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SUMMARY

In this paper, we develop a systematic theory for high-dimensional analysis of variance

in multivariate linear regression, where the dimension and the number of coefficients can

both grow with the sample size. We propose a new U-type statistic to test linear hypotheses

and establish a high-dimensional Gaussian approximation result under fairly mild moment

assumptions. Our general framework and theory can be used to deal with the classical one-

way multivariate analysis of variance, and the nonparametric one-way multivariate analysis

of variance in high dimensions. To implement the test procedure, we introduce a sample-

splitting-based estimator of the second moment of the error covariance and discuss its

properties. A simulation study shows that our proposed test outperforms some existing tests

in various settings.

Some key words: Data-splitting; Gaussian approximation; Multivariate analysis of variance; One-way layout;

U statistic.

1. Introduction

In statistical inference of multivariate linear regression, a fundamental problem is to

investigate the relationships between the covariates and the responses. In this article, we aim

to test whether a given set of covariates are associated with the responses by multivariate

analysis of variance, MANOVA. To fix ideas, we consider the following multivariate linear

regression model with p predictors:

Yi = BTXi + Vi (i = 1,…, n), (1)

©c The Author(s) 2023. Published by Oxford University Press on behalf of the Biometrika Trust.
All rights reserved. For permissions, please email: journals.permissions@oup.com
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2 Z. Lou, X. Zhang and W. B. Wu

where Yi = (Yi1,…,Yid)
T and Xi = (Xi1,…,Xip)

T are respectively the response vector and

the predictor vector for the ith sample, BT = (B1,…,Bp) with Bk ∈ R
d is the unknown

coefficient matrix consisting of coefficients on the kth covariate, and the innovation vectors

V1,…,Vn ∈ R
d are independent and identically distributed random vectors with E(V1) =

0 and cov(V1) = �. The first element of Xi can be set to 1 to reflect an intercept term.

Equivalently, we can write (1) in compact matrix form as

Y = XB+ V , (2)

where Y = (Y1,…,Yn)
T, X = (X1,…,Xn)

T and V = (V1,…,Vn)
T. Let C ∈ R

m×p be a

matrix of rank m, where m ∈ {1,…, p}. We are interested in testing a collection of linear

constraints on the coefficient matrix,

H0 : CB = 0 versus H1 : CB |= 0. (3)

This testing problem has been extensively studied in the low-dimensional setting where

both the number of predictors and the dimension of the response are small relative to the

sample size. A natural and popular choice of method is the classical likelihood ratio test

in the case where the errors are normally distributed; see Anderson (2003, Ch. 8) for a

review of theoretical investigations. In recent years, high-dimensional data are increasingly

encountered in various applications, and tremendous efforts have been made to develop

new methodologies and theories for high-dimensional regression. The paradigm in which

d is 1 or small and p can increase with n has received considerable attention, but the case

where d is very large and p relatively small has been less studied. The model (2) in the lat-

ter setting has been applied to a number of research problems involving high-dimensional

data such as DNA sequence data, gene expression microarray data and imaging data; see,

for example, Wessel & Schork (2006) and Zapala & Schork (2006, 2012). Such studies typ-

ically generate huge amounts of data, i.e., responses, that, because of their expense and

sophistication, are often collected on a relatively small number of individuals, and investi-

gate how the data can be explained by a certain number of predictor variables such as the

ages of individuals assayed, clinical diagnoses, strain memberships, cell line types or geno-

type information (Zapala & Schork, 2006). Owing to the inappropriateness of applying the

standard MANOVA strategy and a lack of high-dimensional MANOVA theory, biologi-

cal researchers often resort to some form of data reduction such as cluster analysis and

factor analysis, which can suffer from many problems, as pointed out by Zapala & Schork

(2012). Zapala& Schork (2006, 2012) incorporated a distancematrix tomodify the standard

MANOVA, but they commented that very little published material exists that can be used

to guide a researcher as to which distance measure is the most appropriate for a given situa-

tion. Motivated by these real-world applications, we aim to develop a general methodology

for high-dimensional MANOVA and lay a theoretical foundation for assessing statistical

significance.

The testing problem (3) for model (2) is closely related to a group of high-dimensional

hypothesis tests. The two-sample mean test, for testing H0 : μ1 = μ2 where μ1 ∈ R
d and

μ2 ∈ R
d are the mean vectors of two different populations, is a special case with p = 2,

B = (μ1,μ2)
T and C = (1,−1). There is a large literature on implementting the Hotelling

T2-type statistic in high-dimensional situations where d is large; see, for example, Bai &

Saranadasa (1996), Chen&Qin (2010) and Srivastava et al. (2013), amongmany others. This

approach can be generalized to test the equality of multiplemean vectors in high dimensions.
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High-dimensional analysis of variance 3

Notable works include Schott (2007), Cai & Xia (2014), Hu et al. (2017), Li et al. (2017),

Zhang et al. (2017) and Zhou et al. (2017). In most existing work, the random samples are

assumed to be Gaussian or to follow some linear structure such as that of Bai & Saranadasa

(1996). In contrast, the testing problem we are interested in is much more general. First, all

the aforementioned high-dimensional mean test problems can be fitted into our framework

and, further, we can deal with the more general multivariate linear regression in the presence

of an increasing number of predictor variables. Second, we do not assume Gaussianity or

any particular structure of the error vectors {Vi}ni=1.

Throughout the paper, we assume p < n and that the design matrix X is of full column

rank so that XTX is invertible. The conventional MANOVA test statistic for (3) is

Qn = |PY |2
F

=
n

∑

i=1

n
∑

j=1

PijY
T
i Yj,

where | · |F stands for the Frobenius norm and

P = X(XTX)−1CT{C(XTX)−1CT}−1C(XTX)−1XT = (Pij)n×n

is the orthogonal projection matrix onto the column space of the matrix X(XTX)−1CT. We

reject the null hypothesis H0 if Qn is larger than some critical value. In the univariate case

where d = 1, the asymptotic behaviour of Qn has been extensively studied; see Götze &

Tikhomirov (1999, 2002) for detailed discussions. The validity of performing a test for (3)

using Qn when d is large has been an open question for a long time. The first goal of the

present paper is to provide a solution to this problem by rigorously establishing a distribu-

tional approximation for the traditional MANOVA test statistic when d is allowed to grow

with n. Our key tool is the Gaussian approximation for degenerate U-type statistics: under

fairly mild moment conditions, quadratic functionals of non-Gaussian random vectors can

be approximated by those of Gaussian vectors with the same covariance structure. Chen

(2018) established a Gaussian approximation result for high-dimensional nondegenerateU-

statistics by Stein’s method, which cannot be applied to the degenerate case considered here.

From a technical point of view, we employ completely different arguments to bound the

distance between the distribution functions of the test statistic and its Gaussian analogue.

The main contributions of this paper are three-fold. First, we develop a systematic the-

ory for the conventional MANOVA test statistic Qn in the high-dimensional setting. More

specifically, we establish a dichotomy result:Qn can be approximated either by a linear com-

bination of independent chi-squared random variables or by a normal distribution under

different conditions; see Theorem 1. While this reveals the interesting theoretical proper-

ties of the test statistics, it causes difficulties in applications as one may not know which

asymptotic distribution to use in practice. To overcome this difficulty, as the second main

contribution of our paper, we propose a new U-type test statistic. Using this modified test

statistic, such a dichotomy does not appear; see Theorem 2 for the asymptotic result. Third,

we propose a new estimator for the second spectral moment of the covariance matrix via a

data-splitting technique. To the best of our knowledge, this is the first work dealing with an

unbiased and ratio-consistent estimator in the multivariate linear regression model.

2. Theoretical results

2.1. Notation and assumptions

Wenow introduce some notation. Let I(·) denote the indicator function. For randomvari-

ables X ∈ R and Y ∈ R, the Kolmogorov distance is defined by ρ(X ,Y) = supz∈R |pr(X �
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4 Z. Lou, X. Zhang and W. B. Wu

z) − pr(Y � z)|. For q > 0, we write ‖X‖q = {E(|X |q)}1/q if E(|X |q) < ∞. For two

matricesA = (aij)i�I , j�J andB = (bij)i�I , j�J ,A◦B = (aijbij)i�I , j�J denotes theirHardmard

product. For any positive integerm, we use Im to denote them×m identity matrix. For two

sequences of positive numbers (an) and (bn), we write an � bn if there exists some constant

C such that an � Cbn for all large n. We useC,C1,C2,… to denote positive constants whose

values may differ at different places.

Let λ1(�) � · · · � λd(�) � 0 denote the eigenvalues of � = cov(V1), and let ς =
|�|F =

{
∑d

k=1 λ2
k
(�)

}1/2
. For q � 2, we define

Mq = E

(

∣

∣

∣

∣

VT

1V2

ς

∣

∣

∣

∣

q
)

and Lq = E

(

∣

∣

∣

∣

VT

1�V1

ς2

∣

∣

∣

∣

q/2
)

.

Assumption 1. For the diagonal elements P11,…,Pnn of the matrix P,

1

m

n
∑

i=1

P2
ii → 0

as n → ∞.

Remark 1. Assumption 1 is quite natural and mild for testing (3). For instance, it

automatically holds for the one-sample test of the mean vector as m−1
∑n

i=1 P
2
ii = 1/n.

Additionally, in the context of theK-sample test, as discussed in § 3.1, Assumption 1 is satis-

fied as long as the minimum sample size goes to infinity.More generally, since
∑n

i=1 Pii = m,

a simple sufficient condition for Assumption 1 would be max1�i�n Pii → 0. Further

discussion of this condition can be found in Remark 6 and Example 1.

2.2. Asymptotic distribution of the conventional MANOVA test statistics

Under the null hypothesis CB = 0, PXB = X(XTX)−1CT{C(XTX)−1CT}−1CB = 0 and

hence Qn = |PXB+ PV |2
F

H0= |PV |2
F
, which can be further decomposed as

Qn
H0=

n
∑

i=1

n
∑

j=1

PijV
T
i Vj =

n
∑

i=1

PiiV
T
i Vi +

n
∑

i=1

∑

j |=i
PijV

T
i Vj =: Dn +Q�

n. (4)

Observe that Dn is a weighted sum of independent and identically distributed random vari-

ables, and Q�
n is a second-order nondegenerate U-statistic of high-dimensional random

vectors. These two terms can be differently distributed in the high-dimensional setting.More

specifically, sinceDn andQ
�
n are uncorrelated, we have var(Qn) = var(Dn)+ var(Q�

n), where

var(Dn) =
n

∑

i=1

P2
ii‖E0(V

T

1V1)‖22, var(Q�
n) = 2

(

m−
n

∑

i=1

P2
ii

)

ς2,

withE0(V
T

1V1) = VT

1V1−E(VT

1V1). When the dimension d increases with the sample size n,

the magnitudes of var(Dn) and var(Q�
n) can be quite different for non-Gaussian {Vi}ni=1; see

Example 2. As a consequence, Qn can exhibit different asymptotic null distributions. More

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/b

io
m

e
t/a

s
a
d
0
0
1
/6

9
9
1
1
6
5
 b

y
 T

e
x
a
s
 A

&
M

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

2
 J

u
n
e
 2

0
2
3



High-dimensional analysis of variance 5

precisely, to asymptotically quantify the discrepancy between var(Dn) and var(Q�
n), under

Assumption 1 we define

�2 =
∑n

i=1 P
2
ii‖E0(V

T

1V1)‖22
mς2

.

Before presenting the distributional theory forQn, we first define its Gaussian analogue. Let

Z1,…,Zn be independent and identically distributedN(0,�)Gaussian random vectors and

writeZ = (Z1,…,Zn)
T. Then the Gaussian analogue of Qn is defined as the same quadratic

functional of {Zi}ni=1,

Gn = |PZ|2
F

=
n

∑

i=1

n
∑

j=1

PijZ
T
i Zj. (5)

THEOREM 1. Let q = 2 + δ, where 0 < δ � 1. Suppose that Assumption 1 holds and

	q =
∑n

i=1

∑

j |=i |Pij|q

mq/2
Mq +

∑n
i=1 P

q/2
ii

mq/2
Lq → 0. (6)

(i) Assume � → 0. Then under (6) and the null hypothesis,

ρ(Qn,Gn) � C1�
2/5 + Cq	

1/(2q+1)
q + C2

(

1

m

n
∑

i=1

P2
ii

)1/5

→ 0.

(ii) Assume� → ∞ and that the Lindeberg condition holds forWi = E0(PiiV
T
i Vi)/(�ς

√
m),

i.e.,
∑n

i=1 E{W2
i I(|Wi| > ε)} → 0 for any ε > 0. Then under the null hypothesis,

Qn −m tr(�)

�ς
√
m

⇒ N(0, 1).

Remark 2. Theorem 1 illustrates an interesting dichotomy: the conventional MANOVA

test statisticQn can have one of two different asymptotic null distributions, depending on the

magnitude of the unknown quantity �. This dichotomy poses extra difficulties for usingQn

to test (3) in practical situations, as we need to predetermine which asymptotic distribution

to use. Any subjective choice may lead to an unreliable conclusion. To illustrate this, suppose

� → 0. For α ∈ (0, 1), letG−1
n (α) denote the (1−α)th quantile of Gn. Based on Theorem 1,

an α-level test for (3) is �0 = I{Qn > G−1
n (α)}. However, if one implements �0 in the case

where � → ∞, then the Type I error of �0 is such that pr(�0 = 1 | H0) → 1/2, which

implies that �0 in this scenario, i.e., � → ∞, is no better than random guessing.

Remark 3. Recently much attention has been paid to studying the dichotomy and similar

phase transition behaviour of the asymptotic distributions of classical tests in the high-

dimensional setting. For instance, Xu et al. (2019) studied Pearson’s chi-squared test in

the scenario, where the number of cells can increase with the sample size and demon-

strated that the corresponding asymptotic distribution can be either chi-squared or normal.

He et al. (2021) derived the phase transition boundaries for several standard likelihood ratio
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6 Z. Lou, X. Zhang and W. B. Wu

tests on multivariate mean and covariance structures of Gaussian random vectors. In addi-

tion to these tests, we suspect that similar phenomena can occur for many other traditional

tests as the dimension increases with the sample size. More importantly, investigating the

phase transition phenomena of classical tests, not only contributes to their theoretical devel-

opment, but also provides motivation for proposing new test procedures andmore advanced

approximation distributional theory that are suitable for the high-dimensional scenario.

The following lemma establishes an upper bound for 	q.

LEMMA 1. Assuming that Mq < ∞, we have

	q < 2

(

1

m
max
1�i�n

Pii

)δ/2

Mq.

Remark 4. Condition (6) can be viewed as a Lyapunov-type condition for high-

dimensional Gaussian approximation of Qn. It is quite natural and does not directly impose

any explicit restriction on the relation between the dimension d and the sample size n. In par-

ticular, (6) can be dimension-free for some commonly used models; namely, (6) holds for an

arbitrary dimension d � 1 as long as n → ∞. For example, suppose that {Vi}ni=1 follow the

linear process model

Vi = Aξi (i = 1,…, n), (7)

whereA is a d×Lmatrix for some integerL � 1 and ξi = (ξi1,…, ξiL)T, with {ξi�}i, �∈N being

independent zero-mean random variables having var(ξi�) = 1 for each � ∈ N and uniformly

bounded qth moments max1���L E(|ξi�|q) � C < ∞. Applying the Burkholder inequality

leads toMq � (1 + δ)qmax1���L ‖ξi�‖2qq . Consequently, Lemma 1 reveals that a sufficient

condition for 	q → 0 is

1

m
max
1�i�n

Pii → 0. (8)

Statement (8) depends only on the projection matrix P and does not impose any restriction

on the dimension d. Moreover, under Assumption 1, (8) is automatically satisfied in view of

max1�i�n(Pii/m)2 � m−2
∑n

i=1 P
2
ii → 0.

2.3. Modified U-type test statistics

The dichotomous nature of the asymptotic null distribution makes Qn unsuitable for

testing (3) in the high-dimensional setting. This motivates us to propose a modified U-type

test statistic of Qn for which such a dichotomy does not occur. Let B0 ∈ R
p×d denote the

coefficient matrix of model (2) under the null hypothesis such that CB0 = 0 and Y
H0=

XB0 + V . Motivated by Theorem 1, a natural candidate for the test statistic Qn would be

Qn, 0 = Qn −
n

∑

k=1

Pkk(Yk − BT

0Xk)
T(Yk − BT

0Xk), (9)

which coincides withQ�
n in (4) under the null hypothesis. However,B0 is unknown in practice

and hence Qn, 0 is infeasible. The primary goal of this section is to propose a consistent
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High-dimensional analysis of variance 7

empirical approximation Un for Qn, 0. In particular, motivated by the discussions in § 2.2,

the modified test statistic Un should satisfy

Un
H0=

n
∑

i=1

∑

j |=i
KijV

T
i Vj,

Un −Qn,0

{var(Qn, 0)}1/2
H0= opr(1)

for some symmetric matrixK = (Kij)n×n. The latter ensures thatUn is asymptotically equiv-

alent to Qn, 0 in (9). Towards this end, let B̂0 be the least-squares estimator of B under the

constraint CB = 0. Then Y − XB̂0 = (In − P0)Y , where P0 = X(XTX)−1XT − P is the

projectionmatrix of model (2) under the null hypothesis. In view of (9), the modifiedU-type

test statistic is then defined by

Un = Qn −
n

∑

k=1

θk(Yk − B̂T

0Xk)
T(Yk − B̂T

0Xk)

H0=
n

∑

i=1

(

Pii −
n

∑

k=1

θkP̄
2
ik,0

)

VT
i Vi +

n
∑

i=1

∑

j |=i

(

Pij −
n

∑

k=1

θkP̄ik, 0P̄jk, 0

)

VT
i Vj

=
n

∑

i=1

∑

j |=i

(

Pij −
n

∑

k=1

θkP̄ik, 0P̄jk, 0

)

VT
i Vj, (10)

where P̄0 = In − P0 = (P̄ij, 0)n×n and the last equality follows by taking θ1,…, θn to be the

solutions of the linear equations

n
∑

k=1

P̄2
ik, 0θk = Pii (i = 1,…, n). (11)

Typically, the θk in (10) are not Pkk, as one would naturally like to use in view of (9). We

can view (11) as a detailed balanced condition as it removes the diagonals in (10). Let θ =
(θ1,…, θn)

T and rewrite (11) in the more compact matrix form

(P̄0 ◦ P̄0)θ = (P11,…,Pnn)
T. (12)

Let Pθ = P− P̄0Dθ P̄0 = (Pij, θ )n×n, where Dθ = diag(θ1,…, θn) is a diagonal matrix. Then

Pii, θ = 0 for all i = 1,…, n in view of (12) and

Un
H0= tr(VTPθV) =

n
∑

i=1

∑

j |=i
Pij, θV

T
i Vj.

Before proceeding, we introduce a sufficient condition for Un to exist and be well-defined.

LEMMA 2. Assume there exists a positive constant �0 < 1/2 such that

max
1�i�n

Pii, 0 � �0. (13)
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8 Z. Lou, X. Zhang and W. B. Wu

Then the matrix P̄0◦P̄0 is strictly diagonally dominant and |Pθ |2F = m−
∑n

i=1 θiPii. Moreover,

if max1�i�n Pii � �1ζ for some positive constant �1 < 1/2, where ζ = (1 − 2�0)(1 − �0),

then max1�i�n |θi| � �1 < 1/2.

Remark 5. Condition (13) ensures that the matrix P̄0 ◦ P̄0 is invertible. Consequently,

the solution θ to (12) exists and is unique. Here θ is independent of the dimension d, and

depends only on the projection matrices P and P0. Moreover, as shown in the proof of

Lemma 2,

n
∑

i=1

θiPii �
1

ζ

n
∑

i=1

P2
ii, max

1�i�n
|θi| �

1

ζ
max
1�i�n

Pii,

which are essential for bounding from above the quantity 	q, θ in Lemma 3 below. Conse-

quently, under Assumption 1, supposing that
∑n

i=1 P
2
ii � mζ/2 for sufficiently large n, we

obtain

var(Un) = 2|Pθ |2Fς2 = 2

(

m−
n

∑

i=1

θiPii

)

ς2 > mς2,

which ensures that the proposed test statistic Un is nondegenerate and well-defined.

Remark 6. Since col(X(XTX)−1CT) ⊂ col(X), where col(·) denotes the column space,

P0 = X(XTX)−1XT − P defined above is also a projection matrix. Hence max{Pii,Pii, 0} �
XT
i (XTX)−1Xi uniformly for i ∈ {1,…, n}, and a sufficient condition for Lemma 2 would be

max
1�i�n

XT
i (XTX)−1Xi � min{�0, (1 − 2�0)(1 − �0)�1}, (14)

which is a fairly mild condition on the design matrix X . More specifically, for the

linear regression model it is commonly assumed (Huber, 1973; Portnoy, 1985; Wu,

1986; Shao & Wu, 1987; Shao, 1988; Mammen, 1989; Navidi, 1989; Lahiri, 1992) that

max1�i�nX
T
i (XTX)−1Xi → 0, which ensures a kind of ‘robustness of design’ (Huber, 1973).

It also implies Assumption 1 in view of Remark 1 and can be viewed as an imbalance

measure for model (2) (Shao & Wu, 1987).

Example 1. Suppose that X1,…,Xn are independent Gaussian random vectors N(0,�),

where the covariance matrix � ∈ R
p×p has minimal eigenvalue λmin(�) > 0. Then, with

probability at least 1 − 2 exp(−n/2) − n−1,

max
1�i�n

XT
i (XTX)−1Xi �

9p+ 18(2p log n)1/2 + 36 log n

n
. (15)

Consequently, condition (14) holds with high probability as long as p/n is sufficiently small.

PROPOSITION 1. Under the conditions of Lemma 2, we have E(Un) � 0. In particular,

E(Un) = 0 ⇐⇒ CB = 0.
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High-dimensional analysis of variance 9

2.4. Asymptotic distribution of the modified test statistics

The primary goal of this section is to establish aGaussian approximation for themodified

test statistic Un. Following (5), the Gaussian analogue of Un is defined by

Gn = tr(ZTPθZ) =
n

∑

i=1

∑

j |=i
Pij, θZ

T
i Zj.

The following theorem establishes a non-asymptotic upper bound on the Kolmogorov dis-

tance between the distribution functions of Un and its Gaussian analogue Gn. Compared

with Theorem 1, it reveals that the modification of the test statistic Qn in (10) removes the

dichotomous nature of its asymptotic null distribution.

THEOREM 2. Let q = 2 + δ, where 0 < δ � 1. Assume that (13) holds and that

	q, θ =
∑n

i=1

∑

j |=i |Pij, θ |q

mq/2
Mq +

∑n
i=1(

∑

j |=i P
2
ij, θ )

q/2

mq/2
Lq → 0.

Then under Assumption 1 and the null hypothesis,

ρ(Un,Gn) � Cq	
1/(2q+1)
q, θ + C

(

1

m

n
∑

i=1

P2
ii

)1/5

→ 0.

Similar to Lemma 1, we establish an upper bound for 	q, θ in the following lemma.

LEMMA 3. Under the conditions of Lemma 2,

	q, θ �

(

1

m
max
1�i�n

Pii

)δ/2

Mq.

For α ∈ (0, 1), Proposition 1 and Theorem 2 motivate an α-level test for (3) as follows:

�θ = I

(

Un

ς |Pθ |F
√
2

> c1−α

)

, (16)

where c1−α is the (1 − α)th quantile of the standardized Gn/{var(Gn)}1/2.

Remark 7. The approximating distribution Gnmay ormay not be asymptotically normal.

Let λ1(Pθ ),…, λn(Pθ ) denote the eigenvalues of the symmetric matrixPθ . Being a quadratic

functional of Gaussian random vectors {Zi}ni=1, Gn is distributed as a linear combination of

independent chi-squared random variables,

Gn
D=

d
∑

k=1

n
∑

i=1

λk(�)λi(Pθ )ηik(1) =
d

∑

k=1

n
∑

i=1

λk(�)λi(Pθ ){ηik(1) − 1},

where {ηik(1)}i, k∈N are independent χ2
1 random variables and the last equality follows from

the fact that
∑n

i=1 λi(Pθ ) =
∑n

i=1 Pii, θ = 0. More specifically, the Lindeberg–Feller central

limit theorem and Lemma 2 imply that Gn/{var(Gn)}1/2 ⇒ N(0, 1) if and only if

λ1(�)

ς
√
m

→ 0. (17)
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10 Z. Lou, X. Zhang and W. B. Wu

Consequently, c1−α in (16) is asymptotically equal to the standard normal quantiles

whenever (17) holds.

When m → ∞, condition (17) automatically holds for arbitrary dimensions d � 1 as

λ1(�) � ς . Otherwise, (17) is equivalent to tr(�4)/ς4 → 0, which is a common assump-

tion for ensuring the asymptotic normality of high-dimensional quadratic statistics; see, for

example, Bai & Saranadasa (1996), Chen & Qin (2010), Cai & Ma (2013), Yao et al. (2018)

and Zhang et al. (2018), among others. In particular, it reveals that the asymptotic null dis-

tribution of Un can be nonnormal if (17) is violated. For example, let Y1,…,Yn ∈ R
d be

independent and identically distributed random vectors with mean vector μY = E(Y1),

and consider testing whether μY = 0. Assume that � = cov(Y1) = (�jk)d×d has entries

�jk = ϑ + (1 − ϑ) I{j = k} for some constant ϑ ∈ (0, 1). Then λ1(�)/(ς
√
m) → 1 and it

follows from Theorem 2 that

Un

{var(Un)}1/2
=

∑n
i=1

∑

j |=i Y
T
i Yj

ς{2n(n− 1)}1/2
H0⇒

χ2
1 − 1
√
2

.

The simulation study in § 5 shows that our Gaussian multiplier bootstrap approach has

satisfactory performance regardless of whether Un is asymptotically normal or not.

3. Applications

3.1. High-dimensional one-way MANOVA

Let {Yij}nij=1 for i = 1,…,K be K � 2 independent samples following the model

Yij = μi + Vij (j = 1,…, ni; i = 1,…,K),

where μ1,…,μK ∈ R
d are unknown mean vectors of interest, and {Vij}j∈N are independent

and identically distributed d-dimensional random vectors with E(Vi1) = 0 and cov(Vi1) =
�. We are interested in testing the equality of theK mean vectors, i.e., testing the hypotheses

H0 : μ1 = · · · = μK versus H1 : μi |= μl for some 1 � i |= l � K.

Following the construction of (10), we propose the U-type test statistic

UnK =
K

∑

i=1

Pii,K

ni
∑

j=1

∑

k |=j
YT
ijYik +

K
∑

i=1

∑

l |=i
Pil,K

ni
∑

j=1

nl
∑

k=1

YT
ijYlk, (18)

where n =
∑K

i=1 ni is the total sample size and

Pii,K = 1

n− 2

(

n

ni
− n+ K − 2

n− 1

)

, Pil,K = 1

n− 2

(

1

ni
+ 1

nl
− n+ K − 2

n− 1

)

.

In the context of two-sample tests for mean vectors, where K = 2, UnK in (18) reduces to

UnK =
∑n1

i=1

∑

j |=i
∑n2

k=1

∑

l |=k(Y1i − Y2k)
T(Y1j − Y2l)

(n− 1)(n− 2)n1n2/n
,

which coincides with the commonly used U-type test statistic (Chen & Qin, 2010).
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High-dimensional analysis of variance 11

For each i ∈ {1,…,K}, let {Zij}j∈N be independent and identically distributed centred

Gaussian random vectors with covariancematrix cov(Zij) = �. Following (5), theGaussian

analogue of UnK is defined by

GnK =
K

∑

i=1

Pii,K

ni
∑

j=1

∑

k |=j
ZT
ijZik +

K
∑

i=1

∑

l |=i
Pil,K

ni
∑

j=1

nl
∑

k=1

ZT
ijZlk.

Let nmin = min1�l�K nl. Since max1�i�n Pii � n−1
min

, Assumption 1 holds as long as

nmin → ∞. The following proposition establishes a non-asymptotic upper bound on the

Kolmogorov distance between the distribution functions of UnK and GnK .

PROPOSITION 2. Let q = 2 + δ for some 0 < δ � 1. Assume that nmin → ∞ and

M̃q = max
1�l, l′�K

E

(

∣

∣

∣

∣

VT

l1
Vl′2

ς

∣

∣

∣

∣

q
)

< ∞, ς = |�|F.

Then under the null hypothesis,

ρ(UnK ,GnK) � Cq
(

M̃qn
−δ/2

min

)1/(2q+1) → 0.

Remark 8. Both the dimension d and the number of groups K can grow with the total

sample size n. In particular, as discussed in Remark 4, if all K samples follow the linear

process model in (7), then ρ(UnK ,GnK) → 0 as long as nmin → ∞.

3.2. High-dimensional nonparametric one-way MANOVA

For each i ∈ {1,…,K}, let Fi denote the distribution function of Yi1. We consider the

problem of testing whether theseK independent samples are equally distributed, i.e., testing

the hypotheses

H0 : F1 = · · · = FK versus H1 : Fi |= Fl for some 1 � i |= l � K. (19)

Being fundamental and important in statistical inference, (19) has been extensively studied;

see, for example, Kruskal &Wallis (1952), Akritas & Arnold (1994), Brunner & Puri (2001),

Rizzo&Székely (2010) andThas (2010), amongmany others. However, all these works focus

on the traditional low-dimensional scenario, and testing (19) for high-dimensional random

vectors has been much less studied. In this section, we propose a newU-type test statistic for

(19), following the intuition of (10), and establish the corresponding distributional theory.

In particular, our asymptotic framework is fairly general, and allows both the dimension d

and the number of groups K to grow with n.

To begin with, for each i ∈ {1,…,K} let φi(t) = E{exp(ıtTYij)} denote the characteristic
function of Yij, where ı stands for the imaginary unit. Then testing (19) is equivalent to

testing the hypotheses

H0 : φ1 = · · · = φK versus H1 : φi |= φl for some 1 � i |= l � K. (20)

Write Yij(t) = exp(ıtTYij). Similar to (18), our test statistic for (20) is defined by

ŨnK =
K

∑

i=1

Pii,K

ni
∑

j=1

∑

k |=j

∫

Yij(t)Yik(t)w(t) dt
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12 Z. Lou, X. Zhang and W. B. Wu

+
K

∑

i=1

∑

l |=i
Pil,K

ni
∑

j=1

nl
∑

k=1

∫

Yij(t)Ylk(t)w(t) dt,

where w(t) � 0 is a suitable weight function such that the integrals above are well-defined.

Discussions of some commonly used weight functions are given in Remark 9.

Before proceeding, we define the Gaussian analogue of ŨnK under the null hypothesis

that the K samples are equally distributed. Define the covariance function of Y11(t) as

�(t, s) = E{Y11(t) − φ1(t)}{Y11(s) − φ1(s)} = φ1(t− s) − φ1(t)φ1(−s) (t, s ∈ R
d).

Throughout this section, by Mercer’s theorem, we assume that this covariance function

admits the eigendecomposition

�(t, s) =
∞
∑

m=1

λmϕm(t)ϕm(s) (t, s ∈ R
d),

where λ1 � λ2 � · · · � 0 are eigenvalues and ϕ1,ϕ2,… are the corresponding eigenfunc-

tions. We now apply the Karhunen–Loève theorem. Let {Zijk}i, j, k∈N be independent stan-

dard normal random variables and define Gaussian processes

Zij(t) =
∞
∑

m=1

λ
1/2
m Zijmϕm(t) (t ∈ R

d).

Then, following (5), the Gaussian analogue of ŨnK is defined by

G̃nK =
K

∑

i=1

Pii,K

ni
∑

j=1

∑

k |=j

∫

Zij(t)Zik(t)w(t) dt

+
K

∑

i=1

∑

l |=i
Pil,K

ni
∑

j=1

nl
∑

k=1

∫

Zij(t)Zlk(t)w(t) dt.

PROPOSITION 3. Let q = 2 + δ for some 0 < δ � 1. Assume that nmin → ∞ and

M̃q = E

[ ∣

∣

∣

∣

∣

∫

E0{Y11(t)}E0{Y12(t)}w(t) dt

F

∣

∣

∣

∣

∣

q ]

< ∞, F2 =
∞
∑

m=1

λ2m.

Then under the null hypothesis that these K independent samples are equally distributed,

ρ(ŨnK , G̃nK) � Cq
(

M̃qn
−δ/2

min

)1/(2q+1) → 0.

Remark 9. The proposed test statistic ŨnK contains a high-dimensional integral over

t ∈ R
d , which can be computationally intractable in practice. To make ŨnK well-defined

and facilitate the computation, we shall choose a suitable weight function w(t) such that

ŨnK has a simple closed-form expression. In the literature, various kinds of weight functions

have been proposed, such as the Gaussian kernel function (Gretton et al., 2012), the Laplace
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High-dimensional analysis of variance 13

kernel function (Gretton et al., 2012) and the energy kernel function (Székely et al., 2007;

Rizzo & Székely, 2010). For instance, let w(t) denote the density function of the random

vector Xκ/
√

η for some κ > 0, where X ∼ N(0, Id) and η ∼ χ2
1 are independent or, equiva-

lently, Xκ/
√

η is a Cauchy random variable with location parameter 0 and scale parameter

κ. Then it is straightforward to verify that

∫

Yij(t)Ylk(t)w(t) dt =
∫

cos{tT(Yij − Ylk)}w(t) dt = exp(−κ|Yij − Ylk|),

which is the same as the Laplace kernel function with bandwidth 1/κ, where | · | stands
for the Euclidean distance. A more general result can be derived using Bochner’s theorem

(see, e.g., Gretton et al., 2009, Theorem 3.1). Consequently, the proposed test statistic ŨnK

reduces to

ŨnK =
K

∑

i=1

Pii,K

Ni
∑

j=1

∑

k |=j
exp(−κ|Yij − Yik|) +

K
∑

i=1

∑

l |=i
Pil,K

Ni
∑

j=1

Nl
∑

k=1

exp(−κ|Yij − Ylk|),

which is fairly convenient to compute in practice. Moreover, a suitable choice of the weight

function w(t) will also facilitate analysis of the quantities Mq and F .

4. Practical implementation

In this section, we propose an unbiased estimator for ς2, which is ratio-consistent under

fairly mild moment conditions. To begin with, since E(VT
i Vj)

2 = ς2 for any i |= j, a natural

unbiased U-type estimator for ς2 based on {Vi}ni=1 would be

ς̂2
o = 1

n(n− 1)

n
∑

i=1

∑

j |=i
(VT

i Vj)
2. (21)

Let P̄1 = In − X(XTX)−1XT = (Pij, 1)n×n and V̂ = P̄1Y = (V̂1,…, V̂n)
T. Directly substi-

tuting the residual vectors {V̂i}ni=1 into (21) yields a feasible but generally biased estimator

for ς2. More specifically, for any i |= j,

E(V̂T
i V̂j)

2 = (P̄ii, 1P̄jj, 1 + P̄2
ij, 1)ς

2 + P̄2
ij, 1E(VT

1V1)(V
T

2V2)

+
n

∑

k=1

(P̄ik, 1P̄jk, 1)
2
{

‖E0(V
T

1V1)‖22 − 2ς2
}

,

which reveals that (V̂T
i V̂j)

2 is no longer unbiased for ς2 even after proper scaling. This

motivates us to propose a new unbiased estimator for ς2 via data-splitting, which excludes

the bias terms (VT
i Vi)

2 and (VT
i Vi)(V

T
j Vj). Without loss of generality, we assume that the

sample size n is even in what follows.

Step 1. Randomly split {1,…, n} into two halves,A andAc. LetMA = {(Xi,Yi), i ∈ A}
and MAc = {(Xi,Yi), i ∈ Ac}.
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14 Z. Lou, X. Zhang and W. B. Wu

Step 2. For both MA and MAc , fit model (1) with the least-squares estimates and

compute

�̂A = 1

n/2 − p
V̂T
AV̂A, �̂Ac = 1

n/2 − p
V̂T
AcV̂Ac ,

where V̂A and V̂Ac are the residual matrices of MA and MAc , respectively.

Step 3. Compute the estimator ς̂2
A

= tr(�̂A�̂Ac).

Since �̂A and �̂Ac are independent and both are unbiased estimators of �, ς̂2
A
is unbiased

for ς2 as E(ς̂2
A
) = tr{E(�̂A)E(�̂Ac)} = tr(�2) = ς2.

THEOREM 3. Assume that p/n < �2 for some positive constant �2 < 1/2, and that the

least-squares estimates are well-defined for bothMA andMAc . Then

E

(

∣

∣

∣

∣

ς̂A

ς
− 1

∣

∣

∣

∣

2
)

�
M4

n2
+ p× tr(�4)

n2ς4
+

‖E0(V
T

1�V1)‖22
nς4

.

Remark 10. The proof of Theorem 3 is given in the Supplementary Material, where a

more general upper bound on E(|ς̂A/ς − 1|τ ) is established for 1 < τ � 2. Theorem 3

reveals that ς̂A is ratio-consistent under mild moment conditions. Suppose now that {Vi}i∈N
follow the linear process model (7) with max1���L E(|ξi�|4) � C < ∞. ThenM4 is bounded

and ‖E0(V
T

1�V1)‖22 � tr(�4). Consequently,

E

(

∣

∣

∣

∣

ς̂A

ς
− 1

∣

∣

∣

∣

2
)

� n−2 + tr(�4)

nς4
.

In this case, ς̂A is ratio-consistent for arbitrary dimensions d � 1 as long as n → ∞.

Remark 11. There are a total of
( n
n/2

)

different ways of splitting {1,…, n} into two halves.

To reduce the influence of randomness of an arbitrary splitting, we can repeat the procedure

independently multiple times and then take the average of the resulting estimators. We refer

to Fan et al. (2012) for more discussion about data-splitting and repeated data-splitting.

Remark 12. Let �̂ = (n−p)−1V̂TV̂ . Observe thatE(V̂T
i V̂j) = P̄ij, 1tr(�).We can estimate

ς2 via

ς̂2
S =

∑n
i, j=1 |V̂T

i V̂j − P̄ij, 1tr(�̂)|2

(n− p+ 2)(n− p− 1)
= (n− p)2

(n− p+ 2)(n− p− 1)

[

|�̂|2
F

− {tr(�̂)}2
n− p

]

,

which is the same as the estimator proposed in Srivastava & Fujikoshi (2006), where {Vi}ni=1
are assumed to be Gaussian random vectors. See also Bai & Saranadasa (1996). However,

for non-Gaussian {Vi}ni=1 such that ‖E0(V
T

1V1)‖22 |= 2ς2, this estimator is generally biased

as

E(ς̂2
S) − ς2 =

∑n
i=1 P̄

2
ii, 1

(n− p)(n− p+ 2)

{

‖E0(V
T

1V1)‖22 − 2ς2
}

.

In particular, the bias of ς̂2
S can diverge when ‖E0(V

T

1V1)‖22 is much larger than ς2. Below

we provide an example that typifies the diverging bias.
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Fig. 1. Empirical averages of the values of |ς̂/ς − 1| for ς̂A (circles), ς̂o (solid line) and ς̂S (crosses) with
(a) ϑ = 0.3 and (b) ϑ = 0.7.

Example 2. Let {ξi}i∈N and {ξ ′
i }i∈N be two sequences of independent Gaussian random

vectors N(0,�), where � = (�ij)n×n has entries �ij = ϑ |i−j| for some ϑ ∈ (0, 1). Follow-

ing Wang et al. (2015), we draw independent and identically distributed innovations {Vi}ni=1
from a scale mixture of two independent multivariate Gaussian distributions as follows:

Vi = νi × ξi + 3(1 − νi) × ξ ′
i (i = 1,…, n),

where {νi}i∈N are independent Bernoulli random variables with pr(νi = 1) = 0.9. A simula-

tion study is conducted in § 5 where we set ϑ = 0.3 and 0.7. We report in Fig. 1 the average

values of |ς̂/ς − 1| for ς̂A, ς̂o and ς̂S, based on 1000 replications with the numerical set-up

(n, p,m) = (100, 20, 10) and d = 200, 400, 800, 1000, 1200. For both cases of ϑ , |ς̂A/ς − 1|
and |ς̂o/ς − 1| are very close to 0, while |ς̂S/ς − 1| is quite large. More precisely, we can

derive that ‖E0(V
T

1V1)‖22 
 (18 + d)ς2.

Substituting the ratio-consistent estimator ς̂2
A
into var(Un) = 2|Pθ |2Fς2 yields the central

limit theorem Un/(ς̂A|Pθ |F) ⇒ N(0, 2) under (17). Then, for α ∈ (0, 1), an asymptotic

α-level test is

�Z = I

(

Un

ς̂A|Pθ |F
√
2

> z1−α

)

, (22)

where z1−α is the (1 − α)th quantile of the standard normal distribution.

5. Simulation study

In this section, we conduct a Monte Carlo simulation study to assess the finite-sample

performance of the proposed tests. In model (1), we write Xi = (1, xT
i )

T ∈ R
p to include

an intercept. Here x1,…, xn ∈ R
p−1 are independent and identically distributed N(0, Ip−1)
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16 Z. Lou, X. Zhang and W. B. Wu

random vectors. Let m < p. For k ∈ {1,…, p − m}, all entries of the coefficient vector Bk
are independent and identically distributed uniform random variables in the interval (1, 2).

After those Bk are generated, we keep their values throughout the simulation. Our goal is

to identify the zero Bk entries by testing

H0 : Bp−m+1 = Bp−m+2 = · · · = Bp = 0.

In our simulation, we set (p,m) = (20, 10), n = 100, 200 and d = 400, 800, 1200. We con-

sider two different designs of the innovations (Vi): the one introduced in Example 2 and the

one in Example 3 below. In both examples, the parameter ϑ is set to 0.3 and 0.7.

Example 3. Let {ξij}i, j∈N be independent and identically distributed random variables

with E(ξ11) = 0 and var(ξ11) = 1. In particular, we consider two cases for (ξij): drawn

from the standardized t5 distribution and from the standardized χ2
5 distribution. For some

ϑ ∈ (0, 1), we generate

Vi = (1 − ϑ)1/2 × ξi + ϑ1/2 × (ξi0, ξi0,…, ξi0)
T (i ∈ N).

We apply a Gaussian multiplier bootstrap approach to implement our proposed test. The

procedure is as follows.

Step 1. Compute the residual matrix V̂ = (V̂1,…, V̂n)
T = P̄1Y . Generate independent

and identically distributed N(0, 1) random variables {ωij}i, j∈N and compute the bootstrap

residuals V� = (V�
1 ,…,V�

n )
T, where

V�
i = 1

(n− p)1/2

n
∑

j=1

ωijV̂i (i = 1,…, n).

Step 2. Use V� to compute ς̂�
A
and the bootstrap test statistic U�

n = tr(V�TPθV
�).

Step 3. Repeat the first two steps independently for B times and collect U�
nk

and ς̂�
Ak

(k = 1,…,B).

Step 4. Let ĉ1−α be the (1−α)th quantile of {U�
nk

/(ς̂�
Ak

|Pθ |F
√
2)}k=1,…,B. Then our test

is

�B = I

(

Un

ς̂A|Pθ |F
√
2

> ĉ1−α

)

,

and we reject the null hypothesis whenever �B = 1.

Similar to Gn,U
�
n is a quadratic functional of independent and identically distributedGauss-

ian random vectors conditional on {X ,Y}, and is distributed as a linear combination of

independent chi-squared random variables. To justify the validity of the proposed Gauss-

ian multiplier bootstrap approach, it suffices to bound the distance between the distribution

functions of these two quadratic functionals, which can be done by verifying the normal-

ized consistency (Xu et al., 2015) of the corresponding covariance matrix. However, this can

be highly nontrivial in the high-dimensional setting and is beyond the scope of the present

paper, so we leave it for future work.
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High-dimensional analysis of variance 17

Table 1. Empirical sizes for Example 2 with α = 0.05

θ = 0.3 θ = 0.7

n d CLT GMB SK CLT GMB SK

100 400 0.057 0.047 0.041 0.059 0.051 0.036

800 0.049 0.045 0.033 0.063 0.056 0.026

1200 0.062 0.055 0.021 0.048 0.045 0.028

200 400 0.056 0.052 0.042 0.052 0.047 0.037

800 0.052 0.049 0.037 0.053 0.050 0.033

1200 0.045 0.044 0.029 0.050 0.046 0.035

CLT, test based on the central limit theorem; GMB, Gaussian multiplier bootstrap approach;

SK, the test of Srivastava & Kubokawa (2013).

Table 2. Empirical sizes for Example 3 with α = 0.05

t5 χ2
5

θ n d CLT GMB SK CLT GMB SK

0.3 100 400 0.068 0.058 0.023 0.083 0.065 0.036

800 0.082 0.066 0.023 0.074 0.058 0.016

1200 0.082 0.068 0.015 0.067 0.053 0.011

200 400 0.073 0.059 0.022 0.067 0.054 0.018

800 0.071 0.057 0.012 0.074 0.058 0.014

1200 0.076 0.059 0.011 0.077 0.058 0.011

0.7 100 400 0.074 0.055 0.002 0.082 0.062 0.002

800 0.084 0.066 0.001 0.085 0.071 0.000

1200 0.073 0.057 0.000 0.076 0.062 0.001

200 400 0.083 0.067 0.001 0.080 0.064 0.000

800 0.068 0.050 0.000 0.075 0.062 0.000

1200 0.070 0.051 0.001 0.074 0.056 0.000

In our simulation, we set the bootstrap size B to 1000. For comparison, we also per-

form the test suggested in (22) based on the central limit theorem and the one proposed by

Srivastava & Kubokawa (2013). For each test, we report the empirical size based on 2000

replications, as displayed in Tables 1 and 2. The results suggest that our proposed test using

the bootstrap procedure provides the best size accuracy in general, as the empirical sizes are

close to the nominal level α.

For Example 2, the tests using the central limit theorem and our Gaussian multiplier

bootstrap method both have better performance than the test of Srivastava & Kubokawa

(2013), since the latter is too conservative as d is large. As expected from our theoretical

results, the normal approximation can work reasonably well in this design.

For Example 3, the Gaussian multiplier bootstrap method outperforms the other two

procedures in size accuracy for all cases. The test of Srivastava & Kubokawa (2013) suffers

from size distortion. The test using the central limit theorem inflates the size more than does

the Gaussian multiplier method, which can be explained by the fact that condition (18) does

not hold and the test based on the central limit theorem fails for Un. More specifically, for

both θ = 0.3 and θ = 0.7, elementary calculations show that λ1(�)/ς → 1. As a result, (17)

is violated as m = 10; see also the comment at the end of § 2.3 for discussion of the non-

normality of Un. To gain insight, in Fig. 2 we display the density plots of Un/{var(Un)}1/2
for n = 100 as well as the density of N(0, 1). As we can see from the plots, the distribution

of Un/{var(Un)}1/2 is skewed to the right for all cases, which explains the inflated sizes of

the test based on the central limit theorem.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
t/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/b

io
m

e
t/a

s
a
d
0
0
1
/6

9
9
1
1
6
5
 b

y
 T

e
x
a
s
 A

&
M

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

2
 J

u
n
e
 2

0
2
3
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Fig. 2. Density plots of Un/{var(Un)}1/2 for d = 400 (solid), d = 800 (short dashed), d = 1200 (dash-dotted)
and N(0, 1) (long dashed).

More simulation studies on the power comparison for these three tests are reported in the

Supplementary Material.

6. Data analysis

We apply the proposed method to two datasets. The first dataset comes from a study

of the impact of the gut microbiome on the host serum metabolome and insulin sensi-

tivity in non-diabetic Danish adults (Pedersen et al., 2016). It consists of measurements

of 1201 metabolites, i.e., 325 serum polar metabolites and 876 serum molecular lipids, on

289 serum samples using mass spectrometry. The cleaned dataset was downloaded from

https://bitbucket.org/hellekp/clinical-micro-meta-integration

(Pedersen et al., 2018). We use this dataset to identify metabolites associated with insulin

resistance. Insulin resistance was estimated by the homeostatic model assessment (Peder-

sen et al., 2016). Body mass index, BMI, is a confounder for this dataset since it is highly

correlated with insulin resistance, with a Spearman’s ρ of 0.67, and is known to affect the

serum metabolome. Two samples without insulin resistance measurements were excluded.

For metabolites with zero measurements, the zeros were replaced by half of the minimal

nonzero value. Log transformationwas performed tomake the datamore symmetrically dis-

tributed before analysis. The p-values associated with the three methods are all very close to

zero, indicating a strong dependence between metabolites and insulin resistance, see Table 3.

We further perform a linear regression analysis on each metabolite using insulin resistance
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High-dimensional analysis of variance 19

Table 3. The p-values of the three methods applied to the

metabolomics and microbiome datasets
Metabolomics Microbiome

CLT GMB SK CLT GMB SK

p-value 0.00 0.00 0.00 9.7 × 10−6 0.002 0.13

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0%

5.0%

10.0%

15.0%

(a) (b)

p-value p-value

co
u
n
t/

su
m

(c
o
u
n
t)

Fig. 3. Histograms of p-values for testing the association between each -omics feature and the variable of interest
after adjusting for the confounder: (a) metabolomics dataset; (b) microbiome dataset.

and BMI as the covariates. Figure 3(a) presents the histogram of p-values on testing the

significance of the coefficients associated with insulin resistance. We see a high peak close

to zero, which provides strong evidence for the association between metabolites and insulin

resistance. We further apply the Holm–Bonferroni procedure to the p-values to control the

familywise error rate at the 5% level, resulting in 164 discoveries.

The second dataset we consider is from a study of the effects of smoking on the human

upper respiratory tract (Charlson et al., 2010). The original dataset contains samples from

throat and nose microbiomes and from both sides of the body. Here we focus on the throat

microbiome on the left side of the body, which includes data from 60 subjects consisting

of 32 nonsmokers and 28 smokers. More precisely, the dataset is presented as a 60 × 856

abundance table recording the frequencies of detected operational taxonomic units in the

samples using the 16S metagenomics approach, together with a metadata table capturing

sample-level information, including smoking status and sex. We transform the abundance

of the operational taxonomic units using the centred log-ratio transformation after adding

a pseudo-count of 0.5 to the zero counts. Our goal is to test the association of throat micro-

biomes with smoking status adjusting for sex. The proposedmethod using either the normal

approximation or the bootstrap approximation detects a strong association between throat

microbiomes and smoking status, see Table 3. In contrast, the method of Srivastava &

Kubokawa (2013) fails to discover such an association.

We further perform an operational-taxonomic-unit-wise linear regression analysis using

each operational taxonomic unit, after the centred log-ratio transformation as the response

and smoking status and sex as covariates. Figure 3(b) presents the histogram of p-values
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20 Z. Lou, X. Zhang and W. B. Wu

for testing the association between each operational taxonomic unit and smoking status,

after adjusting for sex in each linear regression. Interestingly, adjusting the multiplicity

using either the Holm–Bonferroni procedure or the Benjamini–Hochberg procedure at the

5% level gives zero discovery (Zhou et al., 2022). These results suggest that the associa-

tion between individual operational taxonomic units and smoking status is weak. However,

after aggregating the weak effects from all operational taxonomic units, the combined effect

is strong enough to be detected by the proposed method.

Supplementary material

The Supplementary Material contains proofs of (15) and (17) and a power comparison.
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