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ARTICLE INFO ABSTRACT

Keywords: When a bi-material with two jointed dissimilar half-planes containing an arbitrarily shaped polygonal inclusion
Bi-material Green’s functions is subjected to heat flow, the thermoelastic fields, including temperature and displacement, can be derived
Polygonal particles by the Green’s function technique with the integral of the source over the inclusion. Using Hadamard’s

Polynomial eigenstrain
Eshelby’s tensor

Equivalent inclusion method
Thermoelastic analysis

regularization, the two-dimensional (2D) thermal, elastic, and thermoelastic Green’s functions of two-jointed
dissimilar half-planes are firstly derived from the 3D Green’s functions as the corresponding fundamental
solutions. The fundamental solutions for semi-infinite and infinite domains can be recovered by adjusting the
material constants. Eshelby’s tensors are derived in terms of the biharmonic, harmonic, and two Boussinesq’s
displacement potential functions. When a heat exchanger of arbitrary shape is embedded in a matrix
with different thermal and mechanical properties, combining a continuously distributed eigen-temperature
gradient and eigenstrain field, the dual equivalent inclusion method (DEIM) is applied to handle the material
mismatch of thermal conductivity, stiffness, and thermal expansion coefficient, respectively. Therefore, the
full thermoelastic fields can be obtained by the integral over the heat exchanger only. The eigen-fields are
expanded in the Taylor series referred to the center of the particle, which exhibits tailorable accuracy with
uniform, linear or quadratic terms in comparison with the analytical solution for a circular inhomogeneity in
the infinite domain. An exact thermoelastic solution of a circular inhomogeneity embedded within the infinite
domain is present. The case study of an electric heat cable in the concrete block demonstrates the capability
and exactness of the model. The method can be used for a thin film containing a heat exchanger of arbitrary
shape as either a heat sink or source.

1. Introduction EIM, such as transient heat conduction (Wu et al., 2021a), magneto-
elasticity (Yin et al., 2006), and subsequent extensions on double- or

In Eshelby’s celebrated works of the equivalent inclusion method multi-layered inclusion methods (Hori and Nemat-Nasser, 1993).
(EIM) (Eshelby, 1957, 1959), the ellipsoidal inhomogeneity is replaced Among the micromechanical models, strong assumptions are gener-
by inclusion with uniformly distributed eigenstrain but the same stiff- ally made on spatial averaged strain/stress fields and ellipsoidal shapes
ness as the matrix. Hence, the original boundary value problem was of inhomogeneity. When a particle’s shape is arbitrary, the local fields

mathematically transformed into the determination of eigenstrain with
the equivalent stress conditions, which elegantly avoids the interface
continuity with the multiple material domains. Due to its simplicity,
the EIM has been widely applied in several micromechanical mod-
els (Zaoui, 2002). Particularly, the investigation of effective material
properties attracts extensive interest, such as (Mori and Tanaka, 1973),
self-consistent (Kroner, 1958; Hershey, 1954) methods, which aim to
illustrate the relationship between microstructures and macroscopic be-
haviors. Thanks to the versatility of Green’s functions to various prob-
lems, other physical inhomogeneity problems have been explored with

may not be accurately obtained as Eshelby’s tensor in the particle do-
main exhibits significant variation and is singular in the neighborhood
of vertices. Note that the domain integrals of second-order derivatives
of Green’s function for an infinite domain of a single material over
an ellipsoidal inclusion, namely the Eshelby’s tensor, is uniform at
the field point within the inclusion, which provides the exact and
elegant solution for a single ellipsoidal/elliptic particle in an infinite
domain under a uniform far field. For a polygonal inhomogeneity,
Eshelby’s is not constant over the particle anymore, and eigenstrain
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Fig. 1. Schematic illustration of a cross-section D composed of two jointed dissimilar half spaces D*, D

polygonal inhomogeneity €/, where exist heat source g, and eigen-fields T and €

varies on the particle as well. In addition, eigen-fields can be disturbed
by (i) interactions of multiple inhomogeneities (Moschovidis and Mura,
1975); and (ii) boundary effects (Wu and Yin, 2021b), including the
bi-material interfacial perturbation (Wu et al., 2023b).

To approximate variations of eigen-fields, polynomials are first
introduced by Moschovidis and Mura (Moschovidis and Mura, 1975),
where the eigen-fields are expanded at the center of inhomogeneity
with the Taylor series. Subsequently, Brisard et al. (2014) proposed
a variational EIM for numerical homogenization. On the other hand,
unlike elliptical subdomains, Gao and Ma (2010) and Trotta et al.
(2017) have shown that Eshelby’s tensor varies within polygons. Even
for an elliptical/ellipsoidal subdomain embedded in bi-material space,
the internal Eshelby’s tensor is not uniform anymore due to the term
of @ = [, a"dx’ in Wu et al. (2023b) produced by the image source.
The Eshelby’s tensor for polygons in bi-material has not been solved in
the literature yet.

Since the two above conditions can seldom be satisfied, to provide
more accurate solutions, this paper follows the previous work in a
single material domain (Rodin, 1996; Wu and Yin, 2021a) to derive
Eshelby’s tensors of polygonal subdomains with polynomial eigenstrain,
but the bi-material thermoelastic Green’s functions will be used. In the
literature, pioneers have investigated inclusion problems and related
Eshelby’s tensors for specific polygonal subdomains. For cuboids, Chiu
(1977, 1978, 1980) provided closed-form stress fields caused by uni-
form initial strain for full- and half-space; Ru (1999) obtained internal
stresses of an arbitrarily shaped inclusion through explicit expressions.
Based on Waldvogel (1979) work on the Newtonian potential of a
homogeneous polyhedron, Rodin (1996) firstly proposed Eshelby’s ten-
sors for arbitrarily shaped polygonal and polyhedral inclusions through
Gauss’ theorem. Subsequently, Gao and Ma (2010) provided Eshelby’s
tensor combined with strain gradient theory; Trotta et al. (2017) ap-
plied Green’s theorem and expressed Eshelby’s tensors merely through
coordinates of vertices on inclusions; Nozaki and Taya (1997, 2000)
proposed closed-form Eshelby’s tensors for arbitrary polygons, which
are only applicable to convex cases. The above works can provide
exact solutions for inclusion problems with uniform eigenstrain, which
exhibit the same material properties as the matrix. Besides, the crit-
ical application of Eshelby’s tensors is a solution to inhomogeneity
problems, which requires considering variations of eigen-fields. There-
fore, Wu and Yin (2021a) directly integrated Eshelby’s tensor without

/62
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subjected to far-field load ¢, embedded with an arbitrarily-shaped

Green’s theorem and extended it to polynomial-form eigenstrains for
EIM.

Research on fundamental solutions has a long tradition, and par-
ticularly extensive efforts have been devoted to elastic and thermoe-
lastic fields. Walpole (1996) obtained a simple and explicit solution
when the source point is located in the upper layer, which was later
completed by Wu et al. (2022). As for research on thermoelasticity,
Nowacki (1986) first proposed a three-dimensional full-space ther-
moelastic fundamental solution, later summarized by Barber (1992)
with two-dimensional cases. Following Yu and Sanday (1991) on an
inclusion problem with nuclei strain and Goodier’s method, Yu et al.
(1992) proposed a bi-material thermoelastic solution caused by eigen-
strain (thermal strain) within a spherical inclusion. Subsequently, Hou’s
group (Hou et al., 2013b,a) applied four harmonic potential functions
to represent general and fundamental solutions in cylindrical coor-
dinates, significantly simplifying trivial expressions. Following their
general solutions, Wu et al. (2023a) proposed a thermoelastic bi-
material fundamental solution in Cartesian coordinates and modified
it for Eshelby’s problem.

This paper aims to derive 2D Eshelby’s tensors for polynomial
eigen-fields in thermal, elastic, and thermoelastic problems under the
plane strain condition. The plane stress problem can be easily ob-
tained by changing the elastic constants with the same mathematical
formulation (Mura, 1987). The representation of eigen-fields through
polynomial distribution could provide tailorable accuracy with uni-
form, linear and quadratic terms, although it is not the exact solution
as the elliptical/ellipsoidal inhomogeneity embedded in an infinite
medium. Using the DEIM (Wu et al., 2023a), the induced thermal
effects on elastic fields are fully coupled and handled through ther-
moelastic Eshelby’s tensor on the polygonal subdomain, which avoids
entire domain integrals of temperature. The DEIM can also be ex-
tended to three-dimensional problems with arbitrary polyhedral in-
homogeneities. The domain integrals of the potential functions can
be evaluated over the transformed coordinates (Rodin, 1996; Kuvshi-
nov, 2008). Wu et al. (2021b) extended the method to polynomial
eigen-fields, but the domain integrals of the Boussinesq’s displacement
potentials on the polyhedral inclusion were still open and may be
provided in the future work. Section 2 presents 2D thermal, elastic, and
thermoelastic bi-material fundamental solutions, which are straightfor-
wardly derived using Hadamard’s regularization. Section 3 provides
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domain integrals of several Boussinesq’s displacement potentials and
extends to higher-order polynomial forms, precisely the linear and
quadratic terms. Subsequently, domain integrals over a circular sub-
domain are elaborated for readers’ interest in the applications of pipes.
In Section 4, numerical verification is conducted to evaluate Eshelby’s
tensor of a circular inclusion with prescribed thermal strain. Section 5
conducted a case study of a single electric heat cable embedded in a
concrete block for heat flux and thermal stress analyses.

2. Formulation

Consider an infinite domain D composed of two isotropic jointed
dissimilar half spaces, where the upper and lower phases are D* and
D, respectively. Without the loss of any generality, the bi-material
interface § is assumed as plane x;—x; with x, = 0. When the bi-material
medium D is embedded with an isotropic infinite long cylindrical
inhomogeneity 2! parallel to x; axis, the three-dimensional model can
be reduced to plane strain problem in x,x, axes. In general, shown
as Fig. 1, two phases and inhomogeneity exhibit different material
properties, specifically, (i) thermal conductivity K’, K, K'; (ii) thermal
modulus A’, A”, Al; and (iii) elastic stiffness C’,C”,c! for D, D" and
Q! respectively. For isotropic materials, the stiffness tensor C;;;, =
48,364y + u(; ), + 6;6;¢), where A and u are two Lamé constants.

2.1. Two-dimensional fundamental solutions

The fundamental solutions relate excitation at source point x’ and
response at field point x. Following conventional notations, let G
denote the Green’s function. Therefore the thermal (Wang et al., 2022),
thermoelastic (Wu et al., 2023a) and elastic bi-material Green’s func-
tion (Walpole, 1996; Wu et al., 2022) are expressed as G,G; and

Gy, respectively, which are provided below. Although Egs. (1)-(3)
are originally applied for three-dimensional problems, they can be
transformed into two-dimensional forms through Hadamard’s regular-
ization since they are composed of potential functions. Without the loss
of any generality, this paper focus on the plane strain problem, and
fundamental solutions for plane stress can be acquired by adjusting
material constants.

Thermal bi-material fundamental solution

+ =K x'x, >0
Gx.x') = {4”” W i ;e &)
x! 2% <0

2n(l<u+l<s)¢

Thermoelastic bi-material fundamental solution
G;(x,x)

Hew,; + (H + Ly)ﬂ + Ly,

+ xz[ (L) = L0)@ + LA (W10 + 2(1 = 20)5,6 — xza,.)] %%, >0
_ L + 6jp [—(3 — 4" )(Hg‘_y CW-Z) + ;((4(1 - vw)Hg’ - L;;)Ey]
2uw
(MY + LR — x, [Hf —Lg]aﬁ+ng /
: ) i X,x, <0
~ xBaal L+ G = vy - 41 - vy 2
2
Elastic bi-material fundamental solution
G;(x,x")
69— 4(1 )+ AYPS,; + y B (6,26, — 5,8)@
- C'x, Q,w,,jz F40 =V d, +2(1 = 28,0, — Oyxady; | X2¥2 20
=L 1-po0,v,-@+8)0,7,
4w
Wij
6= g ,b)>+A $6,; + A B (661 — 6,)a, <0
- Dy - 0P, — (G + B)O, B,
3
where (i) when x; >0, w =',s =",y = uand y = 1; and (ii)
when x’2 <0, w =",s =',y =1 and y = -1; () represents image
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terms, which is elaborated in Section 2.2 along with potential func-
tions v, ¢, @, f; matrix Q = (1,—1) handles negative partial derivatives
with respect to x, direction. Following Mura’s notation, the dummy
index rule does not apply to capital characters. The material coeffi-
cients H;‘,H;‘, ,H;, and L“‘;, L”C, L‘l‘), L“F, and A%, BY,C%, D", F*,G" are
provided as Egs. (4)-(6), respectively.

uel — Y u uy(1 — '
=it -2y | HU(1L =) (HE+HOA - V)
1 5 G-4v"y + " G -4 +
" u u ’
o M-V Ol HYA - V)
GB—-4vyu! + "

G=4Hu" + 4!

4Hu(1 _ v')y” _ H”(y’ _ ”//) a1- V”)
w_ 5 _ Ay 4 4)
H3 - (3 4\//)”// +ﬂ' ’ H 7-{7 @3- 4‘//)” +”//
w_ 1 (@=20HA w_ 1 (1-20NA"K' - K"
ST 8K 1-v 6~ 82K 1-v K +K'
Y= 1 (1-20")A"
7T 4n(K'+K") 1=
P VC b U P S VYR e L
5 @3- 4\/)”// + H' ’ 5 3 - 4‘//)”// + # )
Lo A PG 0 V)
D~ G=a)u" + ’ F— G =4 +
s W —u w2 =2V — )
W+ W'+ "+ 4" (3 =4
u _ ”,_”N u_3_4vlcu
T2 =V + B =)’ )
2 e -2 "y — " -2 !/ (6)
w_ 2 =2V —p(1=2vT)
W+ WG = 4N+ W (B = 4V7)
G = w4 =23 -4V) - W' (1 -2V)3 - 4")

W+ WG =AW+ WG =)

2.2. Two-dimensional potential functions

Using Hadamard’s regularization, the potential functions are inte-
grated along x;, and only finite parts are retained. The finite parts
of two-dimensional bi-harmonic and harmonic potentials are shown in
Eq. (7),

Injx-x|* -1
w=—|x—x’|2—IIIX ;' . ¢p=-Inx-x|
(7
—r.2
— _,2ln|x—x’| - — 2
v=—lx-X[ . $=-hnx-¥|

where X/ = (x’l,—x’z) or ?: = Q;x/. Although there exist infinite con-
stants in y and y, they vanish during partial differentiation to obtain
Eshelby’s tensors. For three-dimensional problems, four branches of «
and p are shown as Eq. (5) in Wu et al. (2022), where the difference
lies in integral limits. Following the same fashion, four branches of
two-dimensional displacement potentials a are defined as Eq. (8),

a'(xy, %) = ][_ —In[(x] = x)? + (x} — 2] dt

x2

x/
— x)arctan[—
2
X2
@ (x1,x,) =][ —In[(x] = x)? + (x} + 1) dt

0

- X
=2 — 1+ ()~ 3 +2)
- A2

x| =X _
= 2(x] — x) arctan| — 1+ G5 +x)(@ +2)
2T ®
X2
o (x1,xy) :][ —In[(x] = x)* + (x} — 1) dt
—2(x — xl)arctan[
Xy =
o (x), %)) =][ —In[(x} = x)* + (x, + *] dt

X2

] — (X = x)(p +2)

X, — Xy —
=-2(x} - xl)arctan[x} 1= (5 +x)( +2)
2 2
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where £()dx denote finite part integrals with respect to variable x;
only finite parts are retained following two rules, (i) a*®¥/(x,x"); =
- (x,x) 1, E“&I(x,x’)yi = —0,a"%x, x')y; and (ii) partial deriva-
tives of the finite part are equivalent to that of original expressions.
Following the same fashion, the subsequent higher order displacement
potential # can be determined as Eq. (9). Although relationships be-
tween finite parts are observed as g* = g/, Eu = EI, the dropped
constants in four branches of # are not exactly the same. Hence, one
cannot simply conclude two potentials are equivalent unless in the

sense of a finite part.

B (x1,x) =]l a“(xy,)dt

X2
1 ' ’ x’l X
= {46 —xpee) - x3) arctan] 5——]
2 2

(0= x? = () = x)P) @+ 3) |

— X2
B (x1.xy) =][ @ (x,, t)dt
0
1 ’ ’ xl| - X
= E{4(x1 = x1)(x) +x2)arctan[x e ]

o+ X,
+ (O +x)% = (] —xl)z)($+3)} o
x 9
ﬁl(xl,xz) =]l ’ al(x],t)dt
x| = x
b =X

1

%{4(3(’1 — x)(x} — x,) arctan[

(= x)? = () = x )P @+ 3) |

ﬁl(xpxz) = ][""’ a[(xl,t)dt
x)

x'—x

1 1
- E{4(x’1 — X, + xz)arctan[xl —

!
2 2

(6 +x? = () = x)?) @ +3) |

3. Domain integrals of two-dimensional Boussinesq’s potentials

As illustrated in Section 1, due to boundary effects and interactions
between inhomogeneities, the eigen-fields are approximated through
the Taylor series as Eq. (10),

T 0) = TP o+ (x), = [T+ (x), = X)) = )T + - o)

2%
ijipg t

1=

* oty — 0% /o C ! V(! — €
el.j(x)—e‘.j+(xp xp)eijp+(xp xp)(xq xq)s

where superscripts 0,1 and 2 represent the uniform, linear and
quadratic terms, respectively; the superscript ¢ stands for center of
Qr; T and €;; are eigen-temperature gradient (ETG) and eigenstrain,
respectively. Using the technique of Green’s function, the induced
thermal and elastic fields can be obtained,

T(x)= / G (x.x)T}(x') dx’
Q

_ 1 0 /I c et
_/_(26’ildXTi +/(20’i/(xﬂ xp)dx Tip

N N A 12
+/QG,I-/(xp xp)(xq xq)dx TI.M

— 0s¢ 1 2%
- DiTi + DiPTip + Dfl’flTipq

u;(x) = / G,y xXT} (') + Gy €7, (x) dx’
Q
_ 1 0 /L 1l
_./QGi’j/dXTj +LGi’j/(XF XP)dX ij

+ / Gy (% = X)) = xO)dx'T
Q

International Journal of Solids and Structures 269 (2023) 112167

7 0% / c 7 L
+/QG,-M,dx sjk+/gG,-jvk/(xp—xp)dx ity

[ Gt e, =, ay
Q

_ 0 1% 2% 0% 1% s
=R;T;" + Rijp T, + Ryjp T+ 8iki €y + 8ikipErgy T EikipgEiipg

where D, R and g are thermal, thermoelastic, and elastic Eshelby’s ten-
sors, respectively; the subscript (.) » = dx] represents partial derivative
with respect to x]. Notice that when the source and field points are
located in the different phases, (), = —(.); holds. However, when
source and points are located in the same phase, due to the existence
of image terms, (.) » = —Q;(.); holds for image terms but (.) y = —(.);
works for original terms, i.e ¢ Eq. (3) of case x/zxz > 0. Following
conventional notations, the domain integral of potential functions are
expressed through Greek capital letters,

— ! _ !/ _ cC /
q’qu“. = /Q¢(xp xp)(xq Xq)...dX R

_ I et e ,
P —/QW(X[, Xp)(xq xq)...dx
(12)

Yy = y LN N ’
6. = /QU’ P(x), — x,)(x, — Xp)...dX',

— N N ,
A;q...—/gﬂy(ﬁ(xp xp)(xq xq)...dx

where domain integrals @,, and ¥, are available in Wu and Yin
(2021a). Their image terms can be straightforwardly calculated by
mirroring the cross-section without changing formulae. For instance,
Ep(x,x’) = deip(x,i') and its partial derivative Ep,i/(x, x') = —Q,EP.,-
x,x")=-0,0; d)p,,-(x,i’), which are elaborated in Appendix A.1. In the
following, this section aims to provide closed-form formulae on four
branches of © and A.

3.1. Definition of transformed coordinate (TC)

Consider an N sided arbitrary polygonal cross-section embedded
in the bi-material domain D. As mentioned in Section 2, the bi-material
interface S is assumed as plane x; — x, with x, =0, and the polygonal
cross-section lies in exactly the same plane. Considering the lengthy for-
mulae in Cartesian coordinates, alternatively, orthogonal transformed
coordinates (TCs) are introduced to handle complex expressions on
distances between vertices and field points. Shown in Fig. 2, TCs are
constructed at each edge of the polygon through two normal unit
vectors. For instance, the fth TC relies on the unit directional 7% and
outward normal 4° vectors, where vertices are aligned in counterclock-
wise sequences. Let m and n denote the first and second components
of the fth unit directional vector #°, and thus one can obtain 1% =
(n,—m) based on the orthogonal property of vectors. Based on TCs, the
distances b ; and l}—' can be expressed as Eq. (13),

bf = [(U}')i - xi] (/1(})1-’ f = [(U?)i - Xi] (”?)i 13)

where b is the perpendicular distance with respect to the fth edge and
I* are horizontal distances defined in the fth TCs. During the partial
differentiation process to obtain Eshelby’s tensor, the area integrals
can be converted to contour integrals. Despite source points within
the cross-section, only points along the edges are of interest. Let # =
(x] = x,-)(n?),- denote the position of x’ on the fth edge., the Galerkin’s
distance vector can be written as Eq. (14),

ben+mm  i=1
X —x; = b (A% + 0y, =< (14)
! ! AR —bfm+r]n i=2
3.2. Domain integrals of uniform potential functions
Eq. (8) shows that o = —a, 2" = —a' and a(x,X) = a*(x,X),

and similar cases can be observed in Eq. (9) as well. Therefore, four
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Fig. 2. Schematic plot of transformed coordinate (TC) on a N sided polygonal section.

branches of domain integrals can be derived from one branch, and the
other three can be acquired through mirroring the cross-section, which
is elaborated in Appendix A.2. Without the loss of any generality, this
section mainly focuses on @* and A“. Using the Eq. (4) in Wu and Yin
(2021a), domain integrals can be obtained,

NE o rot rbpyI+an2[6]
e = Z/ / {Zrl arctan [ ] +ry(2— ln[p2])} dpdf
=1dem Jo r

Np

= Y Tbp I =T byl
f=1

%/ /bf\/1+lan2[9
f=170"

l\JI'Q

4r ry arctan [ 1]
r

+0% =3 - In[p)) dpdo
Np
= Z L(by I5) = L(by.17)
f=1

(15)

where r; = pcos(@)n + psin(@)m and r, = —pcos(f)m + psin(@)n; 6* =
arctan[lf /bs] are integral limits of angle. And two functions 7 (b, /) and
L(b, 1) are provided as follows,

T, = % { 126°m arctan [113] +6((% + 1)m + 2bln) arctan [M]

—bm+ In
— (6% + 1%)n = 2bIm)(3 In[b* + 171 — 11) + 6b°n1n[b* + 1%] }

b

L, = ;ﬂ { 25 [6b(b% + 12)mn + 1(m* — n*)(1* — 3b%)]

+ 12 ( 4b%(m* — n?)arctan [é]

+ (36(6* + 1P)(m* — n*) + 2Imn(3b* — %)) arctan [—bn +Im ] )

—bm + In
2
+ 6(2bmn(s? = 3%) + 1K = ) = %) ) In [1 + 2—2] }

1e6)
Shown in Eq. (11), the displacement field can be obtained through

partial derivatives of potential functions, making it possible to ap-
ply Green’s theorem possible. Hence, domain integrals on uniform

potentials a* and p* are transformed into contour integrals,

Ng

0" = Z(A )i (Mo -
~

Np
—Z}lu 3 (NG = Ny 1)

Mby.17))
a7

where two integration functions M(b,/) and N(b,[) are provided as
below (constant parts are separated),

M(b, 1) = / 2(bn + ym) arctan [b”—”m]

—bm +nn

+ (=bm + )2 — In[b* + 1*1) dn

= %l(—me +In)+ b>marctan [é]

+ 1(2bn + Im) arctan M]

bm+In
—(2blm + n(b* — %)) In[b* + 1%]
N =3 / 4(bn + nm)(=bm + nn) arctan [[’”—”’"]

—bm +nn
+ ((=bm +nm)* — (bn + nm)*) (3 — In[b? + n* 1) dn

1
=% { 111(=6btmn -+ (> = )37 - 1))

— 6b3(m? — n?) arctan [é]

+ 61 (2mn( = 36%) = 3bl(n ) arctan [ LI

—bm + In
+ 3<2bmn(312 —28%) + 1(m® = Y2 — 3b2)> In[b? + 2] }

18
3.3. Domain integrals of linear and quadratic potential functions

Taking advantage of Galerkin’s distance vector, source terms x’
expanded at point x;, can be expressed in terms of Eq. (14) and field
terms that x - x (bf(/lo) +5(& /) )+ (x, x;). Hence, and the first
order partlal derlvatlve of ©; and A} can be expressed as,

Np
01, = 5,0 + (x, = 3908 = D (49, { (AD,by (Mg, 15 = Mby. 1))
f=1

+ @), (M= M p1)) |
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A = 6, A+ (x, = XA = Y (A0, { A9),b, (N(bf, 1Y)~ Nb;. l;))
7=l

+ @D, (M= N0p1p) |
(19)

where two linear integration functions M/ (b,I) and N/ (b,1) are pro-
vided as below,

M b,1) = % { —6b*narctan [%] + l<2n(3b2 +81%) - 2lblm>
+ 612(2Im + 3bn) arctan M]
—bm + In

+ 3(b3m +12(bm — 2[n)) In[6® + 12] }

1 -
NG 144{

l(—8mn(3b2 +412) + 31(m? — n®)(38H% — 2112))

24b*mn arctan [ﬂ (20)

+ 2412 ( 3mn(2b® — 12) + 4bl(m® — n*)) arctan [ bm + Im ] )

—bm+In
+ 6(16b13mn +(m? = )G — 6217 — b4)) }

Similarly, the quadratic source terms x; x; can be expressed as (x; -

xp)(x —x)+x, x +x! oXp— XpXg- The quadratic domain integrals can be

obtamed by comblnmg the interchanging rules of source, field terms,
and uniform, linear domain integrals. Taking 6, ;asan example,

01, = (6, = )0, + (x, = X101, + 5,60 +5,0%)

= (60 = Xy = X0 + (B(x, = x9) + 8, (x, = 06" )
Np
- fZ_lu_‘;x- { 09,09,5% (M. 1) - Mby. 1) @1

+ b (€0, + UDGEN,) (M by ) = M 0, 17) )
+ EED, (MU by = MU by 1)) |

Following the same fashion, quadratic domain integrals A% can be
written in terms of integration functions A, N/, and N/, And two
quadratic integration functions M'!(b,1) and N/ (b, 1) are provided as
below,

M b1y = % {{1(66°@bm + In) + 124510 — 526m)) - 126 marctan [é]

bn +Im ]
—bm +In

= 6(b%n+ PGn— 4bm) In > + 7] }

+ 1213 (4bn + 3Im) arctan

N, = { 306°(m* — n?) arctan [é]

ﬁ
- l(lelmn(2b2 +991%) — 2(m* — n?)(15b% — 2306717 + 15314))

+ 3083 (—5bm(31m +4bn) + 3n(4lm + Sbn)) arctan [ bn + Im ]

—bm +In

+ 30(bmn(b“ +151%) = B(m® = i?)(5b% — 312)> In(b? + 2] }

(22)
3.4. Circular domain integrals

For domain integrals @ and ¥, Dyson (1891) first proposed for-
mulae to handle integrals with various density functions in ellipsoids.
Later, Mura (1987) presented special cases of ellipsoids, including
the case that one axis is infinitely long. Since plenty of work has
discussed the two integrals, this section does not repeat such con-
tents. Regarding bi-material domain integrals, Walpole (1997) studied
a spherical inclusion embedded in two-jointed half-spaces, and the
author suggested interchanging integral sequences. Subsequently, Liu
et al. (2015) and Wu et al. (2023b) completed all cases of © and A
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with polynomial source fields. Recently, Dang et al. (2019) investigated
Eshelby’s problems in a semi-infinite domain, where the analytical ex-
pressions are proposed as a combination of several modified functions.
However, the length of formulae (Egs. (36 - 38) in Dang et al. (2019))
makes it difficult to be utilized for programming purposes. Therefore,
this section aims to provide compact and simplified circular domain
integrals based on potential functions.

Following the definition of potential functions in Egs. (8) and (9),
the integration sequence of their domain integrals can be switched
(taking ©" and AY, for example),

@“(x)—/ a“(x,x")dx’ —/ /q’)dx dt = /_wd)dt
X2
AY(x) = /ﬂ“(x x')dx’ —/ /a dx' dt = / w@“dt

where only finite parts are retained as other constants vanish during
the partial differentiation process, and such a method is applicable
to potentials with polynomial source terms as well. Notice that the
bi-material displacement potential functions exclude singularity; thus,
only the exterior part of @ is applied. Let x¢ denote the center of
the circular cross-section, and explicit formulae of @, D, and @, are
provided as below,

(23)

71'04

cD:—zmzlnlx—x“|2, D, =(x,—x7)

P 2|x |2

4
L = ra* { (xp—x;)(xq _x;)6|XiXC|4 249

2 1 aZ
- 4 pq(lnlx—xl +2+ﬁ)}
Uniform circular domain integrals
0 = nd*a’ Y (25)

Linear circular domain integrals

4 (et p=1 4 (—ps p=1
L A P S GLE

Quadratic circular domain integrals

pqg#2
p#2,q9=2 &
p=q=2

a’¢’, +3y°x, + 6a°
s _ AT ) 5
P4 24 a ¢,p
—azq’)sz +3y5x, + 6a°

2.8 3x§ s s

aa,z—Ty‘+6[3‘ p,qF#?2

af p#z,q:z (27)
a —ﬁ S+6p° =q=2

2 s p=q=

where the superscript s represents four branches of functions, which
is up to positions of source and f1eld points; y* = 1 when s = u or

() and y = —1 when s () and [. Their derivatives have
been implemented in the package “POLYGON - EIM”, which will be
elaborated in Appendix B.

3.5. Discussion on singularity issues of polygonal domain integrals

Singularity is a fascinating topic when the source domain exhibits
a non-smooth boundary. For ellipsoidal or elliptical inclusions in 3D
and 2D, respectively, no singularity exists but discontinuities of the
strain and temperature gradient field can be found (Mura, 1987). For
polyhedral or polygonal inclusions, Rodin (1996) has demonstrated
that for elastic inclusion problems with a uniform eigenstrain, a weak
singularity of Inr or a strong singularity of 1/r exhibits for the strain
field in the neighborhood of a vertex of a polygonal or a polyhedral in-
clusion, respectively. This paper extends Rodin’s work to thermoelastic
problem, but the singularity will follow the similar fashion.
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Firstly, this paper considers a bi-material infinite domain. However,
as long as the polygonal inclusion is within one material phase as we
discussed in this paper, the same singularities retain as a single material
infinite domain investigated by Rodin (1996). The reason is that the
bi-material fundamental solutions are derived through superposition
of infinite one and relevant image terms, original components of infi-
nite fundamental solutions produce singularity issues at the vertices.
However, the image terms exhibit a distance from the vertices but
will not produce any singularity issue unless vertices are on the bi-
material interface, which will be investigated in the future. Note that
the vertex on the interface may generate a higher order singularity than
an inner vertex does because both the interfacial discontinuity plays
an additional role in the singularity. However, this paper limits to the
inner vertex, which shall exhibit the same singularity as Rodin (1996)
studied.

Secondly, this paper covers three Green’s functions while Rodin
studied the elastic case only (Rodin, 1996). The thermal Green’s func-
tion shares the same singularity order as the elastic Green’s function,
as the harmonic potential plays the role. However, for thermal elastic
problem, because the continuity of the thermoelastic Green’s function
is one order higher than the elastic Green’s function, the strain field
caused by a uniform heat source will not be singular anymore. Note that
a temperature change in an inclusion produces an eigenstrain, which
produces stress singularity as well.

Thirdly, this paper considers different types of sources beyond the
uniform eigen-fields. Specifically, distributed heat sources and forces,
polynomial eigen-temperature gradient (ETG), polynomial eigenstrain
are considered. The strain field caused by uniformly distributed heat
sources or forces exhibit continuity one order higher than the cor-
responding uniform eigen-fields, so the uniform eigen-fields play the
controlling role on the overall singularity. Note that for a polynomial
eigen-field with the reference point on the vertex, the uniform term
plays the dominant role on singularity as the higher order-term provide
low source intensity at the neighborhood of the vertex.

4. Numerical verification with circular inhomogeneity problem

The above-provided closed-form domain integrals can provide exact
solutions to thermal and elastic fields of Eshelby’s inclusion prob-
lems, where the eigen-fields are continuously distributed over the
inclusion up to quadratic order. Besides the inclusion problem, the
aforementioned domain integrals can be applied in Eshelby’s equiva-
lent inclusion method to investigate disturbance by the mismatch of
material properties. Shown as Fig. 3, this section considers a circular
subdomain with radius a = 0.1 m embedded in two jointed dissimilar
half-spaces with distance 4 = 1.2a to the bimaterial interface S. A line
heat source g = 10 kW/m® and uniform far-field load agz = —10 kPa are
applied to the system. Without the loss of any generality, (i) the upper
phase D* exhibits 1 W/m K, 3 MPa, 0.2, 10 kPa, (ii) the lower phase D~
exhibits 10 W/m K, 1.5 MPa, 0.2, 20 kPa, and (iii) the inhomogeneity Q
exhibits 5 W/m K, 1 MPa, 0.3, 0 for thermal conductivity, shear mod-
ulus, Poisson’s ratio, and thermal modulus, respectively. 3,4,12,20—,
and 100— equal-sized regular polygons are employed to approximate
the circular cross-section to conduct Eshelby’s thermal and elastic EIM.
In order to verify uniform, linear and quadratic domain integrals, the
solutions are compared among finite element method (FEM), Eshelby’s
method with analytical circular and polygon-approximated integrals on
thermal and elastic fields. The following subsection provides details
on acquiring initial stress components in FEM, which is due to the
non-uniformity of loads.

4.1. Finite element model and preparation for initial stress components

In this section, the FEM model is built upon the commercial software
ANSYS with steady-state and static elastic functions. To reduce thermal
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Fig. 3. One circular inhomogeneity (radius a = 0.1 m, heat source ¢ = 10 kW/m?) is
subjected to far-field load 032 = —10 kPa approximated by 3,4,12,20 and 100 edges
embedded in a two jointed dissimilar half-spaces with distance h to the bimaterial
interface.

boundary effects, shown in Fig. 4, (i) the dimension of bimaterial ma-
trix are 20 mx 20 m; and (ii) uniform temperature boundary conditions
—2.08 °C are setup with on the left, right, bottom and top edges, re-
spectively. Regarding elastic boundary conditions, (i) the displacement
components u; and u, are constrained for the left and bottom edge,
respectively; (ii) the left bottom corner is constrained to avoid rigid
body motion; (iii) the right edge is traction-free; and (iv) a 10 kPa
uniform pressure is applied on the top edge (for an elastic stress test
in Section 4.3, which is suppressed in Section 4.4). Unlike the infinite
space, a uniform far-field load results in linear stress variation in the
neighborhood of the bimaterial interface. Therefore, it is inappropriate
to use uniform far-field strain/stress as initial conditions. Instead, the
circular domain is first filled with the same material as the matrix,
and the stress and its partial derivatives at the expansion center are
obtained and applied as initial stress conditions for EIM. Based on
FEM, (i) ¢), = 1014.9 Pa, ), = —10.03 kPa with linear slope afu =
0,69, = —14921 Pa, 05, = 3333 Pa and oy, = 22.22 Pa for the
upper region near the interface; (ii) 5?1 = —-736.92 + 100.66x, Pa and
"gz = —10027+22.22x, Pa for the lower region near the interface, where
(i) is applied as initial stress conditions for EIM.

4.2. Comparison of thermal fields among circular and non-circular approx-
imated polygons

As indicated in Eq. (1), when the source and field points are in
the same material phase, the fundamental solution contains both the
original harmonic potential and its image term. This subsection aims to
verify the appropriate handling of image terms in Appendix A.1. Shown
in Fig. 5(a) and 5(b), the temperature and flux are compared between
FEM and EIM with uniform, linear and quadratic ETGs. When the
inhomogeneity is embedded in the infinite medium, a combination of
uniform and linear ETG can provide the exact thermal solutions, which
are elaborated in Section 5. However, since the circular inhomogeneity
are placed close to the bimaterial interface .S, the material mismatch of
the two matrix results in a more complicated variation of thermal fields.
Taking the above case, for instance, because the thermal conductivity
significantly changes (K’ = 0.1K""), the slope of temperature and flux
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Fig. 4. Plot of FEM mesh for a circular inhomogeneity embedded in the two jointed dissimilar half-spaces; 0.005 m element size used in circular and its related two rectangles;

0.05 m element size used in two other larger rectangles.
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Fig. 5. Verification and comparison of thermal field between EIM and FEM along the vertical center line, (a) temperature 7 and (b) flux ¢, obtained by uniform, linear and
quadratic ETG with analytical circular domain integrals; (c) temperature 7" and (d) flux ¢, obtained by 3,4, 12,20, 100— equal edged polygons with quadratic ETG.

changes accordingly to match continuity equations. In such a case,
quadratic and actually even higher-order variations of flux are expected
due to the interfacial effects. Fig. 5(b) verifies the higher order variation
of flux, and EIM with quadratic ETG has the smallest discrepancies
compared with that of uniform and linear ETGs. Fig. 5(c) and 5(d)
compare temperature and flux calculated by domain integrals with

five polygons. Since the circle is approximated by regular equal-edge
polygons, more edges could better describe the geometric features. It
is observed that 3,4—edged polygons can seldom catch the features
which exhibit large discrepancies between the analytical solutions and
other polygons. 12-edged polygons can provide close predictions, but
the thermal fields show larger difference around the top and bottom.
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Fig. 6. Verification and comparison of stress fields between EIM and FEM along the vertical center line, (a) normal stress o;; and (b) normal stress ¢,, obtained by uniform,
linear and quadratic eigenstrain with analytical circular domain integrals; (c) normal stress ¢,; and (d) normal stress o,, obtained by 3,4,12,20, 100— equal edged polygons with

quadratic eigenstrain.

When the number of edges increases, good comparisons can be found
between the 100-edged polygon and the analytical solution.

4.3. Comparison of stress fields among circular and non-circular approxi-
mated polygons

This subsection verifies the domain integrals of Boussinesq’s poten-
tials. As mentioned in Section 4.1, this section set nil thermal modulus
to obtain regular initial stress components for EIM. Following the
same fashion, we first compared FEM and EIM with analytical circular
domain integrals. Shown in Fig. 6(a) and 6(b), similar to thermal
fields, EIM with quadratic exhibit the minor discrepancies compared to
that of FEM. As a tribute to Eshelby’s work, when the inhomogeneity
is embedded in an infinite medium, the uniform representation of
eigenstrain is the exact solution. Even for an inclusion problem, the
mismatch of two matrix materials changes the order of load from
uniform to linear. However, questions may arise that for linear initial
stress fields, why do the elastic fields differ between the linear and
quadratic eigenstrain? This question should be answered in aspects
of fundamental solution as Eq. (3). We shall first the problem in an
infinite space with Kelvin’s solution, and a linear variation of the
initial field can only result in a combination of uniform and linear
eigenstrain. However, the bimaterial fundamental solution consists of
Kelvin’s solution and Boussinesq’s displacement potentials. Unlike the
harmonic, bi-harmonic functions, which yield zero at the center of
expansion for higher order derivatives, i.e., uniform potentials are zero

under 5th order derivatives, Boussinesq’s displacement potentials still
have influences. Therefore, equivalent stress conditions for quadratic
terms are no longer zero, resulting in such differences. Fig. 6(c) and
6(d) compares solutions between analytical circular domain integrals
and equal-edged polygon approximated solutions. When the number
of edges increases, the results of an equal-edge polygon gradually
recover the analytical solution except for the top and bottom vertices.
In addition, the stress singularities caused by polygon vertices vanish
rapidly for both interior and exterior parts. Except for the cases of 3 and
4 edge, other cases with 12,20, 100 can provide good agreement with
analytical domain integrals, which can be further applied for elastic
analysis of other geometries.

4.4. Comparison of thermoelastic stress fields among circular and non-
circular approximated polygons

Although the thermoelastic field by a circular heat source may not
vary as much as the elastic stress fields, there are constant stresses
between FEM and DEIM results due to BCs. For readers’ reproduction,
‘7(1)1 = —2.32 kPa and "gz = —15.03 kPa are used in verification of DEIM,
which are obtained in a similar way as elastic one through inclusion
problem. Fig. 7(a) compares FEM and DEIM with uniform, linear and
quadratic eigen-fields and the same conclusion can be drawn that
quadratic eigen-fields can better approximate the actual fields. Since
the thermoelastic solutions are the superposition of thermal and elastic
parts, the discrepancies from temperature accumulates, which results
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Fig. 7. Verification and comparison of stress fields between DEIM and FEM along the vertical center line, (a) normal stress ¢, and (b) normal stress o,, obtained by uniform,
linear and quadratic eigenstrain with analytical circular domain integrals; (c) normal stress ¢,; and (d) normal stress o,, obtained by 3,4,12,20, 100— equal edged polygons with

quadratic eigenstrain.

in much larger discrepancies in elastic stress compared to Fig. 6(b).
Fig. 7(b) shows similar trends, and the application of linear eigen-fields
significantly improves approximation accuracy. The reason is that a
uniform ETG cannot accurately describe thermal fields, and even for
an infinite medium (in the next section), we show that a linear ETG
is an exact solution where no uniform ETG is necessary. Fig. 7(c) and
7(d) apply polygons to approximate the circle. Given a low number
N, their main difference exists in the neighborhood of top and bottom
vertices, which require more edges to capture the geometry.

5. Case study of an electric cable with different cross section in a
large concrete block

The previous section verifies domain integrals of arbitrarily shaped
polygons through comparison with FEM and analytical solution. The
section aims to derive the analytical thermal, thermoelastic solution of
a single circular inhomogeneity with a prescribed uniform heat source
embedded in an infinite space. A typical application of such a case is
the analysis of an electric cable embedded in a concrete block.

5.1. Dual equivalent inclusion method

In our recent work (Wu et al., 2023a), the DEIM is proposed to
handle trivial procedures to couple the thermoelastic analysis. Using
the technique of Green’s function, DEIM avoids volume integrals of tem-
perature over the entire domain by limiting it within inhomogeneities.

10

Although tedious to duplicate Eq. (28) in Wu et al. (2023a), it is of
importance to list the equation as Eq. (28),

w ) ! (] E 10% w
CiinEn Teyteg teg—ey )= AYS;AT

S ’ (o} E T
= Cl.jkl(sﬁ +e, et €)= A'6;;AT

CiiaEgm + E;c[,m + EkQI,m + Ellcfl,m —Epm) = A“6;;AT,, 28)

= Cles + e +ed +ef) ,, — A'5,AT,,

Cint € E;d,mn + Ele,mn + Ellfl,mn =24~ A“6;;AT
= C‘.Ijkl(eﬁ +e,+ ekQ] + 5;5),mn - A’&ijATmn

where ef’; elfj,ejj are initial far-field strain, disturbed strain (by eigen-
strain) and eigenstrain, respectively; 68. and 55 are disturbed strain
caused by the heat source and ETG, respectively. For a linear prob-
lem, the disturbed strain by eigenstrain, heat source, and ETG can
be obtained by applying compatibility law on Eq. (11). The ETG are
determined through thermal equivalent flux equations, and readers can
refer to Eq. (15) in Wang et al. (2022).

5.2. Exact thermoelastic solution of an circular inhomogeneity embedded in
an infinite domain

Consider a constant heat source ¢¥ distributed within the circular
subdomain 2 with K’ located at the origin point, where the refer-
ence temperature is assumed at the center of inhomogeneity. Through
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Fig. 8. Variation of temperature T along x, within [0.003,0.6] m when electric cable is located at different height, (a) 0.05 m, (b) 0.15 m and (c) 0.30 m (in comparison to

Eq. (29)).

thermal equivalent flux conditions, a linear ETG can be obtained as
Eq. (29),

«_ K-KI!

0= SoxgT @9
then the temperature is,
9 { K-K! }
Tx)= D+ —,;;
=\ P+ g i
_xl
_ 4 J(-Ind)a®+ KKf az—%|x|2 x| <a (30)
4K | —a®In|x|? |x] > a
2(1 —1na®) — x| <
o) =nd° ( 621 )= IxI” x| <a 1)
—a*1In |x| |x] >a

where the contribution of linear ETG vanishes for exterior field points;
@ is first presented considering the constant of the interior part, which
is often neglected by the community in the partial differentiation
process. Through solving Eq. (28), the eigenstrain can be obtained as
the combination of uniform and quadratic terms as Eq. (32),

—H —A —B
€(X) =876+ €58y +& G0+ 018Xy — X)X, = x1)  |x| <@

(32)

11

where components of uniform and quadratic eigenstrain are,

& = A= AN+ B = v
= 2401 = 2v)(p(A + p = 24" + (A — pyu’)

33
=LA +A) & ®3)

S = 16K’((1 - 204+’ + A+ u’)u)

and see equation in Box I.
By using Eq. (11) with elastic and thermoelastic Eshelby’s tensors,
the displacement can be obtained,

1
8z(1—v)

+ et [qjmm,ihh - 4(‘Dmm,i] + 2€B[qjmh,rmh - 2V¢mm,r —-8(1- V)(Dlm,m] }
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— Xi
T 81— 2a(1+v)q, [a*(K — 3K!
(-v aa<4v>qb[a(1< KD 1]
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(35)

where a = A/(34 + 2u) denotes the thermal expansion coefficient.
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Fig. 9. Variation of normal stresses along x, axis within [0.003,0.06] m when the polygonal cross-section is located at three distances, (a) o};, (b) o,, for h =0.05 m; (¢) oy, (d)

05, for h=0.15 m; (e) oy, (f) 0y, for h =030 m.

Note that one can similarly derive the exact thermoelastic solution
of spherical inhomogeneity embedded in an infinite space for the 3D
problem (see Section 6.1 in Wu et al. (2023a)).

5.3. Comparison of temperature and thermoelastic fields among circular
and non-circular approximated polygons

Considering an electric cable with a polygonal cross-section em-
bedded in a large concrete block, it usually generates heat, which
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causes thermal stresses in the concrete phase. Because the concrete
block is much larger than the cross-section of the cable, the problem
can be simplified as a semi-infinite one, where concrete and air serve
as the upper and lower phase, respectively. As shown in Egs. (1)-
(3), the interfacial effects decrease with the increasing distance ratios
(h/a), where a is the characteristic dimension of the cross-section.
Hence, to investigate both geometries, polygons with N wedges (N =
3,4,6,50,100) with the same cross-section area (6.4516 cm?) and heat
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SK(M +pl + (1 =2v)(A+ )

(34)

Box I.

generation rate 33 kW/m’ are applied. Regarding the distance effects,
they are placed with 2 = 0.05,0.15, and 0.30m below the interface. The
material properties are selected as, (i) K’ = 1 W/mK, 4/ = 1.5GPa, v/ =
0.2 and A’ = 60 kPa for the concrete; (ii) K" = o0, p/' =V' = A" =
for the air to create the constant temperature interfacial condition; and
(iii) K! =237 W/m K, u! = 26.25 GPa, v/ =0.33 and A! = 8.453 MPa
for the cable.

Fig. 8(a—c) compare temperature T = T(x) - T(x°) along x, axis
among polygonal cross-section with 3,4,6,50 and 100 edges. It is ob-
served that the temperature of the 3 — edge polygon exhibits different
trends, which are caused by different center temperatures. As for
other cases, although they exhibit some discrepancies within the cross-
section, the differences vanish rapidly. When the distance 4 decreases,
the two end-point temperatures increase, and their differences become
larger as the interfacial effects become intensive. Since the dominant
function of temperature is Inr, the interfacial effects require larger
distances to vanish. As indicated in Fig. 8(c), when comparing tem-
peratures with the solution in Eq. (29) (center at 0.3 m), apparent
discrepancies are observed around two end-points.

Fig. 9(a—e) compare temperature T = T(x) — T(x°) along x, axis
among polygonal cross-section with 3,4, 6,50 and 100 edges. Despite the
singular stresses around the vertices, the interior thermoelastic stresses
exhibit a flattening trend with the increase of distance A. Since the
dominant function of interfacial effects on stress is 1/r, the interfacial
effects reduce rapidly. Shown as Figs. 9(c, d) and 9(e, f), the interior
stresses are in similar shape though their values are different due
to different temperatures. Regarding the exterior stress, all polygonal
cases exhibit similar trends, which can be interpreted that the influence
of ETG and eigenstrain on stress behave as 1/r and 1/r2, respectively.
Fig. 7(e) and 7(f) compare stresses with a circular cross-section in an
infinite medium, and their main difference exist in the neighborhood
of two end-points. Since the thermoelastic field is obtained through the
superposition of thermal and elastic fields, Fig. 8(c) exhibit a similar
trend, although a reference temperature is applied.

6. Conclusions

The two-dimensional bimaterial elastic, thermoelastic Green’s func-
tion is obtained through finite part integrals. Moreover, their do-
main integrals with uniform, linear and quadratic eigen-fields for two-
dimensional bimaterial problems are presented. Using the transforma-
tion coordinates, the domain integrals are obtained through the direct
method and Green’s theorem through conversion to contour integrals.
Numerical verification is conducted on DEIM, with FEM, analytical for-
mulae for circular inhomogeneities with heat source and initial stresses.
An exact thermoelastic solution of a circular inhomogeneity embed-
ded within an infinite domain has been presented. The formulae are
further applied for DEIM to investigate boundary effects of polygonal
cross-sections embedded in a large concrete, where material properties
are adjusted to simulate a semi-infinite problem. The aforementioned

formulae for harmonic, bi-harmonic, and displacement potentials are
provided for the community.
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Appendix A. Transform domain integrals to other branches

A.1. Handle image terms of harmonic @ and bi-harmonic ¥ potentials

Section 3 states that the domain integrals of @ and ¥ can be
handled by mirroring source parts (x’). This appendix section aims to
provide some simple derivations, and we have already implemented
the domain integrals in the “POLYGON-EIM” package. For readers of
interest, please refer to Appendix B for specific programming details
with code, which contains both circular and polygonal integrals. In the
following, we take @ and @ for instances. Following the same notation
of our recent paper (Wu and Yin, 2021a),

Np
— - — =+
;= YUy byl )
f=1
@, =0p { 6,8+ (x, - %0, A1)

Np _ o
+ fZ‘,_lu(}x-(bfu(})p@g(b,-,lf,7}>+<53>,,4>{(bf,lf,l})) ]

7 + e +
where the parameters b, = ((—v}),- - x,-)(i(})i and If = ((—v}),. -

x,.)((:‘;),.. As shown in Eq. (A.1), the image terms can be well handled
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by mirroring the source points. Notice that the 2DTC is based on the
counterclockwise sequence. Therefore, attention should be paid to the
inverse sequence of vertices of each edge.

A.2. Handle Boussinesq’s displacement potentials with other branches

Section 3.2 states that the domain integrals of the other three
branches can be extended from the first branch. Let us take 6%, @;, @Z .
and 6", 5“ 52 , as instance to illustrate the transformation process. In
Eq. (8), one can obtain relationship that a"(x,x’) = ¢“(X,x’). In such a
case, O can be expressed as,

Np

0 = z Ty 08 =Ty T)) (A.2)
7=

where the parameters b, ((u}),- - Q,X,-)(/l(}),- and IN? ((U?)i -

Q,x,-)(.f?),». And the partial derivatives of 6% can be modified from
Eq. (17) as,

Np
6,=0, fZ_l—<Aﬁ>,-{M(bf,l;> - MBI} A3
Subsequently, for the second order partial derivative,

G oM M
9" — 0 0 i 75—
0, =0,0, fZ ) { =09 (5561 = S26,.1) s

- (:?( (b,,l+)——<bf,l ) |
where Q; handles negatlve sign with respect to the second axis that
a
% = —0,(i), and L = —0,(&),.

z)x

and @ , it is observed that & (x,x') = —a*(x,x’) and @ (x, X') = —a“(x, X').
Hence, they can be obtained similarly to Eq. (A.1) with a negative sign.
Regarding the linear domain integrals,

. For the other two branches, @'

_;,,- = {/Q(x;, -X)a' X x)dx' + X, - x;)E"}
= 0,0 +(x,—x)0,
Ne 3 o o (A.5)
+0; ), —() { (A50pbp (M(B . TH = M(B . T))
=1
+ EN (M By, T = M By, T)) }
As for the quadratic linear domain integrals,

—u

_ 0 ;= ;= = NI
i = _, { /Q(xp - xp)(xq = Xp)a"(x, x")dx
— — —u —_ . —lu
+ Gy = )8, + (= ¥)8, = (7, = %), = x,)0 |
_ (= v - el —u —u
= (xp - Xp)@q’i + (xq - xq)@p,i + QP‘Spi@q + QQ‘sqi@p
= (Qpb,x, - X+ Q084X = x;))5

&, - X)X, - x)0), (A6)

Np
+0; Z -9 { GDpADB (MBy, T = Mby, 1))

((AO) €Dy +Dy(ED),)
by(MIBs, T = M (B, T7))
+ E,E, (MG T = M5, T ) |
For domain integrals with g functions can be obtained by replacing M
with A" and © with A functions.

Appendix B. Introduction to “POLYGON-EIM” package

This paper aims to introduce the polygonal domain integrals of
thermal, thermoelastic, and elastic Green’s function and to promote its
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versatile applications to the engineering community. Therefore, we im-
plemented the domain integrals and Eshelby’s EIM in the “POLYGON-
EIM” package, which is available at homepage of Prof.Yin research
group through the : link. The code was programmed mainly using
namespaces that beginners of C++ can understand.

The library (header files of functions) consists of six parts, which
are (i) “UNIFORM _polygon_domain_integrals”, (ii) “LINEAR_polygon_
domain_integrals”, (iii) ‘“QUADRATIC_polygon_domain_integrals” for
uniform, linear and quadratic harmonic and bi-harmonic potential
functions of Green’s functions. The remaining three parts are, (iv)
“UNIFORM _bimaterial”, (v) “LINEAR_bimaterial”, (vi) “QUADRATIC_
bimaterial”, which are uniform, linear and quadratic domain integrals
of Boussinesq’s displacement potentials. Notice that the six header
files include both analytical circular and polygonal domain integrals.
Readers can easily identify them, i.e., “Theta_2 ij_analytical” stands
for the second derivative of quadratic circular domain integrals 6, ;.
Considering the efforts of differentiating branches, we merged branches
in functions, which does not require further modification for u and u
cases (used in the paper).

Properties of the matrix, thermal conductivity (k_0, k_1), stiffness
(mu_0, mu_l1, nu0, nul), thermal modulus ma0, mal can be modified in
source file “eyemat.cpp”. The source points (a polygonal shape circle)
can be generated automatically with specified number of edges and
the center is (0,0.12)m, which can be modified in “Configure.cpp”.
Currently, one input file “ EP_MAT.txt ” is needed, and we used the
example in the uploaded package to illustrate it. EP_MAT.txt
5 1E6 0.3 0 (Thermal conductivity , shear
modulus, Poisson’s ratio,
thermal modulus)

(Position of the expansion point,
heat source)
(Order of eigen fields, the option
can be UNI, LIN, QUA)

QUA

This “EP_MAT.txt” is used for Fig. 5 for elastic stress comparison.
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