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Abstract: We study numerically the reconfiguration process of colliding |m| = 1/2 strength discli-
nations in an achiral nematic liquid crystal (NLC). A Landau-de Gennes approach in terms of tensor
nematic-order parameters is used. Initially, different pairs {m;,m,} of parallel wedge disclination
lines connecting opposite substrates confining the NLC in a plane-parallel cell of a thickness & are
imposed: {1/2,1/2}, {~1/2,-1/2} and {~1/2,1/2}. The collisions are imposed by the relative rotation of
the azimuthal angle 6 of the substrates that strongly pin the defect end points. Pairs {1/2,1/2} and
{-1/2,-1/2} “rewire” at the critical angle Hc(l) = %n in all cases studied. On the other hand, two qual-

itatively different scenarios are observed for {~1/2,1/2}. In the thinner film regime h < h,, the discli-
nations rewire at 952) = 5% The rewiring process is mediated by an additional chargeless loop nu-
cleated in the middle of the cell. In the regime h > h, the colliding disclinations at QC(Z) reconfigure
into boojum-like twist disclinations.
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1. Introduction

Topological defects (TDs) appear at diverse natural scales [1], including in particle
physics, condensed matter physics and cosmology. Their existence is enabled topologi-
cally, which is independent of systems’ microscopic details. In most cases, they exhibit
localized singularities in the order parameter field that represent ordering in a symmetry-
broken phase. Their essential properties are determined by topological charges that are
topological invariants [2]. The related topological charge conservation rules determine
their transformations, including merging and decaying processes.

TDs in uniaxial nematic liquid crystal [3] (NLC) phases and structures represent an
ideal testbed to study diverse TDs. In particular, they exhibit a rich pallet of qualitatively
different TD structures. Furthermore, TDs in NLCs could be relatively easily created, sta-
bilized, manipulated and observed. The ordering within NLC configurations is commonly
described by the nematic tensor order parameter Q. For the case of a uniaxial order, it is
commonly expressed as Q = S(n®n — I/3) in terms of the nematic uniaxial scalar-order
parameter S and the nematic director field n, and I stands for the unit tensor. The latter
unit vector field points in the mesoscopic-scale local uniaxial LC direction and exhibits
head-to-tail invariance (i.e., the states n are physically equivalent). The amplitude S re-
flects the degree of nematic order. If distortions are present, then the NLC could locally
enter biaxial states. Consequently, the cores of TDs, where the NLC order experiences
relatively strong spatial variations, generally exhibit a biaxial order [4-6].
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Of interest are line defects in NLCs. Their key properties are described by a 2D top-
ological charge m and a 3D topological charge g [7]. The former quantity is also termed
the “winding number” or Frank index [3], which is determined by the total reorientation
of n when encircling a line defect center counter-clockwise. On the other hand, g reveals
how many times n samples all possible 3D orientations on any surface enclosing the de-
fect. In our work, we analyze reconfigurations of |m| = 1/2 disclinations, which is the
fundamental strength of a 2D defect. In bulk, they can form only closed loops. One must
differentiate between wedge and twist disclinations, and the former are characterized by a
constant sign of m. Close to the disclination core, the nematic director field exhibits spatial
variations within the plane that are perpendicular to the disclination’s local orientation,
which we henceforth refer to as the disclination plane. The associated 3D charge of wedge
disclinations is expressed as |q| = 1. Therefore, closed-wedge loops are “charged” and
appear to a distant observer to be point defects (i.e., the far director field of isolated TDs
is distorted). On the other hand, the sign of m varies along the twist disclination, and the
3D charge of a closed twist loop equals zero [8-10] (i.e., they are “chargeless”). Conse-
quently, an isolated twist disclination could be embedded within an essentially spatially
homogeneous director structure. However, chargeless loops tend to decay into a topolog-
ically equivalent, defectless, locally homogeneous nematic structure. Furthermore, the ne-
matic orientational order exhibits orientations out of the disclination plane along the twist
disclination.

In confined geometries, disclinations could originate and terminate at bounding sur-
faces [3,11,12]. One can routinely enforce and stabilize a predetermined pattern of such
disclinations in plane-parallel cells through appropriate treatment of confining surfaces
[13-20]. One possible method is scribing a polymer alignment layer with the stylus of an
atomic force microscope (AFM) [13].

In this paper, we numerically study reconfigurations of initially parallel |m| = 1/2
line defects in a plane-parallel geometry. The plan of the paper is as follows. The methods
are presented in Section 2. In Section 3, the results are discussed, and our conclusions
appear in Section 4.

2. Methods

We used a Landau—de Gennes mesoscopic model [21], where the nematic orienta-
tional order is described by the traceless symmetric tensor nematic-order parameter
[22,23]

3
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in terms of its eigenvectors e; and eigenvalues A;. It describes both the uniaxial and bi-

axial states, where the uniaxial states are commonly expressed as [21] @ =S (n ®n—

;I) . Here, S € [—%, 1] is the scalar uniaxial-order parameter and n is the nematic di-

rector field. In the positive uniaxial state, n points along the eigenvector exhibiting the
largest eigenvalue, which we align along e;. Note that in the figures, where we show the
orientational order, we plot the orientational field for e;.

The degree of biaxiality is measured by the biaxial parameter [22,23]
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where % = 0 and ? > 0 reflect the uniaxial and biaxial states, respectively. In partic-
ular, the condition ,82 = 1 corresponds to states exhibiting maximal biaxiality.

We express the free energy F of the system as F = [(f, + f,)d®r, f., where f,
stands for the condensation- and elastic-free energy contributions, and the integral is car-
ried over the whole NLC body. The latter is confined within the plane-parallel cell of a
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thickness h. At the bounding plates, we strongly enforce pairs of 2D defects. At the lateral
sides of the NLC body, we implement free boundary conditions.
The free energy density terms are expressed as

) . ) (3a)
fo =5 A0(T = T)Tr(Q*) = 3 BTr(Q%) + 4 CTr(Q*)*
1
fo =5 LIVQP . (3b)

Here, Ay, B and C are material constants, T* is the supercooling temperature of
the isotropic phase, and L is the representative Landau-like nematic elastic constant in
the single elastic constant approximation. In the simulations, we parametrize @ in the
Cartesian coordinate frame (e,,e,,e,) as

41t q; qs 44
Q=| g G1—92 495 |, (4)
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where qi,4,,93,q, and g5 are variational parameters. We introduce the dimensionless
temperature [23] r = (T —T*)/(T** —T*) for scaling purposes, where T** =T*+ B?/
(24A,C) is the superheating temperature and the scaled-order parameter is expressed as
Q = Q/S,. Here, Sy = B/(4C), and we scale distances with respect to the cell thickness h.
We express the resulting dimensionless free energy contributions as

roo 2 1 .2 (5a)
f.= gTr(QZ) —§Tr(Q3) +§Tr(Qz) ,

&0\’ (o 2
fo= (F) [VQ|” . (5b)
Here, &, = 2VLC/B is the bare biaxial correlation length [21] with a typical value of

&, ~ 30 nm for nematics [24], and V = hV. The minimization of the free energy is per-
formed numerically deep inside the nematic phase, far below T*.

3. Results

We studied reconfigurations of initially effectively parallel pairs {m,, m,} of wedge
disclinations within a plane-parallel confinement enforcing planar-type anchoring. Here,
m; marks the i-th defect winding number, where we analyzed cases {1/2,1/2}, {-1/2,-1/2}
and {-1/2,1/2}. The cell plates enforcing the surface point defects with planar nematic or-
dering were at z =0 and z = h of the Cartesian system (x,y,z). The initial set-ups are shown
in Figure 1a, Figure 2a, Figure 3a and Figure 4a. We assumed that the defect endpoints
were strongly pinned to the confining surfaces. The defect reconfigurations were enforced
by the relative azimuthal rotation with an angle 6 for the facing confining plates. Ini-
tially, the defect ends were pinned at points (x4, y4) = (¥R/2,0) at each plate. We repre-
sented the disclination lines by plotting the regions where the defect-induced biaxiality
was relatively strong. Upon increasing 6 —in the simulations, we rotated the lower
plate—the length of the disclinations increased, which was energetically costly. Specifi-
cally, the free energy penalty of a straight disclination was, in general, linearly propor-
tional to its length. At a critical rotation angle, the disclinations exhibited reconfigurations
that prevented further elongation of the disclinations. The resulting process exhibited ei-
ther a periodic structural transformation within or a transformation into the qualitatively
different boojum-like pattern.
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Figure 1. Structural reconfiguration of a pair {1/2,1/2} of disclinations upon increasing 6. (a) Initial

structure at 8 = 0. The two line defects have different shades of red to assist the reader in recog-
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Figure 2. Structural reconfiguration of a pair {~1/2,-1/2} of disclinations upon increasing 6. (a) Ini-

tial structure at 8 = 0. The two line defects have different shades of blue to assist the reader in

3n/4.

@
c

recognizing the reconfiguration. (b) A representative rotated pattern, where 0 < 8 < 6
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At 6 = 96(1), the disclinations exchange their segments, where (c) is just before contact, (d) is at the
moment of contact, and (e) is just after the exchange. (f) Pattern after full rotation, which is equal to
(a). R = 2h = 25 &,. For presentation purposes, the scaling along vertical and horizontal directions
is different. Line defects are indicated by colored regions, where f% > 0.8.

Figure 3. Structural reconfiguration of a disclination pair {1/2,-1/2} upon increasing 6,h < h. (a)
Initial structure at 8 = 0. (b,c) Representative rotated patterns, where 0 < 8 < 06(2) = 51/4. (d)
The structure at 96(2) consists of two nearly straight and one loop-like chargeless disclination (pur-
ple). (e f) Representative rotated patterns in the regime 952) <60 <2m R=2h=25 ¢, Forpresen-
tation purposes, the scaling along the vertical and horizontal directions is different. Line defects are
indicated by colored regions, where 2 = 0.8.
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Figure 4. Structural reconfiguration of disclinations upon increasing 6, where the initial structure

consists of defects bearing different winding numbers and where h > h,. (a) Initial structure at 8 =
0. (b) 0<8< 06(1) = %. (c) Configuration at 06(1). (d) Configuration slightly above 06(1), (e) 8 =m.
R = h =25 &,. For presentation purposes, the scaling along the vertical and horizontal directions
is different. Line defects are indicated by colored regions, where 52 > 0.8.

3.1. Pairs {1/2,1/2} and {-1/2,-1/2}

We first considered a pair of {1/2,1/2} disclinations that were initially approximately
parallel (i.e,, 8 = 0 (Figure 1a)). Note that the disclinations mutually repelled and were
therefore slightly bent outward with respect to each other. In planar 2D systems, their
mutual repulsive interaction per disclination wunit length is approximately
f~mym,K Log(o/&) [3], where o > ¢ is the distance between the centers of defects, the
nematic order parameter correlation length ¢ measures the characteristic size of defects’
cores and K stands for the representative Frank elastic constant. The far director field in
any (x,y) plane is essentially radial from the central line located at (x,y) = (0,0). Upon in-
creasing 8, the lengths of the disclinations progressively increased until the critical angle

90(1) = %ﬂ was reached. The representative patterns for 0 < 6 < 9(51) are shown in Figure

1b,c. At the critical angle, the cores of the defects joined, forming a single m =1 two-di-
mensional defect in the (x,y) plane at z=h/2 (see Figure 1d). Figure 5 shows representative
nematic cross-sections in the (x,y) plane. All the cross-sections possess a separated pair of
m = Y2 singularities. Figure 5c shows the case close to the merging point, where the two
disclinations tended to merge via an intermediate m = 1 profile at z = h/2. This allowed the
exchange of defect segments of disclinations, which enabled a decrease in disclination
lengths upon further increasing 6. Therefore, the upper (extending above z = h/2) part of
the first disclination joined the bottom (extending below z = h/2) part of the second discli-
nation, which emerged as a new first single line at 6 > 66(1) . A representative structure is
shown in Figure 1le. Simultaneously, the bottom part of the first disclination joined the
upper part of the second disclination, which joined into a new second disclination. The
whole reconfiguration is shown in more detail in video S1(see Supplementary Materials).
This structural reconfiguration exhibited periodic behavior in 0 with respect to a m unit
period. In Figure 6a, we plot the total length ha of both disclinations upon increasing 6.
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(a) (b) (c) (d)
Figure 5. Representative nematic structures in (x,y) cross-sections in the middle of the cell at differ-
ent values of 8 for the pair of {1/2,1/2} disclinations: (a) 8 =0, (b) 0 <6 < 66(1), (c) 0~96(1) and (d)
0> 05(1). Red dots mark defect centers.
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Figure 6. The total disclination length ha variation upon increasing 6. (a) {1/2,1/2}. (b) {-1/2,-1/2},
oM = ?T” (©) {1/2,-1/2}, h < h,, 6% = ?T”

In Figure 2 (and video S2), we show the rotation-induced reconfiguration of the
{-1/2,-1/2} disclinations, where intermediate configurations for the same vales of 6 are
shown as in Figure 1. In the approximation of equal elastic constants, the reconfiguration
process was qualitatively and even quantitatively (with respect to disclination axis direc-
tion variations) the same for the {-1/2,-1/2} and {1/2,1/2} pairs. In Figure 6b, we plot the
total length ha of both disclinations upon increasing 6.

Note that we observed qualitatively the same structural behavior for all studied cell
thicknesses (we probed the behavior in cells up to the maximal thickness /i = 2R). One
would intuitively expect that in thick enough cells, two boojums would be formed at the
confining plates while a nonsingular escaped radial-like nematic structure would be
formed in between. In this structure, the nematic director field “escapes” along the z-di-
rection in the region mediating the facing boojums and in such a way that the LC config-
uration avoids the singularity in nematic ordering. However, our simulations suggest that
the energy barrier separating the structures that we presented and the topologically equiv-
alent escaped-like configurations were, in our studied cases, too large to be triggered by a
disclination collision. For instance, a similar competition of topologically equivalent struc-
tures was realized in a nematic LC confined to a cylindrical confinement [25] where the
lateral walls impose homeotropic anchoring (i.e., the nematic director field tends to be
aligned along the surface normal of a confining surface patch). In these cases, the compet-
ing structures were (i) the escaped radial structure, (ii) the escaped radial structure with
point defects (ERPD), (iii) the radial structure exhibiting non-escaped m =1 disclination
along the cylinder symmetry axis and (iv) the planar radial structure possessing two par-
allel m = 1/2 disclinations along the cylinder axis. These structures are topologically equiv-
alent, and there exist continuous nematic-order parameter field transformations among
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the competing configurations. Here, cases (ii) and (iv) are the corresponding analogues of
a structure consisting of two boojums and of a configuration exhibiting an {m,m} pair of
disclinations, respectively. Specifically, ERPD structures consist of a sequence of alternat-
ing hedgehog and anti-hedgehog point defects along the cylinder axis. An LC volume
segment between a neighboring hedgehog-anti-hedgehog pair, where we take into ac-
count only half of each point defect (which could, in general, form a ring-like structure
[5]), is a topological analogue of a structure consisting of two boojums in our geometrical
setting.

3.2. Pairs {-1/2,1/2}

We next consider the reconfigurational transformations imposed by increasing the
angle 6 of the initially effectively parallel disclination pairs {~1/2,1/2}. Qualitatively dif-
ferent behavior was observed for h > h. and h < h,, where h, = 15§, stands for the crit-
ical thickness.

We first considered the case h < h.. For 6 = 0, the disclinations were slightly bent
inward because the facing +1/2 segments in each (x,y) plane experienced attraction (see
Figure 3a). The nematic director far field at distances large with respect to ¢ was essen-
tially spatially homogeneous because the total winding number within each (x,y) plane
equaled zero. Representative structures upon increasing 6 € [0,2r] are depicted in Fig-
ures 3b—f and in videos S3 and S4. One can see that for 8 # 952) = %n, there existed two
wedge disclinations. Note that the director field surrounding each wedge disclination
tended to be confined within the plane perpendicular to the disclinations” orientations.
Upon approaching HC(Z), the interaction between defects increased, and a kink-like struc-
ture was formed (Figure 3c) in nearby disclination segments. At QC(Z), the local conditions
in this region were established to form a charge loop in the (x,y) plane centered at z = h/2
(Figure 3d). In this plane, the loop mediated the {m =1/2, m = -1/2} segments, which effec-
tively enabled the existence of two approximately straight chargeless disclinations run-
ning along the z coordinate. Therefore, the nematic pattern at 6 consisted of three
chargeless loops. The representative (x,y) cross-sections are depicted in Figure 7. The ad-
ditional chargeless loop hosted in the (x,y) plane at z = /1/2 enabled the immersion of the
central domain (globally oriented along the y axis) into the surrounding pattern, where
the nematic far field was essentially homogeneously aligned along the x direction. This
intermediate structure possessed a circular ring within the (x,y) plane at z = h/2, whose
biaxial structure exhibited a markedly different appearance in comparison with the other
line defect structures that we observed in this study. In particular, in the regime where
0 # 952), the structure consisted of edge disclinations in which the nematic structure
within the disclination plane was essentially planar (i.e., two of the Q eigenvectors lied
within the disclination plane). On the contrary, the ring formed at 6 = GC(Z) consisted of
a twist dislocation ring along which the Q eigenvector frame also explored orientations
that did not coincide with the disclination plane. In addition, the nematic structure within
the (x,y) plane hosting the ring was, on average, confined in this plane, where the domain-
like orientational ordering within and outside the ring were approximately perpendicular
to each other. This constrained local distortion gave rise to the relatively broad band ap-
pearance of the ring’s biaxial profile. Just above 952), two wedge disclinations emerged
again (Figure 3e,f). Note that the collision of two disclination segments exhibiting differ-
ent winding number signs requires an intermediate region where the nematic order is
pushed out of the disclination planes. The total disclination length upon increasing 6 is
depicted in Figure 6c.

Next, we analyzed the case where & > h., which is shown in Figure 4 (and videos S5
and S$6). In this case, the energy barrier between the structure consisting of two disclina-
tions spanning the opposite plates and the structure resembling boojum-like dislocations
(see Figure 4c,e) confined to the bounding plates was small enough so that upon increas-
ing 6, the latter structure was established. Note that this transition was discontinuous.
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The nematic structure in the selected (x,y) planes is shown in Figure 8. In this scenario, the
central region of the cell was essentially homogenously aligned along the x axis.
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Figure 7. Representative nematic structures at 06(2) in (x,y) cross-sections at (a) z = %h, (b) z = %h
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in (x,z) cross-sections, where h < h, (c) (x,z) and (d) (y,z) cross-sections through the middle of the
cell (with respect to (c) x or (d) y).
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Figure 8. Representative nematic structures in (x,y) cross-sections at z = /2 different values of 8 for
h>he: (a) 6 =0, (b) 0<0 <6, (c) 6 =06 and (d) 6> 6. Red dot (blue triangle) marks m =
1/2 (m = -1/2) defect center.

4. Conclusions

We numerically studied the structural reconfigurations of nematic disclinations in
plane-parallel cells. Transformations were enforced by relative rotation of the confining
plates, which strongly pinned the end points of the disclinations. The initial (non-rotated)
configurations exhibited essentially parallel wedge disclinations spanning the facing
plates. Upon increasing the azimuthal rotation angle 6, the total disclination length in the
beginning increased, which was energetically expensive. Specifically, the energy cost of
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an isolated straight disclination linearly increased with its length. However, when the crit-
ical value of 6 was reached, the disclinations locally merged, which enabled their recon-
nection or reconfiguration. As a consequence, the resulting total disclination length did
not monotonically increase upon increasing 6.

We first discussed the transformation of pairs of disclinations possessing the same
winding number. Note that such neighboring disclination segments mutually repel.
Therefore, a local collision in which the repelling segments merge reflects a local energy
“sacrifice”, which opens a transformation channel toward a configuration possessing a
lower total free energy cost. In this transformation, the character of the disclinations does
not change (i.e., the system exhibits two wedge disclinations before and after the collision).

The rotationally induced reconfiguration of initially parallel {-1/2,1/2} disclinations
exhibited more complex behavior. In this case, the facing segments experienced mutual
attraction. Therefore, in the initial configuration, the disclinations must be separated well
enough (i.e., the distance R in our notation) to avoid contact in the middle of the cell. The
latter would open the door to the formation of two chargeless loops. These display a
boojum-like configuration with localized nematic distortions, where the remaining part
of the cell would exhibit an essentially spatially homogeneous structure. Such a condition
is achieved if the cell thickness is above the critical value h, = h.(R).

We remark that line-like topologically protected structures [26-28] are ubiquitous in
nature and exhibit several universal features, owing to their topological origin. They ex-
hibit robust body-like structures, and their stability is guaranteed by relevant topological
invariants [26,27]. (In our case, these were 2D and 3D topological charges.) Of particular
interest are topologically protected knotted configurations in particle physics [28], as they
might provide a pathway to stabilizing stable localized field states representing “parti-
cles”, assuming the physical fields represent fundamental natural entities [29]. Control-
ling the formation of knots in physical fields [30-35] might also have numerous practical
applications, as knots are difficult to untie. Our study revealed that the line defects exam-
ined in the presented geometrical set-up did not form knots. However, they could form
knotted structures in the presence of colloids [35].
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