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Abstract

The three dimensional fundamental solution of bi-materials is introduced to the boundary ele-

ment method (BEM) for elastic analysis of a bi-material system instead of solving a multi-domain

problem. Using the explicit form of the Green’s function for bi-materials, the boundary integral

equations (BIE) are set up for a finite bi-layered material system with a plane interface. The

Green’s function for a bi-material system combines the Kelvin’s solution and disturbed fields by

image source. Because it exactly satisfies the jointed continuity conditions at the interface (x3 = 0),

no internal mesh is required along the interface and a single domain BEM can be established. The

potential numerical errors of the multi-domain BEM using the Kelvin’s solution due to the mesh

quality at the interface can be avoided. This single domain BEM for bi-material saves the effort of

domain discretization, predicts the singularity on the interface analytically, and enables an efficient,

straightforward analysis similar to the homogeneous solids. It is particularly suitable to simulate

thin film/substrate systems, overlay/base structures, and other similar layered materials. The nu-

merical simulations verify the effectiveness and convergence of the method, and the case studies of

wind turbine blades and solar panels demonstrate the industrial applications of this method.

Keywords: Boundary element method, Green’s function, Bi-layered material systems, Interfacial

stress, Elastic analysis

1. Introduction

For an infinite domain containing two jointed dissimilar half-spaces of homogeneous isotropic

materials, the elastic field caused by a point force can be determined by the Green’s function. In
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literature, Michell [1], Love [2] among others [3] have derived the elastic solution in two jointed

half-spaces with different interface conditions, such as complete weld or direct stresses transmission

and their approach is to utilize the corresponding harmonic potentials. Mindlin [4] proposed the

fundamental solution of elastic field of a semi-infinite domain under a concentrated force, namely

the Mindlin’s solution, which was further derived to a concise form of the Galerkin vector stress

functions [5]. Rongved [6, 7] extended the solution to the semi-infinite domain with fixed boundary

condition. Kuo and Mura [8] and others [9, 10] investigated problems of dislocation or disinclination

loops. For pure dilation (caused by the nuclei of strain), Mindlin and Cheng [11] and Sen [12]

considered the thermal-elastic stresses, which were known as hydrostatic inclusions.

The solution has been extended to bi-materials by Yu and Sanday [13], Yu et al. [14], Tinti

and Armigliato [15] and Singh et al. [16]. By generalizing Collin’s work [17], Walpole [18] proposed

an explicit solution of two jointed isotropic half-spaces through the method of images, which can

be reduced to Lorentz’s, Mindlin’s and Stokes flow problems [19, 20] by adjusting the material

properties [21]. In addition to the investigation of isotropic materials, pioneers devoted efforts to

derive closed-form solutions to transversely isotropic media with horizontal or inclined planes of

isotropy [22], which is generally applied to geomechanics. Divided by the various loading types,

Pan and Chou [23] and others [24–28] solved cases of concentrated point loads; Wang and Liao [29]

and others [30–33] considered load distribution patterns of ring, rectangle, etc. Furthermore, Yue

formulated the fundamental singular solution to multi-layered media [34–36] in an integral form,

which has been named as Yue’s treatment.

Although the closed-form fundamental solutions have been investigated for various types of

problems, such as a half-space with different boundary conditions on the surface and two fully

bonded semi-spaces, those solutions are often obtained under the assumption of an unbounded

space. For finite domain problems, however, numerical methods, such as finite element method

(FEM), BEM and their extensions, have been commonly used. As a domain discretzation method,

the simulation of bi-material with FEM generally requires assigning different material properties to

elements in two material phases, and a large number of elements are needed due to the singularity

and discontinuity caused by the material mismatch. Several studies focused on the stress intensity

factors (SIFs) at crack-tip or interfacial inhomogeneities. Among them, Oyadiji’s group [37, 38]

proposed the fractal-like FEM (FFEM) to analyze the SIFs of V-notch and notch bodies, which

employs the displacement fields as global interpolation functions. Pathak et al. [39] and Bouhala

et al. [40] used extended FEM (XFEM) for crack-tip at the interface of bi-material. Kaddouri et
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al. [41] investigated several factors related to the crack deflection, such as elastic moduli of two

materials, thickness of the bi-material, etc.

BEM can be a good alternative to FEM as it can calculate local fields by boundary integrals.

However, for a bi-material system, the multi-region BEM has been commonly used [42, 43] with

Kelvin’s solution, and the interface of two material phases shall be discretized with a refined mesh

due to the effect of singularity. In literature, Cheng et al. [44] and Gu and Zhao [45] extends the

multi-region BEM to investigate stress singularities at V-notch and crack-tips, respectively. Several

researchers proposed to use the infinite element techniques to simulate far-field effects of the half-

space [43, 46, 47]. Ai et al. [48, 49] analyzed the piles in multi-layered soils with ALEM. Such

discretization technique, however, will surely influence the accuracy and efficiency of the solutions,

because more elements and equations are involved in the system. To address the above issue, the

authors [22, 50] utilizes Yue’s treatment to simulate bi-material with inclined planes of isotropy and

multi-layer half-space problems, respectively. Yue’s treatment enables numerical simulation by a

single-region, which saves efforts of interface mesh [35, 36] and is applicable to multi-layered solids,

and it can also be simplified for bi-material (two-layered material) as well. However, compared with

Walpole’s solution [18], it does not have an explicit form and is complicated to be implemented.

Yuuki et al. [51] applied the Hentenyi’s fundamental solution and developed a single domain

BEM for two-dimensional (2D) bi-material problems with vertical straight interface. Subsequently,

Lou and Zhang [52] extended the algorithm for two-dimensional elastoplastic bi-material problems

and investigated stress fields of elliptic hole under simple tension. However, their work were limited

to 2D problems, which could be caused by the unavailability of the explicit form of the Green’s

function for 3D bi-materials at the time. With the recent work from Walpole [18] and our group

[20], this paper extends the work to 3D for wide applications among the research and engineering

community.

This paper aims to perform elastic analysis of a bi-material system composed of two jointed

dissimilar isotropic phases with a single domain BEM implemented with Walpole’s fundamental

solution [18]. In Section 2, the bi-material problem is described with certain boundary conditions.

Without the loss of any generality, the interface plane S is selected at x3 = 0; for cases with inclined

interface plane, the elastic stress analysis can be completed by coordinate transformation while

keeping the Green’s function same. In Section 3, the BEM with Walpole’s solution is formulated.

Because Walpole only considered the case when source points exist in the upper phase x′3 ≥ 0,

the solution can be completed through method of images [18, 21] by switching the field and source
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points. Alternatively, the method of symmetry is applied and the derivatives of Green’s function

are provided in Appendix A. Subsequently, numerical results of panels with tractions are compared

with FEM outputs to validate the BEM model in Section 4. In Section 5, the model is employed

to analyze some popular industrial applications, such as wind turbine blades and solar panels. In

Section 6, a parametric study is conducted on effects of thickness ratio and shear modulus of the

two phases.

2. Problem Statement

Consider domain D composed of two material phases, where the upper phase D+ and the

lower phase D− exhibit homogeneous isotropic elastic behaviors as C′ and C′′, respectively, in

Fig. 1. In the following, μ and ν stand for shear moduli and Poisson’s ratio, respectively, and

C′
ijkl =

2μ′ν′
1−2ν′ δijδkl+μ′(δikδjl+δilδjk), and similarly to C′′. The domain D is subjected to prescribed

boundary conditions shown in Fig. 1, where t and u represent stress and displacement loads applied

on the boundary, respectively. Without the loss of any generality, the interface surface S is set

parallel to x1 − x2 plane with x3 ≡ 0; for cases with inclined or shifted interface S, coordinate

transformation can be utilized without changing the Green’s function. Following Walpole’s work

[18], the interface S is assumed to be perfectly connected without any possibility of debonding so

that the continuity equations must be satisfied as follows:

Figure 1: Schematic illustration of domain D composed of two dissimilar isotropic material phases with prescribed
boundary conditions and the continuous interface

u+i (x) = u−i (x) onS

σ+
ij(x)n

+
j = σ−

ij(x)n
−
j onS

(1)
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where superscripts “+” and “-” represent the upper and lower sides of the interface S; n± =

(0, 0,∓1) is the normal vector of interface S for the two cases. Hence, the boundary value problem

is formulated on the prescribed boundary conditions and interfacial continuity equations, and can

be solved with multi-region scheme [43] by discretizing both the interface S and the boundary,

which typically requires a very fine mesh to obtain convergent solution due to the stress singularity

along the interface. In most cases, the elastic stiffness tensors (C′ and C′′) are finite and non-zero.

However, the Green’s function for half-spaces can be obtained through adjusting the stiffness tensors

for the Green’s function of a bi-material domain. For the bi-material system in Fig. 1, its Green’s

function takes into account of the interface effect analytically, so no mesh is needed. The boundary

effects of a bi-material system can be evaluated by the boundary integral of a bi-material system,

so that a single-domain BEM for a finite bi-material system can be developed and demonstrated.

3. Formulation of boundary element method

3.1. Fundamental solution for a bi-material infinite domain

Considering an infinite space composed of two dissimilar isotropic half-spaces, the fundamental

solution to the displacement field can be derived through superposition of Kelvin’s solution and

image solution. Walpole [18] provided the explicit fundamental solution when the source point x′ is

located in the upper phase as Eq.(2) and Eq.(3) in terms of the positions of field point x as follows,

(1) When x3 > 0 and x′3 > 0

4πμ′Gu
ij(x,x

′) = GKu
ij (x,x′) +Auφδij +Bu(δi3δjk − δikδj3)α

u
,k

− Cux3
[
QJψ,ij3 + 4(1− ν ′)δj3φ,i + 2(1− 2ν ′)δi3QJφ,j −QJx3φ,ij

]

−DuQIQJψ,ji − (Gu +Bu)QJβ
u
,ij

(2)

(2) When x3 < 0 and x′3 > 0

4πμ′Gu
ij(x,x

′) = GKu
ij (x,x′) +Auφδij +Bu(δi3δjk − δikδj3)α

u
,k

−Duψu,ij − x3F
uαu,ij − (Gu +Bu)QIβ

u
,ji

(3)

where, GKu
ij (x,x′) = δijφ− ψ,ij

4(1−ν′) is the Kelvin’s solution multiplied by 4πμ′; ψ = |x−x′| is the norm
of Galerkin vector and φ = 1

ψ ; Q = (1, 1,−1) is created for image source with respect to interface

S and dummy index merely works for lower case letter following Mura’s index notation [53]; the

superscript u stands for cases when source point x′ is located in the upper phase; Au, Bu, Cu, Du, F u
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and Gu are coefficients associated with elastic constants of two material as shown in Eq.(4) with

the source in the upper phase,

Au =
μ′ − μ′′

μ′ + μ′′ , Bu =
2μ′(1− 2ν ′)(μ′ − μ′′)

(μ′ + μ′′)(μ′ + μ′′(3− 4ν ′))

Cu =
μ′ − μ′′

2(1− ν ′)(μ′ + (3− 4ν ′)μ′′)
, Du =

3− 4ν ′

2
C

F u =
2μ′(μ′(1− 2ν ′′)− μ′′(1− 2ν ′))

(μ′ + μ′′(3− 4ν ′))(μ′′ + μ′(3− 4ν ′′))

Gu =
μ′(μ′′(1− 2ν ′′)(3− 4ν ′)− μ′(1− 2ν ′)(3− 4ν ′′))

(μ′ + μ′′(3− 4ν ′))(μ′′ + μ′(3− 4ν ′′))

(4)

Other components are exhibited in Eq.(5) with ¯(∗) standing for image sources,

αu = ln[x′3 − x3 + ψ], αu = ln[x′3 + x3 + ψ]

βu = (x′3 − x3)α
u − ψ, β

u
= (x′3 + x3)α

u − ψ
(5)

where α and β can be interpreted as definite integral along the third axis of φ and α within the

range [x3,∞], respectively, which are also known as Bousinesq’s potential functions. To derive the

fundamental solutions with source point located in the lower phase, one can follow [18] and [21]

but switch the coordinates and material phases. Alternatively, given Eqs.(2) and (3), the method

of symmetry can serve as a straightforward tool.

The fundamental solution satisfies the reciprocal properties shown in Eq. (6). Obviously, when

the source point is located in the lower phase, the fundamental solution must keep the same form

as Eqs.(2) and (3), however, some signs and terms need to be changed accordingly.

Gij(x,x
′) = Gij(x

′,x) i �= 3 or j �= 3, Gij(x,x
′) = Gji(x,x

′), otherwise (6)

Now, consider two pairs of field and source points, (i) x and x′ ;(ii) xp and xp′, where xp = −x

and xp′ = −x′. In (i) and (ii), the material phases switch. Due to the reciprocal and symmetric

mechanical properties, two fundamental solutions satisfy Eq. (7).

Gu
ij(x,x

′, C′, C′′) = Gl
ij(xp,xp

′, C′′, C′) (7)

where the superscripts u and l represent the cases of the source point located at the upper and

lower phases. When switching two phases of materials, the material coefficients change in Eq.(4)
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that Al and Au are equivalent in this case. Because the fundamental solutions are in the same

form, some components and signs change with negative sign accordingly, and the explicit form of

Gl
ij(x,x

′) is shown as follows:

(3) when x3 > 0 and x′3 < 0

4πμ′′Gl
ij(x,x

′) = GKl
ij (x,x

′) +Alφδij −Bl(δi3δjk − δj3δik)α
l
,k

−Dlψ,ij + x3Fαl,ij − (Gl +Bl)QIβ
l
,ji

(8)

(4) when x3 < 0 and x′3 < 0

4πμ′′G1
ij(x,x

′) = GKl
ij (x,x

′) +Alφδij −Bl(δi3δjk − δikδj3)α
l
,k

− C lx3
[
QJψ,ij3 + 4(1− ν ′′)δj3φ,i + 2(1− 2ν ′′)δi3QJφ,j −QJx3φ,ij

]

−DlQIQJψ,ji − (Gl +Bl)QJβ
l
,ij

(9)

where GKl
ij (x,x

′) = δijφ− ψ,ij

4(1−ν′′) ; the coefficients Al −Gl can be obtained through switching the

stiffness tensors in Eq.(4), for example, Al = μ′′−μ′
μ′′+μ′ . When C′ = C′′, all the coefficients (A − G)

become zero, hence, the fundamental solutions reduce to the Kelvin’s solution for a homogeneous

infinite domain with a point source. In addition, through adjusting the stiffness tensor of the upper

or lower phase, the fundamental solution can be modified to several semi-infinite solutions, i.e the

Mindlin’s and Lorentz’s problem [20]. αl, βl and their images are provided in Eq.(10),

αl = ln[−x′3 + x3 + ψ], αl = ln[−x′3 − x3 + ψ]

βl = (−x′3 + x3)α
l − ψ, β

l
= (−x′3 − x3)α

l − ψ
(10)

Comparing Eq.(5) with Eq.(10), the α and β functions are similar and their partial derivatives

satisfy αu,i = −αl,i, α
u
,ij = αl,ij , and so does β.

3.2. Boundary integral equations

Consider the domain D shown in Fig.1 composed of two dissimilar isotropic subdomains D+ and

D− and D is subjected to prescribed boundary conditions of displacement u and surface traction

t. Given an arbitrary field point x within D, using the Green’s second identity and fundamental

solution, the elastic fields can be obtained through the boundary integral equations (BIE) of Eq.(11),

ui(x) = −
ˆ
∂Dt

Tij(x,x
′)uj(x′)dx′ +

ˆ
∂Du

Gij(x,x
′)tj(x′)dx′ (11)
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where Gij(x,x
′) is the fundamental solution of the displacement field in ith direction with a unit

concentrated force in the jth direction shown in Eqs.(2),(3), (8), and (9) for the 4 cases of the

positions of field and source points x and x′ in the bi-material; Tij(x,x
′) is the fundamental

solution of the traction in the ith direction caused by a unit concentrated force in the jth direction.

Tij(x,x
′) can be expressed in terms of Gij(x,x

′) as follows,

Tij(x,x
′) =

Cimkl(x′)(Gkj,l′ +Glj,k′)

2
nm(x

′) (12)

Notice that one should use the stiffness tensor of source point, and the partial derivative is with

respect to x′, which are provided in Appendix A. To numerically solve the boundary value problem,

one can discretize the boundary with elements and employ shape functions. Therefore, the BIE in

Eq.(11) can be expressed in the discretized form [43]:

ui(x) = −
NE∑
e=1

Hiju
e
j +

NE∑
e=1

Uijt
e
j (13)

where Hij =
´
Se

Tmi(x,x
′)Nmj(x

′) dS and Uij =
´
Se

Umi(x,x
′)Nmj(x

′) dS; NE is the number of

elements; the superscript e represents nodal values of boundary displacements and surface tractions

in the eth element. After the discretized BIE is assembled into a global linear equation system, the

boundary value problem can be solved numerically. Since the fundamental solution analytically

consider the effect of interface S, it can solve bi-material system as a single domain, which is similar

to solve a homogeneous elasticity problem.

The BEM with Kelvin’s solution can also be applied to solve bi-material structures, it requires

the discretization of the interface S and treats the problem with a multi-region scheme. In such

case, more degrees of freedom are introduced to the system of linear equations and attention must

be paid to control mesh quality of the interface. In one hand, multi-region scheme have higher

computational demand due to the increase in the size of the global matrix; on the other hand, due

to the singularity along the interface of a bi-material structure with thin film, much more efforts

are required to ensure numerical stability and robustness in the solving process. Therefore, the

BEM with bi-material fundamental solutions demands less computational resources and simplifies

the simulation process. Besides the common bi-material structure, it can be directly applied to

simulate effects of semi-infinite boundary, i.e, zero surface tractions, displacements, etc. The explicit

form of fundamental solution can be used for particulate composites with bi-material matrix by
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the recently-developed inclusion-based boundary element method as well [20, 54]. Since the single

domain algorithm is based on BIEs of bi-material fundamental solution, it can be straightforwardly

extended to other type of fundamental solutions, such as the Green’s functions for transversely

isotropic [23] and anisotropic [55] bi-materials. However, because those Green’s functions are

provided in integral form, high computational costs are expected, which can also be found in Yue’s

work for multi-layered solids [34]. Particularly, when tri-material systems exhibit a symmetric

configuration including both loading conditions and material properties with respect to the mid-

plane, they can be solved with the present bi-material solution by using the symmetric boundary

conditions.

4. Numerical verification of BEM with bi-material fundamental solution

In this Section, the verification and validation are conducted by comparing the elastic fields from

the proposed method with those from Finite Element Method, which was performed with ANSYS.

Shown in Fig.2, the boundary conditions are set as, (i) the top surface of D+ is subjected to

downward pressure 10KPa; (ii) the bottom surface of D− completely restrained with zero allowable

displacements; (iii) all other surfaces are free of traction. The width b, length l, and thicknesses

T1 and T2 are all chosen as 1m. Two material properties are selected as, μ′ = 4× 105Pa, ν ′ = 0.25

and μ′′ = 8× 105Pa, ν ′′ = 0.1 for verification purposes. Effects of the thickness and stiffness tensor

will be investigated subsequently with more case studies.

In Fig. 3, the variation of displacement components u3 is exhibited within the range of x3 ∈
[−1, 1]m along the vertical center line. Due to the constraints on the bottom surface of D−, the

variation of u3 is relatively smaller compared to that of field points in D+. When the field point

is on the interface S, though u3 is continuous, a sudden change of its slope is observed, which

results in the discontinuity of stresses in Fig. 4(a). Regarding the convergence of BEM, three

cases of boundary element mesh are considered, 90, 250 and 1000; for FEM, 250, 000 elements are

applied for reliable analysis. For the comparison in displacements, all three cases of BEM agree

well with FEM although a minor improvement is observed with more refined boundary element

mesh. However, when field point is close to the upper surface, cases (BEM (90) and BEM (250))

have jump points. Such phenomenon is caused by larger elements and insufficiently accurate Gauss

quadrature because the distance to the boundary element is too close. As shown in case (BEM

(1000)), the refined mesh can improve numerical stability in the post-process and 16-points Gauss

quadrature are used.
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Figure 2: Geometry and boundary conditions for a bi-material structure D with two dissimilar layers with thickness
T1 and T2, respectively

In Fig.4, there are some discrepancies among BEM(90), BEM(250) with FEM, particularly

at the first and last points. It can be interpreted by the fact that stress field is a combination

of partial derivatives of the displacement field. Hence, the variation becomes more rapid, which

requires more elements to describe the actual behavior. In Fig. 4(b), the σ33 is continuous over

the interface S, which satisfies the continuity conditions in Eq. (1). Except the last and beginning

points, the maximum discrepancies between (i) BEM(90) and FEM is 0.99%; (ii)BEM(250) and

FEM is 0.41%; (iii) BEM(1000) and FEM is less than 0.13%. For industrial applications, the single

domain BEM could provide efficient and reliable analysis using 250 elements for the above case

studies.

Fig. 5 shows the comparison of displacement u3 ,normal stress σ33 and τ13 along the horizontal

center line with x1 ∈ [−1, 1]m, where the BEM(1000) case agrees well with FEM, except the two

end points and shear stress. Notice that the curves of BEM(1000) exhibits larger discrepancy in

field trends at end points, which indicates the numerical errors arisen by small ratio of distance

and characteristic length of the element, which can be improved through more refine mesh or more

accurate Gauss quadrature. In BEM [43], the displacement and stresses on the boundary can be

calculated similarly as FEM that shape functions are applied to interpolate. In Fig. 5, the variation

of normal stress τ31 on the interface S were plotted and the results from BEM with 90, 250, 1000

and 16, 000 elements and FEM with 250, 000 elements were compared. A very good agreement

10



Figure 3: Comparison and variation of displacement u3 under downward uniform pressure 10KPa along vertical
center line within range x3 ∈ [−1, 1]m

(a) σ11 (b) σ33

Figure 4: Comparison and variation of normal stress (a) σ11; (b) σ33 under downward uniform pressure 10kPa along
vertical center line within range x3 ∈ [−1, 1]m
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(a) u3 (b) σ33 (c) τ13

Figure 5: Comparison and variation of (a) displacement u3; (b) normal stress σ33; (c) shear stress τ13 under downward
uniform pressure 10kPa along horizontal center line on interface S within range x1 ∈ [−1, 1]m

(a) BEM(1000) (b) FEM

Figure 6: Comparison of contour plot between BEM(1000) and FEM of τ13 on the interface S of the range x1 ∈ [0, 1]m
and x2 ∈ [0, 1]m under uniform downward pressure 10KPa

can be observed, except at the neighborhood of end-points. Due to the traction free boundary

on the side surfaces, the shear stress there must be zero. However, the solution of FEM exhibits

a non-zero value with a non-smooth curve around the end-points. Notice that the stress contour

plot in Fig.6(a) is generated by 101 × 101 uniformly distributed points, while Fig. 6(b) used the

element average method. Although the stress contour plots exhibit discrepancies as the range of

the color bar, the major difference lies in the boundary as indicated by Fig. 5(c). The shear stress

of boundary in FEM plot (x1 = 0 and x1 = 1) are not zero, which is indeed not accurate. For other

positions, the two stress contour plots agree well with each other.
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5. Applications to bi-material structures of wind turbines and solar panel

This section aims to analyze the elastic behavior of two common bi-material structures, a

turbine blade under shearing loads and a solar panel under temperature loads. In general, due to

the mismatch of material properties of D+ and D−, interfacial debonding is a commonly reason

for the failure of the material systems. In the following, the variation of traction in the interface S

and stress distribution along x3 (thickness) direction will be investigated.

5.1. Case study of wind turbine blades

Considering a wind turbine blade, it is designed to sustain torsional load caused by air flows.

Shown in Fig. 7, the wind turbine are mainly composed by fiber reinforced plastic (FRP) and

Balsa/Foam according to the specific structure, covered with coating layer [56]. Specifically, around

the trailing edge of the wind turbine, only FRP layer and coating layer are exited, and the fibers

are usually placed along different directions in the adjacent FRP layers, such as (+45/-45) for

bi-directions, which leads this kind of FRP possessing the same properties such as tensile modulus

and compression modulus along both 0 and 90 directions. In order to simplify the simulation, we

treat the FRP as the isotropic substrate. The thickness of the substrate varies around the trailing

edge, with the same coating layer. Then, the skin of the blade can be simplified as a bi-material

structure as shown in Fig. 7 (right side). Without the loss of any generality, (i) T1 and T2 are

set as 1mm and 20mm [56], respectively; (ii) the width b and length l are selected as 100 mm;

(iii) the material properties are set as, μ′ = 1GPa, ν ′ = 0.3 and μ′′ = 6.65GPa, ν ′′ = 0.3. The

upper phase is subjected to pressure (−20, 0, 0)MPa in the horizontal plane, which is equivalent to

1KN.m torque. To simulate the blade, 5 seeds are chosen to mesh x3 (thickness) direction of D+,

and the boundary mesh contains 5468 quadrilateral elements.

Figure 7: Schematic plot of wind turbine blade layer under pressure along x1 direction

Fig. 8 shows the variation of elastic fields along the horizontal center line of the interface S.

The pressure is applied on the surface x1 = 0, the displacements and stresses decay rapidly when
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(a) (b)

Figure 8: Variation of elastic fields of wind turbine blade (a) displacement and (b) stress, under horizontal pressure
20MPa along the horizontal center line x1 ∈ [0.005, 0.095]m

field points moves towards x1 = 0.1m. Notice that, compared with u1 and u3, u2 is a small quantity

(approximately 10−2 of u3), hence it was not plotted in Fig. 8(a). Regarding to displacement fields,

the dominate deformation exists in x1 direction, which results in the larger normal stress σ11. In

Fig. 8 (b), the direction of normal stresses are positive while that of shear stress is negative, which

can be interpreted that in addition to σ11, τ13 is involved in resisting the shearing loads. Comparing

among the three stresses, σ11 and τ13 are the dominant ones.

14



(a) (b)

(c) (d)

Figure 9: Contour plots of elastic fields of wind turbine blade (a) u1, (b) u3, (c) σ11 and (d) τ13 under horizontal
pressure 20MPa within range x1 ∈ [0.005, 0.04]m and x2 ∈ [0.005, 0.095]m

In Fig. 9, the elastic fields of interface S are presented by contour plots. Regarding the

displacements, the contour levels in Fig.9(a) are observed more uniform compared with Fig.9(b)

that u1 of interface S is completely negative. However, as for u3, though negative in the entering

part, it is positive around the boundary in x2 direction (shown in red). Especially, the two red

regions (close to x1 = 0.02) in Fig. 9(b) indicates there is warpage due to the shear loads. As

shown in Fig.8(b), stress fields decay rapidly, hence, only areas with x1 < 0.04m are considered.

Similar to displacements, the variation of σ11 and τ13 along x2 direction are comparatively small,

which can be interpreted that although τ13 is a combination of derivatives of u1 and u3, u1 is the

dominate one.
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(a) Case 1
(b) Case 2

Figure 10: Schematic plot of two superposed cases to simulate thermal-mechanical problem of a solar panel

5.2. Case study of solar panels

Solar panels can be installed onto the roof to harvest solar energy to minimize conventional

energy consumption and potential pollution. It is indeed a bi-material system, a glass layer bonded

to a concrete substrate, and then rests on a laminated roof panel. Solar panels experience large

temperature changing. Meanwhile, the thermal expansion coefficient of concrete substrate (α′′)

is much larger than that of glass overlay (α′), resulting a mismatch in deformation upon thermal

loading. Intuitively speaking, this mismatch will result in tensile stress in glass overlay, thereby

potentially causing cracks and leading to improper functioning. However, the exact stress distribu-

tion is complicated so that numerical methods are required for an accurate prediction. In this case

study, we demonstrate our algorithm suffices to predict the stress field under thermal loading. The

present algorithm assumes the uniform temperature variation of solar panels under the extreme

temperature events. In actual application, the thermal gradient across the thickness of solar panels

changes with the temperature difference between the two surfaces as well as solar irradiation over

time, the thermal stress state will be more complicated. A typical way is to implement the domain

integrals of temperature variation and partial derivatives of Green’s function Gij,j′ . Following Gao’s

work [57] on the radial integral method, for some simple distribution of temperature (uniform, lin-

ear, quadratic, etc), the domain integrals can be conducted without internal cells. However, domain

integrals cannot be avoided for complicated temperature variations. Alternatively, Prasad et al.

[58] transformed the domain integral into boundary surface integrals through Green’s second iden-

tity, thus the merits of BEM without interior discretization are retained and the extension of this

method to thermoelastic problem is underway.

To alleviate the strong thermal effects in substrates, the laminated roof is designed to provide

vertical support to the solar panel (u3 = 0) so the horizontal degrees of freedom (u1 and u2) at the

bottom surface of our model are released. As an industrial application, according to [59], (i) T1
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and T2 are set as 3mm and 5mm; (ii) the width b and length l are set as 100mm; (iii) the material

properties of glass and concrete are E′ = 72GPa, ν ′ = 0.2, α′ = 6×10−6/◦C, E′′ = 36GPa, ν ′′ = 0.2,

α′′ = 1.1×10−5/◦C; (iv) the temperature change is selected as ΔT = 50◦C. Although the thermal-

mechanical problems can be simulated using volume integrals of inelastic strains, alternatively, in

this section, the problem is decomposed into two cases [60]. In case 1, the glass and concrete layers

extends freely, and uniform tensile stress (σ11 = σ22) is applied to the glass layer to stretch it to

match the extension of concrete. In case 2, compressive tractions, Tn = ΔT (α′′−α′)E′ = 22.5MPa

(n refers to normal direction of the surface), are applied to the side edges of glass, which forms

a well-defined boundary value problem, which is demonstrated in Fig. 10. To simulate the solar

panel, 8200 boundary elements were used.

(a) (b)

Figure 11: Variation of elastic fields of solar panel (a) displacement and (b) stress, under thermal load along the
horizontal center line x1 ∈ [0.001, 0.099]m
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(a) (b)

(c) (d)

Figure 12: Contour plots of elastic fields of solar panel (a) u1, (b) u3, (c) σ11 and (d) τ13 under thermal load within
range x1 ∈ [0.001, 0.099]m and x2 ∈ [0.001, 0.099]m

Fig. 11(a) shows the variation of u1 and u3 along the horizontal center line. In the interior

region of the model, u1 demonstrates a linear anti-symmetric trend with 0 value at the center, while

u3 has comparatively smaller variation over the interface. These two tendencies proves that the

glass overlay is uniformly stretched along horizontal directions in this region. To the contrast, in

the neighborhood of edges, u1 curve tilts up, which can be interpreted that the actual displacement

is smaller than that it is supposed to be if the uniform stretching was preserved. Moreover, u3

becomes positive in this region. At the free edge, because of the thermal strain mismatch, the glass

overlay has the tendency to pull up the concrete substrate and the glass itself is squeezed to some

extent as well. This phenomenon itself explains the displacement variation. The stress plot in Fig.

11(b) agrees well with our finding. In the interior region, σ11 keeps a constant value, and both τ13
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and σ33 are 0. Because of the uplifting of concrete near the edge, the non-zero τ13 and σ33 values

concentrate in these regions. Interestingly, the magnitude of σ11 jumps near the edge, and it can

be explained by equilibrium conditions. For an infinitesimal element near the edge, the non-zero

τ13 is balanced by the integration of σ11 along the vertical direction, thereby causing the increase

in the magnitude of σ11.

Fig. 12(a) and (b) are the contour plots of u1 and u3 along the horizontal interface between two

materials. u1 value is independent from x2 coordinate because of no constraint along x2 direction.

Both x1 and x2 directions are equivalent for u3, so the distribution patterns along the 4 edges are

identical and u3 at the four corners are doubled. Fig. 12(c) and (d) are the stress contour plots.

Obviously, τ13 is not related to x2. Along the x2 direction, the trend of σ11 observed on Fig. 11(b)

only applies to the middle region, while at the edge, σ11 increases and decreases to its minimum

value at the edge. This is because σ11 needs to balance σ21, which concentrates near the edge but

is 0 at the free edge.

6. Parametric study of ratio of thickness and shear modulus in elastic fields

In Section 5, the variations of elastic fields of wind turbine blades and solar panel under various

boundary conditions were investigated. In these two applications, the ratios of thickness were

selected based upon industrial applications and the results suggest that the ratio of thickness play

important roles in the elastic fields. In general, when the ratio of thickness decreases, the upper

layer become more fragile to the shearing effects. In addition, the difference of stiffness tensors may

also affect the elastic fields as well. Although the stiffness tensor is composed of shear modulus

and Poisson’s ratio, parametric studies focus on the dominant one, the ratio of shear modulus.

Shown in Fig. 2, the width b, length l and T2 are set as 1m and the bottom surface of D− remains

completely constrained. Other boundary conditions and geometric dimension are specified in the

subsections.

6.1. Effects of ratio of thickness

This subsection aims to investigate the effects brought by thickness ratio T1
T2

under two loading

conditions, (i) uniform downward pressure t = (0, 0,−104)Pa applied on top surface of D+ and

all other surfaces are free of tracions; (ii) horizontal pressure applied t = (0, 0,−104)Pa applied

on front surface (x2 − x3 plane) of D+, and all other surfaces (except bottom surface) are free of

traction. Five thickness ratios, 1, 0.5, 0.2, 0.1, 0.01 are studied and the material properties remain
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the same as Section 4. Notice that for case T1
T2

= 0.01, because the thickness T1 is thin enough, the

elastic behaviors are similar to a structure with the lower phase D− under boundary condition (i)

(downward pressure). Therefore, only boundary condition (ii) is considered for such case. In this

subsection, due to the change of thickness T1, the displacement and stress fields are plotted either

along vertical center line (x3 ∈ [−0.9, 0]m) or horizontal center line of interface S (x1 ∈ [0.05, 0.95]m)

with 201 uniformly distributed field points. On the interface, because the normal stresses σ11 and

σ22 are discontinuous, the normal stresses are selected from the bottom of the upper phase.

6.1.1. Downward pressure loads

Fig. 13, Fig.15(a) and Fig.15 (b) show the variation of u3, σ11 and σ33 along the vertical center

line, the results of the four cases are close, indicating that the change of thickness ratio has minor

effect on the elastic field of the substrate under downward pressure loads. Subsequently, Fig.14

plots u1 and u3 along the horizontal center line of the interface S. Although the curves in Fig.14(a)

exhibit some discrepancies, the difference is less than 4%, i.e between ”ratio = 1” and ”ratio = 0.1”.

In Fig.14 (b), when the thickness ratio decreases, the maximum u3 decreases and the variation of

u3 increases. However, when ratio equals 0.1, the trend inverses. In such case, the elastic behavior

of the upper phase transits from thick plate to thin plate, whose normal shearing deformation is

small. Similar phenomenon can be observed in (c) and (d) of Fig. 15 that σ11 of case ”ratio = 1”

is obviously larger than other cases and the distribution of σ33 changes.

Figure 13: Variation of displacement u3 under downward uniform pressure 104Pa with thickness ratios 1, 0.5, 0.2 and
0.1 along the vertical center line x3 ∈ [−0.9, 0.9]m
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(a) (b)

Figure 14: Variation of displacement (a) u1, (b) u3 under downward uniform pressure 104Pa with thickness ratios
1, 0.5, 0.2 and 0.1 along the horizontal center line x1 ∈ [0.05, 0.95]m

6.1.2. Horizontal pressure loads

The boundary condition (ii) specify a uniform horizontal pressure, because the applied force

decreases with thickness ratio, which causes numerical results in different orders. Therefore, in

this subsection, the elastic fields are normalized by the thickness ratio, i.e, u1 = u1
T2
T1
. Fig. 16

shows the variation of u1 and u3 along two center lines that when the thickness ratio decreases,

u1 and u3 exhibit inverse trends. In addition to cases of downward pressure in Section. 6.1.1,

the thickness ratio classifies ”membrane”-like elastic behavior of case 0.01, where the uni-axial

compression dominates. In Fig.16(c) and Fig.17(d), the case ”ratio = 0.01” has the largest variation

and maximum values of u1 and σ11 among other cases. Although the dominate load for case “ratio

= 0.01” is the compression in x1 direction, Fig. 16(d) indicates that the thin film bends to sustain

deformations in x3 direction to resist normal deformations generated by bottom constraint of the

substrate. Besides normal stresses, shear stress τ13 in Fig. 17 increases significantly with smaller

thickness ratios, which explains why the bonding layer of thin film bi-material structures is fragile

under the shearing loads.

6.2. Effects of ratio of shear modulus

This subsection aims to investigate how ratios of shear modulus influence the bi-material struc-

tures. As indicated in Section. 5 and Section 6.1, the interface S becomes fragile when ratio of

thickness is small because of the rapid increase of shear stress. Although bi-material structures

with smaller thickness ratios arouse interests of strong shearing effects on the interface S, in this
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(a) (b)

(c) (d)

Figure 15: Variation of ratio of normal stress (a) σ11/σ
0
33, (b) σ33/σ

0
33 along the vertical center line; (c) σ11/σ

0
33, (d)

σ33/σ
0
33 along the horizontal center line x1 ∈ [0.05, 0.95]m under downward uniform pressure 104Pa with thickness

ratios 1, 0.5, 0.2 and 0.1
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(a) (b)

(c) (d)

Figure 16: Variation of displacement (a) u1, (b) u3 along the vertical center line; (c) u1, (d) u3 along the horizontal
center line x1 ∈ [0.05, 0.95]m under uniform horizontal pressure 104Pa with thickness ratios 1, 0.5, 0.2, 0.1 and 0.01
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Variation of ratio of stresses (a) σ11/σ
0
11, (b) τ13/σ

0
11, (c) σ33/σ

0
11 along the vertical center line; (d)

σ11/σ
0
11, (e) τ13/σ

0
11, (f) σ33/σ

0
11 along the horizontal center line x1 ∈ [0.05, 0.95]m under uniform horizontal pressure

104Pa with thickness ratios 1, 0.5, 0.2, 0.1 and 0.01
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subsection, we intend to study bi-materials with more inclusive elastic behaviors, including both

bending and shearing deformations. Hence, (i) the thickness ratio T1
T2

= 0.1 is applied; (ii) five

shear modulus ratios are considered: μ′
μ′′ = 1, 2, 5, 10 and 20 while the Poisson’s ratio remain the

same as Section. 4 (ν ′ = 0.25, ν ′′ = 0.1); (iii) boundary conditions are: horizontal pressure ap-

plied t = (0, 0,−104)Pa applied on front surface (x2 − x3 plane) of D+, and all other surfaces

(except bottom surface) are free of traction. Fig. 18 exhibits the variation of displacement along

the vertical and horizontal center lines. When the shear modulus ratio increases, the upper phase

is stiffer so smaller deformations can resist the horizontal pressure loads. Hence, all displacement

fields gradually decrease with increase of shear modulus ratio.

(a) (b)

(c) (d)

Figure 18: Variation of displacement (a) u1, (b) u3 along the vertical center line; (c) u1, (d) u3 along the horizontal
center line x1 ∈ [0.05, 0.95]m under uniform horizontal pressure 104Pa with ratios of shear modulus 1, 2, 5, 10 and 20
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Variation of ratio of stresses (a) σ11/σ
0
11, (b) τ13/σ

0
11, (c) σ33/σ

0
11 along the vertical center line; (d)

σ11/σ
0
11, (e) τ13/σ

0
11, (f) σ33/σ

0
11 along the horizontal center line x1 ∈ [0.05, 0.95]m under uniform horizontal pressure

104Pa with shear modulus ratios as 1, 2, 5, 10 and 20.
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Fig. 19 illustrates the variation of σ̄11, σ̄13, σ̄33 along the vertical and horizontal directions

under uniform horizontal pressure with respect to the shear modulus ratios of 1, 2, 5, 10 and 20.

Along the vertical direction, the shear modulus affects the stresses sharply when it is close to the

interface. Meanwhile, σ̄11 and σ̄13 are larger than σ̄33, which dominate the mechanical behavior of

bi-materials. Along the horizontal direction, the stress distribution is very sensitive to the shear

modulus. When the shear modulus of each layer are close, say ratio 1 or 2, the stresses behave in

a similar way. However, when the ratio is larger than 5, the stresses change significantly near the

interface. Especially, σ̄11 is much larger than σ̄13 and σ̄33, and the stress curve is totally different

when the ratio reaches to 20.

7. Conclusions

The algorithm of the single domain boundary element method, which was firstly presented in

1980s for 2D problems, has been implemented for 3D applications to investigate the elastic fields of

bi-layered material systems. The method is verified with FEM through case studies of bi-material

systems composed of two dissimilar cuboids. Thanks to the fundamental solution of bi-materrials,

the single domain BEM calculates the elastic field of bi-layered material systems similarly to a

homogeneous solid. The method is applied to investigate wind turbine blades under pressure load

on the surface and solar panels under thermal loads and predicts the stress and deformation in the

bi-layered material systems. The method is particularly suitable for the design and stress analysis

of thin-film substrate systems. It exhibits the following advantages over the multi-domain BEM or

FEM:

1. Without discretization of the interface, a few elements can provide high fidelity results for the

bi-layered material systems.

2. The issues of discontinuity and singularity of the stress distribution are analytically treated, so

that the program can provide convergent and robust prediction.

3. Excellent stability of the computation can be reached for a large range of the ratios of thickness,

stiffness, and loading between the two layers.

The parametric studies demonstrate the versatile capability of this method to investigate the elastic

behaviors of bi-material systems. The method can be extended to other applications, such as bi-

layered Stokes’ flow, heat conduction in bi-layered soilds, among other physical problems, by using

the corresponding Green’s function in the bi-layered material systems [19, 20].
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Appendix A. Partial derivatives of fundamental solutions

When the field point and source point are in the same phase (x′3x3 > 0), the fundamental solu-

tion contains both ordinary components and image components, whose partial derivatives changes

in the third derivatives that, taking φ as the instance,

φ,i′ = −QIφ,i (A.1)

such chain rules apply to higher order partial derivatives as well. In order to derive the fundamental

solution to tractions and conduct the post-process of stress field, first and second order partial

derivatives are provided in the following. When x′3x3 > 0, the first order partial derivative (w.r.t

x′k) is written as,

4πμpGc
ij,k′(x,x

′) = (−δijφ,k +
ψ,ijk

4(1− νp)
)−Acδijφ,kQK −WBc(δi3δjm − δimδj3)QKαc,mk

− Ccx3
[−QJQKψ,ij3k − 4(1− νp)δj3QKφ,ik − 2(1− 2νp)δi3QJQKφ,jk + x3QJQKφ,ijk

]

+DcQIQJQKψ,ijk + (Gc +Bc)QJQKβ
c
,ijk

(A.2)

and the second order partial derivatives (w.r.t xk and x′l),

4πμpGc
ij,kl′(x,x

′) = (−δijφ,kl +
ψ,ijkl

4(1− νp)
)−AcδijQLφ,kl −WBc(δi3δjm − δimδj3)QLα

c
,mkl

− Ccδk3
[−QJQLψ,ij3l − 4(1− νp)δj3QLφ,il − 2(1− 2νp)δi3QJQLφ,jl + x3QJQLφ,ijl

]

+ Ccx3

[
−QJQLψ,ij3kl − 4(1− νp)δj3QLφ,ikl − 2(1− 2νp)δi3QJQLφ,jkl

+ x3QJQLφ,ijkl + δk3QJQLφ,ijl

]
+DcQIQJQLψ,ijkl + (Gc +Bc)QJQLβ,ijkl

(A.3)

where the superscript p =′, c = u when x′3 > 0 and p =′′ , c = l when x′3 < 0; W = 1 when x′3 > 0

and W = −1 when x′3 < 0. When the field point and source point are in different phases, the first

order partial derivative is,

4πμpGc
ij,k′(x,x

′) = (−δijφ,k +
ψ,ijk

4(1− νp)
)−Acδijφ,k −WBc(δi3δjm − δimδj3)α

c
,mk

+Dcψ,ijk + χx3F
cαc,ijk + (Gc +Bc)QIβ,ijk

(A.4)
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and the second order partial derivative is,

4πGc
ij,kl′(x,x

′) = (−δijφ,kl +
ψ,ijkl

4(1− νp)
)−Acδijφ,kl −WBc(δi3δjm − δj3δim)α

c
,mkl

+Dcψ,ijkl + χx3F
cαc,ijkl + χδk3F

cαc,ijl + (Gc +Bc)QIβ
c
,ijkl

(A.5)

where χ = 1 when x′3 > 0 and χ = −1 when x′3 < 0.

Appendix B. Comparison of numerical results in Section 5.2

This appendix aims to provide numerical comparisons among solutions with different Gauss

integral points and support the correctness and stability. Due to page limits, we only provide

comparisons related to Section 5.2 on the solar panels. Shown in Fig B.20, solutions with three

different numbers of Gauss integral points agree well with each other, despite minor discrepancy

existing at the end point (x1 = 0.099 m) of σ11 for the curve ”Gauss - 4 - subdivision”. In order

to compare the contour plots between solutions with 8 Gauss integral points and 6 Gauss integral

points with subdivision scheme, the number of ticks of the color bar is set equal. It is observed

very minor difference between Fig. B.21(c) and Fig. 12(c) that the maximum values are 11.97 and

11.98, respectively.
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(a) (b)

(c) (d)

Figure B.20: Comparison of numerical results (a) u1 and u3, (b) σ11, (c) τ13 and (d) σ33 along the horizontal center
line x1 ∈ [0.001, 0.099] m among solutions of 8 Gauss integral points and 4, 6 Gauss integral points with subdivision
scheme
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(a) (b)

(c) (d)

Figure B.21: Contour plots of solar panel (a) u1, (b)u3, (c) σ11 and (d) τ13 under thermal load within range
x1 ∈ [0.001, 0.099]m and x2 ∈ [0.001, 0.099]m with solutions of 6 Gauss integral points with subdivision scheme
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