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ABSTRACT
The recently developed singum model is extended to lattice metamaterials and

composites for prediction of the effective elasticity based on the stiffness of the lattice

components and the structure of the lattice, in which the load is transferred through

the lattice network represented by unit cells that can contain one or more singums.

The equilibrium of the singums is considered under a displacement variation, and the

relation between the variations of averaged stress and strain can be evaluated to predict

the elasticity. It is proved that the stiffness of any unit cells is the same as the primitive

cell. A generalized formulation is developed to calculate the effective elasticity of lattice

metamaterials and composites, which reflects the symmetry and anisotropic feature of

the lattice more accurately. A hydrostatic load does not change the shape of the singum

but changes its elasticity, although the bonds are linear elastic. The formulation discloses

the prestress-dependent elasticity for latticemetamaterials. When a large uniformbiaxial

tension is applied, a honeycomb lattice can exhibit a negative Poisson’s ratio under a

pre-tension. The case studies of auxetic and body-centered cubic lattices are conducted

to demonstrate the negative Poisson’s ratio and anisotropic elasticity, respectively.
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INTRODUCTION
The recently developed singum model (Yin 2022) uses the Wigner-Seitz (WS) cells

of a crystal lattice to represent a continuum solid, so that the singular point forces between

atoms can be transformed into the contacting stress between the continuum particle. By

applying a displacement variation, from the relationship between the virtual stress and

strain, we obtain the elastic constants. This procedure can be applied to general lattice

networks, which exist in nature or metamaterials or composites. For example, polymer

macromolecules form the solid in a certain lattice pattern in the three-dimensional

(3D) space (Boyce and Arruda 2000). Auxetic metamaterials can be fabricated with

a two-dimensional (2D) or 3D lattices showing negative Poisson’s ratio for the overall

materials (Lakes 1987; Saxena et al. 2016). Textile or lattice based composites can be

lightweight and strong for multifunctional material applications (Mouritz et al. 1999;

Gregg et al. 2018). Particularly, the additive manufacturing has made it possible to

fabricate lattice materials straightforwardly.

When the one dimensional (1D) bonds connect with each other into a lattice, which

forms a 2D or 3D solid at the macroscale, it creates newmechanics and physics of solids

as the stress transfer through the lattice is different from the continuum solids (Šturcová

et al. 2005). The classical micromechanical models are often based on the stress

homogenization of the continuous material phases and provide elasticity prediction

based on the volume fraction and mechanical properties of each material phase (Mura

1987; Yin and Zhao 2016). Particularly, when micromechanics-based models (Ju and

Chen 1994; Tucker III and Liang 1999) treated the 1D components such as fibers as

dispersed reinforcements, the reinforcement nature of the force transfer through the

network cannot be captured. Although many papers in the literature addressed specific

lattices with numerical simulations (Li et al. 2003; Chen et al. 2013; Gao et al. 2021), the

models highly depended on the material design and computational resources. However,

an analytical formulation between the microstructure of lattices and their effective

elasticity has not been developed yet.

This paper generalizes the singum model (Yin 2022) to lattice metamaterials and

composites, which are formed with a network of nodes linked by elastic bars. It

provides a general modeling framework for the prediction of the effective elasticity

of a material exhibiting lattice structures. The model can also be extended to fiber-

reinforced composites with such a lattice network embedded in a soft or elastic matrix.

The modeling framework can be implemented straightforwardly with the primitive cell

of complex lattices, and thus transform a network system into a continuum body with

effective elasticity.

This paper first reviews the singum construction for a honeycomb lattice containing

elastic bond members (Yin 2022) and discuss the equilibrium of singums under a varia-

tion of displacement field corresponding to a uniform strain of the lattice. Although the

simplified singummodel (Yin 2022) was developed for a primitive cell containing a sin-

gle node, when a primitive cell contains two singums, a single singummay not maintain

equilibrium. This paper adopts the variational method, in which the equilibrium and

volume change of the singums with the strain variation are taken into account and a new

stiffness of the regular honeycomb lattice is derived. The singum model is generalized

to more complex lattices after some theoretical preparation with five lemmas and one
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theorem. The generalized singum model is used to investigate the regular honeycomb

lattice under a 2D hydrostatic load. The stability and prestress-dependent elasticity

of the lattice is discussed. Two case studies are conducted to demonstrate the model

applications to lattice metamaterials and composites.

FORMULATION
The singum modeling framework for honeycomb lattices
In the previous paper (Yin 2022), we used a regular honeycomb lattice in a two-

dimensional (2D) space to demonstrate the singum construction. In Fig. 1(a), the lattice

consists of atoms and bonds, which was replaced by triangular singums to fill the space.

We constructed the singum by the Voronoi decomposition of the lattice. Actually, the

combination of two singums A and B with a mirror symmetry can represent the lattice

and serve as the primitive cell. The simplified singummodel used one atom to represent

the whole honeycomb lattice, which shows an isotropic stiffness tensor in the 2D plane

with the magnitude depending on the potential function 𝑉 (𝑟) with 𝑟 being the bond
length. However, a face center cubic (FCC) lattice exhibits a cubic symmetry of the

stiffness tensor.

This paper will generalize the singum model to elastic lattices made of elastic bars

linked by nodes with the same geometric features and revisit the appropriateness of

using a single singum to represent the whole lattice, which shows a correction for higher

accuracy. Here we use the same language to call a bar linking two closest nodes as a

bond, which can be defined as a vector r = x1 − x0 with the length 𝑟 = |x1 − x0 |. Here
x0 represents the singum node and x1 represents another node bonded to the singum.
Similarly, we can build up the singum model with the following assumptions:

1. The interaction between nodes is governed by the bond’s potential function 𝑉 (𝑟).
2. The interaction between two neighboring singums is through the surface stress vector

along their interface edge, and is equivalent to the bond force between the two nodes.

3. All forces on the boundary or the center of WS cell of the lattice, which are seen on

the nodes and bond cutting points, will be conserved on the singumwith a homogeneous

elasticity C.
The force of a bond can be written as

𝐹𝑖 =
𝑑𝑉

𝑑r = 𝑉,𝑟𝑛𝑖 (1)

where n = x1−x0
|x1−x0 | . Here the tensile force in the bond is taken as positive along n to

be consistent with the sign convention of stresses. For an elastic bar with a Young’s

modulus 𝐸 , length 𝑟0, and cross-sectional area 𝐴 at the stress-free state, the potential
function can be written as

𝑉 (𝑟) = 𝑘

2
(𝑟 − 𝑟0)2 (2)

where

𝑘 =
𝐸𝐴

𝑟0
(3)

For simplicity and clarity, this paper assumes all bars share the same 𝐸 , 𝑟0, and 𝐴,
so that we can use a single potential function for all bonds, although the model can
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Fig. 1. The singum construction on twisted lattices with the same bond length: (a) a
regular honeycomb lattice with 𝛼 = 2𝜋

3
, (b) a twisted honeycomb lattice with 𝜋

2
≤ 𝛼 <

2𝜋
3
, and (c) a twisted honeycomb lattice with 𝜋

3
≤ 𝛼 < 𝜋

2

be extended to different bars that requires the different potential functions accordingly.

Moreover, we assume 𝑘 will keep constant with the deformation. For example, when
the bars are actually made of linear springs, the actual spring coefficient can be directly

used in Eq. (2) and Eq. (3) is unnecessary.

The lattice in Fig. 1(a) can be represented by two nodes, say A and B, which form

a primitive cell, i.e. the smallest unit cell. For example, the red rectangular cell can

perfectly fill the space with the exact same pattern, but A and B show a mirror symmetry

of the connection pattern, and a single node of them cannot represent the lattice. On

the other hand, the selection of the surroundings of A and B is not unique. Following

the singum construction, the Voronoi decomposition makes a blue triangle for B and

a green triangle for A, which can be combined into a primitive cell to fill the space as

well. However, we can see the bond cutting points are the intersection of the two unit

cells. Therefore, the choice of primitive cell shape cannot change the lattice nature.

Particularly, when the lattice is compressed, the lattice shape may change into Fig.

1(b). The primitive cell can map to the deformedWS cells, which shows different shape

of the singums, changing the shape from a regular triangle to an isosceles trapezoid.

Moreover, we can purposely fabricate a lattice in Fig. 1(c), whose singum shape become

a downward isosceles trapezoid. The lattice is an example of an auxetic lattice which

exhibits a negative Poisson’s ratio. From this arises a question: whether can a single

singum represent the whole lattice?

To answer this question, we will first go through the case of a single singum, and

then generalize the singum modeling to the primitive cell in the next subsection. By

comparison of the two scenarios, we can conclude that it is necessary to consider the

whole primitive cell instead of a single singum for accurate prediction.

Notice the lattice or framework in Fig. 1(a) is not statically determinate. However, if
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the boundary nodes are framed or a periodic boundary condition is applied, the structure

becomes stable as each internal node connects with three nodes, so that the stiffness

of the lattice can be evaluated. The frame can serve as the loading plate to the lattice

for elastic testing. A displacement variation corresponding to a uniform strain can be

applied to the loading plate, which will generate a uniform stress on average through

the solid as well. From the relationship of the stress and strain, the stiffness can be

measured. Prestress can also be applied to the lattice through the frame, so that the

effective stiffness changing with the bond length or prestress can also be evaluated.

Before the lattice is framedwith loading plates, its pattern can be twisted by changing

the angle between AB and BC, namely 𝛼without changing the bonds. When 𝛼 = 2𝜋
3
, the

lattice exhibits a regular honeycomb pattern and a triangular singum. When 𝜋
2
≤ 𝛼 < 2𝜋

3
,

the singum at B becomes an upward isosceles trapezoid in Fig. 1(b). When 𝜋
3
≤ 𝛼 < 𝜋

2
,

the singum at B becomes a downward isosceles trapezoid in Fig. 1(c), which is auxetic.

With the decrease of 𝛼 from 2𝜋
3
toward 𝜋

3
, the density of the lattice increase about three

times. Once the lattice pattern is fixed at a certain value of 𝛼 and stretched to a bond
length of 2𝑙𝑝 and framed into a 2D plate, the effective elasticity of the lattice can be
evaluated.

The simplified singum model (Yin 2022) applied a virtual displacement on the

lattice but ignored the effect of the virtual displacement on the equilibrium and volume

change of the singum, so that the result may not capture the physics of the negative

Poisson’s ratio at all. In this paper, given a displacement variation in a unit cell, the

singum modeling framework remains the same, including the following steps:

1. Use the Voronoi decomposition to separate the lattice into WS cells, which define

the geometry of singums.

2. Given a representative singum, we can set up the local coordinate at the central node

and define x𝐼 , n𝐼 , and F𝐼 , etc.

3. Given a displacement variation, which is corresponding to a uniform strain of the

lattice, we can calculate the average stress caused by the displacement variation.

4. Using the relationship between the stress and strain variations, we can derive effective

stiffness C.
For a regular honeycomb lattice with 𝛼 = 2𝜋

3
, using a virtual displacement in Step

3, the previous paper provided the elasticity of the singum (Yin 2022) as

𝐶𝑖 𝑗 𝑘𝑙 =
1

4
√
3𝑙𝑝𝑡0

[(2𝑙𝑝𝑉,𝑟𝑟 −𝑉,𝑟)𝛿𝑖 𝑗 𝛿𝑘𝑙 +
(
2𝑙𝑝𝑉,𝑟𝑟 + 3𝑉,𝑟

) (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)
]

(4)

where 𝑉𝑠 = 3
√
3𝑙2𝑝𝑡0 is the volume of the singum and 𝑡0 the thickness when we look at

the 2D lattice in the 3D space. For a 2D lattice with uniform material distribution in the

thickness, we can write

𝑡0 = 1 and 𝑉𝑠 = 3
√
3𝑙2𝑝 (5)

which normalizes 𝑘 in Eq. (3) through area 𝐴 with a unit thickness. Here the thickness
is fixed so that it is corresponding to a plane strain problem in physical testing, which can

be straightforwardly extended to plane stress problems by mapping the elastic moduli

(Yin and Zhao 2016). From Eq. (2), we obtain

𝑉,𝑟 |𝑟=2𝑙𝑝 = 2𝑙𝑝𝑘 (1 − 𝜆0), and 𝑉,𝑟𝑟 = 𝑘 (6)
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where 𝜆0 = 𝑟0
2𝑙𝑝
is the ratio of the free bond length 𝑟0 to the framed bond length 2𝑙𝑝.

Therefore, the stiffness in Eq. (4) is rewritten as

𝐶𝑖 𝑗 𝑘𝑙 =
𝑘

2
√
3

[
𝜆0𝛿𝑖 𝑗 𝛿𝑘𝑙 + (4 − 3𝜆0) (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)

]
(7)

Here C changes with the expansion or contraction of the lattice through the variation of
𝜆0. From the stiffness tensor, we can derive all elastic constants.
Strictly speaking, the singum B or A is not a unit cell because neither of them can

fill the 2D space by translation only. Mirror reflection or rotation of 𝜋
3
is needed to fill

the space. However, the combination of the two of them forms a primitive cell, which

can fill the space perfectly by translation only. Actually, the simplified singum model

(Yin 2022) did not address the equilibrium of the node caused by the uniform virtual

strain, which is not a problem for a primitive cell containing only a single node with

central symmetry due to the periodicity of the forces. However, when a primitive cell

contains two nodes, the interaction between the two nodes needs to be addressed.

Particularly, when 𝛼 varies in the range from 2𝜋
3
toward 𝜋

3
, if we still follow the above

steps for singum modeling, two significant differences can be observed:

1. The singum A or B will not be a regular triangle anymore, and the singum changes

from an equilateral triangle to an isosceles trapezoid.

2. Given a virtual displacement field in accordance with a uniform virtual strain field,

the node in the center of the WS cell is subjected to 3 bonding forces. The resultant

force on the node is not zero. The node needs to move to a new equilibrium position for

the equilibrium, so a single singum may not be representative for the lattice.

To address these differences, we will find even for a regular honeycomb lattice, the

resultant force by a uniform strain variation may not be zero either, which lead to a

correction of the bond forces and an anisotropic stiffness instead. Two singums are

required to balance the force as a primitive cell for the singum modeling, and their

combination can represent the lattice deformation periodically.

Stress and strain of a singum for the stiffness prediction of a lattice
Although we questioned whether a single singum can represent the whole lattice

in stiffness prediction, this subsection investigates the representativeness of a unit cell.

Using the regular honeycomb lattice as an example, we have clarified the nodes A and

B can form the smallest unit cell, namely primitive cell AB. Following the singum

construction procedure, we can construct the singums for nodes A and B by using the

Voronio decomposition in Fig. 2(a).

Consider the singums as continuum particles with stress transfer through their con-

tact surfaces, and the resultant traction for each side should be equivalent to the force

through the bonds cut by the surface. For the overall unit cell, we can see four surfaces

with bond cutting. When the stress in the solid satisfies the equilibrium equation without

any body force or inertia force, the stress integral of the cell can be written (Yin 2022)

𝑆𝑐𝑒𝑙𝑙𝑖 𝑗 = Σ4𝐼=1𝑥
𝐼
𝑖 𝐹

𝐼
𝑗 (8)

where x𝐼 indicates the coordinate of the 𝐼𝑡ℎ bond cutting point on the surface. Although
the stress cannot be well-defined on each point in the singum, the volume average of the

singum stress can be calculated from the above stress integral.
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Fig. 2. The singum modeling of a unit cell containing two singums: (a) the overall
unit cell containing two nodes A and B with four bonded nodes C, D, E, and F; (b) the

singum B with its local coordinate, and (c) the singum A with its local coordinate

Notice that each node is required to be in equilibrium, and thus the overall equilibrium

of the lattice can be guaranteed. However, an affine transformation of the lattice with

a uniform strain may cause the loss of equilibrium of the nodes, particularly for Fig.

2(c). Therefore, the force calculated by the uniform strain field may not be the actual

force for each bond, which should be carefully addressed. Before we move forward to

singum modeling. We show five lemmas and one theorem about the definition of stress

and strain, and the representativeness of the singum and unit cell of a lattice.

Lemma 1: When a singum contains a node with a force b𝑆 (x𝑆) and 𝑁 bond cutting
points on the boundary with bonding forces F𝐼 (x𝐼) (𝐼 = 1, 2, · · · , 𝑁), which are in
equilibrium with 𝑏𝑆𝑖 + Σ𝑁

𝐼=1𝐹
𝐼
𝑖 = 0, the stress integral in the corresponding space can be

written as 𝑆𝑆𝑖 𝑗 = 𝑥𝑆𝑖 𝑏
𝑆
𝑗 + Σ𝑁

𝐼=1𝑥
𝐼
𝑖 𝐹

𝐼
𝑗 .

Proof: Conserve all forces of the lattice in the singum space. The forces in a continuum
satisfy the equilibrium equation as

𝜎𝑖 𝑗,𝑖 + 𝑏𝑆𝑗 𝛿(x - x𝑆) = 0 (9)

where 𝛿(x) is a Dirac Delta function. The boundary condition is written as

𝜎𝑖 𝑗𝑛𝑖 = Σ𝑁
𝐼=1𝐹

𝐼
𝑗 𝛿(x-x𝐼) for x ∈ 𝜕𝑉𝑆 (10)

where 𝑉𝑆 denotes the volume of the singum. The stress integral can be obtained by

𝑆𝑖 𝑗 =
∫
𝑉𝑆

𝜎𝑖 𝑗 (x)𝑑x =
∫
𝜕 (𝑉𝑆)

𝑥𝑖𝜎𝑘 𝑗𝑛𝑘𝑑x −
∫
𝑉𝑆

𝑥𝑖𝜎𝑘 𝑗,𝑘𝑥 𝑗 𝑑x = 𝑥𝑆𝑖 𝑏
𝑆
𝑗 + Σ𝑁

𝐼=1𝑥
𝐼
𝑖 𝐹

𝐼
𝑗 (11)

The lemma is proved.

Lemma 2: When a singum contains 𝑁 bond cutting points on the boundary with
outward normal direction n𝐼 , area 𝐴𝐼 , and displacement u𝐼 for the surface corre-
sponding to the 𝐼𝑡ℎ cutting point, the strain integral in the singum can be written as
𝐸𝑆
𝑖 𝑗 = Σ𝑁

𝐼=1
𝐴𝐼

2

(
𝑢𝐼
𝑖 𝑛

𝐼
𝑗 + 𝑢𝐼

𝑗𝑛
𝐼
𝑖

)
.

Proof: The strain in a continuum is defined by the compatibility of the displacement as

𝜀𝑖 𝑗 =
1

2

(
𝑢𝑖, 𝑗 + 𝑢 𝑗,𝑖

)
(12)
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The strain integral can be written as

𝐸𝑖 𝑗 =
∫
𝜕𝑉𝑆

1

2

(
𝑢𝑖𝑛 𝑗 + 𝑢 𝑗𝑛𝑖

)
𝑑𝑥 = Σ𝑁

𝐼=1
𝐴𝐼

2

(
𝑢𝐼
𝑖 𝑛

𝐼
𝑗 + 𝑢𝐼

𝑗𝑛
𝐼
𝑖

)
(13)

Because all points on one plane surface share the same n𝐼 and the displacement integral

can be represented by the central point, we can use the displacement at the bond cutting

point to derive the surface integral. The lemma is proved.

Lemma 3: When a singum is in equilibrium under a set of forces on the node and
bond cutting points, the average stress of a singum is independent from the translation
of the Cartesian coordinate.
Proof: Provided a new coordinate 𝑥′𝑖 = 𝑎0𝑖 + 𝑥𝑖 with 𝑎

0
𝑖 constant, we can obtain

𝑆′𝑖 𝑗 = Σ𝑁
𝐼=1(𝑥𝐼𝑖 + 𝑎0𝑖 )𝐹𝐼

𝑖 + 𝑥𝑏𝑖 𝑏 𝑗 = 𝑆𝑖 𝑗 + 𝑎0𝑖

(
Σ𝑁
𝐼=1𝐹

𝐼
𝑗 + 𝑏 𝑗

)
(14)

where 𝑁 denotes the number of bonds around the singum. Because Σ𝑁
𝐼=1𝐹

𝐼
𝑗 + 𝑏 𝑗 = 0 for

equilibrium, the second term is eliminated, and the lemma is proved.

With this lemma, although the origin of the coordinate does not make difference to

the results, it is more convenient to set up the local coordinate with the origin at the

node to simplify the calculation with 𝑥𝐼𝑖 = 𝑟𝑛𝐼𝑖 .

Lemma 4: When two singums with b1(X1) = −b2(X2), each of which is in equibrium,
merge into a large cell, the stress integral over the large cell is equal to the sum of the
stress integrals over the two singums and b1(X1 − X2).
Proof: Consider two singums S and S with their local coordinates related to each other
at 𝑥𝑖 = 𝑎0𝑖 + 𝑥𝑖 with 𝑎0𝑖 = 𝑋2𝑖 − 𝑋1𝑖 being a constant. Based on Lemma 2, we can set
up the local coordinates with the origin right on the nodes. The global coordinate X of
the large cell can overlap with x, the local coordinate of singum S, without the loss of
generality.

Their stress integrals of the two singums can be, respectively, written as

𝑆𝑖 𝑗 = Σ𝑁
𝐼=1𝑥

𝐼
𝑖 𝐹

𝐼
𝑗 and 𝑆𝑖 𝑗 = Σ𝑁

𝐼=1𝑥
𝐼
𝑖 𝐹

𝐼
𝑗 (15)

where x𝑏 = 0 in the local coordinate is used. Assume that the contacted bond provides

the forces in two singums, namely F1 and F1 without the loss of generality. There are
2(𝑁 − 1) boundary forces on the large cell with numbering from 2 to 𝑁 on the two
singums. The contacted forces and coordinates of the contacting point satisfy

F1 = −F1 and x1 = x1 − a0 (16)

Using Lemma 1, we can write 𝑆𝑖 𝑗 in the reference coordinate x as

𝑆𝑖 𝑗 = Σ𝑁
𝐼=1(𝑥𝐼𝑖 − 𝑎0𝑖 )𝐹

𝐼
𝑗 (17)

Therefore, we can write the sum of stress integral referred to x as

𝑆𝑖 𝑗 + 𝑆𝑖 𝑗 = Σ𝑁
𝐼=1𝑥

𝐼
𝑖 𝐹

𝐼
𝑗 + Σ𝑁

𝐼=1(𝑥𝐼𝑖 − 𝑎0𝑖 )𝐹
𝐼
𝑗 (18)
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Using Eq. (16), 𝑥1𝑖 𝐹
1
𝑗 + (𝑥1𝑖 − 𝑎0𝑖 )𝐹

1

𝑗 = 0, so that we can obtain

𝑆𝑖 𝑗 + 𝑆𝑖 𝑗 = Σ𝑁
𝐼=2𝑥

𝐼
𝑖 𝐹

𝐼
𝑗 + Σ𝑁

𝐼=2(𝑥𝐼𝑖 − 𝑎0𝑖 )𝐹
𝐼
𝑗 (19)

For the large cell, using Lemma 1, we can write the stress integral as

𝑆𝑐𝑒𝑙𝑙𝑖 𝑗 = Σ𝑁
𝐼=2𝑥

𝐼
𝑖 𝐹

𝐼
𝑗 + Σ𝑁

𝐼=2(𝑥𝐼𝑖 − 𝑎0𝑖 )𝐹
𝐼
𝑗 + 𝑋1𝑖 𝑏

1
𝑗 + 𝑋2𝑖 𝑏

2
𝑗 (20)

Because 𝑋1𝑖 𝑏
1
𝑗 + 𝑋2𝑖 𝑏

2
𝑗 =

(
𝑋1𝑖 − 𝑋2𝑖

)
𝑏1𝑗 , the lemma is proved.

When primitive cells merge together, because of the repetivity of the unit cells and

the equilibrium of each node, the last term of Eq. (20) disappear, so that the stress

integral over the large cell is simply equal to the sum of those over the singums.

In general, unit cells can be set up with a node split by multiple unit cells when it is

on the unit cell boundary or surface. Although we could deal with a boundary node by

weighting the force cautiously, for simplicity and clarity of derivation, we define that a

unit cell consisting the combination of WS cells as the WS unit cell to differentiate it

from general unit cells with boundary nodes. The primitive cell in Fig. 2(a) with two

nodes is the smallest WS unit cell.

Lemma 5: When two WS unit cells merge into a large cell, the stiffness of the large
cell is equal to the stiffness of the WS unit cell.
Proof: The stiffness of the lattice can be derived by applying a displacement variation
in accordance with a uniform strain on the boundary of the unit cell, which satisfies

the periodic boundary conditions and the equilibrium condition inside. Although each

node may move in the unit cell to reach the equilibrium position, the bonding forces

on the boundary are periodic and their resultant force will be in equilibrium as well.

Because the nodes are in equilibrium, using Lemma 4, we can see the stress integral
over the large cell is simply the combination of the stress integral over each WS cell.

Therefore, the large cell and small cells will exhibit the same average stress, which leads

to the same stiffness of the large cell as the small WS cell. The lemma is proved.

As there are many ways to form unit cells, the uniqueness of the stiffness among

unit cells is important. Although a WS primitive cell can represent all WS cells for the

stiffness prediction, the following theorem can be significant for general unit cells.

Theorem 1: When the short-range interactions between the nodes are consid-
ered, the stiffness of a unit cell of a crystal lattice is independent from the unit cell
shape or size.
Proof: Consider a unit cell U including 𝑀 nodes, in which 𝑁 nodes exhibit surface
bonds across the boundary of the unit cell. Therefore 𝑀 ≥ 𝑁 . Using the 𝑀 nodes, we
can form another unit cell U with a combination of WS primitive cells as well, which
exhibit the same stiffness as the stiffness of a single WS primitive cell based on Lemma
5. However, the surface bond cutting point in the general unit cell U may not be the
same as the WS unit cell U, which leads to different numerical expression for each term
of 𝑥𝐼𝑖 𝐹

𝐼
𝑗 (𝐼 = 1, 2, ..., 𝑁) because of different 𝑥

𝐼
𝑖 . However, we can use either U or U to

fill the lattice space.

Now assume that there is a difference of the stiffness between U and U. Under
a uniform strain, the stress integral over U and U will be different. Considering the
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periodicity of unit cells, we can pack a 3D volume of the lattice with 𝐿 cells in each
dimension by two types of the unit cells, respectively, the difference of stress integral

increases with the surface area at a scale 𝐿2, but the volume increases at a scale 𝐿3,
because the surface area cannot proportionally increase with the volume due to merging

the surface nodes with 𝑁 surface bonds. From Eq. (4) we can see the difference of
the stiffness for the 3D volume packed by the two types of unit cells always converges

to zero. However, based on Lemma 4, the stress integrals proportionally increase with
the volume for both unit cell cases, so the stiffness of the 3D volume for the two cases

will remain the same with the increase of 𝐿. Therefore, the initial assumption cannot
be true, so that the stiffness of U must be the same as U, which is a constant. When
a general unit cell has atoms on the cell’s boundary, we can split the integral among

the neighboring unit cells cautiously with an appropriate weight, which will be merged

with volume increase and thus obtain the same conclusion. The theorem is proved.

Singum modeling of a primitive cell containing two singums
Now we start the singum modeling for the primitive cell in Fig. 2(a). When the

lattice is subjected to a uniform loading, the deformed lattice will still exhibit a repetitive

pattern shown by unit cells. If each bond deforms in the same pattern, the bond force can

be obtained. As reviewed in the last subsection, the simplified singum model assumed

the displacement variation corresponding to a uniform strain variation is applicable to

every point in the lattice (Yin 2022). It is a strong assumption but may cause equilibrium

issues.

Use singum B in Fig. 2(b) as an example. When a displacement variation is applied

to the cell as 𝛿𝑢𝑖 (x) = 𝛿𝜀𝑖 𝑗 𝑥 𝑗 , which is corresponding to a uniform strain variation of

𝛿𝜀𝑖 𝑗 at every point in the cell. It produces an infinitesimal change of the forces on each
bond as:

𝛿𝐹𝐼
𝑖 =

𝑑 (𝐹𝐼
𝑖 )

𝑑𝑥𝑘
𝛿𝑢𝑘 = (2𝑙𝑝𝑉 𝐼

,𝑟𝑟 −𝑉𝐼
,𝑟)𝑛𝐼𝑖 𝑛𝐼𝑘𝑛𝐼𝑙 𝛿𝜀𝑘𝑙 +𝑉𝐼

,𝑟𝑛
𝐼
𝑘𝛿𝜀𝑘𝑖 (21)

where n can be seen from Figs. 2(b). Then, we can write n1 = (0,−1),n2 =
(sin𝛼,− cos𝛼), and n3 = (− sin𝛼,− cos𝛼) in Fig. 2(b). Because we use the bonds
with the same bond length, all bonds share the same derivatives of𝑉,𝑟 , so the superscript

of "I" is only needed for the direction norm n𝐼 of the bonds. The resultant force caused

by the three bonds can be written as

𝛿𝑃𝐵
𝑖 = Σ3𝐼=1𝛿𝐹

𝐼
𝑖 = Σ3𝐼=1

[(2𝑙𝑝𝑉,𝑟𝑟 −𝑉,𝑟)𝑛𝐼𝑖 𝑛𝐼𝑘𝑛𝐼𝑙 +𝑉,𝑟𝑛
𝐼
𝑘𝛿𝑖𝑙

]
𝛿𝜀𝑘𝑙 (22)

In the same fashion, another resultant force on singum A also exists, written as 𝛿𝑃𝐴
𝑖 .

Due to the equilibrium or the central symmetry of singums A and B referred to the

mid-point of AB, we can obtain 𝛿𝑃𝐵
𝑖 = −𝛿𝑃𝐴

𝑖 .

These forces will cause the nodes A and B tomovewith central symmetry to themid-

point of AB and the forces will be redistributed among the bonds for equilibrium. As

long as the displacement variations of the four bond-cutting points satisfy the periodic

boundary condition corresponding to a uniform strain 𝛿𝜀𝑖 𝑗 , based on Lemma 2, the
average strain variation on the primitive cell will be the same as 𝛿𝜀𝑖 𝑗 .
The actual solution of the forces can be the superposition of the two cases:

Case I: A uniform displacement field in the whole unit cell with the two external forces
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(−𝛿P𝐵 and−𝛿P𝐴) applied, which will satisfy the equilibrium for both nodes and uniform

lattice variation.

Case II: The bond cutting points of the unit cell is fixed, and two inverse forces (𝛿P𝐵

and 𝛿P𝐴) are applied on B and A, respectively.

The superposition of the two cases makes both the periodic boundary condition of the

unit cell and the equilibrium condition of the nodes satisfied, and thus recovers the

original problem. For Case I, based on Lemma 4, the stress integral over the primitive
cell can be written as

𝛿𝑆𝐴𝐵
𝑖 𝑗 = 𝛿𝑆𝐴

𝑖 𝑗 + 𝛿𝑆𝐵
𝑖 𝑗 − 𝛿𝑃𝐵

𝑖 (𝑋𝐵
𝑗 − 𝑋𝐴

𝑗 ) (23)

Using Lemma 3, we can move the local coordinate origin to node B as shown in Fig.
2(b) and number the bond AB as 1 in each singum. Using Lemma 1, we can write
𝛿𝑆𝐵

𝑖 𝑗 = Σ3𝐼=1𝑥
𝐼
𝑖 𝛿𝐹

𝐼
𝑗 − 𝑥𝐵𝑖 𝛿𝑃

𝐵
𝑗 = Σ3𝐼=1𝑥

𝐼
𝑖 𝛿𝐹

𝐼
𝑗 .

The singum A can be conducted in the same fashion with the local coordinate x in
Fig. 2(c) as 𝛿𝑆𝐴

𝑖 𝑗 = Σ3𝐼=1𝑥
𝐼
𝑖 𝛿𝐹

𝐼
𝑗 .

For Case II, based on Lemma 4, the stress integral can be written as

𝛿𝑆𝐴𝐵
𝑖 𝑗 = 𝛿𝑆𝐴

𝑖 𝑗 + 𝛿𝑆𝐵
𝑖 𝑗 + (𝑋𝐵

𝑖 − 𝑋𝐴
𝑖 )𝛿𝑃𝐵

𝑗 (24)

Due to the symmetry, the mid-point of AB shall not move as well when the four

bond cutting points are fixed and two opposite forces are applied at Nodes A and B,

respectively. Now focus on SingumB. The unbalanced force 𝛿P𝐵 should be redistributed

among the three bonds so thatwe can derive 𝑆𝐵
𝑖 𝑗 . Because there are three bonds to balance

one force, the compatibility of the bond deformation shall be used in general. We can

calculate the redistributed force on each bond by a static analysis.

Given a unit force f = 1 applied to node B in 𝑥𝑖 direction, the force will distribute
among three bonds. We define the ratio of the distributed force on bond 𝐼 caused by a
unit force 𝑥𝑖 on B as 𝑅

𝐼
𝑖 , which forms a constant matrix depending on the geometry of

the lattice and will be demonstrated in the next section. Therefore, if a force is written in

terms of F = 𝐹𝑖e𝑖 on the node, the distributed forces are on the 𝐼𝑡ℎ bond can be written
𝑅𝐼
𝑖 𝐹𝑖n𝐼 . Following this fashion, the bond force variation for bond 𝐼 is written as 𝛿T𝐼 :

𝛿𝑇 𝐼
𝑗 = Σ3𝐽=1

[(2𝑙𝑝𝑉,𝑟𝑟 −𝑉,𝑟)𝑅𝐼
𝑚𝑛

𝐽
𝑚𝑛

𝐽
𝑘𝑛

𝐽
𝑙 +𝑉,𝑟𝑅

𝐼
𝑙 𝑛

𝐽
𝑘

]
𝑛𝐼𝑗 𝛿𝜀𝑘𝑙 (25)

Therefore, the stress integral for Case II can be obtained 𝛿𝑆𝐵
𝑖 𝑗 = Σ3𝐼=1𝑥

𝐼
𝑖 𝛿𝑇

𝐼
𝑗 .

The total stress integral of singum B for combining two cases is obtained as

𝛿𝑆𝐵
𝑖 𝑗 = Σ3𝐼=1𝑥

𝐼
𝑖 (𝛿𝐹𝐼

𝑗 + 𝛿𝑇 𝐼
𝑗 ) (26)

Although F𝐼 and T𝐼 was assumed to be zero at the initial condition, for consistence

with the general case (Yin 2022), if prestress exists, we can also write F𝐼 = 𝑉,𝑟n𝐼 , but

T𝐼 = 0 due to the equilibrium.
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The stiffness tensor 𝐶𝑖 𝑗 𝑘𝑙 of the singum B can be obtained by the average stress

variation over the singum B as

𝛿𝜎𝐵
𝑖 𝑗 = Σ3𝐼=1

[
𝑥𝐼𝑖 (𝛿𝐹𝐼

𝑗 + 𝛿𝑇 𝐼
𝑗 )

𝑉𝑠/2
+
𝑥𝐼𝑘𝐹

𝐼
𝑗 𝛿𝜀𝑘𝑖

𝑉𝑠/2
−
𝑥𝐼𝑖 𝐹

𝐼
𝑗 𝛿𝜀𝑘𝑘

𝑉𝑠/2

]
=
2𝑙𝑝

𝑉𝑠/2
Σ3𝐼=1

[
(𝛿𝐹𝐼

𝑗 + 𝛿𝑇 𝐼
𝑗 )𝑛𝐼𝑖 + 𝐹𝐽

𝑗 𝛿𝑖𝑙𝛿𝜀𝑘𝑙𝑛
𝐼
𝑙 − 𝐹𝐽

𝑗 𝑛
𝐼
𝑖 𝛿𝜀𝑘𝑘

]
=
2

𝑉𝑠
Σ3𝐼=1

[
(4𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝)𝑛𝐼𝑖 𝑛𝐼𝑗 𝑛𝐼𝑘𝑛𝐼𝑙 + 2𝑉,𝑟 𝑙𝑝 (𝛿𝑖𝑙𝑛𝐼𝑗 𝑛𝐼𝑘 + 𝛿 𝑗𝑙𝑛

𝐼
𝑖 𝑛

𝐼
𝑘 − 𝛿𝑘𝑙𝑛

𝐼
𝑖 𝑛

𝐼
𝑗 )
]
𝛿𝜀𝑘𝑙

+ 2
𝑉𝑠

Σ3𝐼=1Σ
3
𝐽=1

[
(4𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝)𝑅𝐼

𝑚𝑛
𝐽
𝑚𝑛

𝐽
𝑘𝑛

𝐽
𝑙 𝑛

𝐼
𝑖 𝑛

𝐼
𝑗 + 2𝑉,𝑟 𝑙𝑝𝑅

𝐼
𝑙 𝑛

𝐽
𝑘𝑛

𝐼
𝑖 𝑛

𝐼
𝑗

]
𝛿𝜀𝑘𝑙

(27)

where 𝑉𝑠 = 8𝑙2𝑝 sin𝛼(1 − cos𝛼) with the unit thickness. Here only a half of 𝑉𝑠 is taken

for singum B. Define two tensors as

𝐸1𝑖 𝑗 𝑘𝑙 = Σ3𝐼=1(𝛿𝑖𝑙𝑛𝐼𝑗 𝑛𝐼𝑘 + 𝛿 𝑗𝑙𝑛
𝐼
𝑖 𝑛

𝐼
𝑘 − 𝛿𝑘𝑙𝑛

𝐼
𝑖 𝑛

𝐼
𝑗 ) + Σ3𝐼=1Σ

3
𝐽=1𝑅

𝐼
𝑙 𝑛

𝐽
𝑘𝑛

𝐼
𝑖 𝑛

𝐼
𝑗

𝐸2𝑖 𝑗 𝑘𝑙 = Σ3𝐼=1𝑛
𝐼
𝑖 𝑛

𝐼
𝑗 𝑛

𝐼
𝑘𝑛

𝐼
𝑙 + Σ3𝐼=1Σ

3
𝐽=1𝑅

𝐼
𝑚𝑛

𝐽
𝑚𝑛

𝐽
𝑘𝑛

𝐽
𝑙 𝑛

𝐼
𝑖 𝑛

𝐼
𝑗

(28)

we can rewrite Eq. (27) as

𝛿𝜎𝑖 𝑗 =
2

𝑉𝑠

[
2𝑉,𝑟 𝑙𝑝𝐸

1
𝑖 𝑗 𝑘𝑙 + (4𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝)𝐸2𝑖 𝑗 𝑘𝑙

]
𝛿𝜀𝑘𝑙 (29)

The same procedure can be done for singum A, where we can define n1 = (0, 1),
n2 = (sin𝛼, cos𝛼), and n3 = (− sin𝛼, cos𝛼) in Fig. 2(c). The stiffness tensor of the
singum can be obtained from the above relationship between the averaged virtual stress

and strain over the singum as follows:

𝐶𝑖 𝑗 𝑘𝑙 =
1

𝑉𝑠

[
2𝑉,𝑟 𝑙𝑝 (𝐸1𝑖 𝑗 𝑘𝑙 + 𝐸

1

𝑖 𝑗 𝑘𝑙) + (4𝑉,𝑟𝑟 𝑙
2
𝑝 − 2𝑉,𝑟 𝑙𝑝) (𝐸2𝑖 𝑗 𝑘𝑙 + 𝐸

2

𝑖 𝑗 𝑘𝑙)
]

(30)

where E1 and E2 are the counterparts of E1 and E2 in singum A.
The above derivation procedure is general and can be extended to other types of

lattices, including 3D lattice as well. Notice that the overall stiffness in Eq. (30) will be

different but more accurate than Eq. (7) when 𝛼 = 2𝜋
3
.

RESULTS AND DISCUSSION
Given the characteristics of a lattice including the geometry, elastic potential of the

bonds, and prestress of the bonds, we can derive the effective elasticity C in Eqs. (4)
and (30). Note that the first one did not consider the equilibrium and is not physical, so

that the latter formulation should be used for the physical soundness and accuracy.
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Fig. 3. The elastic constants versus the pre-stress 𝑝/𝑘 for the regular honeycomb lattice:
(a) the normalized elastic moduli and (b)the Poisson’s ratio

Elasticity variation with prestress in a regular honeycomb lattice
When a regular honeycomb lattice with the linear elastic potential of bonds is

subjected to a uniform biaxial loading 𝜎𝑖 𝑗 = 𝑝𝛿𝑖 𝑗 in the 2D plane, which is also a
hydrostatic stress in 2D, from Fig. 1(a), the force in the bond 𝐹 is related to 𝑝 or bond
length 2𝑙𝑝 as follows:

𝐹 = 2
√
3𝑙𝑝 𝑝 = 𝑘 (2𝑙𝑝 − 𝑟0) or 𝜆0 = 1 −

√
3
𝑝

𝑘
(31)

In Fig. 2(b) with 𝛼 = 2𝜋
3
, we can obtain n1 = (0,−1),n2 = (0.866, 0.5), and

n3 = (−0.866, 0.5) . Given a displacement variation over the lattice corresponding to
the uniform strain variation, Eq. (32) will show a resultant force on B because the three

bonds are in the different orientation. For example,when a uniform strain Δ𝜀11 = 𝑒0 is
applied, the resultant force on B will be

Δ𝑃𝐵
1 = 0 and Δ𝑃𝐵

2 =
3𝑒0
4

(2𝑙𝑝𝑉,𝑟𝑟 −𝑉,𝑟) (32)

This unbalanced force is redistributed to the bonds through the redistribution matrix as

𝑅𝐼
𝑖 𝑃

𝐵
𝑖 with

𝑅𝐼
𝑖 =


���
0 2

3

−
√
3
3

−1
3√

3
3

−1
3

���� (33)

which is obtained by the static analysis with a unit force on 𝑥1 or 𝑥2, respectively.
Therefore, bond 1 will show tension force and bonds 2 and 3 compression from the

redistribution of the force, which will affect the average stress and the stiffness as well.

However, when a primitive cell contains a single node, the bonds can be paired due to

the periodicity with each n𝐼 matching with −n𝐼 for another bond, and the resultant force

is always zero. As a result, no force redistribution is required and the simplified singum

model will provide accurate results for single-node primitive cells.
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Using Eq. (33) in Eq. (28), we can writeE1 andE2 in the Voight notation as follows:

𝐸𝐼𝐽 =

��
𝐸1111 𝐸1122 𝐸1112
𝐸2211 𝐸2222 𝐸2212
𝐸1211 𝐸1222 𝐸1212

��� (34)

where the mapping of 𝑖 𝑗 → 𝐼 is set up as 11 → 1, 22 → 2, 12 → 3, which can be

applied to both stress and strain as well. We can obtain

𝐸1𝐼𝐽 =

��
1.5 −1.5 0

−1.5 1.5 0

0 0 1.5

��� (35)

and

𝐸2𝐼𝐽 =

��
0.75 0.75 0
0.75 0.75 0
0 0 0

��� (36)

Actually, the singum A exhibits the same tensors as the above, so that the effective

stiffness of the lattice can be written by the substitution of the above two tensors into

Eq. (30) as

𝐶𝐼𝐽 =
8𝑘𝑙2𝑝

𝑉𝑠

⎡⎢⎢⎢⎢⎣(1 − 𝜆0) 
��
1.5 −1.5 0

−1.5 1.5 0

0 0 1.5

��� + 𝜆0

��
0.75 0.75 0
0.75 0.75 0
0 0 0

���
⎤⎥⎥⎥⎥⎦ (37)

Using the relationship of Eq. (31), we can write the stiffness tensor in terms of the

prestress 𝑝 as well:

𝐶𝐼𝐽 =

√
3𝑘

3


���
1 +

√
3
𝑝
𝑘 1 − 3

√
3
𝑝
𝑘 0

1 − 3
√
3
𝑝
𝑘 1 +

√
3
𝑝
𝑘 0

0 0 2
√
3
𝑝
𝑘

���� (38)

Using a biaxial loading for pure shearing and hydrostatic tests in the 2D plane, we

can write the shear modulus and bulk modulus as:

𝐾

𝑘
=
1√
3

(
1 −

√
3
𝑝

𝑘

)
;

𝐺

𝑘
= 2

𝑝

𝑘
(39)

Using a unit uniaxial loading test with 𝜎11 = 1, 𝜎22 = 𝜎12 = 0, we can solve for 𝜀𝑖 𝑗 and
write the Young’s modulus and Poisson’s ratio as

𝐸

𝑘
=
1

𝜀11
= 8

(1 −
√
3
𝑝
𝑘 )

𝑝
𝑘

1 +
√
3
𝑝
𝑘

; 𝜈 = −𝜀22
𝜀11

=
1 − 3

√
3
𝑝
𝑘

1 +
√
3
𝑝
𝑘

(40)

Fig. 3 shows the elastic constants changing with the normalized prestress 𝑝/𝑘 .
Although the bonds follows linear elastic behavior, the effective elastic moduli in Fig.

3(a) are not constant for the lattice but change quickly with the prestress, which exhibits

the following features:
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1. When 𝑝/𝑘 = 0, both the shear modulus and Young’s modulus is zero, and increases
rapidly with 𝑝/𝑘 .
2. Both the shear modulus and bulk modulus linearly change with 𝑝, but the bulk
modulus decreases with a slope of "-1" whereas the shear modulus increase with a slope

of "2".

3. The Young’s modulus increases to a peak point at 𝑝/𝑘 = 0.239 (or
√
2√
3
− 1√

3
), and

then decreases to zero at 𝑝/𝑘 =
√
3/3, where the bulk modulus is zero as well.

The decrease of bulk modulus with 𝑝 to zero at 𝑝/𝑘 = 0.577 (or
√
3/3) is caused by

the configurational force during the variation of the average stress as follows: given a

tensile stress vector p0 on the boundary of singum B in Fig. 1(a), the circumference of
the singum increases to a certain value 𝐴0 and the force on one bond is P0𝐴0/3 at the
equilibrium. When a small increase of area Δ𝐴 is applied, a small bond force change
Δ𝐹 will be caused by the bond length increment. Even without changing the tensile
stress vector, p0 will produce a larger force to the bond at p0Δ𝐴. If it is balanced by
Δ𝐹, it means no stress is needed to cause the expansion, the lattice will lose the stability
unless the stress vector reduces. Therefore it is physical and reasonable to have the

bulk modulus reducing to zero and then lose the stability because the bond force cannot

sustain the force generated in 2D surface.

The instability problem at 𝑝 = 0 is different from the case of 𝑝/𝑘 = 0.577. From
the projection of the curve, when 𝑝 < 0, the shear modulus will become negative which
shows the loss of stability. Consider the red rectangular unit cell in Fig. 1(a). A pressure

p0 is applied on each side as a prestress. When a small elongation is applied along AB,
at the prependicular direction to AB, a larger surface force will be caused, which leads to

shearing instability. Although the lattice can sustain high hydrostatic pressure, it is not

stable as the shape of the lattice can easily be distorted by the shear strain. Therefore,

the stable prestress range of 𝑝/𝑘 should be in (0, 0.577).
Fig. 3(b) shows the Poisson’s ratio. When 𝑝 = 0, the Poisson’s ratio is 1, which is

beyond the normal range of the Poisson’s ratio of (-1,0.5) in 3D problems. For regular

isotropic elastic solids, the Poisson’s ratio in a 2D plane strain problem can be related

to the 3D counterpart by 𝜈3𝐷 = 𝜈
1+𝜈 . In 3D problem, the Poisson’s ratio is in the range

of (-1,0.5), but in the 2D plane strain problem, the Poisson’s ratio can be calculated in

the range of (−∞, 1) instead. When 𝑝
𝑘 > 1

3
√
3
or 𝜆0 < 2

3
, the Poisson’s ratio becomes

negative.

By changing the characteristic angle 𝛼 to (𝜋/3,𝜋/2) in Fig. 2, we can demonstrate
the auxetic metamaterial without the necessity of prestress.

Demonstration of the effective elasticity of the 2D auxetic metamaterial
Eq. (30) provides a concise form of the stiffness tensor of the primitive cell AB,

which can represent the overall stiffness based onTheorem 1. For simplicity and clarity,
we choose the case of 𝛼 = 𝜋/3 to demonstrate the procedure to use the formulation,
which can be extended to other cases of 𝛼 or other types of auxetic metamaterials based
on different lattices. In addition, this section assumes the prestress is zero although it

can be extended to the case with prestress in the same fashion of the last subsection.

In Fig. 2(a), although D and F, or C and E, will overlap with each other at 𝛼 = 𝜋/3,
we do not allow them to link with each other, so that they can separate freely. Actually,
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it is feasible to have 𝛼 < 𝜋/3 if we allow the bond to overlap with each other but not
have force contact. However, it is not clear to show it visually with an ill-conditioned

lattice. This paper avoids it.

Aswe have seen in the last section, the effective elasticity depends on 𝑘 and prestress.
Here the prestress is set at 0. The bond length does not change the effective elasticity

numerically, so we use the normalized length at 1. Given 𝛼 = 𝜋/3, we obtain

𝑉𝑠 = 8𝑙
2
𝑝 sin𝛼(1 − cos𝛼) = 2

√
3 (41)

Using the geometry in Fig. 2(b), we can obtain n1 = (0,−1), n2 = (0.866,−0.5),
and n3 = (−0.866,−0.5). The redistribution matrix of 𝑅𝐼

𝑖 can be obtained by the static

analysis with a unit force on 𝑥1 or 𝑥2, respectively, which is written

𝑅𝐼
𝑖 =


���
0 2

3

−
√
3
3

1
3√

3
3

1
3

���� (42)

which is obtained by the static analysis. The force transfer in the lattice is significantly

different from the regular honeycomb lattice, which causes the average stress to not be a

symmetric tensor anymore, namely𝜎12 ≠ 𝜎21 under a uniform shear strain on the lattice.
Physically, a uniform shear strain cannot be naturally achieved by uniform stresses, and

an external moment is required to balance the torque. Therefore, the traditional Voight

notation will not be sufficient for 𝐸1𝐼𝐽 . We can write

𝐸1𝐼𝐽 =

����
1.5 −1.5 0

−2.5 −0.1667 0

0 0 0.5
0 0 0

����� (43)

and

𝐸2𝐼𝐽 =

��
0.75 −0.25 0

−0.25 0.0833 0
0 0 0

��� (44)

where in Eq. (43), the fourth row means 𝜎21 caused by three strain components as
zero, which is different from the third row of 𝜎12. For regular honeycomb lattices, this
problem does not exist as Σ3𝐽=1𝑛

𝐽
𝑖 = 0. This issue shall be further investigated in the

future work.

As the auxetic metamaterials are mainly subjected to normal stress for the benefits

of the negative Poisson’s ratio, we can focus on the components of 𝐼, 𝐽 = 1, 2 instead.
Actually, the singum A exhibits the same tensors as the above, so that the effective

stiffness of the lattice can be written by the substitution of the above two tensors into

Eq. (30) as

𝐶𝐼𝐽 =
8𝑘𝑙2𝑝

𝑉𝑠

[
(1 − 𝜆0)

(
1.5 −1.5
−2.5 −0.1667

)
+ 𝜆0

(
0.75 −0.25
−0.25 0.0833

)]
(45)
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Now without any prestress, 𝜆0 = 1, so the above equation is simplified as

𝐶𝐼𝐽 =
4𝑘√
3

(
0.75 −0.25
−0.25 0.0833

)
(46)

Using the above relationship, we can see for the lattice with 𝛼 = 𝜋/3:
1. Given an uniaxial loading in 𝑥1 direction, the Young’s modulus is zero and the
Poisson’s ratio is −3 for 𝛼 = 𝜋/3;
2. Given an uniaxial loading in 𝑥2 direction, the Young’s modulus is still zero but the
Poisson’s ratio becomes −1/3.
3. Although the lattice shows zero stress when 𝜀11 : 𝜀22 = 1 : 3, the lattice still exhibits
stiffness for the displacement controlled test at other modes.

For example, given a uniaxial elongation with 𝜀11 = 𝑎; 𝜀22 = 0, the load of
4𝑘𝑎/

√
3 (0.75,−0.25) is required; whereas given a uniaxial elongation with 𝜀22 = 𝑎, the

load of 4𝑘𝑎/
√
3 (−0.25, 0.08335) is required. Obviously, the material exhibits different

stiffness in the two directions with an anisotropic behavior. The formulation can be

used for designs of metamaterials by changing the bond lengths and 𝛼 of lattices .

Demonstration of the effective elasticity of the body-centered cubic (BCC) lattice
Body center cubic (BCC) lattices exist in many materials and composites, such as

the crytal structure of metals (Weinberger et al. 2013), macromolecular chain structure

(Arruda and Boyce 1993), carbon nanotube network (Jang and Yin 2015), fiber micro-

lattice composites (Xiong et al. 2015), and periodic particulate composites (Yin et al.

2002), which exhibit different types of potential functions of the bonds. Although

various constitutive modeling methods existed in the literature to simulate the material

behavior for specific loading conditions, an explicit form of the stiffness tensor for BCC

lattice is particularly useful for the material design and analysis. The singum model can

serve this purpose very well.

Following the last section, we still use the elastic potential for the bonds in Eq. (2)

to construct the singum model and predict the effective elasticity of the lattice. The 2D

singum model can be straightforwardly extended to 3D for general crystal lattice in the

same fashion. Here we focus on the BCC lattice in Fig. 4 as an example, which can be

generalized to face-centered cubic (BCC) and simple cubic (SC) lattices as well. Fig.

4 shows the unit cell of a BCC lattice with the cubic edge length 𝑎, so that the bond

length 2𝑙𝑝 =
√
3𝑎
2
. We set up the coordinate with the origin at the 0𝑡ℎ atom, and 8 closest

neighbor atoms are located at (±𝑎
2
,±𝑎
2
,±𝑎
2
), which are corresponding to the directional

vectors n𝐼 (𝐼 = 1, 2, ..., 8) = (± 1√
3
,± 1√

3
,± 1√

3
).

Following the same procedure as the 2D case, for each bond between the 0𝑡ℎ atom

at the center of the front surface and the 8 member atoms, we can use a perpendicular

plane ABC to cut the bond at the midpoint as shown in Fig. 4 for the bond of atom pair

0-1, which shall be repeated for other 7 pairs within in the cube. Eventually, we can

obtain the BCC singum as a truncated octahedron. The volume of the singum can be

written as

𝑉𝑠 =
𝑎3

2
=
32

√
3𝑙3𝑝

9
(47)
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Fig. 4. The unit cells for the singum model construction at Atom 0 of a body centered
cubic lattice with 8 members

Because the primitive cell of BCC contains one node only, the node will always stay

in equilibrium under a displacement variation corresponding to a uniform strain and no

force redistribution is needed. The following identities for normal vectors in the 3D

space will be used for stiffness prediction:

Σ8𝐼=1𝑛
𝐼
𝑖 𝑛

𝐼
𝑗 =
8

3
𝛿𝑖 𝑗

Σ8𝐼=1𝑛
𝐼
𝑖 𝑛

𝐼
𝑗 𝑛

𝐼
𝑘𝑛

𝐼
𝑙 =
8

9

[(1 − 2𝛿𝐼𝐾)𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿 𝑗𝑘𝛿𝑖𝑙)
] (48)

When the terms with subscript indices including both uppercase and lowercase

letters, Mura’s extended index notation is used as follows (Mura 1987; Yin and Zhao

2016):

1. Repeated lower case indices are summed up as usual index notation;

2. Uppercase indices take on the same numbers as the corresponding lower case ones,

but are not summed.

Similarly to Eq. (27), one can rewrite it by using Eq. (48) instead as

𝛿𝜎𝑖 𝑗 = Σ8𝐼=1

[
𝑥𝐼𝑖 𝛿𝐹

𝐼
𝑗

𝑉𝑠
+
𝑥𝐼𝑘𝐹

𝐼
𝑗 𝛿𝜀𝑘𝑖

𝑉𝑠
−
𝑥𝐼𝑖 𝐹

𝐼
𝑗 𝛿𝜀𝑘𝑘

𝑉𝑠

]
=
1

𝑉𝑠
Σ8𝐼=1

[
(4𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝)𝑛𝐼𝑖 𝑛𝐼𝑗 𝑛𝐼𝑘𝑛𝐼𝑙 + 2𝑉,𝑟 𝑙𝑝 (𝛿𝑖𝑙𝑛𝐼𝑘𝑛𝐼𝑗 + 𝛿 𝑗𝑙𝑛

𝐼
𝑖 𝑛

𝐼
𝑘 − 𝛿𝑘𝑙𝑛

𝐼
𝑖 𝑛

𝐼
𝑗 )
]
𝛿𝜀𝑘𝑙

=
32

9𝑉𝑠

[(
𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝 − (2𝑉,𝑟𝑟 𝑙

2
𝑝 −𝑉,𝑟 𝑙𝑝)𝛿𝐼𝐾

)
𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝑉,𝑟𝑟 𝑙

2
𝑝 +𝑉,𝑟 𝑙𝑝) (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 )

]
𝛿𝜀𝑘𝑙

(49)

The stiffness tensor of the singum can be obtained from the above relationship between
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the averaged virutal stress and strain over the singum as follows:

𝐶𝑖 𝑗 𝑘𝑙 =
32

9𝑉𝑠

[(
𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝 − (2𝑉,𝑟𝑟 𝑙

2
𝑝 −𝑉,𝑟 𝑙𝑝)𝛿𝐼𝐾

)
𝛿𝑖 𝑗 𝛿𝑘𝑙 + (𝑉,𝑟𝑟 𝑙

2
𝑝 +𝑉,𝑟 𝑙𝑝) (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 )

]
(50)

Using the Voight’s notation, we can obtain the three elastic constants for the cubic

symmetric stiffness tensor as

𝐶11 =
32

9𝑉𝑠

(
𝑉,𝑟𝑟 𝑙

2
𝑝 +𝑉,𝑟 𝑙𝑝

)
; 𝐶12 =

32

9𝑉𝑠

(
𝑉,𝑟𝑟 𝑙

2
𝑝 − 2𝑉,𝑟 𝑙𝑝

)
; 𝐶44 =

32

9𝑉𝑠

(
𝑉,𝑟𝑟 𝑙

2
𝑝 +𝑉,𝑟 𝑙𝑝

)
(51)

Using Eq. (6), we can rewrite the above equation as

𝐶11 =
𝑘√
3𝑙𝑝

(
3 − 2𝜆0

)
; 𝐶12 =

𝑘√
3𝑙𝑝

(
−1 + 2𝜆0

)
; 𝐶44 =

𝑘√
3𝑙𝑝

(
3 − 2𝜆0

)
(52)

When no prestress is applied as 𝜆0 = 1, we can obtain 𝐶11 = 𝐶12 = 𝐶44 = 𝑘√
3𝑙𝑝
,

which shows that a uniaxial elongation will produce the same stress in all directions

due to the central symmetry and each node shared by three surfaces in the unit cell.

Although all these elastic moduli are positive, because they are not linearly independent,

the BCC lattice may not produce stress for some deformation mode corresponding to

𝜀11 + 𝜀22 + 𝜀33 = 0 in the infinitesimal strain state, which causes the rotation of bonds or
octahedral shear strain. The lattice can sustain the hydrostatic load 𝜀11 = 𝜀22 = 𝜀33 = 𝑝
with a bulk modulus at 𝑘 = 𝑘√

3𝑙𝑝
as well.

Although the lattice shows a zero stress for some strain mode at the infinitesimal

strain state, it does not mean the lattice will surely lose the stability, because the elastic

constants changes with the prestress or 𝜆0 as well. When a prestress exists, similarly
to the case of the regular honeycomb lattice, the shear modulus can be nonzero which

will be discussed subsequently. When the orientation of the lattice changes, stress can

be developed among the lattice and resist the deformation with the cubic symmetry of

the stiffness. In addition, when the unit cells of the lattice are not perfectly repeated,

and some randomness is introduced for the connection between the unit cells, the shear

resistance can be developed by bonds as well. The randomly connected unit cells form

an isotropic volume statistically. We can use the orientational average of the cubic

symmetric stiffness to estimate the bulk modulus and shear modulus as

𝐾

𝑘
=
𝐶11 + 2𝐶12
3𝑘

=
1 + 2𝜆0
3
√
3𝑙𝑝
;

𝜇

𝑘
=
𝐶11 − 𝐶12 + 3𝐶44

5𝑘
=
13 − 10𝜆0
5
√
3𝑙𝑝

(53)

from which, we can derive the Young’s modulus and Poisson’s ratio as

𝐸

𝑘
=

(1 + 2𝜆0) (13 − 10𝜆0)
6
√
3𝑙𝑝

; 𝜈 =
−7 + 10𝜆0
12

(54)

Fig. 5 shows the normalized elastic constants by a factor of 𝑙𝑝/𝑘 changing with the
bond length ratio 𝜆0 = 𝑟0/(2𝑙𝑝). Although the bonds follows linear elastic behavior, the
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Fig. 5. The elastic constants versus the bond length ratio 𝜆0 = 𝑟0/(2𝑙𝑝) for the body
centered cubic (BCC) lattice: (a) the normalized elastic moduli and (b)the Poisson’s

ratio

effective elastic moduli in Fig. 5(a) are not constant for the lattice but change with 𝜆0

with the following features:

1. When 𝜆0 = 1, the normalized bulk modulus 𝐾 , 𝐶11, 𝐶12 and 𝐶44 share the same
value of 1/

√
3.

2. With the increase of 𝜆0 or the decrease of bond length, shear modulus 𝜇, 𝐶11 and
𝐶44 linearly decrease, and 𝜇 reaches zero at 𝜆

0 = 1.3 under the compression.
3. With the increase of 𝜆0 or the decrease of bond length, the Young’s modulus
quadratically decreases from the peak value at 𝜆0 = 0.4 to zero at 𝜆0 = 1.3.
4. With the increase of 𝜆0 or the decrease of bond length, 𝐶12 and 𝐾 increases, and
𝐶12 = 0 at 𝜆0 = 0.5
Although the lattice is stable under the hydrostatic load with a positive 𝐾 , when

𝜆0 = 1.3 where the bond is under a compression, the lattice loses stability for any shear
strain with zero shear modulus, which is caused by the configurational force. This is

different from buckling of the bond although we should consider buckling in actual

applications as well. Therefore, when the ultimate compressive load to the lattice shall

be determined by both buckling and configurational force.

Fig. 3(b) shows the Poisson’s ratio. When 𝜆0 = 1, the Poisson’s ratio 𝜈 = 0.25,
which is consistent with the literature (Laubie et al. 2017; Yin 2022). Generally, central-

force lattices restrict the domain of application of the lattice element method (LEM) to

isotropic materials exhibiting a Poisson’s ratio of 𝜈 = 0.25 in 3D (Laubie et al. 2017). To
overcome this limitation, more advanced potentials other than a pair-wise potential were

introduced. However, the singum model discloses that applying a prestress through the

surface, the Poisson’s ratio predicted by a pair-wise potential will shift from 𝜈 = 0.25
to other values. When 𝜆0 < 0.7 the Poisson’s ratio becomes negative. This discovery
creates a feasibility to fabricate auxetic materials by using the prestresses. In addition,

the stiffness of the lattice can be combined into the classic micromechanical models

when both volumetric reinforcement and lattice reinforcement exist.

CONCLUSIONS
The singum model has been generalized to lattice metamaterials and composites for
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prediction of the effective elasticity based on the stiffness of the lattice components with

a linear elastic potential, in which the load is transferred through the lattice network

represented by unit cells. The variational method is used to investigate the equilibrium

of the singum and derive its averaged stress variation with strain. The following con-

clusions or discoveries have been observed:

(1) For both regular 2D honeycomb lattices and 3D BCC lattices, when a tensile pre-

stress is applied, the Poisson’s ratio can be negative.

(2) The shear modulus reduces with the compressive prestress and will cause the loss

of stability by the configurational forces.

(3) For the auxetic lattices transformed by regular 2D honeycomb lattice, it can reach

high negative Poisson’s ratio, which is different in different loading orientation.

The singum model provides insight to fabricate new auxetic materials.
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