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Abstract—In the future, communication networks such as
fifth-generation new radio (5G NR) and sixth-generation (6G)
will require large data rates and capacities. As a result,
mmWave and terahertz (THz) bands are being employed to
meet these demands. Unfortunately, these high-frequency bands
are susceptible to high path loss, necessitating the deployment
of small cells. This, in turn, calls for the installation of a
massive number of base stations to cover the whole area. The
sheer number of cells and users in such a setup can lead
to interruptions in calls when users switch cells, a process
known as handover (HO). This has a negative effect on the
quality of service (QoS) and the quality of experience (QoE).
Therefore, this survey focuses on exploring and comparing
artificial intelligence (AI)-based intelligent HO solutions that
can optimize HO in 5G NR and 6G networks.

Index Terms—5G new radio, 6G wireless communications,
artificial intelligence, handover optimization, mmWave, quality
of service, quality of experience, terahertz

I. INTRODUCTION

Over the past decade, the use of mobile data has risen

significantly, and it is expected to grow even more over the

coming years. Implementing ultra-density cells to meet the

heightened data traffic requirements in future mobile net-

works is a challenging approach. By reducing cell coverage,

system capacity and spectral efficiency can be increased,

enabling more efficient frequency reuse and reducing the

amount of users served, thereby assuring high service qual-

ity. Nevertheless, shrinking the cell area and increasing the

number of base stations also leads to more handovers and

thus, higher signaling overhead which decreases the user

throughput [1].

Future networks must be able to support a high data rate

in order to meet the demands of current and upcoming

applications such as the internet of things (IoT), vehicle-to-

everything (V2X), machine-to-machine (M2M), and device-

to-device (D2D). Trustworthy handover (HO) procedures

must be implemented in order to enhance the quality of

service (QoS) and the quality of experience (QoE) for the

end user. Previous studies have mainly focused on the ca-

pacity and throughput evaluation of small cells; however,

the real challenges for future networks will be making HO

reliable and providing high data rates in dense urban areas

[2]. There have been numerous studies conducted for the 6G

network, aiming to achieve higher data rates, lower latency,

reduced delays, and minimized battery power consumption

when compared with 5G networks [2]. HO is a key element

of mobility management [3], which involves transferring

an active user connection from one cell to another. In

forthcoming heterogeneous networks (HetNet), such as those

used in 5G, Beyond 5G, and 6G, there will be an increase

in the number of HOs due to the presence of small cells.

Consequently, the main goals of HO schemes are to reduce

the number of frequent HOs and HO delays and increase

the HO success rate [4]. Although increasing network size

increases complexity, the large volume of data generated can

be used to reduce complexity. By applying machine learning

(ML) algorithms, this data can be effectively employed to

train ML models that can help networks gain more knowl-

edge about the network and make proactive, better-informed

decisions [5]. Therefore, this review will concentrate on the

ML algorithms used for HO optimization in the current and

future 5G networks, primarily HetNets.

II. SMART FUTURE (5G NR AND 6G NETWORKS)

The 3rd generation partnership project (3GPP) finalized

the first phase of the fifth-generation (5G) of mobile commu-

nications with Release 15 in June 2018, which set the stage

for global commercial 5G rollouts [6]. Since then, 3GPP

has been advancing the 5G technology through releases 16

and 17 to increase performance and accommodate novel

applications [7]. Recently, 3GPP approved the work package

for Release 18, beginning the 5G Advanced evolution. Fig. 1

[8] shows a 5G road map of 3GPP releases 15 to 18. 5G NR

Release 15 is the first official release of 5G new radio (NR)

from 3GPP. It is an important milestone in the development

of 5G and is the basis of the initial commercial deployments

of 5G networks. Release 15 includes the core network and

radio access network specifications for non-standalone 5G

NR and provides enhancements over the initial release 14.

This includes features such as new radio channel band-

widths, enabling of massive multiple-input multiple-output

(MIMO), and support for different frequency bands [7].

5G NR release 16 offers enhanced existing features

such as MIMO, dynamic spectrum sharing (DSS), dual

connectivity/carrier aggregation (DC/CA), and improved

user equipment (UE) power saving. Additionally, Release

16 introduces new features such as industrial internet of

things (IIoT), ultra-reliable and low latency communication

(URLLC), unlicensed spectrum, V2X, enhanced positioning,

and integrated access and backhaul (IAB) [9]. Release

17 of 5G NR provides improved performance and new

features to help meet the ever-growing demands of 5G

networks. Enhanced existing features such as MIMO, DSS,

UE power saving, improved coverage, improved positioning,

and URLLC. Added new features such as reduced capability

(RedCap), support for frequencies beyond 52 GHz, massive

broadcast system (MBS), and network topology notification

(NTN). Release 17 also includes enhancements to the 5G

core network, such as improved support for non-standalone
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Fig. 1. The road map of 3GPP releases of 5G networks.

(NSA) and standalone (SA) modes, as well as improved

support for multi-access edge computing (MEC) [10]. 5G

NR Release 18 is the latest 5G technology release from

the 3GPP. It provides enhanced existing features such as

enhanced mobile broadband (eMBB), URLLC, massive ma-

chine type communication (mMTC) and positioning, as well

as adding new features such as network slicing, automation

and interoperability [8], [10].

Future 6G communication networks need additional re-

quirements and system capacity when compared to current

5G networks. In the future, the connection channel between

the users and the machines will be wireless [11]. It is

expected that everything in the next era will be connected,

automated, and shared. According to the requirements of

modern applications, the future network should satisfy and

guarantee an excellent QoS, very high data rates, very small

latency and delay, very high reliability, and very wide cell

coverage, as shown in Fig. 2 [12], [13].

Traffic Capacity 

(Gbps/m2)

User Data Rate 

(Gbps)

Connectivity 

(No. of device/km2)

Latency 

(ms)

Reliability

Mobility 

(km/hr)
Position Accuracy 

(m)

Peak Data 

Rate (Tbps)

107

106

0.1

1

99.99999%99.999%

1000

500
1

0.01

0.02

1

0.11

0.1

1

5G System Requirements

6G System Requirements

Fig. 2. 5G vs. future 6G system requirements.

III. ENABLING TECHNOLOGIES

This section gives a thorough overview of the categories

of prospective 5G NR and 6G technical enablers.

A. New Spectrum

1) Millimeter wave (mmWave): The use of mmWave

(up to 300 GHz) began with the 5G New Radio (5G

NR) and will continue into future 6G networks. Working

with more frequency bands (>6 GHz, which is used in

RF technologies) will give us a chance to increase the

bandwidth, thus maintaining high data rates and smaller

antenna sizes, leading to higher dimensions of antenna arrays

and narrower beams [14]. The channel characteristics depend

on the frequency band used. For example, some bands like

35 GHz, 94 GHz, 140 GHz, and 220 GHz are exposed

to low attenuation loss, so they are used in high-distance

communications. Other frequency bands, such as 60 GHz,

120 GHz, and 180 GHz are exposed to higher attenuation, so

they are used in short-distance communications [15]. Most

of the current research uses the 60 GHz band for indoor

usage.

The propagation of mmWave is affected by obstacles

in indoor and outdoor scenarios, such as people, vehicles,

walls, atmospheric conditions [16]–[18]. When working with

small cell coverage (200 m), such as picocells, these effects

are reduced [19]. Even if they are propagated in urban

areas with extreme rainfall, the attenuation loss will not

be significant [20]. Using mmWave requires short-range

communications, where frequency reuse will be highly used,

thus increasing the system’s capacity, but it also needs more

small cells (SCs) to be deployed with more frequent HOs.

The frequency of the mmWave is high, causing it to be very

sensitive to blockage, but with different behaviors depending

on the frequency [21]. The transmitter and receiver in

mmWave communications need to focus the beam toward

the users or toward each other, as the mmWaves are directed

waves. This can be advantageous because the beam has a

high gain. The UE must train or track the beam to which it

wishes to connect.

2) Terahertz (THz) communications: Working with the

THz frequency band, which plays an important role in the

radio access network (RAN) in next-generation 6G commu-

nications, allows for very high bandwidth and data rates. But,

the THz bands are also opposed to high path loss and need a

very limited coverage area using very small cells. The THz

band facilitates the processes of beamforming and tracking

and will be very applicable in indoor communications [14].

The higher frequencies of the THz band allow for smaller

antenna sizes. It is expected to embed up to 10,000 antennas

per base station (BS) [22], thus overcoming the propagation

loss by making narrower beams than in the mmWave band.

As a result, it can support an increasing number of users

per cell while increasing traffic capacity, which is one of

the most important goals of future 6G communications to

support the internet-of-everything (IoE) technology [14]. The

technical issues with THz communication are implementing

the electronics (hardware) circuits of antennas, modulators,

and amplifiers [23], [24], especially when modulating the

baseband signals to higher THz frequencies. This will need

a more special modulation system without using the inter-

mediate frequency stage [25].



B. Heterogeneous networks

For next-generation 6G mobile networks, HetNet is a

very promising solution. It will effectively provide greater

coverage, higher data speeds, and higher capacity. HetNets

include many types of cell sizes, such as macrocells, micro-

cells, picocells, and femtocells, to satisfy the requirements of

next generation networks. The coverage area and capacity of

different cell types are listed in Table I. Because macro cells

have a large coverage area, they must send signals with high

power to cover their area, which interferes with neighboring

cells. By using the HetNets in future communications, we

can integrate the low-power small cells under the coverage

of high-power macro cells, leading to optimized energy

solutions for 5G standards and satisfying the QoE [25].

TABLE I
COVERAGE AND CAPACITY OF DIFFERENT CELL TYPES IN WIRELESS

COMMUNICATIONS.

Cell Type Range (m) Capacity (UEs)

Femtocell 10-20 <20

Picocell 200 20-40

Microcell 2000 >100

Macrocell 30,000-35,000 Many

IV. MOBILITY AND HO MANAGEMENT IN B5G AND 6G

NETWORKS

B5G and 6G communications have numerous use cases

that set them apart from 5G communications. Some of the

applications that can be applied in future communications

are the integration of unmanned aerial vehicles (UAVs)

[26], holographic projection, high-speed vehicles and de-

vices (above 500 km/h), etc. [27]. High-mobility devices

in B5G communication networks that will use mmWave

and THz spectrum will present big challenges in future

communications as a result of their huge density and high

speed. Mobility and HO management are expected to be the

most common issues that should be taken into account in the

B5G networks, as these networks will be highly dynamic

and contain many layers (such as HetNets), causing more

frequent HOs. The high mobility of these devices in B5G

networks will make the BS uncertain about the location of

these devices, causing high blockage by many obstacles such

as people, buildings, etc. [5].

The known conventional schemes of HO management

cannot quickly react. Adopting artificial intelligence (AI) to

solve the problems of mobility and HO management is one

of the best solutions that can minimize the number of oc-

currences of HO and predict the mobility of moving devices

inside the network, thus making the system intelligent and

optimizing the beam or the BS selection, causing a reduction

in signaling, achieving high reliability and data rates, and

minimizing the latency of the whole system [27].

There are many classifications and types of HO, such as

inter- and intra-frequency HO, inter- and intra-cell layer han-

dover, inter- and intra- radio access technology (RAT) HO,

and inter- and intra-operator HO [2]. The performance of

HO can be measured using many parameters, such as the HO

failure rate (HOF), HO frequency (HO rate), ping pong (PP)

rate, HO delay, HO energy consumption, HO success rate,

data latency, HO interruption time, HO signaling overhead,

and HO cost [5]. The handover control parameters (HCPs)

are essential to controlling and managing the procedures of

HO. As far as controlling the HO technique goes, time-to-

trigger (TTT) and handover margin (HOM) are generally

regarded as the two key control parameters of HO. They

make a big difference in keeping UEs’ connections stable.

A. HO Control Parameters

HCP settings in previous mobile generations, e.g., fourth-

generation (4G), were changed and adjusted manually; these

changes affected the operational costs and caused the system

to be ineffective. Numerous problems could be due to

different settings. More HCP settings result in a lower HO

ping pong probability (HPPP). Too late HO, as shown in

Fig. 3(a), increases radio link failure (RLF). As shown in

Fig. 3(b), lower assigned HCP settings cause a reduction in

RLF and an increase in HPPP. Inappropriate settings could

produce unnecessary HO or send it to the wrong cell, as

shown in Fig. 3(c) and (d). A novel HO algorithm that

can automatically self-optimize for HCP scenarios while

requiring the least amount of human interaction has been

made available by fourth-generation (4G) technology [28].

The accuracy of the system depends heavily on this

automatic self-optimization technique, especially when using

HetNets in future networks. The 3GPP has introduced key

functions for automatic HCP setting adjustment. Various

self-optimized HO schemes for future HetNets include mo-

bility robustness optimization (MRO) and load balancing

optimization (LBO). The main aim of the MRO is to reduce

the HO problem, especially too late or early HOs and HO

in the wrong cell, which are shown in Fig. 3. When the cell

traffic is very high and congested with users, the LBO can

reduce the load in the serving cell and achieve a good QoS

by offloading some users to other, non-loaded, cells [28].
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V. MACHINE LEARNING BASED HO OPTIMIZATION

Due to the high frequency bands of 5G and B5G com-

munications, the footprint of BSs is very small, resulting in

more occurrences of HO. So, optimizing the HO is very

essential in those networks when the UE decides which

BS or beam it should connect to in order to minimize the

recurrent HO. This is due to the fact that recurrent HOs



TABLE II
AI-BASED HO TECHNIQUES.

Paper Ref. Year Focus
Visual Data

(Image/Video)

Wireless

Data
Strategy AI Algorithm

Beam

Selection

BS (AP)

Selection

[24] 2020 5G ✓ × × × DRL / I2D-PH1

[25] 2019 5G ✓ × ✓ × CNN2

[21] 2020 5G/B5G ✓ × × × DNN3

[29] 2022 B5G/6G ✓ × × × NN using multivariate regression

[27] 2022
6G

(THz)
✓ × × ✓ Q-learning

[30] 2018
5G

(mmWave)
✓ ✓ ✓ × SVM4

[31] 2019
B5G/6G

(THz)
× ✓ ✓ × RFC5

[32] 2019
6G

(THz)
× ✓ ✓ × RBF-NN6

[33] 2020
5G

(mmWave)
× ✓ ✓ ✓ DNN

[34] 2020
5G NR/6G

(mmWave)
× ✓ ✓ × DNN

[35] 2020
5G

(mmWave)
× ✓ ✓ × MARL7

[36] 2022
5G/B5G

(mmWave)
× ✓ ✓ ×

DNN-ST8, DNN-MT9,

and DNN-EMT10

[37] 2021
5G/B5G

(mmWave)
× ✓ ✓ × Q-learning

[38] 2018 mmWave × ✓ × ✓ DNN

[39], [40] 2019, 2020 mmWave × ✓ × ✓ MAB

[41] 2020 mmWave × ✓ × ✓ DDRL

[42] 2020
5G

(mmWave)
× ✓ × ✓ Q-learning

[43] 2021
5G

(mmWave)
× ✓ × ✓ ADA-CS11

[44] 2021 mmWave × ✓ × ✓ ADA-CS

[45] 2022 5G × ✓ × ✓ DRL/ A2T-KNN12

1Image-To-Decision Proactive Handover, 2Convolutional Neural Network, 3Deep Neural Network, 4Support Vector
Machine, 5Random Forest Classification, 6Radial Basis Function Neural Network, 7Multi-Agent RL, 8DNN Single
Task, 9DNN Multi-Task, 10DNN Extended Muti-Task, 11Adaptive Cell Selection, 12Adaptive to Target K-Nearest
Neighbor.

raise the cost of doing so, which lowers system through-

put. Thus, by optimizing the HO process, the system can

choose which target base station (T-BS) can guarantee and

support the maximum throughput for the user. Many AI-

based techniques can be used to optimize the HO and help

in the beam/BS selection. They aid in T-BS prediction and

ensure that sufficient resources are available at the T-BS prior

to the occurrence of HO to ensure a smooth HO. Table II

summarizes the AI algorithms used for HO optimization in

B5G and 6G networks.

A. Visual data

In 5G and B5G networks, the BSs include multiple

antennas, and there will be many line-of-sight (LOS) beams

between the users and the BSs. The received signals at the

end users’ devices would be vulnerable to various types of

interference. When choosing the best beam for connecting

the user to the networks, a significant amount of overhead

signaling would be necessary if solely wireless sensory data

were used. This is because there would be a large number

of beams involved [46].

The large scale of mmWave and THz wireless networks

make it difficult to capture all of the external factors,

including obstacles and buildings, with wireless sensor data.

To solve this problem, it may be necessary to use visual-

assisted handover optimization. As a result, detecting or

predicting the presence of obstructions that may hinder or

prevent the received beam and reduce throughput at the user

end using only wireless sensory data is extremely difficult.

However, vision-supported HO optimization, on the other

hand, integrates wireless sensory data with visual data, such

as pictures and videos, to give proactive obstacle identifi-

cation, optimal beam, and BS selection, which would help

to improve the user’s QoS [47]. Additionally, by developing

computer vision, the training overhead commonly associated

with training ML models for the best beam selection can be

significantly reduced by using network images to create deep

learning (DL) algorithms for effective HO operation [48].



B. Wireless data

The majority of HO optimization-based wireless data

requires traditional information instead of sensory vision

(image or video) information for the optimization process,

such as channel status, received signal power, and any

other information related to the user’s position, in order

to optimize the user’s switching between BSs or beams. In

wireless systems, this is the most widely used scheme.

1) Beam selection: To overcome route loss and the fact

that the mmWaves are vulnerable to obstruction due to their

high frequencies, a significant number of BSs with directive

antenna arrays and narrow (high-gain) directed beams for

each user in the cell should be deployed in mmWave

communications. This method, known as beamforming [49],

is suggested for use in 5G and B5G communications. This

technique can be used to establish a direct connection

between the BSs and UEs. It becomes increasingly difficult

for the UE to choose the best beam out of hundreds of beams

for connection and QoS fulfillment as the number of BSs and

beams in a single cell increases.

In [50], the author proposed a data-driven algorithm based

on ML for analog beam selection in hybrid MIMO systems

in mmWave channels. This scheme is a multi-classification

problem that is solved by using the support vector machine

(SVM) algorithm to select the optimal beam for each net-

work user. This scheme showed good data rate performance

when compared to other conventional schemes, but with less

complexity. The authors in [51] proposed a beam selection

method that may be applied to THz communications to

combat the system’s computational complexity in hybrid

beamforming that is presented in current schemes. The

proposed beam selection scheme is based on the random

forest classification (RFC) algorithm, which is used to obtain

the optimal beam that the user needs to connect to.

2) Base station selection: AI-based BS selection is a

technique used to ensure seamless handover. It uses AI to

analyze the signal strength, latency and other characteristics

of the base station and the surrounding environment to

determine the most suitable base station to connect to. AI-

based base station selection in handover can provide better

overall user experience by providing more reliable connec-

tions, faster speeds, and lower latency. Additionally, it can

also be used to increase network capacity and reduce power

consumption. Base stations can be selected to optimize

network performance and reduce congestion.

In [52], the authors proposed a DL-based HO scheme for

learning how to predict the blockage of signals that the UE

may face in mmWave systems. The scheme can make the

serving BS switch to another BS without disconnection. As

a result, the system will be highly reliable and have low

latency. An effective BS selection with speeding technique

based on multi-armed bandit (MAB) approach in ultra-dense

mmWave network to guarantee a long-time connection with

the BS after the HO process is proposed in [53]. Another

intelligent BS selection scheme based on offline double

deep reinforcement learning (DDRL) for ultra dense network

(UDN) in mmWave communications is proposed in [54]. In

many scenarios, the scheme can reduce the number of HO

occurrences while enhancing the users’ QoS when compared

to other conventional AI-based schemes. The authors in

[55] proposed a BS selection for HO optimization based

on a centralized RL agent among the BSs in 5G networks.

They created a Q-learning strategy by modeling the HO

issue as a contextual MAB (CMAB). The scheme showed

an improvement in link-beam gain efficiency in practical

environments.

VI. CONCLUSION

To meet the future B5G and 6G communication network

requirements of higher data rates, low latency, high through-

put, etc., higher frequency bands should be used, such as

mmWave and THz bands. These bands suffer from high

path loss, so small BS coverage areas should be used with a

higher number of cells. The massive number of cells causes

more frequent HOs that should be considered when we need

to design reliable communication systems. In this paper, we

summarized and reviewed many of the HO management and

optimization techniques that are based on ML in order to

minimize the number of HO occurrences and thus enhance

the system’s efficiency.
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