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Abstract: We consider discrete Schrodinger operators on the half line with potentials
generated by the doubling map and continuous sampling functions. We show that the
essential spectrum of these operators is always connected. This result is obtained by
computing the subgroup of the range of the Schwartzman homomorphism associated
with homotopy classes of continuous maps on the suspension of the standard solenoid that
factor through the suspension of the doubling map and then showing that this subgroup
characterizes the topological structure of the spectrum.

1. Introduction

The doubling map model is the discrete half-line Schrodinger operator

[Hoy 1) =y (n+ D+y(n—D+ fQR0)¥@®), n=0 (1.1

in¢?(Z,), wherew € T =R/Z, f € C(T,R),and € £>(Z,), with the boundary con-
dition ¥ (—1) = 0. This family has been studied by Chulaevsky—Spencer [12], Bourgain—
Schlag [10], Damanik—Killip [19], Zhang [35], Bjerklov [7], and Avila-Damanik-Zhang
[3], among others.

These authors were primarily interested in the spectral type of this operator, but
to make the main result of [10] meaningful, Bourgain and Schlag had to prove the
following statement about the spectrum of this operator: for Lebesgue almost all w € T,
the spectrum o (H,,) contains the interval [—2 + f(0), 2 + f(0)]; see [10, Lemma 9.1].
We are interested in a related result concerning the global topological structure of the
spectrum.

The doubling map model is a prominent example of an ergodic family of Schrodinger
operators. Such a family is generated by an ergodic measurable dynamical system
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(2, T, n) and a measurable and (for simplicity) bounded f : 2 — R. One gener-
ates potentials via

Vo(n) = f(T"w) (1.2)
and bounded self-adjoint operators via

[(Ho¥l(n) = ¢ (n+ 1)+ (n— 1)+ V()¢ (n). (1.3)

The doubling map model arises upon choosing 2 = T, Tw = 2w, and u = Leb, where
Leb denotes Lebesgue measure.

Two general remarks are in order. If the transformation 7 is invertible, then (1.2) can
be defined for any n € Z and then the operators (1.3) are usually considered in 2(Z). In
the case of the doubling map, the non-invertibility of 7' suggests that we initially define
the operators in £2(Z,). However, as we will see later, it is still desirable to pass to an
associated whole line model. This strategy was also put to use by Damanik and Killip
in [19]. The second remark is that in cases where €2 is a compact metric space and T is
continuous, one often restricts attention to continuous sampling functions f : @ — R.
The reasoning underlying both remarks the same: the general theory is nicer in the
invertible case (e.g., the spectrum is p-almost sure constant and the discrete spectrum is
-almost surely empty and several important aspects of Kotani theory need the presence
of two half lines) and for continuous sampling function in the topological setting (e.g.,
the spectrum is globally independent of w if T is minimal).

Returning to the case of the doubling map, given these two remarks, we are especially
interested in continuous f and will restrict attention to those. Moreover, the best we can
say is that the essential spectrum of H,, is Lebesgue almost surely independent of w,
while the discrete spectrum may be present and depend sensitively on w. We will denote
the almost sure essential spectrum by

Ef = Oess(Hp) p —a.s. (1.4)
Here is the main result of this note:

Theorem 1.1. Forevery f € C(T, R), the almost sure essential spectrum of the doubling
map model Ty is connected.

Remark 1.2. Let us make a few comments about Theorem 1.1

(a) The theorem shows that X ¢ is always an interval. As pointed out above, the argument
given in [10] shows that this interval must contain [—2 + f(0),2 + f(0)] ( [10,
Lemma 9.1] assumes that the sampling function is Hélder continuous, but continuity
suffices to show the spectrum contains the indicated interval). The point is that 0
is a fixed point of 7" and hence the spectrum of Hj is easy to compute: it is given
precisely by [-2+ f(0), 2+ £ (0)]. More generally, one can see that for every periodic
point of T the associated periodic Schrédinger spectrum must be contained in X 7.
Pushing this further, one can view X7 as the closure of the union of all periodic
spectra arising in this way. All of these statements follow readily from a strong
approximation argument; for the reader’s convenience, we give the argument in an
appendix. As there are infinitely many periodic spectra to deal with, and a point of
minimal period p generically gives a spectrum with p — 1 gaps, the fact that ¥ s has
no gaps whatsoever is not obvious.
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(b) The conclusion of the theorem may fail for discontinuous sampling functions f.
Indeed, while there still is an almost sure essential spectrum X ¢ for any measurable
(and, say, bounded) f : T — R, it may be disconnected. An explicit example is
given by f(w) = Axj0,1/2)(w) with A > 4; in this case one has a half-line Bernoulli-
Anderson model and a well-known argument shows that ¥y = [—2, 2]U[—2+A, 2+
A]. In the spirit of a more general conjecture of Bellissard,' we suspect that for any
bounded measurable f, X has at most finitely many gaps.

(c) Bourgain and Schlag also considered Schrédinger operators in £2(Z) with potentials
generated by hyperbolic toral automorphisms in [10], again with a focus on the
spectral type. The result analogous to Theorem 1.1 (i.e., that the almost sure spectrum
is always connected) holds for these operators as well. This was discussed in [15].

(d) The proof of Theorem 1.1 can be applied to any affine toral endomorphism of the
form T¢ 5 w — Aw for which Lebesgue measure is ergodic, and hence the result
of this note generalizes the discussion from the previous item to the non-invertible
case. We focus on the doubling map as the most interesting special case which
nevertheless exhibits the relevant phenomena and challenges. Concretely, if A €
7" has det(A) # 0, then A induces a measure-preserving endomorphism 7 :
T¢ — T4 (this is well known, compare the discussion in [34, Section 1.1]). If A
has no roots of unity as eigenvalues, then Lebesgue measure on T¢ is T-ergodic [34,
Corollary 1.10.1] and can then be lifted to a suitable ergodic measure on the natural
extension [32] (cf. the discussion on pp. 912-913 of [29]).

(e) One crucial motivation for us to prove Theorem 1.1 is provided by spectral pseudo-
randomness. Heuristically speaking, a model is pseudo-random if it has spectral
properties akin to those of random models. In the context of discrete one-dimensional
Schrddinger operators this would mean almost sure pure point spectrum with expo-
nentially decaying eigenfunctions (a.k.a. spectral localization), perhaps along with a
suitable dynamical localization statement, and the finiteness of the number of gaps
of the almost sure essential spectrum. Note that localization properties were the fo-
cus of the Bourgain—Schlag paper [10], whereas the global topological structure of
the almost sure essential spectrum had not been discussed before (to the best of our
knowledge). In order to study the transition into the pseudo-random realm, it is a
good idea to consider some examples. For simplicity, let us consider the following
types of potentials:

VP — 25 cos2m (na + w)) (1.5)
VS = 23 cos(2m (n*a + ) (1.6)
VM — 25 cos(27 (2" w)). (1.7)

The associated Schrodinger operators will be denoted accordingly, that is, Ha()qp) ,
HE, H9™ Here, the superscripts stand for quasi-periodic, skew-shift, and doubling
map, respectively. The number « is assumed to be irrational. The reader will recognize
Hﬂ()qp) as the almost Mathieu operator and it is chosen here as a representative quasi-

periodic model for definiteness. Now, Hcgqp) is not pseudo-random. Indeed, it has
purely absolutely continuous spectrum for each A € (—1, 1), as shown by Avila

! Bellissard’s conjecture, which is based on a private communication, refers to the statement that for ergodic
potentials of high complexity, the topological structure of the almost sure spectrum is simple. We refer the
reader to [2, 18] for a more comprehensive discussion of this topic and further pertinent results.
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[1], and it has a Cantor spectrum for every A € R\ {0}, a result due to Avila and
Jitomirskaya [4]. Spectral localization is conjectured to hold for each of Ha()ss) , Hcf,dm) s
forany A € R\ {0}. Also, the (almost sure) spectrum of HS®, H™ is conjectured to
be an interval. There are only partial results in support of these conjectures [8,9,21,22,
25-28]. Clearly, Ha()ss) is the less random of these two models, which are conjectured
to be pseudo-random. In light of this discussion, Theorem 1.1 establishes one of the
pseudo-randomness aspects for one of the key candidates in full generality.

The proof of Theorem 1.1 is given in Sect. 2. The overall strategy is to relate the
doubling map to the standard solenoid, which then gives an invertible dynamical system
to which the gap-labelling theorem can be applied. One then computes the Schwartzman
homomorphism restricted to the homotopy classes of maps on the suspension of the
solenoid that factor through the suspension of the doubling map, and then shows that
any stable section of uniformly hyperbolic cocycles associated with the doubling map
factor through in this manner. By showing that this group is precisely Z, one sees that
the only possible rotation numbers that one can observe in spectral gaps are zero and
one, and hence there are no open interior gaps.

2. Absence of Gaps via Embedding and Schwartzman

In this section we associate a family of whole-line operators with the half-line family
generated by the doublingmap 7' : T — T, along with the ergodic measure u© = Leb and
the sampling function f € C(T, R) we are interested in. The motivation for doing so is
that we want to apply general theorems that are known for ergodic families of Schrodinger
operators in £2(Z). Specifically, we seek to invoke the theorem that establishes the
existence of an almost sure spectrum for the whole line family and mimic the arguments
that lead to a canonical set of gap labels for this set.

In principle we want to proceed as in [19] when passing from the half-line model to the
whole-line model. However, there is one aspect that will force us to proceed differently
from [19]. Recall first that [19] used the binary expansion of @ € T to semi-conjugate
T to a one-sided full shift over the alphabet {0, 1}. The latter dynamical system has
an obvious two-sided extension: the two-sided full shift over the alphabet {0, 1}. With
a simple adjustment of the “forward-looking” conjugated sampling function, we can
easily extend it from {0, 1}%+ to {0, 1}%. This setup is sufficient to identify the almost
sure spectrum of the derived whole-line model with the almost sure essential spectrum of
the half-line model, and hence we could view X y from this perspective. However, when
working out the consequences of the gap labelling theorem, the total disconnectedness
of {0, 1}% presents a serious obstacle when trying to prove that r is connected! Our
solution will be to not pass to the symbolic setting, but rather use the standard solenoid
to make the doubling map invertible.

2.1. The associated whole-line model. Let us recall the construction of the standard
(Smale—Williams) solenoid; compare [11, Section 1.9] and [24, Section 17.1]. Consider
the solid torus

T =T x D?, WhereD2={(x,y) eRz:x2+y2§ 1}.
Fix A € (0, 1/2) and define

1 1
F:T—>% (w,x,y) <2a), Ax + 3 cosrw), Ly + 3 sin(an)) .
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Then F is one-to-one and

S=[)F"3)

n=0

is a closed F-invariant subset of ¥ on which F is a homeomorphism; S is called the
(standard) solenoid. _

_ We can now define the desired family of whole-line operators. We set 2 = §,
T = F|s, and choose [ to be the natural ergodic extension to €2 of Lebesgue measure
on T. The measure [z, besides being ergodic, has full topological support,

~

supp it = €, (2.1)

and can be interpreted as the Bowen—Margulis measure, as well as the Sinai—Ruelle—
Bowen measure. Moreover, it is locally the direct product of Lebesgue measure on
T with the (1/2, 1/2)-Bernoulli measure along the Cantor fibers; in particular, with
m1(w, x,y) = w, we have

(1) (1) = p. (2.2)

While we were unfortunately not able to locate an explicit discussion of this measure
in the literature due to the simplicity of the example of the standard solenoid within
the discussion of hyperbolic attractors, and the Gibbs measures thereupon, we refer the
reader to [13,14,30,32] as well as [20, Exercise 2.1.9] and [31, Appendix to Chapter 1]
for useful background information.

As the sampling function, we choose

FiQ->R, (0,x,y) > flw). (2.3)
This in turn yields potentials
Viwxym) = fF(T"(,x,y), nel (2.4)
and bounded self-adjoint operators

[Howaxp 1) =@+ D+ —1) + Vg oy (), ¥ €l*(Z), nel.

(2.5)
The associated density of states measure dk is given by
/gdk = /(50,g(H(w,x,y))(So)dﬁ(w,x, ¥, (2.6)
and its accumulation function
k(E) = / X(~oo,E] dk 2.7)

is called the integrated density of states.
Since i1 is T-ergodic, the general theory of ergodic Schrédinger operators in (7))
(see, e.g., [16]) gives that there is a compact Ef C R such that

Sr=0(Hg.uy) [-—as. (2.8)
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Moreover, this almost sure spectrum coincides with the topological support of the density
of states measure, that is,

i; = supp dk. (2.9)
Our goal is to show that the set . > coincides with the set of interest, X r. Before we
can prove this, we need to establish the following:

Lemma 2.1. For (w, x,y) € S andn € Z4, we have

Viwx.y) (1) = V().

Proof. This follows quickly from the definitions:
Vi@ = FT" (@, x, ) = f(F" (@, x,y) = f(T"o) = Vo).

Here we used in the third step that for n € Z,, the first component of F"(w, x, y) is
simply 7" w, so that (2.3) yields the asserted identity. O

Proposition 2.2. We have ¥ 7 = % 1

Proof. 1t follows from the general theory of ergodic Schrodinger operators in £2(Z) that
for ji-almost every (w, x, y) € S, the spectrum of H, y,y) is purely essential, equals
5 7, and coincides with the essential spectrum of the restriction of H, x,y) to Z, (this
follows for instance from the discussion in [16, Sections 2.2 and 4.2]). The latter set
only depends on w and hence, by almost sure independence, Lemma 2.1, and (2.2), will
coincide with X . |

By (2.1) and [23, Theorem 3.1] (see also [16, Theorem 3.8.2 and Corollary 4.9.4])
we have

i;:R\ep, (2.10)
where
ED={EeR: (T, Ap_ f) enjoys an exponential dichotomy}.

Here,

- E— f(w,x,y) —1
Ap_7: 92— SLQ.R), (a),x,y)r—>|: f(l‘”xy) o]

and (T, Ap_ f) is the associated SL(2, R)-cocycle over the base dynamics given by T,
(T, AE_]?) QxR Qx Rz, (w,x,y,V) — AE_f(a),x, y)v.

Forn € Z, the maps A’]Eff - Q — SL(2, R) are defined by (T, AE_f)” = (T", A’é,f)'
For E € R\ s 7= ED, the definition of exponential dichotomy asserts that there
exist continuous maps Kf : © — RP! and constants C, ¢ > 0 (which may depend on

T, f, and E) such that
Ap ;@A @) = Rp(T®), e, (2.11)
||A§’17(c~o)v|| <Ce™™, veAf@), neN. (2.12)
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We call IN\E (respectively, IN\E) the stable section (respectively, the unstable section) of

(T, Ag_7) . For the topological arguments in the present work, let us point out that we
only use the invariance property, not the exponential decay statements for semiorbits.
Of course we have a similar family A’ 'k Q — SL(2, R) defined by

Ap_;:Q—>SLR,R), o [E - f@ —01}

and (T, Ap_p)" = (T", A’}E—f) forn € Z,.
Lemma 2.3. For (w, x, y) € S and n € Zy, we have
A’g_f(a), x,y) = A’é_f(a)).

Proof. This is a consequence of Lemma 2.1. O

2.2. Suspensions of the doubling map and the standard solenoid. Let us briefly recall
some terminology and definitions that will be helpful. For proofs and further discussion,
we point the reader to the survey [15]. We consider a compact metric space X with a
continuous flow 7 and a t-ergodic measure, v. Let C*(X, T) denote the set of homotopy
classes of continuous maps X — T. Given ¢ € C(X, T), x € X, one can lift the map
¢ it — ¢(z'x) to Y, : R — R. The limit

Y (1)
t

rot(¢; x) = ll_i)ngo

exists for v-a.e. x, it is almost-surely independent of x, and its almost-sure value depends
only on the homotopy class of ¢ [33]. The induced map 2, : C*(X, T) — R given by

A, ([@]) = rot(¢p; x) v-ae.x € X,

is called the Schwartzman homomorphism. When working with linear cocycles over a
dynamical system, is often convenient to work with maps into the projective line RP!
instead of T. For such maps, one can define 2, by identifying RP' with T via the map
T > 6 +— span{(cos 0, sin 10)T} € RPL. Using this identification, if A € C(X, RPY),
one has

A, ([A]) = lim LA&?’T]A(t’x), v-ae.x € X, (2.13)
T—oomT &
where Aér denotes the net change in the argument on the interval 1.

The gap-labelling theorem for ergodic Schrodinger operators (see, e.g., [15,16,23])
asserts the following: if { H,}weq is an ergodic family of Schrédinger operators in £2(Z)
generated by an invertible topological dynamical system (€2, 7') with ergodic measure
W, and k denotes the associated integrated density of states, then for each E € R\ X,
k(E) lies in the range of the Schwartzman homomorphism associated to (X, t, v), the
suspension of (€2, T, u). More precisely, recall that E € £D on account of (2.10),
and hence enjoys (un)stable sections Af asin (2.11)—(2.12). The gap-labelling theorem
asserts that

k(E) = 1-2,([A4]). (2.14)
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where K}; is a suitable suspension of the stable section associated with the cocycle
(T, Ag— ), which can be generated by using a suitable homotopy to the identity; see
[15,23] for details. For an earlier version of the gap-labelling theorem via K -theory that
applies to operators in arbitrary dimension, see Bellissard [5,6].

Consider 2 =T, Tw = 2w, and X = X (2, T) the suspension

T x [0, 1]/((w, 1) ~ Qw, 0)).

Elements of X will be denoted by [w, t]. Let us emphasize that non-invertibility of
(2, T') implies that one cannot directly apply the gap-labelling theorem in this setting.
Nevertheless, the following calculation of homotopy classes will be useful.

Theorem 2.4. With the notation from above, we have C*(X, T) = 7, generated by the
trivial map o, t] — t.

Proof. Let ¢ € C(X, T) be given. For each s € [0, 1], consider the map ¢ : T — T
given by w — ¢([w, s]). By well-known facts from topology, ¢ is homotopic to
o +— kw for some k € 7Z. Since ¢ is homotopic to ¢y for each s, s/, the value of k is
independent of s. On the other hand, one has

$1(@) = ¢(lw, 1]) = ¢([20, 0]) = ¢o(2w).

Thus, k = 2k, forcing k = 0, so ¢; is nullhomotopic for every s. Since [0, 1] =
[2-0,0] = [0, 0], the set {[0, s] : s € [0, 1]} is homeomorphic to a circle and hence
there is n € Z such that the restriction of ¢ to that circle is homotopic to s +— ns.
Consider ¢plw, s] = ¢[w, s] — ns. By work above, ¢ is homotopic to a map ng that
vanishes on the set

Y={[0,51e X:5€[0,1]}U{[w,0] € X :w e T}.

Collapsing Y to a point, we see that 1o factors through a map X/Y — T. Since X/Y
is equivalent to the space obtained from the unit square [0, 1] x [0, 1] by identifying
all points on the boundary, X/Y = S?, the two-sphere, and hence it follows that 7g is
nullhomotopic. Thus, ¢ is homotopic to [w, ] — nt, as desired. O

Remark 2.5. Clearly, the proof of Theorem 2.4 applies to any expanding map w +— mw
with m € {2, 3, ...}. Furthermore, the conclusion also holds for the suspension of any
toral endomorphism of the form

T 5 @ Aw,

where A is a d x d integer matrix for which Ker(A* — I) is trivial; in particular, this
applies to ergodic toral endomorphisms, which have no roots of unity as eigenvalues.
This generalizes this discussion in [15, Section 8] to the non-invertible case.

Let (5, f, 1) denote the standard solenoid, let
X=X(T)=x[011/(@ 1)~ (Ta,0) (2.15)

be its suspension, and let ¥ denote the suspension of ji. The topologies of Q and X are
somewhat more complicated than those of 2 = T and X = X (2, 7). However, in the
case in which a map X — T factors through X, one can use the previous result to study
the Schwartzman homomorphism. More precisely, notice that

p:)?—) X, [(w,x,y),s]— [w,s]



The Almost Sure Essential Spectrum 801

is continuous on account of the calculation
pl, x,y), 11 = [0, 1] = [20,0] = p[T (®. x, ), 0]

We say that 5 € C(f, T) factors through X if thereis ¢ € C(X, T) such that 5 =¢op,
that is,

Pl x, ), 5]) = ¢([o, 5]) (2.16)
for all (w, x, y) € Qand s € [0, 1].
Theorem 2.6. If ¢ € C(X, T) factors through X, then A ([P]) € Z.
Proof. Write 5 = ¢ o p for some ¢ € C(X, T). By Theorem 2.4, ¢ is homotopic to
Xn : [w, s] — ns for some n € Z. Writing F : X x I — T for a homotopy from ¢ to
Xn» NOte that

F: (o, x,y,5],0) — F(lw,s],1)
gives a homotopy from a to the map X, : [w, x, y, s] = ns, and the result follows by
noting that
Ay ([Xn]) = n

by a direct calculation. O

2.3. Proof of main theorem. We now put everything together to prove the main result.
Proof of Theorem 1.1. Let f € C(T, R) be ~given and write ¥ = Xy = s 7 (cf. Propo-
sition 2.2). Given E € R\ X, the cocycle (T', A _ 7) is uniormly hyperbolic by (2.10),
and thus there exist A* as in (2.11) and (2.12).

Now, define A27 7 for arbitary ¢ € R by using a suitable smooth homotopy to the

identity as in [15,23]. More precisely, let 6 and A be smooth nondecreasing functions
so that & = 0 in a neighborhood of 0, & = 7/2 in a neighborhood of 1/2, A = 0 in a
neighborhood of 1/2 and A = 1 in a neighborhod of 1, and then define

|:cos(9(t)) —sin(@(t))j| 0<i=1p
sin(6(t)) cos(6(1)) -
Yp_ 7@.1) = N 2.17)
[k(t)(E ~ F@ —1} rer<
| 0 =1 =

With this, we define AtE_ f(cT)) by using Y _ jto interpolate between A’é_ 7 and

A’gf_] 7 More precisely, put
Al @) = Yo 7 (T"@.t —n) A {@), Be Q n<t<n+l, (2.18)

where n € Z. One can check that A’E_ f~(5) is a smooth function of 7 for all fixed & €

and E € R that agrees with A7, 7 when restricted to Z.

Denote the suspension of the solenoid by X=X (EZ, T), and use AIE_ 7 to produce

a continuous section A : X — RP! by

AN (@, s]) = A;‘E_f@)z"(*(a), e, sel01]. (2.19)
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Claim 1. The map A" from (2.19) is well-defined and continuous.

Proof of Claim. By invariance, one has
A3, 1]) = Ap_H{@)A* @) = A (T@) = A* (T, 0)),

which shows both that A is well-defined and that it is continuous. <&

Claim 2. The map At depends only on the first coordinate of @. That is, there exists a
continuous map A* : T — RP! such that

A(w,x,y) = AT (), Yo, x,y) € Q. (2.20)

Proof of Claim. Consider & = (w,x,y) € Q. By examining the proof of [17, The-
orem 1.2], one sees that A*(@) is given by the limit of the most contracted direction
of Al};, f@) as n — oo. By Lemma 2.3, this is then precisely the limit of the most

contracted direction of A7, 7 (w) as n — oo, which then only depends on w. The claim
follows. <&

By the claim, A" factors through X. Thus, Ql;(K+) € Z by Theorem 2.6, which
together with (2.6)—(2.7) and (2.14) implies that Qla(T) € {0, 1}. Thus, as (2.6)—(2.7)
and (2.9) imply that the integrated density of states k must take values in the open interval
(0, 1) on any interior gap, we must have £ < min ¥ or E > max X. It follows that X
in fact has no interior gaps. O
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Appendix A. Strong Approximation and the Almost-Sure Spectrum

We end with a short appendix about approximating the almost-sure spectrum via periodic
points. Since this is general and does not depend on using a particular base dynamical
system, we formulate it in the general setting.

Suppose €2 is a compact metric space, T : Q —  is a homeomorphism, p is
a T-ergodic Borel probability measure with supp u = 2, and f € C(€2, R). For each
w € , define V,,(n) = f(T"w), and consider the operators H,, = A + V,,. By general
results, there is a fixed compact set ¥ C R with ¥ = o (H,,) for u-a.e. w € Q [16].

As usual, we say that w € Q2 is a periodic point of T if T?®w = w for some p € N,
and we denote by Per(T) the set of periodic points of T'.
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Theorem A.l. Let 2, T, u, and f be as above.

(a) ¥ = o (Hy) for any w with a dense T -orbit.
(b) One has o (H,) C X for every w € Q.
(c) If Per(T) is dense in 2, then

Y= U o (Hy) (A1)

wePer(T)

Proof. If w, @' € Q are such that the closure of the T-orbit of @ contains «’, then there
are ny € Z with T" w — «’. Since f is continuous, it follows by strong approximation
(e.g. [16, Corollary 1.4.22]) that

o(Hy) S o(Hy). (A2)

The assumption supp © = 2 implies that p-a.e. @ € Q2 has a dense 7-orbit, so (a) and
(b) follow immediately. To prove (c), note that the inclusion 2 follows immediately
from (b) (and the fact that the spectrum is closed). The other inclusion follows by strong
approximation in a similar way: this time, approximate a general w by periodic points
and then again apply [16, Corollary 1.4.22]. O

Remark A.2. There is an analogous statement for half-line operators, which can be ap-
plied in the case in which T is merely continuous and not a homeomorphism, for example
when T is the doubling map.
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