Al-Based Approaches for Handover Optimization
in SG New Radio and 6G Wireless Networks

Ahmed F. Ashour!, and Mostafa M. FoudaZ.
Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
Emails: 'ahmedashour@isu.edu, ?mfouda@ieee.org

Abstract—In the future, communication networks such as
fifth-generation new radio (5G NR) and sixth-generation (6G)
will require large data rates and capacities. As a result,
mmWave and terahertz (THz) bands are being employed to
meet these demands. Unfortunately, these high-frequency bands
are susceptible to high path loss, necessitating the deployment
of small cells. This, in turn, calls for the installation of a
massive number of base stations to cover the whole area. The
sheer number of cells and users in such a setup can lead
to interruptions in calls when users switch cells, a process
known as handover (HO). This has a negative effect on the
quality of service (QoS) and the quality of experience (QoE).
Therefore, this survey focuses on exploring and comparing
artificial intelligence (AI)-based intelligent HO solutions that
can optimize HO in 5G NR and 6G networks.

Index Terms—5G new radio, 6G wireless communications,
artificial intelligence, handover optimization, mmWave, quality
of service, quality of experience, terahertz

I. INTRODUCTION

Over the past decade, the use of mobile data has risen
significantly, and it is expected to grow even more over the
coming years. Implementing ultra-density cells to meet the
heightened data traffic requirements in future mobile net-
works is a challenging approach. By reducing cell coverage,
system capacity and spectral efficiency can be increased,
enabling more efficient frequency reuse and reducing the
amount of users served, thereby assuring high service qual-
ity. Nevertheless, shrinking the cell area and increasing the
number of base stations also leads to more handovers and
thus, higher signaling overhead which decreases the user
throughput [1].

Future networks must be able to support a high data rate
in order to meet the demands of current and upcoming
applications such as the internet of things (IoT), vehicle-to-
everything (V2X), machine-to-machine (M2M), and device-
to-device (D2D). Trustworthy handover (HO) procedures
must be implemented in order to enhance the quality of
service (QoS) and the quality of experience (QoE) for the
end user. Previous studies have mainly focused on the ca-
pacity and throughput evaluation of small cells; however,
the real challenges for future networks will be making HO
reliable and providing high data rates in dense urban areas
[2]. There have been numerous studies conducted for the 6G
network, aiming to achieve higher data rates, lower latency,
reduced delays, and minimized battery power consumption
when compared with 5G networks [2]. HO is a key element
of mobility management [3], which involves transferring
an active user connection from one cell to another. In
forthcoming heterogeneous networks (HetNet), such as those
used in 5G, Beyond 5G, and 6G, there will be an increase

in the number of HOs due to the presence of small cells.
Consequently, the main goals of HO schemes are to reduce
the number of frequent HOs and HO delays and increase
the HO success rate [4]. Although increasing network size
increases complexity, the large volume of data generated can
be used to reduce complexity. By applying machine learning
(ML) algorithms, this data can be effectively employed to
train ML models that can help networks gain more knowl-
edge about the network and make proactive, better-informed
decisions [5]. Therefore, this review will concentrate on the
ML algorithms used for HO optimization in the current and
future 5G networks, primarily HetNets.

II. SMART FUTURE (5G NR AND 6G NETWORKS)

The 3rd generation partnership project (3GPP) finalized
the first phase of the fifth-generation (5G) of mobile commu-
nications with Release 15 in June 2018, which set the stage
for global commercial 5G rollouts [6]. Since then, 3GPP
has been advancing the 5G technology through releases 16
and 17 to increase performance and accommodate novel
applications [7]. Recently, 3GPP approved the work package
for Release 18, beginning the SG Advanced evolution. Fig. 1
[8] shows a 5G road map of 3GPP releases 15 to 18. 5G NR
Release 15 is the first official release of 5G new radio (NR)
from 3GPP. It is an important milestone in the development
of 5G and is the basis of the initial commercial deployments
of 5G networks. Release 15 includes the core network and
radio access network specifications for non-standalone 5G
NR and provides enhancements over the initial release 14.
This includes features such as new radio channel band-
widths, enabling of massive multiple-input multiple-output
(MIMO), and support for different frequency bands [7].

5G NR release 16 offers enhanced existing features
such as MIMO, dynamic spectrum sharing (DSS), dual
connectivity/carrier aggregation (DC/CA), and improved
user equipment (UE) power saving. Additionally, Release
16 introduces new features such as industrial internet of
things (IIoT), ultra-reliable and low latency communication
(URLLC), unlicensed spectrum, V2X, enhanced positioning,
and integrated access and backhaul (IAB) [9]. Release
17 of 5G NR provides improved performance and new
features to help meet the ever-growing demands of 5G
networks. Enhanced existing features such as MIMO, DSS,
UE power saving, improved coverage, improved positioning,
and URLLC. Added new features such as reduced capability
(RedCap), support for frequencies beyond 52 GHz, massive
broadcast system (MBS), and network topology notification
(NTN). Release 17 also includes enhancements to the 5G
core network, such as improved support for non-standalone
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Fig. 1. The road map of 3GPP releases of 5G networks.

(NSA) and standalone (SA) modes, as well as improved
support for multi-access edge computing (MEC) [10]. 5G
NR Release 18 is the latest 5G technology release from
the 3GPP. It provides enhanced existing features such as
enhanced mobile broadband (eMBB), URLLC, massive ma-
chine type communication (mMTC) and positioning, as well
as adding new features such as network slicing, automation
and interoperability [8], [10].

Future 6G communication networks need additional re-
quirements and system capacity when compared to current
5G networks. In the future, the connection channel between
the users and the machines will be wireless [11]. It is
expected that everything in the next era will be connected,
automated, and shared. According to the requirements of
modern applications, the future network should satisfy and
guarantee an excellent QoS, very high data rates, very small
latency and delay, very high reliability, and very wide cell
coverage, as shown in Fig. 2 [12], [13].
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Fig. 2. 5G vs. future 6G system requirements.

III. ENABLING TECHNOLOGIES

This section gives a thorough overview of the categories
of prospective 5G NR and 6G technical enablers.

A. New Spectrum

1) Millimeter wave (mmWave): The use of mmWave
(up to 300 GHz) began with the 5G New Radio (5G
NR) and will continue into future 6G networks. Working
with more frequency bands (>6 GHz, which is used in
RF technologies) will give us a chance to increase the
bandwidth, thus maintaining high data rates and smaller
antenna sizes, leading to higher dimensions of antenna arrays
and narrower beams [14]. The channel characteristics depend
on the frequency band used. For example, some bands like
35 GHz, 94 GHz, 140 GHz, and 220 GHz are exposed
to low attenuation loss, so they are used in high-distance
communications. Other frequency bands, such as 60 GHz,
120 GHz, and 180 GHz are exposed to higher attenuation, so
they are used in short-distance communications [15]. Most
of the current research uses the 60 GHz band for indoor
usage.

The propagation of mmWave is affected by obstacles
in indoor and outdoor scenarios, such as people, vehicles,
walls, atmospheric conditions [16]-[18]. When working with
small cell coverage (200 m), such as picocells, these effects
are reduced [19]. Even if they are propagated in urban
areas with extreme rainfall, the attenuation loss will not
be significant [20]. Using mmWave requires short-range
communications, where frequency reuse will be highly used,
thus increasing the system’s capacity, but it also needs more
small cells (SCs) to be deployed with more frequent HOs.
The frequency of the mmWave is high, causing it to be very
sensitive to blockage, but with different behaviors depending
on the frequency [21]. The transmitter and receiver in
mmWave communications need to focus the beam toward
the users or toward each other, as the mmWaves are directed
waves. This can be advantageous because the beam has a
high gain. The UE must train or track the beam to which it
wishes to connect.

2) Terahertz (THz) communications: Working with the
THz frequency band, which plays an important role in the
radio access network (RAN) in next-generation 6G commu-
nications, allows for very high bandwidth and data rates. But,
the THz bands are also opposed to high path loss and need a
very limited coverage area using very small cells. The THz
band facilitates the processes of beamforming and tracking
and will be very applicable in indoor communications [14].
The higher frequencies of the THz band allow for smaller
antenna sizes. It is expected to embed up to 10,000 antennas
per base station (BS) [22], thus overcoming the propagation
loss by making narrower beams than in the mmWave band.
As a result, it can support an increasing number of users
per cell while increasing traffic capacity, which is one of
the most important goals of future 6G communications to
support the internet-of-everything (IoE) technology [14]. The
technical issues with THz communication are implementing
the electronics (hardware) circuits of antennas, modulators,
and amplifiers [23], [24], especially when modulating the
baseband signals to higher THz frequencies. This will need
a more special modulation system without using the inter-
mediate frequency stage [25].



B. Heterogeneous networks

For next-generation 6G mobile networks, HetNet is a
very promising solution. It will effectively provide greater
coverage, higher data speeds, and higher capacity. HetNets
include many types of cell sizes, such as macrocells, micro-
cells, picocells, and femtocells, to satisfy the requirements of
next generation networks. The coverage area and capacity of
different cell types are listed in Table I. Because macro cells
have a large coverage area, they must send signals with high
power to cover their area, which interferes with neighboring
cells. By using the HetNets in future communications, we
can integrate the low-power small cells under the coverage
of high-power macro cells, leading to optimized energy
solutions for 5G standards and satisfying the QoE [25].

TABLE I
COVERAGE AND CAPACITY OF DIFFERENT CELL TYPES IN WIRELESS
COMMUNICATIONS.

Cell Type Range (m) Capacity (UEs)
Femtocell 10-20 <20
Picocell 200 20-40
Microcell 2000 >100
Macrocell 30,000-35,000 Many

IV. MOBILITY AND HO MANAGEMENT IN B5G AND 6G
NETWORKS

B5G and 6G communications have numerous use cases
that set them apart from 5G communications. Some of the
applications that can be applied in future communications
are the integration of unmanned aerial vehicles (UAVs)
[26], holographic projection, high-speed vehicles and de-
vices (above 500 km/h), etc. [27]. High-mobility devices
in B5G communication networks that will use mmWave
and THz spectrum will present big challenges in future
communications as a result of their huge density and high
speed. Mobility and HO management are expected to be the
most common issues that should be taken into account in the
B5G networks, as these networks will be highly dynamic
and contain many layers (such as HetNets), causing more
frequent HOs. The high mobility of these devices in B5G
networks will make the BS uncertain about the location of
these devices, causing high blockage by many obstacles such
as people, buildings, etc. [5].

The known conventional schemes of HO management
cannot quickly react. Adopting artificial intelligence (Al) to
solve the problems of mobility and HO management is one
of the best solutions that can minimize the number of oc-
currences of HO and predict the mobility of moving devices
inside the network, thus making the system intelligent and
optimizing the beam or the BS selection, causing a reduction
in signaling, achieving high reliability and data rates, and
minimizing the latency of the whole system [27].

There are many classifications and types of HO, such as
inter- and intra-frequency HO, inter- and intra-cell layer han-
dover, inter- and intra- radio access technology (RAT) HO,
and inter- and intra-operator HO [2]. The performance of
HO can be measured using many parameters, such as the HO
failure rate (HOF), HO frequency (HO rate), ping pong (PP)
rate, HO delay, HO energy consumption, HO success rate,

data latency, HO interruption time, HO signaling overhead,
and HO cost [5]. The handover control parameters (HCPs)
are essential to controlling and managing the procedures of
HO. As far as controlling the HO technique goes, time-to-
trigger (TTT) and handover margin (HOM) are generally
regarded as the two key control parameters of HO. They
make a big difference in keeping UEs’ connections stable.

A. HO Control Parameters

HCP settings in previous mobile generations, e.g., fourth-
generation (4G), were changed and adjusted manually; these
changes affected the operational costs and caused the system
to be ineffective. Numerous problems could be due to
different settings. More HCP settings result in a lower HO
ping pong probability (HPPP). Too late HO, as shown in
Fig. 3(a), increases radio link failure (RLF). As shown in
Fig. 3(b), lower assigned HCP settings cause a reduction in
RLF and an increase in HPPP. Inappropriate settings could
produce unnecessary HO or send it to the wrong cell, as
shown in Fig. 3(c) and (d). A novel HO algorithm that
can automatically self-optimize for HCP scenarios while
requiring the least amount of human interaction has been
made available by fourth-generation (4G) technology [28].

The accuracy of the system depends heavily on this
automatic self-optimization technique, especially when using
HetNets in future networks. The 3GPP has introduced key
functions for automatic HCP setting adjustment. Various
self-optimized HO schemes for future HetNets include mo-
bility robustness optimization (MRO) and load balancing
optimization (LBO). The main aim of the MRO is to reduce
the HO problem, especially too late or early HOs and HO
in the wrong cell, which are shown in Fig. 3. When the cell
traffic is very high and congested with users, the LBO can
reduce the load in the serving cell and achieve a good QoS
by offloading some users to other, non-loaded, cells [28].
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Fig. 3. Issues and decisions of HO in HetNets.

V. MACHINE LEARNING BASED HO OPTIMIZATION

Due to the high frequency bands of 5G and B5G com-
munications, the footprint of BSs is very small, resulting in
more occurrences of HO. So, optimizing the HO is very
essential in those networks when the UE decides which
BS or beam it should connect to in order to minimize the
recurrent HO. This is due to the fact that recurrent HOs



TABLE 11
AI-BASED HO TECHNIQUES.

isual D irel
Paper Ref. Year Focus Visua .ata Wireless Strategy Al Algorithm
(Image/Video) Data
Beam BS (AP)
Selection | Selection
[24] 2020 5G v x x X DRL / 12D-PH!
[25] 2019 5G v x v X CNN?
[21] 2020 5G/B5G v X X X DNN?
[29] 2022 B5G/6G v X X X NN using multivariate regression
[27] 2022 (fgz) v X X v Q-learning
[30] 2018 G v v v x SVM*
(mmWave)
B
[31] 2019 26166 x v v x RFC’
(THz)
6G 6
[32] 2019 X v v X RBF-NN
(THz)
5G
[33] 2020 X v v v DNN
(mmWave)
R
[34] 2020 3G NR/6G X v v X DNN
(mmWave)
5G 4
[35] 2020 X v v X MARL
(mmWave)
QT8 MTO
(36] 2002 5G/B5G y v v y DNN-ST®, DNN-MT",
(mmWave) and DNN-EMT'?
[37] 2021 SG/BSG X v v X Q-learning
(mmWave)
[38] 2018 mmWave v v DNN
[39], [40] 2019, 2020 mmWave v v MAB
[41] 2020 mmWave X v 3 v DDRL
[42] 2020 >G X v X v Q-learning
(mmWave)
5G 11
[43] 2021 X v X v ADA-CS
(mmWave)
[44] 2021 mmWave X v v ADA-CS
[45] 2022 5G X v v DRL/ A2T-KNN'?

Tmage-To-Decision Proactive Handover, 2Convolutional Neural Network, 2Deep Neural Network, *Support Vector
Machine, "Random Forest Classification, Radial Basis Function Neural Network, “Multi-Agent RL, ®DNN Single
Task, "DNN Multi-Task, ‘°DNN Extended Muti-Task, 11Adaptive Cell Selection, 12Adaptive to Target K-Nearest

Neighbor.

raise the cost of doing so, which lowers system through-
put. Thus, by optimizing the HO process, the system can
choose which target base station (T-BS) can guarantee and
support the maximum throughput for the user. Many Al-
based techniques can be used to optimize the HO and help
in the beam/BS selection. They aid in T-BS prediction and
ensure that sufficient resources are available at the T-BS prior
to the occurrence of HO to ensure a smooth HO. Table II
summarizes the Al algorithms used for HO optimization in
B5G and 6G networks.

A. Visual data

In 5G and B5G networks, the BSs include multiple
antennas, and there will be many line-of-sight (LOS) beams
between the users and the BSs. The received signals at the
end users’ devices would be vulnerable to various types of
interference. When choosing the best beam for connecting
the user to the networks, a significant amount of overhead
signaling would be necessary if solely wireless sensory data

were used. This is because there would be a large number
of beams involved [46].

The large scale of mmWave and THz wireless networks
make it difficult to capture all of the external factors,
including obstacles and buildings, with wireless sensor data.
To solve this problem, it may be necessary to use visual-
assisted handover optimization. As a result, detecting or
predicting the presence of obstructions that may hinder or
prevent the received beam and reduce throughput at the user
end using only wireless sensory data is extremely difficult.
However, vision-supported HO optimization, on the other
hand, integrates wireless sensory data with visual data, such
as pictures and videos, to give proactive obstacle identifi-
cation, optimal beam, and BS selection, which would help
to improve the user’s QoS [47]. Additionally, by developing
computer vision, the training overhead commonly associated
with training ML models for the best beam selection can be
significantly reduced by using network images to create deep
learning (DL) algorithms for effective HO operation [48].



B. Wireless data

The majority of HO optimization-based wireless data
requires traditional information instead of sensory vision
(image or video) information for the optimization process,
such as channel status, received signal power, and any
other information related to the user’s position, in order
to optimize the user’s switching between BSs or beams. In
wireless systems, this is the most widely used scheme.

1) Beam selection: To overcome route loss and the fact
that the mmWaves are vulnerable to obstruction due to their
high frequencies, a significant number of BSs with directive
antenna arrays and narrow (high-gain) directed beams for
each user in the cell should be deployed in mmWave
communications. This method, known as beamforming [49],
is suggested for use in 5G and B5SG communications. This
technique can be used to establish a direct connection
between the BSs and UEs. It becomes increasingly difficult
for the UE to choose the best beam out of hundreds of beams
for connection and QoS fulfillment as the number of BSs and
beams in a single cell increases.

In [50], the author proposed a data-driven algorithm based
on ML for analog beam selection in hybrid MIMO systems
in mmWave channels. This scheme is a multi-classification
problem that is solved by using the support vector machine
(SVM) algorithm to select the optimal beam for each net-
work user. This scheme showed good data rate performance
when compared to other conventional schemes, but with less
complexity. The authors in [51] proposed a beam selection
method that may be applied to THz communications to
combat the system’s computational complexity in hybrid
beamforming that is presented in current schemes. The
proposed beam selection scheme is based on the random
forest classification (RFC) algorithm, which is used to obtain
the optimal beam that the user needs to connect to.

2) Base station selection: Al-based BS selection is a
technique used to ensure seamless handover. It uses Al to
analyze the signal strength, latency and other characteristics
of the base station and the surrounding environment to
determine the most suitable base station to connect to. Al-
based base station selection in handover can provide better
overall user experience by providing more reliable connec-
tions, faster speeds, and lower latency. Additionally, it can
also be used to increase network capacity and reduce power
consumption. Base stations can be selected to optimize
network performance and reduce congestion.

In [52], the authors proposed a DL-based HO scheme for
learning how to predict the blockage of signals that the UE
may face in mmWave systems. The scheme can make the
serving BS switch to another BS without disconnection. As
a result, the system will be highly reliable and have low
latency. An effective BS selection with speeding technique
based on multi-armed bandit (MAB) approach in ultra-dense
mmWave network to guarantee a long-time connection with
the BS after the HO process is proposed in [53]. Another
intelligent BS selection scheme based on offline double
deep reinforcement learning (DDRL) for ultra dense network
(UDN) in mmWave communications is proposed in [54]. In
many scenarios, the scheme can reduce the number of HO
occurrences while enhancing the users’ QoS when compared

to other conventional Al-based schemes. The authors in
[55] proposed a BS selection for HO optimization based
on a centralized RL agent among the BSs in 5G networks.
They created a Q-learning strategy by modeling the HO
issue as a contextual MAB (CMAB). The scheme showed
an improvement in link-beam gain efficiency in practical
environments.

VI. CONCLUSION

To meet the future BSG and 6G communication network
requirements of higher data rates, low latency, high through-
put, etc., higher frequency bands should be used, such as
mmWave and THz bands. These bands suffer from high
path loss, so small BS coverage areas should be used with a
higher number of cells. The massive number of cells causes
more frequent HOs that should be considered when we need
to design reliable communication systems. In this paper, we
summarized and reviewed many of the HO management and
optimization techniques that are based on ML in order to
minimize the number of HO occurrences and thus enhance
the system’s efficiency.
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