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A B S T R A C T

When a bi-material with two jointed dissimilar half-planes containing an arbitrarily shaped polygonal inclusion

is subjected to heat flow, the thermoelastic fields, including temperature and displacement, can be derived

by the Green’s function technique with the integral of the source over the inclusion. Using Hadamard’s

regularization, the two-dimensional (2D) thermal, elastic, and thermoelastic Green’s functions of two-jointed

dissimilar half-planes are firstly derived from the 3D Green’s functions as the corresponding fundamental

solutions. The fundamental solutions for semi-infinite and infinite domains can be recovered by adjusting the

material constants. Eshelby’s tensors are derived in terms of the biharmonic, harmonic, and two Boussinesq’s

displacement potential functions. When a heat exchanger of arbitrary shape is embedded in a matrix

with different thermal and mechanical properties, combining a continuously distributed eigen-temperature

gradient and eigenstrain field, the dual equivalent inclusion method (DEIM) is applied to handle the material

mismatch of thermal conductivity, stiffness, and thermal expansion coefficient, respectively. Therefore, the

full thermoelastic fields can be obtained by the integral over the heat exchanger only. The eigen-fields are

expanded in the Taylor series referred to the center of the particle, which exhibits tailorable accuracy with

uniform, linear or quadratic terms in comparison with the analytical solution for a circular inhomogeneity in

the infinite domain. An exact thermoelastic solution of a circular inhomogeneity embedded within the infinite

domain is present. The case study of an electric heat cable in the concrete block demonstrates the capability

and exactness of the model. The method can be used for a thin film containing a heat exchanger of arbitrary

shape as either a heat sink or source.

1. Introduction

In Eshelby’s celebrated works of the equivalent inclusion method

(EIM) (Eshelby, 1957, 1959), the ellipsoidal inhomogeneity is replaced

by inclusion with uniformly distributed eigenstrain but the same stiff-

ness as the matrix. Hence, the original boundary value problem was

mathematically transformed into the determination of eigenstrain with

the equivalent stress conditions, which elegantly avoids the interface

continuity with the multiple material domains. Due to its simplicity,

the EIM has been widely applied in several micromechanical mod-

els (Zaoui, 2002). Particularly, the investigation of effective material

properties attracts extensive interest, such as (Mori and Tanaka, 1973),

self-consistent (Kroner, 1958; Hershey, 1954) methods, which aim to

illustrate the relationship between microstructures and macroscopic be-

haviors. Thanks to the versatility of Green’s functions to various prob-

lems, other physical inhomogeneity problems have been explored with

∗ Corresponding author.
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EIM, such as transient heat conduction (Wu et al., 2021a), magneto-

elasticity (Yin et al., 2006), and subsequent extensions on double- or

multi-layered inclusion methods (Hori and Nemat-Nasser, 1993).

Among the micromechanical models, strong assumptions are gener-

ally made on spatial averaged strain/stress fields and ellipsoidal shapes

of inhomogeneity. When a particle’s shape is arbitrary, the local fields

may not be accurately obtained as Eshelby’s tensor in the particle do-

main exhibits significant variation and is singular in the neighborhood

of vertices. Note that the domain integrals of second-order derivatives

of Green’s function for an infinite domain of a single material over

an ellipsoidal inclusion, namely the Eshelby’s tensor, is uniform at

the field point within the inclusion, which provides the exact and

elegant solution for a single ellipsoidal/elliptic particle in an infinite

domain under a uniform far field. For a polygonal inhomogeneity,

Eshelby’s is not constant over the particle anymore, and eigenstrain
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Fig. 1. Schematic illustration of a cross-section  composed of two jointed dissimilar half spaces +, − subjected to far-field load 𝜎0, embedded with an arbitrarily-shaped

polygonal inhomogeneity 𝛺𝐼 , where exist heat source 𝑞𝑣 and eigen-fields 𝑇 ∗
𝑖
and 𝜀∗

𝑖𝑗
.

varies on the particle as well. In addition, eigen-fields can be disturbed

by (i) interactions of multiple inhomogeneities (Moschovidis and Mura,

1975); and (ii) boundary effects (Wu and Yin, 2021b), including the

bi-material interfacial perturbation (Wu et al., 2023b).

To approximate variations of eigen-fields, polynomials are first

introduced by Moschovidis and Mura (Moschovidis and Mura, 1975),

where the eigen-fields are expanded at the center of inhomogeneity

with the Taylor series. Subsequently, Brisard et al. (2014) proposed

a variational EIM for numerical homogenization. On the other hand,

unlike elliptical subdomains, Gao and Ma (2010) and Trotta et al.

(2017) have shown that Eshelby’s tensor varies within polygons. Even

for an elliptical/ellipsoidal subdomain embedded in bi-material space,

the internal Eshelby’s tensor is not uniform anymore due to the term

of 𝛩𝑢 = ∫
𝛺
𝛼𝑢𝑑𝐱′ in Wu et al. (2023b) produced by the image source.

The Eshelby’s tensor for polygons in bi-material has not been solved in

the literature yet.

Since the two above conditions can seldom be satisfied, to provide

more accurate solutions, this paper follows the previous work in a

single material domain (Rodin, 1996; Wu and Yin, 2021a) to derive

Eshelby’s tensors of polygonal subdomains with polynomial eigenstrain,

but the bi-material thermoelastic Green’s functions will be used. In the

literature, pioneers have investigated inclusion problems and related

Eshelby’s tensors for specific polygonal subdomains. For cuboids, Chiu

(1977, 1978, 1980) provided closed-form stress fields caused by uni-

form initial strain for full- and half-space; Ru (1999) obtained internal

stresses of an arbitrarily shaped inclusion through explicit expressions.

Based on Waldvogel (1979) work on the Newtonian potential of a

homogeneous polyhedron, Rodin (1996) firstly proposed Eshelby’s ten-

sors for arbitrarily shaped polygonal and polyhedral inclusions through

Gauss’ theorem. Subsequently, Gao and Ma (2010) provided Eshelby’s

tensor combined with strain gradient theory; Trotta et al. (2017) ap-

plied Green’s theorem and expressed Eshelby’s tensors merely through

coordinates of vertices on inclusions; Nozaki and Taya (1997, 2000)

proposed closed-form Eshelby’s tensors for arbitrary polygons, which

are only applicable to convex cases. The above works can provide

exact solutions for inclusion problems with uniform eigenstrain, which

exhibit the same material properties as the matrix. Besides, the crit-

ical application of Eshelby’s tensors is a solution to inhomogeneity

problems, which requires considering variations of eigen-fields. There-

fore, Wu and Yin (2021a) directly integrated Eshelby’s tensor without

Green’s theorem and extended it to polynomial-form eigenstrains for

EIM.

Research on fundamental solutions has a long tradition, and par-

ticularly extensive efforts have been devoted to elastic and thermoe-

lastic fields. Walpole (1996) obtained a simple and explicit solution

when the source point is located in the upper layer, which was later

completed by Wu et al. (2022). As for research on thermoelasticity,

Nowacki (1986) first proposed a three-dimensional full-space ther-

moelastic fundamental solution, later summarized by Barber (1992)

with two-dimensional cases. Following Yu and Sanday (1991) on an

inclusion problem with nuclei strain and Goodier’s method, Yu et al.

(1992) proposed a bi-material thermoelastic solution caused by eigen-

strain (thermal strain) within a spherical inclusion. Subsequently, Hou’s

group (Hou et al., 2013b,a) applied four harmonic potential functions

to represent general and fundamental solutions in cylindrical coor-

dinates, significantly simplifying trivial expressions. Following their

general solutions, Wu et al. (2023a) proposed a thermoelastic bi-

material fundamental solution in Cartesian coordinates and modified

it for Eshelby’s problem.

This paper aims to derive 2D Eshelby’s tensors for polynomial

eigen-fields in thermal, elastic, and thermoelastic problems under the

plane strain condition. The plane stress problem can be easily ob-

tained by changing the elastic constants with the same mathematical

formulation (Mura, 1987). The representation of eigen-fields through

polynomial distribution could provide tailorable accuracy with uni-

form, linear and quadratic terms, although it is not the exact solution

as the elliptical/ellipsoidal inhomogeneity embedded in an infinite

medium. Using the DEIM (Wu et al., 2023a), the induced thermal

effects on elastic fields are fully coupled and handled through ther-

moelastic Eshelby’s tensor on the polygonal subdomain, which avoids

entire domain integrals of temperature. The DEIM can also be ex-

tended to three-dimensional problems with arbitrary polyhedral in-

homogeneities. The domain integrals of the potential functions can

be evaluated over the transformed coordinates (Rodin, 1996; Kuvshi-

nov, 2008). Wu et al. (2021b) extended the method to polynomial

eigen-fields, but the domain integrals of the Boussinesq’s displacement

potentials on the polyhedral inclusion were still open and may be

provided in the future work. Section 2 presents 2D thermal, elastic, and

thermoelastic bi-material fundamental solutions, which are straightfor-

wardly derived using Hadamard’s regularization. Section 3 provides
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domain integrals of several Boussinesq’s displacement potentials and

extends to higher-order polynomial forms, precisely the linear and

quadratic terms. Subsequently, domain integrals over a circular sub-

domain are elaborated for readers’ interest in the applications of pipes.

In Section 4, numerical verification is conducted to evaluate Eshelby’s

tensor of a circular inclusion with prescribed thermal strain. Section 5

conducted a case study of a single electric heat cable embedded in a

concrete block for heat flux and thermal stress analyses.

2. Formulation

Consider an infinite domain  composed of two isotropic jointed

dissimilar half spaces, where the upper and lower phases are + and

−, respectively. Without the loss of any generality, the bi-material

interface 𝑆 is assumed as plane 𝑥1−𝑥3 with 𝑥2 ≡ 0. When the bi-material
medium  is embedded with an isotropic infinite long cylindrical

inhomogeneity 𝛺𝐼 parallel to 𝑥3 axis, the three-dimensional model can

be reduced to plane strain problem in 𝑥1, 𝑥2 axes. In general, shown

as Fig. 1, two phases and inhomogeneity exhibit different material

properties, specifically, (i) thermal conductivity 𝐾 ′, 𝐾 ′′, 𝐾𝐼 ; (ii) thermal

modulus ′,′′,𝐼 ; and (iii) elastic stiffness ′,′′,𝐼 for , ′′ and

𝛺𝐼 , respectively. For isotropic materials, the stiffness tensor 𝑖𝑗𝑘𝑙 =
𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), where 𝜆 and 𝜇 are two Lamé constants.

2.1. Two-dimensional fundamental solutions

The fundamental solutions relate excitation at source point 𝐱′ and
response at field point 𝐱. Following conventional notations, let 𝐺

denote the Green’s function. Therefore the thermal (Wang et al., 2022),

thermoelastic (Wu et al., 2023a) and elastic bi-material Green’s func-

tion (Walpole, 1996; Wu et al., 2022) are expressed as 𝐺,𝐺𝑖 and

𝐺𝑖𝑗 , respectively, which are provided below. Although Eqs. (1)–(3)

are originally applied for three-dimensional problems, they can be

transformed into two-dimensional forms through Hadamard’s regular-

ization since they are composed of potential functions. Without the loss

of any generality, this paper focus on the plane strain problem, and

fundamental solutions for plane stress can be acquired by adjusting

material constants.

Thermal bi-material fundamental solution

𝐺(𝐱, 𝐱′) =
{ 1

4𝜋𝐾𝑤 (𝜙 + 𝐾𝑤−𝐾𝑠

𝐾𝑤+𝐾𝑠 𝜙) 𝑥′2𝑥2 ≥ 0
1

2𝜋(𝐾𝑤+𝐾𝑠)𝜙 𝑥′2𝑥2 < 0
(1)

Thermoelastic bi-material fundamental solution

𝐺𝑖(𝐱, 𝐱′)

= 1
2𝜇𝑤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑤
5 𝜓,𝑖 + (𝑤

1 + 𝐿
𝑦

𝐵
)𝛽

𝑦

,𝑖
+ 𝐿

𝑦

𝐵
𝜓,𝑖

+ 𝑥2

[
𝜒
(
𝐿

𝑦

𝐷
− 𝐿

𝑦

𝐹

)
𝛼
𝑦

,𝑖
+ 𝐿

𝑦

𝐶

(
𝜓,𝑖2 + 2(1 − 2𝜈𝑤)𝛿𝑖2𝜙 − 𝑥2𝜙,𝑖

)]
+ 𝛿𝑖2

[
−(3 − 4𝜈𝑤)

(𝑤
3 𝛼

𝑦 + 𝐿
𝑦

𝐶
𝜓,2

)
+ 𝜒

(
4(1 − 𝜈𝑤)𝑤

6 − 𝐿
𝑦

𝐵

)
𝛼
𝑦] 𝑥2𝑥

′
2 ≥ 0

(𝑤
2 + 𝐿

𝑦

𝐺
)𝛽𝑦

,𝑖
− 𝑥2

[𝑤
4 − 𝐿

𝑦

𝐺

]
𝛼
𝑦

,𝑖
+ 𝐿

𝑦

𝐺
𝜓,𝑖

− 𝜒𝛿𝑖2𝛼
𝑙
[
𝐿

𝑦

𝐺
+ (3 − 4𝜈𝑤)𝑤

4 − 4(1 − 𝜈𝑤)𝑤
7

] 𝑥2𝑥
′
2 < 0

(2)

Elastic bi-material fundamental solution

𝐺𝑖𝑗 (𝐱, 𝐱′)

= 1
4𝜋𝜇𝑤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖𝑗 + 𝜒𝐵𝑦(𝛿𝑖2𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗2)𝛼

𝑦

,𝑘

− 𝐶𝑦𝑥2

[
𝑄𝐽𝜓,𝑖𝑗2 + 4(1 − 𝜈𝑤)𝛿𝑗2𝜙,𝑖 + 2(1 − 2𝜈𝑤)𝛿𝑖2𝑄𝐽𝜙,𝑗 −𝑄𝐽𝑥2𝜙,𝑖𝑗

]
− 𝐷𝑦𝑄𝐼𝑄𝐽𝜓,𝑗𝑖 − (𝐺𝑦 + 𝐵𝑦)𝑄𝐽 𝛽

𝑦

,𝑖𝑗

𝑥′2𝑥2 ≥ 0

(𝛿𝑖𝑗𝜙 −
𝜓,𝑖𝑗

4(1 − 𝜈𝑤)
) + 𝐴𝑦𝜙𝛿𝑖𝑗 + 𝜒𝐵𝑦(𝛿𝑖2𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗2)𝛼

𝑦

,𝑘

− 𝐷𝑦𝜓,𝑖𝑗 − 𝜒𝑥2𝐹
𝑦𝛼

𝑦

,𝑖𝑗
− (𝐺𝑦 + 𝐵𝑦)𝑄𝐼𝛽

𝑦

,𝑗𝑖

𝑥′2𝑥2 < 0

(3)

where (i) when 𝑥′2 ≥ 0, 𝑤 =′, 𝑠 =′′, 𝑦 = 𝑢 and 𝜒 = 1; and (ii)

when 𝑥′2 < 0, 𝑤 =′′, 𝑠 =′, 𝑦 = 𝑙 and 𝜒 = −1; (.) represents image

terms, which is elaborated in Section 2.2 along with potential func-

tions 𝜓, 𝜙, 𝛼, 𝛽; matrix 𝐐 = (1,−1) handles negative partial derivatives
with respect to 𝑥2 direction. Following Mura’s notation, the dummy

index rule does not apply to capital characters. The material coeffi-

cients 𝑢
1 ,𝑢

2 ,… ,𝑢
7 , and 𝐿𝑢

𝐵
, 𝐿𝑢

𝐶
, 𝐿𝑢

𝐷
, 𝐿𝑢

𝐹
, and 𝐴𝑢, 𝐵𝑢, 𝐶𝑢,𝐷𝑢, 𝐹 𝑢, 𝐺𝑢 are

provided as Eqs. (4)–(6), respectively.

𝑢
1 = 𝑢

5 − 2𝜇′ [ 𝑢
7 (1 − 𝜈′′)

(3 − 4𝜈′′)𝜇′ + 𝜇′′ +
(𝑢

5 +𝑢
6 )(1 − 𝜈′)

(3 − 4𝜈′)𝜇′′ + 𝜇′

]
𝑢

2 = −2𝜇′′ [ 𝑢
7 (1 − 𝜈′′)

(3 − 4𝜈′′)𝜇′ + 𝜇′′ +
(𝑢

5 +𝑢
6 )(1 − 𝜈′)

(3 − 4𝜈′)𝜇′′ + 𝜇′

]
𝑢

3 =
4𝑢

6 (1 − 𝜈′)𝜇′′ −𝑢
5 (𝜇

′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′ , 4 = 4𝑢

7
(1 − 𝜈′′)𝜇′

(3 − 4𝜈′′)𝜇′ + 𝜇′′

𝑢
5 = 1

8𝜋𝐾 ′
(1 − 2𝑣′)′

1 − 𝑣′
, 𝑢

6 = 1
8𝜋𝐾 ′

(1 − 2𝑣′)′

1 − 𝑣′
𝐾 ′ −𝐾 ′′

𝐾 ′ +𝐾 ′′ ,

𝑢
7 = 1

4𝜋(𝐾 ′ +𝐾 ′′)
(1 − 2𝑣′′)′′

1 − 𝑣′′

(4)

𝐿𝑢
𝐵
= 𝑢

5
(3 − 4𝜈′)(𝜇′ − 𝜇′′)
(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐿𝑢

𝐶
= 2𝑢

5
(𝜇′ − 𝜇′′)

(3 − 4𝜈′)𝜇′′ + 𝜇′

𝐿𝑢
𝐷
=

4𝑢
6(1 − 𝜈′)𝜇′′

(3 − 4𝜈′)𝜇′′ + 𝜇′ , 𝐿𝑢
𝐹
=

4𝑢
5(𝜇

′ − 𝜇′′)(1 − 𝜈′)
(3 − 4𝜈′)𝜇′′ + 𝜇′

(5)

𝐴𝑢 = 𝜇′ − 𝜇′′

𝜇′ + 𝜇′′ , 𝐵𝑢 = 2𝜇′(1 − 2𝜈′)(𝜇′ − 𝜇′′)
(𝜇′ + 𝜇′′)(𝜇′ + 𝜇′′(3 − 4𝜈′))

𝐶𝑢 = 𝜇′ − 𝜇′′

2(1 − 𝜈′)(𝜇′ + (3 − 4𝜈′)𝜇′′)
, 𝐷𝑢 = 3 − 4𝜈′

2
𝐶𝑢

𝐹 𝑢 = 2𝜇′(𝜇′(1 − 2𝜈′′) − 𝜇′′(1 − 2𝜈′))
(𝜇′ + 𝜇′′(3 − 4𝜈′))(𝜇′′ + 𝜇′(3 − 4𝜈′′))

𝐺𝑢 = 𝜇′(𝜇′′(1 − 2𝜈′′)(3 − 4𝜈′) − 𝜇′(1 − 2𝜈′)(3 − 4𝜈′′))
(𝜇′ + 𝜇′′(3 − 4𝜈′))(𝜇′′ + 𝜇′(3 − 4𝜈′′))

(6)

2.2. Two-dimensional potential functions

Using Hadamard’s regularization, the potential functions are inte-

grated along 𝑥3, and only finite parts are retained. The finite parts

of two-dimensional bi-harmonic and harmonic potentials are shown in

Eq. (7),

𝜓 = −|𝐱 − 𝐱′|2 ln |𝐱 − 𝐱′|2 − 1
2

, 𝜙 = − ln |𝐱 − 𝐱′|2
𝜓 = −|𝐱 − 𝐱′|2 ln |𝐱 − 𝐱′|2 − 1

2
, 𝜙 = − ln |𝐱 − 𝐱′|2 (7)

where 𝐱′ = (𝑥′1,−𝑥
′
2) or 𝑥

′
𝑖
= 𝑄𝐼𝑥

′
𝑖
. Although there exist infinite con-

stants in 𝜓 and 𝜓 , they vanish during partial differentiation to obtain

Eshelby’s tensors. For three-dimensional problems, four branches of 𝛼

and 𝛽 are shown as Eq. (5) in Wu et al. (2022), where the difference

lies in integral limits. Following the same fashion, four branches of

two-dimensional displacement potentials 𝛼 are defined as Eq. (8),

𝛼𝑢(𝑥1, 𝑥2) = ⨍
−∞

𝑥2

− ln[(𝑥′1 − 𝑥1)2 + (𝑥′2 − 𝑡)2] 𝑑𝑡

= 2(𝑥′1 − 𝑥1) arctan[
𝑥′1 − 𝑥1

𝑥′2 − 𝑥2
] + (𝑥′2 − 𝑥2)(𝜙 + 2)

𝛼
𝑢(𝑥1, 𝑥2) = ⨍

𝑥2

∞
− ln[(𝑥′1 − 𝑥1)2 + (𝑥′2 + 𝑡)2] 𝑑𝑡

= 2(𝑥′1 − 𝑥1) arctan[
𝑥′1 − 𝑥1

𝑥′2 + 𝑥2
] + (𝑥′2 + 𝑥2)(𝜙 + 2)

𝛼𝑙(𝑥1, 𝑥2) = ⨍
𝑥2

∞
− ln[(𝑥′1 − 𝑥1)2 + (𝑥′2 − 𝑡)2] 𝑑𝑡

= −2(𝑥′1 − 𝑥1) arctan[
𝑥′1 − 𝑥1

𝑥′2 − 𝑥2
] − (𝑥′2 − 𝑥2)(𝜙 + 2)

𝛼
𝑙(𝑥1, 𝑥2) = ⨍

−∞

𝑥2

− ln[(𝑥′1 − 𝑥1)2 + (𝑥′2 + 𝑡)2] 𝑑𝑡

= −2(𝑥′1 − 𝑥1) arctan[
𝑥′1 − 𝑥1

𝑥′2 + 𝑥2
] − (𝑥′2 + 𝑥2)(𝜙 + 2)

(8)
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where ⨍ (.)𝑑𝑥 denote finite part integrals with respect to variable 𝑥;

only finite parts are retained following two rules, (i) 𝛼𝑢&𝑙(𝐱, 𝐱′),𝑖 =
−𝛼𝑢&𝑙(𝐱, 𝐱′),𝑖′ , 𝛼

𝑢&𝑙(𝐱, 𝐱′),𝑖 = −𝑄𝐼𝛼
𝑢&𝑙(𝐱, 𝐱′),𝑖′ ; and (ii) partial deriva-

tives of the finite part are equivalent to that of original expressions.

Following the same fashion, the subsequent higher order displacement

potential 𝛽 can be determined as Eq. (9). Although relationships be-

tween finite parts are observed as 𝛽𝑢 = 𝛽𝑙, 𝛽
𝑢

= 𝛽
𝑙
, the dropped

constants in four branches of 𝛽 are not exactly the same. Hence, one

cannot simply conclude two potentials are equivalent unless in the

sense of a finite part.

𝛽𝑢(𝑥1, 𝑥2) = ⨍
−∞

𝑥2

𝛼𝑢(𝑥1, 𝑡)𝑑𝑡

= 1
2

{
4(𝑥′1 − 𝑥1)(𝑥′2 − 𝑥2) arctan[

𝑥′1 − 𝑥1

𝑥′2 − 𝑥2
]

+
(
(𝑥′2 − 𝑥2)2 − (𝑥′1 − 𝑥1)2

)
(𝜙 + 3)

}
𝛽
𝑢
(𝑥1, 𝑥2) = ⨍

𝑥2

∞
𝛼
𝑢(𝑥1, 𝑡)𝑑𝑡

= 1
2

{
4(𝑥′1 − 𝑥1)(𝑥′2 + 𝑥2) arctan[

𝑥′1 − 𝑥1

𝑥′2 + 𝑥2
]

+
(
(𝑥′2 + 𝑥2)2 − (𝑥′1 − 𝑥1)2

)
(𝜙 + 3)

}
𝛽𝑙(𝑥1, 𝑥2) = ⨍

𝑥2

∞
𝛼𝑙(𝑥1, 𝑡)𝑑𝑡

= 1
2

{
4(𝑥′1 − 𝑥1)(𝑥′2 − 𝑥2) arctan[

𝑥′1 − 𝑥1

𝑥′2 − 𝑥2
]

+
(
(𝑥′2 − 𝑥2)2 − (𝑥′1 − 𝑥1)2

)
(𝜙 + 3)

}
𝛽
𝑙
(𝑥1, 𝑥2) = ⨍

−∞

𝑥2

𝛼
𝑙(𝑥1, 𝑡)𝑑𝑡

= 1
2

{
4(𝑥′1 − 𝑥1)(𝑥′2 + 𝑥2) arctan[

𝑥′1 − 𝑥1

𝑥′2 + 𝑥2
]

+
(
(𝑥′2 + 𝑥2)2 − (𝑥′1 − 𝑥1)2

)
(𝜙 + 3)

}

(9)

3. Domain integrals of two-dimensional Boussinesq’s potentials

As illustrated in Section 1, due to boundary effects and interactions

between inhomogeneities, the eigen-fields are approximated through

the Taylor series as Eq. (10),

𝑇 ∗
𝑖
(𝐱′) = 𝑇 0∗

𝑖
+ (𝑥′

𝑘
− 𝑥𝐼𝑐

𝑘
)𝑇 1∗

𝑖𝑘
+ (𝑥′

𝑘
− 𝑥𝑐

𝑘
)(𝑥′

𝑙
− 𝑥𝑐

𝑙
)𝑇 2∗

𝑖𝑘𝑙
+⋯

𝜀∗
𝑖𝑗
(𝐱′) = 𝜀0∗

𝑖𝑗
+ (𝑥′

𝑝
− 𝑥𝑐

𝑝
)𝜀1∗

𝑖𝑗𝑝
+ (𝑥′

𝑝
− 𝑥𝑐

𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)𝜀2∗

𝑖𝑗𝑝𝑞
+⋯

(10)

where superscripts 0,1 and 2 represent the uniform, linear and

quadratic terms, respectively; the superscript 𝑐 stands for center of

𝛺𝐼 ; 𝑇 ∗
𝑖
and 𝜀∗

𝑖𝑗
are eigen-temperature gradient (ETG) and eigenstrain,

respectively. Using the technique of Green’s function, the induced

thermal and elastic fields can be obtained,

𝑇 (𝐱) = ∫𝛺 𝐺,𝑖′ (𝐱, 𝐱′)𝑇 ∗
𝑖
(𝐱′) 𝑑𝐱′

= ∫𝛺 𝐺,𝑖′𝑑𝐱′𝑇 0∗
𝑖

+ ∫𝛺 𝐺,𝑖′ (𝑥′𝑝 − 𝑥𝑐
𝑝
)𝑑𝐱′𝑇 1∗

𝑖𝑝

+ ∫𝛺 𝐺,𝑖′ (𝑥′𝑝 − 𝑥𝑐
𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)𝑑𝐱′𝑇 2∗

𝑖𝑝𝑞

= 𝐷𝑖𝑇
0∗
𝑖

+𝐷𝑖𝑝𝑇
1∗
𝑖𝑝

+𝐷𝑖𝑝𝑞𝑇
2∗
𝑖𝑝𝑞

𝑢𝑖(𝐱) = ∫𝛺 𝐺𝑖,𝑗′ (𝐱, 𝐱′)𝑇 ∗
𝑗
(𝐱′) + 𝐺𝑖𝑗,𝑘′𝜀

∗
𝑗𝑘
(𝐱′) 𝑑𝐱′

= ∫𝛺 𝐺𝑖,𝑗′𝑑𝐱′𝑇 0∗
𝑗

+ ∫𝛺 𝐺𝑖,𝑗′ (𝑥′𝑝 − 𝑥𝑐
𝑝
)𝑑𝐱′𝑇 1∗

𝑗𝑝

+ ∫𝛺 𝐺𝑖,𝑗′ (𝑥′𝑝 − 𝑥𝑐
𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)𝑑𝐱′𝑇 2∗

𝑗𝑝𝑞

+ ∫𝛺 𝐺𝑖𝑗,𝑘′𝑑𝐱′𝜀0∗𝑗𝑘 + ∫𝛺 𝐺𝑖𝑗,𝑘′ (𝑥′𝑝 − 𝑥𝑐
𝑝
)𝑑𝐱′𝜀1∗

𝑗𝑘𝑝

+ ∫𝛺 𝐺𝑖𝑗,𝑘′ (𝑥′𝑝 − 𝑥𝑐
𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)𝑑𝐱′𝜀2∗

𝑗𝑘𝑝𝑞

= 𝑅𝑖𝑗𝑇
0∗
𝑗

+ 𝑅𝑖𝑗𝑝𝑇
1∗
𝑗𝑝

+ 𝑅𝑖𝑗𝑝𝑞𝑇
2∗
𝑗𝑝𝑞

+ 𝑔𝑖𝑘𝑙𝜀
0∗
𝑘𝑙

+ 𝑔𝑖𝑘𝑙𝑝𝜀
1∗
𝑘𝑙𝑝

+ 𝑔𝑖𝑘𝑙𝑝𝑞𝜀
2∗
𝑘𝑙𝑝𝑞

(11)

where 𝐃,𝐑 and 𝐠 are thermal, thermoelastic, and elastic Eshelby’s ten-
sors, respectively; the subscript (.),𝑖′ = 𝜕𝑥′

𝑖
represents partial derivative

with respect to 𝑥′
𝑖
. Notice that when the source and field points are

located in the different phases, (.),𝑖′ = −(.),𝑖 holds. However, when
source and points are located in the same phase, due to the existence

of image terms, (.),𝑖′ = −𝑄𝐼 (.),𝑖 holds for image terms but (.),𝑖′ = −(.),𝑖
works for original terms, i.e 𝜙 Eq. (3) of case 𝑥′2𝑥2 ≥ 0. Following
conventional notations, the domain integral of potential functions are

expressed through Greek capital letters,

𝛷𝑝𝑞... = ∫𝛺 𝜙(𝑥′
𝑝
− 𝑥𝑐

𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)...𝑑𝐱′,

𝛹𝑝𝑞... = ∫𝛺 𝜓(𝑥′
𝑝
− 𝑥𝑐

𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)...𝑑𝐱′

𝛩𝑦
𝑝𝑞...

= ∫𝛺 𝛼𝑦𝜙(𝑥′
𝑝
− 𝑥𝑐

𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)...𝑑𝐱′,

𝛬𝑦
𝑝𝑞...

= ∫𝛺 𝛽𝑦𝜙(𝑥′
𝑝
− 𝑥𝑐

𝑝
)(𝑥′

𝑞
− 𝑥𝑐

𝑞
)...𝑑𝐱′

(12)

where domain integrals 𝛷𝑝𝑞 and 𝛹𝑝𝑞 are available in Wu and Yin

(2021a). Their image terms can be straightforwardly calculated by

mirroring the cross-section without changing formulae. For instance,

𝛷𝑝(𝐱, 𝐱′) = 𝑄𝑃𝛷𝑝(𝐱, 𝐱
′) and its partial derivative 𝛷𝑝,𝑖′ (𝐱, 𝐱′) = −𝑄𝐼𝛷𝑝,𝑖

(𝐱, 𝐱′) = −𝑄𝑃𝑄𝐼𝛷𝑝,𝑖(𝐱, 𝐱
′), which are elaborated in Appendix A.1. In the

following, this section aims to provide closed-form formulae on four

branches of 𝛩 and 𝛬.

3.1. Definition of transformed coordinate (TC)

Consider an 𝑁𝐹 sided arbitrary polygonal cross-section embedded

in the bi-material domain . As mentioned in Section 2, the bi-material
interface 𝑆 is assumed as plane 𝑥1 − 𝑥2 with 𝑥2 ≡ 0, and the polygonal
cross-section lies in exactly the same plane. Considering the lengthy for-

mulae in Cartesian coordinates, alternatively, orthogonal transformed

coordinates (TCs) are introduced to handle complex expressions on

distances between vertices and field points. Shown in Fig. 2, TCs are

constructed at each edge of the polygon through two normal unit

vectors. For instance, the 𝑓 th TC relies on the unit directional 𝜂0
𝑓
and

outward normal 𝜆0
𝑓
vectors, where vertices are aligned in counterclock-

wise sequences. Let 𝑚 and 𝑛 denote the first and second components

of the 𝑓 th unit directional vector 𝜂0
𝑓
, and thus one can obtain 𝜆0

𝑓
=

(𝑛,−𝑚) based on the orthogonal property of vectors. Based on TCs, the
distances 𝑏𝑓 and 𝑙±

𝑓
can be expressed as Eq. (13),

𝑏𝑓 =
[
(𝑣+

𝑓
)𝑖 − 𝑥𝑖

]
(𝜆0

𝑓
)𝑖, 𝑙±

𝑓
=
[
(𝑣±

𝑓
)𝑖 − 𝑥𝑖

]
(𝜂0

𝑓
)𝑖 (13)

where 𝑏𝑓 is the perpendicular distance with respect to the 𝑓 th edge and

𝑙±
𝑓
are horizontal distances defined in the 𝑓 th TCs. During the partial

differentiation process to obtain Eshelby’s tensor, the area integrals

can be converted to contour integrals. Despite source points within

the cross-section, only points along the edges are of interest. Let 𝜂 =
(𝑥′

𝑖
− 𝑥𝑖)(𝜂0𝑓 )𝑖 denote the position of 𝐱

′ on the 𝑓 th edge., the Galerkin’s

distance vector can be written as Eq. (14),

𝑥′
𝑖
− 𝑥𝑖 = 𝑏𝑓 (𝜆0𝑓 )𝑖 + 𝜂(𝜂0

𝑓
)𝑖 =

{
𝑏𝑓 𝑛 + 𝜂𝑚 𝑖 = 1
−𝑏𝑓𝑚 + 𝜂𝑛 𝑖 = 2

(14)

3.2. Domain integrals of uniform potential functions

Eq. (8) shows that 𝛼𝑢 = −𝛼𝑙, 𝛼𝑢 = −𝛼𝑙 and 𝛼𝑢(𝐱, 𝐱′) = 𝛼𝑢(𝐱, 𝐱′),
and similar cases can be observed in Eq. (9) as well. Therefore, four
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Fig. 2. Schematic plot of transformed coordinate (TC) on a 𝑁𝐹 sided polygonal section.

branches of domain integrals can be derived from one branch, and the

other three can be acquired through mirroring the cross-section, which

is elaborated in Appendix A.2. Without the loss of any generality, this

section mainly focuses on 𝛩𝑢 and 𝛬𝑢. Using the Eq. (4) in Wu and Yin

(2021a), domain integrals can be obtained,

𝛩𝑢 =
𝑁𝐹∑
𝑓=1

∫
𝜃+

𝜃− ∫
𝑏𝑓

√
1+tan2[𝜃]

0
𝜌

{
2𝑟1 arctan

[
𝑟1
𝑟2

]
+ 𝑟2(2 − ln[𝜌2])

}
𝑑𝜌 𝑑𝜃

=
𝑁𝐹∑
𝑓=1

 (𝑏𝑓 , 𝑙+𝑓 ) −  (𝑏𝑓 , 𝑙−𝑓 )

𝛬𝑢 =
𝑁𝐹∑
𝑓=1

∫
𝜃+

𝜃− ∫
𝑏𝑓

√
1+tan2[𝜃]

0

𝜌

2

(
4𝑟1𝑟2 arctan

[
𝑟1
𝑟2

]
+ (𝑟22 − 𝑟21)(3 − ln[𝑝2])

)
𝑑𝜌 𝑑𝜃

=
𝑁𝐹∑
𝑓=1

(𝑏𝑓 , 𝑙+𝑓 ) − (𝑏𝑓 , 𝑙−𝑓 )
(15)

where 𝑟1 = 𝜌 cos(𝜃)𝑛 + 𝜌 sin(𝜃)𝑚 and 𝑟2 = −𝜌 cos(𝜃)𝑚 + 𝜌 sin(𝜃)𝑛; 𝜃± =
arctan[𝑙±

𝑓
∕𝑏𝑓 ] are integral limits of angle. And two functions  (𝑏, 𝑙) and

(𝑏, 𝑙) are provided as follows,

 (𝑏, 𝑙) = 𝑏

18

{
12𝑏2𝑚 arctan

[
𝑙

𝑏

]
+ 6((𝑏2 + 𝑙2)𝑚 + 2𝑏𝑙𝑛) arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

]
− ((𝑏2 + 𝑙2)𝑛 − 2𝑏𝑙𝑚)(3 ln[𝑏2 + 𝑙2] − 11) + 6𝑏2𝑛 ln[𝑏2 + 𝑙2]

}
(𝑏, 𝑙) = −𝑏

144

{
25

[
6𝑏(𝑏2 + 𝑙2)𝑚𝑛 + 𝑙(𝑚2 − 𝑛2)(𝑙2 − 3𝑏2)

]
+ 12

(
4𝑏3(𝑚2 − 𝑛2) arctan

[
𝑙

𝑏

]
+

(
3𝑏(𝑏2 + 𝑙2)(𝑚2 − 𝑛2) + 2𝑙𝑚𝑛(3𝑏2 − 𝑙2)

)
arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

] )
+ 6

(
2𝑏𝑚𝑛(𝑏2 − 3𝑙2) + 𝑙(3𝑏2 − 𝑙2)(𝑚2 − 𝑛2)

)
ln
[
1 + 𝑙2

𝑏2

] }
(16)

Shown in Eq. (11), the displacement field can be obtained through

partial derivatives of potential functions, making it possible to ap-

ply Green’s theorem possible. Hence, domain integrals on uniform

potentials 𝛼𝑢 and 𝛽𝑢 are transformed into contour integrals,

𝛩𝑢
,𝑖
= −

𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖
((𝑏𝑓 , 𝑙+𝑓 ) −(𝑏𝑓 , 𝑙−𝑓 )

)
𝛬𝑢
,𝑖
= −

𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖
( (𝑏𝑓 , 𝑙+𝑓 ) − (𝑏𝑓 , 𝑙−𝑓 )

) (17)

where two integration functions (𝑏, 𝑙) and  (𝑏, 𝑙) are provided as

below (constant parts are separated),

(𝑏, 𝑙) = ∫ 2(𝑏𝑛 + 𝜂𝑚) arctan
[

𝑏𝑛 + 𝜂𝑚

−𝑏𝑚 + 𝜂𝑛

]
+ (−𝑏𝑚 + 𝜂𝑛)(2 − ln[𝑏2 + 𝜂2]) 𝑑𝜂

= 3
2
𝑙(−2𝑏𝑚 + 𝑙𝑛) + 𝑏2𝑚 arctan

[
𝑙

𝑏

]
+ 𝑙(2𝑏𝑛 + 𝑙𝑚) arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

]
+ 1

2
(2𝑏𝑙𝑚 + 𝑛(𝑏2 − 𝑙2)) ln[𝑏2 + 𝑙2]

 (𝑏, 𝑙) = 1
2 ∫ 4(𝑏𝑛 + 𝜂𝑚)(−𝑏𝑚 + 𝜂𝑛) arctan

[
𝑏𝑛 + 𝜂𝑚

−𝑏𝑚 + 𝜂𝑛

]
+

(
(−𝑏𝑚 + 𝜂𝑛)2 − (𝑏𝑛 + 𝜂𝑚)2

)
(3 − ln[𝑏2 + 𝜂2]) 𝑑𝜂

= 1
18

{
11𝑙

(
−6𝑏𝑙𝑚𝑛 + (𝑚2 − 𝑛2)(3𝑏2 − 𝑙2)

)
− 6𝑏3(𝑚2 − 𝑛2) arctan

[
𝑙

𝑏

]
+ 6𝑙

(
2𝑚𝑛(𝑙2 − 3𝑏2) − 3𝑏𝑙(𝑚2 − 𝑛2)

)
arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

]
+ 3

(
2𝑏𝑚𝑛(3𝑙2 − 2𝑏2) + 𝑙(𝑚2 − 𝑛2)(𝑙2 − 3𝑏2)

)
ln[𝑏2 + 𝑙2]

}
(18)

3.3. Domain integrals of linear and quadratic potential functions

Taking advantage of Galerkin’s distance vector, source terms 𝑥′
𝑝

expanded at point 𝑥𝑐
𝑝
can be expressed in terms of Eq. (14) and field

terms that 𝑥′
𝑝
− 𝑥𝑐

𝑝
= (𝑏𝑓 (𝜆0𝑓 )𝑝 + 𝜂(𝜉0

𝑓
)𝑝) + (𝑥𝑝 − 𝑥𝑐

𝑝
). Hence, and the first

order partial derivative of 𝛩𝑢
𝑝
and 𝛬𝑢

𝑝
can be expressed as,

𝛩𝑢
𝑝,𝑖

= 𝛿𝑖𝑝𝛩
𝑢 + (𝑥𝑝 − 𝑥𝑐

𝑝
)𝛩𝑢

,𝑖
−

𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖
{
(𝜆0

𝑓
)𝑝𝑏𝑓

((𝑏𝑓 , 𝑙+𝑓 ) −(𝑏𝑓 , 𝑙−𝑓 )
)

+ (𝜉0
𝑓
)𝑝
(𝐼 (𝑏𝑓 , 𝑙+𝑓 ) −𝐼 (𝑏𝑓 , 𝑙−𝑓 )

) }
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𝛬𝑢
𝑝,𝑖

= 𝛿𝑖𝑝𝛬
𝑢 + (𝑥𝑝 − 𝑥𝑐

𝑝
)𝛬𝑢

,𝑖
−

𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖
{
(𝜆0

𝑓
)𝑝𝑏𝑓

( (𝑏𝑓 , 𝑙+𝑓 ) − (𝑏𝑓 , 𝑙−𝑓 )
)

+ (𝜉0
𝑓
)𝑝
( 𝐼 (𝑏𝑓 , 𝑙+𝑓 ) − 𝐼 (𝑏𝑓 , 𝑙−𝑓 )

) }
(19)

where two linear integration functions 𝐼 (𝑏, 𝑙) and  𝐼 (𝑏, 𝑙) are pro-
vided as below,

𝐼 (𝑏, 𝑙) = 1
18

{
−6𝑏3𝑛 arctan

[
𝑙

𝑏

]
+ 𝑙

(
2𝑛(3𝑏2 + 8𝑙2) − 21𝑏𝑙𝑚

)
+ 6𝑙2(2𝑙𝑚 + 3𝑏𝑛) arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

]
+ 3

(
𝑏3𝑚 + 𝑙2(3𝑏𝑚 − 2𝑙𝑛)

)
ln[𝑏2 + 𝑙2]

}
 𝐼 (𝑏, 𝑙) = 1

144

{
24𝑏4𝑚𝑛 arctan

[
𝑙

𝑏

]
+ 𝑙

(
−8𝑚𝑛(3𝑏2 + 41𝑙2) + 3𝑙(𝑚2 − 𝑛2)(38𝑏2 − 21𝑙2)

)
+ 24𝑙2

(
3𝑚𝑛(2𝑏2 − 𝑙2) + 4𝑏𝑙(𝑚2 − 𝑛2)) arctan

[
𝑏𝑚 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

] )
+ 6

(
16𝑏𝑙3𝑚𝑛 + (𝑚2 − 𝑛2)(3𝑙4 − 6𝑏2𝑙2 − 𝑏4)

) }

(20)

Similarly, the quadratic source terms 𝑥′
𝑝
𝑥′
𝑞
can be expressed as (𝑥′

𝑝
−

𝑥𝑝)(𝑥′𝑞 −𝑥𝑞)+𝑥𝑝𝑥
′
𝑞
+𝑥′

𝑞
𝑥𝑝 −𝑥𝑝𝑥𝑞 . The quadratic domain integrals can be

obtained by combining the interchanging rules of source, field terms,

and uniform, linear domain integrals. Taking 𝛩𝑢
𝑝𝑞,𝑖

as an example,

𝛩𝑢
𝑝𝑞,𝑖

=
(
(𝑥𝑝 − 𝑥𝑐

𝑝
)𝛩𝑢

𝑞,𝑖
+ (𝑥𝑞 − 𝑥𝑐

𝑞
)𝛩𝑢

𝑝,𝑖
+ 𝛿𝑝𝑖𝛩

𝑢
𝑞
+ 𝛿𝑞𝑖𝛩

𝑢
𝑝

)
−

(
(𝑥𝑝 − 𝑥𝑐

𝑝
)(𝑥𝑞 − 𝑥𝑐

𝑞
)𝛩𝑢

,𝑖
+ (𝛿𝑝𝑖(𝑥𝑞 − 𝑥𝑐

𝑞
) + 𝛿𝑞𝑖(𝑥𝑝 − 𝑥𝑐

𝑝
))𝛩𝑢

)
−

𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖
{
(𝜆0

𝑓
)𝑝(𝜆0𝑓 )𝑞𝑏

2
𝑓

((𝑏𝑓 , 𝑙+𝑓 ) −(𝑏𝑓 , 𝑙−𝑓 )
)

+ 𝑏𝑓
(
(𝜆0

𝑓
)𝑝(𝜉0𝑓 )𝑞 + (𝜆0

𝑓
)𝑞(𝜉0𝑓 )𝑝

)(𝐼 (𝑏𝑓 , 𝑙+𝑓 ) −𝐼 (𝑏𝑓 , 𝑙−𝑓 )
)

+ (𝜉0
𝑓
)𝑝(𝜉0𝑓 )𝑞

(𝐼𝐼 (𝑏𝑓 , 𝑙+𝑓 ) −𝐼𝐼 (𝑏𝑓 , 𝑙−𝑓 )
) }

(21)

Following the same fashion, quadratic domain integrals 𝛬𝑢
𝑝𝑞
can be

written in terms of integration functions  ,  𝐼 , and  𝐼𝐼 . And two

quadratic integration functions 𝐼𝐼 (𝑏, 𝑙) and  𝐼𝐼 (𝑏, 𝑙) are provided as
below,

𝐼𝐼 (𝑏, 𝑙) = 1
72

{
𝑙
(
6𝑏2(2𝑏𝑚 + 𝑙𝑛) + 𝑙2(45𝑙𝑛 − 52𝑏𝑚)

)
− 12𝑏4𝑚 arctan

[
𝑙

𝑏

]
+ 12𝑙3(4𝑏𝑛 + 3𝑙𝑚) arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

]
− 6

(
𝑏4𝑛 + 𝑙3(3𝑙𝑛 − 4𝑏𝑚)

)
ln
[
𝑏2 + 𝑙2

] }
 𝐼𝐼 (𝑏, 𝑙) = 1

900

{
30𝑏5(𝑚2 − 𝑛2) arctan

[
𝑙

𝑏

]
− 𝑙

(
15𝑏𝑙𝑚𝑛(2𝑏2 + 99𝑙2) − 2(𝑚2 − 𝑛2)

(
15𝑏4 − 230𝑏2𝑙2 + 153𝑙4

))
+ 30𝑙3

(
−5𝑏𝑚(3𝑙𝑚 + 4𝑏𝑛) + 3𝑙𝑛(4𝑙𝑚 + 5𝑏𝑛)

)
arctan

[
𝑏𝑛 + 𝑙𝑚

−𝑏𝑚 + 𝑙𝑛

]
+ 30

(
𝑏𝑚𝑛(𝑏4 + 15𝑙4) − 𝑙3(𝑚2 − 𝑛2)(5𝑏2 − 3𝑙2)

)
ln[𝑏2 + 𝑙2]

}
(22)

3.4. Circular domain integrals

For domain integrals 𝛷 and 𝛹 , Dyson (1891) first proposed for-

mulae to handle integrals with various density functions in ellipsoids.

Later, Mura (1987) presented special cases of ellipsoids, including

the case that one axis is infinitely long. Since plenty of work has

discussed the two integrals, this section does not repeat such con-

tents. Regarding bi-material domain integrals, Walpole (1997) studied

a spherical inclusion embedded in two-jointed half-spaces, and the

author suggested interchanging integral sequences. Subsequently, Liu

et al. (2015) and Wu et al. (2023b) completed all cases of 𝛩 and 𝛬

with polynomial source fields. Recently, Dang et al. (2019) investigated

Eshelby’s problems in a semi-infinite domain, where the analytical ex-

pressions are proposed as a combination of several modified functions.

However, the length of formulae (Eqs. (36 - 38) in Dang et al. (2019))

makes it difficult to be utilized for programming purposes. Therefore,

this section aims to provide compact and simplified circular domain

integrals based on potential functions.

Following the definition of potential functions in Eqs. (8) and (9),

the integration sequence of their domain integrals can be switched

(taking 𝛩𝑢 and 𝛬𝑢, for example),

𝛩𝑢(𝐱) = ∫𝛺 𝛼𝑢(𝐱, 𝐱′)𝑑𝐱′ = ∫
−∞

𝑥2
∫𝛺 𝜙𝑑𝐱′ 𝑑𝑡 = ∫

−∞

𝑥2

𝛷𝑑𝑡

𝛬𝑢(𝐱) = ∫𝛺 𝛽𝑢(𝐱, 𝐱′)𝑑𝐱′ = ∫
−∞

𝑥2
∫𝛺 𝛼𝑢 𝑑𝐱′ 𝑑𝑡 = ∫

−∞

𝑥2

𝛩𝑢 𝑑𝑡

(23)

where only finite parts are retained as other constants vanish during

the partial differentiation process, and such a method is applicable

to potentials with polynomial source terms as well. Notice that the

bi-material displacement potential functions exclude singularity; thus,

only the exterior part of 𝛷 is applied. Let 𝐱𝑐 denote the center of
the circular cross-section, and explicit formulae of 𝛷,𝛷𝑝 and 𝛷𝑝𝑞 are

provided as below,

𝛷 = −𝜋𝑎2 ln |𝐱 − 𝐱𝑐 |2, 𝛷,𝑝 = (𝑥𝑝 − 𝑥𝑐
𝑝
) 𝜋𝑎4

2|𝐱 − 𝐱𝑐 |2
𝛷𝑝𝑞 = 𝜋𝑎2

{
(𝑥𝑝 − 𝑥𝑐

𝑝
)(𝑥𝑞 − 𝑥𝑐

𝑞
) 𝑎4

6|𝐱 − 𝐱𝑐 |4
− 𝑎2

4
𝛿𝑝𝑞

(
ln |𝐱 − 𝐱𝑐 |2 + 1

2
+ 𝑎2

3|𝐱 − 𝐱𝑐 |2 )
} (24)

Uniform circular domain integrals

𝛩𝑠 = 𝜋𝑎2𝛼𝑠 𝛬𝑠 = 𝜋𝑎2𝛽𝑠 (25)

Linear circular domain integrals

𝛩𝑠
𝑝
= 𝜋𝑎4

4

{
−𝛼𝑠

,𝑝
𝑝 = 1

𝜙𝑠 𝑝 = 2
& 𝛬𝑠

𝑝
= 𝜋𝑎4

4

{
−𝛽𝑠

,𝑝
𝑝 = 1

𝛼𝑠 𝑝 = 2
(26)

Quadratic circular domain integrals

𝛩𝑠
𝑝𝑞

= 𝜋𝑎4

24

⎧⎪⎨⎪⎩
𝑎2𝜙𝑠

,2 + 3𝛾𝑠𝑥2 + 6𝛼𝑠 𝑝, 𝑞 ≠ 2
−𝑎2𝜙𝑠

,𝑝
𝑝 ≠ 2, 𝑞 = 2

−𝑎2𝜙𝑠
,2 + 3𝛾𝑠𝑥2 + 6𝛼𝑠 𝑝 = 𝑞 = 2

&

𝛬𝑠
𝑝𝑞

= 𝜋𝑎4

24

⎧⎪⎪⎨⎪⎪⎩
𝑎2𝛼𝑠

,2 −
3𝑥22
2 𝛾𝑠 + 6𝛽𝑠 𝑝, 𝑞 ≠ 2

−𝑎2𝛼𝑠
,𝑝

𝑝 ≠ 2, 𝑞 = 2

−𝑎2𝛼𝑠
,2 −

3𝑥22
2 𝛾𝑠 + 6𝛽𝑠 𝑝 = 𝑞 = 2

(27)

where the superscript 𝑠 represents four branches of functions, which

is up to positions of source and field points; 𝛾𝑠 = 1 when 𝑠 = 𝑢 or

𝑠 = (.)
𝑙
and 𝛾 = −1 when 𝑠 = (.)

𝑢
and 𝑙. Their derivatives have

been implemented in the package ‘‘POLYGON - EIM’’, which will be

elaborated in Appendix B.

3.5. Discussion on singularity issues of polygonal domain integrals

Singularity is a fascinating topic when the source domain exhibits

a non-smooth boundary. For ellipsoidal or elliptical inclusions in 3D

and 2D, respectively, no singularity exists but discontinuities of the

strain and temperature gradient field can be found (Mura, 1987). For

polyhedral or polygonal inclusions, Rodin (1996) has demonstrated

that for elastic inclusion problems with a uniform eigenstrain, a weak

singularity of ln 𝑟 or a strong singularity of 1∕𝑟 exhibits for the strain
field in the neighborhood of a vertex of a polygonal or a polyhedral in-

clusion, respectively. This paper extends Rodin’s work to thermoelastic

problem, but the singularity will follow the similar fashion.
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Firstly, this paper considers a bi-material infinite domain. However,

as long as the polygonal inclusion is within one material phase as we

discussed in this paper, the same singularities retain as a single material

infinite domain investigated by Rodin (1996). The reason is that the

bi-material fundamental solutions are derived through superposition

of infinite one and relevant image terms, original components of infi-

nite fundamental solutions produce singularity issues at the vertices.

However, the image terms exhibit a distance from the vertices but

will not produce any singularity issue unless vertices are on the bi-

material interface, which will be investigated in the future. Note that

the vertex on the interface may generate a higher order singularity than

an inner vertex does because both the interfacial discontinuity plays

an additional role in the singularity. However, this paper limits to the

inner vertex, which shall exhibit the same singularity as Rodin (1996)

studied.

Secondly, this paper covers three Green’s functions while Rodin

studied the elastic case only (Rodin, 1996). The thermal Green’s func-

tion shares the same singularity order as the elastic Green’s function,

as the harmonic potential plays the role. However, for thermal elastic

problem, because the continuity of the thermoelastic Green’s function

is one order higher than the elastic Green’s function, the strain field

caused by a uniform heat source will not be singular anymore. Note that

a temperature change in an inclusion produces an eigenstrain, which

produces stress singularity as well.

Thirdly, this paper considers different types of sources beyond the

uniform eigen-fields. Specifically, distributed heat sources and forces,

polynomial eigen-temperature gradient (ETG), polynomial eigenstrain

are considered. The strain field caused by uniformly distributed heat

sources or forces exhibit continuity one order higher than the cor-

responding uniform eigen-fields, so the uniform eigen-fields play the

controlling role on the overall singularity. Note that for a polynomial

eigen-field with the reference point on the vertex, the uniform term

plays the dominant role on singularity as the higher order-term provide

low source intensity at the neighborhood of the vertex.

4. Numerical verification with circular inhomogeneity problem

The above-provided closed-form domain integrals can provide exact

solutions to thermal and elastic fields of Eshelby’s inclusion prob-

lems, where the eigen-fields are continuously distributed over the

inclusion up to quadratic order. Besides the inclusion problem, the

aforementioned domain integrals can be applied in Eshelby’s equiva-

lent inclusion method to investigate disturbance by the mismatch of

material properties. Shown as Fig. 3, this section considers a circular

subdomain with radius 𝑎 = 0.1 m embedded in two jointed dissimilar

half-spaces with distance ℎ = 1.2𝑎 to the bimaterial interface 𝑆. A line

heat source 𝑞 = 10 kW∕m3 and uniform far-field load 𝜎022 = −10 kPa are
applied to the system. Without the loss of any generality, (i) the upper

phase + exhibits 1 W∕m K, 3 MPa, 0.2, 10 kPa, (ii) the lower phase −

exhibits 10 W∕m K, 1.5 MPa, 0.2, 20 kPa, and (iii) the inhomogeneity 𝛺

exhibits 5 W∕m K, 1 MPa, 0.3, 0 for thermal conductivity, shear mod-
ulus, Poisson’s ratio, and thermal modulus, respectively. 3, 4, 12, 20−,
and 100− equal-sized regular polygons are employed to approximate

the circular cross-section to conduct Eshelby’s thermal and elastic EIM.

In order to verify uniform, linear and quadratic domain integrals, the

solutions are compared among finite element method (FEM), Eshelby’s

method with analytical circular and polygon-approximated integrals on

thermal and elastic fields. The following subsection provides details

on acquiring initial stress components in FEM, which is due to the

non-uniformity of loads.

4.1. Finite element model and preparation for initial stress components

In this section, the FEM model is built upon the commercial software

ANSYS with steady-state and static elastic functions. To reduce thermal

Fig. 3. One circular inhomogeneity (radius 𝑎 = 0.1 m, heat source 𝑞 = 10 kW∕m3) is

subjected to far-field load 𝜎0
22 = −10 kPa approximated by 3, 4, 12, 20 and 100 edges

embedded in a two jointed dissimilar half-spaces with distance ℎ to the bimaterial

interface.

boundary effects, shown in Fig. 4, (i) the dimension of bimaterial ma-

trix are 20 m×20 m; and (ii) uniform temperature boundary conditions

−2.08 ◦C are setup with on the left, right, bottom and top edges, re-

spectively. Regarding elastic boundary conditions, (i) the displacement

components 𝑢1 and 𝑢2 are constrained for the left and bottom edge,

respectively; (ii) the left bottom corner is constrained to avoid rigid

body motion; (iii) the right edge is traction-free; and (iv) a 10 kPa
uniform pressure is applied on the top edge (for an elastic stress test

in Section 4.3, which is suppressed in Section 4.4). Unlike the infinite

space, a uniform far-field load results in linear stress variation in the

neighborhood of the bimaterial interface. Therefore, it is inappropriate

to use uniform far-field strain/stress as initial conditions. Instead, the

circular domain is first filled with the same material as the matrix,

and the stress and its partial derivatives at the expansion center are

obtained and applied as initial stress conditions for EIM. Based on

FEM, (i) 𝜎011 = 1014.9 Pa, 𝜎022 = −10.03 kPa with linear slope 𝜎011,1 =
0, 𝜎011,2 = −149.21 Pa, 𝜎22,1 = 33.33 Pa and 𝜎22,2 = 22.22 Pa for the
upper region near the interface; (ii) 𝜎011 = −736.92 + 100.66𝑥2 Pa and
𝜎022 = −10027+22.22𝑥2 Pa for the lower region near the interface, where
(i) is applied as initial stress conditions for EIM.

4.2. Comparison of thermal fields among circular and non-circular approx-

imated polygons

As indicated in Eq. (1), when the source and field points are in

the same material phase, the fundamental solution contains both the

original harmonic potential and its image term. This subsection aims to

verify the appropriate handling of image terms in Appendix A.1. Shown

in Fig. 5(a) and 5(b), the temperature and flux are compared between

FEM and EIM with uniform, linear and quadratic ETGs. When the

inhomogeneity is embedded in the infinite medium, a combination of

uniform and linear ETG can provide the exact thermal solutions, which

are elaborated in Section 5. However, since the circular inhomogeneity

are placed close to the bimaterial interface 𝑆, the material mismatch of

the two matrix results in a more complicated variation of thermal fields.

Taking the above case, for instance, because the thermal conductivity

significantly changes (𝐾 ′ = 0.1𝐾 ′′), the slope of temperature and flux
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Fig. 4. Plot of FEM mesh for a circular inhomogeneity embedded in the two jointed dissimilar half-spaces; 0.005 m element size used in circular and its related two rectangles;

0.05 m element size used in two other larger rectangles.

Fig. 5. Verification and comparison of thermal field between EIM and FEM along the vertical center line, (a) temperature 𝑇 and (b) flux 𝑞2 obtained by uniform, linear and

quadratic ETG with analytical circular domain integrals; (c) temperature 𝑇 and (d) flux 𝑞2 obtained by 3, 4, 12, 20, 100− equal edged polygons with quadratic ETG.

changes accordingly to match continuity equations. In such a case,

quadratic and actually even higher-order variations of flux are expected

due to the interfacial effects. Fig. 5(b) verifies the higher order variation

of flux, and EIM with quadratic ETG has the smallest discrepancies

compared with that of uniform and linear ETGs. Fig. 5(c) and 5(d)

compare temperature and flux calculated by domain integrals with

five polygons. Since the circle is approximated by regular equal-edge

polygons, more edges could better describe the geometric features. It

is observed that 3, 4−edged polygons can seldom catch the features

which exhibit large discrepancies between the analytical solutions and

other polygons. 12-edged polygons can provide close predictions, but
the thermal fields show larger difference around the top and bottom.
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Fig. 6. Verification and comparison of stress fields between EIM and FEM along the vertical center line, (a) normal stress 𝜎11 and (b) normal stress 𝜎22 obtained by uniform,

linear and quadratic eigenstrain with analytical circular domain integrals; (c) normal stress 𝜎11 and (d) normal stress 𝜎22 obtained by 3, 4, 12, 20, 100− equal edged polygons with

quadratic eigenstrain.

When the number of edges increases, good comparisons can be found

between the 100-edged polygon and the analytical solution.

4.3. Comparison of stress fields among circular and non-circular approxi-

mated polygons

This subsection verifies the domain integrals of Boussinesq’s poten-

tials. As mentioned in Section 4.1, this section set nil thermal modulus

to obtain regular initial stress components for EIM. Following the

same fashion, we first compared FEM and EIM with analytical circular

domain integrals. Shown in Fig. 6(a) and 6(b), similar to thermal

fields, EIM with quadratic exhibit the minor discrepancies compared to

that of FEM. As a tribute to Eshelby’s work, when the inhomogeneity

is embedded in an infinite medium, the uniform representation of

eigenstrain is the exact solution. Even for an inclusion problem, the

mismatch of two matrix materials changes the order of load from

uniform to linear. However, questions may arise that for linear initial

stress fields, why do the elastic fields differ between the linear and

quadratic eigenstrain? This question should be answered in aspects

of fundamental solution as Eq. (3). We shall first the problem in an

infinite space with Kelvin’s solution, and a linear variation of the

initial field can only result in a combination of uniform and linear

eigenstrain. However, the bimaterial fundamental solution consists of

Kelvin’s solution and Boussinesq’s displacement potentials. Unlike the

harmonic, bi-harmonic functions, which yield zero at the center of

expansion for higher order derivatives, i.e., uniform potentials are zero

under 5th order derivatives, Boussinesq’s displacement potentials still

have influences. Therefore, equivalent stress conditions for quadratic

terms are no longer zero, resulting in such differences. Fig. 6(c) and

6(d) compares solutions between analytical circular domain integrals

and equal-edged polygon approximated solutions. When the number

of edges increases, the results of an equal-edge polygon gradually

recover the analytical solution except for the top and bottom vertices.

In addition, the stress singularities caused by polygon vertices vanish

rapidly for both interior and exterior parts. Except for the cases of 3 and
4 edge, other cases with 12, 20, 100 can provide good agreement with
analytical domain integrals, which can be further applied for elastic

analysis of other geometries.

4.4. Comparison of thermoelastic stress fields among circular and non-

circular approximated polygons

Although the thermoelastic field by a circular heat source may not

vary as much as the elastic stress fields, there are constant stresses

between FEM and DEIM results due to BCs. For readers’ reproduction,

𝜎011 = −2.32 kPa and 𝜎022 = −15.03 kPa are used in verification of DEIM,
which are obtained in a similar way as elastic one through inclusion

problem. Fig. 7(a) compares FEM and DEIM with uniform, linear and

quadratic eigen-fields and the same conclusion can be drawn that

quadratic eigen-fields can better approximate the actual fields. Since

the thermoelastic solutions are the superposition of thermal and elastic

parts, the discrepancies from temperature accumulates, which results
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Fig. 7. Verification and comparison of stress fields between DEIM and FEM along the vertical center line, (a) normal stress 𝜎11 and (b) normal stress 𝜎22 obtained by uniform,

linear and quadratic eigenstrain with analytical circular domain integrals; (c) normal stress 𝜎11 and (d) normal stress 𝜎22 obtained by 3, 4, 12, 20, 100− equal edged polygons with

quadratic eigenstrain.

in much larger discrepancies in elastic stress compared to Fig. 6(b).

Fig. 7(b) shows similar trends, and the application of linear eigen-fields

significantly improves approximation accuracy. The reason is that a

uniform ETG cannot accurately describe thermal fields, and even for

an infinite medium (in the next section), we show that a linear ETG

is an exact solution where no uniform ETG is necessary. Fig. 7(c) and

7(d) apply polygons to approximate the circle. Given a low number

𝑁𝐹 , their main difference exists in the neighborhood of top and bottom

vertices, which require more edges to capture the geometry.

5. Case study of an electric cable with different cross section in a

large concrete block

The previous section verifies domain integrals of arbitrarily shaped

polygons through comparison with FEM and analytical solution. The

section aims to derive the analytical thermal, thermoelastic solution of

a single circular inhomogeneity with a prescribed uniform heat source

embedded in an infinite space. A typical application of such a case is

the analysis of an electric cable embedded in a concrete block.

5.1. Dual equivalent inclusion method

In our recent work (Wu et al., 2023a), the DEIM is proposed to

handle trivial procedures to couple the thermoelastic analysis. Using

the technique of Green’s function, DEIM avoids volume integrals of tem-

perature over the entire domain by limiting it within inhomogeneities.

Although tedious to duplicate Eq. (28) in Wu et al. (2023a), it is of

importance to list the equation as Eq. (28),

𝑤
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
− 𝜀𝐼0∗

𝑘𝑙
) −𝑤𝛿𝑖𝑗𝛥𝑇

= 𝐼
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
) −𝐼 𝛿𝑖𝑗𝛥𝑇

𝑤
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙,𝑚

+ 𝜀′
𝑘𝑙,𝑚

+ 𝜀
𝑄

𝑘𝑙,𝑚
+ 𝜀𝐸

𝑘𝑙,𝑚
− 𝜀𝐼1∗

𝑘𝑙𝑚
) −𝑤𝛿𝑖𝑗𝛥𝑇,𝑚

= 𝐼
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
),𝑚 −𝐼 𝛿𝑖𝑗𝛥𝑇,𝑚

𝑤
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙,𝑚𝑛

+ 𝜀′
𝑘𝑙,𝑚𝑛

+ 𝜀
𝑄

𝑘𝑙,𝑚𝑛
+ 𝜀𝐸

𝑘𝑙,𝑚𝑛
− 2𝜀𝐼2∗

𝑘𝑙𝑚𝑛
) −𝑤𝛿𝑖𝑗𝛥𝑇,𝑚𝑛

= 𝐼
𝑖𝑗𝑘𝑙

(𝜀∞
𝑘𝑙
+ 𝜀′

𝑘𝑙
+ 𝜀

𝑄

𝑘𝑙
+ 𝜀𝐸

𝑘𝑙
),𝑚𝑛 −𝐼 𝛿𝑖𝑗𝛥𝑇,𝑚𝑛

(28)

where 𝜀∞
𝑖𝑗
, 𝜀′

𝑖𝑗
, 𝜀∗

𝑖𝑗
are initial far-field strain, disturbed strain (by eigen-

strain) and eigenstrain, respectively; 𝜀𝑄
𝑖𝑗
and 𝜀𝐸

𝑖𝑗
are disturbed strain

caused by the heat source and ETG, respectively. For a linear prob-

lem, the disturbed strain by eigenstrain, heat source, and ETG can

be obtained by applying compatibility law on Eq. (11). The ETG are

determined through thermal equivalent flux equations, and readers can

refer to Eq. (15) in Wang et al. (2022).

5.2. Exact thermoelastic solution of an circular inhomogeneity embedded in

an infinite domain

Consider a constant heat source 𝑞𝑣 distributed within the circular

subdomain 𝛺 with 𝐾𝐼 located at the origin point, where the refer-

ence temperature is assumed at the center of inhomogeneity. Through
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Fig. 8. Variation of temperature 𝑇 along 𝑥2 within [0.003, 0.6] m when electric cable is located at different height, (a) 0.05 m, (b) 0.15 m and (c) 0.30 m (in comparison to

Eq. (29)).

thermal equivalent flux conditions, a linear ETG can be obtained as

Eq. (29),

𝑇 ∗
𝑖𝑗
= 𝐾 −𝐾𝐼

−2𝐾𝐾𝐼
𝑞𝑣𝛿𝑖𝑗 (29)

then the temperature is,

𝑇 (𝐱) =
𝑞𝑣

4𝜋𝐾

{
𝛷 + 𝐾 −𝐾𝐼

2𝐾𝐼
𝛷𝑖,𝑖

}
=

𝑞𝑣

4𝐾

{
(1 − ln 𝑎2)𝑎2 + 𝐾−𝐾𝐼

𝐾𝐼 𝑎2 − 𝐾

𝐾𝐼 |𝑥|2 |𝑥| ≤ 𝑎

−𝑎2 ln |𝑥|2 |𝑥| > 𝑎
(30)

𝛷(𝐱) = 𝜋

{
𝑎2(1 − ln 𝑎2) − |𝑥|2 |𝑥| ≤ 𝑎

−𝑎2 ln |𝑥|2 |𝑥| > 𝑎
(31)

where the contribution of linear ETG vanishes for exterior field points;

𝛷 is first presented considering the constant of the interior part, which

is often neglected by the community in the partial differentiation

process. Through solving Eq. (28), the eigenstrain can be obtained as

the combination of uniform and quadratic terms as Eq. (32),

𝜀∗
𝑖𝑗
(𝐱) = 𝜀

𝐻
𝛿𝑖𝑗 + (𝜀𝐴𝛿𝑖𝑗𝛿𝑚𝑛 + 𝜀

𝐵(𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑚))(𝑥𝑚 −𝑥𝑐
𝑚
)(𝑥𝑛 −𝑥𝑐

𝑛
) |𝑥| ≤ 𝑎

(32)

where components of uniform and quadratic eigenstrain are,

𝜀
𝐴 =

𝑞𝑣

 ( −𝐼 )(𝜇 + (3 − 4𝜈)𝜇𝐼 )

− 2(1 − 2𝜈)
(
𝜇(𝜆 + 𝜇 − 2𝜆𝐼 ) + (𝜆 − 𝜇)𝜇𝐼

)
𝜀
𝐵 = −

𝑞𝑣

 (𝜇 − 𝜇𝐼 )
(𝐼 +)

&

 = 16𝐾𝐼
(
(1 − 2𝜈)(𝜆 + 𝜇)𝜇𝐼 + (𝜆𝐼 + 𝜇𝐼 )𝜇

)
(33)

and see equation in Box I.

By using Eq. (11) with elastic and thermoelastic Eshelby’s tensors,

the displacement can be obtained,

𝑢𝑖(𝐱) =
1

8𝜋(1 − 𝜈)

{
𝛼(1 + 𝜈)𝑞𝑣

𝐾

[
𝛹,𝑖 +

𝐾 −𝐾𝐼

2𝐾𝐼
𝛹𝑚,𝑖𝑚

]
+ 𝜀𝐻 [𝛹,𝑖𝑚𝑚 − 4𝛷,𝑖]

+ 𝜀𝐴[𝛹𝑚𝑚,𝑖ℎℎ − 4𝛷𝑚𝑚,𝑖] + 2𝜀𝐵[𝛹𝑚ℎ,𝑖𝑚ℎ − 2𝜈𝛷𝑚𝑚,𝑖 − 8(1 − 𝜈)𝛷𝑖𝑚,𝑚]

}

=
𝑥𝑖

8(1 − 𝜈)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛼(1 + 𝜈)𝑞𝑣
[ (2𝐾 −𝐾𝐼 )

2𝐾
(2𝑎2 − |𝑥|2) − 𝑎2 ln(𝑎2)

]
+ 4𝜀𝐻

+ 2|𝑥|2𝜀𝐴 + [2(−3 + 4𝜈)𝑎2 + (9 − 10𝜈)|𝑥|2]𝜀𝐵 |𝑥| ≤ 𝑎

𝑎2𝛼(1 + 𝜈)𝑞𝑣
4

[
𝑎2(𝐾 − 3𝐾𝐼 )

𝐾|𝑥|2 − 8 ln |𝑥|2]
+ 8 𝑎2|𝑥|2 𝜀𝐻 + 2𝑎4|𝑥|2 (1 − 𝜈)𝜀𝐵

|𝑥| > 𝑎

(35)

where 𝛼 = ∕(3𝜆 + 2𝜇) denotes the thermal expansion coefficient.
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Fig. 9. Variation of normal stresses along 𝑥2 axis within [0.003, 0.06] m when the polygonal cross-section is located at three distances, (a) 𝜎11, (b) 𝜎22 for ℎ = 0.05 m; (c) 𝜎11, (d)

𝜎22 for ℎ = 0.15 m; (e) 𝜎11, (f) 𝜎22 for ℎ = 0.30 m.

Note that one can similarly derive the exact thermoelastic solution

of spherical inhomogeneity embedded in an infinite space for the 3D

problem (see Section 6.1 in Wu et al. (2023a)).

5.3. Comparison of temperature and thermoelastic fields among circular

and non-circular approximated polygons

Considering an electric cable with a polygonal cross-section em-

bedded in a large concrete block, it usually generates heat, which

causes thermal stresses in the concrete phase. Because the concrete

block is much larger than the cross-section of the cable, the problem

can be simplified as a semi-infinite one, where concrete and air serve

as the upper and lower phase, respectively. As shown in Eqs. (1)–

(3), the interfacial effects decrease with the increasing distance ratios

(ℎ∕𝑎), where 𝑎 is the characteristic dimension of the cross-section.

Hence, to investigate both geometries, polygons with 𝑁𝐹 wedges (𝑁 =
3, 4, 6, 50, 100) with the same cross-section area (6.4516 cm2) and heat
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𝜀
𝐻 = 𝑎2𝑞𝑣

𝐾

(
(𝐼 −)

[
𝜇
[
(1 − 2𝜈)(𝜆+ 𝜇) + (3 − 2𝜈)𝜆𝐼

]
+ 𝜇𝐼 (1 − 2𝜈)

[
(3 − 4𝜈)𝜆+ 𝜆𝐼 + 𝜇𝐼

]
+ 2(3 − 6𝜈 + 4𝜈2)𝜇𝜇𝐼

])
+(1 −

2𝜈)𝜇−1[𝜆+ 𝜇 − 𝜆𝐼 − 𝜇𝐼
][
(1 − 2𝜈)𝜆(𝜇 + 𝜇𝐼 ) + 𝜇

(
2𝜆𝐼 + (1 − 2𝜈)𝜇 + (3 − 2𝜈)𝜇𝐼

)]
− 4𝐾𝐼 ln(𝑎)

[
2(𝐼 −)(1 − 𝜈) +

(1 − 2𝜈)𝜇−1[𝜆 + 𝜇 − 𝜆𝐼 − 𝜇𝐼
][
𝜇(𝜆𝐼 + 𝜇𝐼 ) + 𝜇𝐼 (1 − 2𝜈)(𝜆 + 𝜇)

]]
𝐾(

𝜆𝐼 + 𝜇𝐼 + (1 − 2𝜈)(𝜆 + 𝜇)
) (34)

Box I.

generation rate 33 kW∕m2 are applied. Regarding the distance effects,

they are placed with ℎ = 0.05, 0.15, and 0.30m below the interface. The

material properties are selected as, (i) 𝐾 ′ = 1 W∕m K, 𝜇′ = 1.5 GPa, 𝜈′ =
0.2 and ′ = 60 kPa for the concrete; (ii) 𝐾 ′′ = ∞, 𝜇′′ = 𝜈′′ = ′′ = 0
for the air to create the constant temperature interfacial condition; and

(iii) 𝐾𝐼 = 237 W∕m K, 𝜇𝐼 = 26.25 GPa, 𝜈𝐼 = 0.33 and 𝐼 = 8.453 MPa
for the cable.

Fig. 8(a–c) compare temperature 𝑇 = 𝑇 (𝐱) − 𝑇 (𝐱𝑐 ) along 𝑥2 axis

among polygonal cross-section with 3, 4, 6, 50 and 100 edges. It is ob-
served that the temperature of the 3 − 𝑒𝑑𝑔𝑒 polygon exhibits different

trends, which are caused by different center temperatures. As for

other cases, although they exhibit some discrepancies within the cross-

section, the differences vanish rapidly. When the distance ℎ decreases,

the two end-point temperatures increase, and their differences become

larger as the interfacial effects become intensive. Since the dominant

function of temperature is ln 𝑟, the interfacial effects require larger
distances to vanish. As indicated in Fig. 8(c), when comparing tem-

peratures with the solution in Eq. (29) (center at 0.3 m), apparent

discrepancies are observed around two end-points.

Fig. 9(a–e) compare temperature 𝑇 = 𝑇 (𝐱) − 𝑇 (𝐱𝑐 ) along 𝑥2 axis

among polygonal cross-section with 3, 4, 6, 50 and 100 edges. Despite the
singular stresses around the vertices, the interior thermoelastic stresses

exhibit a flattening trend with the increase of distance ℎ. Since the

dominant function of interfacial effects on stress is 1∕𝑟, the interfacial
effects reduce rapidly. Shown as Figs. 9(c, d) and 9(e, f), the interior

stresses are in similar shape though their values are different due

to different temperatures. Regarding the exterior stress, all polygonal

cases exhibit similar trends, which can be interpreted that the influence

of ETG and eigenstrain on stress behave as 1∕𝑟 and 1∕𝑟2, respectively.
Fig. 7(e) and 7(f) compare stresses with a circular cross-section in an

infinite medium, and their main difference exist in the neighborhood

of two end-points. Since the thermoelastic field is obtained through the

superposition of thermal and elastic fields, Fig. 8(c) exhibit a similar

trend, although a reference temperature is applied.

6. Conclusions

The two-dimensional bimaterial elastic, thermoelastic Green’s func-

tion is obtained through finite part integrals. Moreover, their do-

main integrals with uniform, linear and quadratic eigen-fields for two-

dimensional bimaterial problems are presented. Using the transforma-

tion coordinates, the domain integrals are obtained through the direct

method and Green’s theorem through conversion to contour integrals.

Numerical verification is conducted on DEIM, with FEM, analytical for-

mulae for circular inhomogeneities with heat source and initial stresses.

An exact thermoelastic solution of a circular inhomogeneity embed-

ded within an infinite domain has been presented. The formulae are

further applied for DEIM to investigate boundary effects of polygonal

cross-sections embedded in a large concrete, where material properties

are adjusted to simulate a semi-infinite problem. The aforementioned

formulae for harmonic, bi-harmonic, and displacement potentials are

provided for the community.
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Appendix A. Transform domain integrals to other branches

A.1. Handle image terms of harmonic 𝛷 and bi-harmonic 𝛹 potentials

Section 3 states that the domain integrals of 𝛷 and 𝛹 can be

handled by mirroring source parts (𝐱′). This appendix section aims to
provide some simple derivations, and we have already implemented

the domain integrals in the ‘‘POLYGON-EIM’’ package. For readers of

interest, please refer to Appendix B for specific programming details

with code, which contains both circular and polygonal integrals. In the

following, we take 𝛷 and 𝛷
𝑝
for instances. Following the same notation

of our recent paper (Wu and Yin, 2021a),

𝛷,𝑖 =
𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖𝛷

𝑓

0 (𝑏𝑓 , 𝑙
−
𝑓
, 𝑙

+
𝑓
)

𝛷𝑝,𝑖 = 𝑄𝑃

{
𝛿𝑝𝑖𝛷 + (𝑥𝑝 − 𝑥𝑝

𝑐 )𝛷,𝑖

+
𝑁𝐹∑
𝑓=1

(𝜆0
𝑓
)𝑖
(
𝑏𝑓 (𝜆0𝑓 )𝑝𝛷

𝑓

0 (𝑏𝑓 , 𝑙
−
𝑓
, 𝑙

+
𝑓
) + (𝜉0

𝑓
)𝑝𝛷

𝑓

1 (𝑏𝑓 , 𝑙
−
𝑓
, 𝑙

+
𝑓
)
) } (A.1)

where the parameters 𝑏𝑓 = ((−𝑣±
𝑓
)𝑖 − 𝑥𝑖)(𝜆0𝑓 )𝑖 and 𝑙

±
𝑓

= ((−𝑣±
𝑓
)𝑖 −

𝑥𝑖)(𝜉0𝑓 )𝑖. As shown in Eq. (A.1), the image terms can be well handled
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by mirroring the source points. Notice that the 2DTC is based on the

counterclockwise sequence. Therefore, attention should be paid to the

inverse sequence of vertices of each edge.

A.2. Handle Boussinesq’s displacement potentials with other branches

Section 3.2 states that the domain integrals of the other three

branches can be extended from the first branch. Let us take 𝛩𝑢, 𝛩𝑢
𝑝
, 𝛩𝑢

𝑝𝑞

and 𝛩
𝑢
, 𝛩

𝑢

𝑝
, 𝛩

𝑢

𝑝𝑞
as instance to illustrate the transformation process. In

Eq. (8), one can obtain relationship that 𝛼
𝑢(𝐱, 𝐱′) = 𝛼𝑢(𝐱, 𝐱′). In such a

case, 𝛩
𝑢
can be expressed as,

𝛩
𝑢
=

𝑁𝐹∑
𝑓=1

 (𝑏̃𝑓 , 𝑙+𝑓 ) −  (𝑏̃𝑓 , 𝑙−𝑓 ) (A.2)

where the parameters 𝑏̃𝑓 = ((𝑣+
𝑓
)𝑖 − 𝑄𝐼𝑥𝑖)(𝜆0𝑓 )𝑖 and 𝑙±

𝑓
= ((𝑣±

𝑓
)𝑖 −

𝑄𝐼𝑥𝑖)(𝜉0𝑓 )𝑖. And the partial derivatives of 𝛩̃𝑢 can be modified from

Eq. (17) as,

𝛩
𝑢

,𝑖
= 𝑄𝐼

𝑁𝐹∑
𝑓=1

−(𝜆0
𝑓
)𝑖
{(𝑏̃𝑓 , 𝑙+𝑓 ) −(𝑏̃𝑓 , 𝑙−𝑓 )

}
(A.3)

Subsequently, for the second order partial derivative,

𝛩
𝑢

,𝑖𝑗
= 𝑄𝐼𝑄𝐽

𝑁𝐹∑
𝑓=1

−(𝜆0
𝑓
)
{
−(𝜆0

𝑓
)𝑗
( 𝜕
𝜕𝑏

(𝑏̃𝑓 , 𝑙+) −
𝜕
𝜕𝑏

(𝑏̃𝑓 , 𝑙−)
)

− (𝜉0
𝑓
)
( 𝜕

𝜕𝑙
(𝑏̃𝑓 , 𝑙+) −

𝜕
𝜕𝑙

(𝑏̃𝑓 , 𝑙−)
) } (A.4)

where 𝑄𝐽 handles negative sign with respect to the second axis that
𝜕𝑏̃𝑓

𝜕𝑥𝑗
= −𝑄𝐽 (𝜆0𝑓 )𝑗 and

𝜕𝑙±
𝑓

𝜕𝑥𝑗
= −𝑄𝐽 (𝜉0𝑓 )𝑗 . For the other two branches, 𝛩

𝑙

and 𝛩
𝑙
, it is observed that 𝛼𝑙(𝐱, 𝐱′) = −𝛼𝑢(𝐱, 𝐱′) and 𝛼

𝑙(𝐱, 𝐱′) = −𝛼𝑢(𝐱, 𝐱′).
Hence, they can be obtained similarly to Eq. (A.1) with a negative sign.

Regarding the linear domain integrals,

𝛩
𝑢

𝑝,𝑖
= 𝜕

𝜕𝑥𝑖

{
∫𝛺(𝑥

′
𝑝
− 𝑥𝑝)𝛼𝑢(𝐱, 𝐱′) 𝑑𝐱′ + (𝑥𝑝 − 𝑥𝑐

𝑝
)𝛩

𝑢
}

= 𝑄𝑃𝛩
𝑢
+ (𝑥𝑝 − 𝑥𝑐

𝑝
)𝛩

𝑢

,𝑖

+ 𝑄𝐼

𝑁𝐹∑
𝑓=1

−(𝜆0
𝑓
)𝑖
{
(𝜆0

𝑓
)𝑝𝑏̃𝑓

((𝑏̃𝑓 , 𝑙+) −(𝑏̃𝑓 , 𝑙−)
)

+ (𝜉0
𝑓
)𝑝
(𝐼 (𝑏̃𝑓 , 𝑙+) −𝐼 (𝑏̃𝑓 , 𝑙−)

) }
(A.5)

As for the quadratic linear domain integrals,

𝛩
𝑢

𝑝𝑞,𝑖
= 𝜕

𝜕𝑥𝑖

{
∫𝛺(𝑥

′
𝑝
− 𝑥𝑝)(𝑥′𝑞 − 𝑥𝑞)𝛼𝑢(𝐱, 𝐱′)𝑑𝐱′

+ (𝑥𝑝 − 𝑥𝑐
𝑝
)𝛩

𝑢

𝑞
+ (𝑥𝑞 − 𝑥𝑐

𝑞
)𝛩

𝑢

𝑝
− (𝑥𝑝 − 𝑥𝑝)(𝑥𝑞 − 𝑥𝑞)𝛩

𝑢
}

= (𝑥𝑝 − 𝑥𝑐
𝑝
)𝛩

𝑢

𝑞,𝑖
+ (𝑥𝑞 − 𝑥𝑐

𝑞
)𝛩

𝑢

𝑝,𝑖
+𝑄𝑃 𝛿𝑝𝑖𝛩

𝑢

𝑞
+𝑄𝑄𝛿𝑞𝑖𝛩

𝑢

𝑝

−
(
𝑄𝑃 𝛿𝑝𝑖(𝑥𝑞 − 𝑥𝑐

𝑞
) +𝑄𝑄𝛿𝑞𝑖(𝑥𝑝 − 𝑥𝑐

𝑝
)
)
𝛩

𝑢

− (𝑥𝑝 − 𝑥𝑐
𝑝
)(𝑥𝑞 − 𝑥𝑐

𝑞
)𝛩

𝑢

,𝑖

+ 𝑄𝐼

𝑁𝐹∑
𝐼=1

−(𝜆0
𝑓
)𝑖
{
(𝜆0

𝑓
)𝑝(𝜆0𝑓 )𝑞 𝑏̃

2
𝑓

((𝑏̃𝑓 , 𝑙+) −(𝑏̃𝑓 , 𝑙−)
)

+
(
(𝜆0

𝑓
)𝑝(𝜉0𝑓 )𝑞 + (𝜆0

𝑓
)𝑞(𝜉0𝑓 )𝑝

)
𝑏̃𝑓

(𝐼 (𝑏̃𝑓 , 𝑙+) −𝐼 (𝑏̃𝑓 , 𝑙−)
)

+ (𝜉0
𝑓
)𝑝(𝜉0𝑓 )𝑞

( 𝐼𝐼 (𝑏̃𝑓 , 𝑙+) −𝐼𝐼 𝑏̃𝑓 , 𝑙
−)

)}

(A.6)

For domain integrals with 𝛽 functions can be obtained by replacing 
with  and 𝛩 with 𝛬 functions.

Appendix B. Introduction to ‘‘POLYGON-EIM’’ package

This paper aims to introduce the polygonal domain integrals of

thermal, thermoelastic, and elastic Green’s function and to promote its

versatile applications to the engineering community. Therefore, we im-

plemented the domain integrals and Eshelby’s EIM in the ‘‘POLYGON-

EIM’’ package, which is available at homepage of Prof.Yin research

group through the : link. The code was programmed mainly using

namespaces that beginners of C++ can understand.

The library (header files of functions) consists of six parts, which

are (i) ‘‘UNIFORM_polygon_domain_integrals’’, (ii) ‘‘LINEAR_polygon_

domain_integrals’’, (iii) ‘‘QUADRATIC_polygon_domain_integrals’’ for

uniform, linear and quadratic harmonic and bi-harmonic potential

functions of Green’s functions. The remaining three parts are, (iv)

‘‘UNIFORM_bimaterial’’, (v) ‘‘LINEAR_bimaterial’’, (vi) ‘‘QUADRATIC_

bimaterial’’, which are uniform, linear and quadratic domain integrals

of Boussinesq’s displacement potentials. Notice that the six header

files include both analytical circular and polygonal domain integrals.

Readers can easily identify them, i.e., ‘‘Theta_2_ij_analytical’’ stands

for the second derivative of quadratic circular domain integrals 𝛩𝑝𝑞,𝑖𝑗 .

Considering the efforts of differentiating branches, we merged branches

in functions, which does not require further modification for 𝑢 and 𝑢

cases (used in the paper).

Properties of the matrix, thermal conductivity (𝑘_0, 𝑘_1), stiffness
(𝑚𝑢_0, 𝑚𝑢_1, 𝑛𝑢0, 𝑛𝑢1), thermal modulus 𝑚𝑎0, 𝑚𝑎1 can be modified in
source file ‘‘eyemat.cpp’’. The source points (a polygonal shape circle)
can be generated automatically with specified number of edges and
the center is (0, 0.12)m, which can be modified in ‘‘Configure.cpp’’.
Currently, one input file ‘‘ EP_MAT.txt ’’ is needed, and we used the
example in the uploaded package to illustrate it. EP_MAT.txt

5 1E6 0.3 0 ( Thermal conduct iv i ty , shear

modulus , Poisson ’ s ra t io ,

thermal modulus )

0 0.12 0 ( Pos i t i on of the expansion point ,

heat source )

QUA (Order of eigen f i e l d s , the option

can be UNI , LIN , QUA)

This ‘‘EP_MAT.txt’’ is used for Fig. 5 for elastic stress comparison.
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