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ABSTRACT
The recently published simplified singum model has been improved by using the thermodynamics-

based equation of state (EOS) of solids to derive a new interatomic potential based on the elastic
constants. The finite deformation formulation under hydrostatic load has been used to evaluate
the pressure-volume (p-v) relationship for the EOS of a solid. Using the bulk modulus and its
derivatives at the free-stress state, one can construct the EOS, from which a new form of inter-
atomic potential is derived for the singum, which exhibits much higher accuracy than the previous
one obtained from the Fermi energy and provides a general approach to construct the interatomic
potential. The long-range atomic interactions are approximated to be proportional to the pressure.
This improved singum model is demonstrated for the face-centered cubic (FCC) lattice of sin-
gle crystalline aluminum. The elastic properties at different pressures are subsequently predicted
through the bond length change and compared with the available experimental data. The model can
be straightforwardly extended to higher order terms of EOS with better accuracy and other types

of lattices.
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INTRODUCTION

In the recent paper (Yin 2022b), a continuum particle model, namely the singum model, was
presented to simulate an atomic lattice with singular interatomic forces by a continuum particle
system with stresses through particle’s interfaces. The Wigner-Seitz (WS) cell (Wigner and Seitz
1933)is used to construct the singum particles through the Voronoi decomposition of a crystal lattice
(Voronoi 1908). Although a point force in a continuum solid is a strong singularity that exhibits an
infinite displacement or stress in continuum mechanics, an isotropic stress-strain relationship can be
established with the aid of the Fermi energy for bulk modulus (Shukla 1981) by the homogenization
of stress over the singum’s volume and orientation. Therefore, the two independent isotropic elastic
constants can directly map to the two constants in the interatomic potential given the crystal lattice
characteristics (Yin 2022b). However, the simple form of the Fermi energy cannot capture the
general pressure-volume relation over finite deformation and was proposed to be replaced by a
polynomial form (Johnson 1972; Shukla 1981).

The equation of state (EOS) of solids describes the volume or density change of solids under
an increasing hydrostatic pressure over a large range (Vinet et al. 1989; Cohen et al. 2000). Birch
(Birch 1952) classified the EOS in four groups: 1) quantum mechanics uses the atomic constants
to predict the elastic constants at at (absolute) zero temperature; 2)the Fermi energy approximates
a solid as an electron gas, subject to the Fermi-Dirac statistics, and predicts the p-v relationship; 3)
the semi-empirical laws of cohesion with the temperature-dependent energy predict the relationship
among temperature, pressure and density of solids, and; 4) thermodynamics provides a general
framework to predict the elasticity with the parameters to be calibrated by other means.

Although the Fermi energy could provide reasonable prediction of elasticity through the cali-
bration with the elastic constants (Yin 2022b), the accuracy was not high for general solids. The
EOS based on the thermodynamic equation is typically provided in form of the Helmholtz free
energy, which correlates the state variables, such as pressure, volume, temperature, or internal
energy (Fiirth 1944; Birch 1952). It provides more flexibility to calibrate the parameters for high

accuracy and has been well accepted in the research community (Birch 1952).
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Although elastic solids are often assumed with the linearity of the stiffness by the Hooke’s
law, the experimental data under large pressure (Guinan and Steinberg 1974; Holzapfel et al.
2001; Occelli et al. 2003) showed the significant change of compressibility with pressure. Birch
(Birch 1947) used Murnaghan’s finite deformation theory (Murnaghan 1937) to consider the effect
of pressure upon the second-order elastic constants and obtained excellent comparisons with the
experiments for compressibility of solids, which is coined as the Murnaghan-Birch’s (MB) EOS.
Although many forms of EOS have been proposed and used for specific solids (Cohen et al.
2000; Occelli et al. 2003; Swift et al. 2022), the MB EOS is still widely used for its robustness
and simplicity. Under the general loading condition, the thermodynamics-based framework can
provide a practical approach to predicting the nonlinear elastic behavior of atomic lattices (Wei
et al. 2009; Tadmor and Miller 2011).

The singum model provides a clear approach to correlate the interatomic potential with the
elasticity at the undeformed state and the EOS of the solids (Yin 2022b). It was generalized to
lattice metamaterials and composites for prediction of the effective elasticity based on the stiffness
of the lattice components and the structure of the lattice using a harmonic potential (Yin 2022a).
This is the third paper in this series to extend the formulation to finite deformation under hydrostatic
loading and thus correlate the nonlinear elastic behavior of crystals with the interatomic potential
in a rigorous way. Particularly, because the interatomic potential function plays a significant role
on the chemistry and physics of materials (Jarvis et al. 1996; Ruiz et al. 2015; Zuo et al. 2020;
Mishin 2021), it is critical to find an accurate interatomic potential.

Based on the two previous papers, a crystal lattice is simplified into continuously packed
singum particles with short-range particle interaction forces equal to the interatomic forces. Along
the surface, the atoms form a surface layer and interact with the inner singums. The atomic
interactions in the surface layer are different from those between the singums and produce a
prestress to the lattice, so that the undeformed state of the crystals exhibit a bond length different
from the equilibrium bond length. By applying a displacement variation, from the variations of

the stress and strain, one can derive the stiffness explicitly, and therefore establish the relationship
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between the stiffness of the crystal and the potential between atoms. When the solid is under a high
pressure, the lattice exhibits a hydrostatic deformation while keeping the same lattice structure, but
the stiffness of the lattice changes with the bond length. The formulation (Yin 2022b) developed
with infinitesimal strain is not sufficient to catch the nonlinear material behavior under finite
deformation of hydrostatic loading. This paper improves the singum model with a new form of the
interatomic potential and addresses some confusing issues in the first paper (Yin 2022b), which
will be clarified subsequently.

In the remainder of this paper, we firstly revisit the assumptions of the singum model (Yin 2022b)
and use the finite deformation to formulate the pressure-volume (p-v) relationship and constitutive
law, and then derive a new singum potential function based on the MB EOS of solids with other
elastic constants at the undeformed state. The modeling method can also be extended to other forms
of EOS obtained from either experiments or theories. Given a singum potential and the crystal
lattice characteristics, the tangential elastic constants can be calculated at a given material state.
The model is demonstrated for face-centered cubic (FCC) lattices of single crystalline aluminum.

The comparison with the experimental results shows the capability and accuracy of the model.

FORMULATION

This section we use a face-centered cubic (FCC) lattice as an example to formulate the problem,
which can be generalized to other lattices. We will first derive the MB EOS based on the singum
configuration, then set up the constitutive equation in terms of the interatomic potential, and finally
derive the EOS based singum potential. Based on the previous work (Yin 2022b; Yin 2022a), a
freestanding lattice may exhibit a prestress due to the surface energy of the atom interaction on the
boundary, so that the bond length 2/}] in the undeformed state can be different from the equilibrium
bond length 212 of two freestanding atoms. Here the bond length 212 refers to the minimal potential
energy, which is used as the reference coordinate X, and other states can be represented by x with a

deformed bond length 2/,. The freestanding lattice is represented by x" with the bond length 277.
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The equation of state of the singum
Consider an FCC crystal lattice in Fig. 1(a). In the reference configuration, the unit cell of

an FCC lattice exhibits the cubic edge length ¢, so that the bond length 212 = f’/—%, where the

interatomic force of the bonds is zero and kinetic energy of atoms is not considered. We set

up the coordinate with the origin at the 0/" atom, and 12 closest neighbor atoms are located at

0 0 0

a a a aO (10 ao . . : .
(17, +5, 0), (17, 0, 17), (0, +5, 17), which are corresponding to the directional vectors n

1

I=1,2,..,12)= (i%,i%,O), (i%,o,i%), or (O,i%,i%).

Following the previous paper (Yin 2022b), we can construct the singum particle by cutting the
12 bonds with the vertical midplanes forming a rhombic dodecahedron in Fig. 1(b), in which F’
shows the bond force between the 0/ and 7" atoms as an example of the 12 bonds to be cut at
the midpoint by a perpendicular plane. Both Figs. 1(a) and (b) shows the bond force of atom 0-7
acting at the cutting point. Notice that two unit cells are needed to construct the singum illustrated
in Fig. 1(b) with four atoms on the interfac and four in each unit cell. A Cartesian coordinate
X is setup at the zero-force bond length, i.e. the Lagrangian coordinates. After a homogeneous
deformation of the lattice, the material points in X are referred to x at the deformed state, or the
Eulerian coordinates, in which the lattice still keeps periodic, so that the whole space can still be
filled with the deformed singums. Here because the singum is defined by the bonds, each surface
will still keep plane. The central symmetry of the lattice can be observed, so that the atoms keep in
equilibrium under the deformation. Without any loss of generality, the origins of x and X are both
selected at the center of Atom O.

The displacement field is written as u = X — X. The deformation gradient tensor is defined
as Fy, = g%. The finite strain can be defined either in the Lagrangian coordinates as E;; =
%(Fk,'ij — ¢0;j) or in the Eulerian coordinates as &;; = %(6,7 - F,:l.le‘jl) (Hutter and Johnk 2013;
Bazant and Cedolin 2010). Because the stress or pressure is typically measured at the Eulerian

coordinates, the latter is used for consistence:

1

1
=[6ij — (Oki — uk,;)(Okj —ur ;)] = E(ui,j +Uj— Uk iUk, j) (1)

8,']'22

5 Yin, November 29, 2022



126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Applying a hydrostatic load p, we can test the equation of state from the p-v curve (Birch 1947).
Due to the central symmetry, the bond length 2/, of all bonds will uniformly change, namely the
deformed length r = 2/,4, where A is the stretch ratio of the bond. An isotropic strain is obtained

from Eq. (1) in corresponding to a hydrostatic load as:
gij = €0jj ()

_(A-1)?

= | = %(1 — A72) by using u; ; = A/l;l The volume ratio of the singum is

—1]|ra=1L
where € = 5 2 v
written as

% =173 = (1= 2¢)3? 3)

where v and v( represent the deformed volume and initial volume, respectively.
Following Birch’s assumption (Birch 1947; Birch 1952), the Helmohotz free energy of the

singum under a hydrostatic load alone can be written in terms of the finite strain as

Y=ge?+bed+cet+--- 4)

where a, b, ¢ are the second, third, fourth-order elastic constants depending on temperature only.
It can be extended to higher order terms, but typically when up to third order terms are used,
the EOS produces fairly accurate results for general solids. Specifically, a is related to the bulk
modulus, b and c are related to the pressure derivative of the bulk modulus, which will be discussed
subsequently. Then the pressure can be written as

d¥ de 1

p=-—m o =—g—(l- 2€)°?(2ae + 3be* + 4ce® + - - ) (5)
€ dv Vo

Using Eq. (3), the above equation can be further simplified into

3b
p= (@7 =27 |1~

-2 c 2 2
3vg E(ﬂ —1)+%(/1 -1) (6)
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where the higher order terms are disregarded. Given the atomic weight M, we can calculate the

density, namely pq, of the solid as

(7

M, M,
PO=—F =
%

2
where V¥ = 4\/51;’7 is the singum’s initial volume for FCC lattices in Fig. 1(a). The conservation of

the mass also implies

p/pozv(s)/vs:/l_3 3)

Therefore, the MB EOS of Eq. (6) can be equivalently written in terms of density ratio as well
(Birch 1952).

From the above relationship, the bulk modulus changing with A can be derived as

__9p __dpdd
KO == =D
:£{<7ﬂ‘7 -517) [1-0.75b/a(2> = 1) +0.5¢/a(27* = 1)?] ®
0

+ (=477 [~1.5b/a + 2c/a(X7? - 1)]}
When A = 1, the following relations are obtained by Egs. (6) and (9) as:

2a ., dk b, d%k ¢ _9k2 + 63k, — 143
ko=gooi ko=l == kg = sk s - °9k0 - (10)

Therefore, the parameters of a, b, ¢ in Egs. (6) and (9) can be written in terms of the bulk modulus

and its pressure derivatives of ko, k, k; with more clear physical meanings as follows

9V0k0 b ’ C
; —=4—-ky;, —=
2 a g

143) (11

(kokg + k(= Tk + -

| w

so that Egs. (6) and (9) can be rewritten as

_ 3ko
P=7

143

A7T=-1) 1+ Z(k(’) —4HAT -1+ % (kokg + k= Tk + T) (172 - 1)2] (12)
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and

k(1) :%{(m—7 ~517%)

1+ %(k(’) —4H2-1)+ % (kokg + kP - Tk + 143/9) (72 - 1)2]

+ %(1—9 = A7) | (kG = 4) + Kok + k5 = Tk + 143/9) (2= 1) |}

(13)

The above p — v relation is the well-known Murnaghan-Birch (MB) EOS (Birch 1947; Birch 1952).
Although the above equations can be extended to the terms higher than 4th order of ce* (Wei et al.
2009) in the similar fashion of the above procedure, as most crystals crack or the lattice is distorted
when A changes too far from 1, the higher order terms play less important role, and the improvement
of the higher-order EOS was not significant. If only the second order term of ae? is considered,
we can obtain k;, = 4, k; = —% by using b = ¢ = 0. Then only one constant of kg is taken into

account and the EOS becomes

P () = ?(ﬂ -17) (14)
and
ay=Ro|T_3
ke = & [ﬁ ﬂs] (15)

Very often people used up to the third order terms with ae> + be® or ko, ky, to fit the experimental

curves (Hama and Suito 1996; Cohen et al. 2000) and the corresponding EOS can be written as

3ko

by _ 2K0, -7 -5
P = ZET - a7)

1+%(k6—4)(/1‘2 - 1)] (16)

and

k(1) :%{(71—7 ~51°9)
ko k{ 27 (3K 7 3k, 5
-7[(1‘1)F‘(7‘7 FUA Rl I

For reference, the Fermi energy provides k(1) = % instead (Yin 2022b), which is fairly different

1+ %(k() —H(AP -+ %(4—9 -7 (k) - 4)}

7)
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from the above MB-EOS. Note that the thermodynamic EOS refers to the zero-stress configuration
that the short-range interatomic potential reaches the minimal with a bond length 212 and the bond
force is zero. However, in the actual crystal, the surface energy may produce prestress in the atomic
lattice, such as surface tension, so that the bond length 211’§ of the crystal at the undeformed state
can be different from 2/9.

To make the formulation thermodynamically consistent, we use the zero-stress state as the
reference coordinate X, instead of the undeformed state of the crystal, namely x“, for the following
finite deformation formulation, which clarifies some confusing issues in the previous paper (Yin

2022b).

The constitutive relation with the incremental displacement
Because the resultant interatomic force on Atom 0 is zero due to the equilibrium, no body force
exists on the singum. Therefore, the Cauchy stress on the singum at the Eulerian coordinates (Fig.

1b) satisfies the equilibrium equation in absence of the body force or inertia force as:
0iji =0 (18)
Due to the cutoff of 12 bonds, the boundary condition is written as
oijn; = Z}lef(S(x-xl) for x € 9V (19)

where ¢(x) is a Dirac Delta function. Following the similar procedure (Yin 2022b), the stress

integral of the singum can be written as (Mura 1987)

12 Il
Sij = / O','j(X)dX = / xl-(rkjnkdx = ZI:])C[ Fj (20)
Vs vy
where the interatomic force can be written in terms of the derivative of the potential as

F! = ook Vin (21)
X; ’
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The stress integral in Eq. (20) shares the similar form of the internal virial stress (Zhou 2003; Chen
and Fish 2006; Jiménez Segura et al. 2022), which has been used to represent the stress integral in
a representative volume element (RVE) with many atoms for a convergent estimate. This equation
provides an exact form for short-range atomic interactions on periodically distributed atoms.
Although the stress cannot be well-defined on atoms, it can be measured on the singum through
the average of the above stress integral as
Sij

Tij = - (22)

where vy = /l3v? is the current volume of the singum. Given the stretch ratio of the bond length,
A=1,/ 19, the average stress of the singum can be calculated from the above equation.

To test the stiffness of the singum at the current configuration given A in the Eulerian coordinate
x, following the Cauchy-Born rule(Ming et al. 2007; Ericksen 2008; Tadmor and Miller 2011), we

apply an incremental displacement variation at every field point x

6M[(X) = 5dk,')€k (23)

where dj; = u; represents the displacement gradient tensor because the displacement gradient
variation du; j(x) is so small that the higher-term is negligible. The current coordinate at the / th
cutoff point xt.l is written as

x! = Al,n! + sul (24)

where the variation of xl.l due to the displacement variation is written as
ox! = u!l = ddyx] (25)
The deformation gradient tensor at in is given as

-1

Fij :/ldl-j+<5dkl-ij or F]'l' :/l(é'ij _6dij) (26)
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Therefore, one can obtain

Fil=a7"(si; - dyy) (27)
and
&ij = % (5ij - Fk_ile_jl) = % (1 - 1_2) Sij +08i) (28)
where
Seij = 2%2 (6d;j +6d; — 6diod i) (29)

in which the higher order term of dd;;6d ;) can be disregarded when ¢d;; is small. Therefore, the
variation of the Eulerian strain is obtained:

_ 6([,'/' + 56[_1'[

58,‘j = 2/12 (30)

The incremental stress-strain relation can define the tangential elastic moduli of the solids, which
can be derived from the relationship between the variations of the Cauchy stress and Eulerian strain

at the current configuration. The volume change caused by du; can be written as
ovy = [(1 + 6d11)(1 + 5d22)(1 + 5d33) — 1] vy = 0d;ivy (31)

where the higher order terms are ignored because the displacement variations are small. The
variation of average stress can be obtained by taking variation of Eq. (22) with the aid of Egs. (25)

and (31)as

1 ov
S = —312 X! FL 6x) + ox F! — x! F1—=2
J v I=1 \"i" j.l it L
S N

1 12 Il 1 I ol I 1
=z, (x! P Scurx] + Syt F] - <! Flody) (32)

1
_ 12 21,10 10N, 1,111 10 1.1 1,1 1.1
= z5 [(/l Via— AV, )ninjnknl +AV) (5,-/njnk + 0 m;ny —6klninj) ody
N

1
where n! = == r = 212/1 so that V(r) can be re-defined in terms of V (1), and 212VJ =V, and

Lo X
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(212)2\/,, = V1. Both forms of V. and V, are used in the literature, but the present formulation
is much simpler and more elegant with the dimensionless variable 4. The summation in Eq. (32)
11,1

is reduced to the summation of n/ n§ and n/n Inin], which can be written in the following identities

for the FCC in Fig. 1,

12 1.1 _
(33)
12 1111
Eisymningng = (1= 061k)0i;0k1 + (0ikdj1 + 6jk0ir)

where the terms with subscript indices including both uppercase and lowercase letters, Mura’s
extended index notation is used as follows (Mura 1987; Yin and Zhao 2016):
1. Repeated lower case indices are summed up as usual index notation;
2. Uppercase indices take on the same numbers as the corresponding lower case ones, but are not

summed.

Therefore, with the aid of Eq. (30), Eq. (32) can be rewritten as:

1
Soryj = — [(PVax = AV (1 = 81k)6:;0k1 + (6:ix6 1 + 8k 0i1) ] + AV 2 (818 j1 + 8 xSt — 61;0k1) | S

/12
= [(APV.a1 = 5AV2)6:i6k1 — (APVa0 = AV 8180k + (APVaq + 3AV.0) (66 1 + 8 j161) | Ser

(34)

where the superscript /0 is ignored as it is the same of V{& and leo forallthebonds (I =1,2,---,12)
because they exhibit the same length in the FCC lattice. Since ddy; and dd;; produce the same
stress states, ddy; can be replaced by 125, with the aid of Eq. (30).

Considering the relationship between the variations of average stress and average strain in Egs.

(34), we can obtain the stiffness tensor of the singum as

/12

————— [(A*Va = 5AV,0)66k1 — (A*V.00 = AV.2)81k61j0ks + (A°V.00 + 3AV,0) (k6 1 + 6 jx6ir)
4\/5(/118)3[ 1 1] IK™] JKML ]

Cijki =
(35

which exhibits a cubic symmetry depending on the interatomic potential function and the geometry
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of the lattice or singum. Note that this paper addresses two confusing issues in the first paper
(Yin 2022b): 1) the third term in Eq. (32) was dropped off due to the assumption that the virtual
displacement does not change the volume; 2) the effect of strech ratio A to the Eulerian strain and
volumetric strain was not considered under the infinitesimal strain assumption. Therefore, Eq. [19]
in the reference (Yin 2022b) is different from the above equation. The present equation removes
the assumptions and should be used instead. The three independent elastic constants for the cubic

symmetric lattice can be written as:

AV a+V, AV.a =5V, AV 0+ 3V,
cl=—"—=%, cp=—"—7" =

12 , 4= ————— (36)
2v219’ V219’ a2y’

where the Voigt notation is used as c1; = Ci111, ¢c12 = C1122, and cq4 = Ci212.

In comparison with the recent paper (Yin 2022b), because the volume change of the singum is
considered for the average stress in Eq. (20) with the finite deformation, the elastic constants ¢y
and c; exhibit different forms. The Cauchy discrepancy exists as c¢12 — c44 # 0, so that it indeed
exhibits a cubic symmetry. Note that the stiffness is calculated with the short-range interatomic
potential by the cutoff of the bond length, which includes the twelve member atoms only. In this
way, the singular force is homogenized into the integral of stress on the singum and the stiffness is
clearly defined. When more interatomic forces are considered, such as the atom from outer layers
of atoms and the interaction forces among other pairs of atoms, the average virtual stress will be
different, and the relation between the elasticity C and derivatives of V in Eq. (36) will be more
complex as more atoms with different interatomic spacing and orientation need to be considered.

This issue will be revisited with the long-range atom interactions in the future.

A new singum potential based on the equation of state

Given an interatomic potential, we can predict the elasticity by the above singum model straight-
forwardly. Actually, the relationship between the elastic constants and the potential also provides
feasibility to develop an interatomic potential to directly match them. Note that the three constants

in Eq. (36) can be directly measured in experiments. Given the testing configuration with an initial
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bond length 2/, referred to the zero stress configuration with the bond length 219, one can obtain
Ao =1,/ 12. Particularly, the shear strain in the lattice can distort the relative position of atoms,
which may lead to the lattice transformation and singum annihilation when the closest neighboring
atoms change. Therefore, we cannot directly use Eq. (36) to inversely derive V.

However, a hydrostatic load causes the uniform change of the lattice structure and the singum
remains stable. Therefore, we can use the bulk modulus to construct the new interatomic potential.

Given a hydrostatic stress o6, from the volumetric strain, we can calculate the bulk modulus as

ciit+2cn  AVaa—2V)

k() =
3 3v219’

(37)

Inversely, V(A) can be written in terms of k(A) by solving the above ordinary differential

equation (ODE) as:

A A
V() =3\/§1§,3/ 22 U 13k dd+ Clda+ V(1) (38)
1

1

where V(1) is the interatomic potential at 4 = 1, which can be disregarded for elastic modeling
because it has no effects; C is an integral constant to be determined subsequently, which is zero
shown in Eq. (40); k(1) can be given by the EOS of the crystal. In the recent paper (Yin 2022b), we
used the assumption of the volume-dependent interatomic energy with the Fermi energy (Shukla
1981; Johnson 1972), i.e. E, = P(V/Vy)~2/3, to derive the singum potential. There are many
analytic and semi-empirical forms of EOS in the literature (Cohen et al. 2000; Vinet et al. 1986;
Chen and Chen 1991; Occelli et al. 2003). The MB EOS has been widely used for the simplicity
and accuracy. Egs. (9), (15), or (17) can be used in Eq. (38) to derive the interatomic potential at

the desirable accuracy.
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For the convenience of derivation, we can write the derivatives of V(r) as

A
Va c= 2 U A3k (D)dA+C
321 I
Vi [/” 3 -
=241 A7k(AD)dA+Cl+A" k(A 39
Wi 1 () () (39)
Vaa G ) -1
. 3:2[/ A7Tk(A)dA+Cl+A7k(A) + A7k 1 ()
321 !

where Eq. (37) can be confirmed by substituting the first two equations into it.
Note that V ; shows the force between two atoms. The physical meaning of C can be described

by the interatomic force at the zero-stress state from the first equation in Eq. (39) as:

V =
¢ = Yl s = (40)
3V21)
where V reaches the minimum at 4 = 1. Then substituting Eq. (39) into Eq. (36) yields
3 ! |
() = 3 k() + 342/ A3k ()dA
i 1 ]
3 ! |
c12(d) = 1 k() - 3/12/ A3k (A)dA (41)
s 1 |
3 ! |
cas(A) = 1 k() + 527 / A3k (A)dA
s 1 ]

Therefore, given the bond length 212 at the zero stress state or the reference coordinate X and

the EOS or k(1), one can obtain the elastic constants changing with the bond length A or pressure.

u

Inversely, if three elastic constants cf,,

cbl’2 and cﬁ 4 are measured at 4“ or bond length at 2/ I’;, the
formulation may provide an approach to back calculate the bond length ratio 2" = [T/ llo, and the
EOS V() if the form is predefined. However, because only the short range atomic interactions are
considered for the atoms with the shortest bond length, the above calculation may not be possible.

For example, Eq. (36) implies 2c¢y; = c12 + 3c44, Which is against the physics that the cubic

symmetry exhibits three independent elastic constants.
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Overall, itis not accurate to use the simplified singum model with short-range atomic interactions
only to back calculate the EOS of crystals, which exhibits long-range atomic interactions. However,
for metamaterials, one can fabricate the lattice with only physical bond connections for neighboring
nodes only (Yin 2022a), so that the short-range interactions exactly describe the mechanics. The
above formulation can predict the nonlinear elastic behavior of the metamaterial lattice, which is
more consistent than the formulation in the second paper (Yin 2022a), which calculate the tangential
stiffness based on the infinitesimal strain but allows finite deformation of the bond length. When
the long-range atomic interaction is considered, higher accuracy is anticipated and the constraint

between the cubic elastic constants can be released.

Approximation of the long-range atomic interactions

To consider the effect of the long-range atomic interaction of crystals, an ergodic process of
all interaction forces, which rapidly decay with the atom-atom distance, may provide the accurate
numerical results. However, it will not be a closed form solution as Eq. (35). Inspired by
the embedded atom method (EAM) (Daw and Baskes 1984; Tadmor and Miller 2011), which
considered the interactions of long-range atoms by the embedding energy as a function of density
of the host (Daw and Baskes 1984), this paper introduces a hydrostatic stress 0'5. on the singum
surface to simulate the effect of all other atoms beyond the singum members as a correction to the
whole stress in Eq. (22) as follows:

o =sp(vs)di (42)

where s is a constant depending on the material to be determined by the elastic constants later,
so that the change of O'f;. is determined by p(v,) only. Obviously, when s = 0, it recovers the
short-range model. Note that because the mass of the singum is constant, v, is related to density
by Eq. (8), it can be written as a function of density as well in parallel to EAM.

Given a displacement variation du as Eq. (25), one can write

d d
5ol = sd—fsavsa,-, = sd—fsvsédkké,- ;= —sk() 250 (43)
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where Eqgs. (30) and (31) are used. Therefore, the modified stiffness can be written in parallel to

Eqgs. (35) and (36) as

Cijit = Cijrt — sk() 266 (44)
and
AV i +V AV 1 =5V AV 1 +3V
cil = Lf —sk()A%, T = M—z,/l — sk(D)A?, Cas= M—3/l (45)
2V21) 4N21 421

where the overbar of (=) shows the relevant quantity considering the long-range atomic interaction.
Using the similar procedure in the last subsection, one can derive the interatomic potential as

follows:
AV 1 =2V,

— sk()2? (46)
3v219°

k(1) =

Inversely, V(1) can be written in terms of k(1) by solving the above ordinary differential
equation (ODE) as:

A A
V(ﬁ):3\/§l§3/ 2[/ 13g(Dda+Clda 47)
1

1

where g(1) = k(2)(1 + sA?). Compared with Eq. (38), the above equation uses g(1) to replace

k(A), so that Eq. (39) can be updated in the same fashion. Therefore, Eq. (41) can be rewritten as

i . _
511(/1):% k(/l)(l+s/12)+3/12‘/1 A3 k(D) (1 + sA2)dA| = sk(D)A?
. 2 -
512(1):3 k() (1 + sA%) =322 /1 A2 k() (1 + sA%)dA| — sk(2) 2> (48)
- 2 -
544(4):3 k(/l)(1+s/12)+5/12/1 A3k (D) (1 + sA%)dA

If three elastic constants ELI‘ 1 ELI‘Z and Eﬁ’m are measured at 4“ or bond length at 2/%, the formulation
may provide an approach to back calculate the bond length ratio 2" = [}/ 19, s, and the EOS V(1)

as follows:
—U —U —U —U —U
Cit2cy 3 cp— 20y +3cy

k(A") = . 5=
(@) 3 Az cl 42,

(49)
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where A* must satisfy

A Ell _EM _Eu
42/ /l‘3k(/l)(l+s/12)d/l:% (50)
1

When the form of the EOS k(1) is given, one can use the above equation to solve for A*. For

example, if Eq. (15) is used, it can be rewritten as

AT =573

k() = k(") ————
(=K )mH—w—S

&1y

Substituting Eqgs. (51) and (49) into Eq. (50) leads to the numerical solution of 4,. Therefore,
the EOS k() and the interatomic potential V(1) of the crystal can be determined by the elastic
constants.

Ideally, given the cubic symmetric elastic constants of an FCC lattice at the undeform state,
one can determine the equilibrium bond length 12 by A* and the interatomic potential V(1). Note
that if higher order EOS is used, such as Eq. (9) or (17) with the pressure derivatives of the bulk
modulus, the derivative of the elastic moduli or the elastic moduli at another value of A shall be
used to determine k{), kg , etc.. The similar procedure can be followed to determine the interactomic

potential. Assuming k=4, kj = —%, Eq. (15) provides the same prediction as Eq. (9) or (17).

RESULTS AND DISCUSSION

Although this simplified singum model only considers the short range interatomic forces with
the interactions of other atoms evaluated in an approximate fashion, because the short range
interaction indeed dominates in solids, the model can capture the physics and mechanics of solids
with good fidelity. Particularly, because the singum interatomic potential is derived and calibrated
by the elastic behavior, the accuracy of the model may reach the engineering standard. Obviously,
the volume-surface ratio of a continuum particle will play a role on its effective elasticity due
to the boundary effect when it is small. However, the lattice structure and effective elasticity of
crystals are fairly stable with size reduction to the nanoscale (Juvé et al. 2010). It indicates that the

long-range atom interactions play much less important role on the solid states than in the liquid or
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gas states. As the interatomic force is applied to any pair of atoms through the pairwise potential,
which reduces to zero rapidly with the center-center distance is much higher than the regular bond
length, an ergodic process to consider each pair of atoms should be conducted to yield the effective
elasticity. However, it is computationally expensive but cannot provide a close-form expression.
Therefore, this paper simplifies it with short-range atomic interaction only for the explicit form of
equations of the elasticity. It will be extended to the general case with many particles in future
work. Instead, the simplified singum model improved by approximation of the long-range atomic
interaction provides a practical way to derive both EOS and interatomic potential from the elastic
constants. In the following, we use single crystalline aluminum to demonstrate the application and
then discuss the mechanics and physics of crystals predicted by the improved singum model and its

connections with the previous two papers and existing models.

Demonstration of the singum potential with the aluminum atomic lattice
Aluminum is a common structural material in civil engineering. Here we use the single
crystalline aluminum FCC lattice to demonstrate the use of the improved singum model. The cubic

symmetric elastic constants at room temperature have been measured as (Vallin et al. 1964):
c}, =107.3GPa, ¢}, = 60.08GPa, cj, = 28.30GPa (52)

In addition, other parameters can be obtained as follows: Density p = 2.710 x 103Kg/m?; and
atom weight M, = 4.482 x 1072°Kg. Using the density and atom weight, we can calculate:
the bond length 2/;) = 0.286nm, and the singum volume v{ = 16.54A3,

Using the three elastic constants in Egs. (48), we obtain:

~0.9182

k(A") =75.82, s= 2 (53)
For demonstration, the simplest form of EOS (15) is used as
7477 =527
k() =75.82 (54)

7(A) 7T = 5(4)3
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Therefore, * can be determined by Eq. (50) approximately at 1.1199. Using 4 = 1.1199 in

Eq. (54), and then Eq. (47), one can obtain the EOS and the singum potential as follows:

k() =229.89(7477 = 517°)
(55)

V(1) = 8.8307 x 10739(29.80117° — 83.04247* + 83.97917% — 35.604 + 4.8654.1%)

where V(1) is disregarded as it has no effect on elasticity prediction. The above formulation can
reproduce the measured elastic constants by Eq. (48).

Note that A refers to the free-force bond length lg = 0.1277nm, which represents the singum
volume v¥ = 11.77A3. Therefore, A = (v/11.77)'/3, the EOS can be rewritten in terms of volume

as well:

k(v) =229.89[7(v/11.77)773 = 5(v/11.77)73/3]
. (56)
P(v) = po —/ k(v)/vdv = po+689.67[(v/11.77)773 = (v/11.77) /3]
11.77

where p(v) denotes the pressure measurement on the surface of the lattice for comparison with
the experiments, and due to the surface energy it is different from Eq. (6) with the internal stress
only; po = p(11.77) is caused by the surface energy at the zero-force bond length, which can be
calibrated as po = 79.575GPa by the measurement p(v¥) = p(16.54) = 0. Without the surface
energy and long-range atomic interactions, the singum should rest at vy = 11.77A% but the surface
tension of po makes the bond stabilized at v* = 16.54A% at the undeformed state instead.

Fig. 2 shows the EOS of aluminum predicted with the three elastic constants with the second
order EOS Eq. (15); whereas Fig. 3 illustrates the interatomic potential changing with 4 with
V(1) disregarded. Both figures can predict the undeformed state at 16.54A% or [, = 0.143nm
because the parameters were fitted by the measurements. However, because Eq. (15) assumed
k' =4,k{ = —93—/2) at v = VY to simplify the mathematical form, it may not catch the real physics
of the crystal lattice. For EOS, the experimental results (Dewaele et al. 2004) with a pressure up

to 144.3GPa are also provided. Obviously, the dash line of Eq. (56) overly estimate the pressure
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in comparison with the experiments of aluminum. Although Eq. (15) exhibits the simplicity and
convenience for modeling, the predictions shown in dash lines in both figures may only be usable
in the neighborhood of the undeformed state for infinitesimal deformation, and the accuracy will
decrease for large deformation.

Eq. (17) has often been used and widely accepted in the literature (Birch 1947; Dewaele et al.
2004). Following the same procedure, once a pressure derivative of k’ is given, we can determine
A", ko and the interatomic potential V(r) as well. Therefore, k&’ = 2,3 are also shown in Fig. 2,
which are corresponding to A* = 1.1444, 1.1334, respectively. Apparently, the case of k' = 2 as
the solid line exhibits the best fitting to the experimental results of the p — v curve and can be used
for further analysis of elasticity changing with pressure, such as pressure derivatives of the elastic
constants at different pressures. The EOS and the corresponding potential function are written as:
1770.9  1106.8  664.10

A7 YR A°
V() = 8.2755 x 10739(=22.640478 + 102.3947% — 169.3507% + 129.3317% — 44.558 + 4.82701°)

p(A) = +72.256

(57)

Note that the case of kK’ = 2 does not ideally catch the experiments yet at the high pressures in
Fig. 2. If Eq.(9) is used with k" variable to fit the curve, higher accuracy is expected. Compared the
above equation with Eq. (56) and (55), the prestress po becomes smaller with one more higher-order
term in the functions of p and V.

Fig. 3 shows V(1) for both cases of k" = 2, 3 and 4, which exhibit the minimium at A = 1. Note
that because the undeformed bond length /7 is corresponding to different 1“, the zero-force bond
lengths are different for the three cases. With k’ increase from 2 to 4, 1* decrease from 1.1444
to 1.1199. For A < 1, it increases faster in comparison with 4 > 1, which represents a larger
repulsive force than the attactive force with the same change of stretch level. When &’ increases,
the interatomic potential well becomes stiffer.

Using the derivatives of V 4(1) and V 4,(1) of Eq. (57) for Case k’ = 2, we can predict the

elastic constants changing with A or pressure. Fig. 4 illustrates the three cubic symmetric elastic
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constants changing with 4. Indeed, at the undeformed state, the predictions of the three elastic
constants are the same as the measurements because the potential was determined by those values.
With the increase of A, the elastic constants reduce at different rates: c44 changes much slower
than cy; and c1». Note that here the range of A from 0.9-1.2 covers a large range of the volume
change and is far beyond the engineering applications. When A is close to 0.9, the trend may not

be physical as the elastic constants exhibit the peak points.

Mechanics and physics of crystals predicted by the improved singum model

In the last subsection, single crystalline aluminum was used for demonstration. The improved
singum model provides a practical approach to correlate the EOS with the interatomic potential
and elastic constants at different volume or bond length or pressure.

The key novelty of the singum model is to take into account of the effect of the prestress on
the effective stiffness, which generates a configurational force with a displacement variation on the
lattice structure and changes the effective elasticity significantly. If the prestress reduces to zero,
which means that the undeformed bond length stays at the bottom of the potential well, which
is equal to the equilibrium bond length, for short-range atomic interactions, the singum model
provides the same formulation as other models. For example, replacing the interatomic potential by
the Hertzian contact model, the singum model recovers Chang’s formulation (Chang 1988) using
V., = 0. For 3D isotropic cases, previous models typically led to a Poisson’s ratio at 0.25 using the
pairwise potential without prestress, which is shown in the Singum model as well. However, the
compressive prestress makes the Poisson’s ratio higher than 0.25 and a tensile prestress makes it
less than 0.25, which has been demonstrated by the singum model recently (Yin 2022b).

Compared with microcanonical (NVE) ensemble (Tadmor and Miller 2011), the simplified
singum uses the static lattice geometry to map the stress in a space with forces between atoms.
Although only neighboring atomic interactions in a short range is considered and the temperature
effect with kinetic energy is not taken into account, the improved singum model can catch the
mechanics and physics of the solids that NVE ensemble does not take into account as the following

features:
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1. In general, NVE requires the statistical equilibrium of the forces. If only short-range atomic
interactions are considered, it means all bonds shall stay at the zero-force bond length lg statistically
at the undeformed state, which eliminates the second and third terms in Eq. (32). Actually, solids
exhibit surface energy which can change the state shifted from the lowest potential state. We use
prestress to explain it. It will produce configurational forces with the displacement variation and
play a significant role in elastic behavior, which has been explained in the second paper about
metamaterial (Yin 2022a).

2. Indeed, if V ; becomes zero, the singum model will lead to Cauchy discrepancy (Daw and Baskes
1984; Tadmor and Miller 2011), where c11 = 2c12 = 2c44 in Eq. (36). However, the prestress
changes the elastic behavior with the configurational forces.

3. If no long-range atomic interactions are considered, the FCC atomic system per pairwise
interaction can be simulated by a lattice metamaterial with equal bond lengths. The singum model
shows 2¢11 = c12 + 3c44, Which is exact for lattice metamaterial but not physical for FCC crystals
due to the long-range atomic interactions.

4. When the long-range atomic interactions are approximated by a pressure function which is similar
to embedding energy of the EAM, the improved singum model can fit the elastic constants well
with a predefined form of EOS. The elastic constants changing with pressure can be subsequently
determined.

5. As discussed in the first paper (Yin 2022b), if the undeformed state exhibits a bond length
[, larger than 19, it is generally brittle; whereas if I, < lg, it is generally ductile as it requires
more energy to separate the atoms. Using the present formulation with finite deformation under
hydrostatic loading, we can predict the nonlinear elastic behavior of the singum (Wei et al. 2009)
and investigate the elastoplastic and fracture behavior of the solids.

6. Although only pair interactions are considered, the improved singum model can predict the
general anisotropic elastic properties of central symmetric lattice, which is different from the
general view that 3-body or N-body interatomic potential is needed to catch the arbitrary cubic

symmetric elastic behavior (Tadmor and Miller 2011).
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This is the third paper about the singum model following the two recent papers (Yin 2022b;
Yin 2022a). The first paper (Yin 2022b) introduced the construction of the singum particle and
provided some preliminary applications of the simplified singum model based on the infinitesimal
deformation. Because the formulation cannot interpret the three independent elastic constants of
cubic symmetric lattice, and it was abstractive and difficult to justify the interatomic potential
by curve fitting, the second paper (Yin 2022a) used the physical truss system with harmonic
potential to demonstrate the singum model. It provided an analytical form of elasticity for lattice
metamaterials and clarified the effect of the prestress on the elasticity. However, it was still
based on the infinitesimal deformation. This paper revisits the crystal lattices using FCC for
demonstration, which can be straightforwardly extended to other types of lattices, and develops the
finite deformation formulation. Therefore, it will be more accurate in nonlinear elastic modeling
of the crystal solids or lattice metamaterials and composites under large deformation.

In addition, the present singum model disregards the thermal effects of atom vibration. On the
scale of atoms, the thermal fluctuation can be random and evaluated by the statistical mechanics of a
many-particle system (Tadmor and Miller 2011). The effect of kinetic and fluctuation contributions
to the elasticity can be considerable although the Cauchy-Born’s part, on which the preent singum
model focuses, still plays the dominant role. In this work, because only short-range interactions
with a few atoms are considered, we calibrated the potential function with experimental results of
the stiffness and density so that the temperature effect is not separately analyzed. However, when
long-range atomic interactions are considered in future, we can investigate the thermal effects in a
quantitative way.

Note that the present singum model keeps the shape of unit cell the same as a cube, so that the
singum particle exhibits the same out-norm vector n’ of each surface, although the full anisotropic
stiffness tensor is obtained by applying a displacement variation. Indeed, the shape of the singum
remains the same under the hydrostatic load, and the EOS is obtained by the finite deformation under
a hydrostatic pressure. However, for general finite deformation, such as shear loading, the surface

out-norm vector n’ of each surface has to be updated with the deformation, so that the formulation
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shall be updated with the load and the explicit form of the elastic constants of the present paper will
be lost. Instead, the equivalence between the interatomic potential and the Helmholtz free energy
can be setup on the singum and the general finite deformation of the crystal lattices (Wei et al.
2009; Kumar and Parks 2015; Holler et al. 2020) can be formulated. The actual loading curves can
be generated incrementally with the lattice structure evolution, which may lead to elasto-plastic or
fracture behavior with the singum annihilation and transformation when the closest neighbor atoms

are changed (Yin 2022b). Future work on the lattice large deformation is underway.

CONCLUSIONS

The simplified singum model has been improved by using the thermodynamics-based equation
of state (EOS) of solids and approximately considering the long-range atomic interactions. The
finite deformation formulation has been developed to evaluate the pressure-volume (p-v) relation-
ship for the EOS of a solid, and predict the elastic constants changing with the bond length or
pressure. Using the bulk modulus and its derivatives at the free-stress state, one can construct the
EOS and interatomic potential. Using single crystalline aluminum as an example, the improved
singum model is demonstrated. The third-order EOS can predict the p-v curve up to a pressure of
100GPa. The pressure dependent elastic behavior is predicted with the improved singum model.
The mechanics and physics of crystals caused by surface energy and long-range atomic interactions

are discussed, which can be useful for elastoplastic and fracture modeling of solids.
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Fig. 1. The singum model of a face-centered cubic lattice: (a) the unit cell for the singum
construction at the front central atom with four more member atoms not shown and; (b) the FCC
singum of the 0" atom obtained by cutting the 12 bonds with the vertical midplanes, which is
the WS Cell of a rhombic dedecahedron shown in the initial configuration X (black lines) and the
deformed configuration x (gray lines)
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Fig. 2. The pressure changing with the singum volume (p-v) in comparison with the experiments
of single crystalline aluminium: circle symbols - experiments (Dewaele et al. 2004); dash line for
k' = 4 - second order EOS Eq. (15); solid line for k" = 2; dot symbols for k' = 3, and; dot line for
k'=5
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Fig. 3. The interatomic potential of the singum model for a face-centered cubic lattice of single
crystalline aluminium: dash line for k* = 4 - second order EOS Eq. (15); solid line for k" = 2 -
third order EOS Eq. (17)
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Fig. 4. The three elastic constants of single crystalline aluminium changing with 4, where A“
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