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A B S T R A C T

When an underground heat exchanger is subjected to a surface load on the ground and
temperature change inside, the stress transfer between the thermal tank and the earth may cause
the deformation and destruction of the tank. The bi-material thermoelastic fundamental solution
of two-jointed dissimilar half-spaces is applied to elastic and thermal analysis of spherical heat
storage tanks, where the continuity equations at the bi-material interface are satisfied. Using
Hadamard’s regularization in the 𝑥3 direction, the two-dimensional bi-material thermoelastic
fundamental solution can be obtained. By changing the material constants, the fundamental
solution for a semi-infinite domain or an infinite domain with a single material can be recovered.
In general, the storage tanks and soil exhibits different thermal and mechanical properties. A
dual equivalent inclusion method (DEIM) is proposed to simulate the material mismatch of
thermal conductivity and elasticity with continuously distributed eigen-temperature-gradients
and inelastic eigenstrains on the tanks, respectively. Using the analytical domain integrals,
no mesh is required for inhomogeneities. Due to the boundary effects and inhomogeneity
interactions, the eigen-fields are expanded at the center of each inhomogeneity using the
Taylor series with tailorable accuracy. The DEIM is verified by the finite element method and
demonstrated by the geothermal applications using uniform, linear, or quadratic orders of eigen-
fields. For a spherical heat exchanger in an infinite homogeneous domain, DEIM provides the
exact solutions of the thermoelastic fields for a uniform heat source and a uniform far-field heat
flux field.

1. Introduction

Spherical underground heat exchangers have been employed to store heat energy and also, interact with surrounding soil via
heat exchange (Wang et al., 2022) as the ground temperature profile is relatively stable under a certain depth, which exhibits great
potential for the thermal management of buildings with improved energy efficiency among other environmental benefits. Geothermal
systems have drawn significant attention both in research and industry field (Yin et al., 2013, 2021). The thermal analysis regarding
geothermal tank systems has been rigorously investigated through experimental, analytical and numerical analysis (Kuang et al.,
2003; Qu et al., 2010; Benzaama et al., 2018; Li et al., 2015; Wang et al., 2022). The stress transfer for underground structures,

∗ Corresponding author.
E-mail addresses: cw3056@columbia.edu (C. Wu), tw2520@columbia.edu (T. Wang), yin@civil.columbia.edu (H. Yin).

https://doi.org/10.1016/j.jmps.2023.105207
Received 15 September 2022; Received in revised form 2 December 2022; Accepted 10 January 2023



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

�

C. Wu et al.

Fig. 1. Schematic illustration of a bi-directional geothermal system using multiple spherical thermal energy storage tanks.

particularly for piping systems (Kramer and Basu, 2014; Hwang et al., 2020), has also received significant attention for damage by
thermal stress induced by temperature change.

Fig. 1 shows a bi-directional geothermal system working for both a thermal energy storage and a heat sink, which is designed to
manage indoor temperature and reduce related energy consumption (Wang et al., 2022). Multiple tanks can be used for improved
performance and capacity. They can store heat in the surrounding ground in summer and use it in winter for seasonal thermal
management. The performance of such a system depends on the heat transfer process. In our recent work (Wang et al., 2022),
we have investigated the effects of thermal conductivity, and depth of a single spherical geothermal tank considering temperature
gradients and prescribed heat source by heat pumps. In addition to thermal analysis of heat flows, it is essential to investigate
the thermoelastic effects introduced by temperature changes, as such effects may cause potential damage to neighboring structures
and bring about safety issues. Particularly, the understanding of thermoelastic effects can help engineers to optimize designs and
improve the overall performance of the bi-directional geothermal system.

As the thermal response of a geothermal system is critical to the energy performance; the stress transfer analysis of the geothermal
system addresses its safety and design specification as underground thermal tanks are sometimes under static and dynamic surface
loading like vehicle parking and moving, respectively. The fundamental solution of a semi-infinite space with a concentrated point
force can be firstly found in Boussinesq’s solution (Boussinesq, 1885), where a point force is applied perpendicular to and on the
plane surface of an isotropic half-space. Subsequently, for a two-jointed half-spaces, Head (1953) and others (Michell, 1899; Love,
2013) utilized harmonic potentials to derive the elastic solution with different interface conditions, i.e stress transmission and
completely weld. Mindlin (1936) relaxed the condition of Boussinesq’s problem and proposed the fundamental solution, namely the
Mindlin’s solution, to an arbitrarily concentrated point force inside the half-space with a traction-free boundary condition. Later, a
concise form of the Mindlin’s solution was derived from Galerkin’s stress vector (Mindlin and Cheng, 1950a) and Rongved (1955a)
achieved the solution of the same problem as Mindlin’s but with a fixed boundary condition, which existed in fluid mechanics
as well (Lorentz, 1907). Rongved (1955b) further generalized the case to a concentrated force interior to one of the two-jointed
dissimilar semi-infinite solids. For hydrostatic inclusions, Mindlin and Cheng (1950b) and Sen (1951) considered the thermal-elastic
stresses.

In the literature, pioneers (Yu et al., 1992; Yu and Sanday, 1991; Singh et al., 1999; Tinti and Armigliato, 1998) have extended the
previous semi-infinite solution for bi-materials. Walpole (1996) and Huang and Wang (1991) generalized (Collins, 1960) and derived
the explicit fundamental solution for bi-materials with two interface conditions by method of images. By adjusting the material
properties of two materials, the bi-material fundamental solution can be reduced to half-space solutions such as the celebrated
Lorentz’s and Mindlin’s problem. In addition, the bi-material fundamental solution to Stoke’s flow (Huang and Wang, 1991) was
derived with in-compressible Poisson’s ratio. Other contributions on bi-material elasticity can be found in Liu et al. (2011) and Wu
et al. (2022).

As for the research on isotropic thermoelastic problems, Biot (1956) acquired the solution composed of four potential functions
through the extension of the Papkovitch–Neuber solution. Subsequently, Verruijt (1969) proved the completeness of Biot’s general
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solution. For transversely isotropic materials, the authors (Podil’chuk and Sokolovskii, 1994) proposed the solution with four
potential functions, where the last one is governed by the non-homogeneous differential equation. Nowacki (1986) obtained the
full-space fundamental solution of a concentrated point heat source, and Barber (1992) summarized the derivation for both two-
and three-dimensional problems.

Regarding application of bi-materials, Yu et al. (1992) extended (Yu and Sanday, 1991) and followed Goodier’s method of
integration (Goodier, 1937) to derive bi-material Green’s function with prescribed temperature change and the authors investigated
thermal stresses caused by a spherical inclusion. Sharma (1958) provided the integral-form solution to a transversely isotropic
semi-infinite domain. Hou et al. (2008a,b) followed Chen et al. (2004) and achieved solutions of full space and bi-materials. Hou’s
group (Hou et al., 2013b,a) pointed the inconvenience to apply previous fundamental solutions (Haojiang et al., 2000) to certain
boundary value problems (BVPs) because they are generally combined with both harmonic and non-harmonic potential functions.
Therefore, they proposed a solution composed of three harmonic potential functions (Hou et al., 2013b,a), which can be used to
deal with the BVPs.

Thanks to Eshelby’s celebrated work (Eshelby, 1957, 1959) of the equivalent inclusion method (EIM), the original inclu-
sion/inhomogeneity problem can be completely and mathematically transformed as a process to solve the continuously distributed
eigenstrain field. Such treatment avoids trivial procedures to handle interfacial continuity equations as displacements and tractions,
which saves efforts in both computations as well as preprocess of mesh. As Yu et al. (1992) concluded that when the inclusion
is close to a free-surface (bi-material interface in the case study), both the thermal and elastic fields can be greatly disturbed due
to the boundary effects, where the image terms become dominant. As for inhomogeneity problems, Mura (1987) mentioned the
inaccuracy to use merely constant eigenstrain under inhomogeneity interactions and the authors suggested using a higher-order
polynomials, i.e. the Taylor series expansion at the center of inhomogeneities. Following Mura’s work, Liu et al. (2015) indicated
intensive boundary effects when the ratio of distance and radius of spherical particles becomes small; Wu et al. (2023) observed
that the intensive boundary effects cause angle shift of maximum stress concentration. Dong et al. (2020) investigated plane strain
elastic responses of the thin film–substrate system with rough surfaces under contact loading, where the authors combined EIM
and conjugate gradient method (CGM) to handle layered volume and surface pressure, respectively. Zhou et al. (2011a) studied the
effect of hard coatings over a substrate with cuboid inhomogeneities. And the coating layers are discretized into the grid elements
with constant eigenstrain to deal with the material mismatch of the substrate. Subsequently, Zhou’s group extends to arbitrarily
shaped inhomogeneities (Zhou et al., 2011b). Following Zhou’s works, Wei et al. (2016) proposed a fatigue model to understand
crack propagation considering cyclic load and initial misfit strain. Other works related to Eshelby’s EIM on a semi-infinite domain
can refer to the review paper (Zhou et al., 2013).

This paper investigates the thermoelastic behavior of thermal tanks in the ground, which are considered inhomogeneities
exhibiting different thermoelastic properties, specifically (i) thermal conductivity; (ii) thermal expansion coefficients and (iii)
stiffness, from the surrounding earth. Hence, the original equivalent inclusion method is further extended to couple both thermal and
elastic fields, namely the dual EIM (DEIM). In Eshelby’s EIM (Eshelby, 1957; Mura, 1987), the thermal strain is typically considered
as an eigenstrain. However, a heat source causes temperature variation over the whole domain, which is corresponding to eigenstrain
in the whole domain, so it is not effective in separately addressing the thermal strain. In DEIM, polynomial eigen-temperature
gradients (ETG) and eigenstrains are introduced to simulate the material mismatch at tailorable accuracy by using uniform, linear
and quadratic forms of ETG and eigenstrains on the particle domain only. The complete bi-material thermoelastic fundamental
solution for a point heat source in the Cartesian coordinate, which is expressed in terms of potential functions, is used to calculate
the thermal stress, and the dual equivalent inclusion conditions on thermal conduction and stress equilibrium are set up on the
inhomogeneity to solve for the eigen-fields and then thermoelastic fields.

In the following, Section 2 presents the problem statement for the boundary value problems with fully bonded interfaces.
Section 3 rederives the bi-material thermoelastic fundamental solution in the tensor form (Hou et al., 2013b), which is convenient
and straightforward for domain integrals and programming. Subsequently, the DEIM is presented with eigen-temperature-gradients
and eigenstrain. Although the case studies focus on a semi-infinite domain, in Section 5, the scheme is verified and demonstrated
with the finite element method (FEM) with two-jointed dissimilar half-spaces. Through adjusting the material coefficients, the bi-
material interface conditions can reduce to the same as Mindlin’s and Rongved’s problems. In Section 5, the effects of stiffness,
relative position, and dimension of spherical tanks are investigated with and without thermal fields. Section 6 presents thermoelastic
solutions for a single spherical heat exchanger in an infinite solid subjected to a uniform heat source or heat flux, respectively. Finally,
some conclusive remarks are provided in Section 7.

2. Problem statement

Consider a two-jointed full space  containing multiple subdomains 𝛺𝐼 , and in general, the two phases (the upper + and the
lower −) exhibit different mechanical properties. Regarding the thermoelastic problem, let , and 𝐾 denote the isotropic stiffness
tensor, thermal modulus, and thermal conductivity, respectively. Here the thermal modulus  = (3𝜆 + 2𝜇)𝛼, where 𝜆, 𝜇, 𝛼 are the
two Lame constants and thermal expansion ratio, respectively. Shown in Fig. 2, the superscripts ′, ′′, and 𝐼 denote properties of
the upper, lower half-space and the 𝐼th inhomogeneity, respectively. Without the loss of any generality, the bi-material interface
is selected as 𝑥1 − 𝑥2 plane when 𝑥3 ≡ 0. The continuity assumptions are made on (i) the bi-material interface and (ii) interfaces
between subdomains 𝛺𝐼 and matrix  for both stress transfer and heat conduction as Eq. (1),

𝑢𝑖(𝐱+) = 𝑢𝑖(𝐱−), 𝜎𝑖𝑗 (𝐱+)𝑛𝑗 (𝐱+) = 𝜎𝑖𝑗 (𝐱−)𝑛𝑗 (𝐱−)
𝑇 (𝐱+) = 𝑇 (𝐱−), 𝑞𝑖(𝐱+) = 𝑞𝑖(𝐱−)

(1)



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

(

C. Wu et al.

Fig. 2. Schematic illustration of the boundary value problem for a two-jointed half-spaces containing inhomogeneities.

where the superscripts ‘‘+’’ and ‘‘−’’ represent the inward and outward surface of the interfaces between subdomain and matrix and
bi-material interface, respectively; 𝐧 denotes the unit surface normal vector and, specifically, 𝐧 = (0, 0,±1) at bi-material interface 𝑆.
Combining Navier’s governing equation, a boundary value problem can be formulated and solved through the domain discretization
method (on subdomain surface or subdomain volume). As introduced in the last section, Eshelby transformed the conventional BVPs
to the determination of eigen-fields analytically, which elegantly avoided the discretization procedures in numerical methods. By
virtue of Eshelby’s method, this paper utilizes the thermal, elastic, and thermoelastic Green’s functions for an infinite bi-material
domain to handle the thermoelastic inhomogeneity problem by determining the thermal (ETG) and elastic (eigenstrain) eigen-fields
and then derive the thermal stress caused by underground heat exchange.

The Green’s functions define the temperature or displacement response of any field point x caused by a point source at 𝐱′. Given
a point heat source 𝛿(𝐱′) as a Dirac Delta function, the temperature and displacement variations can be written as,

𝑇 (𝐱) = 𝐺(𝐱, 𝐱′)𝛿(𝐱′); 𝑢𝑖(𝐱) = 𝐺𝑖(𝐱, 𝐱′)𝛿(𝐱′) (2)

where the thermal Green’s function 𝐺 is a scalar function; while the thermoelastic Green’s function 𝐺𝑖 is a vector function.
Given a point force source 𝑓𝑖(𝐱′) = 𝑛𝑖𝛿(𝐱′) as a unit concentrated force in the direction 𝐧, the displacement variation can be

written as,

𝑢𝑖(𝐱) = 𝐺𝑖𝑗 (𝐱, 𝐱′)𝑓𝑗 (𝐱′) (3)

where the elastic Green’s function 𝐺𝑖𝑗 is a second-rank tensor function. Although the same symbol is used for all three Green’s
functions, they are differentiated by the rank of 0, 1, and 2 for thermal, thermoelastic, and elastic Green’s functions, respectively.
For a bi-material domain, the Green’s functions shall be defined in accordance with the material domains of the source and field
points, which will be demonstrated in the next section. Some specific Green’s functions are also provided in Appendix B.

3. Formulation

3.1. Elastic and thermal fundamental solutions for two-jointed dissimilar half-spaces

Following the assumption in Section 2, when one concentrated force is applied at the arbitrary interior point of the upper phase
+, Walpole (1996) derived the solution based on nuclei of strain, while Huang and Wang (1991) obtained it through the extension
of the Papkovitch–Neuber solution. However, both of them applied the method of image, whose basis is the superposition of two
fields, also known as double force (Yu et al., 1992). Therefore, the fundamental solution contains the Kelvin’s solution and the image
parts. Wu et al. (2022) completed all cases of the solution when the source 𝑥′3 < 0 by virtue of mathematical equivalence and the
solution is listed as Eq. (4),

4𝜋𝜇𝑤𝐺𝑦

𝑖𝑗
(𝐱, 𝐱′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖𝑗 + 𝜒𝐵𝑦(𝛿𝑖3𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗3)𝛼

𝑦

,𝑘

− 𝐶𝑦𝑥3

[
𝑄𝐽𝜓,𝑖𝑗3 + 4(1 − 𝜈𝑤)𝛿𝑗3𝜙,𝑖 + 2(1 − 2𝜈𝑤)𝛿𝑖3𝑄𝐽𝜙,𝑗 −𝑄𝐽𝑥3𝜙,𝑖𝑗

]
− 𝐷𝑦𝑄𝐼𝑄𝐽𝜓,𝑗𝑖 − (𝐺𝑦 + 𝐵𝑦)𝑄𝐽𝛽

𝑦

,𝑖𝑗

𝑥′3𝑥3 ≥ 0

(𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖𝑗 + 𝜒𝐵𝑦(𝛿𝑖3𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗3)𝛼

𝑦

,𝑘

− 𝐷𝑦𝜓,𝑖𝑗 − 𝜒𝑥3𝐹
𝑦𝛼

𝑦

,𝑖𝑗
− (𝐺𝑦 + 𝐵𝑦)𝑄𝐼𝛽

𝑦

,𝑗𝑖

𝑥′3𝑥3 < 0

(4)

where the superscripts 𝑤, 𝑦 and 𝜒 change according to the position of the source point that: (i) when 𝑥′3 ≥ 0, 𝑤 =′, 𝑦 = 𝑢 and 𝜒 = 1
and (ii) when 𝑥′3 < 0, 𝑤 =′′, 𝑦 = 𝑙 and 𝜒 = −1; 𝜓 = |𝐱 − 𝐱′| is Galerkin’s distance vector and 𝜙 = 1

𝜓
; the (.) stands for the image terms,
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i.e. 𝜓 = |𝐱 − 𝐱′|, where 𝑥
′
𝑖
= 𝑄𝐼𝑥

′
𝑖
and 𝑄 = (1, 1,−1) handles a negative partial derivative with respect to the third direction. Note

that Mura’s index notation is used for 𝑄𝐼𝑥
′
𝑖
that the term with an uppercase index is a coefficient for the term with the lower case

index and does not trigger the summation as the repeated lower case indices (Mura, 1987). When 𝑥′3 ≥ 0, the material coefficients
𝐴𝑢 − 𝐺𝑢 of + are provided as Eq. (5),

𝐴𝑢 = 𝜇′ − 𝜇′′

𝜇′ + 𝜇′′ , 𝐵𝑢 = 2𝜇′(1 − 2𝜈′)(𝜇′ − 𝜇′′)
(𝜇′ + 𝜇′′)(𝜇′ + 𝜇′′(3 − 4𝜈′))

𝐶𝑢 = 𝜇′ − 𝜇′′

2(1 − 𝜈′)(𝜇′ + (3 − 4𝜈′)𝜇′′)
, 𝐷𝑢 = 3 − 4𝜈′

2
𝐶

𝐹𝑢 = 2𝜇′(𝜇′(1 − 2𝜈′′) − 𝜇′′(1 − 2𝜈′))
(𝜇′ + 𝜇′′(3 − 4𝜈′))(𝜇′′ + 𝜇′(3 − 4𝜈′′))

𝐺𝑢 = 𝜇′(𝜇′′(1 − 2𝜈′′)(3 − 4𝜈′) − 𝜇′(1 − 2𝜈′)(3 − 4𝜈′′))
(𝜇′ + 𝜇′′(3 − 4𝜈′))(𝜇′′ + 𝜇′(3 − 4𝜈′′))

(5)

In the same fashion, the material coefficients 𝐴𝑙 − 𝐺𝑙 can be acquired by switching the sequence of material properties. For
example, 𝐵𝑙 = 2𝜇′′(1−2𝜈′′)(𝜇′′−𝜇′)

(𝜇′+𝜇′′)(𝜇′′+𝜇′(3−4𝜈′′)) , which is based on the mathematical equivalency. Other components in addition to 𝜓 and 𝜙 are
provided as Eq. (6),

𝛼𝑢 = ln[𝑥′3 − 𝑥3 + 𝜓], 𝛼
𝑢 = ln[𝑥′3 + 𝑥3 + 𝜓]

𝛽𝑢 = (𝑥′3 − 𝑥3)𝛼𝑢 − 𝜓, 𝛽
𝑢
= (𝑥′3 + 𝑥3)𝛼

𝑢 − 𝜓

𝛼𝑙 = ln[−𝑥′3 + 𝑥3 + 𝜓], 𝛼
𝑙 = ln[−𝑥′3 − 𝑥3 + 𝜓]

𝛽𝑙 = (−𝑥′3 + 𝑥3)𝛼𝑙 − 𝜓, 𝛽
𝑙
= (−𝑥′3 − 𝑥3)𝛼

𝑙 − 𝜓

(6)

where Eq. (6) contains 4 branches of potential functions of 𝛼 and 𝛽, which are partial integration of harmonic potential 𝜙 with
respect to direction 𝑧 at the first and second orders, respectively (Yin et al., 2022). In the literature, they have been named the
Boussinesq’s displacement potentials or 𝜙−1 and 𝜙−2 (Barber, 1992). The differences among the 4 branches are integral limits and
image terms, i.e 𝛼𝑢 = ∫ 𝑥3

∞ 𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡 and 𝛼𝑢 = ∫ −∞
𝑥3

𝜙(𝑥1, 𝑥2, 𝑡) 𝑑𝑡.
When the two phases exhibit the same properties, all material coefficients of 𝐴𝑢 - 𝐺𝑢 in Eq. (5) become zero, and the fundamental

solution reduces to Kelvin’s solution. For applications to a semi-infinite domain with a free or fixed surface, one can assign ′ ≡ 0
or ∞, respectively; hence, Mindlin’s and Lorentz’s problems are particular cases of the bi-material fundamental solution (Yin et al.,
2022). Similarly, the thermal Green’s function has been given in our recent work (Wang et al., 2022) as Eq. (4). By adjusting the
material constants, one can obtain the Green’s function for semi-infinite domains, and an infinite homogeneous domain as well,
which are summarized in Appendix B.

3.2. Thermoelastic fundamental solution for two-jointed dissimilar half-spaces

Hou et al. (2013b) have derived the thermoelastic general solution in the cylindrical coordinate by using the axisymmetry of
a single heat source, in which three harmonic potentials are expressed in combinations of 𝛼 and 𝛽 in Eq. (6). However, it is not
convenient to use it for the case with many dispersed sources in the loss of the overall axisymmetry. This subsection will derive
the bi-material thermoelastic fundamental solution in the Cartesian coordinate based on 3 harmonic potentials 𝑖 (𝑖 = 1, 2, 3) as
well (Hou et al., 2013b). Without the loss of any generality, in the derivation process, the source point 𝑥′3 ≥ 0 is assumed and
the other cases can be acquired similarly by switching the material parameters. Using the same notation (Hou et al., 2013b), the
displacements are expressed as below,

2𝜇𝑢1 = 1,1 + 𝑥32,1, 2𝜇𝑢2 = 1,2 + 𝑥32,2

2𝜇𝑢3 = 1,3 − (3 − 4𝜈)2 + 𝑥32,3 + 4(1 − 𝜈)3
(7)

where 𝛤 = 4(1−𝜈)𝜇
(1−2𝜈) is one coefficient associated with the thermal modulus and Poisson’s ratio; the potential functions 𝑖 (𝑖 = 1, 2, 3)

are provided as below,
(a) When 𝑥′3𝑥3 ≥ 0, the source and field points are in the same material phase,

1 = 𝐴11𝛽
𝑢
+ 𝐴12𝛼

𝑢 + 𝐴11𝛽
𝑢′ + 𝐴12𝛼

𝑢′ , 2 = 𝐴21𝛼
𝑢 + 𝐴21𝛼

𝑢′ + 𝐴22𝜙, 3 = 𝐴3𝛼
𝑢′ + 𝐴3𝛼

𝑢 (8)

(b) when 𝑥′3𝑥3 < 0, the source and field points are in the different material phases,

1 = 𝐴′
11𝛽

𝑢′ + 𝐴′
12𝛼

𝑢′ , 2 = 𝐴′
21𝛼

𝑢′ + 𝐴′
22𝜙, 3 = 𝐴′

3𝛼
𝑢′ (9)

where 𝛼
𝑢 and 𝛽

𝑢
are potential functions given in Eq. (6); 𝛼𝑢

′
and 𝛽𝑢

′
are created to handle continuity conditions when the source

and field points are at the same height 𝑥3 = 𝑥′3, which contains the sign function 𝑆(𝑥) =

{
1 𝑥 > 0
−1 𝑥 < 0

,

𝛽𝑢
′ = 𝑆(𝑥3 − 𝑥′3) ln[𝜓 + 𝑆(𝑥3 − 𝑥′3)] − 𝜓, 𝛼𝑢

′ = 𝑆(𝑥3 − 𝑥′3) ln[𝜓 + 𝑆(𝑥3 − 𝑥′3)] (10)
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and the continuity equations at 𝑥3 = 𝑥′3 are the continuity of all components of displacement and traction. The derivation process
has been presented in Hou et al. (2013b), therefore, the result is directly applied and the details are not repeated below. From the
potential function 3, one can also obtain the temperature as,

𝜃 = 𝛤

2𝜇
3,3 (11)

To determine the coefficients in the potential functions, three equations can be obtained with the continuity conditions at 𝑥3 = 𝑥′3,

⎧⎪⎨⎪⎩
𝐴12 + 𝐴21𝑥

′
3 = 0 continuity of 𝑢1 and 𝑢2

𝐴11 − (3 − 4𝑣)𝐴21 + 4(1 − 𝑣)𝐴3 = 0 continuity of 𝑢3
𝐴11 − (1 − 2𝑣)𝐴21 + 2(1 − 𝑣)𝐴3 = 0 continuity of 𝛾31 and 𝛾32

(12)

where one can obtain the relationship of 𝐴11, 𝐴12, 𝐴21 with 𝐴3 as,

𝐴11 = −𝐴3, 𝐴12 = −𝐴3𝑥
′
3, 𝐴21 = 𝐴3 (13)

where 𝐴3 is the coefficient yet to be determined based on the thermal continuity equations. On the other hand, the temperature field
can be independently determined from the thermal analysis, and the stress field can be derived by temperature change. Therefore,
the coefficients 𝐴3, 𝐴3 and 𝐴′

3 can be obtained through the thermal Green’s function as,

𝐴3 =
1

8𝜋𝐾 ′
(1 − 2𝑣′)′

1 − 𝑣′
, 𝐴3 =

1
8𝜋𝐾 ′

(1 − 2𝑣′)′

1 − 𝑣′
𝐾 ′ −𝐾 ′′

𝐾 ′ +𝐾 ′′ , 𝐴′
3 =

1
4𝜋(𝐾 ′ +𝐾 ′′)

(1 − 2𝑣′′)′′

1 − 𝑣′′
(14)

Replacing the components in continuity equation Eq. (1) with displacements as Eqs. (7)–(9), eight subsequent equations can be
obtained, where the derivation details are elaborated in Appendix A,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴11 + 𝐴11 =
𝜇′

𝜇′′
𝐴′
11 continuity of 𝑢1 and 𝑢2

𝐴12 − 𝐴12 =
𝜇′

𝜇′′
𝐴′
12 continuity of 𝑢1 and 𝑢2

(𝐴11 − 𝐴11)−(3 − 4𝜈′)(𝐴21 − 𝐴21) + 4(1 − 𝜈′)(𝐴3 − 𝐴3)

= 𝜇′

𝜇′′ {𝐴
′
11 − (3 − 4𝜈′′)𝐴′

21 + 4(1 − 𝜈′′)𝐴′
3}

continuity of 𝑢3

(𝐴12 + 𝐴12) − (3 − 4𝜈′)𝐴22 =
𝜇′

𝜇′′
{𝐴′

12 − (3 − 4𝜈′′)𝐴′
22} continuity of 𝑢3

(𝐴11 − 𝐴11)−(1 − 2𝜈′)(𝐴21 − 𝐴21) + 2(1 − 𝜈′)(𝐴3 − 𝐴3)
= 𝐴′

11 − (1 − 2𝜈′′)𝐴′
21 + 2(1 − 𝜈′′)𝐴′

3

continuity of 𝛾31 and 𝛾32

(𝐴12 + 𝐴12) − (1 − 2𝜈′)𝐴22 = 𝐴′
12 − (1 − 2𝜈′′)𝐴′

22 continuity of 𝛾31 and 𝛾32
𝐴11 + 𝐴11−2(1 − 𝜈′)(𝐴21 + 𝐴21) + 2(1 − 𝜈′)(𝐴3 + 𝐴3)

= 𝐴′
11 − 2(1 − 𝜈′′)𝐴′

21 + 2(1 − 𝜈′′)𝐴′
3

continuity of 𝜎33

(𝐴12 − 𝐴12) + 2(1 − 𝜈′)𝐴22 = 𝐴′
12 − 2(1 − 𝜈′′)𝐴′

22 continuity of 𝜎33

(15)

Substituting Eqs. (11) and (13) into Eq. (15), eight coefficients 𝐴11 ⋯𝐴′
22 can be solved as Eq. (16),

𝐴11 = 𝐴3 − 2𝜇′[ 𝐴′
3(1 − 𝜈′′)

(3 − 4𝜈′′)𝜇′ + 𝜇′′ +
(𝐴3 + 𝐴3)(1 − 𝜈′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

]
𝐴12 = 𝐴3𝑥

′
3
(3 − 4𝜈′)(𝜇′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐴21 =

4𝐴3(1 − 𝜈′)𝜇′′ − 𝐴3(𝜇′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

𝐴22 = 2𝐴3𝑥
′
3

𝜇′ − 𝜇′′

(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐴′
11 = −2𝜇′′[ 𝐴′

3(1 − 𝜈′′)
(3 − 4𝜈′′)𝜇′ + 𝜇′′ +

(𝐴3 + 𝐴3)(1 − 𝜈′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

]
𝐴′
12 = −4𝐴3𝑥

′
3

(1 − 𝜈′)𝜇′′

(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐴′
21 = 4𝐴′

3
(1 − 𝜈′′)𝜇′

(3 − 4𝜈′′)𝜇′ + 𝜇′′ , 𝐴′
22 = 0

(16)

By using all coefficients, the bi-material thermoelastic solution can be simplified as,
(a) When 𝑥′3𝑥3 ≥ 0, the source and field points are in the same material phase,

2𝜇′𝑢𝑖(𝐱) = 𝐴3𝜓,𝑖 + 𝐴11𝛽
𝑢

,𝑖
+ (𝐴12 + 𝑥3𝐴21)𝛼

𝑢

,𝑖
+ 𝑥3𝐴22𝜙,𝑖

+ 𝛿𝑖3

[
−(3 − 4𝜈′)(𝐴21𝛼

𝑢 + 𝐴22𝜙) + 4(1 − 𝜈′)𝐴3𝛼
𝑢
] (17)

(b) When 𝑥′3𝑥3 < 0, the source and field points are in different material phases,

2𝜇′′𝑢𝑖(𝐱) = 𝐴′
11𝛽

𝑢′
,𝑖
+ 𝐴′

12𝛼
𝑢′
,𝑖
+ 𝑥3(𝐴′

21𝛼
𝑢′
,𝑖
+ 𝐴′

22𝜙,𝑖) + 𝛿𝑖3𝛼
𝑢′
[
−(3 − 4𝜈′′)𝐴′

21 + 4(1 − 𝜈′′)𝐴′
3

]
(18)

where the 𝛼𝑢
′
and 𝛽𝑢

′
potential functions are canceled in Eq. (17) as no discontinuity is allowed by the sign function when 𝑥3 = 𝑥′3; in

Eq. (18), because the source point is located at the upper phase, 𝑆(𝑥3 − 𝑥′3) = −1, therefore, 𝛽𝑢′ = 𝛽𝑢 and 𝛼𝑢
′ = −𝛼𝑢 can be obtained.



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

�

C. Wu et al.

The present form of bi-material thermoelastic fundamental solution can be used to investigate induced elastic fields caused by heat
sources at any arbitrary interior point. Its application to Eshelby’s problem is, however, complicated due to the domain integral on
𝑥′3. Hence, in the following subsection, the bi-material thermoelastic fundamental solution will be modified to get rid of free source
𝑥′3 terms of the coefficients 𝐴12, 𝐴22 and 𝐴′

12.

3.3. Modified bi-material thermoelastic fundamental solution

It is possible to rewrite distance components in terms of 𝐫 = 𝐱 − 𝐱′ so that 𝐱′ can be replaced by 𝐱′ = 𝐱 − 𝐫 (Wu et al., 2021b).
By virtue of Galerkin’s distance vector, this subsection aims to remove any free 𝑥′3 of the coefficients, i.e 𝐴12, 𝐴22 and 𝐴′

12, which
simplifies the domain integral expressions.

(a) When 𝑥′3𝑥3 ≥ 0, the source and field points are in the same material phase. The coefficients 𝐴12 and 𝐴22 contains 𝑥
′
3, and

their related potential functions can be altered as below,

2𝜇′𝑢𝑖(𝐱) = 𝐴3𝜓,𝑖 + (𝐴11 + 𝐿𝑢
𝐷
)𝛽

𝑢

,𝑖
+ 𝐿𝑢

𝐵
𝜓,𝑖 + 𝑥3

[(
𝐿𝑢
𝐷
− 𝐿𝑢

𝐹

)
𝛼
𝑢

,𝑖
+ 𝐿𝑢

𝐶

(
𝜓,𝑖3 + 2(1 − 2𝜈′)𝛿𝑖3𝜙 − 𝑥3𝜙,𝑖

)]
+ 𝛿𝑖3

[
−(3 − 4𝜈′)

(
𝐴21𝛼

𝑢 + 𝐿𝑢
𝐶
𝜓,3

)
+
(
4(1 − 𝜈′)𝐴3 − 𝐿𝑢

𝐵

)
𝛼
𝑢] (19)

where the coefficients 𝐿𝑢
𝐵
, 𝐿𝑢

𝐶
, 𝐿𝑢

𝐷
and 𝐿𝑢

𝐹
are,

𝐿𝑢
𝐵
= 𝐴3

(3 − 4𝜈′)(𝜇′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐿𝑢

𝐶
= 2𝐴3

(𝜇′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

𝐿𝑢
𝐷
=

4𝐴3(1 − 𝜈′)𝜇′′

(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐿𝑢
𝐹
=

4𝐴3(𝜇′ − 𝜇′′)(1 − 𝜈′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

(20)

(b) When 𝑥′3𝑥3 < 0, the source and field points are in different material phases. The coefficient 𝐴′
12 contains 𝑥

′
3, and its related

components have been revised as below,

2𝜇′′𝑢𝑖(𝐱) = (𝐴′
11 + 𝐿𝑢

𝐺
)𝛽𝑢

,𝑖
− 𝑥3

[
𝐴′
21 − 𝐿𝑢

𝐺

]
𝛼𝑢
,𝑖
+ 𝐿𝑢

𝐺
𝜓,𝑖 − 𝛿𝑖3𝛼

𝑢
[
−𝐿𝑢

𝐺
− (3 − 4𝜈′′)𝐴′

21 + 4(1 − 𝜈′′)𝐴′
3

]
(21)

where the coefficient 𝐿𝑢
𝐺
= 4𝐴3(1−𝜈′)𝜇′′

(3−4𝜈′)𝜇′′+𝜇′ . The derivation of fundamental solution for 𝑥
′
3 < 0 is similar to Section 3.2. Alternatively,

one can acquire the solution by switching the material constants and the sign of coordinates. For example, two cases that (i) 𝑢𝑖(𝐱)
caused by the heat source at 𝐱′; (ii) 𝑢𝑖(−𝐱) caused by the heat source at −𝐱′ shall share the same form of the solution with the
alternative material constants. Hence, the complete form of the thermoelastic Green’s function is written as,

2𝜇𝑞𝐺𝑖(𝐱, 𝐱′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐴
𝑞

3𝜓,𝑖 + (𝐴
𝑞

11 + 𝐿
𝑦

𝐵
)𝛽

𝑦

,𝑖
+ 𝐿

𝑦

𝐵
𝜓,𝑖

+ 𝑥3

[
𝜒
(
𝐿
𝑦

𝐷
− 𝐿

𝑦

𝐹

)
𝛼
𝑦

,𝑖
+ 𝐿

𝑦

𝐶

(
𝜓,𝑖3 + 2(1 − 2𝜈𝑞)𝛿𝑖3𝜙 − 𝑥3𝜙,𝑖

)]
+ 𝛿𝑖3

[
−(3 − 4𝜈𝑞)

(
𝐴
𝑞

21𝛼
𝑦 + 𝐿

𝑦

𝐶
𝜓,3

)
+ 𝜒

(
4(1 − 𝜈𝑞)𝐴

𝑞

3 − 𝐿
𝑦

𝐵

)
𝛼
𝑦] 𝑥3𝑥

′
3 ≥ 0

(𝐴𝑞′

11 + 𝐿
𝑦

𝐺
)𝛽𝑦

,𝑖
− 𝑥3

[
𝐴
𝑞′

21 − 𝐿
𝑦

𝐺

]
𝛼
𝑦

,𝑖
+ 𝐿

𝑦

𝐺
𝜓,𝑖

− 𝜒𝛿𝑖3𝛼
𝑙
[
𝐿
𝑦

𝐺
+ (3 − 4𝜈𝑞)𝐴𝑞′

21 − 4(1 − 𝜈𝑞)𝐴𝑞′

3

] 𝑥3𝑥
′
3 < 0

(22)

where the superscript 𝑞 indicates two cases: 𝑞 =′ when 𝑥3 ≥ 0 and 𝑞 =′′ when 𝑥3 < 0; the superscript 𝑦 and coefficient 𝜒 are defined
in Eq. (3) that 𝑦 =′, 𝜒 = 1 when 𝑥′3 ≥ 0 and 𝑦 =′′, 𝜒 = −1 when 𝑥′3 < 0; similarly to coefficients 𝐴𝑙 − 𝐺𝑙 the coefficients 𝐿𝑙

𝐵
− 𝐿𝑙

𝐺
can

be obtained through switching the material sequence in Eq. (20).
When one material phase is reduced to a vacuum with 𝐾 ′ = 𝐂′ = 0, the infinite bi-material is reduced to a semi-infinite single

material domain with a free boundary condition from heat flux and traction along the surface. The corresponding Green’s function
can be obtained from the above fundamental solution, and explicitly written in Eqs. (B.1)–(B.3) of Appendix B. On the other hand,
When one material phase is reduced to an ideally rigid thermal conductor with 𝐾 ′ → ∞,  = 0, and 𝐂′ → ∞, the infinite bi-
material is reduced to a semi-infinite single material domain exhibiting a boundary condition with a fixed uniform temperature and
displacement along the surface. Particularly, when the two phases exhibit the same material properties, the thermoelastic Green’s
function reduces to the one for a single material domain. The corresponding Green’s functions are given Appendix B.

Using Hadamard’s regularization, the two-dimensional (2D) biharmonic potential 𝜓2𝐷 can be obtained. Following the same
fashion, through the partial integration along the second axis, the two-dimensional Boussinesq’s displacement potentials can be
derived and substituted into Eq. (22), and the explicit forms are available in Chapter 2 of the book (Yin et al., 2022). Therefore,
the present 3D formulation can be rewritten in the 2D case as well.

3.4. The dual equivalent inclusion method (DEIM)

When an infinite space contains an inhomogeneity, Eshelby (1957, 1959) proposed to replace the inhomogeneity with an
inclusion with a uniformly distributed eigenstrain, where the disturbed elastic fields are calculated through the domain integral
of the modified Green’s function over the inclusion, namely the Eshelby’s tensor. Following the same fashion (Hatta and Taya,
1986; Wang et al., 2022), the EIM has been extended for heat conduction in full space and bi-materials. Based on the merits of
Green’s function, it provides the particular solution due to one unit excitation at a source point, which can either be a heat source
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or force. Thermoelastic Green’s function provides the displacement field caused by a point heat source. The temperature fields have
been solved recently with the Green’s function in Wang et al. (2022). However, the three Green’s functions are only applicable to the
infinite bi-material domain without any inhomogeneity. Because the present inhomogeneity exhibits different thermal conductivity,
thermal expansion coefficient, and stiffness, Eshelby’s equivalent inclusion method cannot be directly applied (Eshelby, 1957, 1959)
to thermal stress analysis due to the temperature variation and material inhomogeneity, which produces coupled effect to thermal
stress. If the thermal stress is simulated in a decoupled way with the temperature field and then the displacement field, it is doable
but the calculation will be complicated as the temperature changes over the whole domain. The DEIM is introduced to simulate the
effect of material mismatch by an eigenstrain and ETG over the inclusion, so that the displacement field can be obtained by the
integral over the inclusion only.

3.4.1. One inclusion in two-jointed half-spaces

First, we assume the subdomain 𝛺𝐼 exhibits the same material properties as the matrix, the displacement caused by eigenstrain
and ETG can be obtained by the integral of the Green’s function on these source fields on the subdomain, which is called inclusion
instead of inhomogeneity (Mura, 1987). Due to the disturbance of boundary effects and inhomogeneity interactions, which will be
elaborated later, both the eigen-temperature gradient 𝑇 ∗

𝑖
(𝐱) and eigenstrain 𝜀∗

𝑖𝑗
(𝐱) are given in a polynomial form referred to the

center of the 𝐼th subdomain 𝛺𝐼 to represent the varying eigen-fields as,

𝜀∗
𝑖𝑗
(𝐱) = 𝜀𝐼0∗

𝑖𝑗
+ (𝑥𝑝 − 𝑥𝐼𝑐

𝑝
)𝜀𝐼1∗

𝑖𝑗𝑝
+ (𝑥𝑝 − 𝑥𝐼𝑐

𝑝
)(𝑥𝑞 − 𝑥𝐼𝑐

𝑞
)𝜀𝐼2∗

𝑖𝑗𝑝𝑞
+⋯

𝑇 ∗
𝑖
(𝐱) = 𝑇 𝐼0∗

𝑖
+ (𝑥𝑘 − 𝑥𝐼𝑐

𝑘
)𝑇 𝐼1∗

𝑖𝑘
+ (𝑥𝑘 − 𝑥𝐼𝑐

𝑘
)(𝑥𝑙 − 𝑥𝐼𝑐

𝑙
)𝑇 𝐼2∗

𝑖𝑘𝑙
+⋯

(23)

where 𝐱𝐼𝑐 is the center of 𝛺𝐼 as shown in Fig. 2; and 𝜀𝐼0∗
𝑖𝑗

, 𝜀𝐼1∗
𝑖𝑗𝑝

, 𝜀𝐼2∗
𝑖𝑗𝑝𝑞

and 𝑇 𝐼0∗
𝑖

, 𝑇 𝐼1∗
𝑖𝑘

, 𝑇 𝐼2∗
𝑖𝑘𝑙

are uniform, linear and quadratic components
of polynomial to approximate the eigenstrain and eigen-temperature-gradient in the 𝐼th inhomogeneity, respectively. Using the
Green’s function in Eqs. (4) and (22), the induced displacement field can be acquired through Gauss’ theorem (Mura, 1987) as
below,

𝑢𝑖(𝐱) = ∫𝛺𝐼

𝜕𝐺𝑖𝑗 (𝐱, 𝐱′)
𝜕𝑥′

𝑚

𝜀∗
𝑘𝑙
(𝐱′)𝐶𝑗𝑚𝑘𝑙(𝐱′) 𝑑𝑉 (𝐱′) + ∫𝛺𝐼

𝜕𝐺𝑖(𝐱, 𝐱′)
𝜕𝑥′

𝑘

𝑇 ∗
𝑘
(𝐱′)𝐾(𝐱′) 𝑑𝑉 (𝐱′)

= 𝑔𝑖𝑘𝑙𝜀
𝐼0∗
𝑘𝑙

+ 𝑔𝑖𝑘𝑙𝑝𝜀
𝐼1∗
𝑘𝑙

+ 𝑔𝑖𝑘𝑙𝑝𝑞𝜀
𝐼2∗
𝑘𝑙𝑝𝑞

+𝑊𝑖𝑘𝑇
𝐼0∗
𝑘

+𝑊𝑖𝑘𝑝𝑇
𝐼1∗
𝑘𝑝

+𝑊𝑖𝑘𝑝𝑞𝑇
𝐼2∗
𝑘𝑝𝑞

(24)

where 𝑔𝑖𝑘𝑙𝑝𝑞 = ∫
𝛺
𝐺𝑖𝑗,𝑚′𝐶𝑗𝑚𝑘𝑙(𝑥𝑝 − 𝑥𝐼𝑐

𝑝
)(𝑥𝑞 − 𝑥𝐼𝑐

𝑞
)𝑑𝑉 (𝐱′) and 𝑊𝑖𝑘𝑝𝑞 = ∫

𝛺
𝐺𝑖,𝑘′𝐾(𝑥𝑝 − 𝑥𝐼𝑐

𝑝
)(𝑥𝑞 − 𝑥𝐼𝑐

𝑞
)𝑑𝑉 (𝐱′) are Eshelby’s tensors relating

eigenstrain and eigen-temperature-gradient to displacement field, respectively; 𝑔𝑖𝑘𝑙𝑝, 𝑔𝑖𝑘𝑙,𝑊𝑖𝑘𝑝 and 𝑊𝑖𝑘 are defined in the similar
fashion; 𝐺𝑖𝑗 (𝐱, 𝐱′) and 𝐺𝑖(𝐱, 𝐱′) are the elastic and thermoelastic Green’s functions given in Eqs. (4) and (22), respectively. Using the
compatibility relationship, the mechanical strain at interior point 𝐱 can be derived,

𝜀𝑚
𝑖𝑗
(𝐱) = 𝜀′

𝑖𝑗
(𝐱) + 𝜀𝐻

𝑖𝑗
(𝐱) − 𝛼𝛥𝑇 (𝐱)𝛿𝑖𝑗 =

[
𝑆𝑖𝑗𝑘𝑙𝜀

𝐼0∗
𝑘𝑙

+ 𝑆𝑖𝑗𝑘𝑙𝑝𝜀
𝐼1∗
𝑘𝑙𝑝

+ 𝑆𝑖𝑗𝑘𝑙𝑝𝑞𝜀
𝐼2∗
𝑘𝑙𝑝𝑞

]
+

[
𝑅𝑖𝑗𝑘𝑇

𝐼0∗
𝑘

+ 𝑅𝑖𝑗𝑘𝑝𝑇
𝐼1∗
𝑘𝑝

+ 𝑅𝑖𝑗𝑘𝑝𝑞𝑇
𝐼2∗
𝑘𝑝𝑞

]
− 𝛼𝛿𝑖𝑗

[
𝐷𝑘𝑇

𝐼0∗
𝑘

+𝐷𝑘𝑝𝑇
𝐼1∗
𝑘𝑝

+𝐷𝑘𝑝𝑞𝑇
𝐼2∗
𝑘𝑝𝑞

] (25)

where 𝑆𝑖𝑗𝑘𝑙𝑝𝑞 =
𝑔𝑖𝑘𝑙𝑝𝑞,𝑗+𝑔𝑗𝑘𝑙𝑝𝑞,𝑖

2 and 𝑅𝑖𝑗𝑘𝑝𝑞 =
𝑊𝑖𝑘𝑝𝑞,𝑗+𝑊𝑗𝑘𝑝𝑞,𝑖

2 are Eshelby’s tensor for strain; 𝐷𝑘𝑝𝑞 = ∫
𝛺
𝐺,𝑘′𝐾(𝐱′)(𝑥𝑝 − 𝑥𝐼𝑐

𝑝
)(𝑥𝑞 − 𝑥𝐼𝑐

𝑞
)𝑑𝑉 (𝐱′) is

the Eshelby’s tensor relating eigen-temperature gradient to temperature; and 𝑆𝑖𝑘𝑙𝑝, 𝑆𝑖𝑘𝑙, 𝑅𝑖𝑗𝑘𝑝, 𝑅𝑖𝑗𝑘, 𝐷𝑘𝑝, and 𝐷𝑘 are defined in the
similar fashion.

Notice that in micromechanics, the thermal strain caused by the temperature variation is typically considered as an eigenstrain
directly. There is a misconception that the ETG will produce a temperature change over the whole domain that yields an eigenstrain
over the whole domain, which makes the thermoelastic solution inefficient. The thermoelastic Green’s function handles the strain
caused by ETG directly with 𝑅 tensors instead of an eigenstrain with 𝑆 tensors in Eq. (25), therefore, the volume integral is still
limited to the inclusion, which can be analytically solved.

3.4.2. One inhomogeneity in two-jointed half-spaces 
In the previous subsection, the induced elastic fields by the polynomial-form eigenstrain and ETG can be obtained through the

domain integral of three Green’s functions over the subdomain. Unlike the inclusion problems, the subdomain is filled with another
material with stiffness 𝐼 , thermal conductivity 𝐾𝐼 and thermal modulus 𝐼 . The polynomial-form equivalent flux conditions are
presented for the uniform, linear and quadratic ETGs as below (Yin et al., 2022),

𝐾𝑤(𝑇∞
𝑖

+ 𝑇 ′
𝑖
+ 𝑇

𝑄

𝑖
− 𝑇 𝐼0∗

𝑖
) = 𝐾𝐼 (𝑇∞

𝑖
+ 𝑇 ′

𝑖
+ 𝑇

𝑄

𝑖
)

𝐾𝑤(𝑇∞
𝑖,𝑚

+ 𝑇 ′
𝑖,𝑚

+ 𝑇
𝑄

𝑖,𝑚
− 𝑇 𝐼1∗

𝑖𝑚
) = 𝐾𝐼 (𝑇∞

𝑖,𝑚
+ 𝑇 ′

𝑖,𝑚
+ 𝑇

𝑄

𝑖,𝑚
)

𝐾𝑤(𝑇∞
𝑖,𝑚𝑛

+ 𝑇 ′
𝑖,𝑚𝑛

+ 𝑇
𝑄

𝑖,𝑚𝑛
− 2𝑇 𝐼2∗

𝑖𝑚𝑛
) = 𝐾𝐼 (𝑇∞

𝑖,𝑚𝑛
+ 𝑇 ′

𝑖,𝑚𝑛
+ 𝑇

𝑄

𝑖,𝑚𝑛
)

(26)

where 𝑤 is dependent on the position of the subdomain 𝛺𝐼 that when 𝑥′3 > 0 𝑤 =′, and otherwise 𝑤 =′′; 𝑇∞
𝑖
is the far-field prescribed

temperature gradient; 𝑇 ′
𝑖
and 𝑇𝑄

𝑖
are disturbed temperature gradient by ETG and prescribed heat source, respectively. Subsequently,

the stress equivalent conditions can be constructed for the uniform, linear, and quadratic eigenstrain as,

𝑤
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
− 𝜀𝐼0∗

𝑘𝑙
) −𝑤𝛿𝑖𝑗𝛥𝑇 = 𝐼

𝑖𝑗𝑘𝑙
(𝜀∞

𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
) −𝐼 𝛿𝑖𝑗𝛥𝑇

𝑤
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙,𝑚

+ 𝜀′
𝑘𝑙,𝑚

+ 𝜀
𝑄

𝑘𝑙,𝑚
+ 𝜀𝐸

𝑘𝑙,𝑚
− 𝜀𝐼1∗

𝑘𝑙𝑚
) −𝑤𝛿𝑖𝑗𝛥𝑇,𝑚 = 𝐼

𝑖𝑗𝑘𝑙
(𝜀∞

𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
),𝑚 −𝐼 𝛿𝑖𝑗𝛥𝑇,𝑚

𝑤
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙,𝑚𝑛

+ 𝜀′
𝑘𝑙,𝑚𝑛

+ 𝜀
𝑄

𝑘𝑙,𝑚𝑛
+ 𝜀𝐸

𝑘𝑙,𝑚𝑛
− 2𝜀𝐼2∗

𝑘𝑙𝑚𝑛
) −𝑤𝛿𝑖𝑗𝛥𝑇,𝑚𝑛 = 𝐼

𝑖𝑗𝑘𝑙
(𝜀∞

𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
),𝑚𝑛 −𝐼 𝛿𝑖𝑗𝛥𝑇,𝑚𝑛

(27)



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

 

C. Wu et al.

where 𝜀∞
𝑖𝑗
represents the far-field prescribed strain; 𝜀′

𝑖𝑗
can calculated through Eq. (25) with the polynomial-form eigenstrain 𝜀𝐼∗

𝑖𝑗
; 𝜀𝑄

𝑖𝑗

and 𝜀𝐸
𝑖𝑗
are disturbed strain field caused by heat source and ETG, respectively;𝛿𝑖𝑗𝛥𝑇 is non-mechanical stress caused by temperature

change. Furthermore, the equivalent conditions can be extended to multiple subdomains through the superposition of disturbed
strain caused by eigenstrain, heat source and ETGs, which is illustrated in Section 5 with the case studies of several spherical heat
exchangers. The dual equivalent inclusion method (DEIM) separates the coupled thermoelastic problem in two sets of Eqs. (26) and
(27), however, they can be straightforwardly combined into one global matrix for the numerical solution.

As mentioned in the previous subsection, the eigen-fields are expanded at the center of the inhomogeneity due to boundary
and interaction effects. The term, boundary effect, is first mentioned when the field point is close to the boundary, where strong
constraints may apply, resulting in a large variation of stress/thermal fields. As for a bi-layered system, since the two matrix materials
generally exhibit dissimilar properties, such boundary (or interfacial) effect causes discontinuity of some stress components and
significantly changes the slope of continuous stress (𝜎33, 𝜏13), leading to large stress variations. The boundary (interfacial) effects are
mathematically considered by the bi-material fundamental solutions, which hold certain continuity equations on thermal and stress
fields. As for the inhomogeneity interactions, such effect becomes dominant when two inhomogeneities are close, and it usually
causes disturbance of fields, such as higher-order stress variation, etc. Hence, indicated as Eq. (23), polynomial-form eigen-fields
are applied. And the extension from one inhomogeneity to multiple inhomogeneities is elaborated in Section 1.3 of the Supplemental
Material.

4. Numerical verification of the DEIM in a two-jointed half-spaces

This section aims to verify the algorithm of DEIM and demonstrate how solutions with uniform, linear and quadratic order
polynomial-form eigen-fields perform. Notice that the order of eigen-fields applies to both ETG and eigenstrain at the same time.
As introduced in Section 2, the boundary effects of bi-material interfaces and interactions between inhomogeneities significantly
disturb the elastic and thermal fields, therefore Eshelby’s solution with uniform eigenstrain cannot provide accurate predictions. In
Eqs. (4) and (22), when the source and field points are in the same material phase, there exist image terms i.e 𝜓 , which results in
the boundary or interfacial effects. Although the image terms vanish rapidly with increasing distance, the effects from eigen-fields
depend on domain integrals. Therefore, for spherical subdomains, the interfacial effects are determined by the ratio ℎ∕𝑎, where ℎ

and 𝑎 are perpendicular distances of 𝐱𝐼𝐶 , bi-material interface 𝑆 and radius of the subdomain, respectively. Particularly, when the
inhomogeneity is far from the bi-material interface, say ℎ∕𝑎 ≥ 5, the interfacial effects become minor and the solutions are similar to
infinite ones. Without the loss of any generality, the verification is conducted in a two-jointed half-spaces that the material properties
of two layers and the inhomogeneity are, (i) 𝜇′ = 0.4 MPa, 𝜈′ = 0.25, 𝐾 ′ = 1 W/(m K) and ′ = 10 kPa for +; (ii) 𝜇′′ = 0.8 MPa,
𝜈′ = 0.1, 𝐾 ′′ = 10 W/(m K) and ′′ = 20 kPa for −; (iii) 𝜇𝐼 = 0.1 MPa, 𝜈𝐼 = 0.25, 𝐾𝐼 = 5 W/(m K) and 𝐼 = 0 for the inhomogeneity
with radius 𝑎 = 0.1 m, respectively.

4.1. Handling and transformation of domain integrals

Although the verification can be conducted with an infinite domain, to account for the influence of temperature change and
compare with the finite element results, domain integrals cannot be avoided. Alternatively, shown as Fig. 3, consider a horizontally
infinite space with height 2𝑙 at 2 m, where the bi-material interface 𝑆 is placed at the center of . Since, the calculation of
temperature, displacement, and stress fields require references, without the loss of any generality, let the 𝑇2 = 0 ◦C and 𝑢3 = 0
be references. On the top surface, apply temperature load 𝑇1 = 100 ◦C and uniformly distributed stress 𝜎33 = −10 kPa. Therefore,
the temperature difference between 𝑇1 and 𝑇2 produces a piece-wise continuous heat flux along the 𝑥3 direction.

The domain integrals can be analytically handled through the application of Green’s second identity. Although the au-
thors (Prasad et al., 1994) present a dual boundary element method for the full-space thermoelastic problem, following the same
fashion, it can be extended to the bi-material space by adjusting the thermoelastic Green’s function. For a horizontally infinite space,
because the influence of Green’s function vanishes as 1∕𝑟2 and 1∕𝑟3 for displacement (temperature) and stress (flux) respectively,
it is natural to consider a cut-off block with 10𝑎 width and length. Since the disturbance by inhomogeneity on the boundary is
negligible, the interior thermoelastic displacement can be written in terms of surface integral only,

𝑢𝑇
𝑖
(𝐱) = ∫𝜕𝛺 𝐺𝑖(𝐱, 𝐱′)𝑞(𝐱′) − 𝐺𝑖,𝑗′ (𝐱, 𝐱)𝑛𝑗 (𝐱′)𝐾(𝐱′)𝑇 (𝐱′)𝑑𝑆(𝐱′) (28)

where 𝑞 and 𝑇 are prescribed outward flux and temperature on the six surfaces of the cut-off block; 𝐧 is the unit surface outward
normal; 𝐺𝑖(𝐱, 𝐱′) is the thermoelastic Green’s function defined in Eq. (22). Similarly, the elastic parts can be calculated referring
to Wu et al. (2022) and Yin et al. (2022). Notice that since the temperature distribution is linear, heat flux is zero on side surfaces,
and constant on bottom and top surfaces, the domain integral can also be conducted in a simplified form referring to Gao (2003).

4.2. Comparison with the FEM results

Consider an inhomogeneity 𝛺𝐼 is placed along the vertical center line with distance ℎ∕𝑎 = 1.5 in the upper phase +. The
dimensions and boundary conditions are built upon Fig. 3. Three element sizes are applied, (i) 0.04 m for the matrix; (ii) 0.02 m for
the transition zone (0.3×0.3×0.3 m3); and (iii) 0.005 m for the inhomogeneity. 3,331,649 nodes and 2,453,741 10-node tetrahedral
elements. Indicated in Fig. 4, the temperature and heat flux are compared between FEM and DEIM with uniform, linear and quadratic
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Fig. 3. Schematic illustration of the case study on a horizontally infinite large space with limited height 2𝑙 = 2𝑚 embedded with one inhomogeneity along the
vertical center line, where temperature loads, stress loads and reference vertical displacement and temperature are prescribed with a cut-off block.

Fig. 4. Comparison of DEIM with three orders of polynomial ETG with FEM on (a) temperature 𝑇 (b) heat flux 𝑞3 along the vertical center line when distance
ratio ℎ∕𝑎 = 1.5.

orders of ETG. Despite that some errors may arise with assumptions of no boundary interactions, the comparison of temperature
curves exhibits good agreement among all orders of ETG as very minor discrepancies are observed. However, as shown in Fig. 4(b),
merely constant eigen-fields may not be suitable to provide accurate predictions on a higher order field, i.e the heat flux. In addition,
the two curves ‘‘DEIM - Linear’’ and ‘‘DEIM - Quadratic’’ exhibit close predictions, and the main discrepancy exists at the entering
region of the inhomogeneity (𝑥3 = 0.05), which is due to the bi-material interfacial effects.

The greater variance in ETG and its subsequent domain integrals result in larger fluctuations. Therefore, the larger differences
among thermoelastic solutions with uniform, linear and quadratic eigen-fields are accumulated errors, which can be shown that in
Fig. 4(b) the discrepancy for heat flux is much smaller than those in Fig. 6(b). Note that 𝜎33 is continuous in the 𝑥3 direction, so
the curves in Fig. 6(b) are more consistent with each other in comparison with Fig. 6(a).

Considering the potentially larger numerical errors in DEIM with uniform and linear eigen-fields, thus in the following, merely
quadratic eigen-fields are applied. In general, interfacial effects are more intensive with smaller distance ratios ℎ∕𝑎. In this section,
4 cases of distance ratios ℎ∕𝑎 = 1.2, 1.5, 2.0, and 3.0 are considered, where the material properties and assumptions are retained from
the previous section. The temperature and displacement in general show better comparison than the heat flux or stress shown in
Figs. 4(a) and 5 in the last subsection. Here one can find a similar trend that DEIM fits excellently with the FEM results in Figs. 7(a)
and 8.
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Fig. 5. Comparison of DEIM with three orders of polynomial ETG and eigenstrain with FEM on displacement 𝑢3 along the vertical center line when distance
ratio ℎ∕𝑎 = 1.5.

Fig. 6. Comparison of DEIM with three orders of polynomial ETG and eigenstrain with FEM on normal stress (a) 𝜎11 (b) 𝜎33 along the vertical center line when
distance ratio ℎ∕𝑎 = 1.5.

Fig. 7. Comparison of DEIM with quadratic ETG with FEM on (a) temperature 𝑇 (b) heat flux 𝑞3 along the vertical center line 𝑥3 ∈ [−5𝑎, 5𝑎] when distance
ratios ℎ∕𝑎 = 1.2, 1.5, 2.0 and 3.0.
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Fig. 8. Comparison of DEIM with quadratic ETG and eigenstrain with FEM on displacement 𝑢3 along the vertical center line 𝑥3 ∈ [−5𝑎, 5𝑎] when distance ratios
ℎ∕𝑎 = 1.2, 1.5, 2.0 and 3.0.

Fig. 9. Comparison of DEIM with quadratic ETG and eigenstrain with FEM on normal stress (a) 𝜎11 (b) 𝜎33 along the vertical center line 𝑥3 ∈ [−5𝑎, 5𝑎] when
distance ratio ℎ∕𝑎 = 1.2, 1.5, 2.0 and 3.0.

Indicated in Figs. 3–5, the influence brought by the inhomogeneity and its eigen-fields vanishes rapidly with further observing
distances. Hence, the thermal and elastic fields are compared in a range of 5𝑎 around the bi-material interface 𝑆 as 𝑥3 ∈ [−5𝑎, 5𝑎].
Indicated in Fig. 7(a), interfacial effects change the slope of temperature curves in the neighborhood of the inhomogeneity. When
the distance ratio ℎ∕𝑎 decreases, the variation of temperature increases, which results in a larger heat flux at the bottom of the
inhomogeneity. In Fig. 7, there exists 18% difference of heat flux 𝑞3 between curve ℎ∕𝑎 = 1.2 and ℎ∕𝑎 = 1.5 when 𝑥3 = 0.02 m.
Because the elastic fields are dependent on thermal loads, the accumulated interfacial effects cause larger stress variations than a
pure elastic problem. Shown in Fig. 9(a), one typical example on interfacial effects, it is observed that narrower stress difference at
the interface 𝑥3 = 0.02 (bottom of the inhomogeneity) with smaller distance ratios. Comparing two cases with distance ratios 1.2 and
3, the jump of normal stress 𝜎11 increases approximately 14 times and similar trends exist for comparison of 𝜎33. Such phenomenon
can be interpreted as a weakly interfacial ‘‘constraint’’, because the lower phase − is filled with stiffer material. When the distance
ratio increases, the interfacial effects vanish almost one time faster than 1∕𝑟 for displacement and temperature, since the distance
to interface with image terms is generally doubled. As a limiting and ideal case, when the inhomogeneity is adequate far from
the bi-material interface, the solution process reduces to the superposition of Kelvin’s solution of concentrated force and Nowacki’s
solution of thermoelasticity, which will be further discussed in the last section.

More comparisons between the DEIM and FEM results for one and two inhomogeneities in a bi-material are provided in Section 1
of the Supplemental Material. The DEIM provides excellent agreement with the FEM results with quadratic eigenfields for all cases.
Note that FEM has been computationally expensive to get convergent results for the infinite bi-material domain; whereas DEIM is
straightforward. It has great potential to be used for the design and analysis of future geothermal systems.
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Fig. 10. Schematic illustration of (a) one inhomogeneity and (b) two inhomogeneities embedded at depth ℎ with distance 𝑑 and vertical, horizontal symmetric
lines.

5. Application to geothermal systems with spherical tanks

Section 4 verifies the DEIM for a bi-material space with a heat source on a spherical heat exchanger. The method can be modified
for geothermal applications with a spherical thermal tank at a certain depth ℎ to the surface. For simplicity, the heat exchanger
is assumed to be a homogeneous solid sphere although it is a spherical container filled with thermal fluid, such as water. The
hydrodynamic behavior of water may significantly change the heat transfer process and local temperature field with both mass and
heat transfer depending on time and space. Since this work focuses on the demonstration and applications of the present algorithm
with formulations, an actual tank is simplified into a uniform solid sphere. Using the multi-inclusion model by Hori and Nemat-
Nasser (1993) and Herve (2002), the spherical tank indeed can be approximated into a homogeneous sphere with the formulation
provided in Appendix C for future field validation. In addition, soils generally exhibit viscoelastoplastic behavior, which depends
on loading rate and history, with complicated constitutive relations. However, this paper still focuses on the elastic analysis as a
baseline for future case studies with field test data and material characterization. In this section, three aspects are considered, (i)
stress transfer caused by surface loads; (ii) thermal stresses caused by the heat source; and (iii) thermoelastic fields by multiple
heat exchangers. In the following, the effects of depth ℎ, stiffness 𝐼 are discussed. Let the soil be unsaturated clay and its Young’s
modulus and Poisson’s ratio are 20 MPa and 0.3, respectively; consider a free-surface at 𝑥3 = 0, so that the stiffness ′ is set as zero.
In the following, the thermal and elastic fields are investigated along the two symmetric lines as shown in Fig. 10. When the depth
ℎ of a tank is large, it converges to the exact solution for a spherical inhomogeneity in an infinite domain with a single material.

5.1. The stress transfer from the surface to the tank

For an underground heat exchanger, the stress transfer can be caused by surface loads, such as nearby parked trucks, where the
load transfer can be considered with a contact problem. However, the distance between the tire to the thermal tank should be much
larger than the dimension of the tire contact area. Although a uniformly distributed load in a rectangular loading area may not be
as accurate as that from the contact mechanics, the difference will be minimal. As an application case study, the parameters are
set as, (i) the radius 𝑎 = 1.5 m for the heat exchanger; (ii) the dimension of rectangle loading region is 1.5 × 3.75 m2 and (iii) the
load 105 𝑁 is uniformly distributed on the loading region as 160

9 kPa downward pressure. Since the disturbance displacement and
strain vanish rapidly with distance, only points in the range of [−4𝑎, 4𝑎] around the center of inhomogeneity are illustrated. Four
depths, ℎ = 5, 10, 15 and ℎ = 20 a, are selected and to control other variables, the stiffness 𝐼 equals 100′′. Fig. 11(a) exhibits the
distribution of 𝑢3 along the vertical symmetry line, and the variations narrow with increasing depth ℎ, which can be interpreted as
the influence of surface loads also vanishes rapidly with depth. Because the heat exchanger is much stiffer than neighbor soils, the
variation of displacement within the exchanger is small. Similar trends can be observed in Figs. 11(b–d). Notice that because the
surface is not axis-symmetric, 𝜎11 and 𝜎22 exhibits discrepancies for case ℎ = 5𝑎 and such differences reduces for the other three
curves.

To investigate the effects of stiffness ratios, six stiffness of the heat exchanger are considered as 0.1, 0.2, 0.5, 2, 5 and 20 ′′ and the
depth ℎ is 10𝑎. Fig. 12(a) exhibits the distribution of 𝑢3 along the vertical symmetric line that variations of displacement within the
inhomogeneity become narrower with larger stiffness ratios. The disturbance of eigen-fields is approximately limited in the range
of [−3, 3]𝑎 as minor discrepancies are observed beyond the range. Fig. 12(b) and (c) plots the variation of normal stress 𝜎11 and 𝜎22,
because of the depth ℎ = 10𝑎, the differences between 𝜎11 and 𝜎22 of the same case are negligible. When the exchanger is softer,
although the slope of displacement increases, the stress generally is smaller. However, the stress concentrations by discontinuity of
𝜎11 and 𝜎22 are close to stiffer ones.
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Fig. 11. The effect of the depth of the tank on: (a) 𝑢3 and normal stresses (b) 𝜎11, (c) 𝜎22, (d) 𝜎33 versus depth ℎ along the vertical symmetric axis 𝑥3−𝑥𝐼𝐶3 ∈ [−4𝑎, 4𝑎]
of heat exchanger with radius 𝑎 = 1.5 m under a uniform surface load 160

9
kPa.

5.2. Thermal stress in the tank caused by the heat transfer

In the previous section, the effects of depth and stiffness ratios are investigated under a surface load. For heat exchangers, besides
elastic disturbance, one of its purposes is to transfer heat from the roof system. Such process (Yin et al., 2021) has been explained and
the heat exchanger can be treated as a heat source/sink. For a linear thermoelastic system, a heat source and heat sink are equivalent
except for the opposite influence. Without the loss of any generality, assume the uniform volume heat rate 𝑞𝑉 = 35.37 W∕m3 and
thus the exchanger can absorb 500W heat. The thermal properties are specified as, (i) 𝐾 ′′ = 0.519 W∕(m K) (Yumrutaş and Ünsal,
2012), ′′ = 10 kPa (Campanella and Mitchell, 1968); (ii) 𝐾𝐼 = 10 W∕(m K), 𝐼 = 20 kPa and 𝐼 = 10′′. Let the earth exhibit a
uniform far-field temperature (Wang et al., 2022), the temperature 𝑇 0 = 20 ◦C (reference temperature), the variation of temperature
by the heat source and ETGs can be written as,

𝑇 (𝐱) = ∫𝛺𝐼

𝐺(𝐱, 𝐱′)𝑞𝑉 (𝐱′) + 𝐺,𝑚(𝐱, 𝐱′)𝐾(𝐱′)𝑇 ∗
𝑚
(𝐱′)𝑑𝑉 (𝐱′) (29)

and the upper phase is assumed to be perfectly conductive with 𝐾 ′′ = ∞, so that the top surface of the soil is the same as the ambient
temperature. The numerical verification of one inhomogeneity and two side-by-side inhomogeneities with prescribed volume heat
sources are elaborated in the Supplemental Material. In the following, the thermal and elastic fields are illustrated along both the
horizontal and vertical symmetric lines across the center of the tank within the range of [−4, 4]𝑎. Fig. 13(a) and (b) exhibit symmetric
distributed temperature and heat flux 𝑞1 along the horizontal line, respectively. Despite the existence of boundary effects, it has no
impact on the horizontal properties, as indicated in the Green’s function Eqs. (4) and (22). Subsequently, the comparison in Fig. 13(c)
and (d) illustrated the boundary effects on mechanical properties on the vertical axis. Specifically, the curve ℎ = 5𝑎 in Fig. 13(c) is
not symmetric; however, when the depth ℎ increases, boundary effects vanish rapidly, and therefore the central symmetry properties
can be observed. Fig. 13(d) indicates that the boundary effects on a higher order are smaller as the four curves almost overlap with
each other.
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Fig. 12. The effect of the stiffness of the tank on: (a) 𝑢3 and normal stresses (b) 𝜎11, (c) 𝜎22, (d) 𝜎33 versus stiffness along the vertical symmetric axis
𝑥3 − 𝑥𝐼𝐶3 ∈ [−4𝑎, 4𝑎] of heat exchanger with radius 𝑎 = 1.5 m under a uniform surface load 160

9
kPa.

Similarly, in Figs. 14 (a–c), the central symmetry with respect to the center 𝑥1 = 𝑥𝐼𝐶1 also can be found for displacement 𝑢1 and
normal stresses 𝜎11 and 𝜎33, so the boundary effect to the local field is relatively small. Due to the free-surface boundary conditions
at the interface 𝑆, the displacement 𝑢1 and normal stresses of the case ℎ = 5𝑎 are smaller compared with the other three cases. As
for properties along the vertical axis, shown in Fig. 15(d), the trends reverses at two ends (i)𝑥3 = 𝑥𝐼𝐶3 − 4𝑎 and (ii) 𝑥3 = 𝑥𝐼𝐶3 + 4𝑎.
Specifically, the displacement 𝑢3 of case ℎ = 5𝑎 is larger at (i) but smaller at (ii). However, the differences within the tank itself
is narrow, which indicates the heat source effects dominate over the boundary effects. In Fig. 14(e) and (f), 𝜎11 and 𝜎33 exhibits
similar variations that smaller stresses are observed when 𝑥3 −𝑥𝐼𝐶3 , which is the top of the tank. Such phenomenon is mainly caused
by 𝑢1 and 𝑢2 at the inhomogeneity interface as shown in Fig. 14(a).

In order to investigate the effects of stiffness ratio, the thermal expansion ratio is set as constant as 𝐼∕(3𝜆𝐼 +2𝜇𝐼 ), so that when
the Lame parameters change, the thermal modulus 𝐼 is adjusted accordingly. The original 𝐼 = 20 kPa is selected as reference
when 𝐼 = 10′′ and there exists a special case that when 𝐼 = 5′′, 𝐼 = ′ = 10 kPa suggesting no misfit expansion strain.
The depth ℎ is again selected as 10𝑎 to be consistent with the previous section. During the linear elastic stage, the solution can be
considered as a superposition of several components. The solution process can be considered as a combination of inhomogeneity
embedded in the full-space and boundary effects of half-space. Figs. 15(a) and 15(d) plot the variation of displacement 𝑢1 and
𝑢3 along the horizontal and vertical symmetric line, respectively. The concept of symmetry and superposition explains the similar
curves in the two figures due to dominating heat source effects and minor boundary effects. It is observed that, in Figs. 15(b–c)
and 15(e–f), the normal stresses exhibit a higher order curve within the tank. Considering the curved temperature distribution in
Fig. 13(a) and (c) and increasing thermal modulus, the increasing misfit stress (𝐼 − 0)𝛿𝑖𝑗𝛥𝑇 causes larger variation of normal
stresses.
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Fig. 13. The effect of the depth of the tank on: (a) 𝑇 and (b) 𝑞1 along the horizontal symmetric axis 𝑥1 − 𝑥𝐼𝐶1 ∈ [−4𝑎, 4𝑎]; (c) 𝑇 and (d) 𝑞3 along the vertical
symmetric axis 𝑥3 − 𝑥𝐼𝐶3 ∈ [−4𝑎, 4𝑎] of heat exchanger with radius 𝑎 = 1.5 m by a volume heat source 𝑞𝑣 = 35.37 W.

5.3. Effect of the tank interactions

In the geothermal industry, many geothermal heat exchangers may be installed for large-scale applications. Introducing another
heat exchanger with a spacing 𝑑 to an existing one can significantly change both local thermal and elastic fields due to the tank
interaction, which reduces the efficiency of heat exchange and increases stress in the tank. In the field application, a large space-to-
radius ratio 𝑑∕𝑎 is required so that the effects brought by the heat source and material misfit on the efficiency and performance can
be under control. The detailed investigation of two side-by-side and subsequently multiple heat exchangers is illustrated in Section
2 of the Supplemental Material, and a brief conclusive summary of the study is provided here. In Fig. 16, the radius 𝑎, depth ℎ,
spacing 𝑑, and volume heat source 𝑞𝑣 of the equal-sized tanks are 1.5 m, 15 m, 9 m and 35.37 W, respectively.

In the investigation of boundary effects, Liu et al. (2015) concluded the influences of inhomogeneity with eigenstrain field vanish
quickly as only 8 simple cubic distributed inhomogeneity produces a convergent solution of elastic fields. Based on the elastic bi-
material Green’s function in Eq. (4) and the Eshelby’s tensors, the displacement and stresses vanishes at the rate of 𝑟−2 and 𝑟−3,
respectively. Extending a similar analysis to the thermoelastic fields, the displacement and stress vanishes slower as, (i) 𝑟0 and 𝑟−1

for heat sources; (ii) 𝑟−1 and 𝑟−2 for ETGs, respectively. Hence, when the number of heat exchangers increases, their disturbance to
stress field of the vertical symmetry line gradually reduces, however, the displacement keeps increasing because of dimensionless
Green’s function.

To investigate the convergent temperature, flux, and stress fields, six cases of 𝑛 = 1, 3, 9, 25, 81 and 401 heat exchangers in a row
are studied and the local field of the central one is illustrated. Fig. 17(a) shows when 𝑛 ≥ 25, the temperature converges as very
minor discrepancies can be observed between 𝑛 = 25, 81 and 𝑛 = 401. As a partial derivative of temperature, the heat flux (similar to
temperature gradient) converges even faster as all curves in Fig. 17(b) exhibit small differences. Regarding to stresses, the trends of
𝜎33 in Fig. 17(d) are similar to temperature in Fig. 17(a), though 𝜎33 involves effects of eigenstrain, heat source and ETGs. Since the
temperature differences among 𝑛 = 25, 81 and 𝑛 = 401 are small, the non-mechanical strain due to the temperature change converges.
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Fig. 14. The effect of the depth of the tank on: (a) 𝑢1, (b) 𝜎11 and (c) 𝜎33 along the horizontal symmetric axis 𝑥1 − 𝑥𝐼𝐶1 ∈ [−4𝑎, 4𝑎]; and (d) 𝑢3, (e) 𝜎11 and (f)
𝜎33 along the vertical symmetric axis 𝑥3 − 𝑥𝐼𝐶3 ∈ [−4𝑎, 4𝑎] of heat exchanger with radius 𝑎 = 1.5 m by a volume heat source 𝑞𝑣 = 35.37 W.
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Fig. 15. The effect of the stiffness of the tank on: (a) 𝑢1, (b) 𝜎11 and (c) 𝜎33 along the horizontal symmetric axis 𝑥1 − 𝑥𝐼𝐶1 ∈ [−4𝑎, 4𝑎]; and (d) 𝑢3, (e) 𝜎11 and (f)
𝜎33 along the vertical symmetric axis 𝑥3 − 𝑥𝐼𝐶3 ∈ [−4𝑎, 4𝑎] of heat exchanger with radius 𝑎 = 1.5 m by a volume heat source 𝑞𝑣 = 35.37 W.

However, the larger variance in Fig. 17(c) reveals the non-negligible role by eigenstrains. As the heat exchangers are placed along

the horizontal symmetric line (𝑥1), the thermal effects accumulate with more tanks, which results in a higher eigenstrain and a

lower convergent rate.
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Fig. 16. Schematic illustration on a row of multiple (𝑛) underground heat exchangers (radius 𝑎) located at depth ℎ = 10𝑎 with distance 𝑑 = 2𝑎 with volume
heat source 𝑞𝑣 = 35.37 W∕m3.

Fig. 17. The effect of the number of the tanks on: (a) 𝑇 , (b) 𝑞3, (c) 𝜎11 and (d) 𝜎33 along the vertical symmetric axis 𝑥3 − 𝑥𝐼𝐶3 ∈ [−2𝑎, 2𝑎] under multiple 𝑛 heat
exchangers with radius 𝑎 = 1.5 m by a volume heat source 𝑞𝑣 = 35.37 W.

6. Exact solution for a single spherical heat exchanger in an infinite solid

Eshelby’s EIM (Eshelby, 1957, 1959) handled with the elastic problem for an inhomogeneity in an infinite domain subjected
to a uniform far field stress, which can be straightforwardly extended to multi-physical problems, such as thermal, magnetic, or



������� �	 
�� 
�������� ��� ������� �	 ������ ��� ������ ������

��

C. Wu et al.

electric problems (Yin et al., 2022; Wu et al., 2021a). However, the thermoelastic problem with an inhomogeneity in an infinite
domain has not been solved in the literature yet. When a heat tank is far from the surface or other tanks, the thermoelastic field
in the neighborhood of the tank can be simplified by an inhomogeneity in an infinite domain. By reducing the Green’s functions
from bi-materials to a single homogeneous material with material constants 𝐾, ,, certain eigen-field terms may exactly satisfy
Eqs. (26) and (27) without higher order terms, which has been observed in Eshelby’s EIM for an ellipsoidal inhomogeneity in an
infinite domain Mura (1987), so that DEIM can provide the exact solution. Here the following two thermoelastic problems are
discussed. The exactness of the solution for a spherical tank can be generalized to an ellipsoidal tank as well with the elliptical
integrals (Mura, 1987).

6.1. A spherical inhomogeneity with a uniform heat source

Consider a constant heat source 𝑞𝑣 distributed within the spherical subdomain 𝛺𝐼 with 𝐾𝐼 located at the origin point, where
the far-field temperature is assumed as the reference temperature of zero. The temperature field can be easily obtained by solving
Eq. (26), the ETG field is linear as shown in Eq. (30),

𝑇 𝐼∗
𝑖𝑗

=
−𝑞𝑣(𝐾 −𝐾𝐼 )

3𝐾𝐾𝐼
𝛿𝑖𝑗 (30)

which leads to the temperature field as,

𝑇 (𝐱) =
𝑞𝑣

4𝜋𝐾
{
𝛷 + 𝐾 −𝐾𝐼

3𝐾𝐼
𝛷𝑖,𝑖

}
=

𝑞𝑣

3𝐾

⎧⎪⎨⎪⎩
[𝑎2(4𝐾𝐼−𝐾)−|𝑥|2𝐾]

2𝐾𝐼 |𝑥| ≤ 𝑎

𝑎3|𝑥| |𝑥| > 𝑎
(31)

By solving Eq. (27), the thermal stress can also be derived. Because a linear ETG field generally caused quadratic disturbance of
the stress field, the solution of eigenstrain is a combination of uniform and quadratic terms as follows,

𝜀𝐼∗
𝑖𝑗

= 𝜀𝐻𝛿𝑖𝑗 (32)

and

𝜀𝐼∗
𝑖𝑗𝑚𝑛

= 𝜀𝐴𝛿𝑖𝑗𝛿𝑚𝑛 + 𝜀𝐵(𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑗𝑚𝛿𝑖𝑛) (33)

where the eigenstrain parameters are written as,

𝜀𝐻 =
−𝑎2𝑞𝑣𝛿𝑖𝑗
30𝐾𝐾𝐼

(1 + 𝜈)𝛼
[
3(𝜆𝐼 − 𝜆) + 2(𝜇𝐼 − 𝜇)

][
10𝐾𝐼𝜆𝐼𝜇(1 + 𝜈) + 20𝐾𝐼𝜇𝐼 [𝜆(1 − 2𝜈) + 𝜇(1 − 𝜈)] + 𝐾𝜇 + 4𝐾𝜆𝜇𝐼 (1 − 2𝜈) +

2𝐾𝜇[𝜆𝐼 (1 + 𝜈) + 2𝜇𝐼 (1 − 𝜈)]
]

+ (−𝐼 )
[
30𝐾𝐼 (1 − 𝜈)+𝐾

(
𝜇(1 + 𝜈) +4𝜇𝐼𝜇𝐼 (1 − 𝜈 −2𝜈2) + 6𝜇𝐼𝜆𝐼 (1 − 𝜈 −2𝜈2) + 12𝜇𝐼𝜆(1 − 2𝜈)(2 − 3𝜈) +

2𝜇𝐼𝜇(10 − 28𝜈 + 22𝜈2) + 6𝜇𝜆𝐼 (1 − 𝜈2)
)]

 (34)

𝜀𝐴 =
𝑞𝑣(1 + 𝜈)𝜇(5𝛼𝜆𝐼 −𝐼 ) + 2𝑞𝑣𝜇𝐼 [(2 − 3𝜈)( −𝐼 ) + (1 + 𝜈)𝛼(𝜇 − 𝜆)]

30𝐾𝐼 (35)

and

𝜀𝐵 =
𝑞𝑣(1 + 𝜈)(𝜇𝐼 − 𝜇)𝐼

30𝐾𝐼 (36)

in which  = (1 + 𝜈)𝜇𝜆𝐼 + 2[(1 − 2𝜈)𝜆 + 𝜇(1 − 𝜈)]𝜇𝐼 and  = 2(1 − 2𝜈)(3𝜆 + 2𝜇) + (1 + 𝜈)(3𝜆𝐼 + 2𝜇𝐼 ).
Using the Eshelby’s tensors 𝐃, 𝐑 and 𝐒, the displacement can be determined as follows,

𝑢𝑖(𝐱) =
1

8𝜋(1 − 𝜈)

{
𝛼(1 + 𝜈)𝑞𝑣

𝐾

[
𝛹,𝑖 +

𝐾 −𝐾𝐼

3𝐾𝐼
𝛹𝑚,𝑖𝑚

]
+ 𝜀𝐻 [𝛹,𝑖𝑚𝑚 − 2(4 − 𝜈)𝛷,𝑖]

+ 𝜀𝐴[𝛹𝑚𝑚,𝑖ℎℎ − 2(4 − 𝜈)𝛷𝑚𝑚,𝑖] + 2𝜀𝐵[𝛹𝑚ℎ,𝑖𝑚ℎ − 2𝜈𝛷𝑚𝑚,𝑖 − 8(1 − 𝜈)𝛷𝑖𝑚,𝑚]

}

=
𝑥𝑖

(1 − 𝜈)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛼(1 + 𝜈)𝑞𝑣
90𝐾𝐾𝐼

[5𝑎2(𝐾 + 2𝐾𝐼 ) − 3𝐾|𝑥|2] + (3 − 𝜈)
3

𝜀
𝐻

+ (3 − 𝜈)
5

|𝑥|2𝜀𝐴 + 2
15

[5(−3 + 4𝜈)𝑎2 − 3(−6 + 7𝜈)|𝑥|2]𝜀𝐵 |𝑥| ≤ 𝑎

𝛼(1 + 𝜈)𝑞𝑣
90𝐾𝐾𝐼 |𝑥|3 [𝑎2(2𝐾 − 5𝐾𝐼 ) + 15𝑎3𝐾𝐼 |𝑥|2] + (3 − 𝜈)𝑎3

3|𝑥|3 𝜀
𝐻

+ (3 − 𝜈)𝑎5

5|𝑥|3 𝜀
𝐴 + 2𝑎5(3 − 𝜈)

15|𝑥|3 𝜀
𝐵

|𝑥| > 𝑎

(37)
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6.2. A spherical inhomogeneity in a uniform far field heat flux

Consider a uniform heat flux passes through a large material domain with 𝐾, , containing a spherical inhomogeneity 𝛺𝐼 with
𝐾𝐼 ,  , . The linear temperature distribution will be disturbed in the neighborhood of the inhomogeneity. The uniform far-field
temperature gradient is given in the third direction as 𝐓0 = [0, 0, 𝑇 0

3 ], and the reference temperature is taken zero at 𝑥3 = 0 or
𝑇𝑥3=0 = 0, which makes the temperature distribution as an odd function of 𝑥3. Without the loss of any generality, let the center 𝐱𝐼𝐶
locate at the origin and the reference displacement keeps zero at the origin without rigid body rotation. From the equivalent heat
flux condition of Eq. (26), the uniform ETG can be determined as,

𝑇 ∗
𝑖
= 3𝛿𝑖3𝑇 0

3
𝐾 −𝐾𝐼

2𝐾 +𝐾𝐼
(38)

and the temperature field can be obtained through the superposition of a linear one by the gradient and a disturbed one by the
uniform ETG,

𝑇 (𝐱) = 𝑇 0
3 𝑥3 −

𝛷,3𝑇
∗
3

4𝜋
=

𝑇 0
3 𝑥3

2𝐾 +𝐾𝐼
×
⎧⎪⎨⎪⎩
3𝐾 |𝑥| ≤ 𝑎

(2𝐾 +𝐾𝐼 ) − (𝐾 −𝐾𝐼 ) 𝑎3|𝑥|3 |𝑥| > 𝑎
(39)

When there is no inhomogeneity, the linear temperature distribution will lead to a linear strain field as,

𝜀𝑇
𝑖𝑗
= 𝛼𝑇 0

3 𝑥3𝛿𝑖𝑗 (40)

which is compatible without any thermal stress induced in an unconstrained domain. The corresponding displacement can be
obtained through integration as follows,

𝑢∞
𝑖

=
𝛼𝑇 0

3
2

{2𝑥𝑖𝑥3 − 𝛿𝑖3(𝑥21 + 𝑥22 + 𝑥23)} (41)

where the reference displacement is zero at the origin. The solution to the inhomogeneity problem can be decomposed into two
steps, (i) determination of eigenstrain without disturbance of ETG; (ii) determination of eigenstrain caused by ETG only.

Step (i) is corresponding to the case the inhomogeneity exhibits the same thermal conductivity as the matrix, so the linear
temperature distribution is not disturbed but thermal stress is still induced due to the different thermal expansion coefficient and
stiffness of the tank.

Using Eq. (40) as a far field strain, 𝜀∞
𝑘𝑙
, in Eq. (27), we can solve the linear eigenstrain field as,

𝜀∗𝐼
𝑖𝑗𝑚

= 𝜀
𝐶
𝛿𝑖𝑗𝛿𝑚3 (42)

where

𝜀
𝐶 =

𝑇 0
3 (1 − 𝜈)

[𝐼 − 𝛼(3𝜆𝐼 + 2𝜇𝐼 )
]

(1 + 𝜈)(3𝜆𝐼 + 2𝜇𝐼 ) − 2𝜈(3𝜆 + 2𝜇)
(43)

and the displacement is obtained as,

𝑢𝑖(𝐱) =
𝛼𝑇 0

3
2

{2𝑥𝑖𝑥3 − 𝛿𝑖3|𝑥|2} + 𝜀
𝐶

5

⎧⎪⎨⎪⎩
𝑥𝑖𝑥3 + 𝛿𝑖3

−35𝑎2+33|𝑥|2
6 |𝑥| ≤ 𝑎

𝑎5|𝑥|5 [𝑥𝑖𝑥3 − 𝛿𝑖3
3

] |𝑥| > 𝑎
(44)

In Step (ii), the interior (|𝑥| ≤ 𝑎) disturbed displacement by ETG in Eq. (38) can be derived as,

𝑢𝐸
𝑖
(𝐱) = − 𝛼(1 + 𝜈)

8𝜋(1 − 𝜈)
𝑇 ∗
𝑗
𝛹,𝑖𝑗 =

𝛼𝑇 0
3 (1 + 𝜈)(𝐾 −𝐾𝐼 )

5(1 − 𝜈)(2𝐾 +𝐾𝐼 )
[
𝑥𝑖𝑥3 + 𝛿𝑖3

|𝑥|2 − 5𝑎2

2
] |𝑥| ≤ 𝑎 (45)

It is lengthy to write the explicit form of linear eigenstrain 𝜀∗𝐼𝐼
𝑖𝑗𝑚

caused by ETG through solving the linear equation system of Eq. (27).
However, it is straightforward to implement it numerically, and then solve for displacement with Green’s functions. The entire
solution is the superposition of far-field displacement and two linear eigenstrain, which is an exact solution without higher-order
eigenstrains. The subsequent process is elaborated in Section 3 of the Supplemental Material with the ‘‘Mathematica’’ script.

7. Conclusions

This paper investigates the thermal, elastic, and thermoelastic problems for a spherical thermal tank in geothermal applications.
The thermoelastic Green’s function for a bi-material infinite domain has been re-derived in the form of a Cartesian vector, which
is convenient for analytical volume integral. Using the three types of Green’s function for bi-materials, the temperature and
displacement fields caused by a heat source, body force, ETG, and eigenstrain, which can be in a polynomial function over a
spherical subdomain, can be solved analytically. The DEIM can solve the thermal and elastic problem for a spherical thermal tank
in a bi-material in a coupled way, The following significant contributions of this work are summarized:
1. The Green’s functions for bi-materials are versatile and can recover the case for semi-infinite domain and infinite domain with a
single material;
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2. The DEIM provides a rapid way to solve the thermoelastic fields of a spherical heat tank in a bi-material or single-material domain,
which has been verified with FEM with an excellent agreement;
3. The DEIM provides the exact solutions for a tank in an infinite single material with a uniform heat source or under a uniform
far-field heat flux;
4. The DEIM is demonstrated for the geothermal system design with energy flow and stress analysis, and multi-tank interactions are
illustrated.

Using Hadamard’s Regularization in the 𝑥3 direction, the present DEIM can be extended to the two-dimensional bi-material
thermoelastic analysis. The accuracy of the method can be tailored by using different orders of the eigen-fields, including ETC
and eigenstrain, through their Taylor series expansion at the center of each subdomain. The formulation can be extended to the
ellipsoidal and arbitrary shapes of geothermal tanks. The extension of this work to finite domains with boundary effects is underway.
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Appendix A. Determination of coefficients 𝑨𝟏𝟏 ⋯ 𝑨
′
𝟐𝟐

This appendix provides details to construct equations for Eq. (15) in Section 3.2.
(1) Using the continuity condition of 𝑢1 and 𝑢2, the upper phase,

2𝜇′𝑢𝑖 = (𝐴11 + 𝐴11)𝛽𝑢,𝑖 + (𝐴12 − 𝐴12)𝛼𝑢,𝑖

and in the lower phase,

2𝜇′′𝑢𝑖 = 𝐴′
11𝛽

𝑢
,𝑖
+ 𝐴′

12𝛼
𝑢
,𝑖

(2) Using the continuity condition of 𝑢3, the upper phase,

2𝜇′𝑢3 = (𝐴11 − 𝐴11)𝛽𝑢,3 + (𝐴12 + 𝐴12)𝛼𝑢,3 − (3 − 4𝜈′){(𝐴21 − 𝐴21)𝛼𝑢 + 𝐴22𝜙} + 4(1 − 𝜈′){(𝐴3 − 𝐴3)𝛼𝑢}

and in the lower phase,

2𝜇′′𝑢3 = 𝐴′
11𝛽

𝑢
,3 + 𝐴′

12𝛼
𝑢
,3 − (3 − 4𝜈′′){𝐴′

21𝛼
𝑢 + 𝐴′

22𝜙} + 4(1 − 𝜈′′)𝐴′
3𝛼

𝑢

(3) Using the continuity condition of 𝛾31 and 𝛾32, the upper phase,

𝜏13 = (𝐴11 − 𝐴11)𝛽𝑢,13 + (𝐴12 + 𝐴12)𝛼𝑢,13 − (1 − 2𝜈′){(𝐴21 − 𝐴21)𝛼𝑢,1 + 𝐴22𝜙,1} + 2(1 − 𝜈′){(𝐴3 − 𝐴3)𝛼𝑢,1}

and in the lower phase,

𝜏13 = 𝐴′
11𝛽

𝑢
,13 + 𝐴′

12𝛼
𝑢
,13 − (1 − 2𝜈′′){𝐴′

21𝛼
𝑢
,1 + 𝐴′

22𝜙,1} + 2(1 − 𝜈′′){𝐴′
3𝛼

𝑢
,1}

(4) Using the continuity condition of 𝜎33, the upper phase,

𝜎33 = (𝐴11 + 𝐴11)𝛽𝑢,33 + (𝐴12 − 𝐴12)𝛼𝑢,33 − 2(1 − 𝜈′){(𝐴21 + 𝐴21)𝛼𝑢,3 − 𝐴22𝜙,3} + 2(1 − 𝜈′)(𝐴3 + 𝐴3)𝛼𝑢,3
and in the lower phase,

𝜎33 = 𝐴′
11𝛽

𝑢
,33 + 𝐴′

12𝛼
𝑢
,33 − 2(1 − 𝜈′′){𝐴′

21𝛼
𝑢
,3 + 𝐴′

22𝜙,3} + 2(1 − 𝜈′′)𝐴′
3𝛼

𝑢
,3

Collecting the equivalent terms in the 4 equivalent conditions, eight equations can be constructed as Eq. (15).
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Appendix B. Green’s functions for semi-infinite domains and an infinite homogeneous domain

B.1. Semi-infinite domain with a Neumann’s boundary condition on the surface

When one material phase is reduced to a vacuum with 𝐾 ′ = 𝐂′ = 0, the infinite bi-material is reduced to a semi-infinite single
material domain with a Neumann’s boundary condition of a free surface from heat flux and traction. The Green’s functions are
obtained as follows for both source and field points in −.

(i) Thermal Green’s function

𝐺(𝐱, 𝐱′) = 1
4𝜋𝐾 ′′ (𝜙 + 𝜙) (B.1)

(ii) Elastic Green’s function

4𝜋𝜇′′𝐺𝑖𝑗 (𝐱, 𝐱′) = (𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈′′)
) + 𝜙𝛿𝑖𝑗 − 2(𝛿𝑖3𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗3)𝛼

𝑙

,𝑘

− 1
2(1 − 𝜈′′)

𝑥3

[
𝑄𝐽𝜓,𝑖𝑗3 + 4(1 − 𝜈′′)𝛿𝑗3𝜙,𝑖 + 2(1 − 2𝜈′′)𝛿𝑖3𝑄𝐽𝜙,𝑗 −𝑄𝐽𝑥3𝜙,𝑖𝑗

]
− 3 − 4𝜈′′

4(1 − 𝜈′′)
𝑄𝐼𝑄𝐽𝜓,𝑗𝑖 − (1 + 2𝜈′′)𝑄𝐽𝛽

𝑙

,𝑖𝑗

(B.2)

where 𝐴𝑙 = 1, 𝐵𝑙 = 2, 𝐶𝑙 = 1
2(1−𝜈′′) , 𝐷

𝑙 = 3−4𝜈′′
4(1−𝜈′′) , 𝐺

𝑙 = 2𝜈′′ − 1 are applied.
(iii) Thermoelastic Green’s function

16𝜋𝜇′′ (1 − 𝜈′′)𝐾 ′′

(1 − 2𝜈′′)′′𝐺𝑖(𝐱, 𝐱′) = 𝐴𝑙
3𝜓,𝑖 + 2𝐴𝑙

3(1 − 𝜈′′)𝛽
𝑙

,𝑖
+ 𝐴𝑙

3(3 − 4𝜈′′)𝜓,𝑖

+ 𝑥3𝐴
𝑙
3

[
4(1 − 𝜈′′)𝛼𝑙

,𝑖
+ 2

(
𝜓,𝑖3 + 2(1 − 2𝜈′′)𝛿𝑖3𝜙 − 𝑥3𝜙,𝑖

)]
+ 𝛿𝑖3𝐴

𝑙
3
[
−(3 − 4𝜈′′)

(
−𝛼𝑙 + 2𝜓,3

)
− 𝛼

𝑙]
(B.3)

where 𝐴𝑙
3 = 𝐴3

𝑙
, 𝐴𝑙′

3 = 0, 𝐿𝑙
𝐵
= 𝐴𝑙

3(3 − 4𝜈′′), 𝐿𝑙
𝐶
= 2𝐴𝑙

3, 𝐿
𝑙
𝐷
= 0, 𝐿𝑙

𝐹
= 4(1 − 𝜈′′)𝐴𝑙

3 and 𝐴
𝑙

11 = (2𝜈′′ − 1)𝐴𝑙
3, 𝐴

𝑙

21 = −𝐴𝑙
3 are applied.

B.2. Semi-infinite domain with a Dirichlet’s boundary condition on the surface

When one material phase is reduced to an ideally rigid thermal conductor with 𝐾 ′ → ∞,  = 0, and 𝐂′ → ∞, the infinite
bi-material is reduced to a semi-infinite single material domain exhibiting a Dirichlet’s boundary condition with a fixed uniform
temperature and displacement along the surface. The Green’s functions are obtained as follows for both source and field points in
−.

(i) Thermal Green’s function

𝐺(𝐱, 𝐱′) = 1
4𝜋𝐾 ′′ (𝜙 − 𝜙) (B.4)

(ii) Elastic Green’s function

4𝜋𝜇′′𝐺𝑖𝑗 (𝐱, 𝐱′) = (𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) − 𝜙𝛿𝑖𝑗 +

1
4(1 − 𝜈′′)

𝑄𝐼𝑄𝐽𝜓,𝑗𝑖

+
𝑥3

2(1 − 𝜈′′)(3 − 4𝜈′′)

[
𝑄𝐽𝜓,𝑖𝑗3 + 4(1 − 𝜈′′)𝛿𝑗3𝜙,𝑖 + 2(1 − 2𝜈′′)𝛿𝑖3𝑄𝐽𝜙,𝑗 −𝑄𝐽𝑥3𝜙,𝑖𝑗

] (B.5)

where 𝐴𝑙 = −1, 𝐵𝑙 = 0, 𝐶𝑙 = −1
2(1−𝜈′′)(3−4𝜈′′) , 𝐷

𝑙 = −1
4(1−𝜈′′) , 𝐺

𝑙 = 0 are applied.
(iii) Thermoelastic Green’s function

16𝜋𝜇′′ (1 − 𝜈′′)𝐾 ′′

(1 − 2𝜈′′)′′𝐺𝑖(𝐱, 𝐱′) = 𝜓,𝑖 − 𝜓,𝑖 −
2𝑥3

3 − 4𝜈′′
[(
𝜓,𝑖3 + 2(1 − 2𝜈′′)𝛿𝑖3𝜙 − 𝑥3𝜙,𝑖

)]
+ 𝛿𝑖3

[
(3 − 4𝜈𝑞)𝛼𝑦 + 2𝜓,3 + (3 − 4𝜈′′)𝛼𝑦

] (B.6)

where 𝐴𝑙
3 = −𝐴3

𝑙
, 𝐴𝑙′

3 = 0, 𝐿𝑙
𝐵
= −𝐴𝑙

3, 𝐿
𝑙
𝐶
= −2

3−4𝜈′′𝐴
𝑙
3, 𝐿

𝑙
𝐷
= −4(1−𝜈′′)

3−4𝜈′′ 𝐴
𝑙
3, 𝐿

𝑙
𝐹
= −4(1−𝜈′′)

3−4𝜈′′ 𝐴
𝑙
3 and 𝐴

𝑙

11 = 𝐴𝑙
3, 𝐴

𝑙

21 = −𝐴𝑙
3 are applied.

B.3. Green’s functions for an infinite domain with a homogeneous material

When two material phases are identical, the Green’s functions are simplified as follows,
(i) Thermal Green’s function

𝐺(𝐱, 𝐱′) = 𝜙

4𝜋𝐾
(B.7)

(ii) Elastic Green’s function

𝐺𝑖𝑗 (𝐱, 𝐱′) =
𝛿𝑖𝑗𝜙

4𝜋𝜇(1 − 𝜈)
−

𝜓,𝑖𝑗

16𝜋𝜇(1 − 𝜈)
(B.8)
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Fig. C.18. A hollow ball filled with a liquid inside an infinite domain under a far-field uniform test load.

(iii) Thermoelastic Green’s function

𝐺𝑖(𝐱, 𝐱′) =
𝛼(1 + 𝜈)

8𝜋𝐾(1 − 𝜈)
𝜓,𝑖 (B.9)

Appendix C. Estimation of the effective mechanical properties of a spherical thermal tank

This subsection aims to provide details on the estimation of effective mechanical properties of the spherical geothermal tank.
During working conditions, the spherical thermal tank is filled with water, which can be homogenized as a uniform solid ball with
a certain effective stiffness. Specifically, in most cases, the tank may not be full. In such a case, a partially full tank may exhibit the
same effective stiffness as an empty tank when the inner pressure is negligible. The effective stiffness of a spherical thermal tank can
be estimated through the double-inclusion model proposed by Hori and Nemat-Nasser (1993). Assume the thickness of the thermal
water tank is uniform, shown in Fig. C.18, the ball 𝛺2 is composed of (i) space for liquid 𝛺1 and (ii) a uniform thin spherical shell
𝛺2 −𝛺1. Let 𝑅𝑜 and 𝑅𝑖 denote the outer and inner radius, and 𝛺1 and 𝛺2 −𝛺1 are filled with isotropic material with stiffness 1

and 2, respectively.
Now embed this ball in an infinite domain 𝛺0 with stiffness 0, and apply a uniform test load 𝜎∞

𝑖𝑗
(or equivalently 𝜀∞

𝑖𝑗
) in the

far field. Since the geometry of the thermal tank and the space for liquid are coaxial and similar, 𝛥𝑆 terms vanish in Eq.(3.6 a, b)
of Hori and Nemat-Nasser (1993). Therefore, the effective stiffness tensor can be written as,

𝑡𝑎𝑛𝑘 = 0 ∶ {𝐈 + (𝑆2 − 𝐈) ∶ 𝛷𝑅} ∶ {𝐈 + 𝑆2 ∶ 𝛷𝑅}
𝛷1 = −{𝑆1 + (1 − 0)−1 ∶ 0}−1

𝛷2 = −{𝑆2 + (2 − 0)−1 ∶ 0 + 𝑓

1 − 𝑓
}−1

(C.1)

where 𝛷𝑅 = 𝑓𝛷1 + (1 − 𝑓 )𝛷2 and 𝑓 = 𝑉 1

𝑉 2 ; 𝑉1 and 𝑉2 are the inner volume and entire volume of the thermal tank; 𝑆
1 and 𝑆2

are uniform Eshelby’s tensors associated with source domain 𝛺1 and 𝛺2, respectively. Notice that the 𝑆1, 𝑆2 only involve interior
field points, and thus 𝑆1 and 𝑆2 are the exactly same constants. Obviously, the estimation of effective stiffness is dependent on the
mechanical properties of the matrix 0 and the geometry of the thermal tank.

Without the loss of any generality, let the soil be unsaturated clay and its Young’s modulus and Poisson’s ratio are 20 MPa and
0.3, respectively; the spherical shell of the thermal tank is made of structural steel (Young’s modulus 200 GPa and Poisson’s ratio
0.3); the volume fraction 𝑓 = (0.9)3 = 0.723. (i) When the thermal tank is empty, the effective moduli are 7.402 MPa and 0.176; (ii)
when the thermal tank is filled with water (Bulk Modulus 2.1 GPa and Poisson’s ratio 0.5), the effective moduli are 9.434 MPa and
0.499452.

According to Herve (2002), the effective thermal conductivity 𝐾 of a two-layered structure is,

𝐾 = 𝐾2 + 𝐾2𝑓

𝐾2

𝐾1−𝐾2 + 1
3 (1 − 𝑓 )

(C.2)

and the effective thermal expansion ratio is,

𝛼 = 𝑓𝛼1 + (1 − 𝑓 )𝛼2 + (𝛼1 − 𝛼2) 4𝜇2𝑓 (1 − 𝑓 )(𝛩1 − 𝛩2)2

(3𝛩2 + 4𝜇2)𝛩1 + 4𝜇2(1 − 𝑓 )(𝛩2 − 𝛩1)
(C.3)

where 𝛩𝐼 is the Bulk modulus of the 𝐼th phase; 𝑓 is the volume ratio of the two subdomain defined above.
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Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2023.105207.
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