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This paper investigates the mechanical behavior of
a bi-layered panel containing many particles in one
layer and demonstrates the size effect of particles
on the deflection. The inclusion-based boundary
element method (iBEM) considers a fully bounded bi-
material system. The fundamental solution for two
jointed half spaces has been used to acquire elastic
fields resulting from source fields over inclusions
and boundary-avoiding multi-domain integral along
the interface. Eshelby’s equivalent inclusion method
(EIM) is used to simulate the material mismatch
with a continuously distributed eigenstrain field
over the equivalent inclusion. The eigenstrain is
expanded at the center of the inclusion, which
provides tailorable accuracy based on the order of
the polynomial of the eigenstrain. As a single-domain
approach, the iBEM algorithm is particularly suitable
for conducting virtual experiments of bi-layered
composites with many defects or reinforcements for
both local analysis and homogenization purposes.
The maximum deflection of solar panel coupons
is studied under uniform vertical loading merged
with inhomogeneities of different material properties,
dimensions, and volume fractions. The size of defects
or reinforcements plays a significant role in the
deflection of the panel, even with the same volume
fraction, as the substrate is relatively thin.
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1. Introduction
Considering an ellipsoidal inhomogeneity embedded in an infinite homogeneous space under
uniform far-field loading, Eshelby [1,2] proposed the equivalent inclusion method (EIM) to
determine the elastic fields. Rather than directly solving the boundary value problems of multiple
domains, the EIM treats the material in subdomains the same as the matrix by introducing a
continuously distributed inelastic strain named eigenstrain [3], to simulate the material mismatch.
Subsequently, by using EIM, the elastic fields of the initial problem can be acquired through the
superposition of original fields caused by uniform far-field loading and disturbed fields induced
by the eigenstrain. Thanks to Dyson’s work [4] on the explicit domain integrals of ellipsoidal
variable density functions, the EIM is intensively and widely applied in micromechanics to study
both local fields and spatially-averaged fields (effective mechanical behaviors).

By using EIM in the evaluation of effective properties of composites under different
assumptions, various micro-mechanical models [5] have been proposed, such as self-consistent
scheme [6] and Halpin–Tsai model [7] with the assumption of the same average strain/stress
on the single inhomogeneity and matrix. In addition, Mori-Tanaka [8] model and its modified
versions [9] have been applied to investigate specific problems as porous ceramics, elastoplasticity
and shape memory alloy polymers [10–12], etc. Although the above homogenization schemes
have considered the inhomogeneity interactions, they are based on a strong assumption of infinite
space, which is not realistic for either experimental specimens or industrial applications. When
inhomogeneities are embedded in a finite domain, the boundary/interface effects are observed
in the local fields [13] but have not been directly taken into account in micro-mechanical models.
As one typical example, the interface effect [14] causes the angle shift of maximum principal
stress of an embedded micro void. For multiple inhomogeneities problems, Yang et al. [10] found
that homogeneously distributed inhomogeneities lead to maximum effective properties. Verified
with virtual experiments [15] with the adequate number of inhomogeneities, the effective elastic
constants of the composite gradually converge to a constant value statistically.

Due to the constraints on conventional homogenization models and their extensions, the
concept of representative volume element (RVE) or unit cell (UC) was proposed, a structurally
completely typical of the entire sample on average. According to Hill’s definition [16], for
a composite sample, the RVE should contain sufficient microstructural details to adequately
represent the composites. Some efforts have been devoted to quantify the minimum dimensions
of RVE [17]: (i) Kanit et al. [18] applied a statistical approach to determine dimensions of RVEs
based on desirable precision and deduction with 4− 5 realizations; (ii) Terada et al. [19] presented
the variational formulae for homogenization and employed the convergence of several macro and
micro parameters, i.e. stresses in inhomogeneity, to reduce the dimension of an adequately large
RVE. (iii) Gusev [20] applied the Monte Carlo algorithm to generate a statistically independent
composite sample with 8, 25 and 64 identical spheres. Dirrenberger et al. [21] concluded that
slower convergence rate results in larger RVEs. In the above literature review, finite element
method (FEM) and its extensions are intensively applied to solve the RVE with periodic boundary
conditions as well as other numerical methods, such as EIM [22,23], finite volume method (FVM)
[24], and boundary element method (BEM) [25].

Pioneers have proposed various numerical methods to investigate the mechanical behavior of
bi-layered systems. Zhou et al. [26] investigated the effect of the hard coatings over substrate
embedded with cuboid inhomogeneities, where the external loads are normal tractions and
friction forces. To avoid inconsistency between the coating layer and the substrate, the authors [26]
proposed to discretize the coating layer, inhomogeneities, and particularly assumed constant
eigenstrain in each small “element". Subsequently, Dong et al. [27] utilized the same semi-
analytical method and applied the linear approximation of dislocation density to investigate the
plane strain fretting contact problems with vertical cracks. Among recent works, stress intensity
factor (SIF) is a popular topic, where extensions of FEM are widely applied. Treifi and Oyadiji
[28,29] developed a fractal-like FEM with displacement interpolation functions. The extended
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FEM (XFEM) is implemented with crack-tip enrichment functions for cracks terminating at
the bi-material interface [30]; and the mesh-free Galerkin method was applied to the crack
interaction problems [31]. In addition, other numerical models, such as fast multi-pole BEM [32]
and FEM/BEM with isogeometric analysis [33,34], have been reviewed [35,36]. Although the
above methods can improve the accuracy with a discretization scheme, the solutions greatly rely
on mesh quality near the bi-material interface, where singularity issues arise. To simplify the
preparation process, Yue’s group used the generalized Kelvin’s solution [37] and extended it to
n-layered solids [38,39] through the boundary element method, which analytically handles the
continuity conditions between layers. Comparing the BEM with the classic Kelvin’s solution, the
recent studies from Yue’s group [40,41] took advantage of the new fundamental solutions, in
which the bi-layered material is treated as a single domain without mesh on the interface, but the
integral form solution led to numerical integral with additional computational costs.

For a bi-material system, Walpole [42] provided an explicit form of fundamental solution,
which can be used in the inclusion-based boundary element method (iBEM) [36] by significantly
reducing the degree of freedoms (DOFs) in virtual experiments of composites. Wu et al. [43] also
extended the iBEM for a single domain elastic analysis of bi-materials. Thanks to the explicit
fundamental solution, the material mismatch between inhomogeneities and two matrices can be
simulated with a continuously distributed eigenstrain field without any domain discretization.
Following Mura’s work [3], the continuous eigenstrain is expanded at the center of each
inhomogeneity by the Taylor series, whose accuracy is tailorable by using uniform, linear or
quadratic polynomial of eigenstrain based on the variation of the local field and desirable
accuracy.

Recently, we [43] proposed single-domain boundary integral equations (BIEs) based on
Walpole’s solution, which mathematically considers continuity equations at the bi-material
interface. Subsequently, thanks to analytical domain integrals with polynomial-form eigenstrain
over spheres, Wu et al. [14] applied iBEM to investigate intensive bi-material interfacial effects
on a single micro air void. This paper adopted iBEM in virtual experiments of a particulate
composite for large-scale simulation with over 10, 000 inhomogeneities for structural response
under different loading conditions, which discloses a new size effect of particles that is often
ignored in other multiscale modeling.

Conventional homogenization models mainly use a large RVE under a uniform load to obtain
the effective elastic moduli for modeling the structural behavior of a particulate composite.
However, the accuracy of such a method on layered composites is significantly jeopardized, as
it ignores the two essential issues. The first is that the bending of the panel results in a linear
variation of elastic fields, while the homogenization model only handles the cause of uniform
loads. And the other is that the size of RVE is constrained by the thickness of layers, which is
challenging to find a convergent effective stiffness with the particle size and the layer thickness.
Consequently, the size effects of particles produce more contribution to the overall structural
behavior. Without the mesh of particle surfaces or the interface of bi-layered materials, the new
method creates an opportunity for cross-scale modeling of composites, particularly when the size
of inhomogeneities is not adequately small compared to the structural dimension.

In the following, Section 2 states the problem of a heterogeneous material system with
several subdomains. Subsequently, the fundamental solution of two-jointed dissimilar half
spaces under one concentrated loading, explicit domain integrals over spherical subdomain
and global matrix of iBEM are proposed in Section 3. Section 4 validates the aforementioned
iBEM algorithm by the finite element method (FEM) by comparing the neighboring elastic fields
around inhomogeneities, where the results by uniform, linear and quadratic orders of eigenstrain
are discussed for different levels of particle-boundary interactions.Section 5 investigates the
maximum deflection of a BIPV panel under uniform vertical loading with various material
properties, dimensions, and volume fractions of inhomogeneities. In Section 6, interesting
microstructure effects on the accuracy of elastic fields are present with the help of virtual
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Figure 1: Schematic plot of a bi-layered system D composed of two matrix D± and multiple NI

subdomains ΩI subjected to prescribed boundary conditions

experiments of homogenization of an individual layer of the bi-material system. Finally, some
conclusive remarks are presented.

2. Problem Statement
Consider a bi-layered domain D composed of multiple NI inhomogeneities ΩI in two-jointed
isotropic dissimilar layers, the upper D+ and the lower D−. Here the inhomogeneities can be
located either in the upper or lower matrix layers but not across their interface for simplicity.
Actually, in the application of the BIPV panel, only the substrate exhibits inhomogeneities.
The bi-layered domain D can be written as a union of two matrices and the subdomains
of the inhomogeneities, D+ ⋃D− ⋃

NI

ΩI . In general, the two layers and subdomains exhibit

different material properties ,and the stiffness tensor can be expressed as Cmijkl, where m=+,−
(two matrices) or m= 1, 2, . . . , NI (subdomains). Taking the upper layer D+ for example, the
stiffness tensor C+ = λ+δijδkl + μ+(δikδjl + δilδjk), where λ+ and μ+ are the lamé parameters
of the upper layer. Without the loss of any generality, the bi-material interface S is selected as
x1 − x2 plane when x3 = 0, and cases with inclined interfaces can be solved with coordinate
transformation.

Shown in Fig.1, the dimensions and boundary conditions of the bi-layered system are given
as: (i) T1 and T2 are the thickness of D+ and D−, respectively; (ii) l and b denote length and
width of cuboid layers; (iii) D is subjected to prescribed boundary conditions, where t and u
stand for traction and displacement boundaries, respectively. In the following, we assume that
the interfaces between two layers D+, D− and subdomains are perfectly bonded, where the
continuity equations of displacements and traction are satisfied as Eq. (2.1),

ui(x
+) = ui(x

−), σij(x
+)nj(x

+) = σij(x
−)nj(x

−) (2.1)

where n represents the unit normal vector of inhomogeneity interfaces ∂ΩI or bi-material
interface S; the superscripts “+" and “-" means the inward and outward sides of the
interfaces. Combining the continuity equations on interfaces as Eq.(2.1) with prescribed boundary
conditions, a boundary value problem is well-posed, which can be numerically solved using
the multi-region schemes. Due to the existence of bi-material interface S, stress discontinuities
and shear stress singularities arise, which generally require more computational resources. In
addition, besides the ellipsoidal inhomogeneities, the particle interactions and its interaction with
the interface or boundary may produce significant disturbance to the local elastic field. In this
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paper, alternatively, the iBEM algorithm mathematically considers bi-material interface S and
simulates material mismatch through continuous eigenstrain fields εIij on each subdomain ΩI ,
which simplifies the pre-processing and saves computational resources.

3. Formulation

(a) Fundamental Solution of Two Jointed Half Spaces
Considering a two-jointed homogeneous dissimilar half spaces D with interface x1 − x2, Walpole
[42] firstly proposed the fundamental solution of a concentrated loading, when the excitation
(source) is located in upper phase D+. The fundamental solution is composed of two parts, the
infinite and image parts, where the infinite part is also known as the Kelvin’s solution. Due to the
existence of image part, the fundamental solution changes accordingly whether source point x′

and field point x are in the same material phase. Wu et al. [43] complete the fundamental solution
through the method of symmetry,

(a) When x′3x3 ≥ 0, the source and field points are in the same material phase, and

4πμwGy
ij(x, x′) = (δijφ− ψ,ij

4(1− νw)
) +Ayφδij + χBy(δi3δjk − δikδj3)α

y
,k

− Cyx3
[
QJψ,ij3 + 4(1− νw)δj3φ,i + 2(1− 2ν′)δi3QJφ,j −QJx3φ,ij

]

−DyQIQJψ,ji − (Gy +By)QJβ
y
,ij

(3.1)

(b) When x′3x3 < 0,the source and field points are not in the same material phase, and

4πμwGy
ij(x, x′) = (δijφ− ψ,ij

4(1− νw)
) +Ayφδij + χBy(δi3δjk − δikδj3)α

y
,k

−Dyψ,ij − χx3F
yαy

,ij − (Gy +By)QIβ
y
,ji

(3.2)

where ψ= |x′ − x| is the biharmonic potential and φ=ψ−1 is its reciprocal or the Newton
potential; the first two terms in the parenthesis come from the Kelvin’s solution for infinite space;
the superscript (.) represent image source points, for instance, ψ= |x − x′| and x′ = (x′1, x′2,−x′3);
Q= (1, 1,−1) handles the partial derivatives of image part through the bi-material interface S

and the dummy index notations does not work for capitalized subscripts, i.e QI ; the coefficient
χ and superscripts w, y differs when source point x′3 ≥ 0 (χ= 1, w=+ and y= u) and x′3 < 0

(χ=−1, w=− and y= l); coefficients Au . . . Gu are material constants associated with D+ as;

Au =
μ+ − μ−

μ+ + μ− , Bu =
2μ+(1− 2ν+)(μ+ − μ−)

(μ+ + μ−)(μ+ + μ−(3− 4ν+))

Cu =
μ+ − μ−

2(1− ν+)(μ+ + (3− 4ν+)μ−)
, Du =

3− 4ν+

2
Cu

Fu =
2μ+(μ+(1− 2ν−)− μ−(1− 2ν+))

(μ+ + μ−(3− 4ν+))(μ− + μ+(3− 4ν−))

Gu =
μ+(μ−(1− 2ν−)(3− 4ν+)− μ+(1− 2ν+)(3− 4ν−))

(μ+ + μ−(3− 4ν+))(μ− + μ+(3− 4ν−))

(3.3)

The coefficients Al −Gl related to the lower phase D−, can be obtained through interchanging

sequences of material constants, for instance, Al = μ−−μ+

μ−+μ+ . In general, two domains D+ and D−

exhibit different material properties. When the material properties are the same in each domain,
the fundamental solution reduces to the Kelvin’s solution as all coefficients A,B, · · · , G yield
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zeros. Components in the fundamental solution other than ψ and φ are provided below,

αu = ln[x′3 − x3 + ψ], αu = ln[x′3 + x3 + ψ]

βu = (x′3 − x3)α
u − ψ, β

u
= (x′3 + x3)α

u − ψ

αl = ln[−x′3 + x3 + ψ], αl = ln[−x′3 − x3 + ψ]

βl = (−x′3 + x3)α
l − ψ, β

l
= (−x′3 − x3)α

l − ψ

(3.4)

where 4 branches of α and β can be rewritten as a finite part of the definite integral with respect to
x3, such that αu =

∫−∞
x3

φ(x1, x2, t) dt, which are also called Boussinesq’s displacement potentials
[44]. Other branches of α and β are elaborated in Section 1 of the Supplementary Information. In
the literature, several special cases of the bi-material fundamental solutions were investigated and
proposed, such as (i) bi-material Stokes flow with incompressive assumptions of Poisson’s ratio
0.5; (ii) Lorentz’s, Mindlin’s, and Boussinesq’s solution of semi-infinite spaces with concentrated
loadings, which assumes zero stiffness of one material phase [36].

(b) Inhomogeneities in an Infinite Two-jointed Dissimilar Half Spaces
In Section 2, the boundary value problem is illustrated that a finite domain composed of two
layers D± embedded with multiple inhomogeneities. For a linear elastic problem, the entire
elastic fields can be obtained through the superposition of each subdomain. In this subsection,
we first consider an infinite space D composed of two jointed dissimilar half spaces D± and
one embedded subdomain ΩI with an inhomogeneity, which can be replaced by an eigenstrain
εI∗ij . Although in Eshelby’s celebrated problems [1,2] for ellipsoidal inhomgeneity, the eigenstrain
field is uniformly distributed, subsequent work by Mura [3] proposed to use polynomial-form
eigenstrain field under interactions of inhomogeneities and boundary effects [15]. Following
Mura’s notation, the eigenstrain in subdomain ΩI can be written as a Taylor series polynomial in
Eq.(3.5),

εI∗ij = εI0∗ij + εI1∗ijp (x
′
p − xIcp ) + εI2∗ijpq(x

′
p − xIcp )(x′q − xIcq ) + . . . (3.5)

where superscripts 0, 1 and 2 represent uniform, linear and quadratic order of eigenstrains; xIc is
the center of Ith subdomain. Notice that although eigenstrain can be expanded to higher orders,
in this paper, we only consider up to quadratic term, which can provide high-fidelity results in
most cases. The disturbed displacement field caused by eigenstrains εI∗ij can be obtained through
domain integral of fundamental solution in Eqs.(2) and (3),

ui(x) =
∫
ΩI

∂Gij(x, x′)
∂x′m

ε∗kl(x
′)Cjmkl(x

′) dV (x′) =
NI∑
I=1

{
giklε

I0∗
kl + giklpε

I1∗
klp + giklpqε

I2∗
klpq

}
(3.6)

εij(x) =
NI∑
I=1

{
Sijklε

I0∗
kl + Sijklpε

I1∗
klp + Sijklpqε

I2∗
klpq

}
(3.7)

where NI is the number of subdomains; giklp... =
∫
Ω Gij,m′Cjmkl(x

′
p − xIcp )dV (x′) and

Sijklp... =
giklp...,j+gjklp...,i

2 are Eshelby’s tensors for displacement and strain, respectively; the
explicit expressions for domain integrals of fundamental solutions are provided in Section 1 of
Supplementary Information.

(c) Inhomogeneities in a Finite Two-jointed Dissimilar Half Spaces
In Section 3.2, through the technique of fundamental solution, the disturbed elastic fields by
one inhomogeneity was derived as Eqs.(3.6) and (3.7). Superposing with boundary responses,
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the displacement at field point x can be written as a combination of BIEs and disturbance by
eigenstrain (i.e., quadratic order) as Eq.(3.8),

ui(x) =−
∫
∂Dt

Tij(x, x′)uj(x′)dx′ +
∫
∂Du

Gij(x, x′)tj(x′)dx′ +
∫
ΩI

∂Gij(x, x′)
∂x′m

ε∗kl(x
′)Cjmkl(x

′) dV (x′)

=−
NE∑
e=1

Hiju
e
j +

NE∑
e=1

Uijt
e
j +

NI∑
I=1

{
giklε

I0∗
kl + giklpε

I1∗
klp + giklpqε

I2∗
klpq

}

(3.8)

where Gij is the fundamental solution of displacement in Eqs.(2) and (3). Derived from Gij ,

Tij =
Cimkl(x′)(Gkj,l′+Glj,k′ )

2 nm(x′) is fundamental solution of traction. In order to solve the
problem numerically, the mesh on the boundary enables the discretization of boundary responses,
where displacement and traction can be written as nodal values multiplied by shape functions.
In Eq.(3.8), Hij =

∫
Se

Tmi(x, x′)Nmj(x′) dS and Uij =
∫
Se

Umi(x, x′)Nmj(x′) dS are coefficients
for displacement and traction, respectively. The superscript e stands for nodal quantities within
eth boundary element and NE represents the number of boundary elements. The interactions
between inhomogeneities and boundaries are involved through equations of displacement and
traction of BEM. As Eqs.(2) and (3) take interfacial continuity conditions into account, the
boundary mesh is the same as homogeneous solids ,and no elements are needed along the
interface at x3 = 0.

Subsequently, through the compatibility equation, the strain field at point x can be obtained as

εij(x) =−
NE∑
e=1

Him,ju
e
m +

NE∑
e=1

Uim,jt
e
m +

NI∑
I=1

{
Sijklε

I0∗
kl + Sijklpε

I1∗
klp + Sijklpqε

I2∗
klpq

}
(3.9)

In Eq.(3.5), the eigenstrain is written in the polynomial form. Shown in Eq.(3.10), for uniform,
linear and quadratic orders of eigenstrain, 6, 18, and 60 more stress equivalent equations are
required for each inhomogeneity as follows

Cwijkl(εbkl + ε′kl − εI0∗kl ) = CIijkl(εbkl + ε′kl)

Cwijkl(εbkl,m + ε′kl,m − εI1∗klm) = CIijkl(εbkl,m + ε′kl,m)

1

2!
Cwijkl(εbkl,mn + ε′kl,mn − 2εI2∗klmn) =

1

2!
CIijkl(εbkl,mn + ε′kl,mn)

(3.10)

Since the inhomogeneity may be located in either D+ or D−, w= “+” when xIc3 > 0 and w=“-”
when xIc3 < 0; εbij represents strain by BIEs in Eq.(3.9); ε′ij is disturbed strain by polynomial-
form eigenstrain as Eq.(3.7). Hence, the interactions between inhomogeneities are considered such
that Eq.(3.7) contains disturbance from all inhomogeneities. Assembling the BIEs of conventional
BEM, boundary interactions, and stress equivalent conditions, the global matrix of iBEM can be
constructed [36]. Solving the system of linear equations, we can acquire both boundary responses
and eigenstrain fields on each inhomogeneity; therefore, the elastic fields can be obtained through
Eqs.(3.8) and (3.9).

4. Numerical Verification of iBEM with Bi-material Fundamental
Solution

Although layered panels with defects or reinforcements are widely used in engineering
applications, physical experiments and characterization of the size effects of the defects and
reinforcements are time consuming and expensive. The present iBEM algorithm provides an
excellent tool for virtual experiments on computers. As no experimental data is available to
validate of the iBEM code, the well-established finite element method (FEM) will be used for
verification through comparisons of neighbor elastic fields around inhomogeneities by both
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iBEM and FEM methods. When iBEM is verified to be a high-fidelity numerical method, we
can use it for large scale virtual experiments that FEM may not be applicable. In this section,
10-node quadratic tetrahedral elements are applied for consistency, and a transition-zone mesh is
employed to reduce computational costs in finite element analysis, which is elaborated in Section
2 of Supplementary Information.

Because of the disturbance induced both by inhomogeneities interactions and boundary/interface
effects, Eshelby’s solution of uniformly distributed eigenstrain cannot satisfy the stress equivalent
condition for all points in the equivalent inclusion. Therefore, the eigenstrains are expressed
as polynomials expanded at the center of each subdomain. In order to illustrate how solutions
with different orders of polynomial-form eigenstrain perform with uniform, linear and quadratic
terms, the numerical case studies are investigated considering both inhomogeneity interactions
and interface effects. In Eq.(3.10), the equivalent stress conditions rely on the domain integral
of subdomains (shown in Supplementary Information), which is mainly dependent on the
distance ratio d= h/a between the distance of two inhomogeneities (h) and the radius (a) of the
inhomogeneities. Consequently, a smaller distance ratio suggests more intensive inhomogeneity
interactions and vice versa. Regarding the interface effects, specifically in this paper, its intensity is
judged by the ratio between the distance to the interface and the radius a. For a bi-material system,
if the inhomogeneity is far from the interface S, the image terms in fundamental solution vanishes
rapidly, providing negligible disturbances. Consequently, the elastic fields reduce to Eshelby’s
solution in an infinite space.

As indicated in Fig.1, the prescribed boundary conditions are, (i) uniform downward surface
traction T = (0, 0,−100) MPa applied on the top surface of D+; (ii) displacement constrained
(u= (0, 0, 0)) bottom surface of D−; (iii) all other 4 surfaces are free of traction. The width b,
length l and thickness T1, T2 are all selected as 1 m. Regarding material properties, without the
loss of any generality, let the upper phase D+ and the lower phase D− be glass (μ+ = 30 GPa,
ν+ = 0.2) and concrete (μ− = 15 GPa, ν− = 0.2), respectively. Two material properties are chosen
for parametric studies of the inhomogeneity as the softer μI = 10 GPa, νI = 0.3 and the stiffer
μI = 60 GPa and νI = 0.3. For 3D surface mesh, 1, 000 4-node quadrilateral boundary elements
are used.

(a) Interface effects on One Inhomogeneity
Since the influence of source fields, eigenstrain, is calculated through domain integrals of the bi-
material Green’s function, the perturbed elastic fields and interfacial effects are mainly related
to the ratio of distances between the center of inhomogeneity and field points. In such case,
the observation of local mechanical properties by one spherical inhomogeneity remains the
same under a dimensionless coordinate defined by distance and radius a of the inhomogeneity.
Considering the computational costs and numerical convergence in FEM, the radius a is assumed
as 0.1 m, and the elastic fields are presented in dimensionless coordinates x1/a, x3/a. Indicated
in Fig.2, a single softer / stiffer inhomogeneity is placed along the center line with a distance
1.1a to the interface S. To verify the iBEM results, an FEM model is constructed with the number
of elements and nodes at 1, 508, 038 and 2, 394, 773, respectively. Comparing the displacement
curves in Fig. 2(a) and Fig.2(b), the results of iBEM with uniform, linear and quadratic order
eigenstrains agree well with that of FEM. Because of the material difference between two layers,
the slope of displacement u3 alters at the interface S; due to the disturbance by the inhomogeneity,
the slope decreases for stiffer case and vice versa. Regarding normal stresses, certain discrepancies
are observed between all curves of iBEM and FEM, where the quadratic case provides the best
prediction with an error less than 1%. In Eqs. (3.1) and (3.2), the image terms become dominant as
the distance to interface decreases, producing a more complicated elastic field. Still, the uniform
eigenstrain assumption provides feasible and accurate analysis (with tolerance) for 1st order
partial differentiated terms, which is useful for the homogenization of effective properties as
functions of displacements and known pressure. However, for investigation on 2nd order partial
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differentiated terms, i.e local stresses, it is essential to consider quadratic eigenstrain, similar to
the boundary effects for semi-infinite domain [15].

Shown in Fig.3, when the distance ratio h/a is 2, the interface effects reduce rapidly. It
is noted that the distribution of stresses within the inhomogeneity becomes more flattened,
and the variation is smaller. Comparing the case of distance ratio 1.1, linear order eigenstrain
could provide fairly good results, which indicates a smaller variation of eigenstrain over the
inhomogeneity. Subsequently, when the distance ratio increases, the elastic field gradually
becomes similar to Eshelby’s solution with a uniform eigenstrain.

(b) Inhomogeneity Interactions with Side-side and Top-down Alignments
In order to verify the algorithm for inhomogeneity interaction, two cases of inhomogeneity
alignment are considered: (i) side-by-side and (ii) top-down. In case (i), the two spherical
softer/stiffer inhomogeneities with radius a= 0.1 m are placed at height h= 0.15 m in the
upper layer D+ along the horizontal center line and the distance between two centers are 2.2a.
Regarding case (ii), to retain interface effects, the two spherical softer/stiffer inhomogeneities
with radius a= 0.1 m are placed at the height a= 0.11 m in both layers along the vertical
center line and thus the distance between the two centers are 2.2a as well. In FEM, 4, 606, 274
nodes and 3, 440, 291 elements are applied. Shown in Fig.4, similar to the previous section,
iBEM with three orders of accuracy are compared with FEM on variation of normal stresses
along the horizontal and vertical center lines. It is observed that curves “iBEM-Uniform-σ11"
exhibit the largest discrepancies in comparison with FEM, while linear and quadratic accuracy
agree well with FEM. In Fig.4(c) and Fig.4(d), in the range x3 ∈ [0.1, 0.2] m, the linear results
are smaller while the quadratic results are larger than that of FEM, which can be interpreted as
polynomial approximation of true eigenstrain field. In general, higher order polynomials, such
as variational method, can provide more accurate prediction. However, considering compromise
of computational costs and error tolerance, quadratic order is a rational choice. In addition, since
the external loading is applied in x3 direction, the primary attention should be paid on σ33 and
iBEM with three orders of accuracy all agree well with the FEM results.

In Fig.5, with distance ratios 0.1 for interface and 2.2 for two centers, the top-down case
involves intensive interface effects and inhomogeneities interactions. In FEM, 5, 777, 482 nodes
and 4, 307, 203 elements are applied. In Fig.5(a), all six curves with iBEM agree well with FEM
except some extreme points at the edge of the inhomogeneity. When the inhomogeneity become
stiffer, the material mismatch increases, larger discrepancies are observed, while the quadratic
case provides the closest to the FEM prediction among other orders.

5. Virtual experiments with BIPV test coupons

(a) The virtual experimental setup with the iBEM
The building integrated photovoltaic (BIPV) panels are usually installed at the roof, which can
be simplified as a bi-material system composed of glass solar panel glued on a concrete substrate
[45]. In general, the substrate of a BIPV panel is simply supported on two opposite edges during
the construction [46]. Since the larger deflection of the panel is the control parameter in design,
which causes visual impacts and photovoltaic cell cracking, it is critical to fully understand
the deformation of the panel in both material and structural levels. As concrete substrate is a
composite with microvoids and particulate reinforcements, although the concrete is generally
homogenized into a uniform material with certain elastic constants, the size of the voids and
particles may play a role in structural deformation.

To investigate the structural response of a panel with different material design, following Fig.1,
virtual experiments are set up with test coupons as follows:
(i) the width b and length l are set as 0.1 m;
(ii) the thickness of the upper layer T1 and the lower layer T2 are 0.003 m and 0.005 m,
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Variation of displacement u3 for a (a) softer and (b) stiffer inhomogeneity, respectively;
normal stress σ11/σ

0
33 for a (c) softer and (d) stiffer inhomogeneity, respectively; normal stress

σ33/σ
0
33 for a (e) softer and (f) stiffer , respectively, along the vertical center line x3/a∈ [−3, 3]

under uniform downward pressure 100 MPa when h/a= 1.1
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(a) (b)

(c) (d)

Figure 3: Variation of normal stress σ11/σ
0
33 for a (a) softer and (b) stiffer inhomogeneity,

respectively; normal stress σ33/σ
0
33 for a (a) softer and (b) stiffer inhomogeneity, respectively

along the vertical center line x3/a∈ [−2, 4] under uniform downward pressure 100 MPa when
h/a= 2

respectively.
The Robin’s boundary condition of the BIPV coupons are as follows:
(i) uniform downward surface traction T = (0, 0,−1) MPa applied on top surface of D+;
(ii) simply supported edge 1 x1 = 0 and edge 2 x1 = 0.1 m of the bottom surface of D−;
specifically, displacements are constrained for edge 1 and only vertical displacement component
is fixed for edge 2;
(iii) all other 4 surfaces are free of traction.
In the following, influence brought by 4 microstructural properties was investigated, the volume
fraction, size variation, material properties and distribution of inhomogeneities.

Generally, given a prescribed volume fraction of inhomogeneities and their material
properties, the homogenization schemes, such as RVE or micromechanical models, transforms the
concrete composite into a uniform material and the BIPV coupon becomes a bi-material system
with two homogeneous layers through applications of effective behaviors. In the following
comparison, regarding micromechanical models, the Mori-Tanaka scheme is employed. As
for numerical homogenization, effective elastic moduli are obtained with iBEM on a concrete
specimen containing multiple inhomogeneities under standard uni-axial loading [15]. In Eq. (3.1)
and Eq. (3.2), when material properties of two layers are the same C+ = C−, the fundamental
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(a) (b)

(c) (d)

Figure 4: Comparison of normal stress variation between FEM and iBEM (three order of accuracy)
on side-by-side interaction along horizontal center line x1/a∈ [1, 9] for two (a) softer and (b)
stiffer inhomogeneities, respectively; along vertical center line x3/a∈ [−1.5, 4.5] for two (a) softer
and (b) stiffer inhomogeneities, respectively under uniform downward pressure 100 MPa

solution reduce to Kelvin’s solution, which can be applied on prediction of effective properties.
Wu and Yin [15] showed that when the number of inhomogeneities is large enough, effective
properties obtained from the uni-axial loading become convergent. Following the same fashion
[15], (i) the effective Young’s modulus is calculated by the applied pressure t03 divided by the
average vertical strain ε33; and (ii) the effective Poisson’s ratio is obtained through the ratio of
the average lateral strain in either x1 or x2 direction to the vertical strain ε33, where the averaged
strains can be acquired as the ratio of the displacement to the original length.

As mentioned in Section 1, conventional micromechanics generally conducts homogenization
of composites to obtain the effective stiffness, and the maximum deflections can be calculated
through structural analysis with the analytical formulation using the effective stiffness. In such
a case, only when two strong conditions of uniform load and adequately small inhomogeneities
are satisfied, the prediction can be accurate with the existence of an RVE. However, when a panel
is subjected to transverse loading, the stress caused by bending will be linear along the thickness
while the thickness of a panel may not be large enough to form an RVE. Then the size effects of the
inhomogeneity or panel thickness may be significant, which makes the formulation inaccurate or
invalid.
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(a) (b)

Figure 5: Comparison of normal stress variation between FEM and iBEM (three order of accuracy)
on top-down interaction along vertical center line x3/a∈ [−3, 3] for two (a) softer and (b) stiffer
inhomogeneities, respectively under uniform downward pressure 100 MPa

(b) Effects of different volume fractions
To reduce self weight, lightweight concrete (LWC) panels are widely applied as a substrate for
a BIPV. In this section, the variations of deflection, especially the center and maximum ones, are
investigated versus different volume fractions of air voids. In order to exclude effects brought
by dimensions, the distribution and number of inhomogeneities, the bottom concrete panel D−

is evenly divided into 1× 20× 20 cuboids, where 400 equal-sized spherical inhomogeneities
are placed at the centers of cuboids. For volume fraction ranging from 5% to 40%, the radii
of the inhomogeneities were adjusted accordingly [1.143, 2.285] mm. As indicated as Fig.7, the
deflections at the bottom surface of concrete panel D− were plotted for homogeneous, 20%

and 40% volume fraction, respectively. The contour plots used 101× 101 uniformly distributed
field points on the boundary, where the deflections are calculated through interpolations of
nodal displacements. It is noted that the maximum deflection exists at the middle point of
edges (0.05, 0) or (0.05, 0.1), which can be interpreted as free edge boundary conditions. As the
volume fraction of air voids increases, the similar pattern / distribution of deflection retains,
however, the maximum deflection becomes larger, from 0.0055 m to 0.00706 m. In general, softer
inhomogeneities cause local stress concentration resulting in larger deformations. Similarly, more
air voids also lead to a larger deflection of the panel. However, the classic micromechanics-based
models predict the effective stiffness of composites varying with the volume fraction only [9], and
the particle size effect is ignored by using a single particle in an infinite domain. Therefore, it is
interesting to compare the above results with the one homogenizing the LWC panel as a uniform
material.

As shown in Fig. 6, the effective properties of the bottom layer are calculated through iBEM
and compared with three homogenization schemes, namely the Mori-Tanaka, Voigt, and Dilute
models. The effective Young’s modulus E by iBEM is between the curves of “Mori-Tanaka“
and “Voigt“. As a mixture rule, the Voigt model simply assumes the average strains on both
matrix and inhomogeneity phases are the same and over estimates the elasticity. The Dilute
scheme directly applies Esehlby’s solution of one spherical inhomogeneity in full space, which
does not consider interactions between inhomogeneities, so its prediction becomes inaccurate
for cases of high-volume fractions. The Mori-Tanaka scheme indirectly considers inhomogeneity
interactions by assuming the average matrix strain as the reference to solve for particle’s average
strain [9]. The present iBEM model provides more accurate predictions by directly considering
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Figure 6: Effective moduli with variation of volume fraction of air voids and comparison of the
Mori-Tanaka, Dilute, and Voigt models. The solid lines show the Young’s modulus, while the
dashed lines show Poisson’s ratio.

both the interactions and boundary effect. The comparison of effective Poisson’s ratios, three
micromechanical schemes provides exactly same predictions of constant 0.2 for this specific
problem, when the shear modulus of inhomogeneity is 0. However, it is apparent in our iBEM
simulation, the Poisson’s ratio is not a constant with the increase of the porosity, which shows the
limitations of the three conventional micromechanical models in this special cases.

Shown in Fig.7 (a)-(d), the homogenization of concrete panels with 40% volume fraction of
air voids exhibits larger maximum deflections of the bottom surface, which is opposite to our
initial prediction that homogenization should provide higher effective Young’s modulus and thus
smaller deflections. Such phenomenons can be interpreted as:
(i) The boundary condition in panel bending is different from the uniaxial loading. The interaction
between the structure and material behavior will make the size effect of air void much more
complex, so that the homogenized solution cannot accurately predict the structure behavior when
the air void is not too small compared to the thickness of the LWC panel;
(ii) As an extreme case, when one row of voids in the midplane of a beam, because the stress is
indeed small in bending, the composite beam with air voids perform like a I-shape beam with the
top and bottom layers carrying more load;
(iii) Effective properties are generally obtained through a surface average method. In the panel,
due to the boundary effect, the effective Young’s moduli in-plane and out-of-plane will be
different from the homogenized solution, which is calculated from the cubic sample with many
voids in Section 5.1. In general, the out-of-plane modulus shall be smaller than the in-plane one.
Although the homogenization method could provide a more efficient analysis as solving a
homogeneous bi-material system, the approach is not good at predicting local maximum changes
and may provide misleading results for the panel deflection when the particle size is not very
small in comparison with the small thickness of the panel. In contrast, the present iBEM can
provide the local field and the deflection. Subsequently, Fig.8 (a) shows the variation of deflection
along x2 ∈ [0, 0.1] m versus different volume fractions. Similar to the 40% volume fraction case,
homogenized solutions of 10% and 20% have larger predictions on deflection. Shown in Fig.8
(b), the maximum deflection is linearly proportional to volume fraction, in both homogenized
solutions and numerical solutions with 400 equal-sized air voids. In addition, the deflection at
the center of line x1 = 0.05 m is minimum due to symmetric edge constraints and it follows a
similar pattern as maximum deflection.
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(a) 0% (b) 20%

(c) 40% (d) 40% - homogenized

Figure 7: Contour plots of deflection u3 at the bottom surface of the simply supported BIPV
under uniform downward pressure 1 MPa with (a) homogeneous, (b) 20%, (c) 40% and (d) 40%
homogenized concrete panel with volume fraction of uniformly distributed equal-sized air voids

(c) Effects with inhomogeneity size variation
In Section (b), virtual experiments indicate volume fraction of air voids play an important role
in deflections. Following the same case study of 40% volume fraction with 400 equal-sized
air voids, Fig.9 shows that the size effects of inhomogeneities on effective elasticity. A cubic
sample containing the same volume fraction with different sizes or numbers of air voids is
tested numerically. The samples with smaller inhomogeneities or larger number of particles
provide better homogenization with a larger effective Young’s modulus. Indicated as Fig.9,
consider a cubic concrete matrix with length 1 m containing 8, 64, 125, 512, 1, 000, 3, 375, 8, 000

and 15, 675 uniformly distributed equal-sized air voids of volume fraction 40%, the effective
Young’s modulus and Poisson’s ratio varies within [1.62, 1.88] and [0.137, 0.179], respectively.
When the number of inhomogeneities is low, i.e 8, 64, the difference of effective properties
between "number step" is relatively large. However, as the number of inhomogeneities increases,
i.e 1, 000, 3, 375, the difference becomes much smaller as 0.88%. Small fluctuation is observed
among cases 3, 375, 8, 000 and 15, 625 and if taking case 15, 625 as reference, the differences are
0.24717%, 0.22853% and 0.05023%, 0.52049% for effective Young’s modulus E and Poisson’s ratio
ν, respectively. In terms of industrial applications, when the number of inhomogeneities is larger
than 1, 000, the predictions are acceptable with tolerance less than 0.8%.
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(a) (b)

Figure 8: Variation of deflection u3 at the bottom surface along x2 ∈ [0, 0.1] m of the simply
supported BIPV under uniform downward pressure 1 MPa with volume fraction [0, 40]% of
uniformly distributed equal-sized air voids

Figure 9: Effective moduli of the same volume fraction 40% uniformly distributed equal-sized air
voids versus the different numbers of inhomogeneities embedded in cubic concrete matrix

In this section, the numbers are enlarged as 3, 200 and 10, 800. To minimize other effects
resulting from change of microstructure, the uniform distributions are retained through shrinking
even cells in Section (b) 2 and 3 times, respectively. Exhibited in Figs.7 (c)-(d) and Figs.10 (a)-(b),
the contour plot of deflection shows an apparent trend that smaller voids with the same volume
fraction lead to larger deflection, which agrees well with the previous conclusion on homogenized
solutions with the largest deflection. The size variation with uniform distribution retains similar
patterns of deflection.

To demonstrate that iBEM is capable of providing both local and global averaged solutions,
Fig.11 plot contours of displacement components u3 at the middle plane of the concrete panel
with 400 and 10, 800 inhomogeneities. Notice that for case “10,800", the inhomogeneities are
divided into three layers, thus only 3, 600 inhomogeneities were displayed in Fig.11(b). Unlike
the previous contour plots of deflections on boundary, internal field points require both BIEs
and domain integrals of the fundamental solution. Since the displacements inside an air void
have no physical meaning, the circular cross sections are left blank. To describe variations in the
neighborhood of cross sections, 21 points are placed on circumferences and entirely 17, 001 and
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(a) 3, 200 inhomogeneities (b) 10, 800 inhomogeneities

Figure 10: Contour plots of deflection u3 at the bottom surface of the simply supported BIPV
under uniform downward pressure 1 MPa with 40% volume fraction of (a) 3, 200, (b) 10, 800

uniformly distributed air voids

(a) 400 inhomogeneities (b) 10, 800 inhomogeneities

Figure 11: Contour plots of deflection u3 at the central plane of the concrete panel under uniform
downward pressure 1 MPa with 40% volume fraction of (a) 400, (b) 10, 800 uniformly distributed
air voids

77, 001 points are employed in Fig.11(a) and Fig.11(b), respectively. Comparing with deflection
of bottom surface in Fig. 8(c), Fig.10 (a) and Fig. 10(b), the largest difference are 8× 10−5

and 2.46× 10−3 m for 400 and 10, 800 case, respectively, and the maximum u3 occurs at the
exactly same place, which is mainly caused by inhomogeneity interactions. As for case 400,
the interactions exists merely as horizontal direction while in case 10, 800, intensive vertical
interactions are also involved.

As indicated in Fig.12, the variation of deflection is plotted along x1 = 0.05 m when x2 ∈ [0, 0.1]

m. When the size of inhomogeneities shrinks, the deflection increases and gradually moves close
to the homogenized solution. In addition, the differences in maximum deflection between the
number of steps suggests that a large number of inhomogeneities is prequesite for homogenized
solution. Therefore, given a prescribed microstructure with limited number of inhomogeneities,
using the homogenized solution may lead to overestimates.
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Figure 12: Variation of deflection u3 at the bottom surface along x2 ∈ [0, 0.1] m of the simply
supported BIPV under uniform downward pressure 1 MPa with 40% volume fraction of
uniformly distributed 400, 3, 200, 10, 800 equal-sized air voids

Figure 13: Effective moduli with variation of shear modulus μ/μ− ratio between inhomogeneity
and matrix containing 40% volume fraction of inhomogeneities and comparison with the Mori-
Tanaka and Voigt models

(d) Effects with ratio of shear moduli
This subsection aims to investigate how the ratio of shear moduli influences the bi-
layered composites. Following the case study in the last subsection, consider 400 equal-sized
inhomogeneities are uniformly distributed with radius 2.28 mm, and the volume fraction remains
the same as 40%. In the following, 7 ratios of shear moduli, 0.1, 0.2, 0.5, 1, 2, 5 and 10, are
considered and the Poisson’s ratio for inhomogeneities are set as 0. As shown in Fig.13, the
homogenized properties are calculated by iBEM and compared with Mori-Tanaka and Voigt
schemes. The curve “iBEM-E" and “iBEM-ν" stays between the two micromechanical models
when μ/μ− > 2. Fig.14 (a) shows the variation of deflection along x1 = 0.05 m with x2 ∈ [0, 0.1]

m, when μ/μ− increases, the maximum deflection reduces significantly the difference between
case 0.1 and case 10 reaches 2.35 mm. Unlike the effects of volume fraction, the maximum/center
deflection versus ratio of shear moduli exhibits a decreasing slope. Compared with homogenized
solutions, two branches of phenomenon are observed when μ/μ− < 1, homogenized solutions
have larger deflections and vice versa.
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(a) (b)

Figure 14: Variation of deflection u3 at the bottom surface along x2 ∈ [0, 0.1] m of the simply
supported BIPV under uniform downward pressure 1 MPa with 40% volume fraction of
uniformly distributed equal-sized inhomogeneities whose shear modulus ratio μ/μ− ∈ [0, 10]

(e) Effects with inhomogeneity distribution
In the previous three sections, equal-sized inhomogeneities are uniformly distributed over
the concrete panel. However, due to the limitations of manufacture, it is not likely that all
inhomogeneities are with the same dimension and are uniformly distributed. Shown in Fig.15,
4, 638 inhomogeneities with radius ranging [0.668, 2] mm are randomly distributed. Without
the loss of any generality, the uniform possibility density function is selected. Fig.16 compares
the center deflection and the maximum deflection at different volume fractions, where the
"center" and "maximum" mean the deflection at the center point and the maximum deflection
of the bottom surface, respectively; and "homogenized" means the size of inhomogeneities are
equal to each other. It can be found that all the deflections (absolute values) increase with the
volume fraction increasing. Besides, for both "center" and "maximum" deflections, the equal-sized
inhomogeneities distribution structures come out with higher deflection compared with those
with different sizes. Especially, when the volume fraction is in the specific range, say 5%− 35%,
the size effect on the maximum deflection is approximately 8% lower than other range of volume
fraction, which means that we should pay more attention to the air void size when manufacturing
a BIPV panel within the accordingly volume fraction range.

6. Conclusions
The inclusion-based boundary element method (iBEM) has been used to investigate mechanical
properties of bi-layered systems with single-domain boundary integral method. Through the
combination of BEM and EIM, the conventional boundary value problem of inhomogeneities
coupling with various boundary conditions can be solved without internal subdomain mesh or
the bi-material interface. It provides a powerful tool for virtual experiments of actual material
samples, which is verified by the FEM for the simple cases with one or few particles and is then
extended to over 10, 000 particles for the numerical mechanical experiments. With the Taylor
series expansion of continuous eigenstrain field, every single inhomogeneity can be replaced
with a constant number of unknown eigenstrains, which provides tailorable accuracy with the
order of the Taylor expansion. The parametric studies are conducted on microstructural effects,
inhomogeneity size variation, volume fraction, ratio of shear moduli and distribution with the
following highlights:
1. For material homogenization, a cubic material sample containing uniformly distributed air
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Figure 15: Schematic plot of concrete panel containing 4, 638 randomly distributed
inhomogeneities with radius ranging [0.5a, 1.5a](a= 1.336) mm

Figure 16: Comparison of deflection u3 versus volume fraction ranging [0, 40] % between
solutions with homogenized properties and randomly distributed inhomogeneities with radius
ranging [0.5, 1.6]a (a= 1.336 mm)

voids at 40% volume fraction exhibits increasing Young’s modulus with the number of air voids,
when the number reaches 1000, the results become convergent with 0.8%;
2. Although a cubic sample with a small number of voids exhibits a smaller Young’s modulus
under uniaxial loading tests, it shows higher flexural resistance in the bi-layered panel bending
test as the void periodically distributed in the center of cubic unit cells;
3. The test coupons with a concrete substrate containing 400 and 10, 800 air voids at 40% volume
fraction exhibit 0.00706 and 0.00764 m of the maximum deflection;
4. Given a volume fraction and the number of voids, the narrow variation of the void size exhibits
higher maximum deflection of the panel.
Given the microstructure of the composite material the cross-scale modeling of the structural
response of bi-layered composites is demonstrated by the iBEM, which provides a powerful tool
for virtual experiments of new material and structure design and analysis.
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