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We develop a Reduced Order Model (ROM) for the Navier-Stokes equations with nonlinear 
filtering stabilization. Our approach, that can be interpreted as a Large Eddy Simulation 
model, combines a three-step algorithm called Evolve-Filter-Relax (EFR) with a computa-
tionally efficient finite volume method. The main novelty of our ROM lies in the use within 
the EFR algorithm of a nonlinear, deconvolution-based indicator function that identifies the 
regions of the domain where the flow needs regularization. The ROM we propose is a hy-
brid projection/data-driven strategy: a classical Proper Orthogonal Decomposition Galerkin 
projection approach for the reconstruction of the velocity and the pressure fields and a 
data-driven reduction method to approximate the indicator function used by the nonlin-
ear differential filter. This data-driven technique is based on interpolation with Radial Basis 
Functions. We test the performance of our ROM approach on two benchmark problems: 
2D and 3D unsteady flow past a cylinder at Reynolds number 0 ≤ Re ≤ 100. The accu-
racy of the ROM is assessed against results obtained with the full order model for velocity, 
pressure, indicator function and time evolution of the aerodynamics coefficients.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Although increasing computational power has become available recently, the resolution of systems of parametric Partial 
Differential Equations using classical discretization methods (e.g., finite element or finite volume methods, hereinafter called 
Full Order Models) is still unfeasible in several situations where one needs to evaluate a certain output of interest for a large 
number of input configurations. This is the case of, e.g., real-time control problems, optimization problems, and uncertainty 
quantification. In this context, Reduced Order Models (ROMs) have been proposed as an efficient tool to significantly reduce 
the computational cost required by classical Full Order Models (FOMs).

The basic ROM framework consists of two steps. The first one is the so-called offline phase, when a database of several 
solutions is collected by solving the original FOM for selected parameter values. The second step is the online phase, during 
which the information obtained in the offline phase is used to quickly compute the solution for newly specified values 
of the parameters. The assumption underlying this framework is that the solution of a parametrized PDE (or a system of 
such equations) lies on a low-dimensional manifold, which can be approximated by a subspace spanned by the set of basis 
functions found in the offline phase. For a comprehensive review on ROMs, the reader is referred to, e.g., [1–6].
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In recent years, there has been a growing interest in constructing stable, accurate, and computationally efficient ROMs 
for the numerical simulation of higher Reynolds number flows. Traditional ROMs fail to maintain their promise of reduced 
computational costs when the Kolmogorov n-width of the solution manifold associated with the FOM is large, as is the case 
in convection-dominated flows. Indeed, if one chooses to retain a large number of modes in order for the ROM to be accu-
rate, then the computational efficiency suffers. If the number of modes is otherwise kept low, a severe loss of information 
hinders the accurate reconstruction of the solution. In fact, projection based ROMs of turbulent flows are affected by energy 
stability problems related to the fact that proper orthogonal decomposition (POD) retains the modes biased toward large, 
high-energy scales, while the turbulent kinetic energy is dissipated at the level of the small turbulent scales. A possible way 
to tackle this challenging problem is to introduce dissipation via a closure model [7,8]. In [9], it was shown theoretically 
and numerically that modes have a similar energy transfer mechanism to Fourier modes. Therefore, the use of Large Eddy 
Simulation (LES) could be beneficial. Following this idea, in this paper we develop a ROM for an LES filtering approach for 
flows at moderate Reynolds numbers (a few hundreds or a few thousands).

We focus on a nonlinear variant of the Evolve-Filter-Relax (EFR) algorithm [10–14], which describes the effect of the 
small scales (i.e., the turbulent scales that are not resolved by the discretization mesh) by a set of equations to be added 
to the discrete Navier-Stokes equations. This extra problem can be interpreted as a differential low-pass filter. Modularity is 
an appealing feature of this approach since it can be implemented without a major modification of a legacy Navier-Stokes 
solver. A key role in the EFR algorithm is played by a nonlinear indicator function that identifies the regions of the domain 
where the flow needs regularization (i.e., where and how much artificial viscosity is needed) [15]. The EFR algorithm has 
been demonstrated to be an efficient and accurate LES approach for flow at moderate Reynolds numbers (i.e., of the order 
of a few thousand) [14,16]. At the full order level, the EFR algorithm and its variant without relaxation (called EF) have 
been extensively studied within a Finite Element framework. Instead, we choose to apply a computationally efficient Finite 
Volume (FV) method for the space discretization [16,17]. The motivation for this choice is that many commercial codes are 
based on FV methods. Thus, a FV-based ROM would be appealing for a larger group of CFD practitioners.

The large majority of the regularized ROMs adds the filtering step only at the reduced order level, i.e., the snapshots 
are obtained by Direct Numerical Simulation. See, e.g., to [18–20]. We proposed a different approach in [21–23] for the 
EF/EFR algorithm: we apply the filter step at both the full and reduced order level, i.e., we generate the snapshots with 
under-refined meshes. Such an approach provides a ROM that is fully consistent with the FOM since the same mathematical 
framework is used during both the offline and online stage. We use the POD basis related to the evolve velocity to ap-
proximate the filtered velocity and we compute the reduced pressure field with a Poisson Pressure Equation (PPE) method 
[24,25]. The main difference between this work and [21–23] lies in the indicator function. Indeed, the EF or EFR algorithms 
in [21–23] adopt a linear indicator function. While this was a necessary simplification that allowed us to focus on other 
challenges posed by a ROM differential filter, it is known that a linear indicator function is insufficiently selective as it 
applies the same amount of artificial viscosity everywhere in the domain. Thus, in this paper we extend our approach to a 
nonlinear indicator function.

We propose a hybrid projection/data-driven ROM that draws inspiration from the work in [26], where a ROM framework 
for the Reynolds-averaged Navier Stokes (RANS) equations is developed. We choose this approach, which exploits a tradi-
tional projection method for the computation of the reduced velocity and pressure fields and uses a data-driven technique 
to compute the reduced coefficients of the indicator function field, because it is accurate and partially non-intrusive. Other 
ROM techniques available in the literature are known to be either inaccurate or not easy to implement in legacy codes, 
hence they have not been considered for comparison in this paper. For example, one alternative approach would be to use 
the same set of reduced coefficients for velocity, pressure, and indicator function. This has been considered for RANS in 
[27] and it was shown in [26] to provide less accurate results than a hybrid procedure. It is reasonable to assume this lack 
of accuracy could be observed for LES too. Another option would be to use an EIM/DEIM technique [28,29] for the recon-
struction of the indicator function field but its implementation is problem-dependent and intrusive. Another advantage of 
our hybrid procedure is that it provides a unique computational pipeline for the development of efficient ROMs for flows at 
higher Reynolds number, no matter if modeled by LES or RANS.

We test our approach on two benchmarks: 2D [30,31] and 3D [30,32,33] flow past a cylinder with time-dependent 
Reynolds number 0 ≤ Re(t) ≤ 100. In order to obtain accurate results, one needs a mesh with about 200k elements for the 
2D benchmark and roughly 3 million elements for the 3D benchmark. With the EFR algorithm, one can get accurate results 
with much coarser meshes [13–16,21–23], which would otherwise lead to inaccurate solutions. We limit our investigation 
to the ROM reconstruction of the time evolution of the system. Parametric studies, in particular related to key model 
parameters such as filtering radius and relaxation parameter, will be addressed in a future work. For both tests, we compare 
the evolution of velocity, pressure, and indicator function with the corresponding FOM quantities. Additionally, we show the 
accuracy of our approach in the time reconstruction of the lift and drag coefficients.

The work is organized as follows. Sec. 2 describes the full order model and the numerical method we use for it. Sec. 3
presents the ingredients of the reduced order model. The numerical examples are reported in Sec. 4. Sec. 5 provides con-
clusions and perspectives.
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2. The full order model

We consider the motion of an incompressible viscous fluid in a fixed domain � ⊂ RD with D = 2, 3 over a time interval 
of interest (t0, T ) ⊂ R+ . The flow is described by the incompressible Navier-Stokes equations (NSE):

ρ ∂tu + ρ ∇ · (u ⊗ u) − 2μ�u + ∇p = f in � × (t0, T ), (1)

∇ · u = 0 in � × (t0, T ), (2)

where ρ is the fluid density, μ is the dynamic viscosity, u is velocity, and p is the pressure. Problem (1)-(2) is endowed 
with suitable boundary conditions

u = uD on ∂�D × (t0, T ), (3)

(2μ∇u − pI)n = 0 on ∂�N × (t0, T ), (4)

and the initial data u = u0 in � × {t0}. Here ∂�D ∪ ∂�N = ∂� and ∂�D ∩ ∂�N = ∅. In addition, uD and u0 are given.
In order to characterize the flow regime under consideration, we define the Reynolds number as

Re = U L

ν
, (5)

where ν = μ/ρ is the kinematic viscosity of the fluid, and U and L are characteristic macroscopic velocity and length, 
respectively. We are interested in simulations flows at moderately large Reynolds numbers, for which flow disturbances 
cannot be neglected and Reynolds-averaged Navier-Stokes (RANS) models [34] are inaccurate. For this reason, we choose to 
work with a Large Eddy Simulation approach that is described next.

2.1. The evolve-filter-relax algorithm

Our LES approach is a modular algorithm, called Evolve-Filter-Relax [13], that adds a differential filter to the Navier-
Stokes equations (1)-(2). This algorithm comes from the decoupling of the time-discrete Leray model [35]. For the imple-
mentation of the EFR algorithm, we chose the C++ finite volume library OpenFOAM® [36].

Let �t ∈ R, tn = t0 + n�t , with n = 0, ..., NT and T = t0 + NT�t . We denote by yn the approximation of a generic 
quantity y at the time tn . The EFR algorithm reads as follows: given the velocities un−1 and un , at tn+1:

i) Evolve: find intermediate velocity and pressure (vn+1, pn+1) such that

ρ
3

2�t
vn+1 + ρ ∇ · (vn ⊗ vn+1) − 2μ�vn+1 + ∇pn+1 = bn+1, (6)

∇ · vn+1 = 0, (7)

with boundary conditions

vn+1 = un+1
D on ∂�D × (t0, T ), (8)

(2μ∇vn+1 − pn+1I)n = 0 on ∂�N × (t0, T ), (9)

and initial condition v0 = u0 in � × {t0}. In eq. (6), we set bn+1 = ρ(4un − un−1)/(2�t). Notice that this step corre-
sponds to a time discretization with Backward Differentiation Formula of order 2 (BDF2) of problem (1)-(2).

Remark 2.1. We adopt a first order extrapolation for the convective velocity although a BDF2 scheme is used for the 
time discretization of problem (1)-(2). This is what the NSE solvers in OpenFOAM do, so discretization (6)-(7) would 
make it a fair comparison between EFR and NSE algorithms.

ii) Filter: find filtered velocity vn+1 such that

− α2∇ ·
(
a(vn+1)∇vn+1

)
+ vn+1 = vn+1, (10)

with boundary conditions

vn+1 = un+1
D on ∂�D × (t0, T ), (11)

∇vn+1n = 0 on ∂�N × (t0, T ). (12)

In eq. (10), v is the filtered velocity and α can be interpreted as the filtering radius (that is, the radius of the neighborhood 
where the filter extracts information from the unresolved scales). Indicator function a(·) is such that:
3
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a(v) � 0 where the velocity v does not need regularization;

a(v) � 1 where the velocity v does need regularization.

Different choices of a(·) have been proposed and compared in [37,13,38–40]. We choose indicator function:

a(v) = |v − F (v)| , (13)

where we take F (v) to be the linear Helmholtz filter operator, i.e., F (v) = ũ with:

ũn+1 − α2�ũn+1 = vn+1. (14)

For more details on this indicator function, we refer to [14].
iii) Relax: set

un+1 = (1 − χ)vn+1 + χ vn+1, (15)

where χ ∈ (0, 1] is a relaxation parameter.

We consider un+1 the approximation of the velocity tn+1. It is possible to show that the above EFR algorithm is equivalent 
to a generic viscosity model in LES [41].

Remark 2.2. In this paper, we consider a simplified filter problem with respect to our previous work [14,16,21,17], where we 
forced the filtered velocity vn+1 to be solenoidal. We are releasing this constraint as it leads to a substantial simplification 
and computational time savings since there is one less variable (i.e., the Lagrange multiplier to enforce the incompressibility 
constraint). As noted in [42], the incompressibility is exactly preserved by the simplified differential filter (10) only for 
periodic conditions. Thus, in our case the end-of-step velocity un+1 does not strictly satisfy mass conservation. However, we 
will show in Sec. 4.1 that at discrete level the mass conservation error is very low.

Remark 2.3. The EFR method has an appealing advantage over other LES models: it is modular, i.e., it adds a differential 
problem to the Navier-Stokes problem instead of extra terms in the Navier-Stokes equations themselves (like, e.g., the 
popular variational multiscale approach [43]). Thus, thanks to the EF method anybody with a Navier-Stokes solver could 
simulate higher Reynolds number flows without major modifications to the software core. The reader interested in learning 
about the accuracy of the EFR algorithm when compared to experimental data from [44] is referred to [14,16]. Comparison 
between the same data and other LES and RANS approaches can be found in [45].

Finally, we note that while we consider homogeneous Neumann boundary conditions non-homogeneous boundary con-
dition can of course be handled. See [14] to learn more about this.

2.2. Space discrete problem: a finite volume approximation

For the space discretization of problems (6)-(9) and (10)-(14), we adopt a Finite Volume method. We partition the 
computational domain � into cells or control volumes �i , with i = 1, . . . , Nc , where Nc is the total number of cells in the 
mesh. Let A j be the surface vector of each face of the control volume, with j = 1, . . . , M .

The fully discretized form of problem (6)-(7) reads: Find (vn+1
i , pn+1

i ) such that

ρ
3

2�t
vn+1
i + ρ

∑
j

ϕn
j v

n+1
i, j − 2μ

∑
j

(∇vn+1
i ) j · A j +

∑
j

pn+1
i, j A j = bn+1

i (16)

∑
j

(∇pn+1) j · A j =
∑
j

(H(vn+1
i )) j · A j, (17)

where:

H(vn+1
i ) = −ρ

∑
j

ϕn
j v

n+1
i, j + 2μ

∑
j

(∇vn+1
i ) j · A j + bn+1

i with ϕn
j = vnj · A j. (18)

In (16)-(18), vn+1
i and bn+1

i denote the average velocity and source term in control volume �i , respectively. Moreover, we 
denote with vn+1

i, j and pn+1
i, j the velocity and pressure associated with the centroid of face j normalized by the volume of 

�i . For the solution of the linear system associated with (16)-(17) we used the PISO algorithm [46]. The advantage of this 
algorithm is the decoupling of the computation of the pressure from the computation of the velocity, which results in low 
computational costs.
4



M. Girfoglio, A. Quaini and G. Rozza Journal of Computational Physics 486 (2023) 112127
Next, we discretize filter problem (10). We obtain:

vn+1
i − α2

∑
j

an+1
j (∇vn+1

i ) j · A j = vn+1
i , (19)

where vn+1
i is the average value of vn+1 in control volume �i and an+1

j = a(vn+1
j ). To compute an+1

j , we need to solve the 
Helmholtz filter problem (14). Once discretized, it reads: Find the average value of ṽn+1 in �i , i.e., ṽn+1

i , such that:

ṽn+1
i − α2

∑
j

(∇ ṽn+1
i ) j · A j = vn+1

i . (20)

Obviously, problems (19) and (20) are easier to solve than problem (16)-(17), i.e., the filter problem is computationally much 
less demanding than the Navier-Stokes problem.

3. The reduced order model

The Reduced Order Model we propose can be seen as an extension to an LES framework of the model introduced in 
[26] for RANS. The key idea is the following: we use a Galerkin projection method related to the computation of the 
reduced velocity and pressure fields, while we use an interpolation procedure based on Radial Basis Functions (RBF) for 
the computation of the reduced coefficients of the indicator function. We call this hybrid approach data-driven POD-Galerkin 
ROM. In Sec 3.1 we describe the details of our approach and in Sec. 3.2 we present the strategy we choose for pressure 
stabilization at reduced order level.

The ROM computations have been carried out using ITHACA-FV [47], an in-house open source C++ library.

3.1. Our data-driven POD-Galerkin method

We approximate velocity fields v and v , pressure field p, and indicator function a as linear combinations of the dominant 
modes (basis functions), assumed to depend on space variables only, multiplied by scalar coefficients that depend only on 
time:

v ≈ vr =
Nvr∑
i=1

βi(t)ϕ i(x), p ≈ pr =
Npr∑
i=1

γi(t)ψi(x), (21)

v ≈ vr =
Nvr∑
i=1

βi(t)ϕ i(x), a ≈ ar =
Nar∑
i=1

δi(t)ηi(x). (22)

In (21)-(22), N�r denotes the cardinality of a reduced basis for the space � belongs to.
Using (21) to approximate vn+1 and pn+1 in (6)-(7), we obtain

ρ
3

2�t
vn+1
r + ρ ∇ · (vnr ⊗ vn+1

r

) − 2μ�vn+1
r + ∇pn+1

r = bn+1
r , (23)

∇ · vn+1
r = 0. (24)

Then, using (22) to approximate vn+1 and a(vn+1) in (10) we get:

vn+1
r − α2∇ · (an+1

r ∇vn+1
r ) = vn+1

r . (25)

Remark 3.1. As mentioned above, we use a data-driven interpolation for the approximation of indicator function a defined 
in (13). For this reason, we do not need to compute a reduced order approximation of ṽ .

Remark 3.2. We use the reduced basis ϕ j associated with v also for the approximation of v in (22). Thus, in the ROM 
velocity v is divergence free, although the same is not true in the FOM.

In the literature, one can find several techniques to generate the reduced basis spaces, e.g., Proper Orthogonal De-
composition, the Proper Generalized Decomposition and the Reduced Basis with a greedy sampling strategy. See, e.g., 
[48–50,2,51–53,6]. We choose to find the reduced basis by using the method of snapshots. For this purpose, we solve the 
FOM described in Sec. 2 for each time tk ∈ {t1, . . . , tNs } ⊂ (t0, T ]. The snapshots matrices are obtained from the full-order 
snapshots:

S� = [�(t1), . . . ,�(tNs )] ∈ RN�h×Ns for � = {v, p,a}, (26)
5
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where the subscript h denotes a solution computed with the FOM and N�h is the dimension of the space � belong to for 
the FOM. Note that � could be either a scalar or a vector field. The POD problem consists in finding, for each value of the 
dimension of the POD space NP OD = 1, . . . , Ns , the scalar coefficients c11, . . . , c

Ns
1 , . . . , c1Ns

, . . . , cNs
Ns

and functions ζ 1, . . . , ζ Ns
, 

that minimize the error between the snapshots and their projection onto the POD basis. In the L2-norm, we have

ENPOD = arg min
Ns∑
i=1

||�i −
NP OD∑
k=1

cki ζ k|| ∀NPOD = 1, . . . ,Ns

with (ζ i, ζ j)L2(�) = δi, j ∀i, j = 1, . . . ,Ns. (27)

It can be shown [54] that eq. (27) is equivalent to the following eigenvalue problem

C� Q � = Q ���, (28)

C�
i j = (�(ti),�(t j))L2(�) for i, j = 1, . . . ,Ns, (29)

where C� is the correlation matrix computed from the snapshot matrix S� , Q � is the matrix of eigenvectors and �� is a 
diagonal matrix whose diagonal entries are the eigenvalues of C� . Then, the basis functions are obtained as follows:

ζ i =
1

Ns�
�
i

Ns∑
j=1

� j Q
�
i j . (30)

The POD modes resulting from the aforementioned methodology are:

L� = [ζ 1, . . . , ζ N�r
] ∈ RN�h×N�r , (31)

where N�r < Ns are chosen according to the eigenvalue decay. The reduced order model can be obtained through a Galerkin 
projection of the governing equations onto the POD spaces.

Let

Mrij = (ϕ i,ϕ j)L2(�), Arij = (ϕ i,�ϕ j)L2(�), Brij = (ϕ i,∇ψ j)L2(�), (32)

Prij = (ψi,∇ · ϕ j)L2(�), Grijk = (ϕ i,∇ · (ϕ j ⊗ ϕk))L2(�), (33)

where ϕi and ψi are the basis functions in (21). The reduced algebraic system at time tn+1 for problem (23)-(24) is:

ρ
3

2�t
Mrβ

n+1 + ρ(βn)T Grβ
n+1 − 2μArβ

n+1 + Brγ
n+1 =

ρ

2�t
Mr

(
(1− χ)

(
4βn − βn−1) + χ

(
4β

n − β
n−1

))
, (34)

P rβ
n+1 = 0, (35)

where vectors βn+1 and γ n+1 contain the values of coefficients βi and γi in (21) at time tn+1.
Next, let

Arijk = (ϕ i,∇ · η j∇ϕk)L2(�), (36)

where ηi are the basis functions in (22). The reduced algebraic system at time tn+1 for problem (25) is

Mrβ
n+1 − α2(δn+1)T Arβ

n+1 = Mrβ
n+1, (37)

where vectors βn+1
and δn+1 contain the values of coefficients β i and δi in (22) at time tn+1.

The coefficients δi(t) in (22) are computed with a data-driven approach that uses interpolation with Radial Basis Func-
tions [55]. The interpolation procedure is carried out for each mode separately. Let ηi be the indicator function mode under 
consideration. Function Gi(t) that interpolates δi(t) using RBF functions can be written as:

Gi(t) =
Ns∑
j=1

wi, jζi, j(|t − t j|), for i = 1,2, . . . ,Nar , t ∈ (t0, T ] (38)

where wi, j are suitable weights and ζi, j are the radial basis functions, which are chosen to be Gaussian functions. We 
observe that ζi, j is centered at time t j . In order to compute the weights wi, j , we use the fact that Gi has to interpolate δi
at time nodes tk , i.e.:
6
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Gi(t
k) = δi(t

k) for k = 1,2, . . . ,Ns.

The coefficients δi(tk) are obtained from projecting the k-th snapshot onto the i-th mode:

δi(t
k) = (a(tk),ηi)L2(�),

a(tk) being the k-th column of the snapshot matrix Sa (26). Then, we have:

Gi(t
k) =

Ns∑
j=1

wi, jζi, j

(
|tk − t j|

)
= δi(t

k),

which can be written as a linear system:

Aζ

i w i = Y i, with (Aζ

i )kj = ζi, j(|tk − t j|). (39)

System (39) is solved offline to get the weights w i . During the online phase, for every new time instant t∗ we compute 
δi(t∗) given by:

δi(t
∗) ≈ Gi(t

∗) =
Ns∑
j=1

wi, jζi, j

(
|t∗ − t j|

)
.

The initial conditions for the ROM algebraic system (34)-(35), (37) are obtained with a Galerkin projection of the initial 
full order conditions onto the POD basis spaces:

β0
i = (v(x, t0),ϕ i)L2(�),

β
0
i = (v(x, t0),ϕ i)L2(�).

Finally, we use the lifting function method [21] to account for non-homogeneous Dirichlet boundary conditions. The 
velocity snapshots are modified according to:

v ′
h = vh −

NBC∑
j=1

uBC j (t)χ j(x),

v ′
h = vh −

NBC∑
j=1

uBC j (t)χ j(x),

where NBC is the number of non-homogeneous Dirichlet boundary conditions, χ (x) are the divergence free control functions 
that satisfy the boundary conditions, and uBC j are suitable temporal coefficients. The POD is applied to the snapshots 
satisfying the homogeneous boundary conditions and then the boundary value is added back:

vr =
NBC∑
j=1

uBC j (t)χ j(x) +
Nvr∑
i=1

βi(t)ϕ i(x),

vr =
NBC∑
j=1

uBC j (t)χ j(x) +
Nvr∑
i=1

βi(t)ϕ i(x).

3.2. Pressure field reconstruction and stability

In order to obtain a stable and accurate reconstruction of the pressure field at the reduced level, we choose to adopt the 
Poisson pressure equation method used, e.g., in [24,21,22]. To obtain the Poisson pressure equation, we take the divergence 
of eq. (6) and account for divergence free condition (7):

�pn+1 = −ρ ∇ · (∇ · (vn ⊗ vn+1)) + ∇ · bn+1, (40)

with boundary conditions (8) and:

∂np
n+1 = −2μn · (∇ × ∇ × vn+1) − n ·

(
ρ

3

2�t
vn+1 − bn+1

)
(41)
7
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Fig. 1. 2D flow past a cylinder: (left) part of the mesh under consideration and (right) illustrative representation of the velocity field in part of the domain 
at t = 6.

on ∂�N × (t0, T ), where ∂n denotes the derivative with respect to the normal vector n. In eq. (40), we retain the term 
∇ · bn+1 because at full order level the filtered velocity is not divergence free. For further details about the derivation of 
non-homogeneous Neumann conditions for the pressure field, we refer the reader to [56,57].

By using (21) for the approximation of vn+1 and pn+1 in (40), we obtain

�pn+1
r = −ρ ∇ · (∇ · (vnr ⊗ vn+1

r

))
. (42)

The term ∇ · bn+1
r vanishes in eq. (42) because at reduced order level the filtered velocity is divergence free as explained in 

Remark 3.2.
The matrix form of eq. (42) reads:

Drγ
n+1 + ρ

(
βn)T J rβ

n+1 − 2μN rβ
n+1 − 3ρ

2�t
F rβ

n+1

= ρ

2�t
F r

(
(1− χ)

(
4βn − βn−1) + χ

(
4β

n − β
n−1

))
, (43)

where

Drij = (∇ψi,∇ψ j)L2(�), Nrij = (n × ∇ψi,∇ × ϕ j)L2(∂�), (44)

Fri j = (ψi,n · ϕ j)L2(∂�), Jri jk = (∇ψi,∇ · (ϕ j ⊗ ϕk))L2(�). (45)

To conclude, the ROM algebraic system that has to be solved at every time step is (34), (37) and (43).

4. Numerical results

We test our approach on two well-known test cases [31,30]: 2D and 3D flow past a cylinder at 0 ≤ Re(t) ≤ 100. The 
Reynolds number depends on time since the maximum inflow velocity starts from zero at the beginning of the time interval 
and reaches its peak in the middle of such interval before returning to zero at the end of the simulation. Details are reported 
in Sec. 4.1 and 4.2. Our goal is a thorough assessment of our ROM model in the reconstruction of the time evolution of the 
flow field.

4.1. 2D flow past a cylinder

The computational domain is a 2.2 × 0.41 rectangular channel with a cylinder of radius 0.05 centered at (0.2, 0.2), when 
taking the bottom left corner of the channel as the origin of the axes. Fig. 1 (left) shows part of the computational domain. 
The channel is filled with fluid with density ρ = 1 and viscosity μ = 10−3. We impose a no-slip boundary condition on the 
upper and lower wall and on the cylinder. At the inflow, we prescribe the following velocity profile:

v(0, y, t) =
(

6

0.412
sin (πt/8) y (0.41− y) ,0

)
, y ∈ [0,0.41], t ∈ (0,8], (46)

and ∂p/∂n = 0. At the outflow we prescribe ∇v · n = 0 and p = 0. We start the simulations from fluid at rest.
The quantities of interest for this benchmark are the drag and lift coefficients [31,30]:

CD(t) = 2

ρLrU2
r

∫
S

((2μ∇u − qI) · n) · t dS, (47)

CL(t) = 2

ρLrU2
r

∫
S

((2μ∇u − qI) · n) · n dS, (48)

where Ur = 1 is the maximum velocity at the inlet/outlet, Lr = 0.1 is the cylinder diameter, S is the cylinder surface, and t
and n are the tangential and normal unit vectors to the cylinder, respectively.

We have previously investigated this benchmark at the FOM level in [16] and at the ROM level in [21,23]. However, while 
at the FOM level we considered the EFR algorithm with a linear indicator function and with indicator function (13) [16], 
8
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Fig. 2. 2D flow past a cylinder: (left) time evolution of the lift coefficient given by the NSE and EFR for α = havg and χ = �t compared against the results 
in [31] and (right) close-up view.

Table 1
2D flow past a cylinder: maximum CL

and time instant at which it occurs 
given by NSE and EFR algorithms. Refer-
ence values from [31] are also reported.

tCL,max CL,max

NSE 5.688 0.504
EFR 5.699 0.488
[31] 5.694 0.478

the ROM study is limited to the EFR algorithm with a linear indicator function [21,23]. In [16], we showed that at the FOM 
level the oscillatory pattern of the flow field (see Fig. 1 (right)) can be recovered only with a nonlinear indicator function. 
Thus, we expect the results obtained with the ROM presented in this paper to be far more accurate than the results in [21].

We consider a hexaedral computational grid with hmin = 4.2e − 3, havg = 7.5e − 3 and hmax = 1.1e − 2 for a total of 
1.59e4 cells. The quality of the mesh is high: it features very low values of maximum non-orthogonality (36◦), average 
non-orthogonality (4◦), skewness (0.7), and maximum aspect ratio (2). Fig. 1 (left) shows a part of the mesh. We chose 
this mesh because it is the coarsest among all the meshes considered in [16], featuring only 8% of the number of elements 
needed to obtain an accurate solution [30,32]. Thus, it is the most challenging for our filtering approach.

4.1.1. Validation of the FOM
Before applying the ROM, we test the EFR algorithm at FOM level and compare its results with the ones produced by a 

NSE solver in OpenFOAM. For the convective term, we use a second-order accurate central difference scheme that features 
low dissipation [58]. This is a difference with respect to [16] where we used a second-order accurate upwind scheme. We 
set �t = 4e − 4 which allows to obtain C F Lmax ≈ 0.25 at the time when the velocity reaches its maximum value. We set 
χ = �t since this is a reasonable choice for academic problems such as the one we are considering [13]. More realistic 
applications require a suitable formula to set χ [14,16]. We set α = havg .

Fig. 2 (left) shows the evolution of CL over time computed by EFR and NSE and a comparison with the results from [31]. 
Fig. 2 (right) shows a close-up of the time window next to the time of maximum CL . We observe that the lift coefficient 
computed with EFR is slightly closer the reference results from [31]. To quantify this better agreement, we report in Table 1
the computed values of the maximum lift coefficient and the corresponding time instant, together with the values from 
[31]. Then, we can conclude that EFR is a little more accurate than NSE model when using a coarse mesh even at the low 
Reynolds numbers we are considering. For a more evident improvement introduced by EFR over NSE, see the 3D case in 
Sec. 4.2.

Finally, we show in Fig. 3 (left) the mass conservation error over time defined as follows:

ε� = 1

�

∫
�

∇ · �d� for � = {v,u}. (49)

We see that although the incompressibility constraint for the filtered velocity v is not enforced in the model, the mass 
conservation error for the end-of-step velocity u is comparable to the mass conservation error for the intermediate velocity 
v (which, instead, is divergence free). We also evaluated the conservation of mass at the selected axial locations x for t = 6
(i.e., when εu reaches its maximum value) using the error metric proposed in [59]:

EQ� = Q� − Q̃

Q̃
for � = {v,u}, (50)
9
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Fig. 3. 2D flow past a cylinder: (left) mass conservation error (49) for the intermediate velocity v and the end-of-step velocity u at selected times in the 
time interval of interest and (right) mass conservation error (50) for the intermediate velocity v and the end-of-step velocity u for t = 6 at selected axial 
locations.

Fig. 4. 2D flow past a cylinder - experiment (i): eigenvalue decay for the intermediate velocity, pressure, and indicator function.

where Q� is the volumetric flow rate computed from the numerical axial velocity profiles and Q̃ is the exact volumetric 
flow rate. Fig. 3 (right) shows EQ v and EQ u , which are overlapped over the whole axis.

Next, we are going to validate our ROM approach. Since this benchmark is characterized by a flow field exhibiting a 
wide spectrum of frequencies, we adopt an idea proposed in [23]: we test the performances of our ROM approach (i) over 
the entire time window of interest [0, 8] and (ii) over the second half of the time interval [4, 8] where the high-frequency 
modes are dominant.

4.1.2. Validation of the ROM (i)
We collect 400 FOM snapshots, one every 0.02 s, i.e., we use an equispaced grid in time. Fig. 4 shows the eigenvalue 

decay for the intermediate velocity, pressure, and indicator function. For the ROM simulations, we collected the solutions 
every 0.01 s. This means that the set of time samples includes the samples used in the offline stage and samples in 
between two consecutive offline samples. The reason for this choice is that we want to assess how accurate the reduced 
order approximation is for time instants that were not in the training set.

We performed a convergence test as the number of modes increases. We considered three different energy thresholds 
using the first 50 most energetic POD modes: 99% (11 modes for v , 4 modes for p and 15 modes for a), 99.9% (26 modes 
for v , 10 modes for p and 41 modes for a) and 99.99% (43 modes for v , 22 modes for p and 50 modes for a). We calculated 
the L2 relative error:

E�(t) = ||�h(t) − �r(t)||L2(�)

||�h(t)||L2(�)

, (51)

where �h is a field computed with the FOM (uh , ph or ah) and �r is the corresponding field computed with the ROM (ur , 
pr or ar ). Fig. 5 shows errors (51) and Table 2 reports minimum, average, and maximum relative errors for 99.99% of the 
cumulative energy. From Fig. 5, we observe that the majority of the relative errors is less than 1 at all the time instants. The 
only exception is the velocity: we see that the error increases steeply past t ≈ 4 and its value reaches 1 towards the end of 
the time interval. The relative error for the velocity and pressure is significantly lower for t < 4. Both errors increase when 
the vortex shedding starts at around t = 4. The relative error associated with the indicator function seems to be less critical 
since its value remains below 10−1 for most of the time interval of interest for 99.9% and 99.99% of the cumulative energy. 
Larger errors for the indicator function at the beginning of simulation might be due to the transient nature of the flow. This 
different behavior for the velocity and pressure errors on one side and the indicator function on the other side could be 
explained by the fact that different strategies are used for the ROM reconstruction (a projection method for u and p and an 
interpolation procedure for a). Indeed, for what concerns the velocity, by moving from 99%, to 99.9% and 99.99%, it becomes 
lower. We observe that going from 99% to 99.9% of the cumulative energy there is a general improvement of the errors, 
10
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Fig. 5. 2D flow past a cylinder - experiment (i): time history of the relative L2 error (51) for velocity u (top left), pressure p (top right), and for the indicator 
function a (bottom) for different thresholds of cumulative energy.

Table 2
2D flow past a cylinder - experiment (i): maximum, average, and mini-
mum relative L2 errors for the end-of-step velocity, pressure, and indica-
tor function for 99.99% of the cumulative energy. The first three columns 
refer to the first half of the time interval (i.e., [0, 4]), while the last three 
refer to the second half of the time interval (i.e., [4, 8]).

u p a u p a

Maximum E� 0.09 0.07 0.58 1.15 0.46 0.12
Average E� 0.01 0.02 0.04 0.5 0.26 0.06
Miminum E� 0.007 0.007 0.01 0.03 0.07 0.01

Fig. 6. 2D cylinder problem - experiment (i): comparison between velocity u (first row), pressure (second row), and indicator function (3rd row) computed 
by the FOM (left) and the ROM (right) at t = 1.9 for 99.99% of the cumulative energy.

while such improvement lessens when going from 99.9% to 99.99%. From Fig. 5 (top right), we see that the oscillations in 
the pressure error for t > 4 are damped when a larger amount of energy snapshots is retained.

Figs. 6 and 7 display a qualitative comparison between the computed FOM and ROM fields at two different times: t = 1.9
(first half of the time interval) and t = 5.5 (second half). As we can see from Fig. 6, our ROM provides a good reconstruction 
of all the variables at t = 1.9. On the other hand, the ROM fails to provide an accurate approximation of velocity and 
pressure at t = 5.5, as shown in Fig. 7.

Fig. 8 reports a more quantitative comparison: the aerodynamics coefficients (47)-(48) computed by FOM and ROM 
with different thresholds of cumulative energy. We observe that the time evolution of the drag coefficient is correctly 
reconstructed by ROM, while the ROM reconstruction of the lift coefficient is accurate till about t = 4. For t > 4, the lift 
coefficient computed by the ROM is off in terms of both phase and amplitude regardless of the percentage of retained 
energy.
11
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Fig. 7. 2D cylinder problem - experiment (i): comparison between velocity u (first row), pressure (second row), and indicator function (3rd row) computed 
by the FOM (left) and the ROM (right) at t = 5.5 for 99.99% of the cumulative energy.

Fig. 8. 2D flow past a cylinder - experiment (i): aerodynamic coefficients CD (left) and CL (right) computed by FOM and ROM for different thresholds of 
cumulative energy.

Fig. 9. 2D flow past a cylinder - experiment (ii): time history of the relative L2 error (51) for velocity u (left) and pressure p (right) for different thresholds 
of cumulative energy.

4.1.3. Validation of the ROM (ii)
In this second experiment, we focus on the second half of the time interval of interest, [4, 8] with the goal of improving 

the ROM reconstruction of velocity and pressure in that time window. We use the same database of FOM snapshots used 
in experiment (i), but we apply the POD only to the last 200 high-fidelity snapshots, i.e., those related to [4, 8]. Just like in 
experiment (i), for the ROM simulations we included both samples used in the training phase (i.e., the offline samples) and 
samples in between the offline samples.

Also for this experiment, we considered the first 50 most energetic POD modes and performed a convergence test based 
on three different energy thresholds: 99% (11 modes for v , 5 modes for p and 20 modes for a), 99.9% (26 modes for v , 12 
modes for p and 44 modes for a), and 99.99% (42 modes for v , 24 modes for p and 50 modes for a). Fig. 9 shows errors 
(51) and Table 3 reports minimum, average, and maximum relative errors for 99.99% of the cumulative energy. We observe 
that the relative error for the velocity reaches much lower values than in experiment (i): it drops below 0.22 during the 
entire time interval when the 99.99% of the snapshots energy is retained. Moreover, there is a monotonic convergence as 
the number of the modes is increased. The improvement of the pressure reconstruction is also rather significative: compare 
Fig. 5 (top right) with Fig. 9 (left). Once again, we note that there is not much difference in the relative errors for velocity 
and pressure when going from 99.9% to 99.99% of the cumulative energy.

Fig. 10 shows the comparison between the computed FOM and ROM fields at t = 5.5. The ROM reconstructions of 
velocity and pressure are much more accurate than in experiment (i). Fig. 11 reports the quantitative FOM/ROM comparison 
for the lift coefficient CL . The improvement with respect to experiment (i) is evident: the time evolution of CL computed 
12
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Table 3
2D flow past a cylinder - experiment 
(ii): maximum, average, and minimum 
relative L2 errors for the end-of-step 
velocity and pressure for 99.99% of the 
cumulative energy.

u p

Maximum E� 0.22 0.14
Average E� 0.11 0.08
Miminum E� 0.008 0.02

Fig. 10. 2D cylinder problem - experiment (ii): comparison between velocity u (first row) and pressure (second row) computed by the FOM (left) and the 
ROM (right) at t = 5.5 for 99.99% of the cumulative energy.

Fig. 11. 2D flow past a cylinder - experiment (ii): lift coefficient CL computed by FOM and ROM for different thresholds of cumulative energy.

by the ROM is very accurate when the 99.9% or 99.99% of the energy is retained. For a further quantitative assessment, we 
computed the following error

ECL = ||CL(t)F OM − CL(t)ROM ||L2(4,8)
||CL(t)F OM ||L2(4,8)

. (52)

We obtain ECL = 0.5, 0.39, and 0.38, for 99%, 99.9% and 99.99% of the cumulative energy, respectively.
We conclude by proving some information about the efficiency of our ROM approach. In Fig. 12, we show the averaged 

relative error for velocity and pressure fields in time versus the relative wall time. The relative wall time is given by the 
ratio between the CPU time needed by the ROM and the CPU time required by a FOM simulation. The FOM simulation takes 
398 s. In the ROM CPU time, we include the time required to solve the reduced algebraic systems (34), (37), (43) and to 
reconstruct and save fields (21)-(22). We fix Npr = 24 and Nar = 50 and let Nvr vary. As expected, we see that in general 
the relative errors decrease and the relative wall time increases as Nvr increases. The relative errors reach their minimum 
value for Nvr = 46. For Nvr = 50, we observe that the relative wall time is larger than 1, which means that the ROM is more 
costly than the FOM and thus it becomes pointless. In addition, we see that for Nvr = 50 the relative errors are larger than 
for Nvr = 46. Recall that we retain 99.99% of the total energy with 42 modes. So, the increased errors for Nvr = 50 might 
be due to the fact that the highest modes could be noisy and therefore spoil the solution.

4.2. 3D flow past a cylinder

The 3D benchmark we consider has been studied for the first time in [30] and further investigated in [33,32]. The 
computational domain is a 2.5 × 0.41 × 0.41 parallelepiped with a cylinder whose axis is parallel to the z-axis and center 
is located at (0.5, 0.2) when taking the bottom left corner of the channel as the origin of the axes. Fig. 13 (left) shows 
13
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Fig. 12. 2D flow past a cylinder: Pareto plots for the velocity (blue) and pressure (red) fields - averaged relative error in time versus relative wall time for 
varying Nvr . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 13. 3D flow past a cylinder: (left) part of the mesh under consideration and (right) illustrative representation of the velocity field for t = 6.

Table 4
3D flow past a cylinder: maximum lift co-
efficient given by NSE and EFR with α =
havg and χ = �t , together with reference 
values from [30,33,32].

max CL

NSE 0.0011
EFR 0.0018
Ref. values [30,33,32] [0.002, 0.004]

part of the computational domain. The channel is filled with fluid with density ρ = 1 and viscosity μ = 0.001. We impose 
a no-slip boundary condition on the channel walls and on the cylinder. At the inflow, we prescribe the following velocity 
profile:

u(0, y, z, t) =
(

36

0.414
sin (πt/8) yz (0.41− y) (0.41− z) ,0,0

)
, (53)

for y, z ∈ [0, 0.41] and t ∈ (0, 8]. In addition, on the channel walls, cylinder, and at the inlet we impose ∂p/∂n = 0 where n
is the outward normal. At the outflow, we prescribe ∇u ·n = 0 and p = 0. Note that the Reynolds number is time-dependent, 
with 0 ≤ Re ≤ 100 [30,33,32]. Like for the 2D benchmark, we start the simulations from fluid at rest.

We consider a hexahedral grid with hmin = 9e − 3, havg = 3.75e − 2, and hmax = 6.6e − 2 and a total of 1.07e4 cells. The 
mesh features very low values of maximum non-orthogonality (34◦), average non-orthogonality (7◦), skewness (0.6), and 
maximum aspect ratio (25). In addition, the mesh is refined next to the cylinder, like the meshes used in [33,32]. However, 
notice that this level of refinement is very far from the one required by a DNS [33,32], i.e., roughly 3 million elements. To 
underline the need for EFR with the given severely under-refined mesh, Fig. 14 shows the evolution of the lift coefficient 
computed by the NSE solver and EFR with α = havg and χ = �t = 5e − 3 [13,21]. Like in the 2D case, we use a second-
order accurate Central Differencing scheme [58] for the discretization of the convective term. From Fig. 14, we see that the 
EFR algorithm dampens the unphysical oscillations in the NSE solution and increases the maximum lift coefficient. Table 4
reports the computed values of the maximum lift coefficient and compares them with the reference values from [30,33,32]. 
Fig. 14 and Table 4 show that the EFR method outperforms the NSE solver even at the relatively small values of Re under 
consideration, which nonetheless require a very fine mesh. The EFR method allows for the use of much coarser meshes 
without sacrificing accuracy, thereby reducing the computational burden at full order level. The results of the NSE solver 
in Fig. 14 could be improved by, e.g., changing from a Central Differencing scheme to an upwind scheme such as WENO. 
However, that is beyond the scope of this article.
14
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Fig. 14. 3D flow past a cylinder: time evolution of the lift coefficient given by the NSE with EFR for α = havg and χ = �t .

Fig. 15. 3D flow past a cylinder: eigenvalue decay for the intermediate velocity, pressure, and indicator function.

Table 5
3D flow past a cylinder: maximum, average, 
and minimum relative L2 errors (51) for the 
end-of-step velocity, pressure, and indicator 
function.

u p a

Maximum E� 0.12 0.18 0.24
Average E� 0.02 0.06 0.01
Miminum E� 0.01 0.005 0.004

As well documented in the literature [30,33,32], the main difference with respect to the 2D test case is that the flow 
field does not exhibit an oscillatory pattern, as shown in Fig. 13 (right). Thus, we perform only one numerical experiment 
and test the performances of our ROM approach over the entire time window of interest [0 8] only.

We collect 400 FOM snapshots for the training in the offline phase, one every 0.02 s (equispaced grid in time). Fig. 15
shows the eigenvalues decay for velocity v , pressure and indicator function. By a comparison with Fig. 4, we see that the 
decay is faster for all the variables in the 3D case. Therefore, a smaller number of basis functions needs to be considered. 
This is due to the fact that the 2D flow is more complex.

For the ROM simulations, we collected a set of 800 equispaced temporal instants (i.e., one every 0.01 s), which includes 
both samples used in the offline stage and samples in between. In order to retain 99.99% of the snapshots energy, we needs 
9 modes for v , 4 modes for p and 12 modes for a. Fig. 16 shows errors (51) and Table 5 reports minimum, average, and 
maximum relative errors. The relative errors for the velocity u and the indicator functions stay below 10−1 for most of the 
time interval, except at the beginning and the end of the simulation, i.e., when the flow pattern is affected by transient 
effects. As for the pressure, we see a relative error larger than 10−1 at t ≈ 6. These results are qualitatively similar to the 
ones showed by a Leray model in [21]. This is expected, since the EFR algorithm can be seen as a splitting scheme for the 
Leray model [14].

Figs. 17 and 18 display a qualitative comparison for velocity u, pressure, and indicator function computed by FOM and 
ROM on the midsection (z = 0.205) at times t = 1.9 and t = 5.5, respectively. Our ROM provides a good reconstruction of 
all the variables at both times. For a further comparison, Figs. 19 and 20 show the profiles of all the variables at t = 4
along a line upstream of the cylinder (x = 0.25, y ∈ [0 0.41], z = 0.205) and a line downstream of the cylinder (x = 0.55, 
y ∈ [0 0.41], z = 0.205), respectively. We see great agreement between FOM and ROM profiles for all the variables with the 
exception of the pressure in Fig. 19 (top right), for which we observe a small difference.

Fig. 21 reports the drag and lift coefficients computed by FOM and ROM. As for the 2D case, we see that CD is well 
reconstructed by the ROM while the reconstruction of the time evolution of CL is not as accurate. Error (52) is ECL = 0.25. 
15
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Fig. 16. 3D flow past a cylinder: time history of L2 norm of the relative error (51) for velocity u (top left), pressure field (top right), and indicator function 
field (bottom).

Fig. 17. 3D flow past a cylinder: comparison between velocity u (first row), pressure (second row), and indicator function (third row) computed by the FOM 
(left) and the ROM (right) on the midsection (z = 0.205) at t = 1.9.

Fig. 18. 3D flow past a cylinder: comparison between velocity u (first row), pressure (second row), and indicator function (third row) computed by the 
FOM (left) and the ROM (right) on the midsection (z = 0.205) at t = 5.5.

A better reconstruction of CL can be obtained by increasing the number of modes for the pressure, as shown in Fig. 21
(right). When switching from Npr = 4 to Npr = 9, the error ECL decreases from 0.25 to 0.13.

To stress the importance of the differential filter in the online phase, Fig. 22 shows a comparison of CL computed by 
the ROM proposed in this paper, denoted with EFR-EFR since the EFR algorithm is used in both the online and the offline 
phase, and a ROM that does not use the differential filter in the online phase, denoted with EFR-NSE. The latter method 
corresponds to having no ROM closure model. Note that for both ROMs the snapshots are computed with EFR since a NSE 
solver is not accurate with the coarse mesh under consideration (see Fig. 14). From Fig. 22, we see that the ROM proposed in 
this paper provides a more accurate reconstruction of the CL than the EFR-NSE ROM. Hence, although the Reynolds number 
for this test case is low, the use of the differential filter in the offline and online phase leads to a significant improvement 
of the ROM.
16
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Fig. 19. 3D flow past a cylinder: velocity (top left), pressure (top right), and indicator function (bottom) profiles computed by FOM and ROM along line 
x = 0.25, y ∈ [0, 0.41], z = 0.205 at t = 4.

Fig. 20. 3D flow past a cylinder: velocity (top left), pressure (top right), and indicator function (bottom) profiles computed by FOM and ROM along line 
x = 0.55, y ∈ [0, 0.41], z = 0.205 at t = 4.

Finally, we comment on the computational costs. The FOM simulation takes 190 s. In Fig. 23, we show the averaged 
relative error for velocity and pressure fields in time versus the relative wall time. We fix Npr = 4 and Nar = 12 and vary 
Nvr . We observe that the relative errors reach their minimum value or Nvr = 30. The increased errors for larger Nvr could 
be explained as in the 2D case, i.e., the highest modes could contain noise and spoil the ROM solution.

5. Conclusions and perspectives

This work presents a hybrid Reduced Order Method or the Evolve-Filter-Relax algorithm with a nonlinear indicator func-
tion: we exploit a data-driven reduction method based on interpolation with Radial Basis Functions to approximate the 
indicator function and a classical POD-Galerkin projection approach for the reconstruction of the velocity and the pres-
sure fields. This mixed strategy has been recently used for the RANS equations and here we have extended it to an LES 
17
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Fig. 21. 3D flow past a cylinder: aerodynamic coefficients CD (left) and CL (right) computed by FOM and ROM. The ROM approximation of CL is improved 
as Npr is increased from 4 to 9. The ROM approximation of CD for Npr = 9 is not reported because it marginally improves the approximation obtained 
with Npr = 4.

Fig. 22. 3D flow past a cylinder: lift coefficient CL computed by FOM and two ROMs, the ROM proposed in this paper (EFR-EFR) and a ROM with no 
differential filter in the online phase (EFR-NSE). For the ROMs, we set Npr = 9.

Fig. 23. 3D flow past a cylinder: Pareto plots for velocity (blue) and pressure (red) fields - averaged relative error in time versus relative wall time for 
varying Nvr .

framework. To the best of our knowledge, it is the first time that a ROM nonlinear differential filter (i.e., a ROM spatial 
filter that uses an explicit lengthscale) is proposed. We assessed our ROM approach through two classical benchmarks: 2D 
and 3D flow past a cylinder. We found that our ROM can capture the flow features and the evolution of the aerodynamics 
coefficients with good accuracy when compared to the full order model. In addition, we showed the our approach is more 
computationally efficient in the 3D test.

Moving forward, we will test our ROM approach with more realistic applications involving flow at larger Reynolds num-
bers (a few thousands) like, e.g., the FDA benchmark (see [16]). Moreover, we plan to run a parametric study for the viscosity 
and for key model parameters, such as δ and χ . This would help us understand how to set the model parameter to obtain 
the most accurate results when compared to DNS.
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