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Abstract: We study numerically the reconfiguration process of colliding |𝑚𝑚| = 1/2 strength discli-
nations in an achiral nematic liquid crystal (NLC). A Landau–de Gennes approach in terms of tensor 
nematic-order parameters is used. Initially, different pairs {𝑚𝑚1,𝑚𝑚2} of parallel wedge disclination 
lines connecting opposite substrates confining the NLC in a plane-parallel cell of a thickness h are 
imposed: {1/2,1/2}, {−1/2,−1/2} and {−1/2,1/2}. The collisions are imposed by the relative rotation of 
the azimuthal angle 𝜃𝜃 of the substrates that strongly pin the defect end points. Pairs {1/2,1/2} and 
{−1/2,−1/2} “rewire” at the critical angle 𝜃𝜃𝑐𝑐

(1) = 3𝜋𝜋
4

 in all cases studied. On the other hand, two qual-
itatively different scenarios are observed for {−1/2,1/2}. In the thinner film regime ℎ < ℎ𝑐𝑐, the discli-
nations rewire at 𝜃𝜃𝑐𝑐

(2) = 5𝜋𝜋
4

. The rewiring process is mediated by an additional chargeless loop nu-

cleated in the middle of the cell. In the regime ℎ > ℎ𝑐𝑐, the colliding disclinations at 𝜃𝜃𝑐𝑐
(2) reconfigure 

into boojum-like twist disclinations. 
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1. Introduction 
Topological defects (TDs) appear at diverse natural scales [1], including in particle 

physics, condensed matter physics and cosmology. Their existence is enabled topologi-
cally, which is independent of systems’ microscopic details. In most cases, they exhibit 
localized singularities in the order parameter field that represent ordering in a symmetry-
broken phase. Their essential properties are determined by topological charges that are 
topological invariants [2]. The related topological charge conservation rules determine 
their transformations, including merging and decaying processes. 

TDs in uniaxial nematic liquid crystal [3] (NLC) phases and structures represent an 
ideal testbed to study diverse TDs. In particular, they exhibit a rich pallet of qualitatively 
different TD structures. Furthermore, TDs in NLCs could be relatively easily created, sta-
bilized, manipulated and observed. The ordering within NLC configurations is commonly 
described by the nematic tensor order parameter Q. For the case of a uniaxial order, it is 
commonly expressed as 𝑸𝑸 = 𝑆𝑆(𝒏𝒏⨂𝒏𝒏 − 𝑰𝑰/3) in terms of the nematic uniaxial scalar-order 
parameter S and the nematic director field n, and 𝑰𝑰 stands for the unit tensor. The latter 
unit vector field points in the mesoscopic-scale local uniaxial LC direction and exhibits 
head-to-tail invariance (i.e., the states ±𝒏𝒏 are physically equivalent). The amplitude S re-
flects the degree of nematic order. If distortions are present, then the NLC could locally 
enter biaxial states. Consequently, the cores of TDs, where the NLC order experiences 
relatively strong spatial variations, generally exhibit a biaxial order [4–6]. 
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Of interest are line defects in NLCs. Their key properties are described by a 2D top-
ological charge m and a 3D topological charge q [7]. The former quantity is also termed 
the “winding number” or Frank index [3], which is determined by the total reorientation 
of n when encircling a line defect center counter-clockwise. On the other hand, q reveals 
how many times n samples all possible 3D orientations on any surface enclosing the de-
fect. In our work, we analyze reconfigurations of |𝑚𝑚| = 1/2 disclinations, which is the 
fundamental strength of a 2D defect. In bulk, they can form only closed loops. One must 
differentiate between wedge and twist disclinations, and the former are characterized by a 
constant sign of m. Close to the disclination core, the nematic director field exhibits spatial 
variations within the plane that are perpendicular to the disclination’s local orientation, 
which we henceforth refer to as the disclination plane. The associated 3D charge of wedge 
disclinations is expressed as |𝑞𝑞| = 1. Therefore, closed-wedge loops are “charged” and 
appear to a distant observer to be point defects (i.e., the far director field of isolated TDs 
is distorted). On the other hand, the sign of m varies along the twist disclination, and the 
3D charge of a closed twist loop equals zero [8–10] (i.e., they are “chargeless”). Conse-
quently, an isolated twist disclination could be embedded within an essentially spatially 
homogeneous director structure. However, chargeless loops tend to decay into a topolog-
ically equivalent, defectless, locally homogeneous nematic structure. Furthermore, the ne-
matic orientational order exhibits orientations out of the disclination plane along the twist 
disclination. 

In confined geometries, disclinations could originate and terminate at bounding sur-
faces [3,11,12]. One can routinely enforce and stabilize a predetermined pattern of such 
disclinations in plane-parallel cells through appropriate treatment of confining surfaces 
[13–20]. One possible method is scribing a polymer alignment layer with the stylus of an 
atomic force microscope (AFM) [13]. 

In this paper, we numerically study reconfigurations of initially parallel |𝑚𝑚| = 1/2 
line defects in a plane-parallel geometry. The plan of the paper is as follows. The methods 
are presented in Section 2. In Section 3, the results are discussed, and our conclusions 
appear in Section 4. 

2. Methods 
We used a Landau—de Gennes mesoscopic model [21], where the nematic orienta-

tional order is described by the traceless symmetric tensor nematic-order parameter 
[22,23] 

𝑸𝑸 = � 𝜆𝜆𝑖𝑖(𝒆𝒆𝒊𝒊 ⊗ 𝒆𝒆𝒊𝒊)
3

𝑖𝑖=1
 (1) 

in terms of its eigenvectors 𝒆𝒆𝑖𝑖 and eigenvalues 𝜆𝜆𝑖𝑖. It describes both the uniaxial and bi-
axial states, where the uniaxial states are commonly expressed as [21] 𝑸𝑸 = 𝑆𝑆 �𝒏𝒏⊗ 𝒏𝒏 −
1
3
𝑰𝑰� . Here, 𝑆𝑆 ∈ �− 1

2
, 1� is the scalar uniaxial-order parameter and 𝒏𝒏 is the nematic di-

rector field. In the positive uniaxial state, 𝒏𝒏 points along the eigenvector exhibiting the 
largest eigenvalue, which we align along 𝒆𝒆1. Note that in the figures, where we show the 
orientational order, we plot the orientational field for 𝒆𝒆1. 

The degree of biaxiality is measured by the biaxial parameter [22,23] 

𝛽𝛽2 = 1 −
6(𝑇𝑇𝑇𝑇𝑸𝑸3)2

(𝑇𝑇𝑇𝑇𝑸𝑸2)3 ∈ [0,1], (2) 

where 𝛽𝛽2 = 0 and 𝛽𝛽2 > 0 reflect the uniaxial and biaxial states, respectively. In partic-
ular, the condition 𝛽𝛽2 = 1 corresponds to states exhibiting maximal biaxiality. 

We express the free energy 𝐹𝐹  of the system as 𝐹𝐹 = ∫(𝑓𝑓𝑐𝑐 + 𝑓𝑓𝑒𝑒)𝑑𝑑3𝑟𝑟,  𝑓𝑓𝑐𝑐 , where 𝑓𝑓𝑒𝑒 
stands for the condensation- and elastic-free energy contributions, and the integral is car-
ried over the whole NLC body. The latter is confined within the plane-parallel cell of a 
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thickness h. At the bounding plates, we strongly enforce pairs of 2D defects. At the lateral 
sides of the NLC body, we implement free boundary conditions. 

The free energy density terms are expressed as 

𝑓𝑓𝑐𝑐 =
1
2
𝐴𝐴0(𝑇𝑇 − 𝑇𝑇∗)Tr(𝑸𝑸2) −

1
3
𝐵𝐵Tr(𝑸𝑸3) +

1
4
𝐶𝐶Tr(𝑸𝑸2)2 , 

(3a) 

 

𝑓𝑓𝑒𝑒 =
1
2
𝐿𝐿|∇𝑸𝑸|2 . (3b) 

Here, 𝐴𝐴0, 𝐵𝐵 and 𝐶𝐶 are material constants, 𝑇𝑇∗ is the supercooling temperature of 
the isotropic phase, and 𝐿𝐿 is the representative Landau-like nematic elastic constant in 
the single elastic constant approximation. In the simulations, we parametrize 𝑸𝑸 in the 
Cartesian coordinate frame (𝒆𝒆𝑥𝑥, 𝒆𝒆𝑦𝑦,𝒆𝒆𝑧𝑧) as 

𝑄𝑄 = �
𝑞𝑞1 + 𝑞𝑞2 𝑞𝑞3 𝑞𝑞4
𝑞𝑞3 𝑞𝑞1 − 𝑞𝑞2 𝑞𝑞5
𝑞𝑞4 𝑞𝑞5 −2𝑞𝑞1

� , (4) 

where 𝑞𝑞1,𝑞𝑞2,𝑞𝑞3,𝑞𝑞4 and 𝑞𝑞5 are variational parameters. We introduce the dimensionless 
temperature [23] 𝑟𝑟 = (𝑇𝑇 − 𝑇𝑇∗)/(𝑇𝑇∗∗ − 𝑇𝑇∗)  for scaling purposes, where 𝑇𝑇∗∗ = 𝑇𝑇∗ + 𝐵𝐵2/
(24𝐴𝐴0𝐶𝐶) is the superheating temperature and the scaled-order parameter is expressed as 
𝑸𝑸� = 𝑸𝑸/𝑆𝑆0. Here, 𝑆𝑆0 = 𝐵𝐵/(4𝐶𝐶), and we scale distances with respect to the cell thickness ℎ. 
We express the resulting dimensionless free energy contributions as 

𝑓𝑓𝑐𝑐 =
𝑟𝑟
6

Tr�𝑸𝑸�2� −
2
3

Tr�𝑸𝑸�3� +
1
8

Tr�𝑸𝑸�2�2 , 
(5a) 

 

𝑓𝑓𝑒𝑒 = �
𝜉𝜉𝑏𝑏
ℎ
�
2

�∇�𝑸𝑸��2 . (5b) 

Here, 𝜉𝜉𝑏𝑏 = 2√𝐿𝐿𝐿𝐿/𝐵𝐵 is the bare biaxial correlation length [21] with a typical value of 
𝜉𝜉𝑏𝑏 ≈ 30 nm for nematics [24], and ∇� = ℎ∇. The minimization of the free energy is per-
formed numerically deep inside the nematic phase, far below 𝑇𝑇∗. 

3. Results 
We studied reconfigurations of initially effectively parallel pairs {𝑚𝑚1,𝑚𝑚2 } of wedge 

disclinations within a plane-parallel confinement enforcing planar-type anchoring. Here, 
𝑚𝑚𝑖𝑖 marks the i-th defect winding number, where we analyzed cases {1/2,1/2}, {−1/2,−1/2} 
and {−1/2,1/2}. The cell plates enforcing the surface point defects with planar nematic or-
dering were at z = 0 and z = h of the Cartesian system (x,y,z). The initial set-ups are shown 
in Figure 1a, Figure 2a, Figure 3a and Figure 4a. We assumed that the defect endpoints 
were strongly pinned to the confining surfaces. The defect reconfigurations were enforced 
by the relative azimuthal rotation with an angle 𝜃𝜃 for the facing confining plates. Ini-
tially, the defect ends were pinned at points (𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑) = (±R/2,0) at each plate. We repre-
sented the disclination lines by plotting the regions where the defect-induced biaxiality 
was relatively strong. Upon increasing 𝜃𝜃 —in the simulations, we rotated the lower 
plate—the length of the disclinations increased, which was energetically costly. Specifi-
cally, the free energy penalty of a straight disclination was, in general, linearly propor-
tional to its length. At a critical rotation angle, the disclinations exhibited reconfigurations 
that prevented further elongation of the disclinations. The resulting process exhibited ei-
ther a periodic structural transformation within or a transformation into the qualitatively 
different boojum-like pattern. 
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Figure 1. Structural reconfiguration of a pair {1/2,1/2} of disclinations upon increasing 𝜃𝜃. (a) Initial 
structure at 𝜃𝜃 = 0. The two line defects have different shades of red to assist the reader in recog-
nizing the reconfiguration. (b) A representative rotated pattern, where 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐

(1) ≡ 3𝜋𝜋/4.  At 
𝜃𝜃 = 𝜃𝜃𝑐𝑐

(1), the disclinations exchange their segments, where (c) is just before contact, (d) is at the mo-
ment of contact and (e) is after the exchange. (f) Pattern after full rotation, which is equal to (a). 𝑅𝑅 =
2ℎ = 25 𝜉𝜉𝑏𝑏. Note that the scaling along the vertical and horizontal directions is different. Line de-
fects are indicated by colored regions, where 𝛽𝛽2 ≥ 0.8. 

 
Figure 2. Structural reconfiguration of a pair {−1/2,−1/2} of disclinations upon increasing 𝜃𝜃. (a) Ini-
tial structure at 𝜃𝜃 = 0. The two line defects have different shades of blue to assist the reader in 
recognizing the reconfiguration. (b) A representative rotated pattern, where 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐

(1) ≡ 3𝜋𝜋/4. 
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At 𝜃𝜃 = 𝜃𝜃𝑐𝑐
(1), the disclinations exchange their segments, where (c) is just before contact, (d) is at the 

moment of contact, and (e) is just after the exchange. (f) Pattern after full rotation, which is equal to 
(a). 𝑅𝑅 = 2ℎ = 25 𝜉𝜉𝑏𝑏. For presentation purposes, the scaling along vertical and horizontal directions 
is different. Line defects are indicated by colored regions, where 𝛽𝛽2 ≥ 0.8. 

 
Figure 3. Structural reconfiguration of a disclination pair {1/2,−1/2} upon increasing 𝜃𝜃,ℎ < ℎ𝑐𝑐 . (a) 
Initial structure at 𝜃𝜃 = 0.  (b,c) Representative rotated patterns, where 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐

(2) ≡ 5𝜋𝜋/4.  (d) 
The structure at 𝜃𝜃𝑐𝑐

(2) consists of two nearly straight and one loop-like chargeless disclination (pur-
ple). (e,f) Representative rotated patterns in the regime 𝜃𝜃𝑐𝑐

(2) < 𝜃𝜃 < 2𝜋𝜋. 𝑅𝑅 = 2ℎ = 25 𝜉𝜉𝑏𝑏 . For presen-
tation purposes, the scaling along the vertical and horizontal directions is different. Line defects are 
indicated by colored regions, where 𝛽𝛽2 ≥ 0.8. 
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Figure 4. Structural reconfiguration of disclinations upon increasing 𝜃𝜃, where the initial structure 
consists of defects bearing different winding numbers and where ℎ > ℎ𝑐𝑐. (a) Initial structure at 𝜃𝜃 =
0. (b) 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐

(1) ≡ 3𝜋𝜋
4

. (c) Configuration at 𝜃𝜃𝑐𝑐
(1). (d) Configuration slightly above 𝜃𝜃𝑐𝑐

(1), (e) 𝜃𝜃 = 𝜋𝜋. 
𝑅𝑅 = ℎ = 25 𝜉𝜉𝑏𝑏 . For presentation purposes, the scaling along the vertical and horizontal directions 
is different. Line defects are indicated by colored regions, where 𝛽𝛽2 ≥ 0.8. 

3.1. Pairs {1/2,1/2} and {−1/2,−1/2} 
We first considered a pair of {1/2,1/2} disclinations that were initially approximately 

parallel (i.e., 𝜃𝜃 = 0 (Figure 1a)). Note that the disclinations mutually repelled and were 
therefore slightly bent outward with respect to each other. In planar 2D systems, their 
mutual repulsive interaction per disclination unit length is approximately 
𝑓𝑓~𝑚𝑚1𝑚𝑚2𝐾𝐾 𝐿𝐿𝐿𝐿𝐿𝐿(𝜚𝜚/𝜉𝜉) [3], where 𝜚𝜚 > 𝜉𝜉 is the distance between the centers of defects, the 
nematic order parameter correlation length 𝜉𝜉 measures the characteristic size of defects’ 
cores and K stands for the representative Frank elastic constant. The far director field in 
any (x,y) plane is essentially radial from the central line located at (x,y) = (0,0). Upon in-
creasing 𝜃𝜃, the lengths of the disclinations progressively increased until the critical angle 
𝜃𝜃𝑐𝑐

(1) = 3𝜋𝜋
4

 was reached. The representative patterns for 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐
(1) are shown in Figure 

1b,c. At the critical angle, the cores of the defects joined, forming a single m = 1 two-di-
mensional defect in the (x,y) plane at z = h/2 (see Figure 1d). Figure 5 shows representative 
nematic cross-sections in the (x,y) plane. All the cross-sections possess a separated pair of 
m = ½ singularities. Figure 5c shows the case close to the merging point, where the two 
disclinations tended to merge via an intermediate m = 1 profile at z = h/2. This allowed the 
exchange of defect segments of disclinations, which enabled a decrease in disclination 
lengths upon further increasing 𝜃𝜃. Therefore, the upper (extending above z = h/2) part of 
the first disclination joined the bottom (extending below z = h/2) part of the second discli-
nation, which emerged as a new first single line at 𝜃𝜃 > 𝜃𝜃𝑐𝑐

(1). A representative structure is 
shown in Figure 1e. Simultaneously, the bottom part of the first disclination joined the 
upper part of the second disclination, which joined into a new second disclination. The 
whole reconfiguration is shown in more detail in video S1(see Supplementary Materials). 
This structural reconfiguration exhibited periodic behavior in θ with respect to a 𝜋𝜋 unit 
period. In Figure 6a, we plot the total length hd of both disclinations upon increasing 𝜃𝜃. 
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Figure 5. Representative nematic structures in (x,y) cross-sections in the middle of the cell at differ-
ent values of 𝜃𝜃 for the pair of {1/2,1/2} disclinations: (a) 𝜃𝜃 = 0, (b) 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐

(1), (c) 𝜃𝜃~𝜃𝜃𝑐𝑐
(1) and (d) 

𝜃𝜃 > 𝜃𝜃𝑐𝑐
(1). Red dots mark defect centers. 

 
Figure 6. The total disclination length hd variation upon increasing 𝜃𝜃. (a) {1/2,1/2}. (b) {−1/2,−1/2}, 
𝜃𝜃𝑐𝑐

(1) ≡ 3𝜋𝜋
4

. (c) {1/2,−1/2}, ℎ < ℎ𝑐𝑐 , 𝜃𝜃𝑐𝑐
(2) ≡ 5𝜋𝜋

4
. 

In Figure 2 (and video S2), we show the rotation-induced reconfiguration of the 
{−1/2,−1/2} disclinations, where intermediate configurations for the same vales of 𝜃𝜃 are 
shown as in Figure 1. In the approximation of equal elastic constants, the reconfiguration 
process was qualitatively and even quantitatively (with respect to disclination axis direc-
tion variations) the same for the {−1/2,−1/2} and {1/2,1/2} pairs. In Figure 6b, we plot the 
total length hd of both disclinations upon increasing 𝜃𝜃. 

Note that we observed qualitatively the same structural behavior for all studied cell 
thicknesses (we probed the behavior in cells up to the maximal thickness h = 2R). One 
would intuitively expect that in thick enough cells, two boojums would be formed at the 
confining plates while a nonsingular escaped radial–like nematic structure would be 
formed in between. In this structure, the nematic director field “escapes” along the z-di-
rection in the region mediating the facing boojums and in such a way that the LC config-
uration avoids the singularity in nematic ordering. However, our simulations suggest that 
the energy barrier separating the structures that we presented and the topologically equiv-
alent escaped-like configurations were, in our studied cases, too large to be triggered by a 
disclination collision. For instance, a similar competition of topologically equivalent struc-
tures was realized in a nematic LC confined to a cylindrical confinement [25] where the 
lateral walls impose homeotropic anchoring (i.e., the nematic director field tends to be 
aligned along the surface normal of a confining surface patch). In these cases, the compet-
ing structures were (i) the escaped radial structure, (ii) the escaped radial structure with 
point defects (ERPD), (iii) the radial structure exhibiting non-escaped m = 1 disclination 
along the cylinder symmetry axis and (iv) the planar radial structure possessing two par-
allel m = 1/2 disclinations along the cylinder axis. These structures are topologically equiv-
alent, and there exist continuous nematic-order parameter field transformations among 
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the competing configurations. Here, cases (ii) and (iv) are the corresponding analogues of 
a structure consisting of two boojums and of a configuration exhibiting an {m,m} pair of 
disclinations, respectively. Specifically, ERPD structures consist of a sequence of alternat-
ing hedgehog and anti-hedgehog point defects along the cylinder axis. An LC volume 
segment between a neighboring hedgehog-anti-hedgehog pair, where we take into ac-
count only half of each point defect (which could, in general, form a ring-like structure 
[5]), is a topological analogue of a structure consisting of two boojums in our geometrical 
setting. 

3.2. Pairs {−1/2,1/2} 
We next consider the reconfigurational transformations imposed by increasing the 

angle 𝜃𝜃 of the initially effectively parallel disclination pairs {−1/2,1/2}. Qualitatively dif-
ferent behavior was observed for h > ℎ𝑐𝑐 and h < ℎ𝑐𝑐, where ℎ𝑐𝑐 ≈ 15𝜉𝜉𝑏𝑏 stands for the crit-
ical thickness. 

We first considered the case h < ℎ𝑐𝑐 . For 𝜃𝜃 = 0, the disclinations were slightly bent 
inward because the facing ±1/2 segments in each (x,y) plane experienced attraction (see 
Figure 3a). The nematic director far field at distances large with respect to 𝜚𝜚 was essen-
tially spatially homogeneous because the total winding number within each (x,y) plane 
equaled zero. Representative structures upon increasing 𝜃𝜃 ∈ [0,2𝜋𝜋] are depicted in Fig-
ures 3b–f and in videos S3 and S4. One can see that for 𝜃𝜃 ≠ 𝜃𝜃𝑐𝑐

(2) ≡ 5𝜋𝜋
4

, there existed two 
wedge disclinations. Note that the director field surrounding each wedge disclination 
tended to be confined within the plane perpendicular to the disclinations’ orientations. 
Upon approaching 𝜃𝜃𝑐𝑐

(2), the interaction between defects increased, and a kink-like struc-
ture was formed (Figure 3c) in nearby disclination segments. At 𝜃𝜃𝑐𝑐

(2), the local conditions 
in this region were established to form a charge loop in the (x,y) plane centered at z = h/2 
(Figure 3d). In this plane, the loop mediated the {m = 1/2, m = −1/2} segments, which effec-
tively enabled the existence of two approximately straight chargeless disclinations run-
ning along the z coordinate. Therefore, the nematic pattern at 𝜃𝜃𝑐𝑐

(2)  consisted of three 
chargeless loops. The representative (x,y) cross-sections are depicted in Figure 7. The ad-
ditional chargeless loop hosted in the (x,y) plane at z = h/2 enabled the immersion of the 
central domain (globally oriented along the y axis) into the surrounding pattern, where 
the nematic far field was essentially homogeneously aligned along the x direction. This 
intermediate structure possessed a circular ring within the (x,y) plane at z = h/2, whose 
biaxial structure exhibited a markedly different appearance in comparison with the other 
line defect structures that we observed in this study. In particular, in the regime where 
𝜃𝜃 ≠ 𝜃𝜃𝑐𝑐

(2) , the structure consisted of edge disclinations in which the nematic structure 
within the disclination plane was essentially planar (i.e., two of the Q eigenvectors lied 
within the disclination plane). On the contrary, the ring formed at 𝜃𝜃 = 𝜃𝜃𝑐𝑐

(2) consisted of 
a twist dislocation ring along which the Q eigenvector frame also explored orientations 
that did not coincide with the disclination plane. In addition, the nematic structure within 
the (x,y) plane hosting the ring was, on average, confined in this plane, where the domain-
like orientational ordering within and outside the ring were approximately perpendicular 
to each other. This constrained local distortion gave rise to the relatively broad band ap-
pearance of the ring’s biaxial profile. Just above 𝜃𝜃𝑐𝑐

(2), two wedge disclinations emerged 
again (Figure 3e,f). Note that the collision of two disclination segments exhibiting differ-
ent winding number signs requires an intermediate region where the nematic order is 
pushed out of the disclination planes. The total disclination length upon increasing 𝜃𝜃 is 
depicted in Figure 6c. 

Next, we analyzed the case where h > ℎ𝑐𝑐 , which is shown in Figure 4 (and videos S5 
and S6). In this case, the energy barrier between the structure consisting of two disclina-
tions spanning the opposite plates and the structure resembling boojum-like dislocations 
(see Figure 4c,e) confined to the bounding plates was small enough so that upon increas-
ing 𝜃𝜃, the latter structure was established. Note that this transition was discontinuous. 
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cell (with respect to (c) x or (d) y). 

 
Figure 8. Representative nematic structures in (x,y) cross-sections at z = h/2 different values of 𝜃𝜃 for 
h>ℎ𝑐𝑐: (a) 𝜃𝜃 = 0, (b) 0 < 𝜃𝜃 < 𝜃𝜃𝑐𝑐

(1), (c) 𝜃𝜃 = 𝜃𝜃𝑐𝑐
(1) and (d) 𝜃𝜃 > 𝜃𝜃𝑐𝑐

(1). Red dot (blue triangle) marks m = 
1/2 (m = −1/2) defect center. 

4. Conclusions 
We numerically studied the structural reconfigurations of nematic disclinations in 

plane-parallel cells. Transformations were enforced by relative rotation of the confining 
plates, which strongly pinned the end points of the disclinations. The initial (non-rotated) 
configurations exhibited essentially parallel wedge disclinations spanning the facing 
plates. Upon increasing the azimuthal rotation angle 𝜃𝜃, the total disclination length in the 
beginning increased, which was energetically expensive. Specifically, the energy cost of 
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an isolated straight disclination linearly increased with its length. However, when the crit-
ical value of 𝜃𝜃 was reached, the disclinations locally merged, which enabled their recon-
nection or reconfiguration. As a consequence, the resulting total disclination length did 
not monotonically increase upon increasing 𝜃𝜃. 

We first discussed the transformation of pairs of disclinations possessing the same 
winding number. Note that such neighboring disclination segments mutually repel. 
Therefore, a local collision in which the repelling segments merge reflects a local energy 
“sacrifice”, which opens a transformation channel toward a configuration possessing a 
lower total free energy cost. In this transformation, the character of the disclinations does 
not change (i.e., the system exhibits two wedge disclinations before and after the collision). 

The rotationally induced reconfiguration of initially parallel {−1/2,1/2} disclinations 
exhibited more complex behavior. In this case, the facing segments experienced mutual 
attraction. Therefore, in the initial configuration, the disclinations must be separated well 
enough (i.e., the distance R in our notation) to avoid contact in the middle of the cell. The 
latter would open the door to the formation of two chargeless loops. These display a 
boojum-like configuration with localized nematic distortions, where the remaining part 
of the cell would exhibit an essentially spatially homogeneous structure. Such a condition 
is achieved if the cell thickness is above the critical value ℎ𝑐𝑐 = ℎ𝑐𝑐(𝑅𝑅). 

We remark that line-like topologically protected structures [26–28] are ubiquitous in 
nature and exhibit several universal features, owing to their topological origin. They ex-
hibit robust body-like structures, and their stability is guaranteed by relevant topological 
invariants [26,27]. (In our case, these were 2D and 3D topological charges.) Of particular 
interest are topologically protected knotted configurations in particle physics [28], as they 
might provide a pathway to stabilizing stable localized field states representing “parti-
cles”, assuming the physical fields represent fundamental natural entities [29]. Control-
ling the formation of knots in physical fields [30–35] might also have numerous practical 
applications, as knots are difficult to untie. Our study revealed that the line defects exam-
ined in the presented geometrical set-up did not form knots. However, they could form 
knotted structures in the presence of colloids [35]. 
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