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ABSTRACT7

The recently published simplified singummodel has been improved by using the thermodynamics-8

based equation of state (EOS) of solids to derive a new interatomic potential based on the elastic9

constants. The finite deformation formulation under hydrostatic load has been used to evaluate10

the pressure-volume (p-v) relationship for the EOS of a solid. Using the bulk modulus and its11

derivatives at the free-stress state, one can construct the EOS, from which a new form of inter-12

atomic potential is derived for the singum, which exhibits much higher accuracy than the previous13

one obtained from the Fermi energy and provides a general approach to construct the interatomic14

potential. The long-range atomic interactions are approximated to be proportional to the pressure.15

This improved singum model is demonstrated for the face-centered cubic (FCC) lattice of sin-16

gle crystalline aluminum. The elastic properties at different pressures are subsequently predicted17

through the bond length change and compared with the available experimental data. The model can18

be straightforwardly extended to higher order terms of EOS with better accuracy and other types19

of lattices.20

1 Yin, November 29, 2022



INTRODUCTION21

In the recent paper (Yin 2022b), a continuum particle model, namely the singum model, was22

presented to simulate an atomic lattice with singular interatomic forces by a continuum particle23

system with stresses through particle’s interfaces. The Wigner-Seitz (WS) cell (Wigner and Seitz24

1933) is used to construct the singumparticles through theVoronoi decomposition of a crystal lattice25

(Voronoi 1908). Although a point force in a continuum solid is a strong singularity that exhibits an26

infinite displacement or stress in continuummechanics, an isotropic stress-strain relationship can be27

established with the aid of the Fermi energy for bulk modulus (Shukla 1981) by the homogenization28

of stress over the singum’s volume and orientation. Therefore, the two independent isotropic elastic29

constants can directly map to the two constants in the interatomic potential given the crystal lattice30

characteristics (Yin 2022b). However, the simple form of the Fermi energy cannot capture the31

general pressure-volume relation over finite deformation and was proposed to be replaced by a32

polynomial form (Johnson 1972; Shukla 1981).33

The equation of state (EOS) of solids describes the volume or density change of solids under34

an increasing hydrostatic pressure over a large range (Vinet et al. 1989; Cohen et al. 2000). Birch35

(Birch 1952) classified the EOS in four groups: 1) quantum mechanics uses the atomic constants36

to predict the elastic constants at at (absolute) zero temperature; 2)the Fermi energy approximates37

a solid as an electron gas, subject to the Fermi-Dirac statistics, and predicts the p-v relationship; 3)38

the semi-empirical laws of cohesion with the temperature-dependent energy predict the relationship39

among temperature, pressure and density of solids, and; 4) thermodynamics provides a general40

framework to predict the elasticity with the parameters to be calibrated by other means.41

Although the Fermi energy could provide reasonable prediction of elasticity through the cali-42

bration with the elastic constants (Yin 2022b), the accuracy was not high for general solids. The43

EOS based on the thermodynamic equation is typically provided in form of the Helmholtz free44

energy, which correlates the state variables, such as pressure, volume, temperature, or internal45

energy (Fürth 1944; Birch 1952). It provides more flexibility to calibrate the parameters for high46

accuracy and has been well accepted in the research community (Birch 1952).47
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Although elastic solids are often assumed with the linearity of the stiffness by the Hooke’s48

law, the experimental data under large pressure (Guinan and Steinberg 1974; Holzapfel et al.49

2001; Occelli et al. 2003) showed the significant change of compressibility with pressure. Birch50

(Birch 1947) used Murnaghan’s finite deformation theory (Murnaghan 1937) to consider the effect51

of pressure upon the second-order elastic constants and obtained excellent comparisons with the52

experiments for compressibility of solids, which is coined as the Murnaghan-Birch’s (MB) EOS.53

Although many forms of EOS have been proposed and used for specific solids (Cohen et al.54

2000; Occelli et al. 2003; Swift et al. 2022), the MB EOS is still widely used for its robustness55

and simplicity. Under the general loading condition, the thermodynamics-based framework can56

provide a practical approach to predicting the nonlinear elastic behavior of atomic lattices (Wei57

et al. 2009; Tadmor and Miller 2011).58

The singum model provides a clear approach to correlate the interatomic potential with the59

elasticity at the undeformed state and the EOS of the solids (Yin 2022b). It was generalized to60

lattice metamaterials and composites for prediction of the effective elasticity based on the stiffness61

of the lattice components and the structure of the lattice using a harmonic potential (Yin 2022a).62

This is the third paper in this series to extend the formulation to finite deformation under hydrostatic63

loading and thus correlate the nonlinear elastic behavior of crystals with the interatomic potential64

in a rigorous way. Particularly, because the interatomic potential function plays a significant role65

on the chemistry and physics of materials (Jarvis et al. 1996; Ruiz et al. 2015; Zuo et al. 2020;66

Mishin 2021), it is critical to find an accurate interatomic potential.67

Based on the two previous papers, a crystal lattice is simplified into continuously packed68

singum particles with short-range particle interaction forces equal to the interatomic forces. Along69

the surface, the atoms form a surface layer and interact with the inner singums. The atomic70

interactions in the surface layer are different from those between the singums and produce a71

prestress to the lattice, so that the undeformed state of the crystals exhibit a bond length different72

from the equilibrium bond length. By applying a displacement variation, from the variations of73

the stress and strain, one can derive the stiffness explicitly, and therefore establish the relationship74
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between the stiffness of the crystal and the potential between atoms. When the solid is under a high75

pressure, the lattice exhibits a hydrostatic deformation while keeping the same lattice structure, but76

the stiffness of the lattice changes with the bond length. The formulation (Yin 2022b) developed77

with infinitesimal strain is not sufficient to catch the nonlinear material behavior under finite78

deformation of hydrostatic loading. This paper improves the singum model with a new form of the79

interatomic potential and addresses some confusing issues in the first paper (Yin 2022b), which80

will be clarified subsequently.81

In the remainder of this paper, we firstly revisit the assumptions of the singummodel (Yin 2022b)82

and use the finite deformation to formulate the pressure-volume (p-v) relationship and constitutive83

law, and then derive a new singum potential function based on the MB EOS of solids with other84

elastic constants at the undeformed state. The modeling method can also be extended to other forms85

of EOS obtained from either experiments or theories. Given a singum potential and the crystal86

lattice characteristics, the tangential elastic constants can be calculated at a given material state.87

The model is demonstrated for face-centered cubic (FCC) lattices of single crystalline aluminum.88

The comparison with the experimental results shows the capability and accuracy of the model.89

FORMULATION90

This section we use a face-centered cubic (FCC) lattice as an example to formulate the problem,91

which can be generalized to other lattices. We will first derive the MB EOS based on the singum92

configuration, then set up the constitutive equation in terms of the interatomic potential, and finally93

derive the EOS based singum potential. Based on the previous work (Yin 2022b; Yin 2022a), a94

freestanding lattice may exhibit a prestress due to the surface energy of the atom interaction on the95

boundary, so that the bond length 2𝑙𝑢𝑝 in the undeformed state can be different from the equilibrium96

bond length 2𝑙0𝑝 of two freestanding atoms. Here the bond length 2𝑙
0
𝑝 refers to the minimal potential97

energy, which is used as the reference coordinate X, and other states can be represented by x with a98

deformed bond length 2𝑙𝑝. The freestanding lattice is represented by x𝑢 with the bond length 2𝑙𝑢𝑝.99

4 Yin, November 29, 2022



The equation of state of the singum100

Consider an FCC crystal lattice in Fig. 1(a). In the reference configuration, the unit cell of101

an FCC lattice exhibits the cubic edge length 𝑎0, so that the bond length 2𝑙0𝑝 = 𝑎0√
2
, where the102

interatomic force of the bonds is zero and kinetic energy of atoms is not considered. We set103

up the coordinate with the origin at the 0𝑡ℎ atom, and 12 closest neighbor atoms are located at104

(±𝑎0

2
,±𝑎0

2
, 0), (±𝑎0

2
, 0,±𝑎0

2
), (0,±𝑎0

2
,±𝑎0

2
), which are corresponding to the directional vectors n𝐼

105

(𝐼 = 1, 2, ..., 12) = (± 1√
2
,± 1√

2
, 0), (± 1√

2
, 0,± 1√

2
), or (0,± 1√

2
,± 1√

2
).106

Following the previous paper (Yin 2022b), we can construct the singum particle by cutting the107

12 bonds with the vertical midplanes forming a rhombic dodecahedron in Fig. 1(b), in which 𝐹7108

shows the bond force between the 0𝑡ℎ and 7𝑡ℎ atoms as an example of the 12 bonds to be cut at109

the midpoint by a perpendicular plane. Both Figs. 1(a) and (b) shows the bond force of atom 0-7110

acting at the cutting point. Notice that two unit cells are needed to construct the singum illustrated111

in Fig. 1(b) with four atoms on the interfac and four in each unit cell. A Cartesian coordinate112

X is setup at the zero-force bond length, i.e. the Lagrangian coordinates. After a homogeneous113

deformation of the lattice, the material points in X are referred to x at the deformed state, or the114

Eulerian coordinates, in which the lattice still keeps periodic, so that the whole space can still be115

filled with the deformed singums. Here because the singum is defined by the bonds, each surface116

will still keep plane. The central symmetry of the lattice can be observed, so that the atoms keep in117

equilibrium under the deformation. Without any loss of generality, the origins of x and X are both118

selected at the center of Atom 0.119

The displacement field is written as u = x − X. The deformation gradient tensor is defined120

as 𝐹𝑖𝑘 = 𝜕𝑥𝑖
𝜕𝑋𝑘
. The finite strain can be defined either in the Lagrangian coordinates as 𝐸𝑖 𝑗 =121

1
2
(𝐹𝑘𝑖𝐹𝑘 𝑗 − 𝛿𝑖 𝑗 ) or in the Eulerian coordinates as 𝜀𝑖 𝑗 = 1

2
(𝛿𝑖 𝑗 − 𝐹−1

𝑘𝑖 𝐹
−1
𝑘 𝑗 ) (Hutter and Jöhnk 2013;122

Bazant and Cedolin 2010). Because the stress or pressure is typically measured at the Eulerian123

coordinates, the latter is used for consistence:124

𝜀𝑖 𝑗 =
1

2
[𝛿𝑖 𝑗 − (𝛿𝑘𝑖 − 𝑢𝑘,𝑖) (𝛿𝑘 𝑗 − 𝑢𝑘, 𝑗 )] = 1

2
(𝑢𝑖, 𝑗 + 𝑢 𝑗,𝑖 − 𝑢𝑘,𝑖𝑢𝑘, 𝑗 ) (1)125
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Applying a hydrostatic load 𝑝, we can test the equation of state from the p-v curve (Birch 1947).126

Due to the central symmetry, the bond length 2𝑙𝑝 of all bonds will uniformly change, namely the127

deformed length 𝑟 = 2𝑙𝑝𝜆, where 𝜆 is the stretch ratio of the bond. An isotropic strain is obtained128

from Eq. (1) in corresponding to a hydrostatic load as:129

𝜀𝑖 𝑗 = 𝜖𝛿𝑖 𝑗 (2)130

where 𝜖 = 1
2

[
2𝜆−1𝜆 − (𝜆−1)2

𝜆2

]
= 1
2
(1 − 𝜆−2) by using 𝑢𝑖, 𝑗 = 𝜆−1

𝜆 . The volume ratio of the singum is131

written as132

𝑣0
𝑣

= 𝜆−3 = (1 − 2𝜖)3/2 (3)133

where 𝑣 and 𝑣0 represent the deformed volume and initial volume, respectively.134

Following Birch’s assumption (Birch 1947; Birch 1952), the Helmohotz free energy of the135

singum under a hydrostatic load alone can be written in terms of the finite strain as136

Ψ = 𝑎𝜖2 + 𝑏𝜖3 + 𝑐𝜖4 + · · · (4)137

where 𝑎, 𝑏, 𝑐 are the second, third, fourth-order elastic constants depending on temperature only.138

It can be extended to higher order terms, but typically when up to third order terms are used,139

the EOS produces fairly accurate results for general solids. Specifically, 𝑎 is related to the bulk140

modulus, 𝑏 and 𝑐 are related to the pressure derivative of the bulk modulus, which will be discussed141

subsequently. Then the pressure can be written as142

𝑝 = −𝑑Ψ
𝑑𝜖

𝑑𝜖

𝑑𝑣
= − 1
3𝑣0

(1 − 2𝜖)5/2(2𝑎𝜖 + 3𝑏𝜖2 + 4𝑐𝜖3 + · · · ) (5)143

Using Eq. (3), the above equation can be further simplified into144

𝑝 =
𝑎

3𝑣0
(𝜆−7 − 𝜆−5)

[
1 − 3𝑏
4𝑎

(𝜆−2 − 1) + 𝑐

2𝑎
(𝜆−2 − 1)2

]
(6)145
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where the higher order terms are disregarded. Given the atomic weight 𝑀𝑎, we can calculate the146

density, namely 𝜌0, of the solid as147

𝜌0 =
𝑀𝑎

𝑣0𝑠
=

𝑀𝑎

4
√
2𝑙3𝑝

(7)148

where 𝑣0𝑠 = 4
√
2𝑙3𝑝 is the singum’s initial volume for FCC lattices in Fig. 1(a). The conservation of149

the mass also implies150

𝜌/𝜌0 = 𝑣0𝑠/𝑣𝑠 = 𝜆−3 (8)151

Therefore, the MB EOS of Eq. (6) can be equivalently written in terms of density ratio as well152

(Birch 1952).153

From the above relationship, the bulk modulus changing with 𝜆 can be derived as154

𝑘 (𝜆) = − 𝑑𝑝

𝑑𝑣/𝑣 = −𝑣 𝑑𝑝
𝑑𝜆

𝑑𝜆

𝑑𝑣

=
𝑎

9𝑣0

{
(7𝜆−7 − 5𝜆−5) [1 − 0.75𝑏/𝑎(𝜆−2 − 1) + 0.5𝑐/𝑎(𝜆−2 − 1)2]

+ (𝜆−9 − 𝜆−7) [−1.5𝑏/𝑎 + 2𝑐/𝑎(𝜆−2 − 1)]}
(9)155

When 𝜆 = 1, the following relations are obtained by Eqs. (6) and (9) as:156

𝑘0 =
2𝑎

9𝑣0
; 𝑘′0 =

𝑑𝑘

𝑑𝑝
|𝜆=1 = 4 − 𝑏

𝑎
; 𝑘′′0 =

𝑑2𝑘

𝑑𝑝2
|𝜆=1 =

12𝑐
𝑎 − 9𝑘′2

0
+ 63𝑘′

0
− 143

9𝑘0
(10)157

Therefore, the parameters of 𝑎, 𝑏, 𝑐 in Eqs. (6) and (9) can be written in terms of the bulk modulus158

and its pressure derivatives of 𝑘0, 𝑘
′
0
, 𝑘′′
0
with more clear physical meanings as follows159

𝑎 =
9𝑣0𝑘0
2
;

𝑏

𝑎
= 4 − 𝑘′0;

𝑐

𝑎
=
3

4

(
𝑘0𝑘

′′
0 + 𝑘′20 − 7𝑘′0 +

143

9

)
(11)160

so that Eqs. (6) and (9) can be rewritten as161

𝑝 =
3𝑘0
2

(𝜆−7 − 𝜆−5)
[
1 + 3
4
(𝑘′0 − 4) (𝜆−2 − 1) +

3

8

(
𝑘0𝑘

′′
0 + 𝑘′20 − 7𝑘′0 +

143

9

)
(𝜆−2 − 1)2

]
(12)162

7 Yin, November 29, 2022



and163

𝑘 (𝜆) = 𝑘0
2

{
(7𝜆−7 − 5𝜆−5)

[
1 + 3
4
(𝑘′0 − 4) (𝜆−2 − 1) +

3

8

(
𝑘0𝑘

′′
0 + 𝑘′20 − 7𝑘′0 + 143/9

)
(𝜆−2 − 1)2

]

+ 3
2
(𝜆−9 − 𝜆−7)

[
(𝑘′0 − 4) +

(
𝑘0𝑘

′′
0 + 𝑘′20 − 7𝑘′0 + 143/9

)
(𝜆−2 − 1)

]}

(13)

164

The above 𝑝− 𝑣 relation is the well-knownMurnaghan-Birch (MB) EOS (Birch 1947; Birch 1952).165

Although the above equations can be extended to the terms higher than 4th order of 𝑐𝜖4 (Wei et al.166

2009) in the similar fashion of the above procedure, as most crystals crack or the lattice is distorted167

when 𝜆 changes too far from 1, the higher order terms play less important role, and the improvement168

of the higher-order EOS was not significant. If only the second order term of 𝑎𝜖2 is considered,169

we can obtain 𝑘′
0
= 4, 𝑘′′

0
= − 35

9𝑘0
by using 𝑏 = 𝑐 = 0. Then only one constant of 𝑘0 is taken into170

account and the EOS becomes171

𝑝𝑎 (𝜆) = 3𝑘0
2

(𝜆−7 − 𝜆−5) (14)172

and173

𝑘𝑎 (𝜆) = 𝑘0
2

[
7

𝜆7
− 5
𝜆5

]
(15)174

Very often people used up to the third order terms with 𝑎𝜖2 + 𝑏𝜖3 or 𝑘0, 𝑘
′
0
to fit the experimental175

curves (Hama and Suito 1996; Cohen et al. 2000) and the corresponding EOS can be written as176

𝑝𝑏 (𝜆) = 3𝑘0
2

(𝜆−7 − 𝜆−5)
[
1 + 3
4
(𝑘′0 − 4) (𝜆−2 − 1)

]
(16)177

and178

𝑘𝑏 (𝜆) = 𝑘0
2

{
(7𝜆−7 − 5𝜆−5)

[
1 + 3
4
(𝑘′0 − 4) (𝜆−2 − 1)

]
+ 3
2
(𝜆−9 − 𝜆−7) (𝑘′0 − 4)

}

=
𝑘0
2

[(
𝑘′
0

4
− 1

)
27

𝜆9
−
(
3𝑘′
0

2
− 7

)
7

𝜆7
+
(
3𝑘′
0

4
− 4

)
5

𝜆5

] (17)179

For reference, the Fermi energy provides 𝑘 (𝜆) = 𝑘0
𝜆2
instead (Yin 2022b), which is fairly different180
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from the above MB-EOS. Note that the thermodynamic EOS refers to the zero-stress configuration181

that the short-range interatomic potential reaches the minimal with a bond length 2𝑙0𝑝 and the bond182

force is zero. However, in the actual crystal, the surface energy may produce prestress in the atomic183

lattice, such as surface tension, so that the bond length 2𝑙𝑢𝑝 of the crystal at the undeformed state184

can be different from 2𝑙0𝑝.185

To make the formulation thermodynamically consistent, we use the zero-stress state as the186

reference coordinate X, instead of the undeformed state of the crystal, namely x𝑢, for the following187

finite deformation formulation, which clarifies some confusing issues in the previous paper (Yin188

2022b).189

The constitutive relation with the incremental displacement190

Because the resultant interatomic force on Atom 0 is zero due to the equilibrium, no body force191

exists on the singum. Therefore, the Cauchy stress on the singum at the Eulerian coordinates (Fig.192

1b) satisfies the equilibrium equation in absence of the body force or inertia force as:193

𝜎𝑖 𝑗,𝑖 = 0 (18)194

Due to the cutoff of 12 bonds, the boundary condition is written as195

𝜎𝑖 𝑗𝑛𝑖 = Σ12𝐼=1𝐹
𝐼
𝑗 𝛿(x-x𝐼) for x ∈ 𝜕𝑉𝑆 (19)196

where 𝛿(x) is a Dirac Delta function. Following the similar procedure (Yin 2022b), the stress197

integral of the singum can be written as (Mura 1987)198

𝑆𝑖 𝑗 =
∫
𝑣𝑠

𝜎𝑖 𝑗 (x)𝑑x =
∫
𝜕𝑣𝑠

𝑥𝑖𝜎𝑘 𝑗𝑛𝑘𝑑x = Σ12𝐼=1𝑥
𝐼
𝑖 𝐹

𝐼
𝑗 (20)199

where the interatomic force can be written in terms of the derivative of the potential as200

𝐹𝐼
𝑖 =

𝜕𝑉 𝐼

𝜕𝑥𝑖
= 𝑉𝐼

,𝑟𝑛𝑖 (21)201
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The stress integral in Eq. (20) shares the similar form of the internal virial stress (Zhou 2003; Chen202

and Fish 2006; Jiménez Segura et al. 2022), which has been used to represent the stress integral in203

a representative volume element (RVE) with many atoms for a convergent estimate. This equation204

provides an exact form for short-range atomic interactions on periodically distributed atoms.205

Although the stress cannot be well-defined on atoms, it can be measured on the singum through206

the average of the above stress integral as207

𝜎𝑖 𝑗 =
𝑆𝑖 𝑗

𝑣𝑠
(22)208

where 𝑣𝑠 = 𝜆3𝑣0𝑠 is the current volume of the singum. Given the stretch ratio of the bond length,209

𝜆 = 𝑙𝑝/𝑙0𝑝, the average stress of the singum can be calculated from the above equation.210

To test the stiffness of the singum at the current configuration given 𝜆 in the Eulerian coordinate211

x, following the Cauchy-Born rule(Ming et al. 2007; Ericksen 2008; Tadmor and Miller 2011), we212

apply an incremental displacement variation at every field point 𝑥213

𝛿𝑢𝑖 (x) = 𝛿𝑑𝑘𝑖𝑥𝑘 (23)214

where 𝑑𝑘𝑖 = 𝑢𝑖,𝑘 represents the displacement gradient tensor because the displacement gradient215

variation 𝛿𝑢𝑖, 𝑗 (x) is so small that the higher-term is negligible. The current coordinate at the 𝐼𝑡ℎ216

cutoff point 𝑥𝐼𝑖 is written as217

𝑥𝐼𝑖 = 𝜆𝑙𝑝𝑛
𝐼
𝑖 + 𝛿𝑢𝐼𝑖 (24)218

where the variation of 𝑥𝐼𝑖 due to the displacement variation is written as219

𝛿𝑥𝐼𝑖 = 𝛿𝑢𝐼𝑖 = 𝛿𝑑𝑘𝑖𝑥
𝐼
𝑘 (25)220

The deformation gradient tensor at 𝑥𝐼𝑖 is given as221

𝐹𝑖 𝑗 = 𝜆𝛿𝑖 𝑗 + 𝛿𝑑𝑘𝑖𝐹𝑘 𝑗 or 𝐹𝑗𝑖 = 𝜆
(
𝛿𝑖 𝑗 − 𝛿𝑑𝑖 𝑗

)−1
(26)222
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Therefore, one can obtain223

𝐹−1
𝑗𝑖 = 𝜆−1(𝛿𝑖 𝑗 − 𝛿𝑑𝑖 𝑗 ) (27)224

and225

𝜀𝑖 𝑗 =
1

2

(
𝛿𝑖 𝑗 − 𝐹−1

𝑘𝑖 𝐹
−1
𝑘 𝑗

)
=
1

2

(
1 − 𝜆−2

)
𝛿𝑖 𝑗 + 𝛿𝜀𝑖 𝑗 (28)226

where227

𝛿𝜀𝑖 𝑗 =
1

2𝜆2
(
𝛿𝑑𝑖 𝑗 + 𝛿𝑑 𝑗𝑖 − 𝛿𝑑𝑖𝑘𝛿𝑑 𝑗 𝑘

)
(29)228

in which the higher order term of 𝛿𝑑𝑖𝑘𝛿𝑑 𝑗 𝑘 can be disregarded when 𝛿𝑑𝑖 𝑗 is small. Therefore, the229

variation of the Eulerian strain is obtained:230

𝛿𝜀𝑖 𝑗 =
𝛿𝑑𝑖 𝑗 + 𝛿𝑑 𝑗𝑖

2𝜆2
(30)231

The incremental stress-strain relation can define the tangential elastic moduli of the solids, which232

can be derived from the relationship between the variations of the Cauchy stress and Eulerian strain233

at the current configuration. The volume change caused by 𝛿𝑢𝑖 can be written as234

𝛿𝑣𝑠 = [(1 + 𝛿𝑑11) (1 + 𝛿𝑑22) (1 + 𝛿𝑑33) − 1] 𝑣𝑠 ≈ 𝛿𝑑𝑖𝑖𝑣𝑠 (31)235

where the higher order terms are ignored because the displacement variations are small. The236

variation of average stress can be obtained by taking variation of Eq. (22) with the aid of Eqs. (25)237

and (31)as238

𝛿𝜎𝑖 𝑗 =
1

𝑣𝑠
Σ12𝐼=1

(
𝑥𝐼𝑖 𝐹

𝐼
𝑗 ,𝑙𝛿𝑥𝑙 + 𝛿𝑥𝐼𝑖 𝐹

𝐼
𝑗 − 𝑥𝐼𝑖 𝐹

𝐼
𝑗

𝛿𝑣𝑠
𝑣𝑠

)

=
1

𝑣𝑠
Σ12𝐼=1

(
𝑥𝐼𝑖 𝐹

𝐼
𝑗 ,𝑙𝛿𝑑𝑘𝑙𝑥

𝐼
𝑘 + 𝛿𝑑𝑘𝑖𝑥

𝐼
𝑘𝐹

𝐼
𝑗 − 𝑥𝐼𝑖 𝐹

𝐼
𝑗 𝛿𝑑𝑘𝑘

)

=
1

𝑣𝑠
Σ12𝐼=1

[
(𝜆2𝑉𝐼0

,𝜆𝜆 − 𝜆𝑉 𝐼0
,𝜆 )𝑛𝐼𝑖 𝑛𝐼𝑗 𝑛𝐼𝑘𝑛𝐼𝑙 + 𝜆𝑉 𝐼0

,𝜆 (𝛿𝑖𝑙𝑛𝐼𝑗 𝑛𝐼𝑘 + 𝛿 𝑗𝑙𝑛
𝐼
𝑖 𝑛

𝐼
𝑘 − 𝛿𝑘𝑙𝑛

𝐼
𝑖 𝑛

𝐼
𝑗 )
]
𝛿𝑑𝑘𝑙

(32)239

where 𝑛𝐼𝑖 =
𝑥𝐼𝑖
|x𝐼 | , 𝑟 = 2𝑙0𝑝𝜆 so that 𝑉 (𝑟) can be re-defined in terms of 𝑉 (𝜆), and 2𝑙0𝑝𝑉,𝑟 = 𝑉,𝜆 and240
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(2𝑙0𝑝)2𝑉,𝑟𝑟 = 𝑉,𝜆𝜆. Both forms of 𝑉,𝑟 and 𝑉,𝜆 are used in the literature, but the present formulation241

is much simpler and more elegant with the dimensionless variable 𝜆. The summation in Eq. (32)242

is reduced to the summation of 𝑛𝐼𝑖 𝑛
𝐼
𝑗 and 𝑛

𝐼
𝑖 𝑛

𝐼
𝑗 𝑛

𝐼
𝑘𝑛

𝐼
𝑙 , which can be written in the following identities243

for the FCC in Fig. 1,244

Σ12𝐼=1𝑛
𝐼
𝑖 𝑛

𝐼
𝑗 = 4𝛿𝑖 𝑗

Σ12𝐼=1𝑛
𝐼
𝑖 𝑛

𝐼
𝑗 𝑛

𝐼
𝑘𝑛

𝐼
𝑙 = (1 − 𝛿𝐼𝐾)𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)

(33)245

where the terms with subscript indices including both uppercase and lowercase letters, Mura’s246

extended index notation is used as follows (Mura 1987; Yin and Zhao 2016):247

1. Repeated lower case indices are summed up as usual index notation;248

2. Uppercase indices take on the same numbers as the corresponding lower case ones, but are not249

summed.250

Therefore, with the aid of Eq. (30), Eq. (32) can be rewritten as:251

𝛿𝜎𝑖 𝑗 =
1

𝑣𝑠

[(𝜆2𝑉,𝜆𝜆 − 𝜆𝑉,𝜆) [(1 − 𝛿𝐼𝐾)𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)] + 4𝜆𝑉,𝜆 (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙 − 𝛿𝑖 𝑗 𝛿𝑘𝑙)
]
𝛿𝑑𝑘𝑙

=
𝜆2

𝑣𝑠

[(𝜆2𝑉,𝜆𝜆 − 5𝜆𝑉,𝜆)𝛿𝑖 𝑗 𝛿𝑘𝑙 − (𝜆2𝑉,𝜆𝜆 − 𝜆𝑉,𝜆)𝛿𝐼𝐾𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝜆2𝑉,𝜆𝜆 + 3𝜆𝑉,𝜆) (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)
]
𝛿𝜀𝑘𝑙

(34)

252

where the superscript 𝐼0 is ignored as it is the same of𝑉𝐼0
,𝜆𝜆 and𝑉

𝐼0
,𝜆 for all the bonds (𝐼 = 1, 2, · · · , 12)253

because they exhibit the same length in the FCC lattice. Since 𝛿𝑑𝑘𝑙 and 𝛿𝑑𝑙𝑘 produce the same254

stress states, 𝛿𝑑𝑘𝑙 can be replaced by 𝜆
2𝛿𝜀𝑘𝑙 with the aid of Eq. (30).255

Considering the relationship between the variations of average stress and average strain in Eqs.256

(34), we can obtain the stiffness tensor of the singum as257

𝐶𝑖 𝑗 𝑘𝑙 =
𝜆2

4
√
2(𝜆𝑙0𝑝)3

[(𝜆2𝑉,𝜆𝜆 − 5𝜆𝑉,𝜆)𝛿𝑖 𝑗 𝛿𝑘𝑙 − (𝜆2𝑉,𝜆𝜆 − 𝜆𝑉,𝜆)𝛿𝐼𝐾𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝜆2𝑉,𝜆𝜆 + 3𝜆𝑉,𝜆) (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)
]

(35)258

which exhibits a cubic symmetry depending on the interatomic potential function and the geometry259
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of the lattice or singum. Note that this paper addresses two confusing issues in the first paper260

(Yin 2022b): 1) the third term in Eq. (32) was dropped off due to the assumption that the virtual261

displacement does not change the volume; 2) the effect of strech ratio 𝜆 to the Eulerian strain and262

volumetric strain was not considered under the infinitesimal strain assumption. Therefore, Eq. [19]263

in the reference (Yin 2022b) is different from the above equation. The present equation removes264

the assumptions and should be used instead. The three independent elastic constants for the cubic265

symmetric lattice can be written as:266

𝑐11 =
𝜆𝑉,𝜆𝜆 +𝑉,𝜆
2
√
2𝑙0𝑝
3

, 𝑐12 =
𝜆𝑉,𝜆𝜆 − 5𝑉,𝜆
4
√
2𝑙0𝑝
3

, 𝑐44 =
𝜆𝑉,𝜆𝜆 + 3𝑉,𝜆
4
√
2𝑙0𝑝
3

(36)267

where the Voigt notation is used as 𝑐11 = 𝐶1111, 𝑐12 = 𝐶1122, and 𝑐44 = 𝐶1212.268

In comparison with the recent paper (Yin 2022b), because the volume change of the singum is269

considered for the average stress in Eq. (20) with the finite deformation, the elastic constants 𝑐11270

and 𝑐12 exhibit different forms. The Cauchy discrepancy exists as 𝑐12 − 𝑐44 ≠ 0, so that it indeed271

exhibits a cubic symmetry. Note that the stiffness is calculated with the short-range interatomic272

potential by the cutoff of the bond length, which includes the twelve member atoms only. In this273

way, the singular force is homogenized into the integral of stress on the singum and the stiffness is274

clearly defined. When more interatomic forces are considered, such as the atom from outer layers275

of atoms and the interaction forces among other pairs of atoms, the average virtual stress will be276

different, and the relation between the elasticity C and derivatives of 𝑉 in Eq. (36) will be more277

complex as more atoms with different interatomic spacing and orientation need to be considered.278

This issue will be revisited with the long-range atom interactions in the future.279

A new singum potential based on the equation of state280

Given an interatomic potential, we can predict the elasticity by the above singummodel straight-281

forwardly. Actually, the relationship between the elastic constants and the potential also provides282

feasibility to develop an interatomic potential to directly match them. Note that the three constants283

in Eq. (36) can be directly measured in experiments. Given the testing configuration with an initial284
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bond length 2𝑙𝑝, referred to the zero stress configuration with the bond length 2𝑙
0
𝑝, one can obtain285

𝜆0 = 𝑙𝑝/𝑙0𝑝. Particularly, the shear strain in the lattice can distort the relative position of atoms,286

which may lead to the lattice transformation and singum annihilation when the closest neighboring287

atoms change. Therefore, we cannot directly use Eq. (36) to inversely derive 𝑉 .288

However, a hydrostatic load causes the uniform change of the lattice structure and the singum289

remains stable. Therefore, we can use the bulk modulus to construct the new interatomic potential.290

Given a hydrostatic stress 𝜎𝑚𝛿𝑖 𝑗 , from the volumetric strain, we can calculate the bulk modulus as291

𝑘 (𝜆) = 𝑐11 + 2𝑐12
3

=
𝜆𝑉,𝜆𝜆 − 2𝑉,𝜆
3
√
2𝑙0𝑝
3

(37)292

Inversely, 𝑉 (𝜆) can be written in terms of 𝑘 (𝜆) by solving the above ordinary differential293

equation (ODE) as:294

𝑉 (𝜆) = 3
√
2𝑙0𝑝
3
∫ 𝜆

1

𝜆2
[∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆 + 𝐶

]
𝑑𝜆 +𝑉 (1) (38)295

where 𝑉 (1) is the interatomic potential at 𝜆 = 1, which can be disregarded for elastic modeling296

because it has no effects; 𝐶 is an integral constant to be determined subsequently, which is zero297

shown in Eq. (40); 𝑘 (𝜆) can be given by the EOS of the crystal. In the recent paper (Yin 2022b), we298

used the assumption of the volume-dependent interatomic energy with the Fermi energy (Shukla299

1981; Johnson 1972), i.e. 𝐸𝑣 = 𝑃(𝑉/𝑉0)−2/3, to derive the singum potential. There are many300

analytic and semi-empirical forms of EOS in the literature (Cohen et al. 2000; Vinet et al. 1986;301

Chen and Chen 1991; Occelli et al. 2003). The MB EOS has been widely used for the simplicity302

and accuracy. Eqs. (9), (15), or (17) can be used in Eq. (38) to derive the interatomic potential at303

the desirable accuracy.304
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For the convenience of derivation, we can write the derivatives of 𝑉 (𝑟) as305

𝑉,𝜆

3
√
2𝑙0𝑝
3
= 𝜆2

[∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆 + 𝐶

]

𝑉,𝜆𝜆

3
√
2𝑙0𝑝
3
= 2𝜆

[∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆 + 𝐶

]
+ 𝜆−1𝑘 (𝜆)

𝑉,𝜆𝜆𝜆

3
√
2𝑙0𝑝
3
= 2

[∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆 + 𝐶

]
+ 𝜆−2𝑘 (𝜆) + 𝜆−1𝑘,𝜆 (𝜆)

(39)306

where Eq. (37) can be confirmed by substituting the first two equations into it.307

Note that 𝑉,𝜆 shows the force between two atoms. The physical meaning of 𝐶 can be described308

by the interatomic force at the zero-stress state from the first equation in Eq. (39) as:309

𝐶 =
𝑉,𝜆 |𝜆=1
3
√
2𝑙0𝑝
3
= 0 (40)310

where 𝑉 reaches the minimum at 𝜆 = 1. Then substituting Eq. (39) into Eq. (36) yields311

𝑐11(𝜆) = 3
2

[
𝑘 (𝜆) + 3𝜆2

∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆
]

𝑐12(𝜆) = 3
4

[
𝑘 (𝜆) − 3𝜆2

∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆
]

𝑐44(𝜆) = 3
4

[
𝑘 (𝜆) + 5𝜆2

∫ 𝜆

1

𝜆−3𝑘 (𝜆)𝑑𝜆
]

(41)312

Therefore, given the bond length 2𝑙0𝑝 at the zero stress state or the reference coordinate X and313

the EOS or 𝑘 (𝜆), one can obtain the elastic constants changing with the bond length 𝜆 or pressure.314

Inversely, if three elastic constants 𝑐𝑢
11
, 𝑐𝑢
12
and 𝑐𝑢

44
are measured at 𝜆𝑢 or bond length at 2𝑙𝑢𝑝, the315

formulation may provide an approach to back calculate the bond length ratio 𝜆𝑢 = 𝑙𝑢𝑝/𝑙0𝑝 and the316

EOS 𝑉 (𝜆) if the form is predefined. However, because only the short range atomic interactions are317

considered for the atoms with the shortest bond length, the above calculation may not be possible.318

For example, Eq. (36) implies 2𝑐11 = 𝑐12 + 3𝑐44, which is against the physics that the cubic319

symmetry exhibits three independent elastic constants.320
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Overall, it is not accurate to use the simplified singummodelwith short-range atomic interactions321

only to back calculate the EOS of crystals, which exhibits long-range atomic interactions. However,322

for metamaterials, one can fabricate the lattice with only physical bond connections for neighboring323

nodes only (Yin 2022a), so that the short-range interactions exactly describe the mechanics. The324

above formulation can predict the nonlinear elastic behavior of the metamaterial lattice, which is325

more consistent than the formulation in the second paper (Yin 2022a), which calculate the tangential326

stiffness based on the infinitesimal strain but allows finite deformation of the bond length. When327

the long-range atomic interaction is considered, higher accuracy is anticipated and the constraint328

between the cubic elastic constants can be released.329

Approximation of the long-range atomic interactions330

To consider the effect of the long-range atomic interaction of crystals, an ergodic process of331

all interaction forces, which rapidly decay with the atom-atom distance, may provide the accurate332

numerical results. However, it will not be a closed form solution as Eq. (35). Inspired by333

the embedded atom method (EAM) (Daw and Baskes 1984; Tadmor and Miller 2011), which334

considered the interactions of long-range atoms by the embedding energy as a function of density335

of the host (Daw and Baskes 1984), this paper introduces a hydrostatic stress 𝜎
𝑝
𝑖 𝑗 on the singum336

surface to simulate the effect of all other atoms beyond the singum members as a correction to the337

whole stress in Eq. (22) as follows:338

𝜎
𝑝
𝑖 𝑗 = 𝑠𝑝(𝑣𝑠)𝛿𝑖 𝑗 (42)339

where 𝑠 is a constant depending on the material to be determined by the elastic constants later,340

so that the change of 𝜎
𝑝
𝑖 𝑗 is determined by 𝑝(𝑣𝑠) only. Obviously, when 𝑠 = 0, it recovers the341

short-range model. Note that because the mass of the singum is constant, 𝑣𝑠 is related to density342

by Eq. (8), it can be written as a function of density as well in parallel to EAM.343

Given a displacement variation 𝛿𝑢 as Eq. (25), one can write344

𝛿𝜎
𝑝
𝑖 𝑗 = 𝑠

𝑑𝑝

𝑑𝑣𝑠
𝛿𝑣𝑠𝛿𝑖 𝑗 = 𝑠

𝑑𝑝

𝑑𝑣𝑠
𝑣𝑠𝛿𝑑𝑘𝑘𝛿𝑖 𝑗 = −𝑠𝑘 (𝜆)𝜆2𝛿𝜀𝑘𝑘𝛿𝑖 𝑗 (43)345
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where Eqs. (30) and (31) are used. Therefore, the modified stiffness can be written in parallel to346

Eqs. (35) and (36) as347

𝐶𝑖 𝑗 𝑘𝑙 = 𝐶𝑖 𝑗 𝑘𝑙 − 𝑠𝑘 (𝜆)𝜆2𝛿𝑖 𝑗 𝛿𝑘𝑙 (44)348

and349

𝑐11 =
𝜆𝑉,𝜆𝜆 +𝑉,𝜆

2
√
2𝑙0𝑝
3

− 𝑠𝑘 (𝜆)𝜆2, 𝑐12 =
𝜆𝑉,𝜆𝜆 − 5𝑉,𝜆

4
√
2𝑙0𝑝
3

− 𝑠𝑘 (𝜆)𝜆2, 𝑐44 =
𝜆𝑉,𝜆𝜆 + 3𝑉,𝜆

4
√
2𝑙0𝑝
3

(45)350

where the overbar of (.) shows the relevant quantity considering the long-range atomic interaction.351

Using the similar procedure in the last subsection, one can derive the interatomic potential as352

follows:353

𝑘 (𝜆) = 𝜆𝑉,𝜆𝜆 − 2𝑉,𝜆

3
√
2𝑙0𝑝
3

− 𝑠𝑘 (𝜆)𝜆2 (46)354

Inversely, 𝑉 (𝜆) can be written in terms of 𝑘 (𝜆) by solving the above ordinary differential355

equation (ODE) as:356

𝑉 (𝜆) = 3
√
2𝑙0𝑝
3
∫ 𝜆

1

2

[∫ 𝜆

1

𝜆−3𝑔(𝜆)𝑑𝜆 + 𝐶

]
𝑑𝜆 (47)357

where 𝑔(𝜆) = 𝑘 (𝜆) (1 + 𝑠𝜆2). Compared with Eq. (38), the above equation uses 𝑔(𝜆) to replace358

𝑘 (𝜆), so that Eq. (39) can be updated in the same fashion. Therefore, Eq. (41) can be rewritten as359

𝑐11(𝜆) = 3
2

[
𝑘 (𝜆) (1 + 𝑠𝜆2) + 3𝜆2

∫ 𝜆

1

𝜆−3𝑘 (𝜆) (1 + 𝑠𝜆2)𝑑𝜆
]
− 𝑠𝑘 (𝜆)𝜆2

𝑐12(𝜆) = 3
4

[
𝑘 (𝜆) (1 + 𝑠𝜆2) − 3𝜆2

∫ 𝜆

1

𝜆−3𝑘 (𝜆) (1 + 𝑠𝜆2)𝑑𝜆
]
− 𝑠𝑘 (𝜆)𝜆2

𝑐44(𝜆) = 3
4

[
𝑘 (𝜆) (1 + 𝑠𝜆2) + 5𝜆2

∫ 𝜆

1

𝜆−3𝑘 (𝜆) (1 + 𝑠𝜆2)𝑑𝜆
]

(48)360

If three elastic constants 𝑐𝑢11, 𝑐
𝑢
12 and 𝑐

𝑢
44 aremeasured at𝜆

𝑢 or bond length at 2𝑙𝑢𝑝, the formulation361

may provide an approach to back calculate the bond length ratio 𝜆𝑢 = 𝑙𝑢𝑝/𝑙0𝑝, 𝑠, and the EOS 𝑉 (𝜆)362

as follows:363

𝑘 (𝜆𝑢) = 𝑐𝑢11 + 2𝑐𝑢12
3

, 𝑠 =
3

𝜆𝑢2
𝑐𝑢12 − 2𝑐𝑢11 + 3𝑐𝑢44

𝑐𝑢11 + 2𝑐𝑢12
(49)364
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where 𝜆𝑢 must satisfy365

𝜆2
∫ 𝜆

1

𝜆−3𝑘 (𝜆) (1 + 𝑠𝜆2)𝑑𝜆 =
𝑐𝑢11 − 𝑐𝑢21 − 𝑐𝑢44

3
(50)366

When the form of the EOS 𝑘 (𝜆) is given, one can use the above equation to solve for 𝜆𝑢. For367

example, if Eq. (15) is used, it can be rewritten as368

𝑘 (𝜆) = 𝑘 (𝜆𝑢) 7𝜆
−7 − 5𝜆−5

7𝜆𝑢−7 − 5𝜆𝑢−5 (51)369

Substituting Eqs. (51) and (49) into Eq. (50) leads to the numerical solution of 𝜆𝑢. Therefore,370

the EOS 𝑘 (𝜆) and the interatomic potential 𝑉 (𝜆) of the crystal can be determined by the elastic371

constants.372

Ideally, given the cubic symmetric elastic constants of an FCC lattice at the undeform state,373

one can determine the equilibrium bond length 𝑙0𝑝 by 𝜆
𝑢 and the interatomic potential 𝑉 (𝜆). Note374

that if higher order EOS is used, such as Eq. (9) or (17) with the pressure derivatives of the bulk375

modulus, the derivative of the elastic moduli or the elastic moduli at another value of 𝜆 shall be376

used to determine 𝑘′
0
, 𝑘′′
0
, etc.. The similar procedure can be followed to determine the interactomic377

potential. Assuming 𝑘′
0
= 4, 𝑘′′

0
= − 35

9𝑘0
, Eq. (15) provides the same prediction as Eq. (9) or (17).378

RESULTS AND DISCUSSION379

Although this simplified singum model only considers the short range interatomic forces with380

the interactions of other atoms evaluated in an approximate fashion, because the short range381

interaction indeed dominates in solids, the model can capture the physics and mechanics of solids382

with good fidelity. Particularly, because the singum interatomic potential is derived and calibrated383

by the elastic behavior, the accuracy of the model may reach the engineering standard. Obviously,384

the volume-surface ratio of a continuum particle will play a role on its effective elasticity due385

to the boundary effect when it is small. However, the lattice structure and effective elasticity of386

crystals are fairly stable with size reduction to the nanoscale (Juvé et al. 2010). It indicates that the387

long-range atom interactions play much less important role on the solid states than in the liquid or388
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gas states. As the interatomic force is applied to any pair of atoms through the pairwise potential,389

which reduces to zero rapidly with the center-center distance is much higher than the regular bond390

length, an ergodic process to consider each pair of atoms should be conducted to yield the effective391

elasticity. However, it is computationally expensive but cannot provide a close-form expression.392

Therefore, this paper simplifies it with short-range atomic interaction only for the explicit form of393

equations of the elasticity. It will be extended to the general case with many particles in future394

work. Instead, the simplified singum model improved by approximation of the long-range atomic395

interaction provides a practical way to derive both EOS and interatomic potential from the elastic396

constants. In the following, we use single crystalline aluminum to demonstrate the application and397

then discuss the mechanics and physics of crystals predicted by the improved singum model and its398

connections with the previous two papers and existing models.399

Demonstration of the singum potential with the aluminum atomic lattice400

Aluminum is a common structural material in civil engineering. Here we use the single401

crystalline aluminum FCC lattice to demonstrate the use of the improved singum model. The cubic402

symmetric elastic constants at room temperature have been measured as (Vallin et al. 1964):403

𝑐𝑢11 = 107.3GPa, 𝑐𝑢12 = 60.08GPa, 𝑐𝑢44 = 28.30GPa (52)404

In addition, other parameters can be obtained as follows: Density 𝜌 = 2.710 × 103Kg/m3; and405

atom weight 𝑀𝑎 = 4.482 × 10−26Kg. Using the density and atom weight, we can calculate:406

the bond length 2𝑙𝑢𝑝 = 0.286nm, and the singum volume 𝑣
𝑢
𝑠 = 16.54A

3.407

Using the three elastic constants in Eqs. (48), we obtain:408

409

𝑘 (𝜆𝑢) = 75.82, 𝑠 = −0.9182
𝜆𝑢2

(53)410

For demonstration, the simplest form of EOS (15) is used as411

𝑘 (𝜆) = 75.82 7𝜆−7 − 5𝜆−5
7(𝜆𝑢)−7 − 5(𝜆𝑢)−5 (54)412
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Therefore, 𝜆𝑢 can be determined by Eq. (50) approximately at 1.1199. Using 𝜆𝑢 = 1.1199 in413

Eq. (54), and then Eq. (47), one can obtain the EOS and the singum potential as follows:414

𝑘 (𝜆) = 229.89(7𝜆−7 − 5𝜆−5)

𝑉 (𝜆) = 8.8307 × 10−30(29.801𝜆−6 − 83.042𝜆−4 + 83.979𝜆−2 − 35.604 + 4.8654𝜆3)
(55)415

where 𝑉 (1) is disregarded as it has no effect on elasticity prediction. The above formulation can416

reproduce the measured elastic constants by Eq. (48).417

Note that 𝜆 refers to the free-force bond length 𝑙0𝑝 = 0.1277nm, which represents the singum418

volume 𝑣0𝑠 = 11.77A
3. Therefore, 𝜆 = (𝑣/11.77)1/3, the EOS can be rewritten in terms of volume419

as well:420

𝑘 (𝑣) = 229.89[7(𝑣/11.77)−7/3 − 5(𝑣/11.77)−5/3]

𝑝(𝑣) = 𝑝0 −
∫ 𝑣

11.77
𝑘 (𝑣)/𝑣𝑑𝑣 = 𝑝0 + 689.67[(𝑣/11.77)−7/3 − (𝑣/11.77)−5/3]

(56)421

where 𝑝(𝑣) denotes the pressure measurement on the surface of the lattice for comparison with422

the experiments, and due to the surface energy it is different from Eq. (6) with the internal stress423

only; 𝑝0 = 𝑝(11.77) is caused by the surface energy at the zero-force bond length, which can be424

calibrated as 𝑝0 = 79.575GPa by the measurement 𝑝(𝑣𝑢𝑠 ) = 𝑝(16.54) = 0. Without the surface425

energy and long-range atomic interactions, the singum should rest at 𝑣0 = 11.77A3 but the surface426

tension of 𝑝0 makes the bond stabilized at 𝑣
𝑢
𝑠 = 16.54A

3 at the undeformed state instead.427

Fig. 2 shows the EOS of aluminum predicted with the three elastic constants with the second428

order EOS Eq. (15); whereas Fig. 3 illustrates the interatomic potential changing with 𝜆 with429

𝑉 (1) disregarded. Both figures can predict the undeformed state at 16.54A3 or 𝑙𝑢𝑝 = 0.143nm430

because the parameters were fitted by the measurements. However, because Eq. (15) assumed431

𝑘′ = 4, 𝑘′′
0
= − 35

9𝑘0
at 𝑣 = 𝑣0𝑠 to simplify the mathematical form, it may not catch the real physics432

of the crystal lattice. For EOS, the experimental results (Dewaele et al. 2004) with a pressure up433

to 144.3GPa are also provided. Obviously, the dash line of Eq. (56) overly estimate the pressure434
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in comparison with the experiments of aluminum. Although Eq. (15) exhibits the simplicity and435

convenience for modeling, the predictions shown in dash lines in both figures may only be usable436

in the neighborhood of the undeformed state for infinitesimal deformation, and the accuracy will437

decrease for large deformation.438

Eq. (17) has often been used and widely accepted in the literature (Birch 1947; Dewaele et al.439

2004). Following the same procedure, once a pressure derivative of 𝑘′ is given, we can determine440

𝜆𝑢, 𝑘0 and the interatomic potential 𝑉 (𝑟) as well. Therefore, 𝑘′ = 2, 3 are also shown in Fig. 2,441

which are corresponding to 𝜆𝑢 = 1.1444, 1.1334, respectively. Apparently, the case of 𝑘′ = 2 as442

the solid line exhibits the best fitting to the experimental results of the 𝑝 − 𝑣 curve and can be used443

for further analysis of elasticity changing with pressure, such as pressure derivatives of the elastic444

constants at different pressures. The EOS and the corresponding potential function are written as:445

𝑝(𝜆) = 1770.9
𝜆7

− 1106.8
𝜆5

− 664.10
𝜆9

+ 72.256

𝑉 (𝜆) = 8.2755 × 10−30(−22.640𝜆−8 + 102.39𝜆−6 − 169.35𝜆−4 + 129.33𝜆−2 − 44.558 + 4.8270𝜆3)

(57)

446

Note that the case of 𝑘′ = 2 does not ideally catch the experiments yet at the high pressures in447

Fig. 2. If Eq.(9) is used with 𝑘′′ variable to fit the curve, higher accuracy is expected. Compared the448

above equation with Eq. (56) and (55), the prestress 𝑝0 becomes smaller with onemore higher-order449

term in the functions of 𝑝 and 𝑉 .450

Fig. 3 shows 𝑉 (𝜆) for both cases of 𝑘′ = 2, 3 and 4, which exhibit the minimium at 𝜆 = 1. Note451

that because the undeformed bond length 𝑙𝑢𝑝 is corresponding to different 𝜆
𝑢, the zero-force bond452

lengths are different for the three cases. With 𝑘′ increase from 2 to 4, 𝜆𝑢 decrease from 1.1444453

to 1.1199. For 𝜆 < 1, it increases faster in comparison with 𝜆 > 1, which represents a larger454

repulsive force than the attactive force with the same change of stretch level. When 𝑘′ increases,455

the interatomic potential well becomes stiffer.456

Using the derivatives of 𝑉,𝜆 (𝜆) and 𝑉,𝜆𝜆 (𝜆) of Eq. (57) for Case 𝑘′ = 2, we can predict the457

elastic constants changing with 𝜆 or pressure. Fig. 4 illustrates the three cubic symmetric elastic458
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constants changing with 𝜆. Indeed, at the undeformed state, the predictions of the three elastic459

constants are the same as the measurements because the potential was determined by those values.460

With the increase of 𝜆, the elastic constants reduce at different rates: 𝑐44 changes much slower461

than 𝑐11 and 𝑐12. Note that here the range of 𝜆 from 0.9-1.2 covers a large range of the volume462

change and is far beyond the engineering applications. When 𝜆 is close to 0.9, the trend may not463

be physical as the elastic constants exhibit the peak points.464

Mechanics and physics of crystals predicted by the improved singum model465

In the last subsection, single crystalline aluminum was used for demonstration. The improved466

singum model provides a practical approach to correlate the EOS with the interatomic potential467

and elastic constants at different volume or bond length or pressure.468

The key novelty of the singum model is to take into account of the effect of the prestress on469

the effective stiffness, which generates a configurational force with a displacement variation on the470

lattice structure and changes the effective elasticity significantly. If the prestress reduces to zero,471

which means that the undeformed bond length stays at the bottom of the potential well, which472

is equal to the equilibrium bond length, for short-range atomic interactions, the singum model473

provides the same formulation as other models. For example, replacing the interatomic potential by474

the Hertzian contact model, the singum model recovers Chang’s formulation (Chang 1988) using475

𝑉,𝑟 = 0. For 3D isotropic cases, previous models typically led to a Poisson’s ratio at 0.25 using the476

pairwise potential without prestress, which is shown in the Singum model as well. However, the477

compressive prestress makes the Poisson’s ratio higher than 0.25 and a tensile prestress makes it478

less than 0.25, which has been demonstrated by the singum model recently (Yin 2022b).479

Compared with microcanonical (NVE) ensemble (Tadmor and Miller 2011), the simplified480

singum uses the static lattice geometry to map the stress in a space with forces between atoms.481

Although only neighboring atomic interactions in a short range is considered and the temperature482

effect with kinetic energy is not taken into account, the improved singum model can catch the483

mechanics and physics of the solids that NVE ensemble does not take into account as the following484

features:485
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1. In general, NVE requires the statistical equilibrium of the forces. If only short-range atomic486

interactions are considered, it means all bonds shall stay at the zero-force bond length 𝑙0𝑝 statistically487

at the undeformed state, which eliminates the second and third terms in Eq. (32). Actually, solids488

exhibit surface energy which can change the state shifted from the lowest potential state. We use489

prestress to explain it. It will produce configurational forces with the displacement variation and490

play a significant role in elastic behavior, which has been explained in the second paper about491

metamaterial (Yin 2022a).492

2. Indeed, if𝑉,𝜆 becomes zero, the singummodel will lead to Cauchy discrepancy (Daw and Baskes493

1984; Tadmor and Miller 2011), where 𝑐11 = 2𝑐12 = 2𝑐44 in Eq. (36). However, the prestress494

changes the elastic behavior with the configurational forces.495

3. If no long-range atomic interactions are considered, the FCC atomic system per pairwise496

interaction can be simulated by a lattice metamaterial with equal bond lengths. The singum model497

shows 2𝑐11 = 𝑐12 + 3𝑐44, which is exact for lattice metamaterial but not physical for FCC crystals498

due to the long-range atomic interactions.499

4. When the long-range atomic interactions are approximated by a pressure functionwhich is similar500

to embedding energy of the EAM, the improved singum model can fit the elastic constants well501

with a predefined form of EOS. The elastic constants changing with pressure can be subsequently502

determined.503

5. As discussed in the first paper (Yin 2022b), if the undeformed state exhibits a bond length504

𝑙𝑢𝑝 larger than 𝑙0𝑝, it is generally brittle; whereas if 𝑙
𝑢
𝑝 < 𝑙0𝑝, it is generally ductile as it requires505

more energy to separate the atoms. Using the present formulation with finite deformation under506

hydrostatic loading, we can predict the nonlinear elastic behavior of the singum (Wei et al. 2009)507

and investigate the elastoplastic and fracture behavior of the solids.508

6. Although only pair interactions are considered, the improved singum model can predict the509

general anisotropic elastic properties of central symmetric lattice, which is different from the510

general view that 3-body or N-body interatomic potential is needed to catch the arbitrary cubic511

symmetric elastic behavior (Tadmor and Miller 2011).512
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This is the third paper about the singum model following the two recent papers (Yin 2022b;513

Yin 2022a). The first paper (Yin 2022b) introduced the construction of the singum particle and514

provided some preliminary applications of the simplified singum model based on the infinitesimal515

deformation. Because the formulation cannot interpret the three independent elastic constants of516

cubic symmetric lattice, and it was abstractive and difficult to justify the interatomic potential517

by curve fitting, the second paper (Yin 2022a) used the physical truss system with harmonic518

potential to demonstrate the singum model. It provided an analytical form of elasticity for lattice519

metamaterials and clarified the effect of the prestress on the elasticity. However, it was still520

based on the infinitesimal deformation. This paper revisits the crystal lattices using FCC for521

demonstration, which can be straightforwardly extended to other types of lattices, and develops the522

finite deformation formulation. Therefore, it will be more accurate in nonlinear elastic modeling523

of the crystal solids or lattice metamaterials and composites under large deformation.524

In addition, the present singum model disregards the thermal effects of atom vibration. On the525

scale of atoms, the thermal fluctuation can be random and evaluated by the statistical mechanics of a526

many-particle system (Tadmor andMiller 2011). The effect of kinetic and fluctuation contributions527

to the elasticity can be considerable although the Cauchy-Born’s part, on which the preent singum528

model focuses, still plays the dominant role. In this work, because only short-range interactions529

with a few atoms are considered, we calibrated the potential function with experimental results of530

the stiffness and density so that the temperature effect is not separately analyzed. However, when531

long-range atomic interactions are considered in future, we can investigate the thermal effects in a532

quantitative way.533

Note that the present singum model keeps the shape of unit cell the same as a cube, so that the534

singum particle exhibits the same out-norm vector n𝐼 of each surface, although the full anisotropic535

stiffness tensor is obtained by applying a displacement variation. Indeed, the shape of the singum536

remains the same under the hydrostatic load, and the EOS is obtained by the finite deformation under537

a hydrostatic pressure. However, for general finite deformation, such as shear loading, the surface538

out-norm vector n𝐼 of each surface has to be updated with the deformation, so that the formulation539
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shall be updated with the load and the explicit form of the elastic constants of the present paper will540

be lost. Instead, the equivalence between the interatomic potential and the Helmholtz free energy541

can be setup on the singum and the general finite deformation of the crystal lattices (Wei et al.542

2009; Kumar and Parks 2015; Höller et al. 2020) can be formulated. The actual loading curves can543

be generated incrementally with the lattice structure evolution, which may lead to elasto-plastic or544

fracture behavior with the singum annihilation and transformation when the closest neighbor atoms545

are changed (Yin 2022b). Future work on the lattice large deformation is underway.546

CONCLUSIONS547

The simplified singum model has been improved by using the thermodynamics-based equation548

of state (EOS) of solids and approximately considering the long-range atomic interactions. The549

finite deformation formulation has been developed to evaluate the pressure-volume (p-v) relation-550

ship for the EOS of a solid, and predict the elastic constants changing with the bond length or551

pressure. Using the bulk modulus and its derivatives at the free-stress state, one can construct the552

EOS and interatomic potential. Using single crystalline aluminum as an example, the improved553

singum model is demonstrated. The third-order EOS can predict the p-v curve up to a pressure of554

100GPa. The pressure dependent elastic behavior is predicted with the improved singum model.555

The mechanics and physics of crystals caused by surface energy and long-range atomic interactions556

are discussed, which can be useful for elastoplastic and fracture modeling of solids.557
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Fig. 1. The singum model of a face-centered cubic lattice: (a) the unit cell for the singum
construction at the front central atom with four more member atoms not shown and; (b) the FCC

singum of the 0𝑡ℎ atom obtained by cutting the 12 bonds with the vertical midplanes, which is

the WS Cell of a rhombic dedecahedron shown in the initial configuration X (black lines) and the
deformed configuration x (gray lines)
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Fig. 2. The pressure changing with the singum volume (p-v) in comparison with the experiments
of single crystalline aluminium: circle symbols - experiments (Dewaele et al. 2004); dash line for

𝑘′ = 4 - second order EOS Eq. (15); solid line for 𝑘′ = 2; dot symbols for 𝑘′ = 3, and; dot line for
𝑘′ = 5
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Fig. 3. The interatomic potential of the singum model for a face-centered cubic lattice of single
crystalline aluminium: dash line for 𝑘′ = 4 - second order EOS Eq. (15); solid line for 𝑘′ = 2 -
third order EOS Eq. (17)
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Fig. 4. The three elastic constants of single crystalline aluminium changing with 𝜆, where 𝜆𝑢

indicates the undeformed state
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