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Limits of quasi-local angular momentum on an
isolated gravitating system

Mu-Tao Wang

ABSTRACT. I shall discuss the Chen-Wang-Yau quasilocal angular mo-
mentum, which is defined based on the theory of optimal isometric em-
bedding and quasilocal mass of Wang-Yau, and the limits of which at
spatial and null infinity of an isolated gravitating system. This is based
on joint work with Po-Ning Chen, Jordan Keller, Ye-Kai Wang, and
Shing-Tung Yau.

1. Introduction

In the theory of general relativity, the definition of angular momentum is
proved to be a more challenging task than the definition of energy /mass. An
essential difficulty for the definition of energy/mass goes back to Einstein’s
equivalence principle, which implies that gravitation, unlike other physical
fields, has no density. Moreover, in most attempts in which the Hamiltonian
method was employed, the issue is complicated by the fact that general rel-
ativity is a nonlinear theory and there is no canonical choice of a reference
system. An isolated gravitating system corresponds to an asymptotically flat
spacetime where gravitation is weak at infinity. In terms of the asymptoti-
cally flat coordinate system, there are well-defined notions of energy/mass,
most notably the ADM energy/mass at spatial infinity and the Bondi en-
ergy/mass at null infinity. However, the definitions of angular momentum
at both spatial infinity and null infinity are more subtle due to the nature
of asymptotically rotation Killing field and no consensus has been reached.

A possible approach to define angular momentum at both spatial infin-
ity and null infinity in a uniform way is to take the limit of a quasilocal
definition. In this article, we first discuss the theory of quasilocal mass and
optimal isometric embedding proposed by Wang-Yau in [63, 64] and the
definition of Chen-Wang-Yau quasilocal angular momentum in [15, 16]. We
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then explain how the limits of the Chen-Wang-Yau quasilocal angular mo-
mentum at spatial and null infinity provide viable definitions of angular
momentum for an isolated gravitating system.

2. Wang-Yau quasilocal mass and Chen-Wang-Yau quasilocal
angular momentum

The notion of quasilocal mass is attached to a 2-dimensional closed sur-
face ¥ which bounds a spacelike region in spacetime. X is assumed to be
a topological 2-sphere, but with different intrinsic geometry and extrinsic
geometry, we expect to read off the effect of gravitation in the spacetime
vicinity of the surface. Suppose the surface is spacelike, i.e. the induced
metric o is Riemannian. An essential part of the extrinsic geometry is mea-
sured by the mean curvature vector field H of . H is a normal vector field
of the surface such that the null expansion along any null normal direction
¢ is given by the pairing (H, /) of H and /.

In [63], Wang-Yau proposed the following definition of quasilocal mass
which depends only on ¢ and H of a 2-surface X in spacetime. To evaluate
the quasilocal mass of ¥ with the physical data (o, H), one first solves the
optimal isometric embedding equation, see (2.1) below, which gives an em-
bedding of ¥ into the Minkowski spacetime with the image surface ¥ that
has the same induced metric as %, i.e. o. One then compares the extrinsic
geometries of ¥ and ¥ and evaluates the quasilocal mass from o, H and Hy.

Assuming the mean curvature vector H is spacelike, the physical surface
¥ with physical data (o, H) gives (o, |H|, o) where |H| > 0 is the Lorentz
norm of H and ajy is the connection one-form determined by H. Given an
isometric embedding X : ¥ — R3! of . Let ¥ be the image X (X) and
(0,|Hol, am,) be the corresponding data of 3¢ (Hp is again assumed to be
spacelike).

Let T be a future timelike unit Killing field of R3! and define 7 =
—(X,T) as a function on X. Define a function p and a 1-form j, on X:

AT) (A7)
yH+ 5 - IR+ 5
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where V, is the covariant derivative with respect to the metric o, |V7|? =
VerV,r and A1 = V*V,7. p is the quasilocal mass density and j, is the
quasilocal momentum density. A full set of quasilocal conserved quantities
was defined in [15, 16] using p and j,.

The optimal isometric embedding equation for (X, T) is

21 {(dX, dX) =o

V%, = 0.
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The first equation is the isometric embedding equation into the Minkowski
spacetime and the second one is the Euler-Lagrange equation of the quasilo-
cal energy E(X,7) [63, 64] in the space of isometric embeddings. The quasi-
local mass for the optimal isometric embedding (X, T") is defined to be

B(S, X, T) = i/ ).
8 )
It is shown in [63, 64] that E(X, X,T) is positive in general, and zero for
surfaces in the Minkowski spacetime.

The theory of quasilocal mass and optimal isometric embedding was em-
ployed by Chen-Wang-Yau in [15, 16] to define quasilocal conserved quan-
tities. For an optimal isometric embedding (X, T'), by restricting a rotation
(or boost) Killing field K of R*! to ¥y = X(%) c R*!, the quasi-local
conserved quantity is defined to be:

1
—— [ (K., T K%,
- LT (KT,

where KT is the component of K that is tangential to ¥g. In particular,
K = 2'9; — 270;,i < j defines an angular momentum with respect to 9.
Here (t,2°) and (0;, ;) are standard coordinates and coordinate vectors of
the Minkowski spacetime.

The image of the optimal isometric embedding ¥y is essentially the
“unique” surface in the Minkowski spacetime that best matches the physical
surface Y. If the original surface 3 happens to be a surface in the Minkowski
spacetime, the above procedure identifies Yo = > up to a global isometry.

A solution of the optimal isometric embedding equation is indeed a crit-
ical point of the quasilocal energy E(3, 7). In [14], we study the minimizing
and uniqueness property for a solution of the optimal isometric embedding
equation. In particular, the following theorems hold true:

THEOREM 2.1 ([14]). Let (o, H) be the data of a spacelike surface ¥ with
spacelike mean curvature vector H in the Minkowski spacetime and T be a
unit timelike Killing field. Suppose the projection of ¥ onto the orthogonal
complement of T is a convex surface. Then

(1) the kernel of the linearized optimal isometric embedding system con-
sists precisely of Lorentz transformations.

(2) the second variation of the quasilocal energy E(X, T) is non-negative
definite.

For a spacelike surface with spacelike mean curvature vector in a general
spacetime, one has

THEOREM 2.2 ([14]). Let (o, H) be the data of a spacelike surface ¥ in a
general spacetime. Suppose that g is a critical point of the quasi-local energy
E(X,7) and that the corresponding quasilocal mass density p is positive, then
7o is a local minimum for E(X,T).
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The case when the reference isometric embedding lies in a totally geo-
desic spacelike subspace of the Minkowski spacetime and thus 79 = 0 was
proved by Miao-Tam-Xie [45]. The proof of the general case in [14] consists
of a non-linear comparison principle E(X,7) > E(X,19) + E(X;,,7) and the
identification of the equality case of the positive energy theorem.

The above theorems allow us to solve the optimal isometric embedding
system for configurations that limit to a surface in the Minkowski spacetime.
This is in particular sufficient for calculations at infinity of an isolated system
when the total mass is positive.

3. Angular momentum at spatial infinity

3.1. The ADM angular momentum. Let (M, g) be a Riemannian
3-manifold and k be a symmetric 2-tenor on M. Recall that (M, g, k) is said
to be an asymptotically flat initial data set if (1) there exists a compact
subset K of M such that M\K is diffeomorphic to a finite union of ends
U;R3\ B; where each B; is a geodesic ball in R3, and (2) there exists an

asymptotically flat coordinate system (x!, 22 23) on each end, such that
(3.1) g=0+02r"% and k = O1(r™?),
where 7 = 1/3°2_ (21)2 and
1 3
(3.2) q> §andp>§.

The ADM (Arnowitt-Deser-Misner) mass [1] of (M, g, k) is defined to be:

1 .
160 /Sgo %:(gij,j = Gji)V"s
where S% is the limit as r — oo of coordinate spheres S, and v = v%0; is
the outward unit normal of S,.

The decay rate assumption on the asymptotically flatness (3.2) is crucial.
Under this assumption, the ADM mass satisfies the invariance property [3]
and the important positivity and rigidity property by the positive mass
theorem of Schoen-Yau and Witten [55, 56, 67].

In addition to the ADM mass and ADM energy-momentum, there is
also a companion definition of angular momentum that is also attributed to
ADM (Arnowitt-Deser-Misner) and is defined as

1

= — m(2'0; — 2705, v),i < j, where m = k — (tryk)g,
8 Sgo

where 2'0; — 279; is considered to be an asymptotically rotation Killing
field with respect to the asymptotically flat coordinate system (x!, 2, 2?).
However, the calculation of angular momentum is more subtle, as the ex-
pression diverges apparently. There are proposals by Regge-Teitelboim [51]
of a parity condition on (g,k) to ensure finiteness, and important gluing

constructions and density theorems for prescribing angular momentum by
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Corvino-Schoen [32], Chrusciel-Delay [28], Chrusciel-Corvino-Isenberg [27],
Huang-Schoen-Wang [38] etc. under such a condition.

Without the parity condition, it was observed by Chrusciel [26] that the
ADM angular momentum is finite if p + ¢ > 3 in (3.1). However, in [11],
it was shown that there exist asymptotically flat spacelike hypersurfaces in
the Minkowski or Schwarzschild spacetime with finite, nonzero ADM angular
momentum such that g = ¢ +O(r_%) and k = O(r‘g). Theses hypersurfaces
still have the expected ADM mass as the asymptotically flat conditions g > %
and p > % are still satisfied. However, it is difficult to interpret the nonzero
angular momentum when the corresponding spacetime is static. It is thus of
interest to investigate to what extent is the ADM definition a valid one. In
particular, one can ask the following question:

QUESTION 3.1. For an asymptotically flat spacelike hypersurface in the
Kerr spacetime with g = 0 + O(r™9) and k = O(r~P) such that q > % and
p > %, is the ADM angular momentum the expected one?

3.2. The limit of CWY quasilocal angular momentum at spatial
infinity. Before the Chen-Wang-Yau (CWY) definition, there were several
proposals of the definition of quasilocal angular momentum. Most notably,
in the axi-symmetric case, there was the Komar angular momentum. For a
general spacetime, there were definitions proposed by Penrose [48], Dougan-
Mason [33], Ludvigsen-Vickers [43] etc., which are based on twistor or spinor
constructions.

A key question is what justifies a good definition of angular momentum
at the quasilocal level. For the definition of quasilocal mass, obviously one
requires that the quasilocal mass should be positive in general and should be
zero for a surface in the Minkowski spacetime [25], as well as that the limit at
spatial infinity should recover the ADM mass. All previous known definitions
of quasilocal angular momentum satisfy the covariant properties with respect
to the Poincare group and consistency with the Komar definition. Each
quasilocal definition of angular momentum gives a limit at spatial infinity
which can be viewed as the total angular momentum of an asymptotically
flat initial data set. A natural criterion is thus to investigate these limits
and see if they provide a viable definition. Especially one sees from last
section that there are difficulties for the ADM definition in the Minkowski
or Schwarzschild spacetime.

The limit of CWY quasilocal angular momentum gives a definition total
angular momentum in the following way. Given an asymptotically flat coor-
dinate system on an end of an asymptotically flat initial data set (M, g, k),
consider the coordinate sphere S,. Suppose the ADM mass of (M, g, k) is
positive, then there is a unique, locally energy-minimizing, optimal isometric
embedding of S, whose image approaches a large round sphere in R3. Take
the limit as » — oo of the quasi-local conserved quantities on .S, we obtain
(E, P;, J;, C;) where (E, P;) is the same as the ADM energy-momentum [13].
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An invariance theorem in the Kerr spacetime was proved in [15]: any
“strictly spacelike” hypersurface in the Kerr spacetime has the same total
angular momentum (Cf. Question 3.1). Here “strictly spacelike” means, in
Boyer-Lindquist coordinates (t, 7,6, ¢), outside a compact subset the hyper-
surface is given by t = O(cr) for a constant ¢ with |¢| < 1. In particular, the
CWY angular momentum differs from the ADM definition, as it vanishes for
these hypersurfaces in the Minkowski or the Schwarzschild spacetime. The
proof relies on a gravitational conservation law. The CWY definition is also
conserved along the vacuum Einstein equation [15, 16].

In addition, the limit of quasilocal conserved quantities for spacelike
hypersurface of harmonic asymptotics of Corvino-Schoen were computed in
[12].

4. Angular momentum at null infinity

In this section, we focus on the definition of total angular momen-
tum at future null infinity .#*. There were various definitions and pro-
posals of total angular momentum at future null infinity .#* that include,
but not limit to, Ashtekar-Hansen [2], Barnich-Troessaert [4], Bramson[8],
Chrusciel-Jezierski-Kijowski [29], Dougan-Mason [33], Dray-Streubel [34],
Hawking-Perry-Strominger [36], Ludvigsen-Vickers [43], Rizzi [52], Wini-
cour-Tamburino [66], etc.

These definition relies on choice of coordinate system or gauge and
choice of reference which determines the asymptotically rotation Killing
field. Again, a key issue here is to identify good criteria to justify these def-
initions. We emphasize on the invariance/equivariance property, especially
with respect to the BMS group. We will first review the well-known descrip-
tion of null infinity in terms of the Bondi-Sachs coordinate system and the
invariance/equivariance property of the Bondi-Sachs energy-momentum. At
the end, we discuss how the limit of the CWY quasilocal angular momentum
gives an angular momentum definition at null infinity.

4.1. The description of null infinity. The spacetime near .# " is de-
scribed in terms of the Bondi-Sachs coordinates (u, 7,6, ¢) which are chosen
in the following way. Level sets of u are null hypersurfaces generated by null
geodesics, f and ¢ are extended by constancy along the integral curves of
the gradient vector field of u, and r corresponds to the “area distance”. In
terms of a Bondi-Sachs coordinate system (u, 7, 2, 2%), the spacetime metric
takes the form

(4.1)
Japdrdz’ = —UVdu? — 2Ududr + r*hap(dz® + Wadu)(dab + Whdu).

The index conventions here are o, = 0,1,2,3, a,b = 2,3, and u = 29,

r = zt. See [31, 44] for more details of the construction of the coordinate
system. The metric coefficients U, V, hq,, W of (4.1) depend on u, 7,6, ¢,
but the assumption on r implies that the determinant condition that det A,
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is independent of v and 7. These gauge conditions reduce the number of
metric coefficients of a Bondi-Sachs coordinate system to six (there are only
two independent components in hg). On the other hand, the boundary
conditions U — 1, V — 1, W* — 0, hg — 04 are imposed as r — oo
(such boundary conditions may not be satisfied in a radiative spacetime).
The special gauge choice of the Bondi-Sachs coordinates implies a hierarchy
among the vacuum Einstein equations, see [44, 36].

Assuming the outgoing radiation condition [53, 61, 44, 65, 60], the
boundary condition and the vacuum Einstein equation imply that as r — oo,
all metric coefficients can be expanded in inverse integral powers of r.! In
particular,

U=1+0("?),
2
vz1—{?+owﬁy
W =0(r2?), ’

C, _
hap = Ogp + Tb +O(r 2)

where m = m(u,z®) is the mass aspect and Cy, = Cgp(u, z%) is the shear
tensor of this Bondi-Sachs coordinate system. The Bondi-Sachs energy-
momentum 4-vector associated with a w-slice is then

e(u) ! /52 m(u, z*)dvs, pi(u) !

/ m(u, x*)Y;dvy,i =1,2,3
52,

where {Y; = Y;(2%),7 = 1,2,3} is an orthonormal basis of the (—2) eigen-
space of A = A, (these are the usual £ = 1 spherical harmonics) and dv, is
the area form of the metric 0. The positivity of the Bondi mass

(4.2) R

was proved by Schoen-Yau [54] and Horowitz-Perry [37] under the dominant
energy condition and a global assumption on horizon, see also [30] and [39].
The supplementary equations imply the following equation satisfied by the
mass aspect along & +:

1 1
(4.3) mmzsz%mqw—y@c&

IThe outgoing radiation condition assumes the traceless part of the r~2 term in the
expansion of hgp is zero. The presence of this traceless term will lead to a logarithmic
term in the expansions of W and V. Spacetimes with metrics which admit an expansion
in terms of 777 log’ r are called “polyhomogeneous” and are studied in [31]. They do not
obey the outgoing radiation condition or the peeling theorem [60], but they do appear as
perturbations of the Minkowski spacetime by the work of Christodoulou-Klainerman [24].
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where 0,02 = 0%0%0,C,0,C.q. Integrating over S, with the metric o
yields the well-known Bondi mass loss formula:
d 1

10,C|%dv, < 0.

In particular,
(4.5) e(u1) < e(up) if uy > up.
This formula indeed corresponds to energy loss, see [39] for a mono-

tonicity formula for the quantity e — />, p?.

4.2. The equivariance of Bondi mass under the BMS group.
Rescaling the spacetime metric (4.1) by r=2 as r — oo, the limit of
r_2gagdx"‘dxﬁ approaches oqg,dz®dz®, or the null metric on .#+.2 Therefore,
# T can be view as a null three-manifold:

I =1Ix (SZ’O-ab)

with u € I, 2% € S2.

Each spacetime Bondi-Sachs coordinate system (u,r, %) induces such a
limiting coordinate system (u,z?) on .1, together with the mass aspect
m(u,x®*) and the shear Cyp(u, z%). Such a Bondi-Sachs coordinate system is
by no means unique and the BMS group, which corresponds to the diffeo-
morphism group that preserves the gauge and boundary conditions, acts on
the set of Bondi-Sachs coordinate systems.

A BMS group element induces a diffeomorphism g on # 7 that is of the
following form:

(4.6) g:(u,2%) = (4,2%),a=2,3,A=2,3
such that

(4.7) {”%A =9

u = K@) (u+ f(z9))

where g : (S2%,0) — (S?,5) is a conformal isometry, i.e. g*¢ = K20 where
K = (g + 0;Y;)" ! and (g, ;) is a future timelike unit vector.
Here is how the Poincare group sits in the BMS group:

(1) f(z%) is any smooth function on S? that is called a “supertransla-
tion”. f(z%) = >_ a;Y; corresponds to an actual translation in the
Poincare group.

(2) K = (g + Y. 0;Y;) 7! corresponds to boosts in O(3,1).

(3) Choices of Y;,i = 1,2,3 correspond to O(3) C O(3,1).

The invariance/equivariance of the Bondi-Sachs energy-momentum is
best described in terms of the modified mass aspect 2-form [62]:

2This is a special case of conformal compactification. In general, the metric on the
unphysical spacetime is of the form Q2gaﬁdxadm6 and Q = 0 corresponds to T, see
[49, 50, 35].
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DEFINITION 4.1. The modified mass aspect 2-form wm of a limiting Bondi-
Sachs coordinate system (u,x% o) of 7 is defined to be

m = mdv,,

where m 1is
. 1
(4.8) i =m— V'V Ca,

V is the covariant derivative with respect to the metric o, and dv, =
Vdet odz? A dx3 is the volume form of the Riemannian metric o.

Let m and m be the modified mass aspects of the limiting Bond-Sachs
coordinate systems (u, z%) and (@, z4) on .# T, respectively. Suppose (u, %)
and (u,7") are related by a BMS element (K, f) as in (4.7). The two mod-
ified mass aspect 2-form are related by

(4.9) K <m . iA(A +2) fdva> = g,

where m = mdv, is the modified mass aspect 2-form of the limiting Bondi-
Sachs coordinate system (@,z4, ). This formula shows the equivariance of
the Bondi-Sachs energy-momentum.

PROPOSITION 4.2 ([62]). For any section X of Z 7, suppose m and m
are the mass aspect 2-forms of two Bondi-Sachs coordinate systems which
are related by a BMS group element that is a pure supertranslation, then the

energy integrals are the same
/ m= / m.
P >

In presence of a nontrivial K, the energy-momentum transforms in the fol-
lowing way:

Suppose {Y;}i=1,2.3 be an orthonormal basis of the (—2) eigenspace of Ay
and K = (ao+)_; a;Y;)71 for a future timelike unit vector (ag, ;). Suppose
A € O(3,1) satisfies AY = ap, Af = oy, and let V; = (A + AFY K i =
1,2,3. Denote

e:/m, piz/Yim, andé:/tﬁ, ﬁi:/Y;ﬁl.
5 5 ) )

e = Aje + Afpr, and p; = Ale + Afpy.
In particular, g2 — 21512 =e? — ZPZQ

Then

We note that in this formulation, ¥ does not need to be the level set of
any Bondi-Sachs coordinate u on & .

The energy loss formula (4.5) can also be extended by means of the
modified mass aspect two-form.
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DEFINITION 4.3. For any two sections X1 and Yo on £, X1 is said to be
in the retarded future of Yo if there exists a limiting Bondi-Sachs coordinate
system (u,z%) such that 1 and Xy are given by u = hi(z®) and u = ha(x®)
respectively, and that hy(z®) > ho(x?) for each % € S?.

One easily check that this notion is independent of the choice of the
limiting Bondi-Sachs coordinate system because K > 0 and (4.7).

THEOREM 4.4. For any two sections X1 and X9 on & such that ¥ is
in the retarded future of X9, we have

/ m < m.
o1 PO

Equation (4.3) implies that the mass aspect 2-form m, as a 2-form on
the three-manifold .# T, verifies

1
(4.10) dm = —é\au()\gdu A dvg,

where d is the exterior derivative operator on .# T as a differentiable mani-
fold.

This theorem should be considered as an extension of the classical Bondi
mass loss formula (4.5) which only applies to the case when ¥; and X9 are
both smooth and u level sets of a fixed Bondi-Sachs coordinate system.

4.3. Definitions of angular momentum at null infinity. There is
also an angular momentum aspect N* which appears in further expansions
of W% in (4.1) (we follow the convention in [40]):

1

We =
272

2 1 1
VOCo + 173 (gN“ = 16 V" (CacC™) = 5Cb“vd0db> +0(r ™).

All existing definitions of angular momentum at .# " includes the term
f sz Y*N, where Y is a rotation Killing field. Different approaches based
on Hamiltonian/spinor-twistor with respect to the BMS algebra lead to dif-
ferent definitions. For example, the expression in [36] is N® — u@“m, while
the expression in [4] is N* — %Cbﬁacbd — %C’abﬁdcdb.

Some key issues that need to deal with for a definition of angular momen-
tum at null infinity are: 1. Referencing, For example, the definition should be
zero for the Minkowski time. 2. Supertranslation ambiguity and Lorentzian
ambiguity in the BMS group.

The calculation of the limit of the Chen-Wang-Yau quasilocal conserved
quantities in Bondi-Sachs coordinates was taken up by Keller-Wang-Yau in
[40]. The expression depends on the Hodge decomposition of Cy;. Write

1 1
Cuw =VViye — §O'abAC + §(€advdvbg + Ebdvdvag)
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and the limit of the CWY angular momentum (assuming the linear momen-
tum vanishes) is

1

4.11 —
( ) 8 S2

Ya (Na — C%am - iCab@dCdQ .

A natural question is whether there exist a modified angular momen-
tum aspect that satisfies similar properties of the modified mass aspect
Definition 4.1, especially the equivariance property under the BMS group.
Unfortunately, the transformation of the angular momentum aspect is ex-
tremely complicated. Chrudciel-Jezierski-Kijowski [29], through the Hamil-
tonian theory associated with Bondi-Sachs coordinates, defined the total
Lorentz charge and showed that the Lorentz charge is equivariant under the
BMS group if there exists a Bondi-Sachs coordinate system such that the
mass aspect m is a constant, NN, is a parallel 1-form, and Cy, = 0 (this cor-
responds to a stationary spacetime assumption). The expression for angular
momentum in [29] is

1

4.12 —
( ) 8 92

Y, <N“ - %cab%dcdb> :

Comparison of (4.11) and (4.12) shows that the expression from the limit
of Chen-Wang-Yau quasilocal angular momentum satisfies the same equiv-
ariance property under the BMS group for the type of stationary spacetime
considered in (4.12).

All previous definitions of angular momentum on .#* depend on a spe-
cific gauge (a null frame or a spacetime coordinate system). In contrast,
the Chen-Wang-Yau definition is geometric and coordinate independent (it
depends only on o, H). In addition, solving the optimal isometric equation
is a canonical procedure that is free from any ad hoc referencing or normal-
ization. We thus expect more invariance/equivariance to hold true for this
definition.

In an upcoming paper, we compute the limit of the Chen-Wang-Yau
quasilocal angular momentum on a general null hypersurfaces with the fol-
lowing goals:

(1) Remove the determinant condition or the outgoing radiation con-
dition in Bondi-Sachs coordinate system

(2) Extend the definition of angular momentum to a general section
of #7T of the form v = h(z). All calculations done in the Bondi-
Sachs coordinate system so far work only for section of the form
u = constant.

(3) Remove the condition of vanishing linear momentum in [40].

We believe the result will get us closer to an angular momentum def-
inition that satisfies stronger BMS equivariance property and to a better
understanding of angular momentum after gravitational radiation.
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