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Effect of Wrapping Force
on the Effective Elastic Behavior
of Packed Cylinders

When cylinders are packed and wrapped by the bands around the surface, the effective
elastic behavior in the cross section of the assembly, which is of significance to its stability
and integrity, can be controlled by the wrapping force in the band. The wrapping force is
transferred to the cylinders through the Hertz contact between each pair of neighboring cyl-
inders, which is validated by the experiments. The Singum model is introduced to study the
mechanical behaviors of the packed cylinders with two-dimensional (2D) packing lattices,
in which an inner cylinder is simulated by a continuum particle of Singum and the inter-cyl-
inder force is governed by the Hertz contact model so as to derive the effective stress-strain
relationship. The wrapping force will produce configurational forces given a displacement
variation, which significantly changes the effective stiffness of the packed cylinders. The
hexagonal packing exhibits isotropic elasticity whereas the square packing is anisotropic.
The efficacy of our model is demonstrated by comparing the closed form elasticity against
the numerical simulation and the previous models. The explicit form of elasticity can be used
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1 Introduction

Understanding the cylinder or sphere packing problem is an art as
much as a science [1], and this challenging problem has a wide
spectrum of real-world applications in multiple industries, including
textile production and packing, naval, automobile, and aerospace
[2]. Many mathematical models have been developed to explore
the closest packing [3-5], inspiring the optimized design with
improved performances [1,6]. For example, in the civil engineering
field, mechanical behaviors of granular materials, also closely
related to sphere packing, play significant roles in many aspects,
such as pavement construction [7], combating natural hazards
(e.g., landslides) [8], excavation planning [9], etc.

Experimental testing can measure the macroscopic mechanical
behavior of granular materials. Although the adoption of the cele-
brated photo-elastic grain technique can provide many significant
discoveries in granular media [10], it is challenging to quantify
the force transfer between grains, which is the origin or underlying
mechanism of the mechanical behavior of granular materials [11].
These grain scale forces can be well captured by the adoption of dis-
crete element method (DEM) [12,13], which models the contact
between two spheres with the Hertz [14] and Mindlin-Deresiewicz
[15] theories. DEM models each particle with both translational and
rotational degrees-of-freedom. Although it can simulate the partic-
ulate behaviors of the granular materials (i.e., shear banding,
necking, etc.), the results are sensitive to the scale and parameters,
and thus it is computationally expensive to identify appropriate
parameters and model scale in order to reach a practical and conver-
gent prediction of the material behavior.

The recently proposed microstructure-based finite element (uFE)
model for handling granular medium captures the natural deposi-
tional grain scale characteristics of sand (i.e., arbitrary shapes)
[16]. Unlike DEM, uFE incorporates deformable grains so that
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the contact response emerges from the interaction of contacting
bodies, thus enabling the modeling of irregular morphologies.
However, its key drawback originates from the mesh generation:
the surface mesh is a refinement of the constrained Delaunay tetra-
hedralization [17], and the volumetric mesh filling the grain with
tetrahedral elements is bounded by the iso-surfaces. Compared
with DEM, the number of degrees-of-freedom of each grain
grows from six to hundreds or even thousands, resulting in a tre-
mendous increase in computational cost [18] and hindering its
superiority in making a difference in granular material simulation.

Continuum mechanics approaches can circumvent the high com-
putational cost issue associated with DEM and pFE. The pilot
attempt in modeling granular material with a continuum approach
dates back to the middle of the last century when Duffy and
Mindlin published a stress-strain relation for identical spheres
packed in the face-centered cubic array [19]. This equation was
derived by relating the contact force and displacements of a cubic
unit cell through equilibrium and compatibility relations. This
work opened the door for the following researchers to generalize
this constitutive model to other regular packing patterns, such as
simple cubic, tetrahedral, etc. [20-22]. Mindlin’s method,
however, cannot be generalized to other packing patterns with non-
cubic representative elements [22], but this difficulty was solved by
stress homogenization over volume [23,24]. With the use of the
energy conservation approach, the secant stiffness tensor can be
obtained for all regular packing patterns [25]. All of these works
employ field variables of intrinsic macroscopic nature without
explicit connections with the underlying discrete material micro-
structure. These limitations motivated the development of microme-
chanical theory for elastic granular media with kinematic
degrees-of-freedom included [26], but this theory is in linear form,
which obviously contradicts the actual behavior at sphere contacts.

Although the force transfer through the contact between particles
is through the stress on the contact surface, globally the load transfer
through a granular material can be simplified by a lattice network
between the center of particles with point-point forces, in which
the force is correlated to the center-center distance by a potential
function. The recently developed Singum model [27] uses the
Wigner—Seitz (WS) cells of a lattice to represent a continuum
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Fig. 1
(b) the cross-section of the cable

solid so that the singular point forces can be transformed into the
contacting stress between the continuum particle. By applying a dis-
placement variation, from the relationship between the stress and
the strain increments, we obtain the elastic constants. This proce-
dure can be applied to general lattice networks and foam materials,
which exist in nature or metamaterials, or composites, and the
recent work demonstrated its application to a lattice metamaterial
with harmonic potential or linear spring bonds [28].

This paper applies the Singum model [27,28] to the assembly of
cylinders packing in certain patterns, which are equivalent to a 2D
granular materials through the Hertz contacts and can be extended
to 3D granular materials in future work. The solution exhibits sig-
nificance in electric and civil engineering applications. High
current electric transmission lines [29] and suspension bridge
cables [30] are commonly using hundreds to thousands of wires
packed in a certain pattern with wrapping bands. For example,
Fig. 1(a) shows a suspension bridge supported by two large
cables with banded wires, which can be observed by the cross-
section of the cable in Fig. 1(b). Moreover, the cable wires
(Fig. 1(b)) sustain a majority of the loads applied onto the deck
and play an important role in the capacity and performance of the
bridge [30]. These wire bundles are formed in a hexagonal arrange-
ment tightened up by wrapping bands at a certain interval. The
effective stiffness of packed cylinders in the cross section
changes with the stress in the wrapping bands. It has been an empir-
ical art to tighten the bands for the integrity and safety of the cable.
A rigorous relationship between the stiffness and the wrapping
force will be very useful for those applications, so that a formulation
can be provided for the material and structural design given the
cable and wire geometry and elastic constants.

In the following, the problem will be initially proposed. The
Singum model [27] is constructed upon a hexagonal packing
pattern, which can be generalized to square packing as well. The force-
distance relationship between two neighboring cylinders can be for-
mulated by a pairwise potential using the Hertz contact model. The
experiments validate the potential function. The constitutive model
for both square packing and hexagonal packing of cylinders is devel-
oped. The comparison with numerical simulation results proves the
capability and accuracy of this model. The application of the
Singum model to suspension bridge cable is demonstrated. The
research output will enable scientists and engineers to efficiently
predict the multi-scale mechanics of granular materials, thus inspiring
the design of new metamaterials. Future studies will extend the current
framework to study the poly-disperse of particles in the 3D space.

2 Problem Statement

To illustrate the effective elastic behavior of packed
cylinders with a wrapping force, numerical confined compression
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Application of banded wires in a bridge cable: (a) a suspension bridge with two cables and

tests in 2D plane strain conditions are performed. Figure 2 shows
a bundle of long cylinders confined in a container with four
rigid side surfaces, and these cylinders are packed in regular pat-
terns with N, and N, units along the x and y directions. For sim-
plicity, we consider smooth identical cylinders with diameter d,
elastic modulus E, and Poisson’s ratio v. No friction is
considered between the smooth cylinders. The 2D plane strain
problem is assumed by constraining the displacement along the
z direction.

All the boundary platens are assumed to be perfectly rigid. The
bottom and left platens are hinged together with the bottom fixed
on the ground, and the top and right platens are hinged together.
The two parts are assembled together by two elastic links to wrap
the packed cylinders while keeping the lattice structure. By shorten-
ing the two links simultaneously at the same rate, the contact area
between cylinders increases while the lattice structure remains the
same. Now keeping the wrapping force the same, we apply an infin-
itesimal displacement variation on the top platen. From the relation-
ship between the displacement variation and external force, we can
measure the tangential elastic modulus at the corresponding state of
the wrapping force. Both shear and uniaxial loads can be applied
to measure the elastic constants in different directions and loading
modes.

Since materials have different Poisson ratios, in this research, the
effect of a cylinder’s Poisson’s ratio on the overall mechanical prop-
erties is studied. Two lattice structures will be considered in this 2D
study: square packing and hexagonal packing. In this work, we con-
centrate on the elastic behavior of 2D lattices through the normal
forces of the Hertz contact between cylinders, while the tangential
and torsional forces giving rise to irreversible deformations are
ignored for the smooth surface. Earlier experimental studies stated
that the contributions of shearing and torsional grain contacts are
negligible to the volumetric elasticity [31-33], proving the validity
of our setting. These two packing patterns show different force
transmission mechanisms so the bond length (r) to applied axial
strain (¢) relation is treated on a case-to-case basis in the subsequent
sections. For both cases, we compute the axial stress (o,) and con-
fining stress (o,) with the Singum model for further analysis. To val-
idate the Singum model, our predictions are compared with the
direct numerical simulation results computed with our implemented
MATLAB code, and this development process will be introduced in
the following section.

3 Formulations

This section briefly introduces the Singum model, followed by
the derivations for the inter-particle potential for the Hertz contact
problem and general nonlinear pairwise interactions, respectively.

Transactions of the ASME



(b)

Fig.2 Schematic illustration of 2D plane strain compression test: (a) the 3D view of a bundle of
long cylinders in a rigid container and (b) the cross section view. The top platen, highlighted in
blue, is movable, while the rest boundaries are fixed.

The elastic constants are calculated from the inter-particle potential
function.

3.1 The Singum Construction and Modeling. Yin [27] pro-
posed the concept of Singum model to correlate the pairwise inter-
action with the elastic constants of solids, paving a way for
cross-scale modeling. A Singum particle, constructed by Voronoi
decomposition, occupies the space of a WS cell with a particle at
the center, filling the entire domain without gaps. For example, a
hexagonal packing pattern is illustrated in Fig. 3(a) with a unit
cell including one cylinder with six neighboring cylinders. The
Singum for cylinder O can be constructed in Fig. 3(b) by cutting
the six bonds with perpendicular lines forming a hexagon. The orig-
inal radius of each cylinder is 12 , and the center-center distance or

bond length will change with the interaction force, written as 2/, =
2/112 with 1=1,/ lg being the deformation ratio. Under a hydrostatic

load, A for all bonds shall be the same, which is the case this paper
investigates.

Consider a continuum particle of Singum 0 subjected to surface
forces, the effective stiffness for a linear elastic continuum can be
defined from its average stress ¢ and average strain ¢ as follows:

0 = Cijnien (D

(a)

(R (E——4

QF‘*

where Cyy; is the stiffness tensor. However, the stiffness of a
Singum particle is elastic but not linear. For a nonlinear elastic con-
tinuum, the tangential stiffness tensor at the spatial coordinate can
be defined in the same fashion by the variations of the stress and
strain at the current stress state, which will be illustrated
subsequently.

The interactions from the neighbors act as point force F at x’ at
the boundary of each edge (I=1, 2, ..., 6) of the Singum 0, and
because of the equilibrium in the absence of body force, the bound-
ary condition is written as

o(XOni(x) =Z)_ Fl8(x —x')  forx € dVs )

where 6(x) is the Dirac Delta function; o; and n; are the Cauchy
stress tensor and surface out-normal vector of a continuum particle,
respectively. The stress integral with a Singum particle S;; can be
written as follows [34]:

6
Sij = j G[j(X)dX = j x,—okjnkdx = Z )dFjI (3)
Vs Vs I=1

where V = 12 V9 is the deformed area of the Singum particle with
the initial area V? =2\/§(lg)2; the point force F! between two
smooth cylinders is expressed as the derivative of the pairwise
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Fig. 3 Construction and boundary of Singum unit cell: (a) is the unit cell for the Singum con-
struction and (b) the WS cell of the Oth atom in the initial configuration
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where the potential function can be obtained by the Hertz contact
model [35], which will be elaborated in the next section.

The Cauchy stress within the Singum particle can be computed as
the volume average of the stress integral

Sij

V. &)

gij=

1 OV,
oy =Lzt (ﬁ;,ax, +olF —XF! ;>
s

Vs

l]l

To test the tangent stiffness of the overall structure, we apply an
incremental strain variation at every point x [36]

5Mj(X) = )C,'&d,‘j (6)
where éd;; = 1/2(6u; j+ 6u; ;) represents a linear displacement gradi-

ent tensor, which is related to the variation of the Eulerian strain at
the current configuration of a stretch ratio 4 as [36]

ey = 6dy/ 1 (7)

The variation of Eq. (5) with the aid of Eq. (4) yields

1
=3 (AP xiody + Flodex, - x]Flody)
Vg

1
2

where the Cauchy stress variation includes three parts: the first part
related to F [1 . 18 caused by the force variation, which leads to the
material configuration variation; whereas the second and third
parts related to F! are the configurational stress caused by the exist-
ing force with the material configuration change. For the classic
elasticity based on the infinitesimal deformation assumption, the
effect of the configuration change on the material behavior has
often been disregarded, but its effect is real and physical [37]. Its
effect on the elastic constants will be illustrated subsequently.

By relating the variations in the Cauchy stress and Eulerian strain
with the aid of Eq. (7), the tangent stiffness tensor can be evaluated
[28,36] as

Ciju=

12 6
ZV\;[(ﬁvfg AVl 4+ AV (Sl + 8t — Sl )]
©))
where nl=x!/|x!|, is the component of the unit vector from the
center of a Singum particle to its neighbors; and the superscript
of 10 can be disregarded because each pair of the bond share the
same center-center distance. It is shown in Fig. 3 that the total
number of neighbors changes for different packing patterns and
here is 6. The summation in Eq. (9) is reduced to the summation
of njn{ and n/ninn;, which can be written in the following identi-

ties for the hexagonal lattice

an nl =35
(10)
Z}’ll [nin,— (5115k1+51k5ﬂ+6115/k)
Substituting Eq. (10) into Eq. (9), the relation between stiffness

tensor C of hexagonal lattice and pairwise potential can be
written as

Ciju

;A

~T6@y [G2V.22=5AV.0)86u + (A2 V 41+ 32V.2) G+ 6ud)

an
where the pairwise potential V(1) can be obtained by the
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— 5 1[(/12Vf& — VOl ]

+ AVI(nint + 8 gnin! — Syunln! )]5dk, 8)

experiments or Hertz’s model, which will be introduced in the
next section. It is interesting that the hexagonal lattice exhibits an
isotropic elasticity in the cross section, which has been observed
in the graphene lattice as well [27,28].

3.2 Singum Potential for the Hertz Contact Problem. The
Hertz contact theory deals with the mechanics at the contact
between non-conforming solids. This theory builds up on the sim-
plification that each body can be regarded as an elastic half-space
loaded over a small elliptical region of its plane surface to calculate
the local deformation and stress distribution [14]. The Hertz contact
theory assumes infinitesimal contact strain and frictionless contact
surface to make the aforementioned simplification justifiable.

Although Hertz’s model for the 3D spherical case has been well
established [35], the 2D case cylinder contact problem exhibits dif-
ferent forms of force-deformation relations, mainly two categories:
implicit and explicit. Johnson [35], Radzimovsky [38], and Gold-
smith [39] models mutual approach as an implicit function of
contact force in similar forms with logarithmic function included,
which requires an iterative process for the solution of P at each
given indentation 9, thus limiting their applications in computa-
tional programs [40]. In view of this shortcoming, Lankarani and
Nikravesh [41] proposed a simplified explicit model considering
energy dissipation during the impact process, making it well-suited
for implementation, especially for dynamics problems. However,
there is a parameter to be determined empirically. In this work,
Johnson’s model is selected because its P — ¢ prediction well fits
the results of both the finite element simulations and the experimen-
tal testings, which are shown in the Appendix.

This research studies the contact between two identical cylinders
with undeformed radius I shown in Fig. 4(b). Compressed by a
given load P per unit length, the half-width of the rectangular
contact area is given by [35] as

PI(1 —12)
nE

b=2 (12)

and the corresponding mutual approach is written as

2P(1 —1? 4nEL)
5= 22 ”)<1n ”_22)—1>=2(12—,,) (13)

7E PQ
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P

Fig. 4 Schematic illustration of the numerical experiments: (a) the Hertz contact, (b) the particle
locations after hydrostatic compression. Overlaps highlight the positions where contact force
emerges, and (c) the applied infinitesimal virtual strain for computing elastic modulus at each

stretch ratio 4.

or
4ﬂE£

P(1—12) 1)

from which P(1) can be obtained implicitly. The potential function
V(A) can be written as

2
a=1 M ”)<1n (14)

II'EIB

2
V= —2] P(A)dA
1

21\ 2 2
_ ﬂ'ElB (P(I—U)) |:21nP(1_y)+1—41n21| (15)

T2(1 = 12) nEl nED

where P(1) can be numerically solved by Eq. (14) given 4; and the inte-
gral is only the half of the bond so that a multiplier of two is applied.
Alternatively, the formulation can be simplified by replacing
P(1 —v?)/zEl) with a single dimensionless variable for a more
concise form. The derivatives of V(1) and V ;(1) are written as
follows:

2P(1 - 12 P(1 12
v, =P PA=) o s p e,
’ nEL nEl -
2P(1 — 1* P(1-0°
V() = (EZO”)(zln (EIO”)+1—41n2+P)P,“
TT. p T »

2(1 = 1?) P(1 —17)
+ J'L'Elg (ZIn ﬂ'Elg

+3 —41n2+2P)P,,1 (16)

where the derivatives of P can be further derived from Eq. (14) as

ElL
P, = _ - §
P(1 -
A== opo40
ﬂ'Elg
rElL
Py = — ; L — ; 17)
P(l —v%) P(1—-v7)
1-))|In—= 2242 | ——~2
(=) In ﬂElg + nElg

Because the one-to-one mapping between A and P is given by Eq. (14),
one can use the above equation to explicitly obtain the derivatives of V
and stiffness tensor C given P or A. Note that when A=1, P=0, Eq.
(17) provides P,=0 and P, — oo, which causes small but signifi-
cantly changing elasticity when A is close to one.

Journal of Applied Mechanics

3.3 Elastic Constants of the 2D Lattices Varying With the
Wrapping Force. Substituting the derivatives of Singum potential
V ,(4) and V 4;(2) into the Singum model Eq. (9), one can compute
the stiffness tensor of the packed cylinders given the 2D packing
lattice structure, and the corresponding compliance matrix in the
Voigt notation is written as

€22 —C12

0
C11€22 — C12€21  C11C22 — C12€2]
—C c
S = 21 11 0 (18)
C11€22 — C12€C21  C11C22 — C12€2]
1
0 0 T

where the notations 1, 2, and 4 represent 11, 22, and 12 respectively.
From the aforementioned equation, the elastic modulus is derived as

C12021 C12021

Ey=ci1 — Ey=cp - (19)
22 C11
p=2ly, =0 (20)
€22 C11
G=cy 21

Note that although Eq. (11) shows an isotropic elastic tensor
for hexagonal packing pattern with E;=E;, vi=v, and G=
E/2(1 +v), when the cylinders are distributed in other patterns,
the elastic tensor can be anisotropic. For example, the square

Fig. 5 Singum particle for 2D hexagonal lattice: (a) the Singum
particle (purple) out from its direct neighbors numbering 1-6 and
(b) the unit vectors of point load applied on the boundary
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packing pattern will not satisfy G=E/2(1+v), which will be
shown subsequently. Oblique packing or other patterns may not
satisfy E| = E,, v| =, either.

The wrapping force F will produce contact force P between cyl-
inders and change A from 1 at the undeformed state with the zero
wrapping force. Therefore, once the stiffness tensor C is written
in terms of 4, the dependence of the elastic modulus on the wrap-
ping force can be obtained. In the following, two packing lattices
are considered, respectively.

For hexagonal packing, Fig. 5(a) shows the Sin um particle of
the 2D hexagonal lattice, and its volume is V =2 34%(19)2. Insert-
ing the pairwise potential for the Hertz contact model, tﬁe compo-
nents for elastic tests can be written as

N
Ch=C 322V, + AV, 22
n==0Cp= 16(10)2 32V 4] (22)
Cp=0C = 3 [ﬂva SAV)L] (23)
16(10)2 ’ i
Cus = 3 [22V +34V,] (24)
16(10)2

Using Eqgs. (14)—(17), the relation between effective elastic tensor C
and contact force P can be obtained. Using the relation between
P, A, and wrapping force, one can design and control the stiffness,
which will be demonstrated, subsequently.

For square packing, Fig. 6(a) shows the Singum particle of the
2D square lattice, and its volume is Vx=422(12)2. Figure 6(b)
shows the directions of the unit vectors of each loads. The

1
Cij =W(MM AVA)ZnI ] +

4(10)2

Similarly to hexagonal packing lattice, one can write the compo-
nents for elastic tests as

Ch=C 2V 27
n=0Cp= 4(10)2 gy 27
Cp=C ! AV (28)
R=01=-—254V)
4(19)
C —L,w (29)
44 —4(12)2 A

Using Eqgs. (14)—(17), the relations between effective elastic
modulus and contact force can be obtained for further analysis.

4 Results and Discussion

The Singum model provides the closed form of elasticity, which
considers the effects of the wrapping force or contact force. This
section will first verify the model by numerical experiments,
demonstrate the accuracy of the model, and then apply it to the
bridge cable design and analysis.

4.1 The Setup of the Numerical Experiments. A MATLAB
program is developed to perform numerical experiments serving

031003-6 / Vol. 90, MARCH 2023

[PV = AV, )68k + AV 25y + S8y —

(b)

Fig. 6 Singum particle from 2D square lattice: (a) the Singum
particle (purple) out from its direct neighbors numbering 1-4
and (b) the unit vectors of point load applied on the boundary

summation in Eq. (9) is reduced to the summation of nl’nj’ and

ninimn;, which can be written in the following identities for the

square lattice,

(25)

11
n nknl =201k 6;j0u

_w T

Substituting Eq. (25) into Eq. (9), the relation between stiffness
tensor C of square lattice and pairwise potential can be written as

AV, Z (é,kn,n + éjkn,n — Oun; nl)

I=1

8102
@) 26)

5udy)|

as a benchmark for validating the proposed Singum model. The
overall flow of this program is as follows: In the initialization
process, an array of cylinders with a radius of lg are automatically
generated based on the given lattice and the corresponding inputted
N, and N, numbers. For example, Fig. 4(a) schematically illustrates
N,=N, =5 with 5x5 blue cylinders. A list of neighbors for each
cylinder is detected and saved for the force computation step. To
simulate a hydrostatic loading, which causes all the bonds to
shrink by the same ratio, we update both x and y coordinates of
all the particles to x=X(1 —¢) and y=Y(l — ¢), respectively,
under any given strain e. This deformation process is clearly illus-
trated in Fig. 4(b), where the contact forces emerge at the high-
lighted red overlaps. For each pair of particles in contact, namely
x; and x;, the magnitude of the contact force is evaluated with
Eq. (13), and its direction is accurately defined as the unit vector
connecting the centers of two circles. The required hydrostatic
wrapping force can be computed from the contact force P based
on the assembly of the cylinders, which will be demonstrated
subsequently.

The modeling results exhibit a certain variation when N, and N,
are small due to the boundary effect. However, when N, and N, are
larger than 20 x 20, the variation becomes negligible. In the follow-
ing numerical experiments, N, =100 and N, =101 are used as the
default configuration.

The following factors may affect the accuracy in actual
applications:

Transactions of the ASME
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Fig. 7 Stretch ratio 1 at applied hydrostatic load F:

(1) The Hertz contact in Eq. (13) assumed that contacted width
2b is equal to the arc of the cylinder. When the contact
area is larger, the applicability of this assumption becomes
questionable, thus limiting the validity of the current
contact model to infinitesimal strain only with the small
contact area.

The friction between cylinders will play a significant role in
actual experiments and applications with a shear load,
whereas the present model assumes the perfectly smooth
surface of cylinders.

The present potential function V(r) is derived from the linear
theory of elasticity; whereas nonlinear elastic or inelastic
behavior of the materials may produce a considerable discre-
pancy in actual applications as the contact zone exhibits
stress concentration and thus large strain.

The displacement J was calculated by the line integral of the
strain along the center-centerline of the two-particle contact;
whereas a particle is in contact with more than three particles
in the actual applications.

(@)

3

“)

Therefore, although the Hertz contact model has been widely
used for granular materials in the literature, the accuracy of
Eq. (13) is limited to infinitesimal strain conditions. However, the
Singum model can be applied to general potential functions
between particles. The present Hertz contact model can be straight-
forwardly replaced if a P—§ curve for large deformation can be
developed numerically or experimentally, from which the potential
function can be obtained by the path integral. Particularly, when the
balls are hollow, large deformation is expected. Some experimental
studies are underway.

In this section, we will use the Singum model to explore the
mechanics and physics of packed cylinders with wrapping stresses.
Without loss of the generality, we take the Young’s modulus of the
cylinder to be E =210 GPa, and consider a range of Poisson’s ratio,

olex _(Cu+ Cip)fer _ V3
W (Ci+C)% 4y

Om

One reason is the packing density of hexagonal packing (0.907)
is 15% higher than that of square lattice (0.785). The other reason
stems from the difference in force transmission mechanism within
the square and hexagonal lattices. The relation between wrapping
force and the stretch ratio is the basis of subsequent analysis of
the effective elastic modulus.

Journal of Applied Mechanics
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ie.,v=0.1,0.3 and 0.5, to check how it affects the effective mate-
rial properties.

4.2 The Compressibility of 2D Lattices Varying With A. To
measure the compressibility of the packed cylinders, we perform a
strain-induced hydrostatic compression test. We apply an incremen-
tal strain of Aej; = Agey = Ae,/2, and combining with Egs. (22)
and (23), the incremental hydrostatic stress o,,, which is generated
by the wrapping force, will lead to an incremental mean stress as

1 1
Aoy, = E(Aﬂu + Aoy) =§(C11 + C2)Ae, (30)

where Ag, is the incremental volume strain. The incremental mean
stress o,, is related to P as

2(7le
% amﬂlg Hexagonal

Square

(€29)

Figure 7 plots the hydrostatic stress required to uniformly com-
press bond length to 4 of its original length for square and hexagonal
lattices. The Singum prediction agrees very well with the numerical
experiments, justifying the correctness of the Singum model.
However, the computational resources consumed by Singum
approach are much less than those taken by the numerical experi-
ments because no particle generation or neighbor detection is
needed for explicit solutions. For both lattices, as the cylinder’s
Poisson’s ratio gets larger, a higher compressible load is required
to compress the sample by the same amount. It is because the effec-
tive elastic modulus E/2(1 — ) in Eq. (13) increases with v. It is
noted that at each 4, the ratio between o7 of hexagonal lattice
and ¢ of the square lattice is

m

(32)

4.3 Young’s Modulus and Poisson’s Ratio of 2D Lattices
Varying With 6,,. The dependence of stiffness tensor on 1 can
be noticed from Eqgs. (22)—(24) and Egs. (27)—(29). Note that
although both lattices show Young’s modulus and Poisson’s
ratio the same in both directions, the hexagonal lattice is
isotropic whereas the square lattice is not because it does not
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satisfy G =E/2(1 4+ v). Putting them together with Eqgs. (19)—(21),
the effective Young’s modulus and Poisson’s ratio for square
lattice can be derived as

2
54 = <,12 - —) 33)
5 A R
41) Vi
|4
VS = ,1—\/; (34)
Similarly, for hexagonal lattice, we have
3 V3 APV =54V,
Efer = S BPV 4 AV,)) = et 35
1612( 22 2) 1600 B22V,p1 + AV,) (35)
AV, =5V
Hex __ A A (36)

- 3)»V§M + V,,i

Figure § plots how the effective Young’s modulus (E) varies with
o,, for square and hexagonal lattices. Generally speaking, for both
lattices, an increasing trend can be observed as the wrapping
force increases, indicating that the effective E of packed cylinders
can be manipulated by adjusting the wrapping force. A special
point is that a sudden jump in E occurs at the moment when a
very small wrapping force is applied compared to the loose condi-
tion because of P ;=0 and P ,; — oo in the neighborhood of A=1.
This jump indicates the power of wrapping on significantly increas-
ing the effective E.

In addition, given the same wrapping force, the sample with a
higher cylinder v exhibits a higher effective E. This phenomenon
may be due to the same reason that E/2(1 —v% in Egs. (16) and
(33) increases with v. Comparing the square lattice with the hexag-
onal lattice, we can notice that to get a similar elastic modulus, a
higher hydrostatic stress is required for the hexagonal lattice, and
combined with ¢,, — 4 relation in Fig. 7, the difference in E at the
same stretch is similar.

Figure 9 plots how the effective Poisson’s ratio (v) varies with
wrapping force for hexagonal lattices. Note that v for square lattices
increases from zero at an undeformed state to a small finite number
as the sample is compressed. This unphysical phenomenon
observed at first glance is actually true because the uniaxial com-
pression will cause the side area parallel to this compression to
become smaller, leading to an increase in stress, which gives the
nonzero v value. This is the power of configurational force.
However, the Poisson’s ratio for hexagonal lattice is far from
zero. When A — 1, v — 1/3; whereas v increases as A decreases.
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Unlike the square lattice, the effective v for hexagonal lattice is
almost 0.35 although a slight increase can be observed by increas-
ing the wrapping force. The reason for this finite v stems from the
lattice geometry: force can be transmitted from vertical direction
to lateral direction through the incline bonds.

4.4 Shear Modulus of 2D Lattices Varying With o,,. Fol-
lowing the same logic as the effective E and v, the effective shear
modulus G for square lattices is

1

Sq _
= ey
P
and the G for hexagonal lattices is
3
GHex = 16‘(/;)2 2V 5+ 34V,) (38)
4

Figures 10(a) and 10(b) plot how the effective shear modulus (G)
varies with wrapping force for square and hexagonal lattices. The
square lattice exhibits a negative shear resistance provided in
Eq. (37), which is not physical but shows the instability of the
square lattice under shear loading. In reality, with any shearing dis-
turbance, the square lattice under a hydrostatic load will collapse
and start transforming into the hexagonal lattice. Similarly to the
effective E, the G of the hexagonal lattice increases with wrapping
force. Also, compared to the loose case, a sudden jump in shear
modulus can also be observed by wrapping the cylinders with
only a small amount of force. A higher shear modulus can be
observed for cylinders with higher v in Fig. 10(b).

Overall, the prestress provides significant effects on the effective
elasticity of the assembly of the lattice of the cylinders. The simple,
explicit form of elasticity enables the design of lattice materials with
programmable mechanical properties by adjusting the wrapping
force. Although the Hertz contact model has been used for deriving
the potential function of Eq. (15), the present model can be applica-
ble to the general form of the potential function V(1), which can be
determined by the experiments directly or by other models.

4.5 Comparisons With the Existing Models in the
Literature. In the field of constitutive modeling of granular mate-
rials, two main streams are kinematics and static approaches, which
mainly solve for the movements of particles and the closed-form
elastic modulus, respectively [42]. Because of similarities with
the Singum model, the static approach is chosen for comparisons.
Following Chang’s work [25], we derived the stiffness tensor com-
ponents for both square and hexagonal lattices as

G
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Fig.8 Variation of effective Young’s modulus varying with applied hydrostatic compressive load: (a) the square and (b) hexagonal

lattices, respectively
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Combining with Egs. (19)—-(21), the effective elastic modulus for
both lattices is written as

E=122v,
Square{ v=0 1)
G=0
E=%22v,
Hexagonal§ v = % 42)

G le/ig/le,M

For square lattice, the v and G predicted by this model are all zero,
which is different from the numerical experiments and the Singum

Journal of Applied Mechanics

prediction when a prestress exists or the lattice is subjected to a
hydrostatic stress. The issue is caused by the effect of configura-
tional change. The similar physics has been investigated by
Eshelby of the existing force’s effect on the configuration
change by crack propagation [43]. The concept of configurational
force or material force has been applied to multiphysical problems
[37]. The configurational stress in Eq. (8) captures the non zero
Poisson’s ratio for square lattices, which highlights the physical
rigor of the Singum model. On the other hand, when A =1, for con-
figurational stress is indeed zero with V ; =0, the above equations
can be recovered from the Singum model as well. In addition,
unlike the tangent stiffness, the secant stiffness is not convenient
to be adopted for stress updates in numerical simulations with
incrementally increased strain. Additionally, the volume to
which stress is homogenized was referred to as the undeformed
volume, limiting the applicability to the infinitesimal strain
range, while the Singum model can be straightforwardly extended
to finite deformation with a high-fidelity interaction potential
function.

However, the present Singum model still exhibits its own limits
that the established models address specifically, such as plastic
deformation of particles and friction between particles, etc., which
shall be considered in future work by including moment and
shear force at the cutting points at the Singum surface.
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Fig. 11 Wrapping force in bridge cable bands: (a) the required wrapping force to compress the cable to different radius ratios and
(b) the effective elastic modulus (E, v, G) varying with the band wrapping force

4.6 Case Study of a Suspension Bridge Cable. Cables in sus-
pension bridges are a major load-bearing structural component.
Because square packing is unstable for sharing, hexagonal packing
is always used in the actual application of suspension bridge cables.
As an example, in the George Washington Bridge in New York
City, the large cable contains 9061 wires in Fig. 1, and this cable is
chosen as a case study to demonstrate the great potential of Singum
model in assisting control of the effective elastic modulus by adjust-
ing the wrapping force in the bands. Composed of the 9061 wires with
aradius of 2.413 mm each, the cable has a radius of 243.5 mm and is
banded by clamps with a width of 200 mm spaced at 6.096 m [30].
The Young’s modulus and Poisson’s ratio of the steel wires are
210 GPa and 0.3, respectively. Force transfer between each cable is
simulated with Johnson’s model in Eq. (13). At each band location,
the related mean hydrostatic pressure o,, and the stretch ratio 1 at
each wire contact point can be computed with Eq. (30), and here 1
=R, /R, relates the deformed and undeformed radius of the overall
cable. The hoop stress oy, in the band is related to o, as

Ude
Ty

on= (43)
where R, and #;, are the deformed radius and thickness of a band. The
wrapping force can be straightforwardly computed as

F= opty = Ude (44)

Figure 11(a) plots the relationship between the deformed radius and
wrapping force, and similarly to Fig. 7, an increasing trend is
noticed as the cable gets more compressed. With the Singum
model, one can easily predict the value of wrapping force in the
cable bands once a pair of deformed and initial radii are given.
More interestingly, the effective elastic moduli at different wrapping
forces are displayed in Fig. 11(b). Their overall trends are similar to
the aforementioned results. The key information conveyed by this
plot is that we can quantitatively adjust the effective elastic
modulus by controlling the wrapping force in the bands, or by adjust-
ing the cable deformed radius. Once generalized to other applications
with packed cylinders, the Singum model will make a significant
impact on material and structural design.

5 Conclusions

In this research, we extended the Singum model by deriving the
pairwise potential considering the Hertz contact between two cylin-
ders, enabling the Singum model to efficiently predict the tangent
stiffness tensors of particles packed in regular lattices in 2D plane
strain conditions. To select an appropriate contact model, we

031003-10 / Vol. 90, MARCH 2023

performed experiments and finite element analysis on cylinder
samples of different material properties, and Johnson’s model is
selected in the Singum model for deriving the inter-cylinder potential.
Both square and hexagonal lattices are considered in this research to
show the versatility of the Singum model. The dependence of effec-
tive elastic modulus on wrapping force predicted by Singum model
agrees very well with the numerical verification, regardless of the
packing lattices and material properties of cylinders. It is interesting
to show the hexagonal lattice exhibits isotropic elasticity while the
square lattice anisotropic in the 2D space. The solution can be used
in the design of cylinder packs with controllable mechanical proper-
ties via adjusting the wrapping force. The significance is demon-
strated in our case study on designing cables for suspension
bridges. The superiority of the Singum model is demonstrated by per-
formance comparison with common strategies for constitutive mod-
eling of granular materials in literature. In addition to the 2D lattices,
the Singum model can be extended to modeling granular materials
consisting of spheres packed in 3D lattices, such as face-centered
cubic, body-centered cubic, and simple cubic. The research output
will shed light on investigating the mechanics of packed cylinders
and exploring the optimized design of packing problems.
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Appendix: Numerical Verification and Experimental
Validation of Johnson’s Model

As a result of the complexity of the cylinders in the contact
problem, various types of models have been proposed to describe
the relationship between contact force (P) and mutual approach (6).
The most well-known models include Johnson’s model [35], Radzi-
movsky’s model [38], Goldsmith’s model [39], and Lankarani and
Nikravesh’s model [41]. Following these models, the relation
between deformed cylinder radius [, and contact force P is summa-
rized below:

Johnson’s model:

P(1 —1?) 4zEL
I=0- 1 r__ 1
r=h T e \Ma—p

(AD

Radzimovsky’s model:

P(1-1%) (2 3.46°E
L=P- = P A2
=TT 2 \3T TR =) (A2)
Goldsmith’s model:
P(1 —1?) alE
=p0_ 1 12 1 A
h=l-—F "pa— T (A3)

Lankarani and Nikravesh’s model:

1/n
l _10_1<3P(1—u2))
= =
P 2\27EW)/2)'?
These models are specifically valid for problems of different contact
types, materials, and dimensions [40]. In order to choose the model
that best fits our research problem, we compared the performance of
all these four models against finite element analysis and experimen-
tal results.

Experimental tests were conducted at the Carleton Laboratory,
Columbia University, to investigate the load-displacement (P — §)
relationship. A universal testing machine (UTM) with a
maximum capacity of 34 kips (150 kN)was used to apply a com-
pression load. An abrasion-resistant polyurethane rubber rod was
acquired from McMaster with Part Number 8695K693 in July
2022 and cut into three specimens with a diameter 54 mm, and
varying lengths of 97.8 mm, 103 mm, and 104 mm, respectively.

The Poisson’s ratio and Young’s modulus can be determined
using mechanical, acoustic, or optical methods [44]. For this

(A4)

paper, the machine measurement method is used by applying a uni-
axial force to the test specimen; the axial force is measured by the
universal testing machine as shown in Fig. 12(a), and the axial and
transversal strains are measured by the strain gauges on the rubber
specimen. The Poisson’s ratio is the negative ratio of the transverse
strain to the axial strain. The Young’s modulus £ and Poisson’s
ratio v are calculated using the axial strain data from the experiment
as follows.

i

E= (AS)

o
—; v=-—
Ex Ex

Using Eq. (AS5), the Young’s modulus (E£) and Poisson’s ratio (v)
are calculated to be 470 mPa and 0.5, respectively in the linear
elastic range.

In order to determine the P — ¢ relationship of the cylindrical
rubber, experimental tests were performed on the three specimens
as shown in Fig. 12(b). The specimens were laid in the horizontal
direction and held in place using steel plates that were oiled to
prevent friction. The specimens were loaded uni-axially using a dis-
placement control of 0.762 mm/min. The time, load, deflection
values for all tests were recorded through a data acquisition
system. The load-displacement data of all three specimens were
averaged and used for comparison as shown in Fig. 13. In addition,
the error bars shown in the figure, demonstrate that the load-
displacement relationship of the three specimens is very close to
each other. Note that although only one cylinder is used in the
test, because the steel platens can be considered to be a rigid
surface, and with a mirror symmetry it can reproduce the deforma-
tion pattern of the contact of two identical cylinders in the finite
element method (FEM) simulation of Fig. 12(c).

In order to further verify that an appropriate contact model is
selected, we performed finite element analysis with aBaQus 2019.
As shown in Fig. 12(c), the model geometry strictly follows the
experimental configurations, and the material is set to be linearly
elastic with Young’s modulus and Poisson’s ratio the same as mea-
sured in the experiment. The contact between two cylinders is
defined as frictionless and hard contact, which minimizes the pene-
tration of the secondary surface into the primary surface and does
not allow the transfer of tensile stress across the interface.

Figure 13 shows the comparison between those aforementioned
contact models. Note that the Lankarani and Nikravesh’s (LN)
model exhibits a parameter n, which was recommended in the
range of [1, 1.5]. Here, the case of n=1 shows too much off
from those from both experiments and finite element analysis;
while other cases of n might fit the experiments better. Although
the LN model exhibits the advantage of its explicit form solution,

Fig.12 (a) The UTM experimental setup for Poisson’s ratio and Young modulus measurement, (b) horizon-
tal rubber cylinder under contacting compression in the UTM, and (c) FEM simulation of rubber cylinder
under compression
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Fig. 13 Comparison of load — displacement (P — J) relationship
computed by the different contact models, finite element analy-
sis, and experimental testing for a rubber cylinder under contact-
ing compression

to avoid the empirical calibration of the parameter n, we turn to
other three models. Johnson’s, Radzimovsky’s, and Goldsmith’s
models provide similar predictions, which match reasonably well
with the experimental result. Note that rubber exhibits hyperelastic
behavior with nonlinear elastic moduli at different levels of strain.
Because the single values of E and v in the linear elastic range
are used in the contact models, some deviations from the experi-
mental results are anticipated. Using the linear elastic constants,
the finite element results can provide another reference to the
contact problem, which agrees very well with Johnson’s prediction.
Therefore, Johnson’s model is chosen in this research to derive the
potential function for the contact problem between two cylinders.
In actual applications, because the stress at the contacting surface
and its neighborhood is much higher than the rest part, the non-
linearity of elasticity or inelastic behavior of the material may
affect the accuracy of the contact models. Moreover, the friction
between particles may change the contact mechanics as well. For
multiple contacts between particles, the pairwise contacts may
exhibit some loss of accuracy. Therefore, although Johnson’s
model provides good agreement with the present FEM and experi-
mental results, its applicability to different materials may change
with the load levels and testing geometry or configuration, particu-
larly for finite deformation of many particle systems. More investi-
gation of the applicability of those models is underway. However,
as long as a high-fidelity P—§ curve is provided, the present
Singum model can straightforwardly use it in the same fashion.

References

[1] Heitkam, S., Drenckhan, W., and Frohlich, J., 2012, “Packing Spheres Tightly:
Influence of Mechanical Stability on Close-Packed Sphere Structures,” Phys.
Rev. Lett., 108(14), p. 148302.

[2] Hifi, M., and M hallah, R., 2009, “A Literature Review on Circle and Sphere Packing
Problems: Models and Methodologies,” Adv. Operat. Res., 2009, p. 150624. .

[3] Stoyan, Y. G., 1983, “Mathematical Methods for Geometric Design,” Advances
in CAD/CAM, Proceedings of PROLAMAT, Leningrad, USSR, May 16-18,
1982, Vol. 82, pp. 67-86.

[4] Szabd, P. G., Markét, M. C., Csendes, T., Specht, E., Casado, L. G., and Garcia,
L., 2007, New Approaches to Circle Packing in a Square: With Program Codes,
Vol. 6, Springer Science & Business Media, New York.

[5] Hifi, M., and M’Hallah, R., 2007, “A Dynamic Adaptive Local Search Algorithm
for the Circular Packing Problem,” Eur. J. Operat. Res., 183(3), pp. 1280-1294.

[6] Woodcock, L., 1997, “Entropy Difference Between the Face-Centred Cubic and
Hexagonal Close-Packed Crystal Structures,” Nature, 385(6612), pp. 141-143.

[7] Werkmeister, S., Dawson, A., and Wellner, F., 2004, “Pavement Design Model
for Unbound Granular Materials,” J. Transp. Eng., 130(5), pp. 665-674.

[8] Darve, F., and Laouafa, F., 2000, “Instabilities in Granular Materials and
Application to Landslides,” Mech. Cohes. Friction. Mater.: Int. J. Exp. Model.
Comput. Mater. Struct., 5(8), pp. 627-652.

[9] Jiang, M., Shen, Z., and Li, L., 2016, “Noncoaxial Behavior of a Highly Angular
Granular Material Subjected to Stress Variations in Simple Vertical Excavation,”
Int. J. Geomech., 16(2), p. 04015040.

031003-12 / Vol. 90, MARCH 2023

[10] Abed Zadeh, A., Barés, J., Brzinski, T. A., Daniels, K. E., Dijksman, J., Docquier,
N., Everitt, H. O., Kollmer, J. E., Lantsoght, O., Wang, D., et al., 2019,
“Enlightening Force Chains: A Review of Photoelasticimetry in Granular
Matter,” Granul. Matter, 21(4), pp. 1-12.

[11] Fonseca, J., Nadimi, S., Reyes-Aldasoro, C., Coop, M., 2016, “Image-Based
Investigation Into the Primary Fabric of Stress-Transmitting Particles in Sand,”
Soils Found., 56(5), pp. 818-834.

[12] Ferellec, J., and McDowell, G., 2010, “Modelling Realistic Shape and Particle
Inertia in DEM,” Géotechnique, 60(3), pp. 227-232.

[13] Houlsby, G., 2009, “Potential Particles: A Method for Modelling Non-Circular
Particles in DEM,” Comput. Geotech., 36(6), pp. 953-959.

[14] Hertz, H., 1882, “Ueber die beriihrung fester elastischer korper.[on the fixed
eelastic body contact],” J. Reine Angew. Math., 1882(92), pp. 156-171.

[15] Mindlin, R. D., and Deresiewicz, H., 1953, “Elastic Spheres in Contact Under
Varying Oblique Forces.”

[16] Nadimi, S., Shire, T., and Fonseca, J., 2017, “Comparison Between a uFe Model
and DEM for an Assembly of Spheres Under Triaxial Compression,” EPJ Web of
Conferences, Montpellier, France, July 3-7, Vol. 140, EDP Sciences, p. 15002.

[17] Shewchuk, J., 2002, “Computational Geometry: Theory and Applications.”

[18] Nadimi, S., and Fonseca, J., 2018, “A Micro Finite-Element Model for Soil
Behaviour: Numerical Validation,” Géotechnique, 68(4), pp. 364-369.

[19] Duffy, J., and Mindlin, R., 1957, “Stress-Strain Relations and Vibrations of a
Granular Medium.”

[20] Duffy, J., 1959, “A Differential Stress-Strain Relation for the Hexagonal
Close-Packed Array of Elastic Spheres.”

[21] Deresiewicz, H., 1958, “Stress-Strain Relations for a Simple Model of a Granular
Medium.”

[22] Makhlouf, H., and Stewart, J., 1967, “Elastic Constants of Cubical-Tetrahedral
and Tetragonal Sphenoidal Arrays of Uniform Spheres,” Proceedings of
International Symposium of Wave Propagation and Dynamic Properties of
Earth Materials, Albuquerque, NM, Aug. 23-25, pp. 825-837.

[23] Kishino, Y., 1978, “Statistical Consideration on Deformation Characteristics of
Granular Materials,” Proceedings, US-Japan Seminar on Continuum
Mechanical and Statistical Approaches in the Mechanics of Granular Materials,
Sendai, Japan, June 5-9, Cowin, S. C., and Satake, M., eds., Gakujutsu
Bunken Fukyu-Kai, Tokyo, pp. 114-122.

[24] Rothenburg, L., and Selvadurai, A., 1981, “A Micromechanical Definition of the
Cauchy Stress Tensor for Particulate Media. Mechanics of Structured Media,”
Proceedings of International Symposium on Mechanical Behavior of Structured
Media, Ottawa, Canada, May 18-21, Selvadurai, A. P. S., ed., pp. 469—486.

[25] Chang, C., 1988, “Micromechanical Modelling of Constitutive Relations for
Granular Material,” Stud. Appl. Mech., 20, pp. 271-278.

[26] Granik, V. T., and Ferrari, M., 1993, “Microstructural Mechanics of Granular
Media,” Mech. Mater., 15(4), pp. 301-322.

[27] Yin, H., 2022, “A Simplified Continuum Particle Model Bridging Interatomic
Potentials and Elasticity of Solids,” J. Eng. Mech., 148(5), p. 04022017.

[28] Yin, H., 2022, “Generalization of the Singum Model for the Elasticity Prediction
of Lattice Metamaterials and Composites,” ASCE J. Eng. Mech. (in press).

[29] Nelson, J. K., and Thater, G. G., 2013, “The Roosevelt Island Tramway
Modernization Project,” Forensic Engineering 2012: Gateway to a Safer
Tomorrow, San Francisco, CA, Oct. 31-Nov. 3, 2012, pp. 1091-1100.

[30] Montoya, A., Deodatis, G., Betti, R., and Waisman, H., 2015, “Physics-Based
Stochastic Model to Determine the Failure Load of Suspension Bridge Main
Cables,” ASCE Comput. Civil Eng., 29(4), p. B4014002.

[31] Bell, J. M., 1965, “Stress-Strain Characteristics of Cohesionless Granular
Materials Subjected to Statically Applied Homogenous Loads in an Open
System,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.

[32] Mindlin, R. D., 1949, “Compliance of Elastic Bodies in Contact.”

[33] Ko, H.-Y., and Scott, R. F., 1967, “Deformation of Sand in Hydrostatic
Compression,” J. Soil Mech. Found. Div., 93(3), pp. 137-156.

[34] Mura, T., 1987, Micromechanics of Defects in Solids, Vol. 3, Kluwer Academic
Publishers, Dordrecht, The Netherlands, vol. 580, p. 21.

[35] Johnson, K. L., 1987, “Contact Mechanics,” J. App. Mech., 16(3), pp. 259-268.

[36] Yin, H., 2022, “Improved Singum Model Based on Finite Deformation of
Crystals With the Thermodynamic Equation of State,” ASCE J. Eng.
Mech.(submitted).

[37] Maugin, G. A., 2016, Configurational Forces: Thermomechanics, Physics,
Mathematics, and Numerics, CRC Press, New York.

[38] Radzimovsky, E. I., 1953, “Stress Distribution and Strength Condition of Two
Rolling Cylinders Pressed Together,” Technical Report, University of Illinois at
Urbana Champaign, College of Engineering, Urbana, IL.

[39] Goldsmith, W., 1960, Impact: The Theory and Physical Behaviour of Colliding
Solids, Edward Arnold, London.

[40] Pereira, C. M., Ramalho, A. L., and Ambrésio, J. A., 2011, “A Critical Overview
of Internal and External Cylinder Contact Force Models,” Nonlinear Dyn., 63(4),
pp. 681-697.

[41] Lankarani, H. M., and Nikravesh, P. E., 1994, “Continuous Contact Force
Models for Impact Analysis in Multibody Systems,” Nonlinear Dyn., 5(2),
pp. 193-207.

[42] Chang, C. S., Chao, S. J., and Chang, Y., 1995, “Estimates of Elastic Moduli for
Granular Material With Anisotropic Random Packing Structure,” Int. J. Solids
Struct., 32(14), pp. 1989-2008.

[43] Eshelby, J. D., 1951, “The Force on an Elastic Singularity,” Philos. Trans. R. Soc.
Lond. Ser. A, 244(877), pp. 87-112.

[44] Shan, G., Yang, W., Feng, J., and Yang, M., 2006, “Advances in Test Methods for
Poisson’s Ratio of Materials,” Mater Rev., 20(3), pp. 15-20.

Transactions of the ASME



