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SUMMARY

In this paper, we develop a systematic theory for high-dimensional analysis of variance
in multivariate linear regression, where the dimension and the number of coefficients can
both grow with the sample size. We propose a new U-type statistic to test linear hypotheses
and establish a high-dimensional Gaussian approximation result under fairly mild moment
assumptions. Our general framework and theory can be used to deal with the classical one-
way multivariate analysis of variance, and the nonparametric one-way multivariate analysis
of variance in high dimensions. To implement the test procedure, we introduce a sample-
splitting-based estimator of the second moment of the error covariance and discuss its
properties. A simulation study shows that our proposed test outperforms some existing tests
in various settings.

Some key words: Data-splitting; Gaussian approximation; Multivariate analysis of variance; One-way layout;
U statistic.

1. INTRODUCTION

In statistical inference of multivariate linear regression, a fundamental problem is to
investigate the relationships between the covariates and the responses. In this article, we aim
to test whether a given set of covariates are associated with the responses by multivariate
analysis of variance, MANOVA. To fix ideas, we consider the following multivariate linear
regression model with p predictors:

Yi=BXi+V: (i=1,....n), (1)
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2 Z.Lou, X. ZHANG AND W. B. Wu

where Y; = (Yj1, ..., Yi)" and X; = (Xj1, ..., Xj,)" are respectively the response vector and
the predictor vector for the ith sample, B' = (B, ..., B,) with By € R is the unknown
coefficient matrix consisting of coefficients on the kth covariate, and the innovation vectors
V1, ..., Vy € RY are independent and identically distributed random vectors with E(V}) =
0 and cov(¥V1) = X. The first element of X; can be set to 1 to reflect an intercept term.
Equivalently, we can write (1) in compact matrix form as

Y=XB+V, (2)

where ¥ = (Y,.... )", X = (X1,...X))"and V = (V1,...,V,)". Let C € R™*? be a
matrix of rank m, where m € {1, ..., p}. We are interested in testing a collection of linear
constraints on the coefficient matrix,

Hy:CB=0 versus H;:CB=+0. 3)

This testing problem has been extensively studied in the low-dimensional setting where
both the number of predictors and the dimension of the response are small relative to the
sample size. A natural and popular choice of method is the classical likelihood ratio test
in the case where the errors are normally distributed; see Anderson (2003, Ch. 8) for a
review of theoretical investigations. In recent years, high-dimensional data are increasingly
encountered in various applications, and tremendous efforts have been made to develop
new methodologies and theories for high-dimensional regression. The paradigm in which
d is 1 or small and p can increase with # has received considerable attention, but the case
where d is very large and p relatively small has been less studied. The model (2) in the lat-
ter setting has been applied to a number of research problems involving high-dimensional
data such as DNA sequence data, gene expression microarray data and imaging data; see,
for example, Wessel & Schork (2006) and Zapala & Schork (2006, 2012). Such studies typ-
ically generate huge amounts of data, i.e., responses, that, because of their expense and
sophistication, are often collected on a relatively small number of individuals, and investi-
gate how the data can be explained by a certain number of predictor variables such as the
ages of individuals assayed, clinical diagnoses, strain memberships, cell line types or geno-
type information (Zapala & Schork, 2006). Owing to the inappropriateness of applying the
standard MANOVA strategy and a lack of high-dimensional MANOVA theory, biologi-
cal researchers often resort to some form of data reduction such as cluster analysis and
factor analysis, which can suffer from many problems, as pointed out by Zapala & Schork
(2012). Zapala & Schork (2006, 2012) incorporated a distance matrix to modify the standard
MANOVA, but they commented that very little published material exists that can be used
to guide a researcher as to which distance measure is the most appropriate for a given situa-
tion. Motivated by these real-world applications, we aim to develop a general methodology
for high-dimensional MANOVA and lay a theoretical foundation for assessing statistical
significance.

The testing problem (3) for model (2) is closely related to a group of high-dimensional
hypothesis tests. The two-sample mean test, for testing Hy : (1 = py where ) € R? and
u> € RY are the mean vectors of two different populations, is a special case with p = 2,
B = (1, 12)" and C = (1, —1). There is a large literature on implementting the Hotelling
T2-type statistic in high-dimensional situations where d is large; see, for example, Bai &
Saranadasa (1996), Chen & Qin (2010) and Srivastava et al. (2013), among many others. This
approach can be generalized to test the equality of multiple mean vectors in high dimensions.
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High-dimensional analysis of variance 3

Notable works include Schott (2007), Cai & Xia (2014), Hu et al. (2017), Li et al. (2017),
Zhang et al. (2017) and Zhou et al. (2017). In most existing work, the random samples are
assumed to be Gaussian or to follow some linear structure such as that of Bai & Saranadasa
(1996). In contrast, the testing problem we are interested in is much more general. First, all
the aforementioned high-dimensional mean test problems can be fitted into our framework
and, further, we can deal with the more general multivariate linear regression in the presence
of an increasing number of predictor variables. Second, we do not assume Gaussianity or
any particular structure of the error vectors {V;}7_,.

Throughout the paper, we assume p < n and that the design matrix X is of full column
rank so that XX is invertible. The conventional MANOVA test statistic for (3) is

n n
On=IPYlg=) > PiY'Y)

i=1 j=1
where | - | stands for the Frobenius norm and
P=XX"X)"'cTc(xX™X)~lcT e (XTX) T XT = (Py)uxn

is the orthogonal projection matrix onto the column space of the matrix X (XTX)~!1C". We
reject the null hypothesis Hy if Q, is larger than some critical value. In the univariate case
where d = 1, the asymptotic behaviour of Q, has been extensively studied; see Gotze &
Tikhomirov (1999, 2002) for detailed discussions. The validity of performing a test for (3)
using O, when d is large has been an open question for a long time. The first goal of the
present paper is to provide a solution to this problem by rigorously establishing a distribu-
tional approximation for the traditional MANOVA test statistic when d is allowed to grow
with n. Our key tool is the Gaussian approximation for degenerate U-type statistics: under
fairly mild moment conditions, quadratic functionals of non-Gaussian random vectors can
be approximated by those of Gaussian vectors with the same covariance structure. Chen
(2018) established a Gaussian approximation result for high-dimensional nondegenerate U-
statistics by Stein’s method, which cannot be applied to the degenerate case considered here.
From a technical point of view, we employ completely different arguments to bound the
distance between the distribution functions of the test statistic and its Gaussian analogue.
The main contributions of this paper are three-fold. First, we develop a systematic the-
ory for the conventional MANOVA test statistic Q,, in the high-dimensional setting. More
specifically, we establish a dichotomy result: 0, can be approximated either by a linear com-
bination of independent chi-squared random variables or by a normal distribution under
different conditions; see Theorem 1. While this reveals the interesting theoretical proper-
ties of the test statistics, it causes difficulties in applications as one may not know which
asymptotic distribution to use in practice. To overcome this difficulty, as the second main
contribution of our paper, we propose a new U-type test statistic. Using this modified test
statistic, such a dichotomy does not appear; see Theorem 2 for the asymptotic result. Third,
we propose a new estimator for the second spectral moment of the covariance matrix via a
data-splitting technique. To the best of our knowledge, this is the first work dealing with an
unbiased and ratio-consistent estimator in the multivariate linear regression model.

2. THEORETICAL RESULTS

2.1. Notation and assumptions

We now introduce some notation. Let I(-) denote the indicator function. For random vari-
ables X € Rand Y € R, the Kolmogorov distance is defined by p (X, Y) = sup..p |pr(X <
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z) — pr(Y < z)|. For ¢ > 0, we write || X|l; = (E( X949 if E(1X|9) < oo. For two
matrices A = (@ipi<t,j<J and B = (bij)ighjg], AoB = (aijbij)ig]’jgj denotes their Hardmard
product. For any positive integer m, we use I,,, to denote the m x m identity matrix. For two
sequences of positive numbers (a,,) and (b,), we write a, < b, if there exists some constant
C such that a,, < Cb,, for all large n. We use C, C1, C3, ... to denote positive constants whose
values may differ at different places.

Let A1(2) > -+ > 24(¥) > 0 denote the eigenvalues of ¥ = cov(V7), and let ¢ =
1S = {0, Ai(E)}l/z. For ¢ > 2, we define
q/2>

VlTqu VITZV1
M,=E c and L,=E

§2
Assumption 1. For the diagonal elements Py, ..., Py, of the matrix P,
1 &
— Z P;— 0
m“
i=1
asn — oo.

Remark 1. Assumption 1 is quite natural and mild for testing (3). For instance, it
automatically holds for the one-sample test of the mean vector as m~! Y Pl%. = 1/n.
Additionally, in the context of the K-sample test, as discussed in § 3.1, Assumption 1 is satis-
fied as long as the minimum sample size goes to infinity. More generally, since Y 7| P;; = m,
a simple sufficient condition for Assumption 1 would be max;<;<, Pii — 0. Further
discussion of this condition can be found in Remark 6 and Example 1.

2.2, Asymptotic distribution of the conventional MANOVA test statistics

Under the null hypothesis CB = 0, PXB = X (X" X)~'¢™{C(X"X)~'C"}~!CB = 0 and
hence Q,, = |PXB + PV|]% H |PV|IZF, which can be further decomposed as

n n n n
02N S P = Y PVt Y Y PV V=D, + O 4)

i=1 j:l i=1 i=1 ]:‘:l

Observe that D, is a weighted sum of independent and identically distributed random vari-
ables, and Q}, is a second-order nondegenerate U-statistic of high-dimensional random
vectors. These two terms can be differently distributed in the high-dimensional setting. More
specifically, since D,, and O} are uncorrelated, we have var(Q,) = var(D,) + var(Q}), where

n n
var(Dy) = Y PR Eo(V{ VDIl var(Q}) =2 (m - ZP,%) %,
i=1

i=1

with Eo(V{ V1) = V] V1—E(V] V1). When the dimension d increases with the sample size 7,

the magnitudes of var(D,) and var(Q},) can be quite different for non-Gaussian {V;}7_,; see

Example 2. As a consequence, O, can exhibit different asymptotic null distributions. More
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High-dimensional analysis of variance 5

precisely, to asymptotically quantify the discrepancy between var(D,) and var(Q},), under
Assumption 1 we define

£2 _ Zizt PHlEC VT VDI

mg? ’
Before presenting the distributional theory for Q,,, we first define its Gaussian analogue. Let
Z1, ..., Zy beindependent and identically distributed N (0, ) Gaussian random vectors and
write Z = (Z1, ..., Z,)". Then the Gaussian analogue of Q, is defined as the same quadratic
functional of {Z;}7_,,

n n
Gn=IPZIz =) > PiZ|Z;. (5)
i=1 j=1

THEOREM 1. Let g =2+ 6§, where 0 < § < 1. Suppose that Assumption 1 holds and

n 2
a | P4 n PC.[./
_ Zl_l Z/:.:l Yy M + X:I_#Lq — O (6)

Aq }7/1‘1/2 4 mq/z

(1) Assume A — 0. Then under (6) and the null hypothesis,
| 1/5
p(On, G) < CLAY + Cun /1) 4 ¢ (% ZP?,) — 0.
i=1

(ii) Assume A — oo and that the Lindeberg condition holds for W; = Eq(P;; V] Vi) /(Ag/m),
ie, Y " | Ef Wi2 I(|Wi| > €)} — 0 for any € > 0. Then under the null hypothesis,

On — mtr(X)
Ag/m

Remark 2. Theorem 1 illustrates an interesting dichotomy: the conventional MANOVA
test statistic O, can have one of two different asymptotic null distributions, depending on the
magnitude of the unknown quantity A. This dichotomy poses extra difficulties for using Q,,
to test (3) in practical situations, as we need to predetermine which asymptotic distribution
to use. Any subjective choice may lead to an unreliable conclusion. To illustrate this, suppose
A — 0.Fora € (0,1),let G, I(«) denote the (1 —)th quantile of G,,. Based on Theorem 1,
an a-level test for (3) is &9 = I{Q, > G,; I(«)}. However, if one implements @ in the case
where A — oo, then the Type I error of & is such that pr(®g = 1 | Hyp) — 1/2, which
implies that ®q in this scenario, i.e., A — 00, is no better than random guessing.

= N(0,1).

Remark 3. Recently much attention has been paid to studying the dichotomy and similar
phase transition behaviour of the asymptotic distributions of classical tests in the high-
dimensional setting. For instance, Xu et al. (2019) studied Pearson’s chi-squared test in
the scenario, where the number of cells can increase with the sample size and demon-
strated that the corresponding asymptotic distribution can be either chi-squared or normal.
He et al. (2021) derived the phase transition boundaries for several standard likelihood ratio
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6 Z.Lou, X. ZHANG AND W. B. Wu

tests on multivariate mean and covariance structures of Gaussian random vectors. In addi-
tion to these tests, we suspect that similar phenomena can occur for many other traditional
tests as the dimension increases with the sample size. More importantly, investigating the
phase transition phenomena of classical tests, not only contributes to their theoretical devel-
opment, but also provides motivation for proposing new test procedures and more advanced
approximation distributional theory that are suitable for the high-dimensional scenario.

The following lemma establishes an upper bound for A,.

LEMMA 1. Assuming that My < oo, we have

| 8/2
Aq <2 (— max Pii) Mq.
m 1<isn

Remark 4. Condition (6) can be viewed as a Lyapunov-type condition for high-
dimensional Gaussian approximation of Q. It is quite natural and does not directly impose
any explicit restriction on the relation between the dimension ¢ and the sample size n. In par-
ticular, (6) can be dimension-free for some commonly used models; namely, (6) holds for an
arbitrary dimension d > 1 as long as n — oo. For example, suppose that {V;}"_, follow the
linear process model

Vi=A4& (@G=1,...,n), (7

where A4 is a d x L matrix for some integer L > l and & = (&1, ..., &r) ", with {&;}; ¢en being
independent zero-mean random variables having var(&;) = 1 for each £ € N and uniformly
bounded gth moments max;<¢<z E(|§i¢|?) < C < oo. Applying the Burkholder inequality

leads to M, < (1 4+ 8)?maxi<e<y ll&ie ||§q. Consequently, Lemma 1 reveals that a sufficient
condition for A, — 01is

1
— max P; — 0. (8)
m 1<i<n

Statement (8) depends only on the projection matrix P and does not impose any restriction
on the dimension d. Moreover, under Assumption 1, (8) is automatically satisfied in view of
max; i<y (Pi/m? <m=2Y" | P2 — 0.

2.3. Modified U-type test statistics

The dichotomous nature of the asymptotic null distribution makes Q, unsuitable for
testing (3) in the high-dimensional setting. This motivates us to propose a modified U-type
test statistic of Q, for which such a dichotomy does not occur. Let By € RP*? denote the
coefficient matrix of model (2) under the null hypothesis such that CBy = 0 and Y g
XBo + V. Motivated by Theorem 1, a natural candidate for the test statistic Q,, would be

n
0n0=0n— Y _ Puc(Yi — ByXp)" (Y — By Xp), ©)
k=1

which coincides with Q) in (4) under the null hypothesis. However, By is unknown in practice
and hence Q) ¢ 1s infeasible. The primary goal of this section is to propose a consistent
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High-dimensional analysis of variance 7

empirical approximation U, for O, ¢. In particular, motivated by the discussions in §2.2,
the modified test statistic U, should satisfy

n
ﬂ) . T g Ui’l - Ql’l,O Ii)
o ;JZ#;KUVi Vi {var(Qn.0)}/2 opr(1)

for some symmetric matrix K = (Kjj),x,. The latter ensures that U, is asymptotically equiv-
alent to 0, ¢ in (9). Towards this end, let By be the least-squares estimator of B under the
constraint CB = 0. Then Y — XBy = (I, — Py)Y, where Py = X(X"X)" !XT — P is the
projection matrix of model (2) under the null hypothesis. In view of (9), the modified U-type
test statistic is then defined by

n
Up=0n— Y 0c(Yr — ByX)" (Vi — By Xp)
k=1

(Pl, - Zekplk0> VIV + Z > (P,, - Zekp,k 0P 0) viv;

i=1 i=1 j¥Fi

= ZZ (Pl] — Zekpzk 0 'k,()) Vl-T Vi, (10)

i=1 j=+i

where Py = I, — Py = (17’;,',0),1X » and the last equality follows by taking 0y, ..., 6, to be the
solutions of the linear equations

n
Y Pl ok=Pi (i=1..n. (1D
k=1

Typically, the ) in (10) are not Py, as one would naturally like to use in view of (9). We
can view (11) as a detailed balanced condition as it removes the diagonals in (10). Let 6 =
01, ...,0,)" and rewrite (11) in the more compact matrix form

(Pyo Py)8 = (P11, ..., Pun)". (12)

Let Py = P — PyDyPy = (Pij,0)nxn, Where Dy = diag(0y, ..., 0,) is a diagonal matrix. Then
Pio=0foralli=1,...,nin view of (12) and

n
Uy 2 te(v Py 1) = D> PV
i=1 ji
Before proceeding, we introduce a sufficient condition for U, to exist and be well-defined.

LEMMA 2. Assume there exists a positive constant wy < 1/2 such that

max Pzz 0 < @y (13)

1<i<n
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8 Z.Lou, X. ZHANG AND W. B. Wu

Then the matrix Pyo Py is strictly diagonally dominant and | Py h% =m—) i, 0;Pii. Moreover,
if maxi<j<y Pii < @1¢ for some positive constant wy < 1/2, where ¢ = (1 — 2w0)(1 — @),
then maxi<j<p |0i| < w1 < 1/2.

Remark 5. Condition (13) ensures that the matrix Py o Py is invertible. Consequently,
the solution 0 to (12) exists and is unique. Here 6 is independent of the dimension d, and
depends only on the projection matrices P and Py. Moreover, as shown in the proof of
Lemma 2,

n n
1 1
;@Pii < r ;Pm max |0;] < — m<XnPii,

1<i<n ¢ 1<i<

which are essential for bounding from above the quantity A, ¢ in Lemma 3 below. Conse-
quently, under Assumption 1, supposing that ) i, Plzi < mg /2 for sufficiently large n, we
obtain

n
var(Uy) = 2|Pglips® =2 (m - Za-m-) ¢ > mg?,
i=1

which ensures that the proposed test statistic U, is nondegenerate and well-defined.

Remark 6. Since col(X (XTX)~!CT) ¢ col(X), where col(-) denotes the column space,
Py = X(XTX)~'XT — P defined above is also a projection matrix. Hence max{P;;, Piio} <
X' (XTXx )~ LX; uniformly for i € {1, ..., n}, and a sufficient condition for Lemma 2 would be

max X7 (X"X)~'X; < min{a, (1 — 2w0)(1 — wo) 1), (14)

1<i<n

which is a fairly mild condition on the design matrix X. More specifically, for the
linear regression model it is commonly assumed (Huber, 1973; Portnoy, 1985; Wu,
1986; Shao & Wu, 1987; Shao, 1988; Mammen, 1989; Navidi, 1989; Lahiri, 1992) that
max<i<n X7 (XX )~ ' X; — 0, which ensures a kind of ‘robustness of design’ (Huber, 1973).
It also implies Assumption 1 in view of Remark 1 and can be viewed as an imbalance
measure for model (2) (Shao & Wu, 1987).

Example 1. Suppose that X1, ..., X, are independent Gaussian random vectors N (0, T"),
where the covariance matrix I' € RP*” has minimal eigenvalue Ay, (I') > 0. Then, with
probability at least 1 — 2 exp(—n/2) —n~!,

9p + 18(2pl 172 1 361
max X,-T(XTX)‘lX,-g p + 18(2plogn)*/~ + ogn 15)
1<i<n n
Consequently, condition (14) holds with high probability as long as p/n is sufficiently small.

PROPOSITION 1. Under the conditions of Lemma 2, we have E(U,) > 0. In particular,

EWU,) =0 < (CB=0.
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High-dimensional analysis of variance 9

2.4. Asymptotic distribution of the modified test statistics

The primary goal of this section is to establish a Gaussian approximation for the modified
test statistic U,,. Following (5), the Gaussian analogue of U, is defined by

n
Gn=t(Z"PaZ) = Y P92l Z;.
i=1 ji

The following theorem establishes a non-asymptotic upper bound on the Kolmogorov dis-
tance between the distribution functions of U, and its Gaussian analogue G,. Compared
with Theorem 1, it reveals that the modification of the test statistic O, in (10) removes the
dichotomous nature of its asymptotic null distribution.

THEOREM 2. Let q =2+ 6, where 0 < 8 < 1. Assume that (13) holds and that

2 2
_ Z?:l Zj:’:i |Pij,0|qM n Z?:l(zj'#i Pij,e)q/
o n/l‘]/2 q n/ﬂ/z

Aq,g Lq — 0.

Then under Assumption 1 and the null hypothesis,
L 1/5
1/2q+1
p(Un.Gn) < CuA 7 + € <n7 Zpg) 0.
i=1

Similar to Lemma 1, we establish an upper bound for A, ¢ in the following lemma.

LEMMA 3. Under the conditions of Lemma 2,
1 8/2
Ago S (— max P,-l-) M,.
m 1<i<n

For @ € (0, 1), Proposition 1 and Theorem 2 motivate an «-level test for (3) as follows:

U, )
Op=I| —— > c1-a |, 16
’ (gmwz : (16

where ¢1_g is the (1 — «)th quantile of the standardized G,/{var(G,)}/%.

Remark 7. The approximating distribution G,, may or may not be asymptotically normal.
Let A1 (Py), ..., An(Pp) denote the eigenvalues of the symmetric matrix Py. Being a quadratic
functional of Gaussian random vectors {Z;}"_,, G, is distributed as a linear combination of
independent chi-squared random variables,

d n d n
G 2 3N D P (1) = D D i (D)ni(Po) (1) — 11,

k=1 i=1 k=1 i=1

where {n;x(1)}; ken are independent X]Z random variables and the last equality follows from
the fact that )7, 2;(Pg) = >_=_; Pii,e = 0. More specifically, the Lindeberg—Feller central
limit theorem and Lemma 2 imply that G,/ {var(G,)}'/2 = N(0, 1) if and only if
r(X)
s/m

0. (17)
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10 Z.Lou, X. ZHANG AND W. B. Wu

Consequently, ¢;_, in (16) is asymptotically equal to the standard normal quantiles
whenever (17) holds.

When m — o0, condition (17) automatically holds for arbitrary dimensions d > 1 as
11(2) < ¢. Otherwise, (17) is equivalent to tr(X%)/¢c* — 0, which is a common assump-
tion for ensuring the asymptotic normality of high-dimensional quadratic statistics; see, for
example, Bai & Saranadasa (1996), Chen & Qin (2010), Cai & Ma (2013), Yao et al. (2018)
and Zhang et al. (2018), among others. In particular, it reveals that the asymptotic null dis-
tribution of U, can be nonnormal if (17) is violated. For example, let Yq,..., Y, € R be
independent and identically distributed random vectors with mean vector uy = E(Y}),
and consider testing whether 1y = 0. Assume that £ = cov(Y]) = (¥ji)axq has entries
Y =9+ (1 =) 1{j = k} for some constant & € (0, 1). Then 11(X)/(¢/m) — 1 and it
follows from Theorem 2 that

U, _ Yo ki Y'Y; Hy )(12 -1
var(Up}12 ~ c2nn — )}i/2 V2

The simulation study in §5 shows that our Gaussian multiplier bootstrap approach has
satisfactory performance regardless of whether U, is asymptotically normal or not.

3. APPLICATIONS
3.1. High-dimensional one-way MANOVA
Let {y,-j}]'?;1 fori=1,...,K be K > 2 independent samples following the model

ylj Ml—l_Vlj (f=1,...,l’lj;i:1,...,K),

where 1, ..., ux € R? are unknown mean vectors of interest, and {Vij}jen are independent
and identically distributed d-dimensional random vectors with E£(V;1) = 0 and cov(V;;) =
3. We are interested in testing the equality of the K mean vectors, i.e., testing the hypotheses

Hy:puy=---=ug versus Hj:u;jFp;forsomel <izl<
Following the construction of (10), we propose the U-type test statistic
UnK—ZPuKzzy;yszrZZPﬂKZZyyyzk, (18)
j=1 k=j i=1 [I=+i j=1 k=1

where n = Z{il n; is the total sample size and

1 n n+K-2 1 1 1 n+K-—2
PSS A ) P Y LB B £ )
l

n—2\n; n—1 n—2 n; n—1

In the context of two-sample tests for mean vectors, where K = 2, U,k in (18) reduces to

PR D ki P >tk Vi = Vo) T Y1y — Vo)
n—1D(n—2)nny/n ’

UnK =

which coincides with the commonly used U-type test statistic (Chen & Qin, 2010).
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High-dimensional analysis of variance 11

For each i € {1,...,K}, let {Z;;};en be independent and identically distributed centred
Gaussian random vectors with covariance matrix cov(Z;;) = X. Following (5), the Gaussian
analogue of U,k is defined by

np n

gnK—ZPzzKZZ zk+ZZleKZZZUZlk

j=1 k+j i=1 IFi j=1 k=1

Let npin = minjg<gny. Since maxj<i<, Pi < mm, Assumption 1 holds as long as
nmin — 00. The following proposition establishes a non-asymptotic upper bound on the
Kolmogorov distance between the distribution functions of U,x and G, k.

PROPOSITION 2. Let g = 2 + & for some 0 < § < 1. Assume that nyi, — 0o and

q
<00, ¢ =|X|f.

Then under the null hypothesis,

= —=8/2\1/(2q+1
p(Unks Gu) < Cq(Myn 23D g,
Remark 8. Both the dimension d and the number of groups K can grow with the total
sample size n. In particular, as discussed in Remark 4, if all K samples follow the linear
process model in (7), then p (U, k., Gyx) — 0 as long as nyj, — o0.

3.2. High-dimensional nonparametric one-way MANOVA

For each i € {1,..., K}, let F; denote the distribution function of ));;. We consider the
problem of testing whether these K independent samples are equally distributed, i.e., testing
the hypotheses

Hy:F =..-=Fg versus cFi+ Fiforsomel <i#/< (19)

Being fundamental and important in statistical inference, (19) has been extensively studied;
see, for example, Kruskal & Wallis (1952), Akritas & Arnold (1994), Brunner & Puri (2001),
Rizzo & Székely (2010) and Thas (2010), among many others. However, all these works focus
on the traditional low-dimensional scenario, and testing (19) for high-dimensional random
vectors has been much less studied. In this section, we propose a new U-type test statistic for
(19), following the intuition of (10), and establish the corresponding distributional theory.
In particular, our asymptotic framework is fairly general, and allows both the dimension d
and the number of groups K to grow with 7.

To begin with, for each i € {1, ..., K} let ¢;(1) = E{exp(11'));j)} denote the characteristic
function of }Vj;, where 1 stands for the imaginary unit. Then testing (19) is equivalent to
testing the hypotheses

Hy: ¢y =---=¢g versus i F Pforsomel <ifl< (20)
Write V() = exp(1¢'Y;;). Similar to (18), our test statistic for (20) is defined by

UnK = ZPu KZ Z/yy(t)yzk(t)w(t) di

J=1 k=+j
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12 Z.Lou, X. ZHANG AND W. B. Wu

K ni  n
+ Z Z Pi, k Z Z / Vi)Y (w(t) dt,

i=1 [i j=1 k=1

where w(f) > 0 is a suitable weight function such that the integrals above are well-defined.
Discussions of some commonly used weight functions are given in Remark 9.

Before proceeding, we define the Gaussian analogue of U,k under the null hypothesis
that the K samples are equally distributed. Define the covariance function of Y (7) as

2(15) = EVi () — o1 (0}V11(s) — $1(9} = ¢1(t — 5) — p1(Dp1(—s) (1,5 € RY).

Throughout this section, by Mercer’s theorem, we assume that this covariance function
admits the eigendecomposition

(8 =Y hmm(Dem(s) (1,5 € R,

m=1

where A1 > Ay > --- > 0 are eigenvalues and ¢, ¢», ... are the corresponding eigenfunc-
tions. We now apply the Karhunen-Loéve theorem. Let {Z;i}; j ren be independent stan-
dard normal random variables and define Gaussian processes

o
Zi0 =Y Ml Zimom(0) (1 €RY).
m=1
Then, following (5), the Gaussian analogue of U, is defined by
K ni
Onk = Z Pii k Z Z / Zii(0) Zy(Hyw(r) dt
i=1

J=1 Kkt

njp n

K
+ Z ZPU,K Z Z / Zi() Z(Hw(1) dt.

i=1 I+i j=1 k=1

PROPOSITION 3. Let g =2+ 6 for some 0 < § < 1. Assume that nyi, — 0o and

q 00
} <o, P=Y a2
m=1

Then under the null hypothesis that these K independent samples are equally distributed,

Kt — E[ J EolVi 0V EoVi(0)w() dr
=
f

p(f]nK, QNnK) < Cq(qu;lféz)l/(qurl) — 0.
Remark 9. The proposed test statistic U,g contains a high-dimensional integral over
t € R, which can be computationally intractable in practice. To make U,x well-defined
and facilitate the computation, we shall choose a suitable weight function w(¢) such that
U,k has a simple closed-form expression. In the literature, various kinds of weight functions
have been proposed, such as the Gaussian kernel function (Gretton et al., 2012), the Laplace
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High-dimensional analysis of variance 13

kernel function (Gretton et al., 2012) and the energy kernel function (Székely et al., 2007;
Rizzo & Székely, 2010). For instance, let w(#) denote the density function of the random
vector X'« //n for some x > 0, where X ~ N(0,1;) and n ~ X12 are independent or, equiva-
lently, X'« //n is a Cauchy random variable with location parameter 0 and scale parameter
«. Then it is straightforward to verify that

/yy(l)ylk(l)W(Z) dr = /COS{IT(YU — Yiohw(n) dt = exp(—« | Yij — Y],

which is the same as the Laplace kernel function with bandwidth 1/«, where | - | stands
for the Euclidean distance. A more general result can be derived using Bochner’s theorem
(see, e.g., Gretton et al., 2009, Theorem 3.1). Consequently, the proposed test statistic Uy g
reduces to

K Ni K N; N;
Uk =Y Piky Y exp(—«|Yy—Ya)+ > Y Puxy Y exp(—k|Yi— Yil),
i=1 j=1 kj i=1 Ii j=1 k=1

which is fairly convenient to compute in practice. Moreover, a suitable choice of the weight
function w(¢) will also facilitate analysis of the quantities M, and F.

4. PRACTICAL IMPLEMENTATION
In this section, we propose an unbiased estimator for ¢2, which is ratio-consistent under

fairly mild moment conditions. To begin with, since E(V] Vj)2 = ¢2 for any i % j, a natural
unbiased U-type estimator for ¢ based on {Vi}i_, would be

A2 1 . T1752
S0 = o= 2o VT 1)

i=1 ji

Let P| = I, — X(X"X)"'XT = (Pj 1)uxn and ¥ = P1Y = (¥}, ..., V,»)". Directly substi-
tuting the residual vectors {IA/i}?:l into (21) yields a feasible but generally biased estimator
for ¢2. More specifically, for any 7 = ;,

E(VIV)? = (PiaPy1 + Py )6 + Py (EQVTV)(V3 Va)

n
+ Y P 1 P D { I Eo (VT VD15 — 267,
k=1

which reveals that (I7iT IA/j)2 is no longer unbiased for ¢2 even after proper scaling. This
motivates us to propose a new unbiased estimator for ¢? via data-splitting, which excludes
the bias terms (V] V)% and ( VIVi( VjT V). Without loss of generality, we assume that the
sample size n is even in what follows.

Step 1. Randomly split {1, ..., n} into two halves, A and A°. Let M 4 = {(X;, Y}), i € A}
and M4 = {(X;, Yy), i € A%}
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14 Z.Lou, X. ZHANG AND W. B. Wu

Step 2. For both M4 and M 4, fit model (1) with the least-squares estimates and
compute

. 1
i =
A n/2—p

where I7A and I7Ac are the residual matrices of M 4 and M 4e, respectively.

ViVa, Sae=

Step 3. Compute the estimator §§\ = tr(E 43 40).

Since 34 and X 4 are independent and both are unbiased estimators of ¥, §i is unbiased
for ¢% as E(¢3) = tr{E(S)E(S 40} = tr(2?) = ¢2.

THEOREM 3. Assume that p/n < w» for some positive constant wyr < 1/2, and that the
least-squares estimates are well-defined for both M 4 and M 4c. Then

~ 2 2
E( éa 1‘ ) _ My, pxu(sh | IEBOTEVDIE

c n2 n2ch nct

Remark 10. The proof of Theorem 3 is given in the Supplementary Material, where a
more general upper bound on E(|4/¢ — 1|7) is established for 1 < 7 < 2. Theorem 3
reveals that ¢ 4 is ratio-consistent under mild moment conditions. Suppose now that {V;};cr
follow the linear process model (7) with maxj<¢<z E(|&¢ |*) < C < oo. Then My is bounded
and | Eo(V]{Z V1)||% < tr(=4). Consequently,

A~ 2 4
tr(X
E(—gA—l}>§n_2+ )

s ngt
In this case, ¢ 4 is ratio-consistent for arbitrary dimensions d > 1 as long as n — oo.

~

Remark 11. There are a total of (n';z) different ways of splitting {1, ..., n} into two halves.

To reduce the influence of randomness of an arbitrary splitting, we can repeat the procedure
independently multiple times and then take the average of the resulting estimators. We refer
to Fan et al. (2012) for more discussion about data-splitting and repeated data-splitting.

Remark 12. Let ¥ = (n— p)~! VTV, Observe that E( 1717 f/j) = I_’,-j’ 1tr(X). We can estimate
2 .
¢~ via

o i V= PP @—p) sp_ @Y
ST T —p+dm—p—1)  —p+D—p—D | F Ta=p |

which is the same as the estimator proposed in Srivastava & Fujikoshi (2006), where {V;}7_,
are assumed to be Gaussian random vectors. See also Bai & Saranadasa (1996). However,
for non-Gaussian {V;}?_, such that || Eo(V| V1) ||§ + 22, this estimator is generally biased
as

D2
_ i1 Py
(n—p)(n—p+2)

E@5) ¢’ HNE(V VI3 —252).

In particular, the bias of §§ can diverge when ||E0(V1T ) ||% is much larger than ¢2. Below
we provide an example that typifies the diverging bias.
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Fig. 1. Empirical averages of the values of |¢/¢ — 1| for ¢4 (circles), ¢, (solid line) and Cg (crosses) with
(a)¥ =0.3and (b) ¥ =0.7.

Example 2. Let {&;};en and {£]};en be two sequences of independent Gaussian random
vectors N(0, X), where ¥ = (X;j)ux, has entries X;; = 91771 for some ¥ € (0, 1). Follow-
ing Wang et al. (2015), we draw independent and identically distributed innovations { V;}_
from a scale mixture of two independent multivariate Gaussian distributions as follows:

Vi=ViX‘§i+3(l_Vi)X5i/ (i=1a"':n)a

where {v;};cy are independent Bernoulli random variables with pr(v; = 1) = 0.9. A simula-
tion study is conducted in § 5 where we set & = 0.3 and 0.7. We report in Fig. 1 the average
values of |¢/¢ — 1| for ¢4, &, and Cs, based on 1000 replications with the numerical set-up
(n, p,m) = (100, 20, 10) and d = 200, 400, 800, 1000, 1200. For both cases of ¢, |4/ — 1]
and |,/¢ — 1] are very close to 0, while |g/¢ — 1] is quite large. More precisely, we can
derive that | Eg(VT V)3 = (18 + d) 2.

Substituting the ratio-consistent estimator §i into var(U,) = 2| Py |]2Fg2 yields the central
limit theorem U, /(S4|Pglr) = N(0,2) under (17). Then, for « € (0, 1), an asymptotic

a-level test is
U,
by = H(A— - ) (22)

EalPolra/2 “

where z]_4 is the (1 — «)th quantile of the standard normal distribution.

5. SIMULATION STUDY

In this section, we conduct a Monte Carlo simulation study to assess the finite-sample
performance of the proposed tests. In model (1), we write X; = (1,x])" € R” to include
an intercept. Here x1, ..., x,, € R?~! are independent and identically distributed N (0, I,_1)
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16 Z.Lou, X. ZHANG AND W. B. Wu

random vectors. Let m < p. For k € {1, ...,p — m}, all entries of the coefficient vector By
are independent and identically distributed uniform random variables in the interval (1, 2).
After those By are generated, we keep their values throughout the simulation. Our goal is
to identify the zero By entries by testing

Ho: By-m+1=Bp-mt2=---=B,=0.

In our simulation, we set (p, m) = (20, 10), n = 100,200 and d = 400, 800, 1200. We con-
sider two different designs of the innovations (};): the one introduced in Example 2 and the
one in Example 3 below. In both examples, the parameter ¢ is set to 0.3 and 0.7.

Example 3. Let {£;}; jen be independent and identically distributed random variables
with E(¢11) = 0 and var(§y1) = 1. In particular, we consider two cases for (§;): drawn
from the standardized ¢5 distribution and from the standardized X52 distribution. For some
v € (0,1), we generate

Vi= (1 -9 x g+ 02 x (o, &0, ... 80)" (i €N).

We apply a Gaussian multiplier bootstrap approach to implement our proposed test. The
procedure is as follows.

Step 1. Compute the residual matrix V =,..., V)T = P, Y. Generate independent
and identically distributed N (0, 1) random variables {w;;}; jen and compute the bootstrap
residuals V* = (VF, ..., V;)T, where

1 N
Vie—— Y oyl (i=1,...0).
_ \1/2 yri
(n=p'? =

Step 2. Use V* to compute &% and the bootstrap test statistic U; = tr(V*" Py V™).

Step 3. Repeat the first two steps independently for B times and collect U}, and &%,
(k=1,...,B).

Step 4. Let ¢1—q be the (1 —a)th quantile of {U},, /(S| Polry/2) k=1, ..., 5- Then our test
is

® H( U . )
B=l T—"F%7 7 = C-a )

SalPolry2 7"
and we reject the null hypothesis whenever ®p = 1.

Similar to G,, U}, is a quadratic functional of independent and identically distributed Gauss-
ian random vectors conditional on {X, Y}, and is distributed as a linear combination of
independent chi-squared random variables. To justify the validity of the proposed Gauss-
ian multiplier bootstrap approach, it suffices to bound the distance between the distribution
functions of these two quadratic functionals, which can be done by verifying the normal-
ized consistency (Xu et al., 2015) of the corresponding covariance matrix. However, this can
be highly nontrivial in the high-dimensional setting and is beyond the scope of the present
paper, so we leave it for future work.
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High-dimensional analysis of variance 17

Table 1. Empirical sizes for Example 2 with o = 0.05

0=03 0 =0.7

n d CLT GMB SK CLT GMB SK
100 400 0.057 0.047 0.041 0.059 0.051 0.036
800 0.049 0.045 0.033 0.063 0.056 0.026

1200 0.062 0.055 0.021 0.048 0.045 0.028

200 400 0.056 0.052 0.042 0.052 0.047 0.037
800 0.052 0.049 0.037 0.053 0.050 0.033

1200 0.045 0.044 0.029 0.050 0.046 0.035

CLT, test based on the central limit theorem; GMB, Gaussian multiplier bootstrap approach;
SK, the test of Srivastava & Kubokawa (2013).

Table 2. Empirical sizes for Example 3 with « = 0.05

Is X3

% n d CLT GMB SK CLT Gl\le SK
0.3 100 400 0.068 0.058 0.023 0.083 0.065 0.036
800 0.082 0.066 0.023 0.074 0.058 0.016

1200 0.082 0.068 0.015 0.067 0.053 0.011
200 400 0.073 0.059 0.022 0.067 0.054 0.018
800 0.071 0.057 0.012 0.074 0.058 0.014

1200 0.076 0.059 0.011 0.077 0.058 0.011
0.7 100 400 0.074 0.055 0.002 0.082 0.062 0.002
800 0.084 0.066 0.001 0.085 0.071 0.000

1200 0.073 0.057 0.000 0.076 0.062 0.001
200 400 0.083 0.067 0.001 0.080 0.064 0.000
800 0.068 0.050 0.000 0.075 0.062 0.000
1200 0.070 0.051 0.001 0.074 0.056 0.000

In our simulation, we set the bootstrap size B to 1000. For comparison, we also per-
form the test suggested in (22) based on the central limit theorem and the one proposed by
Srivastava & Kubokawa (2013). For each test, we report the empirical size based on 2000
replications, as displayed in Tables 1 and 2. The results suggest that our proposed test using
the bootstrap procedure provides the best size accuracy in general, as the empirical sizes are
close to the nominal level «.

For Example 2, the tests using the central limit theorem and our Gaussian multiplier
bootstrap method both have better performance than the test of Srivastava & Kubokawa
(2013), since the latter is too conservative as d is large. As expected from our theoretical
results, the normal approximation can work reasonably well in this design.

For Example 3, the Gaussian multiplier bootstrap method outperforms the other two
procedures in size accuracy for all cases. The test of Srivastava & Kubokawa (2013) suffers
from size distortion. The test using the central limit theorem inflates the size more than does
the Gaussian multiplier method, which can be explained by the fact that condition (18) does
not hold and the test based on the central limit theorem fails for U,,. More specifically, for
both# = 0.3 and & = 0.7, elementary calculations show that A1 (X)/¢ — 1. Asaresult, (17)
is violated as m = 10; see also the comment at the end of §2.3 for discussion of the non-
normality of U,. To gain insight, in Fig. 2 we display the density plots of U,/{var(U,)}'/?
for n = 100 as well as the density of N (0, 1). As we can see from the plots, the distribution
of U,/{var(U,)}'/? is skewed to the right for all cases, which explains the inflated sizes of
the test based on the central limit theorem.
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Fig. 2. Density plots of U,/{var(U,)}'/? for d = 400 (solid), d = 800 (short dashed), d = 1200 (dash-dotted)
and N(0, 1) (long dashed).

More simulation studies on the power comparison for these three tests are reported in the
Supplementary Material.

6. DATA ANALYSIS

We apply the proposed method to two datasets. The first dataset comes from a study
of the impact of the gut microbiome on the host serum metabolome and insulin sensi-
tivity in non-diabetic Danish adults (Pedersen et al., 2016). It consists of measurements
of 1201 metabolites, i.e., 325 serum polar metabolites and 876 serum molecular lipids, on
289 serum samples using mass spectrometry. The cleaned dataset was downloaded from
https://bitbucket.org/hellekp/clinical-micro-meta-integration
(Pedersen et al., 2018). We use this dataset to identify metabolites associated with insulin
resistance. Insulin resistance was estimated by the homeostatic model assessment (Peder-
sen et al., 2016). Body mass index, BMI, is a confounder for this dataset since it is highly
correlated with insulin resistance, with a Spearman’s p of 0.67, and is known to affect the
serum metabolome. Two samples without insulin resistance measurements were excluded.
For metabolites with zero measurements, the zeros were replaced by half of the minimal
nonzero value. Log transformation was performed to make the data more symmetrically dis-
tributed before analysis. The p-values associated with the three methods are all very close to
zero, indicating a strong dependence between metabolites and insulin resistance, see Table 3.
We further perform a linear regression analysis on each metabolite using insulin resistance
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Table 3. The p-values of the three methods applied to the
metabolomics and microbiome datasets

Metabolomics Microbiome
CLT GMB SK CLT GMB SK
p-value 0.00 0.00 0.00 9.7 x 1076 0.002 0.13
(a) (b)
15.0% -
g
=
S
‘é’ 10.0% -
z
E
=3
3
5.0% -
0.0% - Mh
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
p-value p-value

Fig. 3. Histograms of p-values for testing the association between each -omics feature and the variable of interest
after adjusting for the confounder: (a) metabolomics dataset; (b) microbiome dataset.

and BMI as the covariates. Figure 3(a) presents the histogram of p-values on testing the

significance of the coefficients associated with insulin resistance. We see a high peak close

to zero, which provides strong evidence for the association between metabolites and insulin

resistance. We further apply the Holm—Bonferroni procedure to the p-values to control the

familywise error rate at the 5% level, resulting in 164 discoveries.

The second dataset we consider is from a study of the effects of smoking on the human
upper respiratory tract (Charlson et al., 2010). The original dataset contains samples from
throat and nose microbiomes and from both sides of the body. Here we focus on the throat
microbiome on the left side of the body, which includes data from 60 subjects consisting
of 32 nonsmokers and 28 smokers. More precisely, the dataset is presented as a 60 x 856
abundance table recording the frequencies of detected operational taxonomic units in the
samples using the 16S metagenomics approach, together with a metadata table capturing
sample-level information, including smoking status and sex. We transform the abundance
of the operational taxonomic units using the centred log-ratio transformation after adding
a pseudo-count of 0.5 to the zero counts. Our goal is to test the association of throat micro-
biomes with smoking status adjusting for sex. The proposed method using either the normal
approximation or the bootstrap approximation detects a strong association between throat
microbiomes and smoking status, see Table 3. In contrast, the method of Srivastava &
Kubokawa (2013) fails to discover such an association.

We further perform an operational-taxonomic-unit-wise linear regression analysis using
each operational taxonomic unit, after the centred log-ratio transformation as the response
and smoking status and sex as covariates. Figure 3(b) presents the histogram of p-values
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20 Z.Lou, X. ZHANG AND W. B. Wu

for testing the association between each operational taxonomic unit and smoking status,
after adjusting for sex in each linear regression. Interestingly, adjusting the multiplicity
using either the Holm-Bonferroni procedure or the Benjamini-Hochberg procedure at the
5% level gives zero discovery (Zhou et al., 2022). These results suggest that the associa-
tion between individual operational taxonomic units and smoking status is weak. However,
after aggregating the weak effects from all operational taxonomic units, the combined effect
is strong enough to be detected by the proposed method.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains proofs of (15) and (17) and a power comparison.

REFERENCES

AKRITAS, M. G. & ArNoOLD, S. F. (1994). Fully nonparametric hypotheses for factorial designs I: Multivariate
repeated measures designs. J. Am. Statist. Assoc. 89, 336-43.

ANDERSON, T. W. (2003). An Introduction to Multivariate Statistical Analysis. Hoboken, New Jersey: Wiley.

BAl Z. & SARANADASA, H. (1996). Effect of high dimension: By an example of a two sample problem. Statist.
Sinica 6, 311-29.

BRUNNER, E. & Puri, M. L. (2001). Nonparametric methods in factorial designs. Statist. Papers 42, 1-52.

CaL T. T. & Ma, Z. (2013). Optimal hypothesis testing for high dimensional covariance matrices. Bernoulli 19,
2359-88.

Car T. T. & X14, Y. (2014). High-dimensional sparse MANOVA. J Mult. Anal. 131, 174-96.

CHARLSON, E. S., CHEN, J., CUSTERS-ALLEN, R., BITTINGER, K., L1, H., SINHA, R., HWANG, J., BusHmAN, F. D.
& CorLLMaAN, R. G. (2010). Disordered microbial communities in the upper respiratory tract of cigarette
smokers. PLoS One 5, e15216.

CHEN, S. X. & QIn, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set
testing. Ann. Statist. 38, 808-35.

CHEN, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applica-
tions. Ann. Statist. 46, 642-78.

FaN, J., Guo, S. & Hao, N. (2012). Variance estimation using refitted cross-validation in ultrahigh dimensional
regression. J. R. Statist. Soc. B 74, 37-65.

GOTZE, F. & TIKHOMIROV, A. (2002). Asymptotic distribution of quadratic forms and applications. J. Theor. Prob.
15, 423-75.

GOTZE, F. & TikHOMIROV, A. N. (1999). Asymptotic distribution of quadratic forms. Ann. Prob. 27, 1072-98.

GRETTON, A., BORGWARDT, K. M., RascH, M. J., SCHOLKOPF, B. & SmoLA, A. (2012). A kernel two-sample test. J.
Mach. Learn. Res. 13, 723-73.

GRETTON, A., Fukumizu, K. & SRIPERUMBUDUR, B. K. (2009). Discussion of: Brownian distance covariance. Ann.
Appl. Statist. 3, 1285-94.

HE, Y., MENG, B., ZENG, Z. & XU, G. (2021). On the phase transition of Wilks’ phenomenon. Biometrika 108,
741-8.

Hu, J., Bal, Z., WANG, C. & WaNG, W. (2017). On testing the equality of high dimensional mean vectors with
unequal covariance matrices. Ann. Inst. Statist. Math. 69, 365-87.

HUBER, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. Ann. Statist. 1, 799-821.

KruskaL, W. H. & WaLLIs, W. A. (1952). Use of ranks in one-criterion variance analysis. J. Am. Statist. Assoc.
47, 583-621.

LaAHIRIL, S. N. (1992). Bootstrapping M-estimators of a multiple linear regression parameter. Ann. Statist. 20,
1548-70.

Li, H., Hu, J., Bal, Z., YIN, Y. & Zou, K. (2017). Test on the linear combinations of mean vectors in
high-dimensional data. 7est 26, 188-208.

MaMMEN, E. (1989). Asymptotics with increasing dimension for robust regression with applications to the
bootstrap. Ann. Statist. 17, 382-400.

Navipr, W. (1989). Edgeworth expansions for bootstrapping regression models. Ann. Statist. 17, 1472-8.

PEDERSEN, H. K., FORSLUND, S. K., GUDMUNDSDOTTIR, V., PETERSEN, A. (., HILDEBRAND, F., HYOTYLAINEN, T.,
NIELSEN, T., HANSEN, T., Bork, P., EHRLICH, S. D. et al. (2018). A computational framework to integrate
high-throughput ‘-omics’ datasets for the identification of potential mechanistic links. Nature Protocols 13,
2781-800.

£20Z 8unp zo uo Jasn salelqi AlIsIanaiun NRY sexal Aq 69| 1669/L00PESE/18WOIG/S60 L 0L /10P/2[01EB-80UBAPE/18WOIG/WO0 dNoolWapeoeR//:sdiy Woll papeojumoq



High-dimensional analysis of variance 21

PEDERSEN, H. K., GUDMUNDSDOTTIR, V., NIELSEN, H. B., HYOTYLAINEN, T., NIELSEN, T., JENSEN, B. A., FORSLUND,
K., HILDEBRAND, F., PrIFTL, E., FALONY, G. et al. (2016). Human gut microbes impact host serum metabolome
and insulin sensitivity. Nature 535, 376-81.

PorTNOY, S. (1985). Asymptotic behavior of M estimators of p regression parameters when p?/n is large. 1I.
Normal approximation. Ann. Statist. 13, 1403-17.

Rizzo, M. L. & SZEKELY, G. J. (2010). DISCO analysis: A nonparametric extension of analysis of variance. Ann.
Appl. Statist. 4, 1034-55.

ScHoTT, J. R. (2007). Some high-dimensional tests for a one-way MANOVA. J Mult. Anal. 98, 1825-39.

SHAO, J. (1988). On resampling methods for variance and bias estimation in linear models. Ann. Statist. 16,
986-1008.

SHAO, J. & Wu, C.-F. J. (1987). Heteroscedasticity-robustness of jackknife variance estimators in linear models.
Ann. Statist. 15, 1563-79.

SRIVASTAVA, M. S. & FuiikosHi, Y. (2006). Multivariate analysis of variance with fewer observations than the
dimension. J. Mult. Anal. 97, 1927-40.

SRIVASTAVA, M. S., KATAYAMA, S. & KANO, Y. (2013). A two sample test in high dimensional data. J. Mult. Anal.
114, 349-58.

SRIVASTAVA, M. S. & KuBokawa, T. (2013). Tests for multivariate analysis of variance in high dimension under
non-normality. J. Mult. Anal. 115, 204-16.

SZEKELY, G. J., Rizzo, M. L. & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of
distances. Ann. Statist. 35, 2769-94.

THAS, O. (2010). Comparing Distributions. New York: Springer.

WANG, L., PENG, B. & L1, R. (2015). A high-dimensional nonparametric multivariate test for mean vector. J. Am.
Statist. Assoc. 110, 1658—-69.

WESSEL, J. & ScHORK, N. J. (2006). Generalized genomic distance—based regression methodology for multilocus
association analysis. Am. J Hum. Genet. 79, 792-806.

Wu, C.-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist. 14,
1261-350. With discussion and a rejoinder by the author.

Xu, M., ZHANG, D. & Wu, W. B. (2015). L? asymptotics for high-dimensional data. arXiv: 1405.7244v3.

Xu, M., ZHANG, D. & Wu, W. B. (2019). Pearson’s chi-squared statistics: Approximation theory and beyond.
Biometrika 106, 716-23.

Yao, S., ZHANG, X. & SHA0, X. (2018). Testing mutual independence in high dimension via distance covariance.
J. R. Statist. Soc. B 80, 455-80.

ZAPALA, M. A. & ScHORrk, N. J. (2006). Multivariate regression analysis of distance matrices for testing
associations between gene expression patterns and related variables. Proc. Nat. Acad. Sci. 103, 19430-5.
ZAPALA, M. A. & ScHORK, N. J. (2012). Statistical properties of multivariate distance matrix regression for high-

dimensional data analysis. Frontiers Genet. 3, 190.

ZHANG, J.-T., Guo, J. & ZHou, B. (2017). Linear hypothesis testing in high-dimensional one-way MANOVA. J
Mult. Anal. 155, 200-16.

ZHANG, X., Yao0, S. & SHAO, X. (2018). Conditional mean and quantile dependence testing in high dimension.
Ann. Statist. 46, 219-46.

ZHou, B., Guo, J. & ZHANG, J.-T. (2017). High-dimensional general linear hypothesis testing under heteroscedas-
ticity. J. Statist. Plan. Infer. 188, 36-54.

Zuou, H., HE, K., CHEN, J. & ZHANG, X. (2022). LinDA: Linear models for differential abundance analysis of
microbiome compositional data. arXiv: 2104.00242v3.

[Received on 14 March 2022. Editorial decision on 3 November 2022]

£20Z 8unp zo uo Jasn salelqi AlIsIanaiun NRY sexal Aq 69| 1669/L00PESE/18WOIG/S60 L 0L /10P/2[01EB-80UBAPE/18WOIG/WO0 dNoolWapeoeR//:sdiy Woll papeojumoq



