solution differs whether source point X" and

1 field point x are in the same material phase.

2
4(1 —v¥)

—C'x3 [Qu j3+4(1=v")6 13 +2(1 = 2v")6130,¢ ; — Qux3d ;| X33

(61 )+ AYP6ij + x B (6136 jk — 6ix6j3)@),

1 - DyQIQJJ,ji - (G” + B}')QJE,yij

y "N —
Gl.j(x,x) = T
'7[/,lj Ay y y
(0ij¢ — 21— ") VW)) +AY¢6ij + xB* (636 jk — Gindj3)ar,
x§x3
- DY i - xx3F a, = (G” + B) Q1B
1a5 (3)
146
147 where the coeffcient y = 1, and superscripts w =" and y = u when x; > 0; and y = -1, w ="

1

'S

8 and y = [ when x} < 0; Q = (1,1, 1) is created for image terms through the interface S and the
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dummy index rule does not apply to capitalized ones; ¥ = |x — x’| is the Garlerkin distance vector

— 6,‘ i i . < . . . N .
and ¢ = ¢ 1. 477-;1 t - 167:(”1’ L Sy s the Kelvin’s solution of infinite space; (.) stands for image source

points, such that J =|x-xX|and X = (x’l,xé, —xg); A" — G" are material constants related to the

upper phase D7,

_ W w_ 2 (A =2~ ")
W+ (W + ") (W +p” (3= 4))
" w—=u” . 34
= 201 =v) (' + (B =4")u”)’ br== ¢
g 2 =27 - p7(1 - 2v))
(W +u" (B =4)(u + (3 -4"))
_ WA =2")@ -4) - (1 =23 - 4"))
(W +p"(3=4v)) (1" + @ (3 -4"))

Au

“4)

GM

Similarly, coefficients A’ — G! can be obtained by switching two material phases, i.e. A’ = %

The other components in fundamental solution are listed below,

" =In[xy —x3+y], @ =In[x;+x3+y]

B = (xs—x3)a" —y, B =(;+x)a -y
(5)

al = In[—x} +x3 + /], @ = In[—x} — x3 + /]

Bl=(=xs+x)al —y, B =(—x,-x3)@ -

The a functions are also known as Bousinesq’s displacement potentials, which are elaborated in
Section "Domain Integral". According to Eqgs.(2-4), when C’ = C”, the coefficients A — G vanishes
and the fundamental solution reduce to Kelvin’s solution; When one material phase exhibits zero

stiffness, the fundamental solution reduces to the Mindlin’s problem (Yin et al. 2022a).

One Inclusion in Two-jointed Dissimilar Half-spaces

Consider an infinite domain 9 composed of two-jointed dissimilar half-spaces, and one sub-
domain Q; is subjected to eigenstrain 8;."]. (x). Notice that although in Eshelby’s work (Eshelby
1957; Eshelby 1959) the eigenstrain is constant over the subdomain, the eigenstrain indeed can

vary spatially. Mura (Mura 1987) found that under interactions of inhomogeneities, the eigenstrain
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is not uniform anymore, and thus proposed to use the Taylor series expansion at the center of the

subdomain to approximate eigenstrain as Eq.(6),

10 I 11 I 1 12

Ic

k

£ and &2

where x 10*, 11

is centroid of €; subdomain; & are uniform, linear and quadratic
components of polynomial to approximate the eigenstrain. The disturbance displacement and
strain field caused by eigenstrain can be obtained through the technique of Green’s function as

follows:

8G '(X’ X/) * ’ ’ ’ * * *
u;(x) = /Q 278;(1(11 )Cimir(X) dV(X') = giriel)” + giklpsﬁp + giklpq8ﬁpq (7)
I m

_ Q.. 10« B I1% B 12+
gij(x) = Sl_]klskl + Suklpgk[p + Sljklpqgk[pq (8)

where gikipg... = sz Gijm jmkl(x;7 - x[[f)(x; - xé") dV (x’) is Eshelby’s tensor for displacement;

i it+g i . . . . .
Spq.iju = SMpe=lZ8Mpe-t g Eghelby’s tensor for strain; indices p,q mean that polynomial-

form terms are involved, i.e ¢, = (x], — xllf)z//. Notice that comparing with Kelvin’s solution,
Gijm = —Gijm does not hold for bi-material fundamental solution and the partial derivatives are

provided in Appendix I.

Domain Integrals of Fundamental Solution with Polynomial Terms

In Eq.(3), the fundamental solution is obtained through superposition of Kelvin’s solution
and image terms. As for Kelvin’s solution, let ® and ¥ denote domain integrals of ¢ and y,
respectively. In 1891, Dyson (Dyson 1891) derived the general form domain integrals of elliptical
shell with various density functions. Later Moschovidis and Mura (Moschovidis and Mura 1975)
summarized Dyson’s work and defined I and V functions to derive harmonic @, . and biharmonic
¥,,... potentials, which will not be repeated below.

In terms of the image parts, let ® and A denote the domain integrals of @ and S, respectively.

Walpole (Walpole 1997) firstly present ® and A based on its definition of Bousinesq’s displacement
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potential and Liu et al. (Liu et al. 2015) extended them up to quadratic order (®,,, A,,). However,
the authors only considered cases of xg > 0, thus in the following, we shall complete all cases of
domain integrals with more simplified definitions.

In Eq.(5), four types of @ and g functions are defined and the use of them is up to locations
of source and field points. Following definition of displacement potentials, the functions can be

rewritten as,

a —/ d(x1,x0,0)dt " / ¢(x1,x2,t) dt

®)
o = / d(x1,x0,0)dt @ = / &(x1,x2,1) dt

where, only finite part of Eq.(9) are considered since infinite constant vanishes during partial

differentiation. Similarly, S functions can be written as Eq.(9) with the same integral limits but

switch integral functions from ¢ or ¢ to « or @, respectively. Because both a and 3 functions are

defined through integrals along the third axis with respect to field point, one can interchange the

sequence of integral, taking ®” as an example,

0" = / a"dv(x') = / ¢dV(x')dt = / ®(x1,x0,1) dt
Q X3 Q X3
pdvV(x') = / / a"dv(x') dr = / 0" (x1,x2,1) dt
Qr X3 Qr X3

Notice that for the integral with respect to ¢ along the third axis does not include any integral

(10)

points inside the subdomain, hence, only the exterior branch of ® and ®” is retained. Following the
same fashion, other ®, A and their polynomial involved functions can be derived. In the following,
their integrals are provided as below. The superscript s represents 4 types of functions defined in
Eq.(9), which is up to locations of source and field points. ¢° = ¢, ¥* =  when xix3 > 0 and
¢* = ¢, ¥* =y when xix3 <0

Uniform Domain Integrals ©® and A

4na’ 4na’
0= & A= p (1)
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219

Linear Domain Integrals ©, and A,

o - 4rad |~®p P #3
P 15

¢* p=3

Quadratic Domain Integrals ©,, and A,

Ara®

P4~ 105 _a2¢,p

and

s 4ra’ 5
= — < _ s
Pa— 105 | T4 Y

2
a a/’s3 +76°

—a?a’ (a, + In[y*] ) + O pg [T + a’¢°y*]

—az(xp - x;f)y’sq + 0,478 - a’y’l p,q#3

dnad | =By P#3 (12)
15 o _3
p =
p.q*3
p#3,q=3 (13)
p=q= 3
p#3q=3 (14)

p=q= 3

where y* is argument of the logarithmic function (a*). When a* = ", we can obtain y* = x;—x3+y.

One Inhomogeneity in a Bounded Bi-material Domain

In the last subsection, the disturbance from polynomial-form eigenstrain can be obtained through

the explicit domain integral of fundamental solution over the spherical subdomain €2;. Combining

with the conventional BEM, the elastic field is superposition of boundary responses with BIEs and

disturbance of eigenstrain with Eq.(7) and Eq.(8), and the displacement of arbitrary field point x

within D can be expressed as,

u;(x) = —/ Tij (%, X )u;(x")dx’ +/ Gij(x,x)t;(x)dx’ +/
D! oDu Q;

NE NE
10 I1x
= - Z Hjju + Z Uijt; + giki€yy + &ikipEryy + 8ikipa€iipg

e=1 e=1

10

12+

6Gl‘j (X, X')

’
0x,,

(15)
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Cimkt (X' )(Grj1r+Gyj e

5 )nm (x’) are fundamental solution to displacement and

where G;; and T;; =
traction, respectively. With boundary surface mesh, the BIEs are expressed in a discretization form
(Beer et al. 2008) that H;; = fSe Ti(X,X')Ny, j (x') dS and U;; = fSe Upi(X,X')N,,j(X") dS; NE is
the number of elements; the superscript e represents nodal values of boundary displacements and
surface tractions in the e’ element. In Eq.(15), the interactions between subdomains and boundary
are involved to displacement of BEM. Since the continuity conditions of bi-material interface S
has been analytically considered in the fundamental solutions, one can solve the boundary response
similar to a homogeneous matrix.

Unlike inclusion problems with prescribed eigenstrain, when the Q' is filled with different
material C’, the eigenstrain is yet to be determined with equivalent stress conditions. Mura (Mura

1987) proposed the conditions for polynomial-form eigenstrain to simulate material mismatch,

w b ’ 105\ _ »I b ’
CiinEp+ey =& ) =Ceg +€4)
w b ’ I1x\ _ »I b ’
ikl Exim + Ektm — Ekim) = Cijt Exim + Eim) (16)
1 1
w b ’ 12 _ I b ’
N 2kl Exmn * €xtmn — 2€kimn) = 2'Cijkl(8kl,mn + &4 mn)

Because the inhomogeneity may be located in either the upper phase D™ or the lower phase D, in
Eq.(16), the superscript w =" when Q/ is located is located in DT and w =” when Q! is located is
located in D~ . el’.’j is strain contributed by BIEs of boundary response with Eq.(20) in Appendix
L; & ; is disturbed strain field expressed in Eq.(8). As indicated in Eq.(16), the interaction of
inhomogeneities are taken into account in equivalent stress conditions that one inhomogeneity can
disturb stress field of another inhomogeneity. Therefore, assembling the conventional BEM matrix,
collecting eigenstrain effects on boundary nodes and the stress equivalent equations, the iBEM

global system of linear equations will be shown in Eq. (19) of Appendix I.

Discussion and extension to ellipsoidal inhomogeneity

In this article, the above single-domain iBEM algorithm aims to save efforts in handling of trivial
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procedures for domain discretization of the inhomogeneities. As for the industrial applications,
Koenigsberger et al. (Konigsberger et al. 2020) proposed a novel scheme on combination of
Dvorak’s transformation field analysis and Eshelby’s method to investigate poro-elastic properties
of cement paste, where the ellipsoidal Eshelby’s tensor is introduced relating eigenstresses. In
(Buchner et al. 2021) demonstrated experimental investigation on the effective elastic and thermal
properties of clay bricks and various shapes of defects, i.e mesopores, quartz, are considered. Since
the algorithm is based on the bi-material Green’s function, and particularly the polynomial-form
Eshelby’s tensor used in equivalent stress conditions. Therefore, the limitations of the algorithm
is the same limitation in the domain integral of the Green’s function. Shown in Section “Domain
integrals of fundamental solution with polynomial terms", the components of spherical Eshelby’s
tensor are derived by interchanging the integral sequence. Following the same fashion, (i) the
domain integrals ®@ and ¥ over an ellipsoidal region can be found in (Dyson 1891) and (Moschovidis
and Mura 1975); (ii) the domain integrals ® and A can be derived by partial integration along the
third axis given integral limits. Notice that although Mura (Mura 1987) proposed the Taylor series
expansion of eigenstrain to handle interactions of ellipsoidal inhomogeneities, when the ratios
of axes of ellipsoid become too large / small, even quadratic eigenstrain terms may not provide
accurate solution due to large variations of eigenstrain.
NUMERICAL VERIFICATION

The aforementioned algorithm is implemented to software package of iBEM to predict local
fields of composites with prescribed boundary conditions. In order to validate the algorithm and
illustrate how solutions with 3 orders of polynomial eigenstrain performs, a numerical case study
with Robin’s boundary condition is set up. Eshelby’s solution of an inhomogeneity embedded in
infinite space provides insight of uniform eigenstrain distribution. Actually, for a two-jointed half-
spaces, if the inhomogeneity is far from the bi-material interface S, the image terms in fundamental
solution Eq.(3) and its domain integral vanishes rapidly, which provides minor effects on stress
disturbance. As a consequence, the elastic fields become similar to Eshelby’s solution of infinite

space. Therefore, the inhomogeneity will be placed close to the interface S to observe interfacial
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effects on elastic fields. For spherical inhomogeneities, the intensity of interaction is commonly
judged by the ratio d = h/a, where a is radius and % is distance from the centroid to interface.
Following the definition of Fig.1, the dimensions and boundary conditions are set as: (i) the width
b, length [ and two thickness 77, T are set as 1 m; (i1) the inhomogeneity with radius a = 0.1 m is
placed in D™, where the distances 4 to interface S are h = 1.1a,2a and 3a; (iii) shown in Fig.2,
the top surface of D™ is subjected uniform downward pressure 1 MPa; and the displacement of
bottom surface of 9~ is constrained; all other four surfaces are free of traction. The shear modulus
and Poisson’s ratio for two material are y’ = 0.4 MPa, v’ = 0.25 and y” = 0.8 MPa and v’ = 0.1,
respectively.

Shown in Fig.3(a) and Fig.3(b), the elastic fields u3 and o33 are compared with FEM with
different ratio of distance. Because the disturbance by the inhomogeneity vanishes rapidly, the
[-3,3]a around the inhomogeneity is considered. In simulation, 1000 quadrilateral boundary
elements are used in iBEM and 2, 189,461 tetrahedral elements are used in FEM. Regarding u3,
the curves agree well with FEM except minor discrepancy is observed in the second branch of
case h/a = 1.1. In terms of stress comparison, the main discrepancy between iBEM and FEM
exists at the interface between inhomogeneity €; and matrix, which can be interpreted as intensive
interfacial effects. Indicated in Fig.3(c), the stress concentration factors are compared in the vertical
hoop of sphere and the maximum oy changes with intensivity of interfacial effects, specifically, in
the case h/a = 1.1, the angle shifts near 14 degree. As the i/a increases, both stress concentration
and angle shift decreases, which will be elaborated in "Ratio of Distance". In Fig.3(d), the stress
o33 (h/a = 1.2) is compared along the center line among uniform, linear and quadratic series
expansion. It is observed that the assumption of uniform distribution (Eshelby’s solution) cannot
predict the variation of elastic fields. The linear terms improves the accuracy but exhibit obvious
discrepancy in the neighborhood of the inhomogeneity. Therefore, the introduction to quadratic
term is necessary in improvement of accuracy of solution. In the comparison among uniform, linear
and quadratic order terms, as shown in Fig. 3(d), the accuracy of predictions improves with the

increase of polynomial order. Such phenomenon indicates that due to the existence of interfacial
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effects, none of the numerical solution (uniform, linear and quadratic) is exact solution and so does
the FEM. Back to Fig. 3(c), except the curve i/a = 1.1, the other two cases h/a =2 and h/a = 3
agree well with FEM. When the interfacial effects dominate, much more disturbance is observed,
therefore, the disturbance also make the eigenstrain field more complex, which is the reason why
even quadratic eigenstrains cannot provide adequately accuracy as iBEM exhibits an angle lag.

When the distance ratio 4/a increases and interfacial effects decrease accordingly, the uniform
term gradually dominates the solution. In such case, only uniform term alone can provide accurate
results (Wu and Yin 2021). Although the iBEM algorithm has enabled three tailorable accuracy

options, in the following, quadratic term is applied to ensure reliable and accurate analysis.

CASE STUDY OF STRESS CONCENTRATION FACTORS

In the previous section, the iBEM algorithm has been validated with FEM with three cases of
different distance ratios in a bi-material system. In this section, the algorithm is further utilized to
investigate elastic fields and stress concentration factors of a specific industrial application with a
microvoid a = 2.5 X 10~°m in the sunslate. Because of the thin adhesive layer, the sunslate can be
considered as a bi-material system with / = b = 0.1 m of (i) glass (E’ = 72GPa, v/ = 0.2, T}) and
(ii) concrete panels (E” = 36GPa, v = 0.2, T;) (Yin et al. 2022b), as shown in Fig.1. The sunslate
is subjected to downward pressure and thermal loads, which can be decomposed of superposition
of free expansion and applied pressure for mismatch of thermal expansion coefficient (Yin and
Prieto-Mufioz 2013), as shown in Fig.2. Since the free expansion does not result in variation of
stress, this paper focus the second parts and the applied loads are set as IMPa, which can be easily

extended for other values of loads in linear elastic stage.

Ratio of Distance

The interfacial effects are judged through ratio of distance between the inhomogeneity and inter-
face S. In this subsection, 8 ratio of distances are considered as h/a = 1.1,1.2,1.4,1.6,1.8,2,2.5,3
and the microvoid is placed in lower and upper phase for overall 16 cases. In Fig.4(a) and Fig.4(b),
the stresses oy are plotted versus the vertical hoop angle 8 € [-90°,90°] when the microvoid is

located in upper and lower phase, respectively. Comparing the angle of maximum stress, when
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h/a increases and interfacial effects decrease, the angle gradually decreases accordingly. If i/a is
large enough, the contribution from image terms in fundamental solutions vanishes and angle of
maximum stress changes as zero, which is similar to a infinite space problem but with disturbed
elastic fields due to the existence of the other phase. Obviously, the material mismatch influence
the stress concentration as well. Indicated in Fig.4(a) and Fig.4(b), when microvoid is embedded
in D7, the change of distance ratio exhibits larger variation of both angle shifts and stress concen-
tration factor. In Fig.5(a), the angle shift in D* is over 3 times than that of D~, which explains
larger material mismatch amplify interfacial effects. Fig.4(c) shows the displacement u3 of 6 cases
of microvoid under uniform downward pressure 1 MPa on the vertical hoop. When the distance
between microvoid and bottom surface decreases, the displacement u3 decreases accordingly due
to constraint of bottom surface. When angle § = —90° and microvoid is embedded in D*, the
differences between case “h/a = 1.1 - Upper" and “h/a = 1.2 - Upper" is larger than other angles.
Such phenomenon is caused by interfacial effects associated with softer material concrete in D~
Similarly, when angle 6§ = 90° and microvoid is embedded in O™, opposite trend is observed.
Shown in Fig.4(d), under horizontal pressure, the distance ratio has minor effects on stress concen-
tration and angle shifts, which can be interpreted as the direction of load is perpendicular to x3.
Fig.5(b) exhibits the variation of stress concentration factor versus //a with two types of loads and
positions of microvoid. When //a increases, the stress concentration factors tends to be constant,

which is similar to Kelvin’s problem.

Ratio of Shear Moduli

This subsection aims to present how ratio of shear moduli influence the stress concentration
caused by the microvoid. Discussed in "Ratio of distance" section, besides the interfacial effects,
the material mismatch also contribute to stress concentration. To avoid such factors, the microvoid
is placed in the upper phase D* with distance ratio 4/a = 1.2 and the material properties of the
upper phase remain the same (E’ = 72GPa,v’ = 0.2). 9 ratios of shear moduli ﬁ% are considered as
0.05,0.1,0.2,0.5,1,2,5, 10 and 20. Shown in Fig.6(a) and Fig.6(b), the stress concentration factors

increases with u’/u” and angle of maximum hoop stress shifts to negative range. When u’/u”
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is small, the stiffer lower phase restrict the displacements and vice versa; consequently, as partial
derivatives of displacements, the stress concentration factor is smaller and angle of maximum stress
shifts to positive range. In Fig.6(c), when u’/u” = 1, the fundamental solution reduces to Kelvin’s
solution, the stress concentration factor under vertical load is close to 2. Fig.6(d) plots the angle of
maximum stress versus ratios of shear moduli and vertical load case has larger variations because
the loading direction is perpendicular to the interface S. The angles of maximum stress in two
curves are close to 5°, which is caused by non-uniformity of strain field around the microvoid (not

a far-field uniform strain).

Ratio of Thickness

This subsection aims to investigate thickness ratio effects on the stress concentration behavior
caused by the microvoid. Following the "Ratio of shear moduli", the microvoid is placed in D* with
distance ratio #/a = 1.2 and 6 ratios 1,2, 5, 10, 15 and 20 are selected. Fig.7(a) plots the vertical
hoop stress with hoop angle. It is noticed that when 77 /7> < 10 and the ratio increases, the negative
stress concentration factor decreases and positive stress concentration factor increases obviously.
However, from case 15 and case 20, the trend reverses that case 20 has similar stress distribution as
case 5; case 15 exists between case 10 and 5. Such phenomenon is caused by the elastic behavior of
thin panels or plates. When the thickness ratio 77 /7, < 10, under horizontal pressure, the primary
forces for D* are bending and shear; as thickness ratio exceeds 10, the lateral shearing deformation
become neglecting, which explains the maximum negative stress concentration increases due to
elastic behavior change. Fig.7(b) indicates the trend of stress concentration factor discussed above.
Under horizontal pressure, the horizontal hoop stress has similar trends as the other two curves.
Notice that, unlike distance ratio and shear moduli ratio, the thickness ratio seldom change the
angle of maximum negative/positive hoop stress. Because the angle shifts of maximum hoop stress
is generally considered as interfacial effects, the smaller distance ratio, larger material mismatch
and shear moduli ratio can augment such effects. However, the change of stress distribution with

thickness ratios is mainly caused by the elastic behavior of the bi-material system itself.
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CONCLUSIONS

The algorithm of the single domain inclusion-based boundary element method has been applied
to investigate the elastic fields of bi-material system embedded with one microvoid. The algorithm
has been verified by FEM with case study of void embedded in a two-cuboid bi-material system
with different distance ratios. Along with the numerical verification, the iBEM with uniform, linear
and quadratic terms are compared with FEM and provide tailorable accuracy upon readers’ needs.
Thanks to the fundamental solution of bi-material, and explicit domain integrals, the conventional
boundary value problem with interface and subdomain can be solved similarly to a homogeneous
solid. In this paper, the algorithm has been applied to study the stress concentration issues arisen
in a Sunslate and parametric studies are conducted on effects brought by distance ratio, shear
modulus ratio and thickness ratio and loading conditions. The algorithm is particularly suitable for
understanding, designing and conducting virtual experiments on a thin-film system with potential

defects.
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APPENDIX L.

Method of images in Walpole’s solution and its modified form

This appendix subsection aims to provide details and discussion of fundamental solution by
Walpole (Walpole 1996). For a perfect bounded bi-material interface, the continuity conditions in
Eq. (1) on displacements and tractions need to be satisfied. The method of images is a typical
mathematical tool to solve partial differential equations that a mirror image source is artificially
created to handle the continuity conditions of the interface without extending the domain of function.
Haberman (Haberman 2021) illustrated the method through semi-infinite solution to Poisson’s
equation in Chapter 9.5.8 and transient heat transfer in Chapter 11.5.3. Walpole (Walpole 1996)
wrote the fundamental solution (displacement) in terms of two branches, which are determined by
positions of field and source points. Subsequently, similar to Boussinesq’s solution and Mindlin’s
problem, the potential functions are assumed as partial integration with respect to the third axis,
where part of Kelvin’s solution and nuclei of strain are applied. According to the continuity
conditions, the coefficients associated with material constants can be determined.
The original form of bi-material elastic fundamental solution can be applied to investigated induced
elastic fields caused by loads at any arbitrary interior point. However, its application to Eshelby’s
problem is not complicated and trivial as Eshelby’s tensor leads domain integrals with the free
source terms, i.e x7. Itis possible to represent the free source terms with Garlekin’s distance vector,
for example, the domain integral of x;¢ can altered as /Q (x5 = x3) + x3¢dx" = =¥ 3 + x3®, which

simplifies the domain integral expressions.

Partial Derivatives of Domain Integrals

It is noted that with image terms, partial differentiation process changes accordingly, say

a’, = —Qa", we provide the first order derivative of fundamental solution to obtain Eshelby’s

tensor for displacement with quadratic order polynomial,

18 Wu, June 2, 2023



421

422

423

424

425

426

427

(1) When xx3 > 0,

drp® ‘/Q(x;, = x,) (xg = xg)Gijmr dV(X')
Woq.ijm y = y = =
= (=0ijPpgm + m) —0pPQ0 A" 6i;OMPpgm — XB'Om (630, iy — 6130,4 im)

- CyX3QM[ — Q¥ pgijzm — 41 =V")6 ;3@ g im — 2(1 = 2v)6:30 1D g im + X301 pg ijm

+0Q,0m [DCQﬁpq,zjm +(G7 + BY)K;q,,-jm]}

(17)
(2) When xx3 < 0,
dru® /Q(x;7 = x,) (xg = xg)Gijmr AV(X')
k4 ijm
= (=01 @ pgm + Tom) = A6, @pg i — ¥ B (0530, = 5,300 ) (18)

4(1 —v")

+ ququ,ijm + )(X3Fy®;

gijm + (G”+ By)QIA;

q.ijm

For other higher order derivatives to obtain Eshelby’s tensor for strain is straightforward because

the partial differentiation is with respect to x, not x;,.

Global Matrix of iBEM
H+H ... —g" gl -g¥ . u U
ACTHY .. ACIST  ACISY ACIs? | e -AClyM
- i
ACTHY ... AC!SOT  ACISY™  ACTS?T | |t —ACTUM| i
ACIH3 .. ACISY ACISV” ACIs?” | | ~AC'U3
(3+NN+s+NI)x(3+NN+s+N1) " (3+NN+s+NI)  (3+NN+s«NI)x(3xNN)

(19)
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where s is determined order of polynomial by users, as 6, 24, 60 for uniform, linear and quadratic;
H is a diagonal matrix applied in conventional BEM to eliminate strong singularities with method
of rigid body motion for static problems; H and U are coefficients calculated by discretized BIE in
Eq.(15); g and S are Eshelby’s tensor for displacement and strain (with uniform, linear and quadratic
order), respectively; H'/, H*, H3 and U, U?!, U are coefficients calculated by discretized BIE
in Eq.(20) below for strain, first order partial derivative of strain and second order partial derivatives

of strain, respectively. They are used in equivalent stress conditions as Eq.(16).

1 , , ’
U =5 / (Hit; (%,X) + Hjt i (%, X)) Nyuie(X') dS
Se
: 20)
HY = 2 /S (Tik,j (%, X") + T i (X, X)) Nyie (') dS

Similarly, other higher order partial derivatives can be obtained, i.e, Ulzjlm o = % fS (Hi, jnr (x,X") +

ij,inr (X’ X/))Nmk (X/) ds.
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APPENDIX Il. COMPUTATIONAL TESTS BETWEEN IBEM AND FEM

This appendix section aims to provide details in computational efficiency and accuracy compar-
ison between the proposed iBEM programmed by authors and FEM using a commercial software
ANSYS. Regarding the accuracy and convergence, two aspects are discussed, (a) a convergence
analysis of FEM through refinement of elements around the inhomogeneity; and (b) an error analy-
sis concerning the differences between iBEM and FEM (convergent results). As for the efficiency,
three main aspects are considered, (i) preparation stage, such as generation of geometric specifica-
tion ,surface (iBEM) / volume (FEM) domain discretization; (ii) construction and solving process,
such as computation of global matrix and solution time; and (iii)a comparison occupancy test of
CPU and RAM in two methods.

Without the loss of any generality, this section follows "Numerical Verification" that all material
properties are retained and the ratio of distance 2/a = 1.5, where the inhomogeneity with radius
a = 0.1 mis located in the lower phase D~. For BEM surface mesh, 4-node bi-linear quadrilateral
elements with 4 Gauss integral points are used with adaptive subdivision integration scheme
following (Eberwien et al. 2005). Regarding FEM volume mesh, 10-node quadratic tetrahedral

elements are used due to expected larger variation of displacements.

Accuracy test

Shown as Fig. 8, in order to use fewer elements, the neighbor box (dimension 0.4 X 0.4 X 0.3 m)
with the spherical inhomogeneity and the rest region of the matrix are treated with two mesh sizes.
Four internal size steps are selected as 0.04,0.015, 0.008 and 0.006 m, while the uniform external
mesh size 1s 0.04 m. When the internal mesh size decreases, the number of elements increase
accordingly as 41,4906, 50,9469, 114,7928 and 232,6729. Indicated in Fig. 9(a), the stress
concentration factor ogg/ o’% gradually converges as the differences between size steps decrease.
Particularly, size step 0.006 and 0.008 exhibit very minor discrepancies, and the two curves also
agree well with results in iBEM. Considering the larger differences in Fig. 3(c), when the distance

ratio h/a increase, the variation in eigenstrain decreases accordingly, which can provide good
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predictions. Fig. 9(b) indicates the errors between iBEM and two FEM curves, although there are
some differences, considering the maximum stress concentration factor is 1.94, the errors between

two methods are acceptable.

Efficiency test

Shown as Table. 1, FEM and iBEM-quadratic used 2 and 8 cores, respectively. We keep
the default setting of ANSYS, which limits participation of more cores, so that the solving time
will be shorter. Since the solving process contains calculation, assignment of coefficients and
matrix decomposition, the solution time is not linearly proportional to number of cores, because
assignment of coeflicients is partially a single-thread process. Although Table. 1 indicates iBEM
package occupies all cores of the CPU, it uses “Eigen" library, where the process decomposition
of matrix is not fully multi-core. The iBEM-quadratic exhibit apparent advantages on RAM usage
over FEM, because the degree of freedom is a constant as 3,060. Regarding the mesh process,
iIBEM only require the surface mesh, which avoids trivial process on the inhomogeneity and its
neighbor region as shown in Fig. 8 (d). In addition, FEM require specification of models, such
as importing from AutoCAD or creating in its own geometry editors, which requires more efforts.
Considering all above factors, iBEM would be an efficient and computational resource friendly

scheme.
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TABLE 1. Comparison of efficiency among iBEM with quadratic terms and FEM with four

internal size steps

CPU Usage (cores) RAM Usage (Gb)

Mesh time (s)

Solving time (s)

FEM-0.04 2 2.22 17 48
FEM-0.015 2 3.51 27 58
FEM-0.008 2 7.65 39 133
FEM-0.006 2 12.60 72 326
iBEM-quadratic 8 0.58 5 10.2
CPU: 17-9700K (8 cores) = RAM: 2933mHz
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Fig. 2. Downward pressure and horizontal pressure loading cases and vertical/horizontal for stress
comparison

32 Wu, June 2, 2023



T T T T T T T T T 0.2 T T T T T T T T T
-2.0x10° A .
\‘\\« 0.0 » . ﬂs ..\ i
\\” -0.2- i Yo .
-4.0x10° . 4 4 )
= ° ; : \
8-0.44 ¢ : % = 4
E 8 i vl
- 5.0x10° - B 8 i A ¥ A
0.6 il o .
4 v e
-6.0x10° iBEM hia = 1.1 . S 7 PO
« FEMha=1.1 084 s 7 —BEMMa=11]% Y ]
iBEM h/a =2 : r “,,-‘ o FEMWa=11) % %
-7.0x10°4 | v+ FEMh/a=2 4 o = ;i;Mh?a/a:zz Y \"
iBEM h/a=3 1.04 t-e- IBEMh/a=3 g
< FEMha=3 ’ < FEMha=3
-8.0x107 +— T T T T T T T T T T T T T T T T T
6 5 4 3 2 4 0 1 2 6 5 4 3 2 A 0 1 2
Xz/a Xz/a
(a) (b)
1.0 17— T T T T T T T T T T 0.2 T T T T T T T
0.5 E 0.0 A E
0.0 4 . 0.2 .
Om Om
S -0.5 e kg -0.4 - e
L L
& &
-1.0 . 0.6 .
——iBEM h/a=1.1 \
15| ¢ FEMha=11 K 4 -0.84 —— FEM 4
—— BEM hia =2 \ r e iBEM Uniform
| 7 Eeiha =g % - -+ - iBEM Linear
204! . Femha=3 . 1.0 4 ——iBEM Quadratic .
—— T T T T T T T T T T T T T T
100 -80 60 -40 -20 O 20 40 60 80 100 5 -4 3 -2 -1 0 1 2
0 Xz/a

(0) (@)

Fig. 3. Variation and comparison with FEM of elastic fields disturbed by void versus distance ratio
h/a (a) usz, (b) ratio of normal stress 033/ 0'% along the center line; (c) stress concentration factor

along the vertical hoop [-90,90]°; (d) comparison of uniform, linear and quadratic polynomial
eigenstrain expansion along the center line

33 Wu, June 2, 2023



—

0.0

-0.5

154

-2.04

-1.2x107

1.2x107 -

1.2x107 4

-1.2x107 4

-1.3x107 -

-1.3x107 o

T T T T T
—=—h/a=1.1- Lower
——hl/a=2- Lower
——hla =3 - Lower
—v—h/a=1.1- Upper
—+—hla=2- Upper
—<— h/a =3 - Upper

-1.3x107

(c)

0
Oo/O33

0
Ce/O1q

0.2

T T T T T T T T T T T
0.04 21
-0.2 4 =
-044 4
-0.6 B
-0.8 4
-1.04 w
-1.2 .
1.4 1
——h/a=1.1
169 - -ha=14 1
184 —— hla=2 i
-2.0 +— T T T T T T T T T T
-100 -80 -60 -40 -20 O 20 40 60 80 100
o
0.4+ T T T T T T T T T T
0.24 g
0.0 g
-0.2 s
-0.4 4
-0.6 q -
/ ——h/a=1.1- Lower \\
0.8+ / - - —hla=2- Lower X 1
ya -----h/a=3- Lower \
-1.0 4 . h/a=1.1- Upper L &
o ------h/a =2 - Upper e
1.2 [~ h/a=3- Upper | .
T T T T T T T T T T T
-100 -80 -60 -40 -20 O 20 40 60 80 100

(@)

Fig. 4. Variation of elastic fields disturbed by the microvid versus 8 distance ratios, (a) vertical
hoop stress oy and Q; € D* (b) vertical hoop stress oy and Q; € D~ (¢) displacement u3 under
uniform downward pressure 1 MPa; (d) vertical hoop stress oy under two horizontal pressure 1
MPa

34

Wu, June 2, 2023



T
0 - |—— Lower Phase
—— Upper Phase

1.8 o
1.6 4 |~ Downward - Lower| -
—— Downward - Upper,
Horizontal - Lower
1.4 4 |—— Horizontal - Upper 7
1.24 7
1.0 7
0.8 4 7
0.6 7
T T T T T
1.0 15 2.0 25 3.0
h/a

Fig. 5. Variation of stress concentration versus 8 distance ratios, (a) angle shifts under uniform
downward pressure 1 MPa and (b) stress concentration factors under uniform downward / horizontal

pressure 1MPa

35

Wu, June 2, 2023



0
Goo/C

o
(a)
T T T
3.5 -{ |—=—Horizontal load
—— Vertical load
3.0
254
o 2.0
(]
2
8
© 15
1.0
0.5
0.04
T T T
0 5 10
w/p
(©

— T
0.5
0.0
-0.54
o
)
L
&
1.0
‘,’// — u/u"=01
1.5 e —— W"=0.2
/N w'=1
’ =5
i
2.0 - - — w'=10

T T
40 60 80 100

o
10 . . . ——
—=— Horizontal load|
—— Vertical load
0 i
-10 4 4
‘©
-20 4
-30 ol
-40 T T T T T
0 5 10 15 20
W

Fig. 6. Variation of elastic fields disturbed by microvoid versus ratios of shear moduli u’/u”,
(a) vertical hoop stress ogg under uniform downward pressure; (b) vertical hoop stress oyg under
horizontal pressure; (c¢) stress concentration factor;(d) angle shifts of maximum hoop stress of two

loading cases

36

Wu, June 2, 2023



T T T T T T T T T T T T T T T T
044 T 1.4+ —— Vertical Hoop Positive | 1
024 —— Vertical Hoop Negative
124 —— Horizontal Hoop
0.04
-0.2 1.0 B
0.4
% % 0.8+ .
- -0.6 4 \g
6 5
0.8 061 1
1.0 0.4 .
-1.2
0.24 o
1.4
-1.6 0.0 T T T T T
0 5 10 15 20
0 T4/T,
(a) (b)

Fig. 7. Variation of elastic fields disturbed by microvoid under horizontal pressure versus thickness
ratio 71 /T>, (a) vertical hoop stress gyy; (b) stress concentration factor

37 Wu, June 2, 2023



(@) (b)
(c) (d)

Fig. 8. Comparison of FEM volume discretization of four internal size steps, (a) 0.04, (b) 0.015,
(c) 0.008 and (d) 0.006 m
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