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Multiway Spherical Clustering via
Degree-Corrected Tensor Block Models

Jiaxin Hu

Abstract— We consider the problem of multiway clustering in
the presence of unknown degree heterogeneity. Such data prob-
lems arise commonly in applications such as recommendation
system, neuroimaging, community detection, and hypergraph
partitions in social networks. The allowance of degree hetero-
geneity provides great flexibility in clustering models, but the
extra complexity poses significant challenges in both statistics and
computation. Here, we develop a degree-corrected tensor block
model with estimation accuracy guarantees. We present the phase
transition of clustering performance based on the notion of angle
separability, and we characterize three signal-to-noise regimes
corresponding to different statistical-computational behaviors.
In particular, we demonstrate that an intrinsic statistical-to-
computational gap emerges only for tensors of order three
or greater. Further, we develop an efficient polynomial-time
algorithm that provably achieves exact clustering under mild
signal conditions. The efficacy of our procedure is demonstrated
through two data applications, one on human brain connectome
project, and another on Peru Legislation network dataset.

Index Terms— Tensor clustering, degree correction, statistical-
computational efficiency, human brain connectome networks.

I. INTRODUCTION

ULTIWAY arrays have been widely collected in various

fields including social networks [1], neuroscience [2],
and computer science [3]. Tensors effectively represent the
multiway data and serve as the foundation in higher-order data
analysis. One data example is from multitissue multiindividual
gene expression study [4], [5], where the data tensor consists
of expression measurements indexed by (gene, individual,
tissue) triplets. Another example is hypergraph network [6],
[7], [8], [9] in social science. A K-uniform hypergraph can
be naturally represented as an order-K tensor, where each
entry indicates the presence of K-way hyperedge among nodes
(ak.a. entities). In both examples, identifying the similarity
among tensor entities is important for scientific discovery.
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We study the problem of multiway clustering based on a
data tensor. The goal of multiway clustering is to identify
a checkerboard structure from a noisy data tensor. Fig. 1
illustrates the noisy tensor and the underlying checkerboard
structures discovered by multiway clustering methods. In the
hypergraph example, the multiway clustering aims to iden-
tify the underlying block partition of nodes based on their
higher-order connectivities; therefore, we also refer to the
clustering as higher-order clustering. The most common
model for higher-order clustering is called tensor block model
(TBM) [10], which extends the usual matrix stochastic block
model [11] to tensors. The matrix analysis tools, however,
are suboptimal for higher-order clustering. Developing tensor
tools for solving block models has received increased interest
recently [10], [12], [13].

The classical tensor block model suffers from draw-
backs to model real world data in spite of the popular-
ity. The key underlying assumption of block model is that
all nodes in the same community are exchangeable; i.e.,
the nodes have no individual-specific parameters apart from
the community-specific parameters. However, the exchange-
ability assumption is often nonrealistic. Each node may
contribute to the data variation by its own multiplicative
effect. We call the unequal node-specific effects the degree
heterogeneity. Such degree heterogeneity appears commonly
in social networks. Ignoring the degree heterogeneity may
seriously mislead the clustering results. For example, the
regular block model fails to model the member affiliation
in the Karate Club network [14] without addressing degree
heterogeneity.

The degree-corrected tensor block model (ATBM) has been
proposed recently to account for the degree heterogeneity [9].
The dTBM combines a higher-order checkerboard structure
with degree parameter 8 = (0(1),...,0(p))T to allow het-
erogeneity among p nodes. Fig. 1 compares the underlying
structures of TBM and dTBM with the same number of
communities. The dTBM allows varying values within the
same community, thereby allowing a richer structure. To solve
dTBM, we project clustering objects to a unit sphere and
perform iterative clustering based on angle similarity. We refer
to the algorithm as the spherical clustering; detailed pro-
cedures are in Section IV. The spherical clustering avoids
the estimation of nuisance degree heterogeneity. The usage
of angle similarity brings new challenges to the theoretical
results, and we develop new polar-coordinate based techniques
in the proofs.
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Underlying structure

tensor block model (TBM)
<

Fig. 1.
while dTBM allows a richer structure with degree heterogeneity.

A. Our Contributions

The primary goal of this paper is to provide both statistical
and computational guarantees for dTBM. Our main contribu-
tions are summarized below.

o We develop a general dTBM and establish the identifia-
bility for the uniqueness of clustering using the notion of
angle separability.

o We present the phase transition of clustering performance
with respect to three different statistical and compu-
tational behaviors. We characterize, for the first time,
the critical signal-to-noise (SNR) thresholds in dTBMs,
revealing the intrinsic distinctions among (vector) one-
dimensional clustering, (matrix) biclustering, and (ten-
sor) higher-order clustering. Specific SNR thresholds and
algorithm behaviors are depicted in Fig. 2.

o We provide an angle-based algorithm that achieves exact
clustering in polynomial time under mild conditions. Sim-
ulation and data studies demonstrate that our algorithm
outperforms existing higher-order clustering algorithms.

The last two contributions, to our best knowledge, are new to
the literature of dTBMs.

B. Related Work

Our work is closely related to but also distinct from several
lines of existing research. Table I summarizes the most relevant
models.

e Block model for clustering. The block model such as
stochastic block model (SBM) and degree-corrected SBM
has been widely used for matrix clustering problems.
The theoretical properties and algorithm performance for
matrix block models have been well-studied [15]; see the
review paper [11] and the references therein. However,
The tensor counterparts are relatively less understood.

o Tensor block model. The (nondegree) tensor block model
(TBM) is a higher-order extension of SBM, and its
statistical-computational properties are investigated in
recent literatures [7], [10], [13]. Some works [16] study
the TBM with sparse observations, while, others [10],
[13] and our work focus on the dense regime. Extend-
ing results from nondegree to degree-corrected model
is highly challenging. Our dTBM parameter space is
equipped with angle-based similarity and nuisance degree
parameters. The extra complexity makes the Cartesian
coordinates based analysis [13] nonapplicable to our
setting. Towards this goal, we have developed a new polar

Noisy tensor
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Underlying structure

degree-corrected tensor
block model (dTBM)

Examples for order-3 tensor block model (TBM) with and without degree correction. Both TBM and dTBM have four communities on each mode,

coordinates based analysis to control the model complex-
ity. We have also developed a new angle-based iteration
algorithm to achieve optimal clustering rates without the
need of estimating nuisance degree parameters.

e Degree-corrected  block model. The hypergraph
degree-corrected block model (hDCBM) and its
variant have been proposed in the literature [9],
[17]. For this popular model, however, the optimal
statistical-computational rates remain an open problem.
Our main contribution is to provide a sharp statistical
and computational critical phase transition in dTBM
literature. In addition, our algorithm results in a faster
exponential error rate, in contrast to the polynomial
rate in [9]. The original hDCBM [9] is designed for
binary observations only, and we extend the model to
both continuous and binary observations. We believe
our results are novel and helpful to the community. See
Fig. 2 for overview of our results.

e Global-to-local algorithm strategy. Our methods gen-
eralize the recent global-to-local strategy for matrix
learning [15], [18], [19] to tensors [13], [16], [20].
Despite the conceptual similarity, we address several
fundamental challenges associated with this nonconvex,
noncontinuous problem. We show the insufficiency of
the conventional tensor HOSVD [21], and we develop
a weighted higher-order initialization that relaxes the
singular-value gap separation condition. Furthermore, our
local iteration leverages the angle-based clustering in
order to avoid explicit estimation of degree heterogene-
ity. Our bounds reveal the interesting interplay between
the computational and statistical errors. We show that
our final estimate provably achieves the exact clustering
within only polynomial-time complexity.

C. Notation

We use lower-case letters (e.g., a, b) for scalars, lower-case
boldface letters (e.g., a, @) for vectors, upper-case boldface
letters (e.g., X,Y) for matrices, and calligraphy letters (e.g.,
X, Y) for tensors of order three or greater. We use 1,, to denote
a vector of length p with all entries to be 1. We use | - | for
the cardinality of a set and 1{-} for the indicator function. For
an integer p € N, we use the shorthand [p] = {1,2,...,p}.
For a length-p vector a, we use a(i) € R to denote the i-th
entry of a, and use aj to denote the subvector by restricting

the indices in the set I C [p|. We use ||a| = />, a?(i) to

denote the {o-norm, ||al|; = >, |a;| to denote the ¢; norm of
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computationally efficient

> SNR

O(p~ 1)

Fig. 2. SNR thresholds for statistical and computational limits in order-K dTBM with dimension (p, ...

possibility and computational efficiency exists only for tensors with K > 3.

O(p~5/2)

,p) and K > 2. The SNR gap between statistical

TABLE I
COMPARISON BETWEEN PREVIOUS METHODS WITH OUR METHOD
Gao et al. (2018)[15]  Ahn et al. (2018)[16]  Han et al. (2022)[13]  Ghoshdastidar et al. (2019)[7] Ke et al. (2019)[9] Ours

Allow tensors of arbitrary order X

Allow degree heterogeneity VA X X V4 Vv
Singular-value gap-free clustering VA ) X X
Misclustering rate (for order K*') p_(K_l)a_lz exp(—pK/?) p~ 1t p~2 exp(—pi/?)

Consider sparse observation X v X X X X

TWe list the result for order-K tensors with & > 3 and general number of communities r = O(1).

2The parameter v = f(p) > 0 denotes the sparsity level which is some function of dimension p.

a. For two vector a, b of the same dimension, we denote the
angle between a, b by
_ _{a.b)

lall [[B]”
where (a,b) is the inner product of two vectors and
cos (a, b) € [—1,1]. We make the convention that cos (a, b) =
cos (a®,bT).

Let Y € RP*"XPK be an order-K (pi,...,PK)-
dimensional tensor. We use )(i1,...,ix) to denote the
(i1,...,ix)-th entry of . The multilinear multiplication of a
tensor S € R™ > X"k by matrices M}, € RP**"* results in
an order-K (p1,...,px)-dimensional tensor X, denoted

/Y:S><1]\41><--~><K_I\4K7

where the entries of X are defined by

cos (a, b)

X(i1,. .., 1K)

= > S@-..

For a matrix Y, we use Y;. (respectively, Y.;) to denote the
i-th row (respectively, i-th column) of the matrix. Similarly,
for an order-3 tensor, we use )., to denote the i-th matrix
slide of the tensor. We use Ave(-) to denote the operation of
taking averages across elements and Maty(-) to denote the
unfolding operation that reshapes the tensor along mode k
into a matrix. For a symmetric tensor X € RP*"*P_we omit
the subscript and use Mat(X) € RP*P" " o denote the
unfolding. For two sequences {a,}, {b,}, we denote a, < b,
or a, = O(by,) if limy_,o0 ap/by, < ¢, ap 2 b, or a, = Q(by)
if lim, .o ap/b, > c, for some constant ¢ > 0, a, = o(b,)
if limy .o ap/b, = 0, and a, =< b, if both b, < a, and
a, S by. Throughout the paper, we use the terms “community”
and “clusters” exchangeably.

yJK )M (i, g1) - Mk (ik, jic)-

D. Organization

The rest of this paper is organized as follows. Section II
introduces the degree-corrected tensor block model (ATBM)
with three motivating examples and presents the identifiability
of dTBM under the angle gap condition. We show the phase
transition and the existence of statistical-computational gaps
for the higher-order dTBM in Section III. In Section IV,
we provide a polynomial-time two-stage algorithm with

misclustering rate guarantees. Extension to Bernoulli models
is also presented. In Section V, we compare our work with
nondegree tensor block models. Numerical studies including
the simulation, comparison with other methods, and two real
dataset analyses are in Sections VI-VII. The main technical
ideas we develop for addressing main theorems are provided
in Section VIII. Detailed proofs and extra theoretical results
are provided in Appendix.

II. MODEL FORMULATION AND MOTIVATIONS
A. Degree-Corrected Tensor Block Model

Suppose that we have an order-K data tensor ) € RP* %P,
Assume that there exist » > 1 disjoint communities among the
p nodes. We represent the community assignment by a function
z: [p] — [r], where z(i) = a for i-th node that belongs to
the a-th community. Then, 2~ (a) = {i € [p]: 2(i) = a}
denotes the set of nodes that belong to the a-th community, and
|z71(a)| denotes the number of nodes in the a-th community.
Let @ = (6(1),...,0(p))T denote the degree heterogeneity for
p nodes. We consider the order-K dTBM [7], [9],

K
V(ir, .o ig)=8(2(ir), ..., 2(ix)) [ ] 0 + EGr, .- k),

k=1

where § € R"*"*" is an order-K tensor collecting the block
means among communities, and £ € RP*""*P is a noise tensor
consisting of independent zero-mean sub-Gaussian entries
with variance bounded by 2. The unknown parameters are z,
S, and 6. The dTBM can be equivalently written in a compact
form of tensor-matrix product:

EY=8x10M X5 xg OM, (D)

where © = diag(6(1),...,0(p)) € RP*P is a diagonal matrix,
M € {0,1}"*" is the membership matrix associated with
community assignment z such that M (i, j) = 1{z(¢) = j}.
By definition, each row of M has one copy of 1’s and
0’s elsewhere. Note that the discrete nature of M renders
our model (1) more challenging than Tucker decomposition.
We call a tensor ) an r-block tensor with degree 6 if ) admits
dTBM (1) and let X = EY denote the mean tensor. The goal
of clustering is to estimate z from a single noisy tensor ).
We are particularly interested in the high-dimensional regime
where p grows whereas r = O(1).
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For ease of notation, we have focused on the case with
symmetric mean tensor E). This assumption simplifies the
notation because all modes have the same (®, M, z); the
noise tensor £ and the data tensor ) are still possibly asym-
metric. In general, we allow asymmetric mean tensors with
{(®y, My, z)}E_,, one for each mode. The extension can
be found in Appendix B.

B. Motivating Examples

Here, we provide four applications to illustrate the practical
necessity of dTBM.

1) Tensor Block Model: Consider the model (1). Let 6(7) =
1 for all ¢ € [p]. The model (1) reduces to the tensor
block model, which is widely used in previous clustering
algorithms [10], [12], [13]. The theoretical results in TBM
serve as benchmarks for dTBM.

2) Community Detection in Hypergraphs: The hypergraph
network is a powerful tool to represent the complex entity rela-
tions with higher-order interactions [9]. A typical undirected
hypergraph is denoted as H = (V, E), where V = [p] is the
set of nodes and F is the set of undirected hyperedges. Each
hyperedge in E is a subset of V, and we call the hyperedge an
order-K edge if the corresponding subset involves K nodes.
We call H a K-uniform hypergraph if £/ only contains order-
K edges.

It is natural to represent the K -uniform hypergraph using a
binary order- K adjacency tensor. Let Y € {0, 1}P* " *P denote
the adjacency tensor, where the entries encode the presence or
absence of order-K edges among p nodes. Specifically, for all
(i1,...,ix) € [p]¥, we have

. .U if (iy,...,ik) € E,
y(117---7lK)_{0 lf(21,7ZK)¢E

Assume that there exist r disjoint communities among p
nodes, and the connection probabilities depend on the com-
munity assignments and node-specific parameters. Then, the
equation (1) models E)Y with unknown degree heterogeneity
0 and sub-Gaussianity parameter 02 = 1/4.

3) Multilayer Weighted Network: Multilayer weighted net-
work data consists of multiple networks over the same set of
nodes. One representative example is the brain connectome
data [22]. The multilayer weighted network ) has dimension
of p X p x L, where p denotes the number of brain regions of
interest, and L denotes the number of layers (networks). Each
of the L networks describes one aspect of the brain connectiv-
ity, such as functional connectivity or structural connectivity.
The resulting tensor ) consists of a mixture of slices with
various data types.

Assume that there exist r disjoint communities among p
nodes and r; disjoint communities among the L layers. The
multilayer network community detection is modeled by the
general asymmetric dTBM model (1)

EY =8 x1OM x93 ®M x3 O;M;,

where (0 € RP, M € {0,1}’*") and (6, € R, M, €
{0,1}E%"™) are the degree heterogeneity and membership
matrices corresponding to the community structure for p nodes
and L layers, respectively.
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4) Gaussian Higher-Order Clustering: Datasets in various
fields such as medical image, genetics, and computer science
are formulated as Gaussian tensors. One typical example is the
multitissue gene expression dataset, which records different
gene expressions in different individuals and different tissues.
The dataset, denoted as YV € RP*"*t consists of the expres-
sion data for p genes of n individuals in ¢ tissues.

Assume that there exist 71,79, 73 disjoint clusters for p
genes, n individuals, and ¢ tissues, respectively. We apply the
general asymmetric dTBM model (1)

EY =8 x1 ©1M; X9 ©2M5 x3 @3 M3,

where { (6, M) }3_, represents the degree heterogeneity and
membership for genes, individuals, and tissues.

Remark 1 (Comparison With Nondegree Models): Our
dTBM uses fewer block parameters than TBM. In particular,
every nondegree rj-block tensor can be represented by a
degree-corrected ra-block tensor with ro < 7. In particular,
there exist tensors with r; = p but ro = 1, so the reduction
in model complexity can be dramatic from p to 1. This fact
highlights the benefits of introducing degree heterogeneity in
higher-order clustering tasks.

C. Identifiability Under Angle Gap Condition

The goal of clustering is to estimate the partition func-
tion z from model (1). For ease of notation, we focus on
symmetric tensors; the extension to asymmetric tensors are
similar. We use P to denote the following parameter space
for (2,S,0),

P =

= )

{(z,S,O): ocry, 2P <) < 2L
T T

cs < [|Mat(S)a:|| < e, [|0.-10) ||, = 127 (@), a € [r]}
@

where ¢; > 0’s are universal constants. We briefly describe the
rationale of the constraints in (2). First, the entrywise positivity
constraint on 6 € Rﬁ is imposed to avoid sign ambiguity
between entries in 6.-1) and S. This constraint allows
the trigonometric cos to describe the angle similarity in the
Assumption | below and Sub-algorithm 2 in Section IV. Note
that the positivity constraint can be achieved without sacrific-
ing model flexibility, by using a slightly larger dimension of &
in the factorization (1); see Example 1 below. Second, recall
that the quantity |2~*(a)| denotes the number of nodes in the
a-th community. The constants c¢;,c in the |2~%(a)| bounds
assume the roughly balanced size across » communities. Third,
the constant cs requires that all slides in S have nondegenerate
norm. Particularly, the lower bound c3 excludes the purely
zero slide to avoid trivial nonidentifiability of model (1); see
Example 2 below. The upper bound c4 is a technical constraint
to avoid the slides with diverging norm as dimension grows.
Lastly, the /1 normalization [|6,-1(4)||1 = |27"(a)] is imposed
to avoid the scalar ambiguity between 6.-1(,) and S. This
constraint, again, incurs no restriction to model flexibility but
makes our presentation cleaner. Our constraints in P are mild
compared with previous literature; see Table II for comparison.
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Example 1 (Positivity of Degree Parameters): Here we
provide an example to show the positivity constraint
on O incurs no loss on the model flexibility. Consider
an order-3 dTBM with core tensor S = 1 and degree
0 = (1,1,—1,—1)T. We have the mean tensor

X:8X1®MX2@MX3®M,

where ® = diag(0) and M = (1,1,1,1)”. Note that X €
R**4x4 i a 1-block tensor with mixed-signed degree 6, and
the mode-3 slices of X’ are

1 1 -1 -1
1 1 -1 -1
-1 -1 1 1
-1 -1 1 1

/Y::l - X::Q - _X::B - _'X‘::4 -

Now, instead of original decomposition, we encode X as
a 2-block tensor with positive-signed degree. Specifically,
we write

X :Sl X1 @lM/ X9 @lM/ X3 @lM/,

where ©' = diag(0’) = diag(1,1,1,1), the core tensor S’ €
R2%2%2 has following mode-3 slices, and the membership
matrix M’ € {0,1}**? defines the clustering z’: [4] — [2];
ie.,

S:lzl = 78:/:2 = |:

S O = =
_ -0 o

The triplet (z',S’,0’) lies in our parameter space (2). In gen-
eral, we can always reparameterize an r-block tensor with
mixed-signed degree using a 2r-block tensor with positive-
signed degree. Since we assume r = (1) throughout the
paper, the splitting does not affect the error rates of our
interest.

Example 2 (Nonidentifiability With Purely Zero Core Slice):

Consider an order-2 dTBM with core tensor S = (1) _01
degree matrices ®; = @, = diag(1,1,1, 1), and mean tensor
10
T . 1 0
X=0 MSM"©,, with M = 01
0 1

Replacing ©, by ©] =
mean tensor X'.

We now provide the identifiability conditions for our model
before estimation procedures. When r = 1, the decomposi-
tion (1) is always unique (up to cluster label permutation) in P,
because dTBM is equivalent to the rank-1 tensor family under
this case. When r > 2, the Tucker rank of signal tensor EY
in (1) is bounded by, but not necessarily equal to, the number
of blocks 7 [10]. Therefore, one can not apply the classical
identifiability conditions for low-rank tensors to dTBM. Here,
we introduce a key separation condition on the core tensor.

Assumption 1 (Angle Gap): Let S = Mat(S). Assume that
the minimal gap between normalized rows of S is bounded

(3/2,1/2,1,1) leads to the same

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

away from zero; i.e.,

Sa: Sb: H
—_— — >0, for r>2. (3
1Sa:ll - [1Se:l

Apin = min
a#be(r]

We make the convention A ;, = 1 for » = 1. Equivalently,
(3) says that none of the two rows in S are parallel; i.e.,
max,spefr] €08 (Sa:, Sp:) = 1 — A2, /2 < 1. The quan-
tity Apin characterizes the nonredundancy among clusters
measured by angle separation. The denominators involved in
definition (3) are well posed because of the lower bound on
1S.] in 2.

Our first main result is the following theorem showing the
sufficiency and necessity of the angle gap separation condition
for the parameter identifiability under dTBM.

Theorem 1 (Model Identifiability): Consider the dTBM
with » > 2 and K > 2. The parameterization (1) is
unique in P up to cluster label permutations, if and only if
Assumption 1 holds.

The identifiability guarantee for the dTBM is stronger than
classical Tucker model. In the Tucker model, the factor matrix
M is identifiable only up to orthogonal rotations. In contrast,
our model does not suffer from rotational invariance. As we
will show in Section IV, each column of the membership
matrix M can be precisely recovered under our algorithm.
This property benefits the interpretation of dTBM in practice.

IIT. STATISTICAL-COMPUTATIONAL CRITICAL VALUES
FOR HIGHER-ORDER TENSORS

A. Assumptions

We propose the signal-to-noise ratio (SNR),

SNR := A2, /o? =p7, 4)
with varying v € R that quantifies different regimes of
interest. We call v the signal exponent. Intuitively, a larger
SNR, or equivalently a larger ~, benefits the clustering in the
presence of noise. With quantification (4), we consider the
following parameter space,

(&)

The 1-block dTBM does not belong to the space P(y) when
~v < 0, due to the convention in Assumption 1. Our goal is to
characterize the clustering accuracy with respect to ~ under
the space P(7).

In our algorithmic development, we often refer to the
regime of balanced degree heterogeneity. We call the degree
0 balanced if

P(v) =P N{S satisfies SNR condition (4) with ~}.

gél[g]\lﬂz 1@ (1+0(1))gé?§||02 1@ ll- (6)
The following lemma provides the rationale of balanced degree
assumption. We show the close relation between angle gaps
in the mean tensor X and the core tensor S under balanced
degree heterogeneity.

Lemma 1 (Angle Gaps in X and S): Consider the dTBM
model (1) under the parameter space P in (2) with r > 2.
Suppose 6 is balanced satisfying (6) and min;cp, 0(i) > c
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TABLE II
PARAMETER SPACE COMPARISON BETWEEN PREVIOUS WORK WITH OUR ASSUMPTION
Assumptions in parameter space Gao et al. (2018)[15] Han et al. (2022)[13] Ke et al. (2019)[9] Ours

Balanced community sizes VA VA IV V4

Bounded core tensors v X v Vv

Balanced degrees V4 - v v

Flexible in-group connections X v Vv

Gaps among cluster centers In-between cluster difference Euclidean gap Eigen gap Angle gap

from some constant ¢ > 0. Then, as p — oo, for all ¢, j such Remark 3 (Similar Assumptions in Literature): Similar

that z(¢) # z(j), we have
COS(Xi:a X]) = COS(Sz(i):7 Sz(j):)a

where X = Mat(X) and S = Mat(S).
In practice, an estimation algorithm has access to a noisy
version of X’ but not S. Our goal is to establish the algorithm
performance with respect to the signal A%, in the core
tensor. By Lemma 1, the mapping from the core tensor S ;).
to the mean tensor X(;. preserves the angle information
A2 under balanced degree heterogeneity (6). Therefore, the
balanced degree assumption helps to exclude the cases in
which the degree heterogeneity distorts the algorithm guar-
antees.

Here, we provide an example to illustrate the insufficiency
of AZ. in the absence of balanced degrees.
Example 3 (Insufficiency of A%, in the Absence of Bal-
anced Degrees): Consider an order-2 (p,p)-dimensional
dTBM with core matrix

1 a
s—(l _a), )

and 0 such that [|0,-1()||> = p™||0.-1(5)*, where m €
[-1,1] is a scalar parameter controlling the skewness of
degrees. Let A% denote the minimal angle gap of the mean
tensor, defined by

Xi: X
sc= e e - el ®

in -
igell=02=0) || [ Xall  1X;
where X = Mat(X). Take a = p~ /4 in the model setup (7).
We have
A2 _ 2a?
1+a?

~1/2
)

=p
2(10.-1(2)[|*a
161 (1) [I” + 110212 [|2a?

Based on the Theorem 2 in Section III, the dTBM is impossi-
ble to solve when A% < p~! even though A2, =< p~1/2; that
is, the dTBM estimation depends on the relative magnitude of
m vs. 1/2. In such a setting, the proposed signal notion AZ .
alone fails to fully characterize dTBM.

Remark 2 (Flexibility in Balanced Degree Assumption):
One important note is that our balance assumption (6) does
not preclude the mild degree heterogeneity. In fact, within
each of the clusters, we allow the highest degree at the order
O(p), whereas the lowest degree at the order €(1). This
range is more relaxed than previous work [15] that restricts
the highest degree in the sublinear regime o(p) and the lowest
degree at the order £2(1).

min

- n—1/2—m

-~

A%

degree regulations are not rare in literature. In higher-order
tensor model [9], the degree assumption max,e(](/0.-1(q)|| <
Cmingep[|0.-1(q)l is made to ensure degree balance across
communities. In [15], the degree distribution is restricted to
ﬁ 2ica-1(a) 0i = 1+ o(1) for all communities.

Last, let 2 and z be the estimated and true clustering
functions in the family (2). Define the misclustering error by

1{2() # 70 2(i)},

0(z2,2) = 1 min

where 7 : [r] — [r] is a permutation of cluster labels, o denotes
the composition operation, and IT denotes the collection of
all possible permutations. The infimum over all permutations
accounts for the ambiguity in cluster label permutation.

In Sections III-B and III-C, we provide the phase transition
of ¢(2, z) for general Gaussian dTBMs (1) without symmet-
ric assumptions. For general (asymmetric) Gaussian dTBMs,
we assume Gaussian noise (i1, . .., ix) ESy N(0,0?), and we
extend the parameter space (2) to allow K clustering functions
{2k }reK)» one for each mode. For notational simplicity,
we still use z and P(~) for this general (asymmetric) model.
All results should be interpreted as the worst-case results
across K modes.

B. Statistical Critical Value

The statistical critical value means the SNR required for
solving dTBMs with unlimited computational cost. Our fol-
lowing result shows the minimax lower bound for exact recov-
ery and the matching upper bound for maximum likelihood
estimator (MLE). We consider the Gaussian MLE, denoted as
(2mLE, SMLE, éMLE), over the estimation space P, where

(2mLE> SMLE, OvLE) = arg min 1YV - X(2,8,0)|%. 9)
(2,8,0)eP

Theorem 2 (Statistical Critical Value): Consider  general
Gaussian dTBMs with parameter space P() and K > 2.
Then, we have the following statistical phase transition.

o Impossibility. Assume p — oo and 2 < r < p'/3. Let

Ps(y) :i=4{S : ez < |[Mat(S)a.|| < cg,a € [r]} NS :
A2 .= p7} denote the space for valid S satisfying SNR
condition (4), and P, ¢ := {0 € R}, <L < |27(a)| <
2L |0.-1(ay||, = 127 (a)],a € [r]} denote the space
for valid (z, ), where c¢1, co, c3,c4 are the constants in
parameter space (2). If the signal exponent satisfies 7 <
—(K — 1), then, for any true core tensor S € Ps(7),

no estimator Zg,; achieves exact recovery in expectation;
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that is, when v < —(K — 1), we have

E [pe(éstaty Z)] >1. (10)

liminf inf inf sup

P—00 SEPs(Y) Zsta (2,0)€EP. 0
Further, we define the parameter space P'(7’) := PN
{A% =p7'}, where A% is the mean tensor minimal gap
in (8). When ' < —(K — 1), we have

liminf inf sup E [pl(Zgar, 2)] > 1.

P00 Ztat (2,5,0)€P! ()

« MLE achievability. Suppose that the signal exponent
satisfies v > —(K — 1) + ¢o for an arbitrary constant
¢o > 0. Furthermore, assume that @ is balanced and
min, ¢, 0(i) > ¢ from some constant ¢ > 0. Then, when
p — oo, for fixed r > 1, the MLE in (9) achieves exact
recovery in high probability; that is,

pKlsNR)
-0,

E(ZA'MLE, Z) ,S SNRi1 exp ( TK—I

with probability going to 1.

The proofs for the two parts in Theorem 2 are in the
Appendices B-D and B-G, respectively. The first part of Theo-
rem 2 demonstrates impossibility of exact recovery whenever
the core tensor S satisfies SNR condition (4) with exponent
v < —(K —1). The proof is information-theoretical, and
therefore the results apply to all statistical estimators, including
but not limited to MLE and trace maximization [6]. The
minimax bound (10) indicates the worst case impossibility for
a particular core tensor S with signal exponent v < —(K —1);
i.e., under the assumptions of Theorem 2, when v < —(K —1),
we have

liminfinf  sup  E[pl(Zgu, 2)] > 1.

P00 Zwai (2,8,0)€P(7)

Such worst case impossibility is studied in related works [13],
[15] while our lower bound (10) provides a stronger impossi-
bility statement for arbitrary core tensors with weak signals.
The second part of Theorem 2 shows the exact recovery of
MLE when v > —(K — 1) + ¢o for an arbitrary constant
co > 0. Combining the impossibility and achievability results,
we conclude that the boundary gy, := —(K —1) is the critical
value for statistical performance of dTBM with respect to our
SNR.

C. Computational Critical Value

The computational critical value means the minimal SNR
required for exact recovery with polynomial-time computa-
tional cost. An important ingredient to establish the computa-
tional limits is the hypergraphic planted clique (HPC) conjec-
ture [23], [24]. The HPC conjecture indicates the impossibility
of fully recovering the planted cliques with polynomial-time
algorithm when the clique size is less than the number of ver-
tices in the hypergraph. The formal statement of HPC detection
conjecture is provided in Definition 1 and Conjecture 1 as
follows.

Definition 1 (Hypergraphic Planted Clique (HPC) Detec-
tion):Consider an order-K hypergraph H = (V,E) where

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

V = [p] collects vertices and F collects all the order-K
edges. Let H(p, 1/2) denote the ErdGs-Rényi K -hypergraph
where the edge (i1,...,ix) belongs to E with probability
1/2. Further, we let Hx(p,1/2, ) denote the hyhpergraph
with planted cliques of size x. Specifically, we generate a
hypergraph from Hy(p, 1/2), pick x vertices uniformly from
[p], denoted K, and then connect all the hyperedges with
vertices in K. Note that the clique size « can be a function of
p, denoted k,. The order-K HPC detection aims to identify
whether there exists a planted clique hidden in an Erd&s-
Rényi K-hypergraph. The HPC detection is formulated as the
following hypothesis testing problem

H~ HK(pvl/Q) Hl : HNHK(p71/27HP)

Conjecture 1 (HPC Conjecture): Consider the HPC detec-
tion problem in Definition 1 with K > 2. Suppose the
sequence {#,} such that limsup,,_, ., log s,/ log /p < (1-7)
for any 7 > 0. Then, for every sequence of polynomial-time
test {¢p} : H — {0,1} we have

Hy : versus

li inf P, (¢ (H) = 1)+Pa, (¢p(H) = 0) > 3.

Under the HPC conjecture, we establish the SNR lower
bound that is necessary for any polynomial-time estimator to
achieve exact clustering.

Theorem 3 (Computational Critical Value): Consider gen-
eral Gaussian dTBMs under the parameter space P with
K > 2. Then, we have the following computational phase
transition.

o Impossibility. Assume HPC conjecture holds and r >
2. If the signal exponent satisfies v < —K/2, then,
no polynomial-time estimator Zcomp achieves exact recov-
ery in expectation as p — oo; that is, when v < —K/2,
we have

lim inf sup

E [pf(écomp; Z)} > 1.
P00 (2,5,0)eP(v)

o Polynomial-time algorithm achievability. Suppose that
we have fixed » > 1, and the signal exponent satisfies
v > —K/2 4 ¢¢ for an arbitrary constant ¢; > 0.
Furthermore, assume that the degree 6 is balanced, lower
bounded in that min;c(, 0; > c for some constant ¢ > 0,
and satisfies the locally linear stability in Definition 2 in
the neighborhood N (z, ) for all € < Ej and some Fy >
log_1 p. Then, as p — oo, there exists a polynomial-time
algorithm 2,4y that achieves exact recovery in high prob-
ability; that is,

K-1SNR

FE—1

with probability going to 1.

The proofs for the two parts in Theorem 3 are in the
Appendices B-E and B-G, respectively. The first part of
Theorem 3 indicates the impossibility of exact recovery by
polynomial-time algorithms when v < —K/2, and the sec-
ond part shows the existence of such algorithm when v >
—K/2 + ¢ for an arbitrary constant ¢g > 0 under extra
technical assumptions. In Section IV, we will present an
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Fig. 3. Tllustration of our global-to-local algorithm.

efficient polynomial-time algorithm in this setting. Therefore,
we conclude that Yeomp := —K/2 is the critical value for
computational performance of dTBM with respect to our SNR.

Remark 4 (Statistical-Computational Gaps): Now, we have
established the phase transition of exact clustering under order-
K dTBM by combining Theorems 2 and 3. Fig. 2 summarizes
our results of critical SNRs when K > 2. In the weak SNR
region v < —(K — 1), no statistical estimator succeeds in
degree-corrected higher-order clustering. In the strong SNR
region v > —K /2, our proposed algorithm precisely recovers
the clustering in polynomial time. In the moderate SNR
regime, —(K — 1) < v < —K/2, the degree-corrected
clustering problem is statistically easy but computationally
hard. Particularly, dTBM reduces to matrix degree-corrected
model when K = 2, and the statistical and computational
bounds show the same critical value. When K = 1, dTBM
reduces to the degree-corrected sub-Gaussian mixture model
(GMM) with model

Y =OMS + E,

where Y € RPX¢ collects n data points in R?, § € R"*¢
collects the d-dimensional centroids for r clusters, and ® €
RP*P M € {0,1}P*", E € RP*4 have the same meaning as
in dTBM. [25] implies that polynomial-time algorithms are
able to achieve the statistical minimax lower bound in GMM.
Therefore, we conclude that the statistical-computational gap
emerges only for higher-order tensors with K > 3. The
result reveals the intrinsic distinctions among (vector) one-
dimensional clustering, (matrix) biclustering, and (tensor)
higher-order clustering.

IV. POLYNOMIAL-TIME ALGORITHM UNDER MILD SNR

In this section, we present an efficient polynomial-time
clustering algorithm under mild SNR. The procedure takes a
global-to-local approach. See Fig. 3 for illustration. The global
step finds the basin of attraction with polynomial misclustering
error, whereas the local iterations improve the initial clustering
to exact recovery. Both steps are critical to obtain a satisfactory
algorithm output. In what follows, we first use the symmetric
tensor as a working example to describe the algorithm pro-
cedures to gain insight. Our theoretical analysis focuses on
dTBMs with symmetric mean tensor and independent sub-
Gaussian noises such as Gaussian and uniform observations.
The extensions for Bernoulli observations and other practical
issues are in Sections IV-C and IV-D.
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To construct algorithm guarantees, we introduce the mis-
clustering loss between an estimator Z and the true z:

L(3,2) = 1 > 03 Y 1{z(i) = b}

pie[p] be(r]
N[Sae]” = 1S6]* A

where the superscript -° denotes the normalized vector; i.e.,
a®:=a/lal if a # 0 and a® = 0 if @ = 0 for any vector a.
The following lemma indicates the close relationship between
the loss L(Z,z) and error £(Z, z). The loss L(Z2, z) serves as
an important intermediate quantity to control the misclustering
error.

Lemma 2 (Relationship Between Misclustering Error and
Loss): Consider the dTBM under the parameter space P.
Suppose min;e,) 0(i) > ¢ for some constant ¢ > 0. We have
0(2,2)A%, < L(%,2).

min

A. Weighted Higher-Order Initialization

We start with weighted higher-order clustering algorithm as
initialization. We take an order-3 tensor and the clustering on
the first mode as illustration for insight. Consider noiseless
case with X = EY and X = Mat(X). By model (1), for all
i € [p], we have

0(1) " Xy = Mat(S x2 @M x3 OM)], ;. -

This implies that, all node 7 belonging to the a-th community
(i.e., z(1) = a) share the same normalized mean vector
(i)' X;., and vice versa. Intuitively, one can apply k-means
clustering to the vectors {0(i) ~* X;. };¢[p). which leads to main
idea of our Sub-algorithm 1.

Specifically, our initialization consists of the denoising step
and the clustering step. The denoising step (lines 1-2 in Sub-
algorithm 1) estimates A from ) by a double projection
spectral method. The first projection performs HOSVD [21]
via Uper = SVD, Mat(Y)),k € [3], where SVD,(-)
returns the top-r left singular vectors. The second projection
performs HOSVD on the projected ) onto the multilinear
Kronecker space Upre x @ Upre 5 i.€.,

U = SVD, (Mat; (¥ x2 Upe 2UL

pre,2 X3 UPTC73U§e,3)) :

and similar for UQ, U3. The final denoised tensor X is defined
by

/? = y X1 UlUlT X9 ﬁQﬁQT X3 ﬁgﬁg
The double projection improves usual matrix spectral methods
in order to alleviate the noise effects for K > 3 [13].

The clustering step (lines 3-5 in Sub-algorithm 1) performs
the weighted k-means clustering. We write X = Mat; (X),
and normalize the rows into X = || X;,|| "' X. as a surrogate
of (i)~ X;.. Then, a weighted k-means clustering is per-
formed on the normalized rows with weights equal to ||X¢: 2.
The choice of weights is to bound the k-means objective
function by the Frobenius-norm accuracy of X. Unlike exist-
ing clustering algorithm [9], we apply the clustering on the
unfolded tensor X rather than on the factors Uj,. This strategy
relaxes the singular-value gap condition [13], [15]. We assign
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degenerate rows with purely zero entries to an arbitrarily
random cluster; these nodes are negligible in high-dimensions
because of the lower bound on ||[Mat(S),|| in (2). The final
result gives the initial cluster assignment z(®). Full procedures
for clustering are provided in Sub-algorithm 1.

We now establish the misclustering error rate of initializa-
tion.

Theorem 4 (Error for Weighted Higher-Order Initialization):

Consider the general sub-Gaussian dTBM with fixed r > 1,
K > 2, iid. noise under the parameter space P, and
Assumption 1. Assume min;ep,) 6(i) > c for some constant
¢ > 0. Let A x denote the minimal gap in mean tensor defined
in (8), and let zlio) denote the output of Sub-algorithm 1.
With probability going to 1, as p — oo, we have

19, 2) < %K/Q
X
Further, assume that 0 is balanced as (6). We have
E(z,go),z) < TKSpNi;{/Q and L(z,(co),z) < o2rKp=K/2 (12)
with probability going to 1 as p — co.
Remark 5 (Comparison to Previous Results): For fixed

SNR, our initialization error rate with K = 2 agrees with
the initialization error rate O(p~!) in matrix models [15].
Furthermore, in the special case of nondegree TBMs with
0 = 1,, we achieve the same initial misclustering error
O(p~%/2) as in nondegree models [13]. Theorem 4 implies
the advantage of our algorithm in achieving both accuracy
and model flexibility.

Remark 6 (Failure of Conventional Tensor HOSVD): If
we use conventional HOSVD for tensor denoising; that is,
we use Upe . in place of U,  in line 2, then the misclustering
rate becomes O(p~!) for all K > 2. This rate is substantially
worse than our current rate (12).

Remark 7 (Singular-Value Gap-Free Clustering): Note
that our clustering directly applies to the estimated mean
tensor X rather than the leading tensor factors Uy.
Applying clustering to the tensor factors suffers from the
nonidentifiability issue due to the infinitely many orthogonal
rotations when the number of blocks » > 3 in the absence
of singular-value gaps. Such ambiguity causes the trouble
for effective clustering [26]. In contrast, our initialization
algorithm applies the clustering to the overall mean tensor X.
This strategy avoids the nonidentifiability issue regardless of
the number of blocks and singular-value gaps.

B. Angle-Based Iteration

Our Theorem 4 has shown the polynomially decaying error
rate from our initialization. Now we improve the error rate
to exponential decay using local iterations. We propose an
angle-based local iteration to improve the outputs from Sub-
algorithm 1. To gain the intuition, consider an one-dimensional
degree-corrected clustering problem with data vectors x; =
0(i)s.(;) + €, 1 € [p], where s;’s are known cluster centroids,
6(i)’s are unknown positive degrees, and z: [p] — [r] is
the cluster assignment of interest. The angle-based k-means

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

algorithm estimates the assignment z by minimizing the angle
between data vectors and centroids; i.e.,

z(i) = arg max cos(x;, 8,), for all i € [p]. (13)

a€(r]
The classical Euclidean-distance based clustering [13] fails
to recover z in the presence of degree heterogeneity, even
under noiseless case. In contrast, the proposed angle-based
k-means algorithm achieves accurate recovery without the
explicit estimation of 6.

Our Sub-algorithm 2 shares the same spirit as in the angle-
based k-means. We still take the order-3 tensor for illustration.
Specifically, Sub-algorithm 2 updates estimated core tensor
and cluster assignment in each iteration. We use superscript
-(t) to denote the estimate from the ¢-th iteration, where ¢ =
1,2,.... For core tensor, we consider the following update
strategy

. . . t) /.
= Ave{Y(i1,12,13): ,z,(C )(zk) = ag, k € [3]}.
Intuitively, S®) becomes closer to the true core S as z,(f) is
more precise. For cluster assignment, we first aggregate the
slices of ) and obtain the reduced tensor J)f € RPX"XT on

the first mode with given z,(:), where
Vili, a9, a3) = Ave{V(i,i9,i3): 2\ (ix) = ar, k # 1}.

Similarly, we also obtain Vg, ). We use V;¢ and S,(f)
denote the Mat;,()?) and Maty,(S™)). The rows Y,

S( ): correspond to the x; and s, in the one- dlmensmnal
clusterlng (13). Then, we obtain the updated assignment by

S(t)(ala az, (13)

and

2 (i )(t+1) = arg max cos (Yk i 7S,(f21 ) , forall i € [p],
a€lr]

provided that .S (t): is a nonzero vector. Otherwise, if S,(fl i

a zero vector, then we make the convention to assign z(t+1)( )

randomly in [r]. Full procedures for our angle-based iteration
are described in Sub-algorithm 2.

We now establish the misclustering error rate of iterations
under the stability assumption.

Definition 2 (Locally Linear Stability): Define  the -
neighborhood of z by N(z,e€) {z: 4(z,2) < €}. Let
Z: [p] — [r] be a clustering function. We define two vectors
associated with z,

p(z) = (7). [z ())7,
po(z) = (Hé’z—l<1>ll1,---,\\92—1<r)\|1)T~
We call the degree is e-locally linearly stable if and only if

Sin(p(2)7 p@(z)) 5 aAInin,

Roughly speaking, the vector p(Zz) represents the raw cluster
sizes, and py(Zz) represents the relative cluster sizes weighted
by degrees. The local stability holds trivially for £ = 0 based
on the construction of parameter space (2). The condition (14)
controls the impact of node degree to the py(-) with respect
to the misclustering rate ¢ and angle gap. Intuitively, the
condition (14) controls the skewness of degree so that the
angle between raw cluster size and degree-weighted cluster

forall z € N(z,¢). (14)
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Algorithm 1 Multiway Spherical Clustering for Degree-Corrected Tensor Block Model

Sub-algorithm 1: Weighted higher-order initialization

Input: Observation )) € RP*

*P_ cluster number r, relaxation factor n > 1 in k-means clustering.

1: Compute factor matrices Upe , = SVD,(Maty())), k € [K] and the (K — 1)-mode projections

Xprek —y><1 prelUrel X2 -

X o1 Upre -1 UL preo—1 Xk+1 Upre, k+1U re k1 Xk+2

" XK UPTG,KU re, K *

2: Compute factor matrices Uy, = SVD,.(Maty,(Xye 1)), ¥ € [K] and the denoised tensor

/'?:yx1U1U1T>Q~-

: for ke [K] do

XK lj[(U%

HX | = 0}. Set £(i) randomly in [r] for i € Sp.

For all i € S§, compute normalized rows X3 := || X[~ X..

3
4: Let X = Maty,(X) and Sy = {i € [p] :
.
6

Solve the clustering 2 : [p] —

STIRIZIXE — @l <0
ieSg %>

7: end for

Output: Initial clustering z( )

— Zp, k € [K]

[r] and centr01ds {Z;}je[r) using weighted k-means, such that

mln i Xs T
L g S

&z, )

Sub-algorithm 2: Angle-based iteration

Input: Observation )) € RP**P initialization z,io) : [p] —
8: fort =0to717T — 1 do

[r], k € [K] from Sub-algorithm 1, iteration number T'.

9: Update the block tensor S®) via S (ay, ..., ax) = Ave{V(i1,...,ix) : z,(:) (ix) = a, k € [K]}.
10: for k€ [K] do
11: Calculate the reduced tensor y,g‘ € R7X T XTXPRTX o XT yig
Var, ..y ah 1,0, sty ar) = AV{V (i1, .. ik 1,0y 0kr1, - i)t 2D (i) = aj,§ # k}
12: Let ;! = Mat;, (V%) and Jo = {i € [p] : || Y]] = 0}. Set 2" (i) randomly in [r] for i € Jp.
13: Let S,(:) = Maty,(S®). For all i € Jo, update the cluster assignment by
z(i),(fﬂ) = arg max cos (Y,C i S,(Cta ) .
a€lr]
14: end for

15: end for

Output: Estimated clustering z,(CT) :[p] — [r], k € [K].

size is well controlled. The stability assumption is proposed
for technical convenience, and we relax this condition in
numerical studies; see Section VI.

Theorem 5 (Error for Angle-Based Iteration): Consider
the general sub-Gaussian dTBM with fixed » > 1, K > 2,
independent noise under the parameter space P, and
Assumption 1. Assume that the locally linear stability of
degree holds in the nelghborhood N(z,¢) for all e < E; and
some Ey > log™'p. Let {zk K | be the initialization for
Sub-algorithm 2 and z,i) be the t¢-th iteration output on the
k-th mode. Suppose mlnze p) (i) > c for some constant
¢ > 0, the SNR > C’p ~Ulog p for some sufficiently large
positive constant C, and the initialization satisfies

A2~
0 min

With probability going to 1 as p — oo, there exists a

contraction parameter p € (0,1) such that

0z, 50) <

SNR ! exp (f P’;ENR) + otz 2. (15)
—_———

computational error

statistical error

From the conclusion (15), we find that the iteration error is
decomposed into two parts: statistical error and computational
error. The statistical error is unavoidable with noisy data
regardless ¢, whereas the computational error decays in an
exponential rate as the number of iterations ¢ — oo.
Corollary 1 (Exact Recovery of dTBM With Weighted
Higher-Order Initialization): Let the initialization {z,io)}szl
be the output from Sub-algorithm 1. Assume SNR 2>
p~%/2logp. Combining all parameter assumptions and the
results in Theorems 4 and 5, with probability going to 1 as
p — 00, our estimate sz achieves exact recovery within
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polynomial iterations; more precisely,
z,(CT) =mgoz, forallT 2 log,,pandk € [K].

for some permutation 75 € II.

Therefore, our combined algorithm is computationally effi-
cient as long as SNR > p~%/21ogp. Note that, ignoring
the logarithmic term, the minimal SNR requirement, p~ /2,
coincides with the computational critical value in Theorem 3.
Therefore, our algorithm is optimal regarding the signal
requirement and lies in the sharpest computationally efficient
regime in Fig. 2.

C. Extension to Bernoulli Observations

Bernoulli or network observations are common in multiple
fields. Our iteration Theorem 5 holds for Bernoulli models,
but our initialization Theorem 4 does not. Moreover, our
current dTBM is insufficient to address sparsity with decaying
mean tensor. Here, we provide extra discussions for Bernoulli
initialization and strategies under sparse settings.

o Extension to dense binary dTBMs. The main difficulty
to establish initialization guarantees for Bernoulli obser-
vations lies in the denoising step (lines 1-2 in Sub-
algorithm 1). We now provide a high-level explanation
for the technical difficulty when applying Theorem 4 to
Bernoulli observations.

The derivation of Theorem 4 relies on the upper bound
of the estimation error for the mean tensor in Lemma 7;
i.e., with high probability

X — X% < p*/2, (16)

where X = E)Y and X is defined in Step 2 of Sub-
algorithm 1. Unfortunately, the inequality (16) holds
only for i.i.d. sub-Gaussian observations, while Bernoulli
observations are generally not identically distributed.
One possible remedy is to apply singular value decompo-
sition to the square unfolding [27], Mat,(-), of Bernoulli
tensor Y € {0,1}Pr**Px_ Specifically, the square
matricization Mat,,()) € {0, 1yt xpl
Matsq (V)] (1, J2) = V(i1, ..., ix), where

Ji=rd1+pi(ia — 1) +--+p1-pirje)-1(i k2] — 1),
J2 = irky2) +Pri /2] (/2141 — 1)+
+Driy21 - Pr—1(ix —1).

has entries

The matrix Mat,,(Y) is asymmetric. We interpret
Mat,,()) as the adjacency matrix for a bipartite net-
work with connections between two groups of nodes.
The two groups of nodes in the bipartite network have
p1--PlKy2) and pr/2) -+ pi nodes, respectively. The
entry [Matsq(Y)](j1, j2) refers to the presence of con-
nection between the nodes indexed by combinations
(i1,...,%|Kk/2)) and (ifg /27, .., ix). We summarize the
procedure in Algorithm 2.

Proposition 1 (Error for Bernoulli Initialization):
Consider the Bernoulli dTBM in the parameter space P
with fixed » > 1, K > 2. Assume that Assumption 1
holds, @ is balanced, and min;cp, 0(i) > ¢ for some
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Algorithm 2 Weighted Higher-Order Initialization for
Bernoulli Observation
Input: Bernoulli tensor ) € {0, 1}P* %P cluster number 7,
relaxation factor 7 > 1 in k-means clustering.
1: Let the matrix Mat,, () € {0, 1325 denote the
ne;lrly square unfolded tensor. Compute the estimate X”,
where

X = [Matsq (X) — Matsq(y)H?ﬂ an

arg min
rank(Matg g (X)) <r[K/2]

2: Implement lines 3-5 of Sub-algorithm 1 with X replaced
by X’ in (17).
Output: Initial clustering z,go) — %,k € [K].

constant ¢ > 0. Let z,io) denote the output of Algorithm 2.

With probability going to 1 as p — oo, we have
K = LK/2]
SNR

Remark 8 (Comparison with Gaussian model): The
Bernoulli bound O(p~L%/2]) in Proposition 1 is
relatively looser than the Gaussian bound O(p~%/2) in
Theorem 4. The gap between Bernoulli and Gaussian
error decreases as the order K increases. Nevertheless,
combining with angle iteration Sub-algorithm 2,
Bernoulli clustering still achieves exponential error
rate exp (—pX 1)) at a price of a larger SNR. The
investigation of the gap between upper bound p—L¥/2]
and the lower bound p~%/2 for Bernoulli tensors will be
left as future work. In numerical experiments, we will
use our original initialization, Sub-algorithm 1, to verify
the robustness to Bernoulli observations.

Remark 9 (Comparison With Previous Methods):
Previous work [9] develops a spectral clustering method
for Bernoulli dTBM. [9] adopts a different signal
notion based on the singular gap in the core tensor,
denoted as Agingular- By [9, Theorem 1], the spectral
method achieves exact recovery with Agpeutar = p~ /2.
However, we are not able to infer the exact recovery
of spectral method by our angle-base SNR condition.
Consider an order-2 dTBM with p > 2,02 = 1,
0 = 1,, equal size assignment |2~!(a)| = p/r for all
a € [r], and core matrix equal to the 2-dimensional
identity matrix S = Iy. The singular gap under this
setting is Agingular = min{A; — Az, A2} = 0, where
A1 > Ao are singular values of S. In contrast, our angle
gap A2. = 2 satisfies the SNR condition in Theorem 5.
Then, our algorithm achieves the exact recovery, but the
spectral method in [9] fails.

Hence, for fair comparison, we compare the best per-
formance of our algorithm and [9] under the strongest
signal setting of each model. Since both methods contain
an iteration procedure, we set the iteration number to
infinity to avoid the computational error. Considering
the largest angle-based SNR =< 1 in Theorem 5, our
Bernoulli clustering achieves exponential error rate of
order exp(—p¥~1); considering the largest singular

(0)

g(zk ) Zk)f, s and L(Z]io)’ Zk) SUQTKpf LK/2J
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gap Agingular =< 1 in Theorem 1 of [9], the spectral
clustering has a polynomial error rate of order p~2. Our
algorithm still shows a better theoretical accuracy than
the competitive work for Bernoulli observations.

e Extension to sparse binary dTBMs. The sparsity is often
a popular feature in hypergraphs [9], [16], [28]. Specif-
ically, the sparse binary dTBM assumes that, the entries
of Y follow independent Bernoulli distributions with the
mean

IE\)}:OépSXl@M)(Q'--><K@]\47 (18)

where the extra scalar parameter «,, € (0, 1] is function
of p that controls the sparsity. A smaller «,, indicates
a higher level of sparsity. Our current work focuses
on dense dTBM with oy, = 1. While sparse dTBM is
an interesting application, the algorithm and its analysis
require different techniques. Below, we discuss possible
modifications of the algorithm.

The sparsity affects our initialization guarantee in our
Theorem 4. In our initialization, the spectral denoising
step (lines 1-2 in Sub-algorithm 1) implements matrix
SVD to unfolded tensors. However, SVD-based methods
are believed to fail in extremely sparse SBM due to
the localization phenomenon in the singular vectors [28].
Inspired by [28], we adopt the diagonal-deleted HOSVD
(D-HOSVD) [9] as the initialization in our higher-order
clustering.

The sparsity also affects the iteration guarantee in our
Theorem 5. The decaying mean tensor leads to a worse
statistical error of order O(—a,p® 1) on X. The theo-
retical analyses for sparse binary dTBM and algorithms
are left as future directions. Instead, we add numerical
experiments to evaluate the robustness of our algorithm
and the improvement of D-HOSVD initialization in the
sparse dTBM; see Appendix A.

D. Practical Issues

1) Computational Complexity: Our two-stage algorithm
has a computational cost polynomial in tensor dimension p.
Specifically, the complexity of Sub-algorithm 1 is O(Kp®+1+
Ker ), where the first term is contributed by the double
projection and the calculation of X, and the second term
comes from normalization and the k-means. The cost of each
update in Sub-algorithm 2 is O(p¥ + pr¥), where pX comes
from the calculation of S® and )¢, and pr comes from the
normalization of Y9, the calculation of S (t), and the cluster
assignment update in Step 13.

2) Hyper-Parameter Selection: In our theoretical analysis,
we have assumed the true cluster number 7 is given to
our algorithm. In practice, the cluster number 7 is often
unknown, and we now propose a method to choose r from
data. We impose the Bayesian information criterion (BIC) and
choose the cluster number that minimizes BIC; i.e., under the
symmetric Gaussian dTBM (1),

7 = arg min (pK log(||)2' — y||§7) +pe(r)Klogp) , (19
r€Ly
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with X = S(r)x,O(r) M (r) X5 - - X x O (r) M (1), where the
triplet (2(r),S(r), 8(r)) are estimated parameters with cluster
number 7, and p.(r) = 1% + p(logr + 1) — r is the effective
number of parameters. Note that we have added the argument
(r) to related quantities as functions of r. In particular, the
estimate @(r) in (19) is obtained by first calculating the
reduced tensor 3>d with Z(r), and then normalizing the row
norms || Y4|| to 1 in each cluster; i.e.,

o(r) = (0(1,7),...,0(p,m)7,

With (i, 7) = 1V (0)51/ 52,25y |V ) ¥4() =
Mat(Y4(r)), Y4(r)(i,az,...,ax) = Ave{V(i,iz,...,ix) :
Z(ig,r) = ag, k # 1}, and (4, r) denotes the community label
for the ¢-th node with given cluster number 7. We evaluate the
performance of the BIC criterion in Section VI-A.

V. COMPARISON WITH NONDEGREE TENSOR BLOCK
MODEL

We discuss the connections and differences between dTBM
and TBM [13] from three aspects: signal notions, theoretical
results, and algorithms. Without loss of generality, let 02 = 1.

o Signal notion. The signal levels in both TBM [13] and our
dTBM are functions of the core tensor S. We emphasize
that the signal notions are different between the two
models. In particular, the Euclidean-based signal notion in
TBM [13] fails to accurately describe the phase transition
in our dTBM due to the possible heterogeneity in degree
6. To compare, we denote our angle-based signal notion
in (4) and the Euclidean-based SNR in [13] as Afng and
AZ,.. tespectively:

A2 =9(1— S... Su)),
ang ( ag%)%)[(r] COS( a: b))

A2 — min [|S,. — S|
Fuc aﬁléb]” a: — St

By Lemma 4 in the Appendix B, we have

Aing maX||Sai||2 S A]2§uc'
a€lr]

The above inequality indicates that the condition A2, <
p? is sufficient but not necessary for Afng < p". In fact,
if we were to use A%, for both models, then the phase
transition of dTBM can be arbitrarily worse than that for
TBM.

Here, we provide an example to illustrate the dramatical
difference between TBM and dTBM with the same core
tensor.

Example 4 (Comparison With Euclidean-Based Signal
Notion): Consider a biclustering model with & = 1 and

an order-2 core matrix

S _ (p('Y"l‘l)/Q + 2 2 p(7+1)/2 + 4

. <_1
9 4 ), with v < —1

The core matrix S lies in the parameter spaces of TBM
and our dTBM. Here, the constraint v < —1 is added
to ensure the bounded condition of S in our parameter
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space in (2). The angle-based and Euclidean-based signal
levels of S are

A2, (8)=0 (<p7), AR(S)=5p" (=p).

We conclude that TBM with S achieves exact recovery
with a polynomial-time algorithm; see [13, Theorem 4].
By contrast, the dTBM with the same S and input r =
2 violets the identifiability condition, and thus fails to be
solved by all estimators; see our Theorem 1.

o Theoretical results. In both works, we study the phase
transition of TBM and dTBM with respect to the
Euclidean and angle-based SNRs. We briefly summarize
the results in [13] and compare with ours.

Statistical critical value:

Ours: Afng < p~E=D = statistically impossible;

A2 > p~BE=D= MLE achieves exact recovery;

ang ~v
Han’s: A2, < p~ =D = gtatistically impossible;

AZ. > p~E=D= MLE achieves exact recovery.

Euc ~
Computational critical value:

Ours: A2 < p~%/2 = computationally impossible;

ang ~

AZ > p*K/ 2 = computationally efficient;

ang
Han’s: A2, < p~ /2 = computationally impossible;
AL > p~ /2 = computationally efficient.

The above comparison reveals four major differences.
First, none of our results in Section III are corollaries
of [13]. Both models show the similar conclusion but
under different conditions. While the TBM impossibil-
ity [13] provides a necessary condition for our dTBM
impossibility, we find that such a condition is often loose.
There exists a regime of S in which TBM problems
are computationally efficient but dTBM problems are
statistically impossible; see Example 4. This observation
has motivated us to develop the new signal notion Afng
for sharp dTBM phase transition conditions.

Second, to find the phase transition, we need to show
both the impossibility and achievability when SNR is
below and above the critical value, respectively. While
the TBM impossibility can serve as a loose condition
of our dTBM impossibility, more efforts are required to
show the achievability. In particular, since TBM is a more
restrictive model than dTBM, the achievability in [13]
does not imply the achievability of dTBM in a larger
parameter space. The latter requires us to develop new
MLE and polynomial algorithms for dTBM achievability.
Third, from the perspective of proofs, we develop new
dTBM-specific techniques to handle the extra degree
heterogeneity. In our Theorem 2, we construct a special
nontrivial degree heterogeneity to establish the lower
bound for arbitrary core tensor with small angle gap,
while, TBM [13] considers the constructions without
degree parameter. In our Theorem 3, we construct a
rank-2 tensor to relate HPC conjecture to Afng, while
TBM [13] constructs a rank-1 tensor to relate HPC con-

jecture to AZ,.. The asymptotic nonequivalence between
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Ay, and A, renders our proof technically more
involved.

Last, we discuss the statistical impossibility statements.
Our Theorem 2 implies the statistical impossibility when-
ever the core tensor S leads to an angle-based SNR below
the critical value, while, Theorem 6 in [13] implies the
worst case statistical impossibility for a particular core
tensor S with Euclidean-based SNR below the statistical
limit. Hence, our Theorem 2 shows a stronger statistical
impossibility for dTBM than that presented in TBM [13,
Theorem 6]. However, inspecting the proof of [13], the
proof of Theorem 6 indeed implies a stronger TBM
impossibility statement for arbitrary core tensor; i.e.,
when v < —(K —1)

lim inf inf inf sup E[pl(Zstats, 2)] >1,
P—00 SePs TBMN{AY ,=p7} Zstats 2€P, TBM

where Ps tepm and P, tpm refer to the space for core
tensor S and assignment z under TBM, respectively.
Again, in terms of the strong statistical impossibility, both
models show the similar conclusion but under different
conditions. Since two impossibilities consider different
core tensor regimes with nonequivalent Afng and A%,
we emphasize that different proof techniques are required
to obtain these similar conclusions. See our proof sketch
in Section VIII-A, Appendices B-D and B-E for detail
technical differences.

o Algorithms. Both [13] and our work propose the two-
step algorithm, which combines warm initialization and
iterative refinement to achieve exact recovery. This
local-to-global strategy is not new in clustering litera-
ture [29], [30]. The highlight of our algorithm is the
angle-based update in lines 10-14, Sub-algorithm 2,
which is specifically designed for dTBM to avoid the
estimation of 6. This angle-based update brings new
proof challenges. We develop polar-coordinate based
techniques to establish the error rate for the proposed
algorithm.

VI. NUMERICAL STUDIES

We evaluate the performance of the weighted higher-order
initialization and angle-based iteration in this section.
We report average errors and standard deviations across
30 replications in each experiment. Clustering accuracy is
assessed by clustering error rate (CER, i.e., one minus rand
index). The CER between (Z, z) is equivalent to misclustering
error £(Z,z) up to constant multiplications [31], and a lower
CER indicates a better performance.

We generate order-3 tensors with assortative [15] core
tensors to control SNR; i.e., we set Spuq = $1 for a € [r]
and others be sp, where s1 > so > 0. Let @ = $1/s9.
We set « close to 1 such that 1 — a = o(p). In particular,
we have o = 1 + Q(p?/?) with v < 0 by Assumption 1
and definition (4). Hence, we easily adjust SNR via varying
«. The assortative setting is proposed for simulations, and
our algorithm is applicable for general tensors in practice.
The cluster assignment z is randomly generated with equal
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a. Matrix (K = 2) b. Tensor (K = 3)
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Fig. 4. SNR phase transitions for clustering in dTBM with

p = {80,100}, = 5 under (a) matrix case with v € [—1.2,—0.4] and
(b) tensor case with v € [—2.1, —1.4].

probability across r clusters for each mode. Without further
explanation, we generate degree heterogeneity 6 from absolute
normal distribution by 0(i) = | X;|+1—1/v/27 with | X;| "=
N(0,1),7 € [p] and normalize O to satisfy (2). Also, we set
02 = 1 for Gaussian data without further specification.

A. Verification of Theoretical Results

The first experiment verifies statistical-computational gap
described in Section III. Consider the Gaussian model with
p = {80,100}, r = 5. We vary 7 in [-1.2,—0.4] and
[-2.1,—-1.4] for matrix (X = 2) and tensor (K = 3)
clustering, respectively. Note that finding MLE under dTBM
is computationally intractable. We approximate MLE using an
oracle estimator, i.e., the output of Sub-algorithm 2 initialized
from true assignment. Fig. 4a shows that both our algorithm
and oracle estimator start to decrease around the critical value
Ystat = Yeomp = —1 in matrix case. In contrast, Fig. 4b
shows a significant gap in the phase transitions between the
algorithm estimator and oracle estimator in tensor case. The
oracle error rapidly decreases to 0 when g, = —2, whereas
the algorithm estimator tends to achieve exact clustering
when Yeomp = —1.5. Fig. 4 confirms the existence of the
statistical-computational gap in our Theorems 2 and 3.

The second experiment verifies the performance guarantees
of two algorithms: (i) weighted higher-order initialization; (ii)
combined algorithm of weighted higher-order initialization
and angle-based iteration. We consider both the Gaussian
and Bernoulli models with p = {80,100}, » = 5, v €
[-2.1,—1.4]. Fig. 5 shows the substantial improvement of
combined algorithm over initialization, especially under weak
and intermediate signals. This phenomenon agrees with the
error rates in Theorems 4 and 5 and confirms the necessity of
the local iterations.

The third experiment evaluates the empirical performance of
the BIC criterion to select unknown cluster number. We gen-
erate the data from an order-3 Gaussian model with p =
{50,80}, r = {2, 4}, and noise level o2 € {0.25, 1}. Table III
shows that our BIC criterion well chooses the true r under
most settings. Note that the BIC slightly underestimates the
true cluster number (r = 4) with smaller dimension and
higher noise (p = 50,02 = 1), and the accuracy immediately
increases with larger dimension p = 80. The improvement
follows from the fact that a larger dimension p indicates
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Fig. 5. CER versus signal exponent (v) for initialization only and for
combined algorithm. We set p = {80,100}, = 5,v € [—2.1, —1.4] under
(a) Gaussian models and (b) Bernoulli models.

a larger sample size in the tensor block model. Therefore,
we conclude that BIC criterion is a reasonable way to tune
the cluster number.

B. Comparison With Other Methods

We compare our algorithm with following higher-order
clustering methods:

o HOSVD: HOSVD on data tensor and k-means on the rows
of the factor matrix;

e« HOSVD+: HOSVD on data tensor and k-means on the
f5-normalized rows of the factor matrix;

o HLloyd [13]: High-order clustering algorithm developed
for nondegree tensor block models;

e SCORE [9]: Tensor-SCORE for clustering developed for
sparse binary tensors.

Among the four alternative algorithms, the SCORE is the
closest method to ours. We set the tuning parameters of
SCORE as in previous literature [9]. The methods SCORE and
HOSVD+ are designed for degree models, whereas HOSVD
and HLIloyd are designed for nondegree models. We conduct
two experiments to assess the impacts of (i) signal strength
and (ii) degree heterogeneity, based on Gaussian and Bernoulli
models with p = 100,7 = 5. We refer to our algorithm as
dTBM in the comparison.

We investigate the effects of signal to clustering perfor-
mance by varying v € [—1.5,—1.1]. Fig. 6 shows that
our method dTBM outperforms all other algorithms. The
suboptimality of SCORE and HOSVD+ indicates the necessity
of local iterations on the clustering. Furthermore, Fig. 6 shows
the inadequacy of nondegree algorithms in the presence of
mild degree heterogeneity. The experiment demonstrates the
benefits of addressing heterogeneity in higher-order clustering
tasks.

The only exception in Fig. 6 is the slightly better per-
formance of HLloyd over HOSVD+ under Gaussian model.
However, we find the advantage of HLloyd disappears with
higher degree heterogeneity. We perform extra simulations to
verify the impact of degree effects. We use the same setting
as in the first experiment in the Section VI-B, except that
we now generate the degree heterogeneity 6 from Pareto
distribution prior to normalization. The density function of
Pareto distribution is f(z|a, b) = ab®z~ (@D 1{x > b}, where
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TABLE III

ESTIMATED CLUSTER NUMBER GIVEN BY BIC CRITERION UNDER THE LOW NOTSE LEVEL (02 = 0.25) AND HIGH NOISE LEVEL (02 = 0.5) SETTINGS.
NUMBERS IN PARENTHESES ARE STANDARD DEVIATIONS OF #* OVER 30 REPLICATIONS

Settings p=50,02 =0.25 p="50,02=1 p = 80,02 = 0.25 p=280,02=1
True cluster number 7 2 4 2 4 2 4 2 4
Estimated cluster number 7 2(0) 3.9(0.25) 2(0) 3.1(0.52) 2(0) 4(0) 2(0) 3.9(0.31)
a. Gaussian b. Binary a. Gaussian b. Binary
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Fig. 6. CER versus signal exponent (denoted ~y) for different methods. We set
p = 100,r = 5,y € [—1.5,—1.1] under (a) Gaussian and (b) Bernoulli
models.
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Fig. 7. CER comparison versus signal exponent (denoted ~y) under (a) low

(shape parameter a = 6) (b) high (shape parameter a = 2) degree
heterogeneity. We set p = 100, = 5,7 € [—1.5,—1.1] under Gaussian
model.

a is called shape parameter. We vary a € {2,6} and choose b
such that EX = a(a—1)"1b = 1 for X following Pareto(a, b).
Note that a smaller a leads to a larger variance in 8 and hence a
larger degree heterogeneity. We consider the Gaussian model
under low (¢ = 6) and high (¢ = 2) degree heterogeneity.
Fig. 7 shows that the errors for nondegree algorithms (HLloyd,
HOSVD) increase with degree heterogeneity. In addition, the
advantage of HLloyd over HOSVD+ disappears with higher
degree heterogeneity.

The last experiment investigates the effects of degree hetero-
geneity to clustering performance. We fix the signal exponent
v = —1.2 and vary the extent of degree heterogeneity.
In this experiment, we generate 6 from Pareto distribution
prior to normalization. We vary the shape parameter a €
[3,6] in the Pareto distribution to investigate a range of
degree heterogeneities. Fig. 8 demonstrates the stability of
degree-corrected algorithms (dTBM, SCORE, HOSVD+) over
the entire range of degree heterogeneity under considera-
tion. In contrast, nondegree algorithms (HLloyd, HOSVD)
show poor performance with large heterogeneity, especially in
Bernoulli cases. This experiment, again, highlights the benefit
of addressing degree heterogeneity in higher-order clustering.

Fig. 8. CER versus shape parameter in degree (denoted a € [3,6]) for
different methods. We set p = 100, = 5, = —1.2 under (a) Gaussian and
(b) Bernoulli models.

VII. REAL DATA APPLICATIONS

A. Human Brain Connectome Data Analysis

The Human Connectome Project (HCP) aims to construct
the structural and functional neural connections in human
brains [32]. We preprocess the original dataset following [33]
and partition the brain into 68 regions. The cleaned dataset
includes brain networks for 136 individuals. Each brain net-
work is represented by a 68-by-68 binary symmetric matrix,
where the entry with value 1 indicates the presence of
connection between node pairs, while the value O indicates
the absence. We use Y € {0,1}68%68x136 (o denote the
binary tensor. Individual attributes such as gender and sex are
recorded.

We apply our general asymmetric algorithm to the HCP
data with the numbers of clusters on three modes r; =
ro = 4 and r3 = 3. The selection of r; and ry follows
the human brain anatomy and the symmetry in the brain
network, and the r3 is specified following previous analy-
sis [34]. Because of the symmetry in the data, the estimated
brain node clustering results are the same on the first and
second modes. Fig. 9 shows that brain connection exhibits a
strong spatial separation structure. Specifically, the first cluster,
named L.Hemis, involves all the nodes in the left hemisphere.
The nodes in the right hemisphere are further separated into
three clusters led by the middle-part tissues in Temporal and
Parietal lobes (R.Temporal), the back-part tissues in Occipital
lobe (R.Occipital), and the front-part tissues in Frontal and
Parietal lobes (R.Supra). This clustering result is reasonable
since the left and right hemispheres often play different roles
in human brains.

Fig. 10 illustrates the estimated core tensor S with esti-
mated clustering, and Fig. 11 visualizes the average brain
connections and the connection enrichment in contrast to
average networks in each group. In general, we find that the
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Fig. 9. Illustration of brain node clustering results for HCP data with (a) top and (b) side views.
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Fig. 11.
enrichments in Groups 1-3. Red edges represent the positive enrichment and blue edges represent the negative enrichment.

inner-hemisphere connection has stronger connection com-
pared to inter-hemisphere connections (Fig. 10a). Also, the
back and front parts (R.Occipital, R.Supra) are shown to
have more interactions with temporal tissues than inner-cluster
connections. In addition, the group 1 with 54% females
shows an enrichment on the inter-hemisphere connections
(Fig. 10b), while group 4 with only 36% females exhibits a
reduction (Fig. 10d). This result agrees with previous find-
ings in [34]. The enrichment on the back-front connection
is also recognized in group 3 (Fig. 10c). The interpretive
patterns in our results demonstrate the usefulness of our
clustering methods in the human brain connectome data
application.

Cluster
R.Supra
R.Occipital
R.Temporal

L.Hemis

Observed brain connections in the population and each group of individuals. (a) Average brain network; (b)-(d) Group-specified brain network

B. Peru Legislation Data Analysis

We also apply our method to the legislation networks in
the Congress of the Republic of Peru [35]. Because of the
frequent political power shifts in the Peruvian Congress during
2006-2011, we choose to focus on the data for the first half
of 2006-2007 year. The dataset records the co-sponsorship
of 116 legislators from top 5 parties and 802 bill proposals.
We reconstruct legislation network as an order-3 binary tensor
Y € {0,1}116x16x116 " where Y, = 1 if the legislators
(i, j, k) have sponsored the same bill, and );; = 0 otherwise.
The true party affiliations of legislators are provided and
serve as the ground truth. We apply various higher-order
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TABLE IV
CLUSTERING ERRORS (MEASURED BY CER) FOR VARIOUS METHODS IN
THE ANALYSIS OF PERU LEGISLATION DATASET
HLloyd SCORE
0.149 0.199

dTBM HOSVD HOSVD+
0.116 0.22 0.213

Method
CER

clustering methods to ) with r = 5. Table IV shows that
our dTBM achieves the best performance compared to others.
The second best method is the two-stage algorithm HLloyd,
followed by the spectral methods SCORE and HOSVD+. This
result is consistent with our simulations under strong signal
and moderate degree heterogeneity. The comparison suggests
that our method dTBM is more appealing in real-world
applications.

VIII. PROOF SKETCHES

In this section, we provide the proof sketches for the main
Theorem 2 (Impossibility), Theorem 3 (Impossibility), and
Theorems 4-5. Detail proofs and extra theoretical results are
provided in Appendix B.

A. Proof Sketch of Theorem 2 (Impossibility) and Theorem 3
(Impossibility)

The proofs of impossibility in Theorems 2 and 3 share
the same proof idea with [13, Theorems 6 and 7] and [15,
Theorem 2]. In both proofs of statistical and computational
impossibilities, the key idea is to construct a particular set of
parameters to lower bound the minimax rate. Specifically, for
statistical impossibility in Theorem 2, we construct a particular
(2Xater Ofiats) € P20 such that for all S* € Ps(y)

inf  sup  E[pl(Zsiat, 2)]

Zstats (Z G)G’Pz 0
> inf E[pl(Zstat; 25tats) | (Zatats: S Ostars)] > 1; (20)

Zstats

for computational impossibility in Theorem 3, we construct a
particular (27,,,.,Sx . 0% )€ P(y) such that

comp’

E[pé(éwmp» Z)}

COInp ’ comp

inf sup
Zcomp (2,8,0)€P(v)

> Z(l-iljp E[pE(ZCOHIP7 comp)|( comp’ S:ompv Ozomp)] = L.
The constructions of (Z;ktats’ O:tats) and ( comp7 S:omp7 :omp)
are the most critical steps. With good constructions, the
lower bound “> 1” can be verified by classical statistical
conclusions (e.g. Neyman-Pearson Lemma) or prior work (e.g.
HPC Conjecture).

A notable detail in the proof of statistical impossibility is
the arbitrariness of S*. The first infimum over Pgs() in the
minimax rate (10) requires that the lower bound (20) holds
for any S* € Ps(7). The arbitrary choice of S* brings extra
difficulties in the parameter construction, and consequently a
nontrivial 8},,, # 1 is chosen to address the arbitrariness.
Previous TBM construction in the proof of [13, Theorem 6]
with 8%, = 1 is no longer applicable in our case. Meanwhile,
our construction (2, S leads to a rank-2 mean

*
comp » “comp? comp)

tensor to relate the HPC Conjecture while TBM [13, Theorem
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7] constructs a rank-1 mean tensor. Hence, we emphasize
that dTBM-specific techniques are required to obtain our
impossibility results, though the proof idea is common for
minimax lower bound analysis.

B. Proof Sketch of Theorem 4

The proof of Theorem 4 is inspired by the proof idea of [15,
Lemma 1]. The extra difficulties are the angle gap characteri-
zation and multilinear algebra property in tensors; we address
both challenges in our proof. Specifically, we control the
misclustering error by the estimation error of X calculated in
Step 2 of Sub-algorithm 1. We prove the following inequality

1
£(20) < i 0(i)?
(.2) § min > (i)
i5200) (1) 2 (=()
0'2TK 1
S Sl
K/Q
Kp
< 21
S SNR ) (21)

where X = [E)Y is the true mean. The first inequality
in (21) holds with the assumption min;ep,) 6(i) > ¢ > 0 in
Theorem 4. The second inequality relies on the key Lemma 1,
which indicates

min (X = (X
where X = Mat(X'). The most challenging part in the proof of
Theorem 4 lies in the derivation of inequality (22) (or the proof
of Lemma 1), in which the proof of [15] is no longer applicable
due to different angle gap assumption in our dTBM. To address
the angle gap notion, we develop the extra padding technique
in Lemma 5 and balance assumption (6). Last, we finish the
proof of Theorem 4 by showing the third inequality of (21)
using [13, Proposition 1].

2 AIninv

~

(22)

C. Proof Sketch of Theorem 5

The proof of Theorem 5 is inspired by the proof idea of
[13, Theorem 2]. We develop extra polar-coordinate based
techniques with angle gap characterization to address the nui-
sance degree heterogeneity. Recall the intermediate quantity,
misclustering loss, defined in (11)

LW . = L(Z Z(t))

P

zG [p]

— 185)°|

) > 1{=6) = b} |[[S-co.

be(r]

We show that L(*) provides an upper bound for the miscluster-

. . . . . )
ing error of interest via the inequality ¢(*) < ALQ

Therefore, it suffices to control L®). Further, we introduce
the oracle estimators for core tensor under the true cluster
assignment via

3:))><1WT><2--~><KWT,

where W = M (diag(1] M ))71 is the weighted true mem-
bership matrix. Let V. = W® -1 denote the Kronecker
product of (K — 1) copies of W matrices, and we define the
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{-th iteration quantities W®, V() corresponding to M ®) (or
equivalently z(!)). To evaluate L(**1), we prove the bound

1 {z<f+1>(i) - b}

1 ¥ vOr -1 < v v O - 1890012}

< Aip + B, (23)
where Y = Mat()), S = Mat(S), S® = Mat(S")) and

Ap=1 {<Ei:V, [S’Z(i)t]s - [Sb;]s> 5—” [Sz(i):]s_[sb:]suz} )
By = 1{[[[S.)" — 1S S P + G+ HY ).

The terms Fi(lf ), GEZ), ) Z(lf) are controlled by z(Y), S®); see the
detailed definitions in (68), (69), (70). Note that the event A;;
only involves the oracle estimator independent of ¢, while all
the terms related to the ¢-th iteration are in B,,. Thus, the
inequality (23) decomposes the misclustering loss in the (¢ +
1)-th iteration into the oracle loss and the loss in ¢-th iteration.
This decomposition leads to the separation of statistical error
and computational error in the final upper bound of Theorem 5.
Specifically, we prove the contraction inequality

L(t+1) S 1\45_"_;)[/(7&)7
1 s s
with €= 300 A |[S0)" — 1S @4)

i€[p] be(r]

where M is a positive constant, p € (0,1) is the contraction
parameter, and we call £ the oracle loss. Controlling the
probability of event Bj;, and obtaining the pL(*) term in the
right hand side of (24) are the most challenging parts in
the proof of Theorem 5. Note that the true and estimated
core tensors are involved via their normalized rows such
as S5, 8, [St(lt:)]s. The Cartesian coordinate based analysis
in [13] is no longer applicable in our case. Instead, we use
the polar-coordinate based analysis and the geometry property
of trigonometric functions to derive the high probability upper
bounds for Fi(bt)7 GEZ), Hz(lf)

Further, by sub-Gaussian concentration, we prove the high
probability upper bound for oracle loss

K—1
¢ < SNR™!exp (—pKSlNR> . (25)
T
Combining the decomposition (24) and the oracle bound (25),
we finish the proof of Theorem 5.

The proof of MLE error shares the similar idea as Theo-
rems 4-5. We first show a weaker polynomial rate for MLE
and then improve the rate from polynomial to exponential
through the iterations. The only difference is that the MLE
remains the same over iterations due to its global optimality.

See Appendix B-G for the detailed proof.

APPENDIX A
ADDITIONAL NUMERICAL EXPERIMENTS

A. Bernoulli Phase Transition

The  first additional  experiment  verifies the
statistical-computational gap in Section III under the Bernoulli
model. Consider the Bernoulli model with p = {80,100},

3897
Binary Matrix (K = 2) b Binary Tensor (K = 3)
Z 04 : zo4 : :
i) w
e ©) Algorithm
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% % < Oracle
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Gamma Gamma
Fig. 12. SNR phase transitions for Bernoulli dTBM with

p = {80,100}, = 5 under (a) matrix case with v € [—1.2,—0.4]
and (b) tensor case with v € [—2.1, —1.4].

CER vs Sparsity
0.6

Algorithm
N < Initialization
A D-HOSVD
& -® Ours
& % SCORE
- D-HOSVD + Angle Iteration
- SCORE + Angle Iteration

Clustering Error Rate (CER)
I5)
e <

0.0

0.00 0.25 0.50 0.75
Alpha

Fig. 13. CER comparison versus sparsity parameter o, in [0.05, 0.9]. We set
p =100, = 5 and v = —1.2 under sparse binary dTBM.

r = 5. We vary v in [-1.2,-0.4] and [-2.1,—1.4] for
matrix (X = 2) and tensor (K = 3) clustering, respectively.
We approximate MLE using an oracle estimator, i.e., the
output of Sub-algorithm 2 initialized from the true assignment.
Fig. 12 shows a similar pattern as Fig. 4. The algorithm and
oracle estimators have no gap in the matrix case, while an
error gap emerges between the critical values s = —2 and
Yeomp —1.5 in the tensor case. Fig. 4 suggests the
statistical-computational gap in Bernoulli models.

B. Sparsity

The second additional experiment evaluates the algorithm
performances under the sparse binary dTBM (18). We fix the
signal exponent v = —1.2 and vary the sparsity parameter
a, € [0.05,0.9]. A smaller o, leads to a higher probability
of zero entries in the observation. In addition to the three
algorithms mentioned in Section VI-B (denoted Initialization,
dTBM, and SCORE), we consider other three algorithms based
on the discussion in Section IV-C:

o D-HOSVD, the diagonal-deleted HOSVD in [9];

e D-HOSVD + Angle, the combined algorithm of our

angle-based iteration with initialization from D-HOSVD;

e SCORE + Angle, the combined algorithms of our

angle-based iteration with initialization from SCORE.
Fig. 13 shows a slightly larger error in dTBM than that in
SCORE, D-HOSVD + Angle, and SCORE + Angle under the
sparse setting with oy, < 0.3. The small gap between dTBM
and other sparse-specific methods implies the robustness of our
algorithm. In addition, comparing SCORE versus SCORE +
Angle (or D-HOSVD versus D-HOSVD + Angle) indicates the
benefit of our angle iterations under the sparse dTBM. In the
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intermediate and dense cases with «y, > 0.3, our proposed
dTBM has a clear improvement over others, which again
verifies the success of our algorithm in dense settings.

APPENDIX B
PROOFS

We provide the proofs for all the theorems in our main
paper. In each subsection, we first show the proof of main
theorem and then collect the useful lemmas in the end. We
combine the proofs of MLE achievement in Theorem 2 and
polynomial-time achievement in Theorem 5 in the last section
due to the similar idea.

A. Notation

Before the proofs, we first introduce the notation used
throughout the appendix and the general dTBM without
symmetric assumptions. The parameter space and minimal
gap assumption are also extended for the general asymmetric
dTBM.

1) Preliminaries:

e For mode k € [K], denote mode-k tensor matricizations
by

Y, = Mat,, (y) R
E; = Mat;, (5) R

S, = Maty, (S) R
X = Mat,, (X) .

e For a vector a, let a® := a/||a| denote the normalized
vector. We make the convention that a®* = 0 if a = 0.

e For a matrix A € R™™, let A®K = A .--®
A € R ™" denote the Kronecker product of K copies
of matrices A.

e For a matrix A, let ||A||, denote the spectral norm of
matrix A, which is equal to the maximal singular value of
A; let A\i(A) denote the k-th largest singular value of A; let
||A||» denote the Frobenius norm of matrix A.

2) Extension to General Asymmetric dTBM: The general
order-K (p1,...,pr)-dimensional dTBM with r; commu-
nities and degree heterogeneity 0, = [0i(i)] € RY* is
represented by

y:X+€, where X =8 X1 ®1M1 Xo XK @KMK,

(26)

where ) € RPt*"*Px jig the data tensor, X € RP1XXPk
is the mean tensor, S € R™* X"k js the core tensor,
E € RP1*XPK ig the noise tensor consisting of independent
zero-mean sub-Gaussian entries with variance bounded by o2,
® = diag(0y), and My, € {0,1}P**" is the membership
matrix corresponding to the assignment z, : [pg] — [ri], for
all k € [K].

For ease of notation, we use {z;} to denote the collection
{2} |, and {6;} to denote the collection {0;}& . Cor-
respondingly, we consider the parameter space for the triplet

({2}, S, {0k }),
P({rx}) =

)

C1Pk 71( )|< C2Pk
Tk

{({Zk}757{9k} 0, € RE,
c3 < [|Ska:ll < cas (16 -1yl = 12 (a)],

for all a € [rg], k € [K]}. 27)
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We call the degree heterogeneity {0} is balanced if for all
k€ [K],

il ool = (4 0() ey oo

We also consider the generalized Assumption 1 on angle
gap.

Assumption 2 (Generalized Angle Gap): Recall
Sr = Mat,(S). We assume the minimal gap between
normalized rows of Sy is bounded away from zero for all
ke [K]; ie

Amin = S/f:,b:” > 0.

min min HSka
ke[K] a£be[rk]

Similarly, let SNR = A2. /5?2 with the generalized minimal
gap A

defined in Assumption 2. We define the regime

min

P(v) = P({re}) N{S satisfies SNR = p” and pi, < p,k € [K]}.

B. Proof of Theorem 1

Proof of Theorem 1: To study the identifiability, we consider
the noiseless model with £ = 0. Assume that there exist two
parameterizations satisfying

X = SX1@1M1X2~~'XK@KM;(
= 8 X O\ M] o xx O M, (28

where ({z:},8,{6:}) € P({ri}) and ({z},5".{6}}) €
P({r},}) are two sets of parameters. We prove the sufficient
and necessary conditions separately.

(<) For the necessity, it suffices to construct two distinct
parameters up to cluster label permutation, if the model (26)
violates Assumption 2. Note that A2 = 1 when there exists
k € [K] such that r;, = 1. Hence, we consider the case that
ri > 2 for all k € [K]. Without loss of generality, we assume
’|Sis,1: - Sf,2:|| =0.

By constraints in parameter space (27), neither S ;. nor
S1,2: is a zero vector. There exists a positive constant ¢ such

that S; 1. = ¢S1,2.. Thus, there exists a core tensor Sy €
R71—1X X7k gquch that
S= S() X1 CR,
where C' = dlag(17 c, 17 LR 1) c RTlXTl and
1 0
R=11 0 ERhX(rlfl).
0 1, 2

Let D = diag(1 +¢,1,...,1) € R=1*"1~1 Consider the
parameterization M{ = M1 R,S' = Sy x1 D, and

Tt () i€z (1),
1+091(z) i€ 27(2),
01 (7) otherwise,

and M| = M;,0;, = 0, for all k = 2,..., K. Then we
have constructed a triplet ({z.},S’,{0..}) that is distinct from
({z},S,{6r}) up to label permutation.

(=) For the sufficiency, it suffices to show that all possible
triplets ({2.},S’,{6},}) are identical to ({2x},S,{6r}) up

01 (i) =
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to label permutation if the model (26) satisfies Assump-
tion (2). We show the uniqueness of the three parameters,
{M}},{S},{0x} separately.

First, we show the uniqueness of Mj, for all k& € [K]. When
ry, = 1, all possible M;,’s are equal to the vector 1, , and the
uniqueness holds trivially. Hence, we consider the case that
r, > 2. Without loss of generality, we consider k& = 1 with
r1 > 2 and show the uniqueness of the first mode membership
matrix; i.e., M| = M, P, where P, is a permutation matrix.
The conclusion for £ > 2 can be showed similarly and thus
omitted.

Consider an arbitrary node pair (4,7). If z1(:) = 2z1(j),
then we have [ X7 . — X7 | = 0 and thus
H(S’)in(i): - (S’)in(])_H = 0 by Lemma 3. Then,
by Assumption (2), we have z{(i) = z{(j). Conversely,
if 21(¢) # 21(j), then we have ||X Xf’j:H # 0 and thus
(S/)i,z;(z) - (S’)in(j) ‘ # 0 by Lemma 3. Hence, we have
21 (i) # 2z1(j). Therefore, we have proven that 2] is identical
z; up to label permutation.

Next, we show the uniqueness of 6 for all £k € [K]
provided that z; = z;. Similarly, consider £ = 1 only, and
omit the procedure for k£ > 2.

Consider an arbitrary j € [p;] such that z1(j) = a. Then
for all the nodes i € 2 *(a) in the same cluster of j, we have

/

X121 (): X 21(4): o 0(g)  01(9)
’ = , which implies - (29)
Xl,zl(j) X{ ,21(J): 01 (Z) 0/ ( )

Let 67(j) = cb1(j) for some positive constant ¢ By equa-
tion (29), we have @ (i) = cf;(i) for all i € z;*(a). By the
constraint ({zx},S’, {0 1) € P({rk}), we have

Yoot =c > 0()=

j€zr M (a) j€zr " (a)

which implies ¢ = 1. Hence, we have proven 6; = 6 pro-
vided that z; = 21.
Last, we show the uniqueness of S; i.e., S’ = S xq1 P! x4
- X Pr", where Py’s are permutation matrices for all ke
[K} Provided zj, = 2, 0}, = 0, we have M = M} P, and
O, =0 forall k € [K|.

Let Dy = [(©,M))" (@, M))] " (@, M})" .k € [K].
By the parameterization (28), we have
SI = XXlDl Xog +e- XKDK
= S X1 D1®1M1 X1+ XK DK@KMK
= lepl_l X+ XKPI;:L.
Therefore, we finish the proof of Theorem 1. ]

Useful Lemma for the Proof of Theorem 1:

Lemma 3 (Motivation of Angle-Based Clustering):
Consider the signal tensor X in the general asymmetric
dTBM (26) with ({zx},S,{0x}) € P{rx}) and
ry > 2,k € [K]. Then, for any k£ € [K] and index
pair (i,) € [px]?, we have

HSi,zkm: - ngzkm:H —0 if and only if

HX/f:,zk(n: — Xk ‘ =0.

3899

Proof of Lemma 3: Without loss of generality, we prove
k =1 only and drop the subscript £ in X}, S}, for notational
convenience. By tensor matricization, we have

Xj: = Hl(j)Szl(j): [®2M2 X @KMK}T

Let M = O, MR- --® O Mg. Notice that for two vectors
a,b and two positive constants cj, cy > 0, we have

la® = b°[| = [[(c1@)” — (c2b)°]| -

Thus it suffices to show the following statement holds for any
index pair (4,7) € [p1]?,

S . — 5§1<j>:H —0 if and only if

[Szl(j):MT} )

S -

(<) Suppose H {Szl(i):MT} - {Szl(j):MT} = 0.
There exists a positive constant ¢ such that Szl(i):]\;.f
cSZl(j):MT. Note that

Seitiy: = ey i) MT {M (MTM)I} ’

where M M is an invertiable diagonal matrix with positive

diagonal elements. Thus, we have S (;). = ¢S, (;)., which
implies HS H =0.

(=) Suppose HS S H = 0. There exists
a positive constant c such that SZI(Z) = ¢S )
and thus Szl(,) MT = ¢S, Nt )_M which implies
H[ zl()M :| - [321(])MT H =0.

Therefore, we finish the proof of Lemma 3. ]
C. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1: Note that the vector S.(;). can be
folded to a tensor &' = [S,, .. ] € R e, vee(S') =
S.(i):- Define weight vectors wy, ... 4, corresponding to the
elements in S;, by

Wayax

-1 -1
= [05*1(112) ®- ®02 1(aK)] e Rz (a)bxx]z (aK)‘a

for all ay € [r],k = 2,...,K, where ® denotes the Kro-
necker product. Therefore we have X;. = 0(i)Pady (S.():)
where w = {wg, ... aK}CLkE 1.ke[K]/{1}- Specifically, we have

|Way.. arll? = Hk 5[|0:-1(a)[I?, and by the balanced
assumption (6) we have

..... arc I = (1+0(1)) . (30)

2
lway,..ax |-
K)

Consider the inner product of X, and X, for z(i) # z(j).
By the definition of weighted paddlng operator (56) and the
balanced assumption (30), we have
<Xi 7X’ >

=6(4)0(y <Pad
=00 )9(3)
(az

S(i):); Padu (8. (5).))
l[Waz,- carcl? (S Saiy) (14 0(1)).

.....
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Therefore, when p large enough, the inner product (X;., X.)
has the same sign as <Sz(i):, Sz(j):>.
Then, we have

<Sz1(i):a Szl(j)1>

||Szl(i):H||Szl(j)5||
<Xi:,Xj1>

=(1+0(1)—=

[ 1] X |

= (1 + 0(].)) COS(X’iZ7 Xj)7

COS(Szl(i):a Szl(j):) =

where the second inequality follows by the balance assumption
on 6.

Further, notice that ||v§ — v3||? = 2(1 — cos(v1,vz)). For
all 4, j such that z(7) # z(j), when p — oo, we have

1 X7 = XF A = 152, ). = 52, 5y:ll  Awmin-

(])H ~

O
Proof of Lemma 2: By the definition of minimal gap in
Assumption 1, we have

L0 = 37 06) 3 1 {00 = b} 1S.00.1° ~ [l P
'LE P] be[ ]
300 Y 1 {00 = b A%,
7,6 [p] be(r]
> clAL;

min»

where the last inequality follows from the assumption
min;ep,) 0(i) > ¢ > 0. O

D. Proof of Theorem 2 (Impossibility)

Proof of Theorem 2 (Impossibility): Consider the general
asymmetric dTBM (26) in the special case that p, = p and
rp =7 for all k € [K] with K > 2,2 <7 <p'/3 as p — .
For simplicity, we show the minimax rate for the estimation
on the first mode Z1; the proof for other modes are essentially
the same.

To prove the minimax rate (10), it suffices to take an
arbitrary §* € Ps(y) wih v < —(K — 1) and construct
(z;,05) such that

inf E [pl(21, 21) (2, S, 0;)] > 1
21
We first define a subset of indices Ty, C [pi],k € [K] in
order to avoid the complication of label permutation. Based

on [13, Proof of Theorem 6], we consider the restricted family
of Zx’s for which the following three conditions are satisfied:

(@) 2, (i) = 2 (4) for all i € Ty;
(c) mln Z 1{2;(4)

16 [p]

(o) |7 = 7
#moz(i)} =Y 1{2(i) #

i€[p]

for all k € [K]. Now, we consider the construction:
(i) {z;} satisfies properties (a)-(c) with misclassification
sets T¢ for all k € [K];
(i) {6;} such that 0} (i) < orK=1/2p=(K=1/2 for all j €
T¢, k € [K] and maxye(k],aer] ||0k et a)H2 = p/r.
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Combining the inequalities (12) and (12) in the proof of
Theorem 2 in [15], we have

1"3|TC\ 2

€Ty

inf {P[2(
Inf (Pla

+P[21(0) = 221 (i) = 1,2, 57, 6;]}, B1)

= 1|Zik(l) = 2721:’8*701:]

where C' is some positive constant, Z; on the left hand side
denote the generic assignment functions in P(7), and the
infimum on the right hand side is taken over the generic
assignment functlon famlly of 21(i) for all nodes i € TY.
Here, the factor 3 = r - r2 in (31) comes from two sources:
r? = (}) comes from the multiple testing burden for all
pairwise comparisons among r clusters; and another r comes
from the number of elements |T}| =< p/r to be clustered.

Next, we need to find the lower bound of the rightmost side
in (31).

We consider the hypothesis test based on model (26). First,
we reparameterize the model under the construction (i)-(ii).

= [Mat; (8" x9 O3M5 X3 --- xg O My)],.,
forall a € [r], where s are centroids in RP" . Without loss
of generality, we consider the lower bound for the summand
in (31) for ¢« = 1. The analysis for other : € T} are similar.
For notational simplicity, we suppress the subscript ¢ and write
y,0*, z in place of y1,07(1) and z (1), respectively. The
equivalent vector problem for assessing the summand in (31)
is

y=0"z: +e, (32)

where z € {1,2} is an unknown parameter, 6* € R, is
the given heterogeneity degree, =i, x5 € RP“ are given
centroids, and e € RP" ' consists of i.i.d. N(0,0?) entries.
Then, we consider the hypothesis testing under the model (32):

Hy:z=1l,y=0"z2]+e < Hy:z=2,y=0"x25+e, (33)

The hypothesis testing (33) is a simple versus simple testing,
since the assignment z is the only unknown parameter in
the test. By Neyman-Pearson lemma, the likelihood ratio test
is optimal with minimal Type I + II error. Under Gaussian
model, the likelihood ratio test of (33) is equivalent to the
least square estimator 2,5 = argmin,_gq o3[|y — 0 x||%.

Let S = Mat; (S). Note that

16727 — 0725
K
< G*HST: - S;:HF H AmaX(ezMI::)
k=2
< 0°|1S5. — S5 !

ke[K]/{l} a€lr
< opE=D/2p=(K=1)/2) (K= 1)/27,7(1( 1)/2

< 2 C40,

where Apax(-) denotes the maximal singular value, the second
inequality follows from Lemma 6, and the third inequality
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follows from property (ii) and the boundedness constraint in
Ps () such that |[S}. — S5.[|p < [|ST.|lF + (15,7 < 2¢4.
Hence, we have

inf (P21 (1) = 1[37(1) = 2,5.57.6]
21

TP (1) = 2|27 (1) = 1, 2, 87, 6¢]}
=2P[%1s = 1|27 (1) = 2, 2,87, 6;]
=2P(|ly—0"ai|% <lly—0"a3|7 |21 (1) =2, 21, S*.6;]
= 2P[2(e, 0" @] — 0 x3) > |07 %] — 0" w3 %]
= 2P[N(0,1) = 0"[|@] — @3||r/(20)]

> 2P[N(0,1) > ¢4 > ¢, (34)

where the first equation holds by symmetry, the third equation
holds by rearrangement, the fourth equation holds from the
fact that (e, 0*x} — 0*x3) ~ N(0,0||0*x] — 0*x5||F), and ¢
is some positive constant in the last inequality.

Plugging the inequality (34) into the inequality (31) for all
1 € TT, then, we have

Cc
liminf inf E [pf(41, 27)| 25, 07, §*] > liminf —o& > Ce,
p—0o0 2y p—00 T
where the last inequality follows by the condition r = o(p*/?).
By the discrete nature of the misclustering error, we obtain our
conclusion

liminf inf inf  sup
P—00 S*€Ps(7y) Zsta (2*,0%)EP 0

E [pl(Zgar, 2)] > 1.
Last, with constructed z;, @; satisfying properties (i) and
(ii) and v/ < —(K — 1), we construct a core tensor S* such
that A%. < p~ K=V, Based on the property (i) and the
boundedness constraint of S* in P, we still have ||0*x} —
0*x5||r < 2c40. Hence, we obtain the desired result

E [pf(,%h 21)}

lim inf inf
p—oo 2

sup
1 (2,8,0)€P'(v')

> liminf inf E [pl(1, 27)|%5,S™, 05 > 1.

P—00 Zstat

E. Proof of Theorem 3 (Impossibility)

Proof of Theorem 3 (Impossibility): The idea of proving
computational hardness is to show the computational lower
bound for a special class of degree-corrected tensor clustering
model with K > 2 and r» > 2. We construct the following
special class of higher-order degree-corrected tensor clustering
model. For a given signal level v € R and noise variance o,
define a rank-2 symmetric tensor S € R3*""*3 subject to

K K
® 1 ®

1
1 +op /2|1
1 0

§=8() = (35)

Then, we consider the signal tensor family

{X: X =8 %1 My X2+ Xg Mg, where
}px3

Pahitea(7) =
membership matrix M}, € {0, 1 satisfies
|Mp(:,i)] < pforalli€ [3] and k € [K]}.

We claim that the constructed family satisfies the following two
properties:
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(i) For every v € R, Paitieca(y) C P(7), where P(v) is the
degree-corrected cluster tensor family (5).

(ii) For every v € R, {X — 1: X € Pyitea(7)} C Prondegree (V)
where Prondegree (7) denotes the subfamily of rank-one tensor
block model constructed in the proof of [13, Theorem 7].

The verification of the above two properties is provided in the end
of this proof.

Now, following the proof of [13, Theorem A7], when v < —K/2,
every polynomial-time algorithm estimator (M )re[x] obeys

liminf  sup  P(3k € [K], My # M) >1/2,  (36)

P90 X €Puondegree (V)
under the HPC Conjecture 1. The inequality (36) implies

lim inf sup max E[pl(zk, 21)] > 1.
P79 X €Poongegree (7) KEK]

Based on properties (i)-(ii), we conclude that

liminf sup max E[pl(zx, 2:)] > 1.
P xep(y) belK]

We complete the proof by verifying the properties (i)-(ii). For (i),
we verify that the angle gap for the core tensor S in (35) is on the
order of op~ /2. Specifically, write 1 = (1,1,1)and e = (1,—1,0).
We have
Vec(185 1) 4 gp~7/2Vec (®E D
Mat(S) = | Vec(195 1) — gp~/?Vec (@K1
Vec(1®9K~1)

Based on the orthogonality (1, e) = 0, the minimal angle gap among
rows of Mat(S) is

Az (8) < tan? (Mat(S)1:, Mat(S)s:)

lefl, \ 2570,
(n1||2 7

27
=oc°d .

Therefore, we have shown that Panifica(y) = P(7). Finally, the
property (ii) follows directly by comparing the definition of S in (35)
with that in the proof of [13, Theorem 7]. O

FE. Proof of Theorem 4 and Proposition 1

Proof of Theorem 4: We prove Theorem 4 under the dTBM (1)
with symmetric mean tensor, parameters (z, S, 0), fixed r > 1, K >
2, and ii.d. noise. For the case r = 1, we have L(z<0),z) =
0,4(z9, 2) = 0 trivially. Hence, we focus on the proof of the first
mode clustering z§°> with r > 2; the proofs for the other modes can
be extended similarly. We drop the subscript k£ in the matricizations
My, X, Sk and in the estimate zgo). We firstly show the proof with
balanced 6.

We firstly show the upper bound for misclustering error Z(Z(O), z).
First, by Lemma 1, there exists a positive constant such that
min, (;)-2(;) HXf - X]SH > coAnmin. By the balance assumption
on O and Lemma 8, we have

ST 00 < D007 +4>06),

1:2(0) () £ (2(1)) i€S i€S

min
well

37
where

So = {i: [|Xull = 0}, S={i € 5§ : | &0 (s~ Xiil| >0 Amin/2}
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On one hand, note that for any set P € [p],

doIXal® =) l6)s

@M)T®K 1) ||2

i€P i€EP
>N " 0(i)? min || S, |PA2E -V (@M
_; (4) aeml\ | (OM)
2> 603" e Y,
i€P

where the last inequality follows Lemma 6, the assumption that
min, ey 0(7) > ¢, and the constraint minge,)||Sq:| > c3 in
the parameter space (2). Thus, we have

D 060)* S D 1 X2 KR (38)
1€eP 1€P
On the other hand, note that
> IXe?
i€s
<2 X P2 I1X — X (39)
i€S €S
8 o . .
< o SRl — X202 - X
0~—min ics
(40)
16 v -~ S v S s
< IRl |80 — X2+ X2 - X2
0 miniES
21X - X% (41)
16(1+4n) . o ‘ .
< a2 X PIXS - XE P2l X=X @2)
0~—'min icS
16(1+mn) .
< < aaz T2) 1% -l 43)
16(1+
< < (AQ n)+2> (pK/2T+pr2+TK> o2, (44)

where inequalities (39) and (41) follow from the triangle
inequality, (40) follows from the definition of S, (42) follows
from the update rule of k-means in Step 6 of Sub-algorithm 1,
(43) follows from Lemma 4, and the last inequality (44)
follows from Lemma 7. Also, note that

Do lxal? DX — Xl

€S0 i€So
< X -
< (pK/2r+pr2 _|_7,K> o2,

(45)

where the equation follows from the definition of Sy. There-
fore, combining the inequalities (37), (38), (44), and (45),

we have
2

11
200 (i) £ (2(0))

(ZIX 12+ > 11X ||2> SR

i€S 1€Sp
0'27'K—1

SJ 2 K-1
Aminp B

min

0(i)?

(pK/2r +pr? + TK) . (46)
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With the assumption that min;ep,) (i) > ¢, we finally obtain
the result
K,—K/2
o062 g R
SNR
i:2(0) (i) #m (2(4))
where the last inequality follows from the definition SNR =
mln/O—

Without the balanced 9, we have
ming ;)2z(; HX - X H > cpAx. Replacing the definition
of S with A x, We obtaln the desired result.

Next, we show the bound for L(2(?), z). Note that X have
only r different values. We let X; = X for all ¢ such that
z(i) = a,a € [r].

Notice that

1
(29, 2) < = min
p mell

| X 5||? 2 pX e D
and
15 — X |® < | = X5 S p™Pr+pr® 40K
Therefore, when p is large enough, we have

S IXelPIX; = 0|1

i€[p]
S (Il = 1% = Xacl2) 1% = Bo000 |1
i€[p]
S YIRS = &0 12
i€[p]
<0 > IXe 21X - X
i€[p]
S 12 - X%

S pr? 4k (47)

Hence, we have

MIX: - ol S 66)

PIXS — 2.0 I

i€[p] ze[p
N Sz
i€[p]
rE= e
¢ )

(48)

where the first inequality follows from the assumption
min;e, 0(i) > ¢ > 0, the second inequality follows from
the inequality (38), and the last inequality comes from the
inequality (47).

Next, we consider the following quantity,

D IDIXS — &0

i€[p]

S D 0EPIXE = XA+ D 060X — oI
i€[p] i€[p]

~ Z H |2||X X ||2+ZH ||X _mz(")(z)”
1€[p] i€[p]
,’,K—l

< K/2

S R ( r+pr?4r ) 49)
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where the first inequality follows from the assumption of (i)
and triangle inequality, the second inequality follows from
Lemma 4, and the last inequality follows from (48). In addi-
tion, with Theorem 4 and the condition SNR > p~%/2log p,
for all a € [r], we have

=" a) N () (@) 2]z ()]

I

—pl, ) 2 P - >
r logp

ik

when p is large enough. Therefore, for all a € [r], we have

2

ZiEz_l(a)ﬁ(z(o))—l(a) HXz‘S: —&

- Xs 2 z(0>(i)
&0 - X2 = @ N (0@ |
S >oIxi-X:| +Z||X &0 (5|12
i€[p]
TK
S e (et ) (50)

where the last inequality follows from the inequality (48).
Finally, we obtain

L0 = 23 000) 30 1{=0) = b} [S.0.1° ~ (Sl P
ze[p] be(r]
1 - S S
S5X 0IXE - Xl
i€[p],z(® (i) #2(4)
1 . .
Sy 2 H0(1X - gl
i€[p],z(0 (4)7#2(i)
+ 1820 — Xioro|I°)
K
T
SC]TK( PP+ pr? 4 )
C_VAI2T111"1
<
Crlogp

where the first inequality follows from Lemma 1, the third
inequality follows from inequalities (49) and (50), and the
last inequality follows from the assumption that SNR >
Cp~5/2log p. O

Proof of Proposition 1: Algorithm 2 shares the same algo-
rithm strategy as Sub-algorithm 1 but with a different estima-
tion of the mean tensor, X”’. Hence, the proof of Proposition 1
follows the same proof idea with the proof of Theorem 4.
Replacing the estimation X by X’ in the proof of Theorem 4,

we have
)

11
200 (i) £ (2(0))

S (ZIIXi:II2 + ZIIXi:II2> p~HDrET (s

€S i€So

min

0(i)*

By inequalities (43) and (45), we have

16(1 + A
SlIxa? < %H X —X|%, (52)
ics COAmin
SIXa? < A - x| (53)
1€So
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Hence, it suffices to find the upper bound of the esti-
mation error ||X’ — X||% to complete our proof. Note
that the matricization Mat,,(X) € RP2Hp T g
rank(Mat,, (X)) < r[%/2], and Bernoulli random variables
follow the sub-Gaussian distribution with bounded variance
0? = 1/4. Apply Lemma 9 to Y = Maty,(Y),X =
Mat,, (&), and X = Mat,(X’). Then, with probability

tending to 1 as p — oo, we have
127 — X[ = | Matyy(X7) — Maty (X)[[7 < pI /21 (54)

Combining the estimation error (54) with inequalities (52),
(53), and (51), we obtain

~ 2 T
min Z 0(i)° < T ke D (55)

Il
i:2(0) (i) #m (2(i))
Replace the inequality (46) in the proof of Theorem 4 by
inequality (55). With the the same procedures to obtain
£(29) 2) and L(2(), 2) for Theorem 4, we finish the proof
of Proposition 1. (|
Useful Definitions and Lemmas for the Proof of Theorem 4:
Lemma 4 (Basic Inequality): For any two nonzero vectors
v1, Vo of same dimension, we have

2[|vy — o
max ([lv][, [|va]])

sin(v,v2) < |vf — w3 <
Proof of Lemma 4: For the first inequality, let o« € [0, 7]
denote the angle between v; and ve. We have

|lvi —vi]| = v/2(1 — cosar) = QSin% > sinq,

where the equations follow from the properties of trigono-
metric function and the inequality follows from the fact the
cos§ <1 and sina = 2sin § cos § > 0 for a € [0, 7).

For the second inequality, without loss of generality,

we assume ||vq|| > ||vz]||. Then

s sl V1 V2 V2 V2
Iof =81 = | o = o * o~ o |
[v1 — w2 | [[v2|| [[o1]] — [lva]]
[[v1]] [[v1]] [|v2
2 ||lvy — e
[[v2]]
Therefore, Lemma 4 is proved. O

Definition 3 (Weighted Padding Vectors): For a vector a =
[a:] € RY, we define the padding vector of a with the weight
collection w = {w;: w; = [wy] € RPI}L ;| as

Pad,,(a) = [a; owy,...,aq0 wd]T, (56)

where a;ow; = [a;wj1, . .., a;wy, )T, for all i € [d]. Here we
also view Pady,(+): R? — R2=icla1Pi a5 an operator. We have
the bounds of the weighted padding vector

min||w; ||?[|lal* < [|Pady(a)|* < max|jw;|?|lal®.  (57)
i€[d] i€(d]

Further, we define the inverse weighted padding operator
Pad~! : RZicaPi s R? which satisfies

Pad,' (Pad,,(a)) = a.
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Lemma 5 (Angle for Weighted Padding Vectors): Suppose
that we have two nonzero vectors a,b € R? Given the
weight collection w, we have

Im (a b) ; sm(Padw (a')7 Padw (b))
Xic[d) 2
*S* max;e (q)||w;|| sin(a, b). (58)

mineq)||w;||

Proof of Lemma 5: We prove the two inequalities separately
with similar ideas.

First, we prove the inequality ** in (58). Decomposing b
yields

o]l .
b = cos(a, b)” ” a +sin(a, b)

where a® € R? is in the orthogonal complement space of a.
By the Definition 3, we have

Il
)
o

b
Padw (b) :COS(a7 b) |||| | Pad ( )‘l‘SiIl(a, b) |LLJ|||

Note that Pad,, (a') is not necessary equal to the orthogonal
vector of Pad(a); i.e., Pady,(at) # (Pady(a))*. By the
geometry property of trigonometric functions, we obtain

Pad,,(al).

. b||||Pad,, (1) .
sin(Pad,, (@), Pad,, (b)) < M&n(mb)
ma’Xle[d ||w7|| (a b)

= mingegqwi] ©

where the second inequality follows by applying the prop-
erty (57) to vectors b and a=.

Next, we prove inequality * in (58). With the decomposi-
tion of Pad,,(b) and the inverse weighted padding operator,
we have

+ Sin(Pad'w (a)7 Pady, (b)) W

)) TPad (Pads (@) ).

Therefore, we obtain

sin(a, b)

_ [IPadu,(b)]|[Pad,," ((Padu,(@))*)|

- [[(Pady, (@)~ [[B]
maxiefq||wil .

sin(Pad,,(a), Pad,, (b))
< in(Pad, (a), Pad,, (b)),
minge (g ;]

where the second inequality follows by applying the prop-
erty (57) to vectors b and Pad'((Pad,(a))t). O

Lemma 6 (Singular Value of Weighted Membership Matrix):

Under the parameter space (2) and assumption that
min;ery 0(i) > c for some constant ¢ > 0, the singular
values of ® M are bounded as

p/T < /ml[n||0 1)l < A (OM)
ac
< H(-)MHG < \ )2%?3?”02*1((1)“2 5 p/T’.
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Proof of Lemma 6: Note that
(@mM)"eMm = D,

with D = diag(Ds, ..., D,) where D, = [|0,-1(, ||, a € [r].
By the definition of singular values, we have

Jminl10--0) [P <A-(OM) < [OM]], <, [max 6.,
ag|r ag|r

Since that min,cp,) 6(i) > ¢ by the constraints in parameter
space, we have

Ha)l 2

where the last inequality follows from the constraint in param-
eter space (2). Finally, notice that

P
Oz 2 < 92 a 2 < -
,/gg[tﬁll 1)l max 0.1 ()lli S "

Therefore, we complete the proof of Lemma 6. (]

Lemma 7 (Singular-Value Gap-Free Tensor Estimation
Error Bound): Consider an order-K tensor A = X + Z €
RP**P_ where X has Tucker rank (r,...r) and Z has
independent sub-Gaussian entries with parameter o2. Let X
denote the double projection estimated tensor in Step 2 of
Sub-algorithm 1 in the main paper. Then with probability at
least 1—C exp (—cp), we have

>
gnnl\ @ > Hél[nllz

S

| = X% < Co? (p/2r 4 pr2 4 ),

where C, c are some positive constants.

Proof of Lemma 7: See [13, Proposition 1]. O
Lemma 8 (Upper Bound of Misclustering Error): Let z
[p] — [r] be a cluster assignment such that [2~!(a)| < p/r
for all a € [r] with 7 > 2. Let node ¢ correspond to a vector
x; = 0(i)v,;) € RY where {v,}_, are the cluster centers
and @ = [0(i)] € R% is the positive degree heterogeneity.
Assume that 6 satlsﬁes the balanced assumption (6) such that
%ﬁ% =1+ o(1). Consider an arbitrary estimate

Z with @; = v3(;) for all ¢ € S. Then, if

min Hva —vp|| > 2c,

(59)
a#be(r

for some constant ¢ > 0, we have

2 < 0

12(1)7577(2(@)) 1€So

where S is defined in Step 4 of Sub-algorithm 1 and

min
well

+4Zo

€S

S={iecS5: & —v.(yll > c}.

Proof of Lemma 8: For each cluster u € [r], we use C, to
collect the subset of points for which the estimated and true
positions &;, x; are within distance c. Specifically, define

vz(i)H < C}a
and divide [r] into three groups based on C,, as
Ry={uelr]:C, =0},
Ry={uelr]:C,#0, forall i,5 € Cy,2(3) = 2(j)}
Ry={u€r]:C, #0, there exist i,j € Cy,2(:) # 2

Cuo={i€z" ()NS5 [l -
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Note that U,¢[,)Cy, = S§/S¢ and C,NC,, = ) for any u # v.
Suppose there exist i € C,, and j € C, with v # v € [r] and
2(i) = 2(j). Then we have

vz — vy | < N2y — Zill + vy — 25| < 2¢,

which contradicts to the assumption (59). Hence, the estimates
2(2) # 2(j) for the nodes ¢ € C, and j € C, with u # v.
By the definition of Rq, the nodes in U, ¢cr,C,, have the same
assignment with z and 2. Then, we have

min E
well

i25(i) e (2(1))

0(i)* < > 00> +>_0(i)* +

i€So ies

>

i€Uye Ry Cu

We only need to bound Zieuueg3 ¢, 0(i)? to finish the proof.
Note that every C, with v € R3 contains at least two
nodes assigned to different clusters by Z. Then, we have
|Rz| + 2|R3| < r. Since |R1| + |R2| + |Rs| = r, we have
|Rs| < |Ri1|. Hence, we obtain

>0 < [Balmax]6. o

1€Uuecry Cu

IN

R 0. 2
(B mi .o |

maXger] Hez*l(a) ||2

0(i)?

>

- minae[r]Hez—l(a)”2 i€Uuer, 21 (u)

<2 0(i)?,

i€S

where the last inequality holds by the balanced assumption on
0 when p is large enough, and the fact that U, e g, 2~ (u) C S.
(|

Lemma 9 (Low-Rank Matrix Estimation): Let Y = X +
E € R"™*™ where n > m and E contains independent mean-
zero sub-Gaussian entries with bounded variance o2. Suppose
rank(X') = r. Consider the least square estimator

X = arg min

X'eR™Xn rank(X')<r

IX" = Y3

There exist positive constants C7, Cs such that
|X — X||% < Ci0? nr,
with probability at least 1 — exp(—Canr).

Proof of Lemma 9: Note that | X —Y[|% < | X — Y| by
the definition of least square estimator.

We have
X — X|%
<2 <X XY - X>
<2|X - X|r sup (T,Y — X) (60)

TER™ XM rank(T) <27, || T || p=1

with probability at least 1 — exp(—Cynr), where the second
inequality follows by re-arrangement.

Consider the SVD for matrix T' = UX VT with orthogonal
matrices U € R™*?" 'V ¢ R"*?" and diagonal matrix ¥ €

0(i)°.
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R2r><2r- We have
sup (.Y - X)
TEeR™>™ rank(T) <27, || T|| p=1
_ sup (US,EV)
TEeR™ X7 rank(T) <2r,||T|| p=1
= sup vle < Coynr, D

vER2nT

with probability 1 — exp(—Canr), where C,Cy are two
positive constants, the vectorization e = Vec(EV) € R?""
has independent mean-zero sub-Gaussian entries with bounded
variance o2 due to the orthogonality of V, and the last
inequality follows from [36, Theorem 1.19].

Combining inequalities (60) and (61), we obtain the desired
conclusion. ]

G. Proofs of Theorem 2 (Achievability) and Theorem 5

Proof of Theorem 2 (Achievability) and Theorem 5: The
proofs of Theorem 2 (Achievability) and Theorem 5 share the
same idea. We prove the contraction step by step. In each
step, we show the specific procedures for the algorithm loss
and address the MLE loss by stating the difference.

We consider dTBM (1) with symmetric mean tensor, param-
eters (2,S,0), fixed r > 1, K > 2, and i.i.d. noise. Let
(2,8,0) denote the MLE in (9), and (z,io),S(O),HI(CO)) denote
parameters related to the initialization. For the case r = 1,
E(z,it), z) = 0 trivially for all ¢ > 0, k € [k]. Hence, we focus
on the proof of the first mode clustering z%tH) with » > 2; the
extension for other modes can be obtained similarly. We drop
the subscript k£ in the matricizations @, My, Sk, X and in
estimates z,go),z,itﬂ),zlit) for ease of the notation. Without
loss of generality, we assume that the variance o = 1, and that
the identity permutation minimizes the initial misclustering
error; i.e., 7% = argmin, oy i 1 {zO() # mo2(i)}
and 79 (a) = a for all a € [r], and so for 2.

Step 1 (Notation and Conditions): We first introduce addi-
tional notations and the necessary conditions used in the proof.
We will verify that the conditions hold in our context under
high probability in the last step of the proof.

Notation:

1) Projection. We use I; to denote the identity matrix of
dimension d. For a vector v € R%, let Proj(v) € R?* denote
the projection matrix to v. Then, I; —Proj(v) is the projection

matrix to the orthogonal complement v.
2) We define normalized membership matrices

W =M (diag(lpTM))il WO = p® (diag(ﬁM(”)f1 ,
weighted normalized membership matrices
P = ©M (diag([|0.-1(1)[1% - - 10101 [I*) 7,
P = @M(diag(”@zfl(l) ||27 RN ||0z*1(r) ||2))_17

and the dual normalized and dual weighted normalized mem-
bership matrices

V= WeE-D y) _ (wm)@(K_l) 7
Q:P®K_17 Q:P@)K—l.

Also, let B = (OM)®E-1 B = (@M)®X~-1)_ By the
definition, we have BTQ = BTQ = I,x-1.
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3) We use S® to denote the estimator of S in the ¢-th
iteration, S for MLE, S to denote the oracle estimator of S
given true assignment z, and S for weighted oracle estimator;
i.e.,

S =y, (W<t>)T Xy X g (Wm)T?
S=YVx WT %y xxgWT,
A:yxlﬁTx2-~-><K15T,

S =Y x1 PT xy---xg PT.

4) We define the matricizations of tensors
S =Mat(S), Y =Mat()), X =Mat(X), E =Mat(E),
S® = Mat(S®), § =Mat(S), S =Mat(S), S = Mat(S).
5) We define the extended core tensor on K — 1 modes
A=SB", A=SB", A=SBT.

By the assumption in parameter space (2), we have A =
PX=WX, A=PX=WX.

6) We define the angle-based misclustering loss in the ¢-th
iteration and loss for MLE

Lo = }9 S 00) 37 1{=0() = b} — 1S
ie[p] be(r]
Ze 2 5™ 142(1) = b} [A=]* — [An)*|%
ze[p be(r]

We also define the loss for oracle and weighted oracle estima-
tors

i€[p] be(r]
_9(z)mH[Sz(_)_]s _ [Sb:]SHQ}
¢S 06 T 0 (B A - A
P i€[p] belr]
= _mfl fij A=) = [Ab:}s||2F}
AL — [

where m and m’ are some positive universal constants.
Then we introduce the necessary conditions in Condition 1,
shown at the bottom of the next page.
Step 2 (Misclustering Loss Decomposition): Next, we derive
the upper bound of L¢+Y) for t = 0,1,...,7 — 1. By Sub-
algorithm 2, we update the assignment in ¢-th iteration via

(i) = arg min||[Y;; VP — [SE]°)?,

a€(r]

following the facts that ||a® —b*||? = 1—cos(a, b) for vectors
a,b of same dimension and Mat()?) = YV () where )¢ is
the reduced tensor defined in Step 8 of Sub-algorithm 2. Then
the event z(**1)(7) = b implies

1Y VO — [SI01°)2 < |I[¥a VO — 80 1°12. (67)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Note that the event (67) also holds for the degenerate entity
i with ||Y;.V®|| = 0 due to the convention that a® = 0 if
a = 0. Arranging the terms in (67) yields the decomposition

2(EuV, (8.0 — [Su])

<X VO (HIS-0)” = S IP+GY +HE )+ FSY,

where
FY = 2(Bv®, (18.0) - [S0,1") - (180~ [5{1))
+2(B. (V- VO), 8.0 - 18], (68)
N (S A
X VP - (WY VOr|?)
~(Ixav O — s
(X V) - WEY VPP, (69)
Hy = IXaVO) = W Y VR — [ Xa v )

WY VOPI? +1I[S.]° — [SulI™ (70)

Therefore, the event 1 {z(t“
bounded as

—b} can be upper

1 {Z(H'l)(i) — b}
< 11{ () =, <E V, (5.0 - [Sb:]s>

]‘ S S
<~ XV OISz - 18] ||2}

. 1 s s
+n{z<f+”<z> = b, 5 11S0)° =[S0 )°I1
<X VOEY + ¢ + Hj?}. an
Note that
IX: VO = 6(5)]Si(@M)E-DTwne"
> 0()|1S. o INETHOM)NETH (WD)
> 0(i)m, (72)

where the first inequality follows from the property of eigen-
values; the last inequality follows from Lemma 6, Lemma 10,
and assumption that min, e[| Sz ¢;y.[| > ¢3 > 0; and m > 0 is
a positive constant related to c3. Plugging the lower bound of
| X:.V®|| (72) into the inequality (71) gives

1{=00 () = b} < Ay + Bu, (73)
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where where (/, = 0(i)>B}, ||[A.;):]* — [As]*]|* and
Aib = ]l{z(t+l)(7;) = b7 <E1V7 [5’2(1)13 - [Sb:]s> A;b = l{é(l) = b’ <Ei:’ [AZ('L)}S - [Ab:]s>
0 . . _m A AR
< -2 s, 1~ [51] |2}, R L
’ o 1 S S
By = n{zw%) = b, 1[S-od" = [Sul"I? B = l{z“) = b3 llA0 )~ (el
< By Gt d
< Om) " FY + G + HS:)}- = | Gyt e+ Gt
with terms
Taking the weighted summation of (73) over ¢ € [p] yields By, = 2 <Ei;, ([Az(i):].si[Aa:]s)i([Ab:]si[Ab:]s)> ,
ety Y of) G = (I1X2~[Auo I~ X2~ (P, Y QBT)3)
LE[]bE[ 1/2(4) s s s NYRTs
! —(||Xi:—[Ab:1 I3 -1X: - [PTYQBT"|})
where ¢ is the oracle loss such that Hib _ ||Xf—[Pf(l)YQBT]SH%—HXf _[ngQAB’T]S”%
+[| A% . — A ||
Z 9 Z Ale [Sb] ||2 (74) . H z(%): b.HF . . .
ze[p be[r]/=(i) Step 3 (Derivation of Contraction Inequality): In this step
we derive the upper bound of (;;, and obtain the contraction
Similarly to & in (74), we define inequality (24). We show the analysis in the following
one-column box for a better presentation, shown at the bottom
Clb = 0(i) B ||[S-i).]° — [Su:]°*- of the next page.

Step 4 (Verification of Condition 1): Last, we verify the

Now, we show the decomposition for MLE loss. By the Condition 1 under high probability to finish the proof. Note
definition of Gaussian MLE, the estimator @ satisfies (i) = that the inequalities (62), (63), and (64) describe the property
<Yi:, Ae(i):> /|l Aé(i):”%‘ for all 7 € [p]. Hence, we have of the sub-Gaussian noise tensor &, and the readers can find
the proof directly in [13, Step 5, Proof of Theorem 2]. The

N . s P initial condition (66) for MLE is satisfied by Lemma 13. Here,
(1) = arg min|[¥5)" — [AJ*|, (60) y

aelr] we include only the verification of inequalities (65) and (66)
for algorithm estimators.
and the decomposition Now, we verify the oracle loss condition (65). Recall the

definition of &,

Hoser iy Y g e = Lo S a{(BviiSor - 50)

16[17] be(r]/=(1) i€[p) belr]

Condition 1: (Intermediate Results) Let O, , denote the collection of all the p-by-r matrices with orthonormal columns.
We have

r& 1/2 , (K-1)/2 r2(K=1) T r¥
1BV, < W( FrER) NBVIE S\ " g IWEBVIS oy, foralla e 7] (62)

sp - BEU®- @ Uk, S (VI + K ypr). (©3)
U0, k=2,....K
sip - BEU®-0U)|r S (Vo< + Ky, (64)
Uke(O)p,rak:Qa-“vK
Ar2ninpK_l Ar2ninpK_1
§ <exp (_MrKl) , & Sexp <_7'K1> ; (65)
C A2 C A2,
LW < ZZmin - for ¢ =0,1,...,T, L(3) < =—min (66)
Crlogp’ 15} rlogp’

where M is a positive universal constant in inequality (84), C,C are positive universal constants in the proof of Theorem 4
and assumptlon SNR > Cp~%/2log p, respectively. Further, inequality (62) holds by replacing V to V) Q, Q and W, to
wT , PT PT when initialization condition (66) holds.
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5007 - 190171 )
N[Szqay:]" — [Su:l"II*.

Let e; = E;.V denote the aggregated noise vector for all ¢ €
[p], and e;’s are independent zero-mean sub-Gaussian vector
in R"“"". The entries in e; are independent zero-mean sub-
Gaussian variables with sub-Gaussian norm upper bounded by

mqy/rE—1/pK=1 with some positive constant m,. We have
the probability inequality

5 s & s f(i)m
P <<ei, [Sz(1)] - [Sb:] > S - (i
<P+ P+ Ps,

182" - [SMSHQ)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

where
P1 =P (<€i, [Sz(i);]s—[sb;]5> S _79(7/8)771 ||[Sz(i):]s_[5b:}5”2) )
P = (e Sl = (81017 ) 2S00,

P =B ((eulsul - 8r) < 2O 5. 15017

For P;, notice that the inner product <ej,Sj(j): - S§:> is

a sub-Gaussian variable with sub-Gaussian norm bounded

by moy/rK=1/pK-t|Ss ) — Spll with some positive

Step 3: Choose the constant C in the condition SNR > é’p‘K/ 2]og p that satisfies the condition of Lemma 11, inequalities (98),

and (102). Note that

Gy =

IN

t
(F)?

IN

; s s . ]- s s . _
0)[1S=0)° = [Sb] |21{z<t+l><z>b,zn[szm — [Sul*II” < (6(i)m) 1F§?+G§?+H§?}

BOIIS-1° = 1S PL {070 0) = 0. J118.000° = ISP < G0m) £ + G1Y |

z(i):]S - [Sb

712

. 9<z‘>S<G§}?>2] )

I1S=0):]* — [Sb

where the first inequality follows from the inequality (89) in Lemma 11, and the last inequality follows from the assumption
that min;e ) 6(i) > ¢ > 0. Following [13, Step 4, Proof of Theorem 2] and Lemma 11, we have

(t)y2 S
Y Y e = e <
s — 15112 — 2012 ’
ey em?[|[S.qiy:]* = [Se:]* 2 = em2C
for a positive universal constant C' and
a2 11
LYY {0 b B < o S {00 =8} (83, + 1)
P icwvez=a) . Picw etz
1
< (LD L (@)
- 512( + )
where the last inequality follows from the definition of L(*) and the constraint of € in parameter space (2). For C also satisfies
9 1
GO 1 (75)
cm2C? 512
we have
- Z o< L(t“) + L“) (76)
P i) velrl/=)
Plugging the inequality (76) into the decomposition (74), we obtain the contraction inequality
L+ < gg + %L(t), (77)

where % is the contraction parameter.

Therefore, with C satisfying inequalities (75), (98) and (102), we obtain the conclusion in Theorem 5 via inequality (77)

combining the inequality (65) in Condition 1 and Lemma 2.
We also have the contraction inequality for MLE.

Following the same derivation of (77) with the upper bound of Fib7 G‘ib, fIZ-b in Lemma 12, we also have

L) < 3¢ + S L02),

-1
which indicates the conclusion /(2, 2) < A2, exp (—

K
£K—1A

2
min | *
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constant ms. Then, by Chernoff bound, we have

pE-1 ’ -
Py < exp (- =t I1S=0))" = [Su)l ) :

(78)

For P, and P5;, we only need to derive the upper bound
of P, due to the symmetry. By the law of total probability,
we have

Py < Py + Pa, (79)

where with some positive constant ¢ > 0,

P = P(t< IS0l — -0l

Py = P<<ei7[‘§z(i):]s_[Sz(i):]s> S—%
N0S=00):* = [Se° 1P| I11S-0):)° =[S0 )°ll < t)-

For P, note that the term WZI  EV =

Ljzigep Hz0)=2(0)e; sub-Gaussian vector

Srem IEGO==@) S 2 with
sub-Gaussian norm bounded by mgy/r /pK with some
positive constant mg. This implies

Py

IN

P (tHSz(i):H <18z — Sz(i):H)
P (C3t < HWZ@)EVH)

pKtQ
exp | — TK ’

where the first inequality follows from the basic inequality in
Lemma 4, the second inequality follows from the assumption
that min, e[| S || > c3 > 0 in (2), and the last inequality
follows from the Bernstein inequality.

For Py, the inner product <ei, [S'Z(i);]s - [SZ(Z-):]5> is
also a sub-Gaussian variable with sub-Gaussian norm
my/TE =1 /pK =1, conditioned on ||[S'Z(Z-):]S =[S0’ <t
with some positive constant my. Then, by Chernoff bound,
we have

A

A

(80)

pet , ;|14
P S ewp (~Fm S~ B11Y) . 6D
We take t = [[[S.(;):]° — [Si:]°|| in Po1 and Py, and plug
the inequalities (80) and (81) into to the upper bound for
P, in (79). We obtain that

K-1

I;K—l I1S=0):]° = [Sb:}s|2) '

Py S exp (— (82)

Combining the upper bounds (78) and (82) gives

)< - 205,00 - 150117

¥ <<6"’ [S-0)]* — [S)*
S exp (‘fﬁj I[S=iy:]° = [sz]”) :

(83)

3909

Hence, we have

% Z 9(2) Z P{ <Ei:V7 [Sz(i):]s_[gb:]s>

1€[p) be(r]

0(2”’1 LSz(i):]S_[Sb:]SHQ}[Sz(i)i]s_[sbi]SQ

<Y 0

P e

B¢ =

S_

max  ||[S,i.]° —[S:]* ||
s 8.0 50

K-1

-exp (%II[SM:]S[SHSV)

pil
< exp (—M A2 > ,

TK_l min

(84)

where M is a positive constant, the first inequality follows
from the constraint that ;. ,; 6(i) = p, and the last inequality
follows from (83).

By Markov’s inequality, we have

K-1

M
P (f SEE +exp (272(_1A12nin>>

M K—1
>1—Cexp (—pA?nin) ,

2rK-1
and thus the condition (65) holds with probability at least 1 —
Cexp (— ];ip;:l A2, for some constant C' > 0.
The initialization condition for MLE also holds. For ¢,
notice that (E;, A3, — Aj) is a sub-Gaussian vector with
variance bounded by ||AS. — A ||? and

P(t<|[A.]P-A%Ll) < (t<|[PIYQ)-[P,XQ))
< P(tgeli[?]”‘sa:” < ||P?;EQH)
K42
pt
5 exp <_ T‘K ) )

where the first inequality follows from the property in later
inequality (105). We also have

K-1
! p 2
g 5 <_ TKlAmin) .
Finally, we verify the bounded loss condition (66) for algo-
rithm estimator by induction. With output 2 from Sub-
algorithm 2 and the assumption SNR > Cp~%/21og p, by The-
orem 4, we have

CA2?

min

LO <

< ,  when p is large enough.
Crlogp

Therefore, the condition (66) holds for ¢ = 0. Assume that
the condition (66) also holds for all ¢ < ty3. Then, by the
decomposition (77), we have

3 1
Lo+l 2 Z (o)
< 25 + 5
K-1 2
p 2 AL
< —ME__AZ. “min
= OXp ( rK-1 mm) + rlogp
C A%,
< —— min )
— (Crlogp
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where the second inequality follows from the condition (65)
and the last inequality follows from the assumption that
A2, > p~K/Z]og p. Thus, the condition (66) holds for to+1,
and the condition (66) is proved by induction. (]
Useful Lemmas for the Proof of Theorem 5:

Lemma 10 (Singular-Value Property of Membership Matri-
ces): Under the setup of Theorem 5, suppose that the condi-
tion (66) holds. Then, for all a € [r], we have | (z(t))71 (a)| <
p/r. Moreover, we have

A(M) = |M |, = /p/r, A(W

A (P) = ||P|, = gell[?]||02—1(a)”

=W,

Nf-

\//]7’

(85)

The inequalities (85) also hold by replacing M and W to
M@ and WO respectively. Further, we have

MWW =< |[WWT|| < r/p, (86)

which is also true for WO W (.7

Proof of Lemma 10: The proof for the inequality (85)
for M, W can be found in [13, Proof of Lemma 4]. The
inequalities for P follows the same derivation with balance
assumption on @ and min, ¢, 0(i) > c.

For inequality (86), note that for all k € [r],

M(WWT) = \/eigenk(WWTWWT)

\/reigenk(WWT)
p

X

r r
= - (W) < —,
p (W) ;

where eigen, (A) denotes the k-th largest eigenvalue of the
square matrix A, the first inequality follows the fact that
WTW is a diagonal matrix with elements of order r/p, and
the second equation follows from the definition of singular
value. (]
Lemma 11 (Upper Bound for Fl(lf), G(z) and H(t))' Under
the Condition 1 and the setup of Theorem 5 with fixed r > 2,
assume the constant C' in the condition SNR > Cp K/21ogp
is large enough to satisfy the inequalities (98) and (102). As
p — 00, we have

2
()

max max
i€(p] b;éz( ) ”[ z(z):}s - [Sb:]s||2
< EV|2+ (1 rLt E.(V V)2 (87
NATH sVIE+ 1+ o ) 1Ba(V — = @7
(%)
max max ‘ < — (A2, + L® (88)
iclp] b22()) ||[S=(0):]® — [S:)*||> — 512 ( )
t
‘H"(b) <1 (89)
max Im. —.
ie i) b2 IS L) ]5 — [Su]5]|? ~ 4
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Similarly, when the SNR > Cp~(K~Dlogp with a large
constant C', we have

< K- 17L(2)
[Av ][]z ™~ AL

min

max max
i€lp] b#2(i) ||[Azq):]® —

.N2
@

max max < —

ielp] b#2(0) [[Azqa).]* — [Ap]*[? ~ 512

Hy,

2 ot T — (AT = 1
Proof of Lemma 11: We prove the the first three inequalities
in Lemma 11 separately.
1) Upper bound for F ), i.e., inequality (87). Recall the
definition of F(b),

FY =2(B.vY, (1800 = 1850,)°) = (151" = 1817°))
+2(Eu(V = V"), [8.0)]" = [Su]").

By Cauchy-Schwartz inequality, we have
(=)
<8 ((Bv®, (180 = 189,°) - (18~ 181°)))”
+8 ((Bu(V =V ), 8] ~150)7))
<8 (1B VI + 1B (vV =V O)*) max [[S)* SOV

B (V= VO P800~ [0l

(90)
Note that for all a € [r],
1[Sa)* = [SETII° = WA Y V] =W D TY V)2
<2 WY VI - W TY VI
+2 WY V- [WOTY VO
r2(L(0)2
N TAZ

min

K+2 L(t)
AQ

min

K +pr

pK
2K | ppK+2 1)
pK A2,

min

<rL® 4 o

<SrL®, 1)

where the second inequality follows from the inequalities (108)
and (109) in Lemma 12, the third inequality follows from the
condition (66) in Condition 1, and the last inequality follows
from the assumption that A2, > Cp~5/2log p.

Note that
I[S=¢0):]* — [Se:)°1?
= S0 = [Sey)® + [Sa:)” — [S6:]® + [Sn:]” — [Su]*II”
S S=)® = (S I” + géaleSa:]S = [Sa)?1?
5 Sz 1): ° + ma‘ W EV
I[S=¢iy:]* — [Se:)* 12 r] || Sa: Hz” I
S Sz = [Se 1%, 92)
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where the second inequality follows from Lemma 4, and the
last inequality follows from the assumptions on ||.S,.| in the
parameter space (2), the inequality (62) in Condition 1 and
the assumption A2 . > p=K/2]og p.

Therefore, we finish the proof of inequality (87) by plugging
the inequalities (91) and (92) into the upper bound (90).

2) Upper bound for GE?, i.e., inequality (88). By definition
of Gg?, we rearrange terms and obtain

¢t = (I v O — (89,00
X VO - W, Y VO 2)
- (I v o - s
~NIX VO — WY VOP|?)
_ ys(t)s T (t)1s _ () 1s
= 2([X V), (WL, YV — [ )7)
~(Wiyvor-isPr))
= G1+ Gz —Gs, 93)
where
Gi = Wiy YVOP—[S{ PP [Wiy VP —[s)7|%,

G :2<X¢:V<t)]s*[WZ(i)YV(t)]Sv[Wz(i)YV(t)] [522)] >
Gy = 2 (X VOP - WEYVOr WEY VO (s,

For GG1, we have

it < WLV — sty
2
WY VO - (0]
< mz[xxH[WTYV(t)] — WO Ty y®)s)4
ac
r2pAK 2, 2K+4 (1(6))2

A4

min

p2K A4

min

(94)

min min

< C4C (A4 T A2

1)
where the third inequality follows from the inequality (110) in
Lemma 12 and the last inequality follows from the assumption

that A2, > Cp~%/2logp and inequality (66) in Condition 1.
For Gy, noticing that [X;, V)]s = [WT()XV(”]
we have
Gal? < 2|[XVOP— Wi, Y VO
NW L Y VO[S 1P
2
< T wToT WIEV®|?
= WXV |
maXH{WTYV(t] WO TY VR

a€(r]
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,7"2K_1+KpT'K+1
< o
P pne T A prfE L0
oz, B
c’
< —AfnlnL(”7 (95)

where C’ is a positive universal constant, the second inequality
follows from Lemma 4, the third inequality follows from the
inequality (63) in Condition 1, the inequalities (110) and (129)
in the proof of Lemma 12, and the last inequality follows from
the assumption AZ. > Cp~K/2 log p and inequality (66) in
Condition 1.

For (i3, note that by triangle inequality

(X VO — WXV O
<1182, — S5 + 2max| (WA X VO - (WEXV]J?
L®
<182, — i+ 0TS %6)

min

where the last inequality follows from the inequality (128) in
the proof of Lemma 12 and C' is a positive constant. Then we
have

|Gsl? 2/|[X V)

IA

max||[WT YvW)

a€lr]

~ WY VO

IN

2l VO - W X v O
HIWEY VO - wixvOp|?)

Way vy -[wtyver

min

-max
aglr]

IN

<H5z<) —Si|I? +C

‘ (TZ(L(t))Q Afan(t)

2 K 2
min p

K+er+2 L(t) ) C/
+~7
min 02

0202
||Sz(z

IN

— S5 P(AL + LD

C’gC C?
c?

+ (Ahin + A2 L") ©7)

where the third inequality follows from the same procedure
to derive (94) and (95), and the last inequality follows from
the assumption A2. > CpK/2 log p and inequality (66) in
Condition 1.

Choose the C' such that

min

/ 2,2
<C4c o, c°C

< 5 (98)

c3C'C? 1
— + — <
cs 2 C C? >

Then, we finish the proof of inequality (88) by plugging the
inequalities (94), (95), and (97) into the upper bound (93).
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3) Upper bound for HZ-(;;), i.e., the inequality (89). By defi-
nition of H;,, we rearrange terms and obtain

Hy = |[X:VOP—wi,yvOpe?
X VOP WL Y VOP |2 4 |[[Sa0)]°— [Se ]
= H[Xi:V(t)]s—[VV:Z(i)YV(t)}SHQ
+ (H[Szm:]“’—[Sb:]SHQ—II[Xz-:V“)}S—[WfXV“’]SII)
(X vOr-wiyver|
X VO - Wi xvOr)
= H,+ H:+ Hs,
where
H = |[X.VOP - Wl YvOP|?
— Wi XV — Wiy v©OP|?,
Hy = [y = [Se’lI” = [ X V)P — (Wi XVOP|?,
Hy = 2<[Xizv(t>]s —WIxv®p,

WiYVOP - wixvO),
For H,, we have

dmax,e | W EVO?

|Hi| < W XV

7,,2K—1 +Kp7"K+1
pK
< C~(72||[‘S'z(i):]s - [Sbi]sH2v

<

99)

following the derivation of G5 in inequality (95) and the
assumption that A2, > Cp~K/2logp.

For Hj, by the inequality (96), we have

|Hs| < Zmepﬂnw’ixv@]t[WZXV]SH?
ac|r
T,Q(L(t))Z
~ AQ.
< 002 S 1® — [S. %11 100
>~ E”[ Z(l)} _[ a:] || ) ( )

where the last inequality follows from the condition (66) in
Condition 1.
For Hjs, by Cauchy-Schwartz inequality, we have

Hs| S ([ XaVOP — Wi XVOP||Hy'?
< 2C7Y|[8-0) )" — [Sa)°I1%, (101
following the inequalities (96) and (99).
Choose C' such that
~ c? . 1
C2+ CE +C071< T (102)

Therefore, we finish the proof of inequality (89) combining
inequalities (99), (100), and (101).
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Next, we show the upper bounds for Fib, éib and Flib. By
Lemma 1, we have

15a: = Si.ll = (1 +o(1))[| Az, — AZ|-

Also, notice that the matrix product of BT corre-
sponds to the padding operation in Lemma 5, and the
padding weights are balanced such that ||[vB| = (1 +
0(1)) maxy |0, -1(q) | K172 ||v|| for all v € R"E~Y. For

two vectors vy, v € R™ , we have

loi = w3l = (1 +o())[[[1 BT]* = [v2B"]*]|.  (103)

The equation (103) also holds for BT,
Note that for all ¢ € [p] we have

lAQll = [IS.wB"Qll
= ”SZ(Z':)E(X)(K_D”
= (T4 o(W)ISzll
= (I4o(1)) max|[6.—1 ) |~ V2 i), (104)
where the third inequality follows from the singular property
of MLE confusion matrix (135) and the last inequality follows
from the fact that A; = Sz(i:)BT and Lemma 10. Above equa-
tion indicates that A;. is the span space of the singular values
as p — oo. Also, notice that theA row space of P:ZYQABT is
equal to the column space of @, and A;, # PTY QBT in
noisy case.
Hence, for all a € [r], we have

I1X:Q)° — [PTY Q)|
[An Q

__PIvQ
IPLY Q|

A T YRT
= (o) |20 PaYQB
Azl |IPTY QBT

= (1+o(1)[[X:) - [PLTYQB™)| (105)
where the second equation follows
from (104), IPITY QBT || R = (1 +
o(1)) max, 0,1 | K~V/2|PLYQ|, and  singular

property of B7T. Similar result holds after replacing
PIYQby PIYQor PIYQ.

We are now ready to show the upper bounds for Fib, éib
and ﬁib.

For Fib, we have

(F)? < | Be Pl Au]* - [Aa]"|
< |1B: 12118 B~ 1S BT
+|| [Sa:BT]S - [Sa:BT}S”] ’
< B2 (1B QY ~ 1807+ 118~ 18171

Following similar derivations in inequalities (91), (92), and the
upper bound for J; in the proof of Lemma 12, respectively,
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we have
H[Sa:]s_[ga:]s” S TL(£)7 ”[Sar]s_[‘gb:]s” 5 ||52:—Sg:||2,
and

I[8a:B" Q)" — [Sa:)*|l S L(%).

We then obtain the upper bound for Ey, by noticing that
1E:])? < p"t
For Gy and sz, by the property (105), we have

(1+0(1))Gs
= (I1X:Q1 = [8.)° I3~ X Q" - [PIY QI |}
— (I1X.Q1* = [8)° I3~ 1 X2 Q" {PS Y QI 3).
(1+0(1)Hi

= |[X:QF - [PIY Q|5 —II[X:Q) ~
+AL - ALE

[PTY Q7

We obtain the upper bounds following the proof for inequali-
ties (88) and (89).
O
Lemma 12 (Relationship Between Misclustering Loss and
Intermediate Parameters): Under the Condition 1 and the setup
of Theorem 5 with fixed r» > 2, as p — oo, we have

/rK*1 r
||V _ V(t)HU < AT L(t)’ (106)
rE-1(prK-1 4 pr) r
|E(V — V(t))Ha < \/ (PEDK71 pr) AT L(t), (107)

max|[WEY V] = WY v

(t) 2K K+1 /T.(%)
(TL [r —l—pr L >’ (108)

maXH[W(f) Tyv) -
belr]

W(f) TYV(t)] H

[ 2K K+2 /T.(t) (®)
<C( rr +pr L rL )7 (109)

maxu[wbyv“) [W“) TyvOp

t) 2K K+2 \/[,(¢)
<c rL n rr2k + pr L 110
Amin pK Amin

for some positive universal constant C. In addition, the
inequality (109) also holds by replacing VV:Ef) to W, Further,
the above inequalities holds after replacing W to P, V to Q,
and L) to L(3).

Proof of Lemma 12: We follow and use several intermediate
conclusions in [13, Proof of Lemma 5]. We prove each
inequality separately.

1) Inequality (106). By [13, Proof of Lemma 5], we have

[ K1
IV - V(t)Ha S %Tf(t)~
p

3913

Then, we complete the proof of inequality (106) by applying
Lemma 2 to the above inequality.
2) Inequality (107). By [13, Proof of Lemma 5], we have

IE(V — V)|, < \/rK_l(pTK_1 27) o),

pKfl

Also, we complete the proof of inequality (106) by applying
Lemma 2 to the above inequality.

3) Inequality (108). We upper bound the desired quantity
by triangle inequality,

IWIYV) - WD TYV|| < I + I + I,
where
Lo | iy Wi vy
Wi XV wiTxv|
Lo 1 1
> I\wlvv] [wixV]|
]. ]. (t)T
I3 = — WY vV].
(nw%f”w ||W:§?’TXV) ’ H

Next, we upper bound the quantities 15, I, I3 separately.
For I, we further bound [; by triangle inequality,

I < I+ Lo,

where
Iy — wixv — wyTxv
WIxXVvil wi'xv)|

and
1, | WEEV w T py
WIXV] |wdTxv|

We first consider I;;. Define the confusion matrix D =
MTOTW® = [[Dab]] € R™*" where

D)1 {z(i) = a,z2 (i) = b}
Day= 2icn for all a,b € [r].
b Zie[p]]l {Z(t) i) = b} a [7‘]
By Lemma 10, we have 3,1 1 {z®W(i) = b} > p/r. Then,
we have
Z D <r Z 0(i) < LY < 1 (111)
ab S T 1) B} S s
a#b,a,be(r] p i 2 (1) (i)#2(3) Amm logp
and for all b € [7’],
9 ]1 = z(t) =b
Dy, = €l LA . }
Zie[p] 1 {z (i) = b}
L S 100 = b} )
B e 1{z0(0) = b}
1
2 1- , (112)
log p
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under the inequality (66) in Condition 1. By the definition of for

W. WO V, we have

T
Wi XV ’
and
wi ' xv .
m = [DppSp: + Z DapSa.]°.

a#b,a€lr]

Let o denote the angle between Sy and DypSp. +
Za#’aem Dy S,q:. To roughly estimate the range of a,
we consider the inner product

<Sb:7DbbSb: + Z DabSa:>

a#b,a€(r]
Dbb H‘S'biH2 + ZDab <Sb:a Sa:>

a#b

> Dy ISel® = ) DabHSmeaXHS |
a#b,a€(r]

> C,

where C' is a positive constant, and the last inequality holds
when p is large enough following the constraint of || S.|| in
parameter space (2) and the bounds of D in (111) and (112).

The positive inner product between Sp. and Dy,Sy. +
> atb,ac(r] DavSa: indicates o € [0,7/2), and thus 2sin § <
V/2sina. Then, by the geometry property of trigonometric
function, we have

”[Dbbsb: + Z Dabsa:]SinaH

a#b,a€(r]
= ||(Ig — Proj(Ss.)) Z Dy S|
a#b,a€(r]

< ) Dall(Za—Proj(Sy.))Sell

a#b,a€(r]
= Z Dab ||Sa: Sin(Sb:aSa:)H

a#b,a€(r]
< Y DaplSalllSi =Sl (113)

a#b,a€(r]

where the first inequality follows from the triangle inequality,
and the last inequality follows from Lemma 4. Note that with
bounds (111) and (112), when p is large enough, we have

WXV = 1DwSe+ Y. DapSall
a#b,a€(r]
> Du|ISull = > Dap || S
a#b,a€(r]
> O, (114)
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some positive constant (7. Notice that I; =

VvV1—cosa=2 sm 2. Therefore, we obtain

I; < \/isina
o ||[DbbSb: + Za#b,ae[’r] D(LbSa;] sin O[”
||DbbSb: + Za;ﬁb,ae[r} Dabsa; H
1 S S
< & Y DalSullsi - sl
a#b,a€lr]
< 2> 60) Zﬂ{z“ b} Iss - s
ze[p be(r]
rL®
< 115
o Amin7 ( )

where the second inequality follows from (113) and (114),

and the last two inequalities follow by the definition of D,

and L), and the constraint of || Sy, || in parameter space (2).
We now consider I;5. By triangle inequality, we have

1

112 S a7 T vy
W X V||

Wi -wiHEV|

T
Wi -wihHxv|
WIXV|[WP "XV
By [13, Proof of Lemma 5], we have

72K 4 prE+1 /1

T
W TEV.

wI _wO ey < . (116
IW] =W DBV <[ 16)
Notice that
T
Wi -wihHxv) < (wi-wiTIxv|,
3/2L(t
< OM||,
< \[AmmIISIIH |
rL(®)
117
~ Amin’ ( )

where the second inequality follows from [13, Inequality
(121), Proof of Lemma 5] and the last inequality follows from
Lemma 6 and (66) in Condition 1. Note that HWTX VH =

ISe:|| > ¢s and ||W(t) TXV|| > (7 by inequality (114).
Therefore, we have
Ly 5 Wi -wyhEV|
+H(wi - W(”T)XVIIIIW“) "EV|
2K KE+1 /L  /prL® |[p2K
< r +pr VrL®) r2K
mln mlIl pK
2K K+1 /],
Y L (118)
p An’lll’l

where second inequality follows from the inequalities (116),
(117), and (62) in Condition 1.
Hence, combining inequalities (115) and (118) yields

< rL® N r2K 4 prK+1 /L) (119)
te Amin pK Amin -
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For I and I, recall that |[W] X V|| = ||Sy| > ¢3 and
HVV:Ef)’TXVH > (4 by inequality (114). By triangle inequal-
ity and (62) in Condition 1, we have

IWLEV| _ ot
< b= 2 WL EV| < , 120
2 > ||WTXV|| ~ ” H K/2 ( )
and
Wi EV K
M < || EV|| < (121)

W xv T P
Therefore, combining the inequalities (119), (120), and (121),
we finish the proof of inequality (108).

4) Inequality (109). Here we only show the proof of
inequality (109) with VV:%t). The proof also holds by replacing
VV:%t) to W, and we omit the repeated procedures.

We upper bound the desired quantity by triangle inequality

WYV = (W TYVOPR| < 0+ o+ s,
where
; (t) TYV W(t)7T'YV(t)
1 b
% “TXVH W T xvo|
Jo ! wTyy
HW(“TYVH Wit xv) ’
1 1 (), Ty (1)
J3 = — DLy y @)
’ H(nw?’jww IW?)’TXW”II) g

Next, we upper bound the quantities J;, J2, J3 separately.
For Ji, by triangle inequality, we have

J1 < Ji + Jia,

where
- |y v
HW“ Xv|  [wyTxve)
and
J12| wo BV W TEVO
WXV wP X v

wek-1) &
,K — 1, and denote V! =

We first consider J11. Define the matrix V* :=
WH.@(K=k) for | = 2,.

V® VE = V. Also, define the quantity
T A s
T = WXV — W) T XV,
for kK = 1,...,K — 1. Let (B denote the angle between

W(t) TXVFE and W(t) TXVFk+L With the same idea to
prove I;; in 1nequahty (115), we bound J}, by the trigono-
metric function of (3.

To roughly estimate the range of (i, we consider the inner
product between W."" XV* and W XVH+1, Before
the specific derivation of the inner product note that

W%t)aTXvk Matl(zz—k) t) TXvk+1 Mat1 (77€+1)7

3915
where
T, = XXlWE)t)7TX2WTX3"‘XkWT
X WO s oo e WOT
Tht1 = Xxlwgf)’TxQWTx?)...XkWT
xk+1WT><k+2~-~><KW(t)T

Recall the definition of confusion matrix D =

MTOTW® = [D,] € R™*". We have
<W%t),TXVk7 W%t),TXVk+1>
(Matgy1(7%), Mate11(Ti+1))

<DTSZ’“, sz’“>

>

be(r]

>

a#b,ac(r]

(Dbb|sb:Zk|2 +

Dy <sajz’“, sbtz’“>>

(1—1logp ") grgli[gl]llsa:zkllz —logp ™" ggﬁ\lsmzkll2,

a%

(122)

where Z% = D, @ I®% Y @ DOE—k=1)  the equations

follow by the tensor algebra and definitions, and the last

inequality follows from the bounds of D in (111) and (112).
Note that

D], < Dl
< Sl Y by
be(r] a#b,a,be(r]

< w/r+log®pt <1,

where the second inequality follows from inequality (111), and
the fact that for all b € [r],

Dy S L Z 0(i) < 1.

i: z(i)=b

(123)

Also, we have

A(D) = A (W (OM) 2 1 (124)

following the Lemma 6 and Lemma 10. Then, for all k € [K],
we have
[ D[l Ar(D)* 71 < N 2 (Z5)

<
K—k—1
< 2%, < | D) | D], SL

(125)
Thus, we have bounds
maXHS Z"|| < maXHS H1Z* s <
anél[g||sa:zk\| > min Sull s (2 2 1
Hence, when p is large enough, the inner product (122) is

positive, which implies 8 € [0,7/2) and thus QSin% <

\/2sin O
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Next, we upper bound the trigonometric function sin (.
Note that

sin B, = sin(DLSIZ* '@ D®K—F DT SI#* g DEK k-1
< sin g + sin Gga,

where
sinfy = sin(DLSI®* ! @ DOE-k

D}SI®* ' @ D@ DK k1),
sin By = Sin(DiSI?kil ® D ® D®K7k71,

D?I;SI®k ® D®K7k71)’

and D is the normalized confusion matrix with entries ﬁab =
S ety 0(1{z=b,2(i)=a}
D ieqp 0 1{z(V=b} »
To bound sin 1, recall Definition 2 that for any cluster

assignment Z in the e-neighborhood of true z,
p(z) = (27 )., ]2 (1)),
po(2) = (10:-1(1)ll1s - 1010 1)
Note that we have ((Y) < ALZ,& < %rlog_l(p) by Condi-

tion 1 and Lemma 2. Then, with the locally linear stability
assumption, the 0 is ¢(M-locally linearly stable; i.e.,

) L®
sinp(=), po(=)) £ +—.
Note that diag(p(z"))D = diag(pe(z™))D, and

sin(a,b) = min.eg Ha‘mb“ for vectors a,b of same
. . ) y_ ®
dimension. Let ¢y = argmin g W. Then,
we have

min||D—cD||p
ceR

< I, — codiag(p(2"))diag ™" (pe("))||r|| DI r
(=) = cope (2]

S =

minge( (60,0, -1 (a1

Ip(z")]] . (t) (t)

= — sin(p(2'"), pa(2'"))

mlnae[r]||02(‘)~*1(a)||1

(t)

< L
~ Amin7

where the last inequality follows from Lemma 10, the
constraint min;ep, 0(7) > ¢ > 0, lp(z)| < p and
mingef)[|0.0.-1(0)ll1 2 p.

By the geometry property of trigonometric function,
we have

_|DESIZH ! @ (D—cD) ® DK R

sin =
P ceR ||D:7,;SI,i®k*1 ® D®K-k||
_ IDESIID - coD|jo | DJE
B |IDS|IAS (D)
< IID = cDllr
L®
< 126
S OAL (126)
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where the second inequality follows from the singular property
of D in (123), (124) and the constraint of S in (2).
To bound sin B2, let C' = diag({||Sa:||}ac}r)). We have

HD:IZ;SIEMA ® (I, - D)® D®K7k71H

sinfBre S

~ | D3 SIPF @ DOK—k-1||
< I3, - D")SZ¥||r
~ O IIDESIATE (D)
< @ - DNSC Y pllcZ",
r y y S S
S 5200 3106 =08 - S
1€ [p] be(r]
L®
S 127
~ Amin7 ( )

where the third inequality follows from the singular property

of D and the boundedness of S, and the fourth inequality

follows from the definition of b, boundedness of S, the

lower bound of @, and the singular property of Z* in inequal-

ity (125), and the last line follows from the definition of LW,
Combining (126) and (127) yields

L®
sin B, < sin Bg1 + sin Bra S A

Finally, by triangle inequality, we obtain

rL®

Amin

K—-1 K—-1
Ju <) JH S sinfe S (K1) (128)
k=1 k=1

We now consider Jy2. By triangle inequality, we have

iz < WlTXVHWWE(v — V)|
WX (V- v
w3 XV WXV
Note that
W Txvo)

W TEV®).

IDTSZ|
M (D) S Apr—2(Z1) 2 1,
(129)

where the inequality follows from the bounds (124) and (125).
By [13, Proof of Lemma 5], we have

WP BV - v

Y

P2K+1 4 2+ K (K — 1)V/LO

1
pK Amin ( 30)

Notice that
IX(VF = VEY| |
< (I -DT)SIE*-D @ DE=F-1y||
< JWT -wOTYeM|r S|, | D|E"

< wh-wOTeM|,
vVrL®)
S T (131)
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where the first inequality follows from the tensor algebra in
inequality (122), the second inequality follows from the fact
that I = WTO®M, and the last inequality follows from [13,
Proof of Lemma 5]. It follows from (131) and Lemma 10
that

K-—1
T T .
W Tx (v —vO) < WP IX (v - vEY|e
k=1
rL ()
S hmm (132)

Note that \|W§f)’TXV|| and ||VV$)’TXV(”|| are lower
bounded by inequalities (114) and (129), respectively. We have

Jio S [WPTE(W - vO))
HIWPTX(V - v W T EVO)
B \/W VrL® T2K
~ Anin f Amm
- r2K+1 +pr2+K\/LT

pK Anin '
where the second inequality follows from inequalities (130),
(132), and the inequality (62) in Condition 1.

For J, and J;, recall that ||VV$)’TXVH and
Hng)’TX V®|| are lower bounded by inequalities (114)
and (129), respectively. By triangle inequality and inequality
(62) in Condition 1, we have

w BV kK
< W BVIL < ywi By < e (133)
Wy X V||
and
W(t)aTEv(t) rK
n< I B W TV < Lo ase
W, XV

Therefore, combining the inequalities (128), (133), and
(134), we finish the proof of inequality (109).

5) Inequality (110). By triangle inequality, we upper bound
the desired quantity

IWIvyv®yr - w Yy v
< |WIYV®O] — [WIYV]
HWIYV]yE - WY V]

HWP Y v - Wi Ty v

< rL® rr2K+er+2 VL®
~ Anin pK Amin ’

following the inequalities (108) and (109). Therefore, we finish

the proof of inequality (110).
Next, we show that the intermediate inequalities hold
with P,Q and L(%). Consider the MLE confusion matrix

3917
D=MTOTP = [[f)ab]] € R™ " with entries
Doy — Licip) a(i)é(i)}l{z(i) — 4, 2() = b}
1011117
K-2 B o
_ Zie[p](l +o(p ))(0 ( )2 1{z(i) = a, 2(i) = b}7 s
||9271(b)||

where the second equation follows from Lemma 13, and thus
Zae[r] D,, = 1+ o(1). By the derivation of (111), (112),
(124), and (123), we have

1
D <=M 1 ))? <
2 Dus -3 L) # 20HO0) S o
aF#be[r ze[p
1
Dy >1— Amin(D) < | D]y = (1+ o(1)).
w210 Amin(D) = D]y = (1+0(1))

for all a # b € [r].
Now, we are ready to show the intermediate inequalities.
First, by Lemma 1 and min;cp, 0(i) > ¢, we have

HSZ - SE” = ||AZ - AZH

Then we can replace the L) by L(%) in the proof of
Lemma 12. The analogies of inequalities (106), (107), (108),
(109), and (110) hold by using the MLE confusion matrix and
the definition of L(Z).

Particularly, for the analogy of (109), the usage of MLE
confusion matrix avoids the stability condition on 6. Let
D be the normalized version of D. The angle in inequal-
ity (126) decays to 0 at speed p~(K~=2 < A i, when

K > 3, and the inequality (127) holds by the fact
that
(I, - D)SC~!|r < Z N D115 — Ssl
ze[p] be(r]
S Z N2 1A — ALl
ze[p belr]

O
Lemma 13 (Polynomial Estimation Error of MLE): Let
(2,8,0) denote the MLE in (9) with fixed K > 2 and
symmetric mean tensor, and X denote the mean tensor
consisting of parameter (2, S , é) With high probability going
to 1 as p — oo, we have

1¥ = X% S o (' + Kpr),

with probability going to 1. When SNR > p~(K=Dlogp, 0
is balanced, and min;e[p) 0(i) > c for some positive constant
¢, the MLE satisfies

1
- Z 1{2(i) # 2(0)}(0(1)* < ;
ZG[p] rlogp
-3 1{ED) # 2000 £
~ rlogp’
%G[p]
A2
d L 2 mln
an (9) 5 rlogp’

Further, we have

0(i)° = (L +o(p~*=2))(0)".
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Proof of Lemma 13: Without loss of generality, we assume
1 and identity mapping minimizes the miscluster-
ing error for MLE. For arbitrary two sets of parameters
(2,8,0),(,8',0") € P(~) and corresponding mean tensors
X, X', we have

o =

rank(Maty, (X)) — Mat (X))
< rank(Maty (X)) + rank(Mat (X))
<2r, kelK].

Hence, we have

X—X €Q@r...,27), (136)

1)}

where Q(r,...,r) := {Tucker tensor with rank (r,
Then, we obtain that

P(|X — Xuillr > 1)

X - X
< 2P sup <,5> >t
X, X'eP(r,...,r) ”‘X - X/”F
< 2P sup (T,€) >t
TeQ2r,...2r)N{||T||r=1}

S exp(—Kpr),

with the choice t < o/ (Kpr + r&). Here the first inequality
follows from [10, Lemma 1], the second inequality follows
from (136), and the last inequality follows from [37, Lemma
ES5].

When A2, > p~(K=Dlogp, we replace the vector &: ;)
and X by our MLE estimator in the proof of Theorem 4.

With estimation error [|X —X||% < (r + Kpr) and A2, >
p~ (K= Jog p, we have
2 rft o112
- Z L{2(0) # 2(0)3(0(0)° & Ko —w X —XlF
ZE [p] minP
K2
<
~ pK 1A12Hll'l
< 1 ,
~ rlogp
and
2 .
L ol < min .
SRS rlogp

Above result holds for 9(@) after switching the parameters X
with X and switch @ with 6 in the proof.
Last, notice that for all a € [r]

(1-o0 )) HWTX WiX|i

< | Z OOWLX - 0OWLX)|H
2(1)=z(i)=a
< X - X|F < pr,
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where the first inequality follows from the facts that £(2, z) <
L2 (a)] = p/r,

o7 (@) —C Bz, 2) < |2

[ @) Az ) <

o)l <l @)+ 0Bz 2),

> (a)],

z(1)=z(i)=a

0(i) < |2

and

27 (a )I—C ()< Y b <z a)l.
2(i)=z(i)=a
Hence, for all i € [p]
(0() = 0(0))*IWe X|I% = O(p)
< I(6() = @)W X |7 — 10(1)(Weg X — WL X) |5
< [l¥ = X% < pr,
where the first inequality follows from ||[WJ X — WIX|% <
1/p and 6(i) < 2. Notice that for all a € [r]
1SeclFAn " (@) 2 p" .

||WTX||F min
The inequality indicates that 6(i)? = (1 4 o(p~(K~2)))

>
=

~.
N
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