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Abstract—Online social networks revolutionize the way people interact with each other. When various social network information
aggregates over time, a rich online profile of the user is formed. Owing to the various features provided by mobile devices, a user’s
online social activities are tightly tied to his phone, and are conveniently, sometimes unnecessarily, available to social networks. In this
article, we propose a novel attack architecture to show that attackers can infer a user’s social network identities behind a mobile device
through new dimensions. Specifically, we first developed a correlation between a user’s device system states and the social network
events, which leverage multiple mechanisms such as the learning-based memory regression model, to infer the possible accounts of
the user in the social network app. Then we exploited the social network to social network correlation, via which we correlated
information across different social networks, to identify the accounts of the target user. We implemented and evaluated these attacks
on three popular social networks, and the results corroborate the effectiveness of our design.

Ç

1 INTRODUCTION

ONLINE social networks such as Twitter and Flickr revolu-
tionize the ways people interact with each other. Users

write posts to the public and share information with family
and friends about many aspects of their lives. When the
social network information aggregates over time, it forms a
rich online profile of the users, containing information
about their location, activity, thoughts, and other aspects of
daily lives. Though the sensitive information of the profile
is protected by privacy settings of the corresponding social
networks and is not publicly available, the aggregation of
non-sensitive information may lead to a significant revela-
tion of user privacy.

Researchers have demonstrated that the structural simi-
larity of social network nodes, which is derived from users’
friending information, can be used to associate accounts of
the same user across different social networks, and thus de-
anonymize user identity [1], [2], [3], [4]. These attacks, how-
ever, can only de-anonymize a portion of the users in a large
social network structure and may not be able to de-anonym-
ize a particular individual. On the other hand, more and
more users begin to access social networks through mobile
devices, making it completely possible to de-anonymize a
target individual based on the side-channel information
from his mobile device due to the rich features generated by
the user’s device while operating on social network apps.
We call this kind of attack device-identity association. Such an
attack can be highly pernicious and possibly lead to devastat-
ing economic damage: it was reported that approximately
the real identities of 1.2 billion social network accounts had
been leaked by the end of 2019 [5], with an average financial
loss of $90 to $305 per identity [6].

Device-identity association requires collecting side-channel
information from victim devices. Though it is relatively diffi-
cult for an attacker to trick users into installing a malware
with strong permissions, recent research shows that public
information obtained from the Android system without per-
mission can be used to link to a user’s identity [7]. Neverthe-
less, the attack method proposed in [7] by observing the fixed
TCP payload sequence pattern is no longer effective due to the
recent updates of the social network apps.Wemanuallymoni-
tored the Twitter app’s TCP sequence while tweeting and
found that the sequence was irregular and noisy. Then we
used Frida, an injection framework [8], to trace the function
calls of the Twitter app, and found that the root cause lies in
that the Twitter app no longer handles each tweeting event in
a separate TLS session (separate calls to the url.openCon-

nection() function), but rather combining them into one
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TLS session (only one call to the url.openConnection()

function). Therefore, more recent research investigated new
techniques on achieving device-identity association [9][10].

We also observed that attacks based solely on mobile
device side-channels face challenges due to limited informa-
tion from one social network app. Nevertheless, in practice,
the majority of social network users access their accounts
very infrequently, according to our study on 500,008 Twitter
accounts (see Section 4); but a user typically has accounts in
different social networks such as Twitter, Flickr, and Insta-
gram and accesses these accounts with the same device; fur-
thermore, the social network accounts of the same user are
often highly similar/correlated in their user profiles, e.g.,
user name, picture, and locations. Such facts reveal a high
potential of device-identity association based on account cor-
relations, whichwill be explored in our study.

The objective of this paper is to investigate efficient and
effective techniques to accurately identify a target user
(more precisely, the social network accounts of the user) in
social networks even though the information obtained by an
attacker is limited. In order to accomplish this goal, we pro-
posed a novel attack architecture with two attack vectors,
correlation from device system states to a social network
(DS-SN) and correlation for cross social networks (SN-SN).
For the DS-SN attack, we studied the association between a
user’s identity in a social network and the user’s device sys-
tem states, e.g., memory and network data. In our threat
model, an attacker can get information from the system level
of a user’s smartphone through installed apps without any
permission or the user’s consent. Leveraging these states, the
attacker can infer the system events, e.g., activity transitions
and keyboard status, which can be used to further infer the
user’s social network events, e.g., sending tweets and post-
ing Instagram photos at certain timestamps. The attacker
then collects and aggregates these social network events to
identify the target user’s identity in the social network. How-
ever, DS-SN is sometimes not enough to identify a user’s
identity due to limited social network events the user leaves
in a single social network; therefore, we proposed the idea of
SN-SN attack, which exploits the cross social network simi-
larity to allow the attacker to efficiently and accurately figure
out the identities of a user through the system and network
state left by the user’s activities and account profiles on the
social networks. The main technical challenge of employing
SN-SN correlation and combining it with DS-SN is the high
computational overhead involved in figuring out the best
match among the large number of possibilities.

Contributions and Novelties.: The contributions and nov-
elties of this paper are summarized as follows:

! Weproposed a novel attack architecturewhich is com-
posed of two attack vectors to identify a user’s identity
in social networks through DS-SN correlation and SN-
SN correlation. Compared to the existing work, which
is mainly based on structural similarity and/or attri-
bute similarity of the social network accounts to de-
anonymize a portion of the social network users, our
approach incorporates the publicly available Android
system data to preciously associate a victim’s device
with his social network accounts, i.e., precisely de-ano-
nymize a target user.

! We developed techniques to accurately infer a user’s
social network activities from various device side-
channel information including memory usage, CPU
usage, and network data. We proposed a learning-
based mechanism to tolerate the influence caused by
the unrelated events, such as viewing posts and com-
menting, and the accuracy of event time inference can
be up to 96.81%. In addition, based on our proposed
mechanism, we were able to greatly narrow down the
number of candidate accounts for 5 celebrities and
uniquely identify the account for each of the 5 volun-
teers from more than 50,000 social accounts based on
only three social network events, which significantly
improve the efficiency and reduce the bar of device-
identity correlation.

! We developed a novel profile similarity metric incor-
porating a new learningmodel to match profiles from
different social networks for the SN-SN attack. Our
method can easily eliminate more than 90% of incor-
rect matches, which can significantly enhance the cor-
relation attack accuracy when it is hard to collect
sufficient event data from a single social network.

This paper is organized as follows. Section 2 outlines the
most relatedwork. Section 3 presents our threatmodel, intro-
duces the publicly available Android system states exploited
by the attacker, and provides an overview of our attack archi-
tecture. Section 4 details the design of our attack architecture.
Section 5 demonstrates the performance of our attacks based
on real-world social network events and Section 6 concludes
the paper.

2 RELATED WORKS

In this section, we summarize the most related work from
two aspects: side-channel attacks in mobile systems and pri-
vacy attacks in social networks.

Side-Channel Attacks in Mobile Systems.
Based on the study by Xiao et al. [11], side-channel attacks

in mobile systems have been constantly causing more and
more concerns in recent years.

Chen et al. [12] managed to infer the UI state and deploy
multiple attacks based on the side-channel information such as
memory, CPU, and network statistical data stealthily obtained
by a zero-permission malicious app residing in the victim’s
smartphone. Li et al. [13] proposed a keystroke inference attack
targeting mobile devices by performing the principal compo-
nent analysis (PCA) on the channel state information that could
be affected by the finger motions through a public WiFi hot-
spot. Zhou et al. [7] exploited the side-channel information of
Android devices to infer a user’s private information, e.g.,
rough location, health condition, investment, and driving
route. Yang et al. [14] presented an approach to discover which
website a user is browsing by analyzing the USB power while
the smartphone is charging. Song et al. [15] managed to crack a
3Dprinter by reconstructing the physical prints and their corre-
sponding G-code through scrutinizing acoustic and magnetic
information obtained from Android built-in sensors. Gruss
et al. [16] exploited the prefetch instructions to defeat address
space layout randomization (ASLR), which is a technique
to make the memory address unpredictable for an attacker
to launch code-reuse attacks such as return-oriented
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programming (ROP). Van et al. [17] took a step further to attack
hardware by launching a row hammer attack and using timing
inference to make the row hammer attack deterministic com-
pared to prior attackswhich can only succeed on a probabilistic
sense. Li et al. [18] proposed a side-channel attack to infer the
basic living activities by analyzing the changes of the traffic
sizes of encrypted video streams in smart home surveillance.
Yang et al. [19] identified and systematically analyzed a new
security issue in HTML5-based hybrid mobile applications,
which is termed the Origin Stripping Vulnerability (OSV), and
proposed an OSV detection mechanism, namely OSV-Hunter,
which leverages the postMessageAPI to defend against OSV
from the root. Zhang et al. [20] conducted an empirical study
on the problem of cross-principal manipulation (XPM) of web
resources, and designed a toll namedXPMChecker to automat-
ically detect XPM. An analysis generated by XPMChecker
reveals that nearly 49.2% apps from Google Play were affected
by the XPM issue [20].

Zhang et al. [21] developed a novel smartphone-finger-
printing attack by exploiting the per-device factory calibration
data of the embedded sensors. Yu et al. [10] stealthily
extracted the network traffic information and leveraged the
passively received broadcast andmulticast (BC/MC) packets,
combined with a new multi-view wide and deep learning
(MvWDL) framework, to identify a victim’s mobile device.
Brennan et al. [22] discovered that Java virtual machine (JVM)
introduces a crucial timing side channel when handling just-
in-time (JIT) compilation, allowing an attacker to predict the
input of a program, and causing severe sensitive information
leakage in Java-basedmobile systems such asAndroid.

Side-channel information is now an essential ingredient
of the mobile system security.

Social Network Privacy. Studies showed that privacy of
social networks can be breached in multiple ways. Backes
et al. [23] proposed a novel link prediction inference attack
between any pair of individuals in social networks based on
their mobility profiles. Wondracek et al. [24] demonstrated
that it is possible to de-anonymize a user on a social net-
work through his membership in specific social network
groups by exploiting the browser cache in order to detect
whether a user has visited certain URLs of a group. Niliza-
deh et al. [3] proposed a community-based large scale de-
anonymization attack using structural similarity. Ji et al. [25]
presented the seed quantification requirements for perfect
de-anonymizability and partial de-anonymizability of the
real-world social networks, which consolidate the de-ano-
nymization at theory level. Srivatsa et al. [2], on the other
hand, leveraged mobility traces with social networks as
side-channel information to uncover users’ real identities.
Lai et al. [26] exploited a user’s interest group information
to de-anonymize the users on social networks. Existing
studies also tended to reveal hidden attributes for social net-
work users. Chaabane et al. [27] exploited a user’s interest to
explore hidden attributes of a user, e.g., age, gender, and so
on. Mei et al. [28] reported an inference attack framework
that integrates and modifies the existing state-of-the-art con-
volutional neural network models to infer a user’s age.
Gong et al. [29] proposed a new type of inference against
user’s hidden attributes such as location, occupation, and
interest by analyzing both his social friending and behav-
ioral records. Hassan et al. [30] analyzed the privacy threats

in fitness-tracking social networks and developed an attack
against Endpoint Privacy Zones (EPZs) to extract a user’s
sensitive locations. They also presented an EPZ fuzzing
technique based on geo-indistinguishability to mitigate a
user’s privacy leak through fitness-tracking social networks.

Mondal et al. [31] designed a classifier which can identify
posts with incorrect sharing settings at high accuracy, impli-
cating that social network posts can be effectively used to
de-anonymize a user. Zhang et al. [32][33] demonstrated
that by leveraging user attributes one can significantly
improve the social network de-anonymization accuracy.

Many of these attacks mainly de-anonymize users based
on their social relationships in a large dataset, while our
approach can precisely identify the social network accounts
of a target user behind a device based on the device’s side-
channel information, the public social network events, and
the profile similarity of the user’s accounts in different social
networks.

3 OVERVIEW AND BACKGROUND

In this section, we present our threat model, introduce the
publicly available Android system states, and provide an
overview on our attack architecture.

3.1 Threat Model
Weconsider an attackerwho can accomplish inference attacks
through amalicious app installed on a victim’s devicewith no
special permission – this malicious app only requests the
INTERNET permission from Android to send the collected
data to the attacker for analysis, which by default is automati-
cally granted by the Android system without notifying the
user. How to install a malicious app in a victim’s device is out
of the scope of this paper. Here are a few viable approaches:
an attacker can trick a user to install amalicious app by simply
disguising the app as a benign one and putting it on the Goo-
gle Play Store since current automatic malware detection for
Android is still not sufficiently reliable [34]; alternatively, an
attacker can secretly install a malicious app on a victim’s
device by exploiting a remote code execution (RCE) vulnera-
bility such as CVE-2017-0561, which allows RCE on Wi-Fi
SoC [35]. In this paper, we assume that a malicious app has
already been installed on the victim’s device. This malicious
app can silently collect and send to the attacker certain system
states that are publicly available.

3.2 Publicly Available System States in Android
In this subsection, we present the publicly available state
information in Android that are exploited by our proposed
inference attacks. We focus on three common channels of
public information, namely memory, CPU, and network.

3.2.1 Memory

The Android system leverages Android Runtime (ART) or
its predecessor, Dalvik Virtual Machine (DVM), as the run-
time environment to execute binaries in the Dalvik Execut-
able (DEX) format. Both ART and DVM use the paging and
memory-mapping mechanisms [36] to manage memory
allocation of apps. Particularly, Android maintains four
types of memory data for each process running on the
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system: Virtual Set Size (VSS), Resident Set Size

(RSS), Proportional Set Size (PSS), and Unique Set

Size (USS), which are listed in Table 1.
Android does not treat memory information as sensitive

system data. Consequently, an app can obtain other apps’
memory information without requesting any permission.
There are four methods to retrieve the memory data of an
app, which are listed below:

! The Android API has a standard class Debug.Memo-
ryInfo, which provides complete interfaces to query
the information for a process [37], including private
dirty pages, shareddirty pages, and the PSS for Dalvik.

! The /proc file system has /proc/pid/statm(pid
is the id of the process) that lists all four types of
memory information: VSS, USS, RSS, and PSS.

! The commands “top” and “ps” in Android Tool-
box [38] yieldVSS andRSS for any given process. These
commands also use information from the /procfile
system.

! In some devices, /system/xbin/procrank is pro-
vided. The command procrank yields all four types
of memory information for all processes in real time.

3.2.2 CPU Usage

Android maintains three types of CPU usage data for a pro-
cess, which are publicly available:

! CPU usage rate: the total percentage of time a CPU
operates on a running process, with 100% indicating
that for a given period, the CPU spends all its avail-
able cycles running the specific process.

! User time (utime): the CPU time spent in the user
code of a process, measured in clock ticks.

! System time (stime): the CPU time spent in the sys-
tem code (which is the kernel) of a process, mea-
sured in clock ticks.

A zero-permission app can retrieve the CPU usage data
of another app by either (1) accessing /proc/pid/stat

which lists user time, system time, and other time-related
information; or (2) using commands “top” and “ps” with
Android Toolbox to return the user time, system time, and
CPU usage percentage of any given process.

3.2.3 Network

Android does not store the contents of TCP packets of any
process; but it maintains a record of the number of bytes

sent and received through TCP connections by a process.
This information is available to any zero-permission app,
and can be obtained by the following ways:

! The TrafficStats from Android API has the
method getUidRxBytes(int uid), which returns
the received bytes for a given user ID uid.

! The /proc system files /proc/uid_stat/pid/

tcp_snd and /proc/uid_stat/pid/tcp_rcv

respectively maintain the bytes sent and received for
an app.

3.3 Approach Overview
The objective of our design is to associate an Android device
(running social network apps to perform social activities
such as posting a photo or a message) with the social net-
work accounts (the accounts accessed by the device) based
on the following publicly available information: (i) the sys-
tem state information (see Section 3.2) collected by a mali-
cious app installed in the victim Android device; and (ii)
the social network events crawled from the social network
databases. We consider three popular social networks: Twit-
ter, Flickr, and Instagram, and exploit the tweeting events in
Twitter and photo-posting events in Flickr and Instagram
for our studies on device-identity association.

Our attack architecture is shown in Fig. 1. It is composed of
two attack vectors: device-social network correlation (DS-SN)
attack and social network-social network correlation (SN-SN)
attack. The objective of the DS-SN attack is to identify a list of
candidate accounts that might have been accessed via the
device for a target social network. We developed an approach
to infer a user’s social network events from his device system
states. More specifically, we leveraged the system states col-
lected by a zero-permission malicious app installed in the
user’s device to identify the events triggered by the social net-
work app, e.g., the time to tweet and the size of the tweet in
Twitter, or the time of posting a photo in Flickr/Instagram. By
correlating such information with the public events in the tar-
get social network, one can identify a list of candidate accounts
in the social network for the user who may have used the
device to access his account. To uniquely identify the social
network account accessed via the device, one can observemul-
tiple social network events triggered by the device to shorten

TABLE 1
Memory Size Information

Type of Memory
Size

Description

Virtual Set Size
(VSS)

Total virtual memory of a process

Resident Set Size
(RSS)

Total physical memory of a process

Proportional Set
Size (PSS)

Memory shared between a process and
other processes

Unique Set Size
(USS)

The set of pages unique to a process

Fig. 1. Attack architecture.
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the candidate account list, which may take a long time if the
user does not frequently access his account via the device. If
the device is used to access multiple accounts of the same user
belonging to different social networks, the attacker can employ
the SN-SN attack that examines the profile similarity between
two social network accounts from two different social net-
works to identify themost possible account for the user in each
social network. More specifically, the attacker first obtains the
candidate account lists for two (or more) social networks via
the DS-SN attack, then calculate the profile similarity of two
accounts, with one from each account list, and identify the pair
of accounts with the highest similarity. Such a SN-SN attack
can not only speedup the process of device-identity association
attack, but also help identify two or more social network
accounts accessed via the same device for the victim.

4 DESIGN AND IMPLEMENTATION OF OUR

ATTACKS

In this section, we detail our design of the two inference
attacks: DS-SN attack and SN-SN attack.

4.1 DS-SN Correlation Attack
Our approach to attacking the DS-SN correlation is com-
posed of 4 steps: 1) obtaining system states from a victim’s
device via a zero-permission malicious app, 2) inferring
activity transitions in the device, 3) inferring the corre-
sponding social network events triggered by the device,
and 4) associating the victim’s device with his social net-
work account based on the inferred events triggered by the
device and the publicly available events crawled from the
target social network. We considered three popular social
networks: Twitter, Flickr, and Instagram. Our purpose is to
infer the tweeting time of and the number of characters in a
tweet for Twitter, the posting time of a photo in Instagram,
and the posting time of a photo in Flickr. This inference is
based solely on the publicly available information: the
Android system states collected by a zero-permission app
and the tweeting/photo-posting events crawled from the
social network databases. The device state information
needed by the DS-SN attack as well as the inferred device
activity transitions and social network events for the three
social networks are presented in Table 2.

4.1.1 Obtaining System States

As shown in Table 2, we exploited VSS, RSS, utime, stime,
tcp_snd, and tcp_rcv for our DS-SN attack. There are

multiple ways to obtain these system data in Android, as elab-
orated in Section 3.2. Themost intuitiveway is to make calls to
theAndroidAPIs.However, one has to retrieve the three types
of data using different APIs, making this method less efficient.
To overcome this problem, we first leveraged the “ps” com-
mand with Android Toolbox [38], which can return the mem-
ory and CPU data in one call; then we directly read the system
files /proc/uid_stat/pid/tcp_snd and /proc/uid_-

stat/pid/tcp_rcv to retrieve the network data.

4.1.2 Inference of Activity Transitions

Activity transition is one of the most critical states to infer
private information from an app. Previous research done by
Chen et al. [12] described an approach that can infer an
app’s activity transition using a Hidden Markov model
(HMM) over the memory data and then further infer the
current foreground UI/activity the user is landing on. We
tested this approach in our Android devices but failed to
make it work. A careful study indicates that this approach
is quite sensitive to the quality of the memory data but
social network apps when running constantly incur signifi-
cant noises compared with the clean activity transitions con-
sidered in [12]. Fig. 2 illustrates the variations of the VSS of
the Twitter app in four Android devices with different OSes
when we performed swiping and tweeting for approxi-
mately two minutes. Note that people usually swipe when
tweet; thus these two activities are commonly performed
together. From this study one can conclude that social net-
work apps incur noisy memory data in most Android OSes,
and the HMM inference method would face challenges
when distinguishing tweeting from swiping. Having
noticed this fact, we propose our own approach to precisely
infer the activity transitions with the noisy memory data.

To proceed, we take a look at the VSS changes of the
three social networks (see Fig. 3) when only a posting event
is performed - no other activities such as swiping and tap-
ping is involved to remove noise. One can see from Fig. 3
that the activity transition of tweeting (from MainActiv-

ity to ComposerActivity) takes 4 time intervals1; the
one for photo-posting in Instagram (from (MediaCaptur-
eActivity I to MediaCaptureActivity II) takes 12
time intervals; while the one for photo-posting in Flickr
(from MainActivity to FilterUploadActivity) takes

TABLE 2
Summary of the DS-SN Attack

Inferred SN Events Corresponding Activity Transition Corresponding System States

Twitter Tweeting Timestamp MainActivity + ComposerActivity VSS of Twitter tcp_snd of Twitter tcp_rcv of
Twitter

Number of Characters
of a Tweet

N/A utime of Keyboard stime of Keyboard

Instagram Photo-posting
Timestamp

MediaCaptureActivity I +
MediaCaptureActivity II

VSS of Instagram tcp_snd of Instagram
tcp_rcv of Instagram

Flickr Photo-posting
Timestamp

MainActivity +
FilterUploadActivity

VSS of Flickr RSS of Media Process tcp_snd of
Flickr tcp_rcv of Flickr

1. Here we refer a time interval as the time span needed for the
retrieval of one record of the system states, which can differ from
device to device but normally it is within 0.5"0.6 seconds
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only one time interval. Thus obviously, it is hard to design a
uniform approach that can work for all three social net-
works. In this section, we propose a novel memory pattern
regression model that can infer the activity transitions based
on the VSS variations for Twitter and Instagram, and
employ the RSS of the system media process2 to infer the
activity changes in Flickr. In the following, we first detail
our novel memory pattern regression model.

Memory Pattern Regression. Our memory pattern regres-
sion algorithm takes as input the training set D ¼ fyjgj¼1$$$d,
which is the memory data tested d times for a single activity
transition with yj ¼ ðyj1 ; yj2 ; $ $ $ ; yjNj

Þ being the VSS vector
of size Nj obtained in the j-th experiment. We first need to
find out the number n, which represents the number of time
intervals in which a target activity transition, i.e., an activity
transition of a tweeting in Twitter or a photo-posting in
Instagram, takes place. In order to determine n, we first con-
struct a sequence Dyj ¼ ðDyj1 ; $ $ $ ;DyjNj'1

Þ, where Dyji ¼
jyjiþ1 ' yji j; then we set up a threshold d, which can be deter-
mined experimentally, and let nj be the number of terms
in Dyj whose values are greater than d; finally we set

n ¼ d
Pd

j¼1
nj

d e.
Having determined n, we proceed to extract the VSS

change pattern of a transition. Instead of directly using the
raw data of VSS, we use slopes of each pair of adjacent VSS
points since doing this can not only mitigate the noises
of memory but also obtain the shape of the transition

(i.e., pattern). In order to do so, we minimize a function
f : Rnþ1'!Rnþ1, which is represented as

f  argmin
f

!
1

d
Sd
j¼1½

1

n
Sn
i¼1ðDfðjiÞ ' Dy0jiÞ

2*
"

(1)

where DfðjiÞ ¼ fðjiþ1Þ ' fðjiÞ is the slope between the point
jiþ1 and ji since jiþ1 ' ji ¼ 1, and Dy0ji is the ith term in the
consecutive interval of Dyj with size n that covers the maxi-
mum number of values greater than d.

In order to learn the f satisfying (1), we employ a 5-layer
feedforward neural network with n neurons at each layer.
In this deep neural network, each neuron in the input and
output layers is connected to a neuron (one-to-one) in the
adjacent hidden layers, but all the hidden layers are fully
connected. Moreover, the input and output layers simply
use the Hadamard product as the activation function while
all other layers use the Sinusoid function for activation.

The neural network adopted in our approach was imple-
mented based on the Google TensorFlow [39] deep learning
framework with the Adam stochastic optimization [40] that
takes the right part of (1) as a loss function. Byminimizing the
loss function, we can obtain vj ¼ ðDfðj1Þ;Dfðj2Þ; . . . ;DfðjnÞÞ
as the VSS pattern, which is related to an activity transition
with n pieces of slopes.

Let y ¼ ðy1; . . . ; yNÞ, with N > n, be the VSS sequence
collected from a victim’s device. The question here is: how
can we tell whether the target activity transition happens in
this sequence based on the pattern vj? Intuitively, directly
determining whether the euclidean distance between them
is smaller than a threshold s, i.e., kvj ' Dyk < s with Dy
being n consecutive slops of y, seems reasonable. However,
the euclidean distance is not applicable in our case since if a
user constantly uses an app without quitting, the VSS of the
App would accumulate. Thus clearly, statically setting a
threshold can result in a gradually larger error. Therefore,
we developed a comparison method which fits our problem
well. Instead of directly considering Dy, we tolerate a little
bit by considering a neighborhood of Dy, denoted by
BrðDyÞ, where r is a small integer such that n < r < N .
Specifically, for a VSS value at i, we consider the previous
and post r slopes of this value, yielding BrðDyiÞ ¼
ðDyi'r; . . . ; yi; . . . ;DyiþrÞ (totally 2rþ 1 terms). After that,
given a threshold s, our comparison algorithm extracts each
continuous segment of slopes with size n from BrðDyjÞ and
calculates the mean squared errors with vj, denoted as
mse1;mse2; . . . ;mse2rþ2'n (totally 2rþ 2' n terms). Lastly,
if maxðjmse1mse2j; jmse2 'mse3j; . . . ; jmse2rþ2'n '
mse2rþ2'njÞ < s, we perceive that the target activity transi-
tion occurs in BrðDyiÞ.

For the activity transition inference of the photo-posting
event in Flickr, we employed a different approach based on
the following observation: when posting a photo in Flickr, a
user needs to choose a picture from his album or to take a
photo; in this case, the RSS of the system media process, i.e.,
android.process.media, increases and the VSS of
Flickr increases. Therefore, using this information, one can
infer that an activity transition of a photo-posting event
occurs in Flickr. Note that even though Instagram is also a
photo-based social network, this method does not apply to
it because Instagram allows a user to post comments with a

Fig. 2. The variations of VSS of the Twitter app in four different Android
devices within approximately 2 minutes of swiping and tweeting.

Fig. 3. The variations of VSS of Twitter, Instagram, and Flickr when a
tweet or a photo is posted. The red parts refer to the activity transitions
of tweeting/photo-posting in the corresponding social network.

2. We employed RSS for Instagram too but our memory pattern
regression model performs better.
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picture. Therefore, if directly using this method in Insta-
gram, one may not be able to tell if a user posts a photo or
just sends a comment.

4.1.3 Inference of Social Network Events

To infer the timestamp of a tweeting/photo-posting event,
we need to check not only the corresponding activity transi-
tions implied by the memory state changes but also the net-
work states of the device: the existence of an activity
transition alone does not mean that the event actually has
happened - it is completed only after the tweet message or
the photo is sent via the network. Therefore, we need to
figure out whether tcp_snd and tcp_rcv increase after
the detection of the activity transition3. In other words, an
attacker can infer when a tweeting/photo-posting event
happens by combining activity transitions with the network
tcp_snd and tcp_rcv information.

In Twitter, we can also infer the number of characters in a
tweet message by the keyboard event. Note that after a tweet
is posted, keyboard would disappear and tcp_snd would
increase. However, we cannot use tcp_snd to precisely esti-
mate the number of characters sent in a tweet due to the pro-
tocol overhead of TCP connections. In our approach, we
resort to CPU usage information. We found that the system
states of the Android keyboard process (com.google.
android.inputmethod.latin) are tightly related to a
user’s typing actions. More specifically, when the keyboard
is launched, the VSS of the keyboard process increases dras-
tically from a constant state; when a user types a keystroke,
the utime and the stime of the keyboard process roughly
increase by 1 clock tick. Thus we took the ceiling of the aver-
aged increased clock ticks of utime and stime to estimate
the number of characters in a tweetmessage.

4.1.4 Associating Device With Social Network Accounts

After retrieving the targeted social network events based on
the Android system states, i.e., the timestamps of the posts
and the sizes of the tweets, we can repeatedly match this
information with the public information of the target social
network to obtain a gradually smaller list of potential social
network accounts for the device. For example, from the
device system states we inferred that our target victim
tweeted twice in two different timestamps and estimated
the sizes of these two tweets. Then we proceeded to crawl
the Twitter database and filter out those who did not tweet
in these two timestamps and whose tweet sizes do not
match with our inferred tweet sizes. By this way we can get
a reasonably small list of potential Twitter accounts that
may be associated with the victim with a high probability.

4.1.5 Crawling the Social Network Events

As mentioned earlier, we need the public information of the
target social network to realize the DS-SN attack. More spe-
cifically, we need to crawl the tweets/posts occurring at a
specific time within a social network. However, it is not

trivial to retrieve the required data from the three social net-
works under our consideration. We have to overcome the
following challenges.

First, even though Twitter has a streamingAPIwhich pro-
vides an interface to facilitate the retrieval of the tweets for a
given time period, this method does not work since the API
tends to drop a large amount of unimportant data and it has
a rate limit. Luckily, we found that Twitter offers a webpage
called Twitter Advanced Search (TAS) via which we can
retrieve a list of tweets that contain the queried keywords,
locations, or user accounts, for a given time period. Since
user accounts are what we want to retrieve, we cannot use
accounts as a filter. Therefore, we query with letters from “a”
to “z” as the filtering keywords, and the TAS server replies a
list of tweets containing any letter from “a” to “z” with very
minimal data loss - the Twitter server fails to return some
tweets only when it thinks that these tweets are duplicates or
these tweets only contain non-English contents. Hence, we
leverage this method by making queries through TAS with
26 letters and set the time period to be 1 minute. We wrote a
program that sends a url in the following format:

where new_tweet_id is the tweet id of the very first tweet
shown in the result, while old_tweet_id is the id of the last
tweet received. Then TAS returns a JSON file containing 20
tweets for each query sorted by the posting times. Note that
this method requires us to recurrently query until we
retrieve all the tweets for our desired time period. We found
that in average there are approximately 30,000 - 60,000 new
tweets generated globally at every minute.

Flickr offers a similar search engine that does not require
the inputs of keywords, locations, and so on. In other words,
by merely feeding a time period to the Flickr search engine
one can retrieve all the posts of that time period. Based on
our observation, Flickr follows the following format to
retrieve posts:

where start_time and end_time are Unix times. The server
returns a JSON file containing 100 posts for each requested

3. One can use only tcp_snd for the event inference but our experi-
ments indicate that both tcp_snd and tcp_rcv increase when an
event occurs, which is reasonable as TCP connections involve two-way
traffics.
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page number. Here a page number represents the index of
the Flickr post pages, with each page containing 100 posts.
For example, the third page (page number three) contains
the 301st to the 400th posts following a descending posting
time. We wrote a program that keeps on sending the url
until all pages have been returned.

In contrast, Instagram does not have any interface for
returning posts based on time; instead, it provides an inter-
face that returns posts based on locations, accounts, and
hashtags. Therefore, we can only collect as many user
accounts as possible for further scrutiny. Due to the nature
of Instagram, almost every Instagram user follows at least
one verified account (celebrity). Thus we collected all the
followers of the official account of Instagram, Selena
Gomez, and Taylor Swift, the top three most-followed
accounts on Instagram. As a result, we obtained in total
390,592,786 users while the number of active Instagram
users is about 500 million to 600 million [41]. To collect the
followers of the three most-followed accounts, we wrote a
program that sends a post data to the url https://www.
instagram.com/query/with the format of

1 “q“: “ig_user(xxx)

2 { followed_by.after(end_cursor, step)

3 {count,page_info

4 { end_cursor, has_next_page}, nodes {id, is_

verified,

5 followed_by_viewer, requested_by_viewer,

full_name, profile_pic_url, username}

6 }

7 }“

where end_cursor indicates the cursor of the last retrieved
user and step indicates the number of users returned at each
round.

4.2 SN-SN Correlation Attack
Our SN-SN correlation attack is designed to assist the DS-
SN attack since the latter may not always be feasible (e.g.,
taking too long time) due to the infrequency of successive
tweets/posts in a single social network by the target victim.
To understand this challenge, we carried out a measure-
ment study over 500,008 users randomly selected from the
followers of 10 celebrities in Twitter to collect the time inter-
vals between the most recent two successive tweets. As one
can see from Fig. 4, over half of these Twitter users tweeted
again more than 20 days later after their last tweet. There-
fore, if only exploiting the DS-SN correlation, an attacker
may have to wait for a long time to collect enough data for a
satisfying result. Nevertheless, a user may access different
social networks with the same device at different times;
thus exploiting the correlations of the accounts in different
social networks may help speed up and enhance the accu-
racy of the device-identity association attack. In this subsec-
tion, we investigate the SN-SN correlation to identify the
possible accounts in different social networks for the same
user, which can help shorten the list of candidate accounts
obtained from the DS-SN attack. Assume that an attacker
has launched the DS-SN attack on a victim device for two
social networks and obtained two lists of candidate

accounts. Then the objective of our SN-SN attack is to iden-
tify the accounts that can match to the same user with high
probability. This is done by the so-called profile similarity,
which is a weighted average of the similarities of five attrib-
utes: location (s1), personal website link (s2), username (s3), biog-
raphy (s4), and profile image (s5). A novel learning-based
model is presented to calculate the weight for each attribute.

In the following we present the definitions of the five
attribute similarities. For better elaboration, we use ut1

1 and
ut22 to refer to the two accounts in social network t1 and t2,
respectively.

Definition 1 (Location Similarity, s1). Let p
t1
1½1* and pt22½1* be

the location sets by ut11 and ut2
2 , respectively. The location simi-

larity score s1 is defined as

s1ðpt11½1*; p
t2
2½1*Þ ¼

1 if pt11½1* and pt22½1* are the same;
0 otherwise:

!
(2)

In the social networks we consider, the location in a
user’s profile follows the format of “City, State/Province,
Country” (a user is not mandatory to fill out all these three
fields); a user can also upload the longitude and latitude of
his location. In this study, we consider two locations to be
the same if (1) cities are the same; or (2) states/provinces
are the same; or (3) the euclidean distance between two
coordinates does not exceed 814 miles, which is the
approximate diameter of the largest state, Alaska, in the
US [42].

Definition 2 (Personal Website Link Similarity, s2). Let

pt11½2* and pt22½2* be the personal website links set by ut1
1 and ut2

2 ,

respectively. The personal website link similarity score s2 is
defined as

s2ðpt11½2*; p
t2
2½2*Þ ¼

1 if pt11½2* ¼ pt22½2*;
0 otherwise:

!
(3)

Definition 3 (Username Similarity, s3). Let p
t1
1½3* and pt22½3* be

the usernames of ut1
1 and ut2

2 , respectively. The username simi-
larity score s3 is defined as

Fig. 4. The number of users versus the time difference between two suc-
cessive tweets. One can see that the majority of the Twitter users
tweeted twice between 20 days to 30 days.
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s3ðpt11½3*; p
t2
2½3*Þ ¼

jlcsðpt11½3*; p
t2
2½3*Þj

maxðjpt11½3*j; jp
t2
2½3*jÞ

(4)

where lcsðstr1; str2Þ denotes the longest common substring
of strings str1 and str2.
According to the latent semantic analysis (LSA) in NLP

[43], we defined the biography similarity in the following
manner.

Definition 4 (Biography Similarity, s4). Let p
t1
1½4* and p

t2
2½4* be

the biographies of ut1
1 and ut2

2 , respectively, where p
t1
1½4* contains

m1 unique words and pt22½4* contains m2 unique words. The fre-

quency vector fq
!ðpt1;41½4* ; p

t2
2½4*Þ is defined as the number of times

each word of pt11½4* appears in pt22½4*, i.e.,

fq
!ðpt11½4*; p

t2
2½4*Þ ¼ z1; z2; $ $ $ ; zm1

# $T

with zi being the number of times the ith word of pt11½4* appearing

in pt22½4*. Let F ¼ fq
!ðpt11½4*; p

t2
2½4*Þ $ fq

!ðpt11½4*; p
t2
2½4*Þ

T . We perform

the SVD decomposition against F and retrieve F ’s singular

value vector, which is denoted by d ¼ ðd1; . . .; dm1Þ. Then the
biography similarity s4ðpt11½4*; p

t2
2½4*Þ is defined as

s4ðpt11½4*; p
t2
2½4*Þ ¼ min

%
Sk kF

pt11½4*

&&&
&&& pt22½4*
&&&

&&&
; 1

'

¼ min

%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 d
2
m1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 $m2
p ; 1

'
(5)

Lastly, due to the special nature of profile images, we
consider a profile image with and without human faces
separately.

Definition 5 (Profile Image Similarity, s5). Let pt11½5* and
pt22½5* be the profile images of ut1

1 and ut2
2 , respectively. The profile

image similarity score s5 is defined as:

s5ðpt11½5*; p
t2
2½5*Þ ¼

sF5 ðp
t1
1½5*; p

t2
2½5*Þ; both have faces;

s:F5 ðpt11½5*; p
t2
2½5*Þ; none has face;

0; otherwise:

8
><

>:
(6)

For the case when both profile images contain human
faces, our approach compares the facial similarity in three
steps: (1) face detection, (2) face aligment, and (3) face similarity
comparison. In the face detection step, we leverage the Haar
Feature-based Cascade Classifier proposed by [44][45]; in
the face alignment step, we leverage the Multitask Cascaded
Convolutional Network proposed and implemented by
Zhang et al. [46]; and finally, we come up with the face simi-
larity definition motivated by the FaceNet proposed by
Schroff et al. [47]. Embedding [47] is a function femb whose
L2 norm satisfies fembðxÞk k2¼ 1. In our study, we define
femb as

fembðpxi;jÞ ¼
pxi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j px

2
i;j

q

where pxi;j is the pixel on the i-th row and j-th colum of an
aligned face picture matrix. We define the loss function for

the profile images with faces as

lossf ¼
X

i;j

fembðpx
p
t1
1

i;j Þ ' fembðpx
p
t2
2
i;j Þ

))))

))))
2

2

" #

(7)

Definition 5.1 Profile Image Similarity with Face, sF5 .
The face image similarity is defined as

sF5 ðp
t1
1½5*; p

t2
2½5*Þ ¼ maxð1'

ffiffiffiffiffiffiffiffiffiffiffi
lossf

p
; 0Þ (8)

For the case when both images do not have human faces,
we leverage the traditional algorithm, the scale invariant
feature transform (SIFT) [48], used for object recognition in
computer vision. Let gðxÞ represent the number of SIFT fea-
tures of picture x, and mðx; yÞ be the number of matched
features between picture x and y with Lowes’s ratio test
[49].

Definition 5.2 Profile Image Similaritywithout Face, s:F5 .

s:F5 ðpt11½5*; p
t2
2½5*Þ ¼

mðpt1
1½5*;p

t2
2½5*Þ

minðgðpt1
1½5*Þ;gðp

t2
2½5*Þ

(9)

Now we are ready to define our overall profile similarity:

Definition 6 (Profile Similarity). Let ut1
1 2 SN1 and ut2

2 2
SN2, the profile similarity S : SN1 + SN2 ! ½0; 1* of two user
accounts is defined as

Sðut1
1 ; u

t2
2 Þ ¼

X5

k¼1

wkskðpt11½k*; p
t2
2½k*Þ (10)

where skðpt11½k*; p
t2
2½k*Þ represents the k-th attribute similarity of

the two user accounts and wk is the corresponding weight that
captures the impact of sk on the overall profile similarity.

In the following we present a learning based model to calcu-
late the weights in Eq. (10). Intuitively, the weights should be
determined by maximizing the probability of correct matches
and minimizing the probability of incorrect matches. Suppose
we have a ground truth dataset which includes ngt users from
SN1 and ngt users from SN2, with the ith user from SN1 and
the ith user from SN2 are indeed the same person. Based on the
profile similarity defined in Eq. (10), we can get a matrix SS
over the pairwise profile similarity scores between SN1 and
SN2.

SðSN1; SN2Þ ¼

Sðu11; u1
2Þ Sðu11; u22Þ . . . Sðu11; u

ngt
2 Þ

Sðu21; u1
2Þ Sðu21; u22Þ . . . Sðu21; u

ngt
2 Þ

..

. ..
. . .

. ..
.

Sðungt1 ; u1
2Þ Sðungt1 ; u2

2Þ . . . Sðungt1 ; u
ngt
2 Þ

0

BBB@

1

CCCA

where each entry Sðui
1; u

j
2Þ is the profile similarity score

defined in Eq. (10).

In order to find the proper weights, instead of consider-
ing only the incorrect matches or correct matches, we came
up with a novel loss function which takes into consideration
both the correct matches and the incorrect matches, making
it more efficient and effective. The loss function is defined
as follows:
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loss ¼ lðw1; w2; . . . ; wkÞ ¼

1

1

..

.

1

0

BBBB@

1

CCCCA

ngt+1

'diagðSSÞ þ 1

ngt ' 1

X

j;j 6¼1

Sðu11; u
j
2Þ

X

j;j 6¼2

Sðu21; u
j
2Þ

..

.

X

j;j 6¼ngt

Sðungt1 ; uj
2Þ

0

BBBBBBBBBB@

1

CCCCCCCCCCA

2

66666666664

3

77777777775

2

* +

(11)

where $h i represents the expectation sign. The weight
vector is determined by solving the following system of
equations.

rl ¼ 0¼)

@l
@w1

¼ 0
@l
@w2

¼ 0

..

.

@l
@wk

¼ 0

8
>>>><

>>>>:

(12)

In our approach, we solve the system of equations (12) by
TensorFlow with the gradient descent optimization [50].

5 EVALUATION

In this section, we report the evaluation results of our
approach to demonstrate its effectiveness on the DS-SN
attack within a single social network and the SN-SN attack
across two social networks.

According to the design elaborated in Section 4, we
implemented the following programs: a malicious app in
Java with 3280 lines of code (LOC) for collecting the publicly
available Android system state data, which deals with the
first step of the DS-SN attack; a server code for activity tran-
sition inference and social network event inference with
1800 LOC in Python, which handles the second and third
steps of the DS-SN attack; a program of 1595 LOC in Python
to crawl the databases of Twitter, Instagram, and Flickr, and
perform the device-account matching, which corresponds
to the fourth step of the DS-SN attack; and finally, a pro-
gram with 707 LOC in Python, which performs the SN-SN
user account association analysis.

In our experiments, we used five different Android devi-
ces: a Nexus 7 with Android version 6.0.1, a HTC One Sense
6 with Android version 5.0.2, a Blu R1 HD with Android
version 6.0, a Huawei Honor 8 Lite with Android version
7.0, and a Samsung Galaxy S4 with Android version 4.2.2.
In the server side, we used a Dell Inspiron 5559 Specs with
Intel Core i7-6500U CPU @ 2.50GHz x 4 running OS Ubuntu
16.04 LTS to conduct the experiments.

5.1 Effectiveness of the DS-SN Correlation Attack
We evaluated the effectiveness of our DS-SN attack by i)
validating the memory regression learning model, ii) infer-
ring the posting timestamps, iii) inferring the number of
characters in a tweet, and iv) inferring the possible list of
social network accounts associated with the victim device
via multiple posting events.

5.1.1 Performance of the Memory Regression Model

As mentioned in Section 4, we leveraged a 5-layer feedfor-
ward neural network to learn the patterns of activity

transitions in Twitter and Instagram, i.e., from MainAc-

tivity to ComposerActivity in Twitter and from
MediaCaptureActivity I to MediaCaptureActivity

II in Instagram. We wrote an automatic program in Python
using the Android debug bridge (adb) [51] with the UI
Automator framework for the generation and collection of
the training data and test data. We ran the automatic adb

Python program in all five Android devices for collecting
the training data. As a result, for each of the 5 Android devi-
ces, we collected 1,900 pieces of training data for Twitter
and 2,340 pieces of training data for Instagram. Thus, in
total we have 9,500 pieces of training data for Twitter and
11,700 pieces of training data for Instagram. Note that each
piece of the training data contains only the target activity
transition - no other noisy actions such as swiping. To deter-
mine n as mentioned in Section 4, we tried multiple differ-
ent values for the threshold d and found that the values
around 1000 work well for both Twitter and Instagram; thus
we set d ¼ 1000. Then we calculated the values of n for Twit-
ter and Instagram, and obtained 7 and 15, respectively.
Also, we set the cessation threshold for the mean squared
error to be 10'6. As a result, the mean squared error for the
learning process of the Twitter activity transition drops to
below 10'6 after approximately 30 minutes and the one for
the Instagram activity transition drops to below 10'6 after
approximately 40 minutes, which are reasonably low for
deep learning models.

5.1.2 Inference of the Posting Timestamps

The automatic adb Python program performed 5,625 tests
for all five Android devices, with each device performing
1,125 tests. Each test is for one target social network app
and collects a block of data with 6 rows: VSS, tcp_snd, and
tcp_rcv for the social network app, utime and stime for
the keyboard process, and RSS for the media process, and
each row contains 600 values. Therefore, for each Android
device, we conducted 375 tests for each target app. It took 5
to 6 minutes to perform one test, during which our auto-
matic adb program controlled the target social network app
to tweet with a random number of characters (Twitter) or to
post a photo (Instagram and Flickr)), and recorded the sys-
tem timestamps of the tweet/photo-post event (ground
truth timestamps) for evaluation. The adb program also
generated random noisy actions such as swiping, tapping,
and commenting in the target apps to imitate human
beings’ actions on these apps during each block collection.
Meanwhile, our malicious app collected VSS, tcp_snd,
and tcp_snd for the three social network apps and the RSS
of Android media process as shown in Table 2 for the infer-
ence attack.

We considered that a correct inference is made if the dif-
ference between the ground truth posting timestamp and
our inferred posting timestamp is less than 30 seconds.
Table 3 reports the averaged inference results of all Android
devices. As one can see, the numbers of correct inferences of
the posting timestamps for Twitter, Flickr, and Instagram
are 86.99%, 96.81%, and 96.73%, respectively. Table 4
reports the inference results of each Android device against
the three target apps. One can see that our approach per-
forms the best for Flickr, with Instagram the second and
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Twitter the third. We probed into it and found that this phe-
nomenon may be due to the following reason: Flickr has
clear activity transitions causing distinct changes on side-
channels while Twitter has relatively mild activity transi-
tions with less distinct changes on side-channels. Consider-
ing the inference success rates of different devices, one can
see that Nexus 7 performs the best, followed by Blu R1 HD,
Huawei Honor A, Blu R1 HD, Samsung Galaxy S4, and
HTC One Sense 6, in descending order. This might be
because devices having better inference performances are
mounted with more advanced CPUs and/or installed with
newer versions of the Android, which can help optimize the
processing and rendering of images, resulting in more pre-
cise inference results. Note that in our memory regression
model we set s ¼ 105, which was determined based on
many trials.

5.1.3 Inference of the Number of Characters in a Tweet

To evaluate the inference accuracy on the number of charac-
ters in a tweet through CPU utime and stime of the Key-
board process, we denote the actual number of characters of
a tweet by Nact, the inferred number by Ninf , and set an
error parameter ! such that our inference is considered a

success if the error percentage is less than !, i.e.,
jNact'Ninf j

Nact
,

!. In order to evaluate the accuracy of our inference attacks,
we randomly sampled 5,000 tweets from those of the
500,008 Twitter users collected in Section 4, and re-tweeted
these 5,000 tweets using our Android devices. By doing so,
we can guarantee that the distribution of the number of
characters of our posted tweets follows the one in real-
world. The average number of characters of these 5,000
tweets was 189. The results are reported in Table 3, which
indicate that if we set ! to be 0.05, the possibility of correct

inference is 37.18%; if ! is set to 0.15, the possibility of cor-
rect inference is 91.86%; while if ! is set to 0.3, the possibility
increases to 98.92%.

5.1.4 Associating Device With Social Network Accounts

We used Twitter to illustrate the performance of associating
the victim device with a list of candidate social network
accounts. In this evaluation, we conducted two studies,
with one on the Twitter celebrities and one on five volun-
teers. Note that the study on Twitter celebrities cannot iden-
tify any device that is associated with a social network
account because we do not install our malicious app in any
legitimate user in Twitter; nevertheless, the tweeting activi-
ties of celebrities can facilitate us to figure out how many
people simultaneously tweet at two or more timestamps,
which provides a perfect justification to explain why we can
correlate the tweeting activities at different timestamps to
identify the user account associated with a victim device.

For the study on celebrities, we collected tweets from 5
active Twitter celebrities, with 10 tweets for each at different
timestamps, from November 2016 to February 2017, to get
the data at 50 different timestamps. Each celebrity has at
least 20 million followers. We considered celebrities as our
study subjects because they not only use real identities, but
also are active on Twitter. The results are reported in Table 5,
which indicate that the average number of Twitter users
who tweeted at one timestamp is 52,016, at the same two
timestamps is 359, at the same three timestamps is 61, and
at the same four timestamps is 6. These results are interest-
ing as one can see that the number of users who tweeted
simultaneously at multiple timestamps drops significantly
as the number of considered timestamps increases.

Besides using celebrities as testing subjects mentioned
above, we also recruited five volunteers to participate in our

TABLE 3
Averaged Inference Results on the Posting Timestamps and the Number of Characters in Tweets

App
Name

Averaged Inference Results on the Posting Timestamps and the Number of Characters in Tweets

Types of Random Noisy
Actions Performed

Accuracy of Inferrring Posting
Timestamps

Average Difference of Timestamps
(in seconds)

Accuracy of Inferring Number of
Characters in Tweets

Twitter 1. Swiping
2. Tapping
3. Commenting

86.99% 16.35 37.18% (! ¼ 0:05) 91.86% (! ¼ 0:15)
98.92% (! ¼ 0:3)

Flickr 1. Swiping
2. Tapping
3. Commenting

96.81% 15.05 N/A

Instagram 1. Swiping
2. Tapping
3. Commenting

96.73% 19.75 N/A

TABLE 4
Inference Results on the Posting Timestamps for Each Device

Device Name App Name

Twitter Instagram Flickr Average

Nexus 7 90.67% 98.67% 99.73% 96.36%
HTC One Sense 6 82.93% 91.20% 90.40% 88.18%
Blu R1 HD 91.47% 87.47% 98.67% 92.54%
Huawei Honor 8 84.27% 94.93% 98.40% 92.53%
Samsung Galaxy S4 90.93% 85.87% 98.93% 91.91%
Average 88.05% 91.63% 97.23% N/A

TABLE 5
Attack Results on Celebrities

Attack Results on Celebrities

# of Timestamps Average Number of
Potential Twitter Identities

1 52,016
2 359
3 61
4 6
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evaluation process. Each participant used one of our five
Android devices to tweet 10 times at 10 different time-
stamps with his/her own Twitter account. Each tweet con-
tained a random number of characters. The detailed results
are shown in Table 6. If we do not apply the number of
tweeted characters as a filter, we found that in average there
are 54,060 users who tweeted at one timestamp as the vol-
unteers did. Then the number goes to 354 at two same time-
stamps, 56 at three same timestamps, 9 at four same
timestamps, 3 at five same timestamps, and 1 at six same
timestamps. These numbers indicate that an attacker needs
to conduct the inference attack for an average of six times in
order to associate the Twitter account of one of our volun-
teers with his/her device without applying the number of
characters as a filter. If we apply this filter, as one can see
from the results, an attacker only needs to conduct the infer-
ence attack for an average of three times to successfully
associate one volunteer with his/her Twitter account.

In order to assess the influences of human behavioral fac-
tors, we asked each of the five participants to use all the five
Android devices shown in Table 4 to send posts in all three
social networks. More specifically, for each device and each
social network, each participant sent 10 posts. Therefore, we
obtained in total 750 (5+ 5+ 10+ 3) posts. We applied our
approach and found that the inference success rates are
close to those shown in Table 4, with the highest deviation
less than 4%. Thus one can conclude that human factors do
not have a significant impact on our approach.

5.2 Performance of the SN-SN Correlation Attack
As one can see from the results shown above, an attacker
needs to infer at least three timestamps on average to corre-
late a user’s social network account with his/her device
with the estimated number of characters as a filer. Without
applying this filter, on average at least 6 timestamps need to
be inferred. To speed up this process, SN-SN correlation
attack can be launched. In this subsection, we evaluate the
performance of the SN-SN correlation attack.

Since Instagram does not provide an interface via which
we can retrieve posts at any given timestamp, we consid-
ered the other two social networks: Twitter and Flickr. To
proceed, we need to first derive the weight for each attribute
in order to calculate the profile similarity. For this purpose
we need ground truth data to train our learning model pro-
posed in Section 4.2. We manually checked the tweets of a
large amount of Twitter users and filtered out those who do

not explicitly provide their Flickr links in one of their
tweets. Finally, we obtained 20 pairs of Twitter and Flickr
users we were certain that each pair actually refers to the
same person. Then we applied these data to minimize the
loss function in equation (11). Finally, we obtained the fol-
lowing weights when the loss function reaches its stationary
minimum of 0.108886: v1 ¼ 0:509717, v2 ¼ 0:194603, v3 ¼
0:51427, v4 ¼ 0:171117 and v5 ¼ 0:30354. Lastly, we normal-
ized these weights by setting v-

i ¼
vi

j
P5

i¼1
vij

, and obtained

v-
1 ¼ 0:301029, v-

2 ¼ 0:114929, v-
3 ¼ 0:303718, v-

4 ¼ 0:101058,

and v-
5 ¼ 0:179265.

As one can see from the above, username (v3) plays an
extremely important role in determining whether two users
from two different social networks are actually the same
person, followed by location (v1). The least important factor
is biography (v4), which indicates that people tend to write
differently for different social networks.

Next we analyzed the Twitter-Flickr matching perfor-
mance.We asked each of the five volunteers to send a post in
Flickr with his/her Flickr account after he/she finished the
10 tweeting experiments mentioned above. Then we corre-
lated Flickr with Twitter by considering only the first time-
stamp of the Twitter data of all the participants. Next we
crawled all the posts in Flickr at the five timestamps corre-
sponding to those at which our five participants sent posts.
As a result, we found that there were totally 611 Flickr users
who also posted at the same timestamp atwhich the first par-
ticipant posted. The numbers of Flickr users who posted at
the same time as the second, third, fourth, and fifth partici-
pant were 533, 421, 498, and 506, respectively. Therefore, for
the first participant, we analyzed a similarity matrix SSp1
defined in Section 4with 1,413,243 entries (2; 313+ 611). Sim-
ilarly, the numbers of entries in the similaritymatrices for the
second, third, fourth, and fifth participant were 1,352,754
(2; 538+ 533), 956,521 (2; 272+ 421), 945,204 (1; 898+ 498),
and 1,112,188 (2; 198+ 506), respectively. Ideally, the major-
ity of the entries in these five matrices should contain very
small values, i.e., close to zero; while the entries for the cor-
rect matches contain big values, i.e., close to one.

After we evaluated the five matrices with the trained
weights obtained above, the similarity matrix of the first
participant shows that 1,332,575 entries (94.29%) are below
0.1; only 3 pairs whose similarity scores are greater than 0.5;
and only 1 pair whose similarity score is greater than 0.65,
which is the correct matching, i.e., the Twitter account and

TABLE 6
Attack Results on Volunteers

Attack Results on Volunteers

# of
Timestamps

Number of Potential Twitter Identities
(Without Number-of-Character Filter)

Number of Potential Twitter Identities
(With Number-of-Character Filter)

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Average Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Average

1 52,120 61,810 55,132 51,205 50,037 54,060 2,313 (! ¼ 0:3) 2,538 (! ¼ 0:3) 2,272 (! ¼ 0:3) 1,971 (! ¼ 0:3) 2,067 (! ¼ 0:3) 2,232 (! ¼ 0:3)
2 369 403 331 324 347 354 21 (! ¼ 0:3) 19 (! ¼ 0:3) 22 (! ¼ 0:3) 12 (! ¼ 0:3) 10 (! ¼ 0:3) 16 (! ¼ 0:3)
3 52 61 71 43 57 56 1 (! ¼ 0:3) 1 (! ¼ 0:3) 2 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)
4 11 8 13 9 7 9 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)
5 4 3 5 4 3 3 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)
6 3 2 2 1 1 1 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)) 1 (! ¼ 0:3)
7 3 2 1 1 1 1 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)
8 1 2 1 1 1 1 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)
9 1 1 1 1 1 1 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3) 1 (! ¼ 0:3)
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the Flickr account of the first participant. Similarly, our
results showed that over 90% of all the entries of the similar-
ity matrices of the other four participants are below 0.1; and
the correct matches corresponds to the pairs with the high-
est scores. Among the results of all the five participants, the
highest overall similarity score is the one for the fifth partici-
pant, which is 0.84. Fig. 5 illustrates the detailed distribution
of the matches of the fifth participant as an example. These
results not only indicate that both our definitions of the
attribute similarities and the weights work well in real
cases, but also imply that our SN-SN correlation attack is
effective in facilitating the DS-SN attack to speed up the
device-identity association attack.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a novel attack architecture to
associate a mobile device user with his social network
accounts. Our architecture is composed of two attack vec-
tors: DS-SN correlation attack and SN-SN correlation attack.
We used five Android devices and three social networks,
Twitter, Flickr, and Instagram, to demonstrate and evaluate
our architecture. In the DS-SN attack, we inferred a user’s
tweeting/photo-posting timestamps and tweet sizes based
on the device’s publicly available system states, i.e., CPU,
memory, and network data; then we matched the time-
stamps and tweet sizes with the social network events to
uncover the user’s accounts. When it is hard to collect suffi-
cient data for DS-SN attacks as the victim may not tweet/
post very frequently, SN-SN attack can be employed to
investigate the correlations of different social network
accounts belonging to the same person. SN-SN attack com-
pares the profile similarity of two accounts and finds out
the best match. Our experimental results over the three pop-
ular social networks corroborate the effectiveness of our
attack architecture.

Note that the approach proposed in this paper cannot
effectively associate multiple different mobile devices used
by the same user to access different social networks, i.e., the
so-called DS-DS attack. In order to realize effective DS-DS
attacks, more side channel information such as calibration
data [21] and Wi-Fi network traces [10] might be needed.
This is a complicated research topic with strong security sig-
nificance and will be investigated in our future research.
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