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Multiway Spherical Clustering via

Degree-Corrected Tensor Block Models

Jiaxin Hu and Miaoyan Wang

AbstractÐ We consider the problem of multiway clustering in
the presence of unknown degree heterogeneity. Such data prob-
lems arise commonly in applications such as recommendation
system, neuroimaging, community detection, and hypergraph
partitions in social networks. The allowance of degree hetero-
geneity provides great flexibility in clustering models, but the
extra complexity poses significant challenges in both statistics and
computation. Here, we develop a degree-corrected tensor block
model with estimation accuracy guarantees. We present the phase
transition of clustering performance based on the notion of angle
separability, and we characterize three signal-to-noise regimes
corresponding to different statistical-computational behaviors.
In particular, we demonstrate that an intrinsic statistical-to-
computational gap emerges only for tensors of order three
or greater. Further, we develop an efficient polynomial-time
algorithm that provably achieves exact clustering under mild
signal conditions. The efficacy of our procedure is demonstrated
through two data applications, one on human brain connectome
project, and another on Peru Legislation network dataset.

Index TermsÐ Tensor clustering, degree correction, statistical-
computational efficiency, human brain connectome networks.

I. INTRODUCTION

M
ULTIWAY arrays have been widely collected in various

fields including social networks [1], neuroscience [2],

and computer science [3]. Tensors effectively represent the

multiway data and serve as the foundation in higher-order data

analysis. One data example is from multitissue multiindividual

gene expression study [4], [5], where the data tensor consists

of expression measurements indexed by (gene, individual,

tissue) triplets. Another example is hypergraph network [6],

[7], [8], [9] in social science. A K-uniform hypergraph can

be naturally represented as an order-K tensor, where each

entry indicates the presence of K-way hyperedge among nodes

(a.k.a. entities). In both examples, identifying the similarity

among tensor entities is important for scientific discovery.

Manuscript received 18 January 2022; revised 23 December 2022;
accepted 6 January 2023. Date of publication 23 January 2023; date of current
version 19 May 2023. The work of Miaoyan Wang was supported in part
by NSF under Grant CAREER DMS-2141865, Grant DMS-1915978, Grant
DMS-2023239, and Grant EF-2133740; and in part by the Wisconsin Alumni
Research Foundation. An earlier version of this paper was presented in part
at the 25th International Conference on Artificial Intelligence and Statistics
(AISTATS). (Corresponding author: Miaoyan Wang.)

The authors are with the Department of Statistics, University of
Wisconsin±Madison, Madison, WI 53706 USA (e-mail: jhu267@wisc.edu;
miaoyan.wang@wisc.edu).

Communicated by R. Venkataramanan, Associate Editor for Machine
Learning.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3239521.

Digital Object Identifier 10.1109/TIT.2023.3239521

We study the problem of multiway clustering based on a

data tensor. The goal of multiway clustering is to identify

a checkerboard structure from a noisy data tensor. Fig. 1

illustrates the noisy tensor and the underlying checkerboard

structures discovered by multiway clustering methods. In the

hypergraph example, the multiway clustering aims to iden-

tify the underlying block partition of nodes based on their

higher-order connectivities; therefore, we also refer to the

clustering as higher-order clustering. The most common

model for higher-order clustering is called tensor block model

(TBM) [10], which extends the usual matrix stochastic block

model [11] to tensors. The matrix analysis tools, however,

are suboptimal for higher-order clustering. Developing tensor

tools for solving block models has received increased interest

recently [10], [12], [13].

The classical tensor block model suffers from draw-

backs to model real world data in spite of the popular-

ity. The key underlying assumption of block model is that

all nodes in the same community are exchangeable; i.e.,

the nodes have no individual-specific parameters apart from

the community-specific parameters. However, the exchange-

ability assumption is often nonrealistic. Each node may

contribute to the data variation by its own multiplicative

effect. We call the unequal node-specific effects the degree

heterogeneity. Such degree heterogeneity appears commonly

in social networks. Ignoring the degree heterogeneity may

seriously mislead the clustering results. For example, the

regular block model fails to model the member affiliation

in the Karate Club network [14] without addressing degree

heterogeneity.

The degree-corrected tensor block model (dTBM) has been

proposed recently to account for the degree heterogeneity [9].

The dTBM combines a higher-order checkerboard structure

with degree parameter θ = (θ(1), . . . ,θ(p))T to allow het-

erogeneity among p nodes. Fig. 1 compares the underlying

structures of TBM and dTBM with the same number of

communities. The dTBM allows varying values within the

same community, thereby allowing a richer structure. To solve

dTBM, we project clustering objects to a unit sphere and

perform iterative clustering based on angle similarity. We refer

to the algorithm as the spherical clustering; detailed pro-

cedures are in Section IV. The spherical clustering avoids

the estimation of nuisance degree heterogeneity. The usage

of angle similarity brings new challenges to the theoretical

results, and we develop new polar-coordinate based techniques

in the proofs.
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Fig. 1. Examples for order-3 tensor block model (TBM) with and without degree correction. Both TBM and dTBM have four communities on each mode,
while dTBM allows a richer structure with degree heterogeneity.

A. Our Contributions

The primary goal of this paper is to provide both statistical

and computational guarantees for dTBM. Our main contribu-

tions are summarized below.

• We develop a general dTBM and establish the identifia-

bility for the uniqueness of clustering using the notion of

angle separability.

• We present the phase transition of clustering performance

with respect to three different statistical and compu-

tational behaviors. We characterize, for the first time,

the critical signal-to-noise (SNR) thresholds in dTBMs,

revealing the intrinsic distinctions among (vector) one-

dimensional clustering, (matrix) biclustering, and (ten-

sor) higher-order clustering. Specific SNR thresholds and

algorithm behaviors are depicted in Fig. 2.

• We provide an angle-based algorithm that achieves exact

clustering in polynomial time under mild conditions. Sim-

ulation and data studies demonstrate that our algorithm

outperforms existing higher-order clustering algorithms.

The last two contributions, to our best knowledge, are new to

the literature of dTBMs.

B. Related Work

Our work is closely related to but also distinct from several

lines of existing research. Table I summarizes the most relevant

models.

• Block model for clustering. The block model such as

stochastic block model (SBM) and degree-corrected SBM

has been widely used for matrix clustering problems.

The theoretical properties and algorithm performance for

matrix block models have been well-studied [15]; see the

review paper [11] and the references therein. However,

The tensor counterparts are relatively less understood.

• Tensor block model. The (nondegree) tensor block model

(TBM) is a higher-order extension of SBM, and its

statistical-computational properties are investigated in

recent literatures [7], [10], [13]. Some works [16] study

the TBM with sparse observations, while, others [10],

[13] and our work focus on the dense regime. Extend-

ing results from nondegree to degree-corrected model

is highly challenging. Our dTBM parameter space is

equipped with angle-based similarity and nuisance degree

parameters. The extra complexity makes the Cartesian

coordinates based analysis [13] nonapplicable to our

setting. Towards this goal, we have developed a new polar

coordinates based analysis to control the model complex-

ity. We have also developed a new angle-based iteration

algorithm to achieve optimal clustering rates without the

need of estimating nuisance degree parameters.

• Degree-corrected block model. The hypergraph

degree-corrected block model (hDCBM) and its

variant have been proposed in the literature [9],

[17]. For this popular model, however, the optimal

statistical-computational rates remain an open problem.

Our main contribution is to provide a sharp statistical

and computational critical phase transition in dTBM

literature. In addition, our algorithm results in a faster

exponential error rate, in contrast to the polynomial

rate in [9]. The original hDCBM [9] is designed for

binary observations only, and we extend the model to

both continuous and binary observations. We believe

our results are novel and helpful to the community. See

Fig. 2 for overview of our results.

• Global-to-local algorithm strategy. Our methods gen-

eralize the recent global-to-local strategy for matrix

learning [15], [18], [19] to tensors [13], [16], [20].

Despite the conceptual similarity, we address several

fundamental challenges associated with this nonconvex,

noncontinuous problem. We show the insufficiency of

the conventional tensor HOSVD [21], and we develop

a weighted higher-order initialization that relaxes the

singular-value gap separation condition. Furthermore, our

local iteration leverages the angle-based clustering in

order to avoid explicit estimation of degree heterogene-

ity. Our bounds reveal the interesting interplay between

the computational and statistical errors. We show that

our final estimate provably achieves the exact clustering

within only polynomial-time complexity.

C. Notation

We use lower-case letters (e.g., a, b) for scalars, lower-case

boldface letters (e.g., a,θ) for vectors, upper-case boldface

letters (e.g., X,Y ) for matrices, and calligraphy letters (e.g.,

X ,Y) for tensors of order three or greater. We use 1p to denote

a vector of length p with all entries to be 1. We use | · | for

the cardinality of a set and 1{·} for the indicator function. For

an integer p ∈ N+, we use the shorthand [p] = {1, 2, . . . , p}.
For a length-p vector a, we use a(i) ∈ R to denote the i-th
entry of a, and use aI to denote the subvector by restricting

the indices in the set I ⊂ [p]. We use ∥a∥ =
√
∑

i a2(i) to

denote the ℓ2-norm, ∥a∥1 =
∑

i |ai| to denote the ℓ1 norm of
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Fig. 2. SNR thresholds for statistical and computational limits in order-K dTBM with dimension (p, . . . , p) and K ≥ 2. The SNR gap between statistical
possibility and computational efficiency exists only for tensors with K ≥ 3.

TABLE I

COMPARISON BETWEEN PREVIOUS METHODS WITH OUR METHOD

a. For two vector a, b of the same dimension, we denote the

angle between a, b by

cos (a, b) =
⟨a, b⟩
∥a∥ ∥b∥ ,

where ⟨a, b⟩ is the inner product of two vectors and

cos (a, b) ∈ [−1, 1]. We make the convention that cos (a, b) =
cos
(

aT , bT
)

.

Let Y ∈ R
p1×···×pK be an order-K (p1, . . . , pK)-

dimensional tensor. We use Y(i1, . . . , iK) to denote the

(i1, . . . , iK)-th entry of Y . The multilinear multiplication of a

tensor S ∈ R
r1×···×rK by matrices Mk ∈ R

pk×rk results in

an order-K (p1, . . . , pK)-dimensional tensor X , denoted

X = S ×1 M1 × · · · ×K MK ,

where the entries of X are defined by

X (i1, . . . , iK)

=
∑

(j1,...,jK)

S(j1, . . . , jK)M1(i1, j1) · · ·MK(iK , jK).

For a matrix Y , we use Yi: (respectively, Y:i) to denote the

i-th row (respectively, i-th column) of the matrix. Similarly,

for an order-3 tensor, we use Y::i to denote the i-th matrix

slide of the tensor. We use Ave(·) to denote the operation of

taking averages across elements and Matk(·) to denote the

unfolding operation that reshapes the tensor along mode k
into a matrix. For a symmetric tensor X ∈ R

p×···×p, we omit

the subscript and use Mat(X ) ∈ R
p×pK−1

to denote the

unfolding. For two sequences {ap}, {bp}, we denote ap ≲ bp

or ap = O(bp) if limp→∞ ap/bp ≤ c, ap ≳ bp or ap = Ω(bp)
if limp→∞ ap/bp ≥ c, for some constant c > 0, ap = o(bp)
if limp→∞ ap/bp = 0, and ap ≍ bp if both bp ≲ ap and

ap ≲ bp. Throughout the paper, we use the terms ªcommunityº

and ªclustersº exchangeably.

D. Organization

The rest of this paper is organized as follows. Section II

introduces the degree-corrected tensor block model (dTBM)

with three motivating examples and presents the identifiability

of dTBM under the angle gap condition. We show the phase

transition and the existence of statistical-computational gaps

for the higher-order dTBM in Section III. In Section IV,

we provide a polynomial-time two-stage algorithm with

misclustering rate guarantees. Extension to Bernoulli models

is also presented. In Section V, we compare our work with

nondegree tensor block models. Numerical studies including

the simulation, comparison with other methods, and two real

dataset analyses are in Sections VI-VII. The main technical

ideas we develop for addressing main theorems are provided

in Section VIII. Detailed proofs and extra theoretical results

are provided in Appendix.

II. MODEL FORMULATION AND MOTIVATIONS

A. Degree-Corrected Tensor Block Model

Suppose that we have an order-K data tensor Y ∈ R
p×···×p.

Assume that there exist r ≥ 1 disjoint communities among the

p nodes. We represent the community assignment by a function

z : [p] 7→ [r], where z(i) = a for i-th node that belongs to

the a-th community. Then, z−1(a) = {i ∈ [p] : z(i) = a}
denotes the set of nodes that belong to the a-th community, and

|z−1(a)| denotes the number of nodes in the a-th community.

Let θ = (θ(1), . . . , θ(p))T denote the degree heterogeneity for

p nodes. We consider the order-K dTBM [7], [9],

Y(i1, . . . , iK)=S(z(i1), . . . , z(iK))
K
∏

k=1

θik
+ E(i1, . . . , iK),

where S ∈ R
r×···×r is an order-K tensor collecting the block

means among communities, and E ∈ R
p×···×p is a noise tensor

consisting of independent zero-mean sub-Gaussian entries

with variance bounded by σ2. The unknown parameters are z,

S, and θ. The dTBM can be equivalently written in a compact

form of tensor-matrix product:

EY = S ×1 ΘM ×2 · · · ×K ΘM , (1)

where Θ = diag(θ(1), . . . , θ(p)) ∈ R
p×p is a diagonal matrix,

M ∈ {0, 1}p×r
is the membership matrix associated with

community assignment z such that M(i, j) = 1{z(i) = j}.
By definition, each row of M has one copy of 1’s and

0’s elsewhere. Note that the discrete nature of M renders

our model (1) more challenging than Tucker decomposition.

We call a tensor Y an r-block tensor with degree θ if Y admits

dTBM (1) and let X = EY denote the mean tensor. The goal

of clustering is to estimate z from a single noisy tensor Y .

We are particularly interested in the high-dimensional regime

where p grows whereas r = O(1).
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For ease of notation, we have focused on the case with

symmetric mean tensor EY . This assumption simplifies the

notation because all modes have the same (Θ,M , z); the

noise tensor E and the data tensor Y are still possibly asym-

metric. In general, we allow asymmetric mean tensors with

{(Θk,Mk, zk)}Kk=1, one for each mode. The extension can

be found in Appendix B.

B. Motivating Examples

Here, we provide four applications to illustrate the practical

necessity of dTBM.

1) Tensor Block Model: Consider the model (1). Let θ(i) =
1 for all i ∈ [p]. The model (1) reduces to the tensor

block model, which is widely used in previous clustering

algorithms [10], [12], [13]. The theoretical results in TBM

serve as benchmarks for dTBM.

2) Community Detection in Hypergraphs: The hypergraph

network is a powerful tool to represent the complex entity rela-

tions with higher-order interactions [9]. A typical undirected

hypergraph is denoted as H = (V,E), where V = [p] is the

set of nodes and E is the set of undirected hyperedges. Each

hyperedge in E is a subset of V , and we call the hyperedge an

order-K edge if the corresponding subset involves K nodes.

We call H a K-uniform hypergraph if E only contains order-

K edges.

It is natural to represent the K-uniform hypergraph using a

binary order-K adjacency tensor. Let Y ∈ {0, 1}p×···×p denote

the adjacency tensor, where the entries encode the presence or

absence of order-K edges among p nodes. Specifically, for all

(i1, . . . , iK) ∈ [p]K , we have

Y(i1, . . . , iK) =

{

1 if (i1, . . . , iK) ∈ E,

0 if (i1, . . . , iK) /∈ E.

Assume that there exist r disjoint communities among p
nodes, and the connection probabilities depend on the com-

munity assignments and node-specific parameters. Then, the

equation (1) models EY with unknown degree heterogeneity

θ and sub-Gaussianity parameter σ2 = 1/4.

3) Multilayer Weighted Network: Multilayer weighted net-

work data consists of multiple networks over the same set of

nodes. One representative example is the brain connectome

data [22]. The multilayer weighted network Y has dimension

of p× p×L, where p denotes the number of brain regions of

interest, and L denotes the number of layers (networks). Each

of the L networks describes one aspect of the brain connectiv-

ity, such as functional connectivity or structural connectivity.

The resulting tensor Y consists of a mixture of slices with

various data types.

Assume that there exist r disjoint communities among p
nodes and rl disjoint communities among the L layers. The

multilayer network community detection is modeled by the

general asymmetric dTBM model (1)

EY = S ×1 ΘM ×2 ΘM ×3 ΘlMl,

where (θ ∈ R
p,M ∈ {0, 1}p×r) and (θl ∈ R

L,Ml ∈
{0, 1}L×rl) are the degree heterogeneity and membership

matrices corresponding to the community structure for p nodes

and L layers, respectively.

4) Gaussian Higher-Order Clustering: Datasets in various

fields such as medical image, genetics, and computer science

are formulated as Gaussian tensors. One typical example is the

multitissue gene expression dataset, which records different

gene expressions in different individuals and different tissues.

The dataset, denoted as Y ∈ R
p×n×t, consists of the expres-

sion data for p genes of n individuals in t tissues.

Assume that there exist r1, r2, r3 disjoint clusters for p
genes, n individuals, and t tissues, respectively. We apply the

general asymmetric dTBM model (1)

EY = S ×1 Θ1M1 ×2 Θ2M2 ×3 Θ3M3,

where {(θk,Mk)}3k=1 represents the degree heterogeneity and

membership for genes, individuals, and tissues.

Remark 1 (Comparison With Nondegree Models): Our

dTBM uses fewer block parameters than TBM. In particular,

every nondegree r1-block tensor can be represented by a

degree-corrected r2-block tensor with r2 ≤ r1. In particular,

there exist tensors with r1 = p but r2 = 1, so the reduction

in model complexity can be dramatic from p to 1. This fact

highlights the benefits of introducing degree heterogeneity in

higher-order clustering tasks.

C. Identifiability Under Angle Gap Condition

The goal of clustering is to estimate the partition func-
tion z from model (1). For ease of notation, we focus on
symmetric tensors; the extension to asymmetric tensors are
similar. We use P to denote the following parameter space
for (z,S,θ),

P =

{

(z,S,θ) : θ ∈ R
p
+,

c1p

r
≤ |z−1(a)| ≤ c2p

r
,

c3 ≤ ∥Mat(S)a:∥ ≤ c4,
∥
∥θz−1(a)

∥
∥

1
= |z−1(a)|, a ∈ [r]

}

(2)

where ci > 0’s are universal constants. We briefly describe the

rationale of the constraints in (2). First, the entrywise positivity

constraint on θ ∈ R
p
+ is imposed to avoid sign ambiguity

between entries in θz−1(a) and S. This constraint allows

the trigonometric cos to describe the angle similarity in the

Assumption 1 below and Sub-algorithm 2 in Section IV. Note

that the positivity constraint can be achieved without sacrific-

ing model flexibility, by using a slightly larger dimension of S
in the factorization (1); see Example 1 below. Second, recall

that the quantity |z−1(a)| denotes the number of nodes in the

a-th community. The constants c1, c2 in the |z−1(a)| bounds

assume the roughly balanced size across r communities. Third,

the constant c3 requires that all slides in S have nondegenerate

norm. Particularly, the lower bound c3 excludes the purely

zero slide to avoid trivial nonidentifiability of model (1); see

Example 2 below. The upper bound c4 is a technical constraint

to avoid the slides with diverging norm as dimension grows.

Lastly, the ℓ1 normalization ∥θz−1(a)∥1 = |z−1(a)| is imposed

to avoid the scalar ambiguity between θz−1(a) and S. This

constraint, again, incurs no restriction to model flexibility but

makes our presentation cleaner. Our constraints in P are mild

compared with previous literature; see Table II for comparison.
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Example 1 (Positivity of Degree Parameters): Here we

provide an example to show the positivity constraint

on θ incurs no loss on the model flexibility. Consider

an order-3 dTBM with core tensor S = 1 and degree

θ = (1, 1,−1,−1)T . We have the mean tensor

X = S ×1 ΘM ×2 ΘM ×3 ΘM ,

where Θ = diag(θ) and M = (1, 1, 1, 1)T . Note that X ∈
R

4×4×4 is a 1-block tensor with mixed-signed degree θ, and

the mode-3 slices of X are

X::1 = X::2 = −X::3 = −X::4 =









1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1









.

Now, instead of original decomposition, we encode X as

a 2-block tensor with positive-signed degree. Specifically,

we write

X = S ′ ×1 Θ
′M ′ ×2 Θ

′M ′ ×3 Θ
′M ′,

where Θ
′ = diag(θ′) = diag(1, 1, 1, 1), the core tensor S ′ ∈

R
2×2×2 has following mode-3 slices, and the membership

matrix M ′ ∈ {0, 1}4×2 defines the clustering z′ : [4] → [2];
i.e.,

S ′::1 = −S ′::2 =

[

1 −1
−1 1

]

, M ′ =









1 0
1 0
0 1
0 1









.

The triplet (z′,S ′,θ′) lies in our parameter space (2). In gen-

eral, we can always reparameterize an r-block tensor with

mixed-signed degree using a 2r-block tensor with positive-

signed degree. Since we assume r = O(1) throughout the

paper, the splitting does not affect the error rates of our

interest.

Example 2 (Nonidentifiability With Purely Zero Core Slice):

Consider an order-2 dTBM with core tensor S =

(

0 0
1 −1

)

degree matrices Θ1 = Θ2 = diag(1, 1, 1, 1), and mean tensor

X = Θ1MSMT
Θ2, with M =









1 0
1 0
0 1
0 1









.

Replacing Θ1 by Θ
′
1 = (3/2, 1/2, 1, 1) leads to the same

mean tensor X .

We now provide the identifiability conditions for our model

before estimation procedures. When r = 1, the decomposi-

tion (1) is always unique (up to cluster label permutation) in P ,

because dTBM is equivalent to the rank-1 tensor family under

this case. When r ≥ 2, the Tucker rank of signal tensor EY
in (1) is bounded by, but not necessarily equal to, the number

of blocks r [10]. Therefore, one can not apply the classical

identifiability conditions for low-rank tensors to dTBM. Here,

we introduce a key separation condition on the core tensor.

Assumption 1 (Angle Gap): Let S = Mat(S). Assume that

the minimal gap between normalized rows of S is bounded

away from zero; i.e.,

∆min := min
a̸=b∈[r]

∥

∥

∥

∥

Sa:

∥Sa:∥
− Sb:

∥Sb:∥

∥

∥

∥

∥

> 0, for r ≥ 2. (3)

We make the convention ∆min = 1 for r = 1. Equivalently,

(3) says that none of the two rows in S are parallel; i.e.,

maxa̸=b∈[r] cos (Sa:, Sb:) = 1 − ∆2
min/2 < 1. The quan-

tity ∆min characterizes the nonredundancy among clusters

measured by angle separation. The denominators involved in

definition (3) are well posed because of the lower bound on

∥Sa:∥ in (2).

Our first main result is the following theorem showing the

sufficiency and necessity of the angle gap separation condition

for the parameter identifiability under dTBM.

Theorem 1 (Model Identifiability): Consider the dTBM

with r ≥ 2 and K ≥ 2. The parameterization (1) is

unique in P up to cluster label permutations, if and only if

Assumption 1 holds.

The identifiability guarantee for the dTBM is stronger than

classical Tucker model. In the Tucker model, the factor matrix

M is identifiable only up to orthogonal rotations. In contrast,

our model does not suffer from rotational invariance. As we

will show in Section IV, each column of the membership

matrix M can be precisely recovered under our algorithm.

This property benefits the interpretation of dTBM in practice.

III. STATISTICAL-COMPUTATIONAL CRITICAL VALUES

FOR HIGHER-ORDER TENSORS

A. Assumptions

We propose the signal-to-noise ratio (SNR),

SNR := ∆2
min/σ2 = pγ , (4)

with varying γ ∈ R that quantifies different regimes of

interest. We call γ the signal exponent. Intuitively, a larger

SNR, or equivalently a larger γ, benefits the clustering in the

presence of noise. With quantification (4), we consider the

following parameter space,

P(γ) = P ∩ {S satisfies SNR condition (4) with γ}. (5)

The 1-block dTBM does not belong to the space P(γ) when

γ < 0, due to the convention in Assumption 1. Our goal is to

characterize the clustering accuracy with respect to γ under

the space P(γ).
In our algorithmic development, we often refer to the

regime of balanced degree heterogeneity. We call the degree

θ balanced if

min
a∈[r]
∥θz−1(a)∥ = (1 + o(1)) max

a∈[r]
∥θz−1(a)∥. (6)

The following lemma provides the rationale of balanced degree

assumption. We show the close relation between angle gaps

in the mean tensor X and the core tensor S under balanced

degree heterogeneity.

Lemma 1 (Angle Gaps in X and S): Consider the dTBM

model (1) under the parameter space P in (2) with r ≥ 2.

Suppose θ is balanced satisfying (6) and mini∈[p] θ(i) ≥ c
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TABLE II

PARAMETER SPACE COMPARISON BETWEEN PREVIOUS WORK WITH OUR ASSUMPTION

from some constant c > 0. Then, as p→∞, for all i, j such

that z(i) ̸= z(j), we have

cos(Xi:,Xj:) ≍ cos(Sz(i):,Sz(j):),

where X = Mat(X ) and S = Mat(S).
In practice, an estimation algorithm has access to a noisy

version of X but not S. Our goal is to establish the algorithm

performance with respect to the signal ∆2
min in the core

tensor. By Lemma 1, the mapping from the core tensor Sz(i):

to the mean tensor Xz(i): preserves the angle information

∆2
min under balanced degree heterogeneity (6). Therefore, the

balanced degree assumption helps to exclude the cases in

which the degree heterogeneity distorts the algorithm guar-

antees.

Here, we provide an example to illustrate the insufficiency

of ∆2
min in the absence of balanced degrees.

Example 3 (Insufficiency of ∆2
min in the Absence of Bal-

anced Degrees): Consider an order-2 (p, p)-dimensional

dTBM with core matrix

S =

(

1 a
1 −a

)

, (7)

and θ such that ∥θz−1(1)∥2 = pm∥θz−1(2)∥2, where m ∈
[−1, 1] is a scalar parameter controlling the skewness of

degrees. Let ∆2
X denote the minimal angle gap of the mean

tensor, defined by

∆2
X := min

i,j∈[p],z(i) ̸=z(j)

∥

∥

∥

∥

Xi:

∥Xi:∥
− Xj:

∥Xj:∥

∥

∥

∥

∥

, (8)

where X = Mat(X ). Take a = p−1/4 in the model setup (7).

We have

∆2
min =

2a2

1 + a2
≍ p−1/2,

∆2
X =

2∥θz−1(2)∥2a2

∥θz−1(1)∥2 + ∥θz−1(2)∥2a2
≍ p−1/2−m.

Based on the Theorem 2 in Section III, the dTBM is impossi-

ble to solve when ∆2
X ≲ p−1 even though ∆2

min ≍ p−1/2; that

is, the dTBM estimation depends on the relative magnitude of

m vs. 1/2. In such a setting, the proposed signal notion ∆2
min

alone fails to fully characterize dTBM.

Remark 2 (Flexibility in Balanced Degree Assumption):

One important note is that our balance assumption (6) does

not preclude the mild degree heterogeneity. In fact, within

each of the clusters, we allow the highest degree at the order

O(p), whereas the lowest degree at the order Ω(1). This

range is more relaxed than previous work [15] that restricts

the highest degree in the sublinear regime o(p) and the lowest

degree at the order Ω(1).

Remark 3 (Similar Assumptions in Literature): Similar

degree regulations are not rare in literature. In higher-order

tensor model [9], the degree assumption maxa∈[r]∥θz−1(a)∥ ≤
C mina∈[r]∥θz−1(a)∥ is made to ensure degree balance across

communities. In [15], the degree distribution is restricted to
1

|z−1(a)|
∑

i∈z−1(a) θi = 1 + o(1) for all communities.

Last, let ẑ and z be the estimated and true clustering

functions in the family (2). Define the misclustering error by

ℓ(ẑ, z) =
1

p
min
π∈Π

∑

i∈[p]

1{ẑ(i) ̸= π ◦ z(i)},

where π : [r] 7→ [r] is a permutation of cluster labels, ◦ denotes

the composition operation, and Π denotes the collection of

all possible permutations. The infimum over all permutations

accounts for the ambiguity in cluster label permutation.

In Sections III-B and III-C, we provide the phase transition

of ℓ(ẑ, z) for general Gaussian dTBMs (1) without symmet-

ric assumptions. For general (asymmetric) Gaussian dTBMs,

we assume Gaussian noise E(i1, . . . , iK)
i.i.d.∼ N(0, σ2), and we

extend the parameter space (2) to allow K clustering functions

{zk}k∈[K], one for each mode. For notational simplicity,

we still use z and P(γ) for this general (asymmetric) model.

All results should be interpreted as the worst-case results

across K modes.

B. Statistical Critical Value

The statistical critical value means the SNR required for

solving dTBMs with unlimited computational cost. Our fol-

lowing result shows the minimax lower bound for exact recov-

ery and the matching upper bound for maximum likelihood

estimator (MLE). We consider the Gaussian MLE, denoted as

(ẑMLE, ŜMLE, θ̂MLE), over the estimation space P , where

(ẑMLE, ŜMLE, θ̂MLE) = arg min
(z,S,θ)∈P

∥Y − X (z,S,θ)∥2F . (9)

Theorem 2 (Statistical Critical Value): Consider general

Gaussian dTBMs with parameter space P(γ) and K ≥ 2.

Then, we have the following statistical phase transition.

• Impossibility. Assume p → ∞ and 2 ≤ r ≲ p1/3. Let

PS(γ) := {S : c3 ≤ ∥Mat(S)a:∥ ≤ c4, a ∈ [r]} ∩ {S :
∆2

min = pγ} denote the space for valid S satisfying SNR

condition (4), and Pz,θ := {θ ∈ R
p
+, c1p

r ≤ |z−1(a)| ≤
c2p
r ,
∥

∥θz−1(a)

∥

∥

1
= |z−1(a)|, a ∈ [r]} denote the space

for valid (z,θ), where c1, c2, c3, c4 are the constants in

parameter space (2). If the signal exponent satisfies γ <
−(K − 1), then, for any true core tensor S ∈ PS(γ),
no estimator ẑstat achieves exact recovery in expectation;
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that is, when γ < −(K − 1), we have

lim inf
p→∞

inf
S∈PS(γ)

inf
ẑstat

sup
(z,θ)∈Pz,θ

E [pℓ(ẑstat, z)] ≥ 1. (10)

Further, we define the parameter space P ′(γ′) := P ∩
{∆2

X = pγ′}, where ∆2
X is the mean tensor minimal gap

in (8). When γ′ < −(K − 1), we have

lim inf
p→∞

inf
ẑstat

sup
(z,S,θ)∈P′(γ′)

E [pℓ(ẑstat, z)] ≥ 1.

• MLE achievability. Suppose that the signal exponent

satisfies γ > −(K − 1) + c0 for an arbitrary constant

c0 > 0. Furthermore, assume that θ is balanced and

mini∈[p] θ(i) ≥ c from some constant c > 0. Then, when

p → ∞, for fixed r ≥ 1, the MLE in (9) achieves exact

recovery in high probability; that is,

ℓ(ẑMLE, z) ≲ SNR−1 exp

(

−pK−1SNR

rK−1

)

→ 0,

with probability going to 1.

The proofs for the two parts in Theorem 2 are in the

Appendices B-D and B-G, respectively. The first part of Theo-

rem 2 demonstrates impossibility of exact recovery whenever

the core tensor S satisfies SNR condition (4) with exponent

γ < −(K − 1). The proof is information-theoretical, and

therefore the results apply to all statistical estimators, including

but not limited to MLE and trace maximization [6]. The

minimax bound (10) indicates the worst case impossibility for

a particular core tensor S with signal exponent γ < −(K−1);
i.e., under the assumptions of Theorem 2, when γ < −(K−1),
we have

lim inf
p→∞

inf
ẑstat

sup
(z,S,θ)∈P(γ)

E [pℓ(ẑstat, z)] ≥ 1.

Such worst case impossibility is studied in related works [13],

[15] while our lower bound (10) provides a stronger impossi-

bility statement for arbitrary core tensors with weak signals.

The second part of Theorem 2 shows the exact recovery of

MLE when γ > −(K − 1) + c0 for an arbitrary constant

c0 > 0. Combining the impossibility and achievability results,

we conclude that the boundary γstat := −(K−1) is the critical

value for statistical performance of dTBM with respect to our

SNR.

C. Computational Critical Value

The computational critical value means the minimal SNR

required for exact recovery with polynomial-time computa-

tional cost. An important ingredient to establish the computa-

tional limits is the hypergraphic planted clique (HPC) conjec-

ture [23], [24]. The HPC conjecture indicates the impossibility

of fully recovering the planted cliques with polynomial-time

algorithm when the clique size is less than the number of ver-

tices in the hypergraph. The formal statement of HPC detection

conjecture is provided in Definition 1 and Conjecture 1 as

follows.

Definition 1 (Hypergraphic Planted Clique (HPC) Detec-

tion):Consider an order-K hypergraph H = (V,E) where

V = [p] collects vertices and E collects all the order-K
edges. Let Hk(p, 1/2) denote the Erdős-Rényi K-hypergraph

where the edge (i1, . . . , iK) belongs to E with probability

1/2. Further, we let HK(p, 1/2, κ) denote the hyhpergraph

with planted cliques of size κ. Specifically, we generate a

hypergraph from Hk(p, 1/2), pick κ vertices uniformly from

[p], denoted K, and then connect all the hyperedges with

vertices in K. Note that the clique size κ can be a function of

p, denoted κp. The order-K HPC detection aims to identify

whether there exists a planted clique hidden in an Erdős-

Rényi K-hypergraph. The HPC detection is formulated as the

following hypothesis testing problem

H0 : H∼ HK(p, 1/2) versus H1 : H ∼ HK(p, 1/2, κp).

Conjecture 1 (HPC Conjecture): Consider the HPC detec-

tion problem in Definition 1 with K ≥ 2. Suppose the

sequence {κp} such that lim supp→∞ log κp/ log
√

p ≤ (1−τ)
for any τ > 0. Then, for every sequence of polynomial-time

test {φp} : H 7→ {0, 1} we have

lim inf
p!→∞

PH0 (φp(H) = 1)+PH1 (φp(H) = 0) >
1

2
.

Under the HPC conjecture, we establish the SNR lower

bound that is necessary for any polynomial-time estimator to

achieve exact clustering.

Theorem 3 (Computational Critical Value): Consider gen-

eral Gaussian dTBMs under the parameter space P with

K ≥ 2. Then, we have the following computational phase

transition.

• Impossibility. Assume HPC conjecture holds and r ≥
2. If the signal exponent satisfies γ < −K/2, then,

no polynomial-time estimator ẑcomp achieves exact recov-

ery in expectation as p → ∞; that is, when γ < −K/2,

we have

lim inf
p→∞

sup
(z,S,θ)∈P(γ)

E [pℓ(ẑcomp, z)] ≥ 1.

• Polynomial-time algorithm achievability. Suppose that

we have fixed r ≥ 1, and the signal exponent satisfies

γ > −K/2 + c0 for an arbitrary constant c0 > 0.

Furthermore, assume that the degree θ is balanced, lower

bounded in that mini∈[p] θi ≥ c for some constant c > 0,

and satisfies the locally linear stability in Definition 2 in

the neighborhood N (z, ε) for all ε ≤ E0 and some E0 ≳

log−1 p. Then, as p→∞, there exists a polynomial-time

algorithm ẑploy that achieves exact recovery in high prob-

ability; that is,

ℓ(ẑpoly, z) ≲ SNR−1 exp

(

−pK−1SNR

rK−1

)

→ 0,

with probability going to 1.

The proofs for the two parts in Theorem 3 are in the

Appendices B-E and B-G, respectively. The first part of

Theorem 3 indicates the impossibility of exact recovery by

polynomial-time algorithms when γ < −K/2, and the sec-

ond part shows the existence of such algorithm when γ >
−K/2 + c0 for an arbitrary constant c0 > 0 under extra

technical assumptions. In Section IV, we will present an
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Fig. 3. Illustration of our global-to-local algorithm.

efficient polynomial-time algorithm in this setting. Therefore,

we conclude that γcomp := −K/2 is the critical value for

computational performance of dTBM with respect to our SNR.

Remark 4 (Statistical-Computational Gaps): Now, we have

established the phase transition of exact clustering under order-

K dTBM by combining Theorems 2 and 3. Fig. 2 summarizes

our results of critical SNRs when K ≥ 2. In the weak SNR

region γ < −(K − 1), no statistical estimator succeeds in

degree-corrected higher-order clustering. In the strong SNR

region γ > −K/2, our proposed algorithm precisely recovers

the clustering in polynomial time. In the moderate SNR

regime, −(K − 1) ≤ γ ≤ −K/2, the degree-corrected

clustering problem is statistically easy but computationally

hard. Particularly, dTBM reduces to matrix degree-corrected

model when K = 2, and the statistical and computational

bounds show the same critical value. When K = 1, dTBM

reduces to the degree-corrected sub-Gaussian mixture model

(GMM) with model

Y = ΘMS + E,

where Y ∈ R
p×d collects n data points in R

d, S ∈ R
r×d

collects the d-dimensional centroids for r clusters, and Θ ∈
R

p×p,M ∈ {0, 1}p×r,E ∈ R
p×d have the same meaning as

in dTBM. [25] implies that polynomial-time algorithms are

able to achieve the statistical minimax lower bound in GMM.

Therefore, we conclude that the statistical-computational gap

emerges only for higher-order tensors with K ≥ 3. The

result reveals the intrinsic distinctions among (vector) one-

dimensional clustering, (matrix) biclustering, and (tensor)

higher-order clustering.

IV. POLYNOMIAL-TIME ALGORITHM UNDER MILD SNR

In this section, we present an efficient polynomial-time

clustering algorithm under mild SNR. The procedure takes a

global-to-local approach. See Fig. 3 for illustration. The global

step finds the basin of attraction with polynomial misclustering

error, whereas the local iterations improve the initial clustering

to exact recovery. Both steps are critical to obtain a satisfactory

algorithm output. In what follows, we first use the symmetric

tensor as a working example to describe the algorithm pro-

cedures to gain insight. Our theoretical analysis focuses on

dTBMs with symmetric mean tensor and independent sub-

Gaussian noises such as Gaussian and uniform observations.

The extensions for Bernoulli observations and other practical

issues are in Sections IV-C and IV-D.

To construct algorithm guarantees, we introduce the mis-

clustering loss between an estimator ẑ and the true z:

L(ẑ, z) =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1 {ẑ(i) = b}

·
∥

∥

[

Sz(i):

]s − [Sb:]
s∥
∥

2
, (11)

where the superscript ·s denotes the normalized vector; i.e.,

as := a/ ∥a∥ if a ̸= 0 and as = 0 if a = 0 for any vector a.

The following lemma indicates the close relationship between

the loss L(ẑ, z) and error ℓ(ẑ, z). The loss L(ẑ, z) serves as

an important intermediate quantity to control the misclustering

error.

Lemma 2 (Relationship Between Misclustering Error and

Loss): Consider the dTBM under the parameter space P .

Suppose mini∈[p] θ(i) > c for some constant c > 0. We have

ℓ(ẑ, z)∆2
min ≤ L(ẑ, z).

A. Weighted Higher-Order Initialization

We start with weighted higher-order clustering algorithm as

initialization. We take an order-3 tensor and the clustering on

the first mode as illustration for insight. Consider noiseless

case with X = EY and X = Mat(X ). By model (1), for all

i ∈ [p], we have

θ(i)−1Xi: = [Mat(S ×2 ΘM ×3 ΘM)]z(i): .

This implies that, all node i belonging to the a-th community

(i.e., z(i) = a) share the same normalized mean vector

θ(i)−1Xi:, and vice versa. Intuitively, one can apply k-means

clustering to the vectors {θ(i)−1Xi:}i∈[p], which leads to main

idea of our Sub-algorithm 1.

Specifically, our initialization consists of the denoising step

and the clustering step. The denoising step (lines 1-2 in Sub-

algorithm 1) estimates X from Y by a double projection

spectral method. The first projection performs HOSVD [21]

via Upre,k = SVDr (Matk(Y)) , k ∈ [3], where SVDr(·)
returns the top-r left singular vectors. The second projection

performs HOSVD on the projected Y onto the multilinear

Kronecker space Upre,k ⊗Upre,k; i.e.,

Û1 = SVDr

(

Mat1
(

Y ×2 Upre,2U
T
pre,2 ×3 Upre,3U

T
pre,3

))

.

and similar for Û2, Û3. The final denoised tensor X̂ is defined

by

X̂ = Y ×1 Û1Û
T
1 ×2 Û2Û

T
2 ×3 Û3Û

T
3 .

The double projection improves usual matrix spectral methods

in order to alleviate the noise effects for K ≥ 3 [13].

The clustering step (lines 3-5 in Sub-algorithm 1) performs

the weighted k-means clustering. We write X̂ = Mat1(X̂ ),
and normalize the rows into X̂s

i: = ∥X̂i:∥−1X̂i: as a surrogate

of θ(i)−1Xi:. Then, a weighted k-means clustering is per-

formed on the normalized rows with weights equal to ∥X̂i:∥2.

The choice of weights is to bound the k-means objective

function by the Frobenius-norm accuracy of X̂ . Unlike exist-

ing clustering algorithm [9], we apply the clustering on the

unfolded tensor X̂ rather than on the factors Ûk. This strategy

relaxes the singular-value gap condition [13], [15]. We assign
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degenerate rows with purely zero entries to an arbitrarily

random cluster; these nodes are negligible in high-dimensions

because of the lower bound on ∥Mat(S)a:∥ in (2). The final

result gives the initial cluster assignment z(0). Full procedures

for clustering are provided in Sub-algorithm 1.

We now establish the misclustering error rate of initializa-

tion.

Theorem 4 (Error for Weighted Higher-Order Initialization):

Consider the general sub-Gaussian dTBM with fixed r ≥ 1,

K ≥ 2, i.i.d. noise under the parameter space P , and

Assumption 1. Assume mini∈[p] θ(i) ≥ c for some constant

c > 0. Let ∆X denote the minimal gap in mean tensor defined

in (8), and let z
(0)
k denote the output of Sub-algorithm 1.

With probability going to 1, as p→∞, we have

ℓ(z
(0)
k , z) ≲

σ2rKp−K/2

∆2
X

.

Further, assume that θ is balanced as (6). We have

ℓ(z
(0)
k , z) ≲

rKp−K/2

SNR
and L(z

(0)
k , z) ≲ σ2rKp−K/2, (12)

with probability going to 1 as p→∞.

Remark 5 (Comparison to Previous Results): For fixed

SNR, our initialization error rate with K = 2 agrees with

the initialization error rate O(p−1) in matrix models [15].

Furthermore, in the special case of nondegree TBMs with

θ = 1p, we achieve the same initial misclustering error

O(p−K/2) as in nondegree models [13]. Theorem 4 implies

the advantage of our algorithm in achieving both accuracy

and model flexibility.

Remark 6 (Failure of Conventional Tensor HOSVD): If

we use conventional HOSVD for tensor denoising; that is,

we use Upre,k in place of Ûk in line 2, then the misclustering

rate becomes O(p−1) for all K ≥ 2. This rate is substantially

worse than our current rate (12).

Remark 7 (Singular-Value Gap-Free Clustering): Note

that our clustering directly applies to the estimated mean

tensor X̂ rather than the leading tensor factors Ûk.

Applying clustering to the tensor factors suffers from the

nonidentifiability issue due to the infinitely many orthogonal

rotations when the number of blocks r ≥ 3 in the absence

of singular-value gaps. Such ambiguity causes the trouble

for effective clustering [26]. In contrast, our initialization

algorithm applies the clustering to the overall mean tensor X̂ .

This strategy avoids the nonidentifiability issue regardless of

the number of blocks and singular-value gaps.

B. Angle-Based Iteration

Our Theorem 4 has shown the polynomially decaying error

rate from our initialization. Now we improve the error rate

to exponential decay using local iterations. We propose an

angle-based local iteration to improve the outputs from Sub-

algorithm 1. To gain the intuition, consider an one-dimensional

degree-corrected clustering problem with data vectors xi =
θ(i)sz(i) + ϵi, i ∈ [p], where si’s are known cluster centroids,

θ(i)’s are unknown positive degrees, and z : [p] 7→ [r] is

the cluster assignment of interest. The angle-based k-means

algorithm estimates the assignment z by minimizing the angle

between data vectors and centroids; i.e.,

z(i) = arg max
a∈[r]

cos(xi, sa), for all i ∈ [p]. (13)

The classical Euclidean-distance based clustering [13] fails

to recover z in the presence of degree heterogeneity, even

under noiseless case. In contrast, the proposed angle-based

k-means algorithm achieves accurate recovery without the

explicit estimation of θ.

Our Sub-algorithm 2 shares the same spirit as in the angle-

based k-means. We still take the order-3 tensor for illustration.

Specifically, Sub-algorithm 2 updates estimated core tensor

and cluster assignment in each iteration. We use superscript

·(t) to denote the estimate from the t-th iteration, where t =
1, 2, . . . . For core tensor, we consider the following update

strategy

S(t)(a1, a2, a3) = Ave{Y(i1, i2, i3) : z
(t)
k (ik) = ak, k ∈ [3]}.

Intuitively, S(t) becomes closer to the true core S as z
(t)
k is

more precise. For cluster assignment, we first aggregate the

slices of Y and obtain the reduced tensor Yd
1 ∈ R

p×r×r on

the first mode with given z
(t)
k , where

Yd
1(i, a2, a3) = Ave{Y(i, i2, i3) : z

(t)
k (ik) = ak, k ̸= 1}.

Similarly, we also obtain Yd
2 ,Yd

3 . We use Y d
k and S

(t)
k to

denote the Matk(Yd) and Matk(S(t)). The rows Y d
k,i: and

S
(t)
k,a: correspond to the xi and sa in the one-dimensional

clustering (13). Then, we obtain the updated assignment by

zk(i)(t+1) = arg max
a∈[r]

cos
(

Y d
k,i:,S

(t)
k,a:

)

, for all i ∈ [p],

provided that S
(t)
k,a: is a nonzero vector. Otherwise, if S

(t)
k,a: is

a zero vector, then we make the convention to assign z
(t+1)
k (i)

randomly in [r]. Full procedures for our angle-based iteration

are described in Sub-algorithm 2.

We now establish the misclustering error rate of iterations

under the stability assumption.

Definition 2 (Locally Linear Stability): Define the ε-

neighborhood of z by N (z, ϵ) = {z̄ : ℓ(z̄, z) ≤ ϵ}. Let

z̄ : [p] → [r] be a clustering function. We define two vectors

associated with z̄,

p(z̄) = (|z̄−1(1)|, . . . , |z̄−1(r)|)T ,

pθ(z̄) = (∥θz̄−1(1)∥1, . . . , ∥θz̄−1(r)∥1)T .

We call the degree is ε-locally linearly stable if and only if

sin(p(z̄), pθ(z̄)) ≲ ε∆min, for all z̄ ∈ N (z, ε). (14)

Roughly speaking, the vector p(z̄) represents the raw cluster

sizes, and pθ(z̄) represents the relative cluster sizes weighted

by degrees. The local stability holds trivially for ε = 0 based

on the construction of parameter space (2). The condition (14)

controls the impact of node degree to the pθ(·) with respect

to the misclustering rate ε and angle gap. Intuitively, the

condition (14) controls the skewness of degree so that the

angle between raw cluster size and degree-weighted cluster
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Algorithm 1 Multiway Spherical Clustering for Degree-Corrected Tensor Block Model

Sub-algorithm 1: Weighted higher-order initialization

Input: Observation Y ∈ R
p×···×p, cluster number r, relaxation factor η > 1 in k-means clustering.

1: Compute factor matrices Upre,k = SVDr(Matk(Y)), k ∈ [K] and the (K − 1)-mode projections

Xpre,k = Y ×1 Upre,1U
T
pre,1 ×2 · · · ×k−1 Upre,k−1U

T
pre,k−1 ×k+1 Upre,k+1U

T
pre,k+1 ×k+2 · · · ×K Upre,KUT

pre,K .

2: Compute factor matrices Ûk = SVDr(Matk(Xpre,k)), k ∈ [K] and the denoised tensor

X̂ = Y ×1 Û1Û
T
1 ×2 · · · ×K ÛKÛT

K .

3: for k ∈ [K] do

4: Let X̂ = Matk(X̂ ) and S0 = {i ∈ [p] : ∥X̂i:∥ = 0}. Set ẑ(i) randomly in [r] for i ∈ S0.

5: For all i ∈ Sc
0, compute normalized rows X̂s

i: := ∥X̂i:∥−1X̂i:.
6: Solve the clustering ẑk : [p]→ [r] and centroids {x̂j}j∈[r] using weighted k-means, such that

∑

i∈Sc
0

∥X̂i:∥2∥X̂s
i: − x̂ẑk(i)∥2 ≤ η min

x̄j ,j∈[r],z̄k(i),i∈Sc
0

∑

i∈Sc

∥X̂i:∥2∥X̂s
i: − x̄z̄k(i)∥2.

7: end for

Output: Initial clustering z
(0)
k ← ẑk, k ∈ [K].

Sub-algorithm 2: Angle-based iteration

Input: Observation Y ∈ R
p×···×p, initialization z

(0)
k : [p]→ [r], k ∈ [K] from Sub-algorithm 1, iteration number T .

8: for t = 0 to T − 1 do

9: Update the block tensor S(t) via S(t)(a1, . . . , aK) = Ave{Y(i1, . . . , iK) : z
(t)
k (ik) = ak, k ∈ [K]}.

10: for k ∈ [K] do

11: Calculate the reduced tensor Yd
k ∈ R

r×···×r×p×r×···×r via

Yd
k(a1, . . . , ak−1, i, ak+1, . . . , aK) = Ave{Y(i1, . . . , ik−1, i, ik+1, . . . , iK) : z(t)(ij) = aj , j ̸= k}

12: Let Y d
k = Matk(Yd) and J0 = {i ∈ [p] :

∥

∥Y d
i:

∥

∥ = 0}. Set z
(t+1)
k (i) randomly in [r] for i ∈ J0.

13: Let S
(t)
k = Matk(S(t)). For all i ∈ Jc

0 , update the cluster assignment by

z(i)
(t+1)
k = arg max

a∈[r]

cos
(

Y d
k,i:, S

(t)
k,a:

)

.

14: end for

15: end for

Output: Estimated clustering z
(T )
k : [p] 7→ [r], k ∈ [K].

size is well controlled. The stability assumption is proposed

for technical convenience, and we relax this condition in

numerical studies; see Section VI.

Theorem 5 (Error for Angle-Based Iteration): Consider

the general sub-Gaussian dTBM with fixed r ≥ 1, K ≥ 2,

independent noise under the parameter space P , and

Assumption 1. Assume that the locally linear stability of

degree holds in the neighborhood N (z, ε) for all ε ≤ E0 and

some E0 ≳ log−1 p. Let {z(0)
k }Kk=1 be the initialization for

Sub-algorithm 2 and z
(t)
k be the t-th iteration output on the

k-th mode. Suppose mini∈[p] θ(i) ≥ c for some constant

c > 0, the SNR ≥ C̃p−(K−1) log p for some sufficiently large

positive constant C̃, and the initialization satisfies

L(z
(0)
k , z) ≲

∆2
min

r log p
, k ∈ [K].

With probability going to 1 as p → ∞, there exists a
contraction parameter ρ ∈ (0, 1) such that

ℓ(z, ẑ
(t+1)
k ) ≲ SNR−1 exp

(

− pK−1SNR

rK−1

)

︸ ︷︷ ︸

statistical error

+ ρtℓ(z, z
(0)
k ).

︸ ︷︷ ︸

computational error

(15)

From the conclusion (15), we find that the iteration error is

decomposed into two parts: statistical error and computational

error. The statistical error is unavoidable with noisy data

regardless t, whereas the computational error decays in an

exponential rate as the number of iterations t→∞.

Corollary 1 (Exact Recovery of dTBM With Weighted

Higher-Order Initialization): Let the initialization {z(0)
k }Kk=1

be the output from Sub-algorithm 1. Assume SNR ≳

p−K/2 log p. Combining all parameter assumptions and the

results in Theorems 4 and 5, with probability going to 1 as

p → ∞, our estimate z
(T )
k achieves exact recovery within
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polynomial iterations; more precisely,

z
(T )
k = πk ◦ z, for all T ≳ log1/ρ p and k ∈ [K].

for some permutation πk ∈ Π.

Therefore, our combined algorithm is computationally effi-

cient as long as SNR ≳ p−K/2 log p. Note that, ignoring

the logarithmic term, the minimal SNR requirement, p−K/2,

coincides with the computational critical value in Theorem 3.

Therefore, our algorithm is optimal regarding the signal

requirement and lies in the sharpest computationally efficient

regime in Fig. 2.

C. Extension to Bernoulli Observations

Bernoulli or network observations are common in multiple

fields. Our iteration Theorem 5 holds for Bernoulli models,

but our initialization Theorem 4 does not. Moreover, our

current dTBM is insufficient to address sparsity with decaying

mean tensor. Here, we provide extra discussions for Bernoulli

initialization and strategies under sparse settings.

• Extension to dense binary dTBMs. The main difficulty

to establish initialization guarantees for Bernoulli obser-

vations lies in the denoising step (lines 1-2 in Sub-

algorithm 1). We now provide a high-level explanation

for the technical difficulty when applying Theorem 4 to

Bernoulli observations.

The derivation of Theorem 4 relies on the upper bound

of the estimation error for the mean tensor in Lemma 7;

i.e., with high probability

∥X̂ − X∥2F ≲ pK/2, (16)

where X = EY and X̂ is defined in Step 2 of Sub-

algorithm 1. Unfortunately, the inequality (16) holds

only for i.i.d. sub-Gaussian observations, while Bernoulli

observations are generally not identically distributed.

One possible remedy is to apply singular value decompo-

sition to the square unfolding [27], Matsq(·), of Bernoulli

tensor Y ∈ {0, 1}p1×···×pK . Specifically, the square

matricization Matsq(Y) ∈ {0, 1}p⌊K/2⌋×p⌈K/2⌉

has entries

[Matsq(Y)](j1, j2) = Y(i1, . . . , iK), where

j1 = i1+p1(i2 − 1) + · · ·+p1 · · · p⌊K/2⌋−1(i⌊K/2⌋ − 1),

j2 = i⌈K/2⌉+p⌈K/2⌉(i⌈K/2⌉+1 − 1) + · · ·
+ p⌈K/2⌉ · pK−1(iK − 1).

The matrix Matsq(Y) is asymmetric. We interpret

Matsq(Y) as the adjacency matrix for a bipartite net-

work with connections between two groups of nodes.

The two groups of nodes in the bipartite network have

p1 · · · p⌊K/2⌋ and p⌈K/2⌉ · · · pK nodes, respectively. The

entry [Matsq(Y)](j1, j2) refers to the presence of con-

nection between the nodes indexed by combinations

(i1, . . . , i⌊K/2⌋) and (i⌈K/2⌉, . . . , iK). We summarize the

procedure in Algorithm 2.

Proposition 1 (Error for Bernoulli Initialization):

Consider the Bernoulli dTBM in the parameter space P
with fixed r ≥ 1, K ≥ 2. Assume that Assumption 1

holds, θ is balanced, and mini∈[p] θ(i) ≥ c for some

Algorithm 2 Weighted Higher-Order Initialization for

Bernoulli Observation

Input: Bernoulli tensor Y ∈ {0, 1}p×···×p, cluster number r,

relaxation factor η > 1 in k-means clustering.

1: Let the matrix Matsq(Y) ∈ {0, 1}p⌊K/2⌋×p⌈K/2⌉

denote the
nearly square unfolded tensor. Compute the estimate X ′,
where

X̂ ′ = arg min
rank(Matsq(X ))≤r⌈K/2⌉

∥Matsq(X ) − Matsq(Y)∥2
F . (17)

2: Implement lines 3-5 of Sub-algorithm 1 with X̂ replaced

by X̂ ′ in (17).

Output: Initial clustering z
(0)
k ← ẑk, k ∈ [K].

constant c > 0. Let z
(0)
k denote the output of Algorithm 2.

With probability going to 1 as p→∞, we have

ℓ(z
(0)
k , zk)≲

rKp−⌊K/2⌋

SNR
, and L(z

(0)
k , zk)≲σ2rKp−⌊K/2⌋.

Remark 8 (Comparison with Gaussian model): The

Bernoulli bound O(p−⌊K/2⌋) in Proposition 1 is

relatively looser than the Gaussian bound O(p−K/2) in

Theorem 4. The gap between Bernoulli and Gaussian

error decreases as the order K increases. Nevertheless,

combining with angle iteration Sub-algorithm 2,

Bernoulli clustering still achieves exponential error

rate exp
(

−p(K−1)
)

at a price of a larger SNR. The

investigation of the gap between upper bound p−⌊K/2⌋

and the lower bound p−K/2 for Bernoulli tensors will be

left as future work. In numerical experiments, we will

use our original initialization, Sub-algorithm 1, to verify

the robustness to Bernoulli observations.

Remark 9 (Comparison With Previous Methods):

Previous work [9] develops a spectral clustering method

for Bernoulli dTBM. [9] adopts a different signal

notion based on the singular gap in the core tensor,

denoted as ∆singular. By [9, Theorem 1], the spectral

method achieves exact recovery with ∆singular ≳ p−1/2.

However, we are not able to infer the exact recovery

of spectral method by our angle-base SNR condition.

Consider an order-2 dTBM with p > 2, σ2 = 1,

θ = 1p, equal size assignment |z−1(a)| = p/r for all

a ∈ [r], and core matrix equal to the 2-dimensional

identity matrix S = I2. The singular gap under this

setting is ∆singular = min{λ1 − λ2, λ2} = 0, where

λ1 ≥ λ2 are singular values of S. In contrast, our angle

gap ∆2
min = 2 satisfies the SNR condition in Theorem 5.

Then, our algorithm achieves the exact recovery, but the

spectral method in [9] fails.

Hence, for fair comparison, we compare the best per-

formance of our algorithm and [9] under the strongest

signal setting of each model. Since both methods contain

an iteration procedure, we set the iteration number to

infinity to avoid the computational error. Considering

the largest angle-based SNR ≍ 1 in Theorem 5, our

Bernoulli clustering achieves exponential error rate of

order exp(−p(K−1)); considering the largest singular
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gap ∆singular ≍ 1 in Theorem 1 of [9], the spectral

clustering has a polynomial error rate of order p−2. Our

algorithm still shows a better theoretical accuracy than

the competitive work for Bernoulli observations.

• Extension to sparse binary dTBMs. The sparsity is often

a popular feature in hypergraphs [9], [16], [28]. Specif-

ically, the sparse binary dTBM assumes that, the entries

of Y follow independent Bernoulli distributions with the

mean

EY = αpS ×1 ΘM ×2 · · · ×K ΘM , (18)

where the extra scalar parameter αp ∈ (0, 1] is function

of p that controls the sparsity. A smaller αp indicates

a higher level of sparsity. Our current work focuses

on dense dTBM with αp = 1. While sparse dTBM is

an interesting application, the algorithm and its analysis

require different techniques. Below, we discuss possible

modifications of the algorithm.

The sparsity affects our initialization guarantee in our

Theorem 4. In our initialization, the spectral denoising

step (lines 1-2 in Sub-algorithm 1) implements matrix

SVD to unfolded tensors. However, SVD-based methods

are believed to fail in extremely sparse SBM due to

the localization phenomenon in the singular vectors [28].

Inspired by [28], we adopt the diagonal-deleted HOSVD

(D-HOSVD) [9] as the initialization in our higher-order

clustering.

The sparsity also affects the iteration guarantee in our

Theorem 5. The decaying mean tensor leads to a worse

statistical error of order O(−αpp
K−1) on X̂ . The theo-

retical analyses for sparse binary dTBM and algorithms

are left as future directions. Instead, we add numerical

experiments to evaluate the robustness of our algorithm

and the improvement of D-HOSVD initialization in the

sparse dTBM; see Appendix A.

D. Practical Issues

1) Computational Complexity: Our two-stage algorithm

has a computational cost polynomial in tensor dimension p.

Specifically, the complexity of Sub-algorithm 1 isO(KpK+1+
KrpK), where the first term is contributed by the double

projection and the calculation of X̂ , and the second term

comes from normalization and the k-means. The cost of each

update in Sub-algorithm 2 is O(pK + prK), where pK comes

from the calculation of S(t) and Yd
k, and prK comes from the

normalization of Yd
k, the calculation of S(t), and the cluster

assignment update in Step 13.

2) Hyper-Parameter Selection: In our theoretical analysis,

we have assumed the true cluster number r is given to

our algorithm. In practice, the cluster number r is often

unknown, and we now propose a method to choose r from

data. We impose the Bayesian information criterion (BIC) and

choose the cluster number that minimizes BIC; i.e., under the

symmetric Gaussian dTBM (1),

r̂ = arg min
r∈Z+

(

pK log(∥X̂ − Y∥2F ) + pe(r)K log p
)

, (19)

with X̂ = Ŝ(r)×1Θ̂(r)M̂(r)×2· · ·×KΘ̂(r)M̂(r), where the

triplet (ẑ(r), Ŝ(r), θ̂(r)) are estimated parameters with cluster

number r, and pe(r) = rK + p(log r + 1)− r is the effective

number of parameters. Note that we have added the argument

(r) to related quantities as functions of r. In particular, the

estimate θ̂(r) in (19) is obtained by first calculating the

reduced tensor Ŷd with ẑ(r), and then normalizing the row

norms ∥Ŷ d
i:∥ to 1 in each cluster; i.e.,

θ̂(r) = (θ̂(1, r), . . . , θ̂(p, r))T ,

with θ̂(i, r) = ∥Ŷ d(r)i:∥/
∑

j:ẑ(j,r)=ẑ(i,r)∥Ŷ d(r)j:∥, Ŷ d(r) =

Mat(Ŷd(r)), Ŷd(r)(i, a2, . . . , aK) = Ave{Y(i, i2, . . . , iK) :
ẑ(ik, r) = ak, k ̸= 1}, and ẑ(i, r) denotes the community label

for the i-th node with given cluster number r. We evaluate the

performance of the BIC criterion in Section VI-A.

V. COMPARISON WITH NONDEGREE TENSOR BLOCK

MODEL

We discuss the connections and differences between dTBM

and TBM [13] from three aspects: signal notions, theoretical

results, and algorithms. Without loss of generality, let σ2 = 1.

• Signal notion. The signal levels in both TBM [13] and our

dTBM are functions of the core tensor S. We emphasize

that the signal notions are different between the two

models. In particular, the Euclidean-based signal notion in

TBM [13] fails to accurately describe the phase transition

in our dTBM due to the possible heterogeneity in degree

θ. To compare, we denote our angle-based signal notion

in (4) and the Euclidean-based SNR in [13] as ∆2
ang and

∆2
Euc, respectively:

∆2
ang = 2(1− max

a̸=b∈[r]
cos (Sa:, Sb:)),

∆2
Euc = min

a̸=b∈[r]
∥Sa: − Sb:∥2.

By Lemma 4 in the Appendix B, we have

∆2
ang max

a∈[r]
∥Sa:∥2 ≤ ∆2

Euc.

The above inequality indicates that the condition ∆2
Euc ≤

pγ is sufficient but not necessary for ∆2
ang ≤ pγ . In fact,

if we were to use ∆2
Euc for both models, then the phase

transition of dTBM can be arbitrarily worse than that for

TBM.

Here, we provide an example to illustrate the dramatical

difference between TBM and dTBM with the same core

tensor.

Example 4 (Comparison With Euclidean-Based Signal

Notion): Consider a biclustering model with θ = 1 and

an order-2 core matrix

S =

(

p(γ+1)/2 + 2 2 p(γ+1)/2 + 4
2 4

)

, with γ ≤ −1.

The core matrix S lies in the parameter spaces of TBM

and our dTBM. Here, the constraint γ ≤ −1 is added

to ensure the bounded condition of S in our parameter
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space in (2). The angle-based and Euclidean-based signal

levels of S are

∆2
ang (S) = 0 (≤ pγ) , ∆2

Euc(S) = 5 pγ+1 (≥ pγ) .

We conclude that TBM with S achieves exact recovery

with a polynomial-time algorithm; see [13, Theorem 4].

By contrast, the dTBM with the same S and input r =
2 violets the identifiability condition, and thus fails to be

solved by all estimators; see our Theorem 1.

• Theoretical results. In both works, we study the phase

transition of TBM and dTBM with respect to the

Euclidean and angle-based SNRs. We briefly summarize

the results in [13] and compare with ours.

Statistical critical value:

Ours: ∆2
ang ≲ p−(K−1) ⇒ statistically impossible;

∆2
ang ≳ p−(K−1)⇒MLE achieves exact recovery;

Han’s: ∆2
Euc ≲ p−(K−1) ⇒ statistically impossible;

∆2
Euc ≳ p−(K−1)⇒MLE achieves exact recovery.

Computational critical value:

Ours: ∆2
ang ≲ p−K/2 ⇒ computationally impossible;

∆2
ang ≳ p−K/2 ⇒ computationally efficient;

Han’s: ∆2
Euc ≲ p−K/2 ⇒ computationally impossible;

∆2
Euc ≳ p−K/2 ⇒ computationally efficient.

The above comparison reveals four major differences.

First, none of our results in Section III are corollaries

of [13]. Both models show the similar conclusion but

under different conditions. While the TBM impossibil-

ity [13] provides a necessary condition for our dTBM

impossibility, we find that such a condition is often loose.

There exists a regime of S in which TBM problems

are computationally efficient but dTBM problems are

statistically impossible; see Example 4. This observation

has motivated us to develop the new signal notion ∆2
ang

for sharp dTBM phase transition conditions.

Second, to find the phase transition, we need to show

both the impossibility and achievability when SNR is

below and above the critical value, respectively. While

the TBM impossibility can serve as a loose condition

of our dTBM impossibility, more efforts are required to

show the achievability. In particular, since TBM is a more

restrictive model than dTBM, the achievability in [13]

does not imply the achievability of dTBM in a larger

parameter space. The latter requires us to develop new

MLE and polynomial algorithms for dTBM achievability.

Third, from the perspective of proofs, we develop new

dTBM-specific techniques to handle the extra degree

heterogeneity. In our Theorem 2, we construct a special

nontrivial degree heterogeneity to establish the lower

bound for arbitrary core tensor with small angle gap,

while, TBM [13] considers the constructions without

degree parameter. In our Theorem 3, we construct a

rank-2 tensor to relate HPC conjecture to ∆2
ang, while

TBM [13] constructs a rank-1 tensor to relate HPC con-

jecture to ∆2
Euc. The asymptotic nonequivalence between

∆2
ang and ∆2

Euc renders our proof technically more

involved.

Last, we discuss the statistical impossibility statements.

Our Theorem 2 implies the statistical impossibility when-

ever the core tensor S leads to an angle-based SNR below

the critical value, while, Theorem 6 in [13] implies the

worst case statistical impossibility for a particular core

tensor S with Euclidean-based SNR below the statistical

limit. Hence, our Theorem 2 shows a stronger statistical

impossibility for dTBM than that presented in TBM [13,

Theorem 6]. However, inspecting the proof of [13], the

proof of Theorem 6 indeed implies a stronger TBM

impossibility statement for arbitrary core tensor; i.e.,

when γ < −(K − 1)

lim inf
p→∞

inf
S∈PS,TBM∩{∆2

Euc=pγ}
inf

ẑstats

sup
z∈Pz,TBM

E[pℓ(ẑstats, z)]≥1,

where PS,TBM and Pz,TBM refer to the space for core

tensor S and assignment z under TBM, respectively.

Again, in terms of the strong statistical impossibility, both

models show the similar conclusion but under different

conditions. Since two impossibilities consider different

core tensor regimes with nonequivalent ∆2
ang and ∆2

Euc,

we emphasize that different proof techniques are required

to obtain these similar conclusions. See our proof sketch

in Section VIII-A, Appendices B-D and B-E for detail

technical differences.

• Algorithms. Both [13] and our work propose the two-

step algorithm, which combines warm initialization and

iterative refinement to achieve exact recovery. This

local-to-global strategy is not new in clustering litera-

ture [29], [30]. The highlight of our algorithm is the

angle-based update in lines 10-14, Sub-algorithm 2,

which is specifically designed for dTBM to avoid the

estimation of θ. This angle-based update brings new

proof challenges. We develop polar-coordinate based

techniques to establish the error rate for the proposed

algorithm.

VI. NUMERICAL STUDIES

We evaluate the performance of the weighted higher-order

initialization and angle-based iteration in this section.

We report average errors and standard deviations across

30 replications in each experiment. Clustering accuracy is

assessed by clustering error rate (CER, i.e., one minus rand

index). The CER between (ẑ, z) is equivalent to misclustering

error ℓ(ẑ, z) up to constant multiplications [31], and a lower

CER indicates a better performance.

We generate order-3 tensors with assortative [15] core

tensors to control SNR; i.e., we set Saaa = s1 for a ∈ [r]
and others be s2, where s1 > s2 > 0. Let α = s1/s2.

We set α close to 1 such that 1 − α = o(p). In particular,

we have α = 1 + Ω(pγ/2) with γ < 0 by Assumption 1

and definition (4). Hence, we easily adjust SNR via varying

α. The assortative setting is proposed for simulations, and

our algorithm is applicable for general tensors in practice.

The cluster assignment z is randomly generated with equal
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Fig. 4. SNR phase transitions for clustering in dTBM with
p = {80, 100}, r = 5 under (a) matrix case with γ ∈ [−1.2,−0.4] and
(b) tensor case with γ ∈ [−2.1,−1.4].

probability across r clusters for each mode. Without further

explanation, we generate degree heterogeneity θ from absolute

normal distribution by θ(i) = |Xi|+1−1/
√

2π with |Xi| i.i.d.∼
N(0, 1), i ∈ [p] and normalize θ to satisfy (2). Also, we set

σ2 = 1 for Gaussian data without further specification.

A. Verification of Theoretical Results

The first experiment verifies statistical-computational gap

described in Section III. Consider the Gaussian model with

p = {80, 100}, r = 5. We vary γ in [−1.2,−0.4] and

[−2.1,−1.4] for matrix (K = 2) and tensor (K = 3)
clustering, respectively. Note that finding MLE under dTBM

is computationally intractable. We approximate MLE using an

oracle estimator, i.e., the output of Sub-algorithm 2 initialized

from true assignment. Fig. 4a shows that both our algorithm

and oracle estimator start to decrease around the critical value

γstat = γcomp = −1 in matrix case. In contrast, Fig. 4b

shows a significant gap in the phase transitions between the

algorithm estimator and oracle estimator in tensor case. The

oracle error rapidly decreases to 0 when γstat = −2, whereas

the algorithm estimator tends to achieve exact clustering

when γcomp = −1.5. Fig. 4 confirms the existence of the

statistical-computational gap in our Theorems 2 and 3.

The second experiment verifies the performance guarantees

of two algorithms: (i) weighted higher-order initialization; (ii)

combined algorithm of weighted higher-order initialization

and angle-based iteration. We consider both the Gaussian

and Bernoulli models with p = {80, 100}, r = 5, γ ∈
[−2.1,−1.4]. Fig. 5 shows the substantial improvement of

combined algorithm over initialization, especially under weak

and intermediate signals. This phenomenon agrees with the

error rates in Theorems 4 and 5 and confirms the necessity of

the local iterations.

The third experiment evaluates the empirical performance of

the BIC criterion to select unknown cluster number. We gen-

erate the data from an order-3 Gaussian model with p =
{50, 80}, r = {2, 4}, and noise level σ2 ∈ {0.25, 1}. Table III

shows that our BIC criterion well chooses the true r under

most settings. Note that the BIC slightly underestimates the

true cluster number (r = 4) with smaller dimension and

higher noise (p = 50, σ2 = 1), and the accuracy immediately

increases with larger dimension p = 80. The improvement

follows from the fact that a larger dimension p indicates

Fig. 5. CER versus signal exponent (γ) for initialization only and for
combined algorithm. We set p = {80, 100}, r = 5, γ ∈ [−2.1,−1.4] under
(a) Gaussian models and (b) Bernoulli models.

a larger sample size in the tensor block model. Therefore,

we conclude that BIC criterion is a reasonable way to tune

the cluster number.

B. Comparison With Other Methods

We compare our algorithm with following higher-order

clustering methods:

• HOSVD: HOSVD on data tensor and k-means on the rows

of the factor matrix;

• HOSVD+: HOSVD on data tensor and k-means on the

ℓ2-normalized rows of the factor matrix;

• HLloyd [13]: High-order clustering algorithm developed

for nondegree tensor block models;

• SCORE [9]: Tensor-SCORE for clustering developed for

sparse binary tensors.

Among the four alternative algorithms, the SCORE is the

closest method to ours. We set the tuning parameters of

SCORE as in previous literature [9]. The methods SCORE and

HOSVD+ are designed for degree models, whereas HOSVD

and HLloyd are designed for nondegree models. We conduct

two experiments to assess the impacts of (i) signal strength

and (ii) degree heterogeneity, based on Gaussian and Bernoulli

models with p = 100, r = 5. We refer to our algorithm as

dTBM in the comparison.

We investigate the effects of signal to clustering perfor-

mance by varying γ ∈ [−1.5,−1.1]. Fig. 6 shows that

our method dTBM outperforms all other algorithms. The

suboptimality of SCORE and HOSVD+ indicates the necessity

of local iterations on the clustering. Furthermore, Fig. 6 shows

the inadequacy of nondegree algorithms in the presence of

mild degree heterogeneity. The experiment demonstrates the

benefits of addressing heterogeneity in higher-order clustering

tasks.

The only exception in Fig. 6 is the slightly better per-

formance of HLloyd over HOSVD+ under Gaussian model.

However, we find the advantage of HLloyd disappears with

higher degree heterogeneity. We perform extra simulations to

verify the impact of degree effects. We use the same setting

as in the first experiment in the Section VI-B, except that

we now generate the degree heterogeneity θ from Pareto

distribution prior to normalization. The density function of

Pareto distribution is f(x|a, b) = abax−(a+1)
1{x ≥ b}, where
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TABLE III

ESTIMATED CLUSTER NUMBER GIVEN BY BIC CRITERION UNDER THE LOW NOISE LEVEL (σ2 = 0.25) AND HIGH NOISE LEVEL (σ2 = 0.5) SETTINGS.
NUMBERS IN PARENTHESES ARE STANDARD DEVIATIONS OF r̂ OVER 30 REPLICATIONS

Fig. 6. CER versus signal exponent (denoted γ) for different methods. We set
p = 100, r = 5, γ ∈ [−1.5,−1.1] under (a) Gaussian and (b) Bernoulli
models.

Fig. 7. CER comparison versus signal exponent (denoted γ) under (a) low
(shape parameter a = 6) (b) high (shape parameter a = 2) degree
heterogeneity. We set p = 100, r = 5, γ ∈ [−1.5,−1.1] under Gaussian
model.

a is called shape parameter. We vary a ∈ {2, 6} and choose b
such that EX = a(a−1)−1b = 1 for X following Pareto(a, b).
Note that a smaller a leads to a larger variance in θ and hence a

larger degree heterogeneity. We consider the Gaussian model

under low (a = 6) and high (a = 2) degree heterogeneity.

Fig. 7 shows that the errors for nondegree algorithms (HLloyd,

HOSVD) increase with degree heterogeneity. In addition, the

advantage of HLloyd over HOSVD+ disappears with higher

degree heterogeneity.

The last experiment investigates the effects of degree hetero-

geneity to clustering performance. We fix the signal exponent

γ = −1.2 and vary the extent of degree heterogeneity.

In this experiment, we generate θ from Pareto distribution

prior to normalization. We vary the shape parameter a ∈
[3, 6] in the Pareto distribution to investigate a range of

degree heterogeneities. Fig. 8 demonstrates the stability of

degree-corrected algorithms (dTBM, SCORE, HOSVD+) over

the entire range of degree heterogeneity under considera-

tion. In contrast, nondegree algorithms (HLloyd, HOSVD)

show poor performance with large heterogeneity, especially in

Bernoulli cases. This experiment, again, highlights the benefit

of addressing degree heterogeneity in higher-order clustering.

Fig. 8. CER versus shape parameter in degree (denoted a ∈ [3, 6]) for
different methods. We set p = 100, r = 5, γ = −1.2 under (a) Gaussian and
(b) Bernoulli models.

VII. REAL DATA APPLICATIONS

A. Human Brain Connectome Data Analysis

The Human Connectome Project (HCP) aims to construct

the structural and functional neural connections in human

brains [32]. We preprocess the original dataset following [33]

and partition the brain into 68 regions. The cleaned dataset

includes brain networks for 136 individuals. Each brain net-

work is represented by a 68-by-68 binary symmetric matrix,

where the entry with value 1 indicates the presence of

connection between node pairs, while the value 0 indicates

the absence. We use Y ∈ {0, 1}68×68×136 to denote the

binary tensor. Individual attributes such as gender and sex are

recorded.

We apply our general asymmetric algorithm to the HCP

data with the numbers of clusters on three modes r1 =
r2 = 4 and r3 = 3. The selection of r1 and r2 follows

the human brain anatomy and the symmetry in the brain

network, and the r3 is specified following previous analy-

sis [34]. Because of the symmetry in the data, the estimated

brain node clustering results are the same on the first and

second modes. Fig. 9 shows that brain connection exhibits a

strong spatial separation structure. Specifically, the first cluster,

named L.Hemis, involves all the nodes in the left hemisphere.

The nodes in the right hemisphere are further separated into

three clusters led by the middle-part tissues in Temporal and

Parietal lobes (R.Temporal), the back-part tissues in Occipital

lobe (R.Occipital), and the front-part tissues in Frontal and

Parietal lobes (R.Supra). This clustering result is reasonable

since the left and right hemispheres often play different roles

in human brains.

Fig. 10 illustrates the estimated core tensor Ŝ with esti-

mated clustering, and Fig. 11 visualizes the average brain

connections and the connection enrichment in contrast to

average networks in each group. In general, we find that the
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Fig. 9. Illustration of brain node clustering results for HCP data with (a) top and (b) side views.

Fig. 10. Mode 3 slices of estimated core tensor Ŝ. (a) Average estimated slice weighted by the group size; (b)-(d) Group-specified enrichment, i.e., the

difference between each slice of Ŝ and the averaged slice.

Fig. 11. Observed brain connections in the population and each group of individuals. (a) Average brain network; (b)-(d) Group-specified brain network
enrichments in Groups 1-3. Red edges represent the positive enrichment and blue edges represent the negative enrichment.

inner-hemisphere connection has stronger connection com-

pared to inter-hemisphere connections (Fig. 10a). Also, the

back and front parts (R.Occipital, R.Supra) are shown to

have more interactions with temporal tissues than inner-cluster

connections. In addition, the group 1 with 54% females

shows an enrichment on the inter-hemisphere connections

(Fig. 10b), while group 4 with only 36% females exhibits a

reduction (Fig. 10d). This result agrees with previous find-

ings in [34]. The enrichment on the back-front connection

is also recognized in group 3 (Fig. 10c). The interpretive

patterns in our results demonstrate the usefulness of our

clustering methods in the human brain connectome data

application.

B. Peru Legislation Data Analysis

We also apply our method to the legislation networks in

the Congress of the Republic of Peru [35]. Because of the

frequent political power shifts in the Peruvian Congress during

2006-2011, we choose to focus on the data for the first half

of 2006-2007 year. The dataset records the co-sponsorship

of 116 legislators from top 5 parties and 802 bill proposals.

We reconstruct legislation network as an order-3 binary tensor

Y ∈ {0, 1}116×116×116, where Yijk = 1 if the legislators

(i, j, k) have sponsored the same bill, and Yijk = 0 otherwise.

The true party affiliations of legislators are provided and

serve as the ground truth. We apply various higher-order

Authorized licensed use limited to: University of Wisconsin. Downloaded on June 02,2023 at 14:53:52 UTC from IEEE Xplore.  Restrictions apply. 



3896 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

TABLE IV

CLUSTERING ERRORS (MEASURED BY CER) FOR VARIOUS METHODS IN

THE ANALYSIS OF PERU LEGISLATION DATASET

clustering methods to Y with r = 5. Table IV shows that

our dTBM achieves the best performance compared to others.

The second best method is the two-stage algorithm HLloyd,

followed by the spectral methods SCORE and HOSVD+. This

result is consistent with our simulations under strong signal

and moderate degree heterogeneity. The comparison suggests

that our method dTBM is more appealing in real-world

applications.

VIII. PROOF SKETCHES

In this section, we provide the proof sketches for the main

Theorem 2 (Impossibility), Theorem 3 (Impossibility), and

Theorems 4-5. Detail proofs and extra theoretical results are

provided in Appendix B.

A. Proof Sketch of Theorem 2 (Impossibility) and Theorem 3

(Impossibility)

The proofs of impossibility in Theorems 2 and 3 share

the same proof idea with [13, Theorems 6 and 7] and [15,

Theorem 2]. In both proofs of statistical and computational

impossibilities, the key idea is to construct a particular set of

parameters to lower bound the minimax rate. Specifically, for

statistical impossibility in Theorem 2, we construct a particular

(z∗stats,θ
∗
stats) ∈ Pz,θ such that for all S∗ ∈ PS(γ)

inf
ẑstats

sup
(z,θ)∈Pz,θ

E[pℓ(ẑstat, z)]

≥ inf
ẑstats

E[pℓ(ẑstat, z
∗
stats)|(z∗stats,S∗,θ∗

stats)] ≥ 1; (20)

for computational impossibility in Theorem 3, we construct a

particular (z∗comp,S∗comp,θ∗
comp) ∈ P(γ) such that

inf
ẑcomp

sup
(z,S,θ)∈P(γ)

E[pℓ(ẑcomp, z)]

≥ inf
ẑcomp

E[pℓ(ẑcomp, z∗comp)|(z∗comp,S∗comp,θ∗
comp)] ≥ 1.

The constructions of (z∗stats,θ
∗
stats) and (z∗comp,S∗comp,θ∗

comp)
are the most critical steps. With good constructions, the

lower bound ª≥ 1º can be verified by classical statistical

conclusions (e.g. Neyman-Pearson Lemma) or prior work (e.g.

HPC Conjecture).

A notable detail in the proof of statistical impossibility is

the arbitrariness of S∗. The first infimum over PS(γ) in the

minimax rate (10) requires that the lower bound (20) holds

for any S∗ ∈ PS(γ). The arbitrary choice of S∗ brings extra

difficulties in the parameter construction, and consequently a

nontrivial θ∗
stats ̸= 1 is chosen to address the arbitrariness.

Previous TBM construction in the proof of [13, Theorem 6]

with θ∗
stats = 1 is no longer applicable in our case. Meanwhile,

our construction (z∗comp,S∗comp,θ∗
comp) leads to a rank-2 mean

tensor to relate the HPC Conjecture while TBM [13, Theorem

7] constructs a rank-1 mean tensor. Hence, we emphasize

that dTBM-specific techniques are required to obtain our

impossibility results, though the proof idea is common for

minimax lower bound analysis.

B. Proof Sketch of Theorem 4

The proof of Theorem 4 is inspired by the proof idea of [15,

Lemma 1]. The extra difficulties are the angle gap characteri-

zation and multilinear algebra property in tensors; we address

both challenges in our proof. Specifically, we control the

misclustering error by the estimation error of X̂ calculated in

Step 2 of Sub-algorithm 1. We prove the following inequality

ℓ(z(0), z) ≲
1

p
min
π∈Π

∑

i:z(0)(i) ̸=π(z(i))

θ(i)2

≲
σ2rK−1

∆2
minpK

∥X̂ − X∥2F

≲
rKp−K/2

SNR
, (21)

where X = EY is the true mean. The first inequality

in (21) holds with the assumption mini∈[p] θ(i) ≥ c > 0 in

Theorem 4. The second inequality relies on the key Lemma 1,

which indicates

min
z(i) ̸=z(j)

∥[Xi:]
s − [Xj:]

s∥ ≳ ∆min, (22)

where X = Mat(X ). The most challenging part in the proof of

Theorem 4 lies in the derivation of inequality (22) (or the proof

of Lemma 1), in which the proof of [15] is no longer applicable

due to different angle gap assumption in our dTBM. To address

the angle gap notion, we develop the extra padding technique

in Lemma 5 and balance assumption (6). Last, we finish the

proof of Theorem 4 by showing the third inequality of (21)

using [13, Proposition 1].

C. Proof Sketch of Theorem 5

The proof of Theorem 5 is inspired by the proof idea of

[13, Theorem 2]. We develop extra polar-coordinate based

techniques with angle gap characterization to address the nui-

sance degree heterogeneity. Recall the intermediate quantity,

misclustering loss, defined in (11)

L(t) : = L(z, z(t))

=
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{

z(t)(i) = b
}∥
∥
[
Sz(i):

]s − [Sb:]
s
∥
∥2

.

We show that L(t) provides an upper bound for the miscluster-

ing error of interest via the inequality ℓ(t) ≤ L(t)

∆2
min

in Lemma 2.

Therefore, it suffices to control L(t). Further, we introduce

the oracle estimators for core tensor under the true cluster

assignment via

S̃ = Y ×1 W T ×2 · · · ×K W T ,

where W = M
(

diag(1T
p M)

)−1
is the weighted true mem-

bership matrix. Let V = W⊗(K−1) denote the Kronecker

product of (K − 1) copies of W matrices, and we define the
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t-th iteration quantities W (t),V (t) corresponding to M (t) (or

equivalently z(t)). To evaluate L(t+1), we prove the bound

1

{

z(t+1)(i) = b
}

=1

{

∥[Yi:V
(t)]s−[S

(t)
b: ]s∥2≤∥[Yi:V

(t)]s−[S
(t)
z(i):]

s∥2
}

≤ Aib + Bib, (23)

where Y = Mat(Y), S = Mat(S), S(t) = Mat(S(t)) and

Aib = 1

{〈

Ei:V ,
[

S̃z(i):

]s

−
[

S̃b:

]s〉

≲−
∥
∥
[
Sz(i):

]s−[Sb:]
s
∥
∥2
}

,

Bib = 1

{∥
∥
[
Sz(i):

]s − [Sb:]
s
∥
∥2

≲ F
(t)
ib + G

(t)
ib + H

(t)
ib

}

.

The terms F
(t)
ib , G

(t)
ib , H

(t)
ib are controlled by z(t),S(t); see the

detailed definitions in (68), (69), (70). Note that the event Aib

only involves the oracle estimator independent of t, while all

the terms related to the t-th iteration are in Bib. Thus, the

inequality (23) decomposes the misclustering loss in the (t +
1)-th iteration into the oracle loss and the loss in t-th iteration.

This decomposition leads to the separation of statistical error

and computational error in the final upper bound of Theorem 5.

Specifically, we prove the contraction inequality

L(t+1) ≤Mξ + ρL(t),

with ξ =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

Aib

∥

∥

[

Sz(i):

]s − [Sb:]
s∥
∥

2
, (24)

where M is a positive constant, ρ ∈ (0, 1) is the contraction

parameter, and we call ξ the oracle loss. Controlling the

probability of event Bib and obtaining the ρL(t) term in the

right hand side of (24) are the most challenging parts in

the proof of Theorem 5. Note that the true and estimated

core tensors are involved via their normalized rows such

as Ss
a:, S̃

s
a:, [S

(t)
a: ]s. The Cartesian coordinate based analysis

in [13] is no longer applicable in our case. Instead, we use

the polar-coordinate based analysis and the geometry property

of trigonometric functions to derive the high probability upper

bounds for F
(t)
ib , G

(t)
ib , H

(t)
ib .

Further, by sub-Gaussian concentration, we prove the high

probability upper bound for oracle loss

ξ ≲ SNR−1 exp

(

−pK−1SNR

rK−1

)

. (25)

Combining the decomposition (24) and the oracle bound (25),

we finish the proof of Theorem 5.

The proof of MLE error shares the similar idea as Theo-

rems 4-5. We first show a weaker polynomial rate for MLE

and then improve the rate from polynomial to exponential

through the iterations. The only difference is that the MLE

remains the same over iterations due to its global optimality.

See Appendix B-G for the detailed proof.

APPENDIX A

ADDITIONAL NUMERICAL EXPERIMENTS

A. Bernoulli Phase Transition

The first additional experiment verifies the

statistical-computational gap in Section III under the Bernoulli

model. Consider the Bernoulli model with p = {80, 100},

Fig. 12. SNR phase transitions for Bernoulli dTBM with
p = {80, 100}, r = 5 under (a) matrix case with γ ∈ [−1.2,−0.4]
and (b) tensor case with γ ∈ [−2.1,−1.4].

Fig. 13. CER comparison versus sparsity parameter αp in [0.05, 0.9]. We set
p = 100, r = 5 and γ = −1.2 under sparse binary dTBM.

r = 5. We vary γ in [−1.2,−0.4] and [−2.1,−1.4] for

matrix (K = 2) and tensor (K = 3) clustering, respectively.

We approximate MLE using an oracle estimator, i.e., the

output of Sub-algorithm 2 initialized from the true assignment.

Fig. 12 shows a similar pattern as Fig. 4. The algorithm and

oracle estimators have no gap in the matrix case, while an

error gap emerges between the critical values γstat = −2 and

γcomp = −1.5 in the tensor case. Fig. 4 suggests the

statistical-computational gap in Bernoulli models.

B. Sparsity

The second additional experiment evaluates the algorithm

performances under the sparse binary dTBM (18). We fix the

signal exponent γ = −1.2 and vary the sparsity parameter

αp ∈ [0.05, 0.9]. A smaller αp leads to a higher probability

of zero entries in the observation. In addition to the three

algorithms mentioned in Section VI-B (denoted Initialization,

dTBM, and SCORE), we consider other three algorithms based

on the discussion in Section IV-C:

• D-HOSVD, the diagonal-deleted HOSVD in [9];

• D-HOSVD + Angle, the combined algorithm of our

angle-based iteration with initialization from D-HOSVD;

• SCORE + Angle, the combined algorithms of our

angle-based iteration with initialization from SCORE.

Fig. 13 shows a slightly larger error in dTBM than that in

SCORE, D-HOSVD + Angle, and SCORE + Angle under the

sparse setting with αp < 0.3. The small gap between dTBM

and other sparse-specific methods implies the robustness of our

algorithm. In addition, comparing SCORE versus SCORE +

Angle (or D-HOSVD versus D-HOSVD + Angle) indicates the

benefit of our angle iterations under the sparse dTBM. In the
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intermediate and dense cases with αp ≥ 0.3, our proposed

dTBM has a clear improvement over others, which again

verifies the success of our algorithm in dense settings.

APPENDIX B

PROOFS

We provide the proofs for all the theorems in our main

paper. In each subsection, we first show the proof of main

theorem and then collect the useful lemmas in the end. We

combine the proofs of MLE achievement in Theorem 2 and

polynomial-time achievement in Theorem 5 in the last section

due to the similar idea.

A. Notation

Before the proofs, we first introduce the notation used

throughout the appendix and the general dTBM without

symmetric assumptions. The parameter space and minimal

gap assumption are also extended for the general asymmetric

dTBM.

1) Preliminaries:

• For mode k ∈ [K], denote mode-k tensor matricizations

by

Yk = Matk (Y) , Sk = Matk (S) ,

Ek = Matk (E) , Xk = Matk (X ) .

• For a vector a, let as := a/ ∥a∥ denote the normalized

vector. We make the convention that as = 0 if a = 0.

• For a matrix A ∈ R
n×m, let A⊗K := A ⊗ · · · ⊗

A ∈ R
nK×mK

denote the Kronecker product of K copies

of matrices A.

• For a matrix A, let ∥A∥σ denote the spectral norm of

matrix A, which is equal to the maximal singular value of

A; let λk(A) denote the k-th largest singular value of A; let

∥A∥F denote the Frobenius norm of matrix A.

2) Extension to General Asymmetric dTBM: The general

order-K (p1, . . . , pK)-dimensional dTBM with rk commu-

nities and degree heterogeneity θk = [[θk(i)]] ∈ R
pk
+ is

represented by

Y=X+E , where X =S ×1 Θ1M1 ×2 · · ·×K ΘKMK ,

(26)

where Y ∈ R
p1×···×pK is the data tensor, X ∈ R

p1×···×pK

is the mean tensor, S ∈ R
r1×···×rK is the core tensor,

E ∈ R
p1×···×pK is the noise tensor consisting of independent

zero-mean sub-Gaussian entries with variance bounded by σ2,

Θk = diag(θk), and Mk ∈ {0, 1}pk×rk is the membership

matrix corresponding to the assignment zk : [pk] 7→ [rk], for

all k ∈ [K].
For ease of notation, we use {zk} to denote the collection

{zk}Kk=1, and {θk} to denote the collection {θk}Kk=1. Cor-

respondingly, we consider the parameter space for the triplet

({zk},S, {θk}),

P({rk}) =
{

({zk},S, {θk}) : θk ∈ R
p
+,

c1pk

rk
|z−1

k (a)| ≤ c2pk

rk
,

c3 ≤ ∥Sk,a:∥ ≤ c4, ∥θk,z−1
k

(a)
∥1 = |z−1

k (a)|,

for all a ∈ [rk], k ∈ [K]
}

. (27)

We call the degree heterogeneity {θk} is balanced if for all

k ∈ [K],

min
a∈[r]
∥θk,z−1

k (a)∥ = (1 + o(1)) max
a∈[r]
∥θk,z−1

k (a)∥.

We also consider the generalized Assumption 1 on angle

gap.

Assumption 2 (Generalized Angle Gap): Recall

Sk = Matk(S). We assume the minimal gap between

normalized rows of Sk is bounded away from zero for all

k ∈ [K]; i.e.,

∆min := min
k∈[K]

min
a̸=b∈[rk]

∥

∥Ss
k,a: − Ss

k,b:

∥

∥ > 0.

Similarly, let SNR = ∆2
min/σ2 with the generalized minimal

gap ∆2
min defined in Assumption 2. We define the regime

P(γ) = P({rk}) ∩ {S satisfies SNR = pγ
and pk ≍ p, k ∈ [K]}.

B. Proof of Theorem 1

Proof of Theorem 1: To study the identifiability, we consider

the noiseless model with E = 0. Assume that there exist two

parameterizations satisfying

X = S ×1 Θ1M1 ×2 · · · ×K ΘKM ′
K

= S ′ ×1 Θ′
1M

′
1 ×2 · · · ×K Θ′

KM ′
K , (28)

where ({zk},S, {θk}) ∈ P({rk}) and ({z′k},S ′, {θ′
k}) ∈

P({r′k}) are two sets of parameters. We prove the sufficient

and necessary conditions separately.

(⇐) For the necessity, it suffices to construct two distinct

parameters up to cluster label permutation, if the model (26)

violates Assumption 2. Note that ∆2
min = 1 when there exists

k ∈ [K] such that rk = 1. Hence, we consider the case that

rk ≥ 2 for all k ∈ [K]. Without loss of generality, we assume
∥

∥Ss
1,1: − Ss

1,2:

∥

∥ = 0.

By constraints in parameter space (27), neither S1,1: nor

S1,2: is a zero vector. There exists a positive constant c such

that S1,1: = cS1,2:. Thus, there exists a core tensor S0 ∈
R

r1−1×···×rK such that

S = S0 ×1 CR,

where C = diag(1, c, 1, . . . , 1) ∈ R
r1×r1 and

R =





1 0
1 0
0 1r1−2



 ∈ R
r1×(r1−1).

Let D = diag(1 + c, 1, . . . , 1) ∈ R
r1−1×r1−1. Consider the

parameterization M ′
1 = M1R,S ′ = S0 ×1 D, and

θ′1(i) =











1
1+cθ1(i) i ∈ z−1

1 (1),
c

1+cθ1(i) i ∈ z−1
1 (2),

θ1(i) otherwise,

and M ′
k = Mk,θ′

k = θk for all k = 2, . . . ,K. Then we

have constructed a triplet ({z′k},S ′, {θ′
k}) that is distinct from

({zk},S, {θk}) up to label permutation.

(⇒) For the sufficiency, it suffices to show that all possible

triplets ({z′k},S ′, {θ′
k}) are identical to ({zk},S, {θk}) up
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to label permutation if the model (26) satisfies Assump-

tion (2). We show the uniqueness of the three parameters,

{Mk}, {S}, {θk} separately.

First, we show the uniqueness of Mk for all k ∈ [K]. When

rk = 1, all possible Mk’s are equal to the vector 1pk
, and the

uniqueness holds trivially. Hence, we consider the case that

rk ≥ 2. Without loss of generality, we consider k = 1 with

r1 ≥ 2 and show the uniqueness of the first mode membership

matrix; i.e., M ′
1 = M1P1 where P1 is a permutation matrix.

The conclusion for k ≥ 2 can be showed similarly and thus

omitted.

Consider an arbitrary node pair (i, j). If z1(i) = z1(j),
then we have ∥Xs

1,z1(i):
− Xs

1,z1(j):
∥ = 0 and thus

∥(S′)s
1,z′

1(i):
− (S′)s

1,z′
1(j):
∥ = 0 by Lemma 3. Then,

by Assumption (2), we have z′1(i) = z′1(j). Conversely,

if z1(i) ̸= z1(j), then we have
∥

∥Xs
1,i: −Xs

1,j:

∥

∥ ̸= 0 and thus
∥

∥

∥(S′)s
1,z′

1(i):
− (S′)s

1,z′
1(j):

∥

∥

∥ ̸= 0 by Lemma 3. Hence, we have

z′1(i) ̸= z′1(j). Therefore, we have proven that z′1 is identical

zi up to label permutation.

Next, we show the uniqueness of θk for all k ∈ [K]
provided that zk = z′k. Similarly, consider k = 1 only, and

omit the procedure for k ≥ 2.

Consider an arbitrary j ∈ [p1] such that z1(j) = a. Then

for all the nodes i ∈ z−1
1 (a) in the same cluster of j, we have

X1,z1(i):

X1,z1(j):
=

X ′
1,z1(i):

X ′
1,z1(j):

, which implies
θ1(j)

θ1(i)
=

θ′1(j)

θ′1(i)
. (29)

Let θ′1(j) = cθ1(j) for some positive constant c. By equa-

tion (29), we have θ′1(i) = cθ1(i) for all i ∈ z−1
1 (a). By the

constraint ({zk},S ′, {θ′
k}) ∈ P({rk}), we have

∑

j∈z−1
1 (a)

θ′1(j) = c
∑

j∈z−1
1 (a)

θ1(j) = 1,

which implies c = 1. Hence, we have proven θ1 = θ′
1 pro-

vided that z1 = z′1.

Last, we show the uniqueness of S; i.e., S ′ = S×1 P−1
1 ×2

· · · ×K P−1
K , where Pk’s are permutation matrices for all k ∈

[K]. Provided z′k = zk,θ′
k = θk, we have M ′

k = MkPk and

Θ
′
k = Θk for all k ∈ [K].

Let Dk =
[

(Θ′
kM ′

k)T (Θ′
kM ′

k)
]−1

(Θ′
kM ′

k)T , k ∈ [K].
By the parameterization (28), we have

S ′ = X ×1 D1 ×2 · · · ×K DK

= S ×1 D1Θ1M1 ×1 · · · ×K DKΘKMK

= S ×1 P−1
1 ×2 · · · ×K P−1

K .

Therefore, we finish the proof of Theorem 1. □

Useful Lemma for the Proof of Theorem 1:

Lemma 3 (Motivation of Angle-Based Clustering):

Consider the signal tensor X in the general asymmetric

dTBM (26) with ({zk},S, {θk}) ∈ P({rk}) and

rk ≥ 2, k ∈ [K]. Then, for any k ∈ [K] and index

pair (i, j) ∈ [pk]2, we have
∥

∥

∥S
s
k,zk(i): − Ss

k,zk(j):

∥

∥

∥ = 0 if and only if
∥

∥

∥X
s
k,zk(i): −Xs

k,zk(j):

∥

∥

∥ = 0.

Proof of Lemma 3: Without loss of generality, we prove

k = 1 only and drop the subscript k in Xk,Sk for notational

convenience. By tensor matricization, we have

Xj: = θ1(j)Sz1(j): [Θ2M2 ⊗ · · · ⊗ΘKMK ]
T

.

Let M̃ = Θ2M2⊗· · ·⊗ΘKMK . Notice that for two vectors

a, b and two positive constants c1, c2 > 0, we have

∥as − bs∥ = ∥(c1a)s − (c2b)s∥ .

Thus it suffices to show the following statement holds for any

index pair (i, j) ∈ [p1]
2,

∥

∥

∥S
s
z1(i):

− Ss
z1(j):

∥

∥

∥ = 0 if and only if
∥

∥

∥

[

Sz1(i):M̃
T
]s

−
[

Sz1(j):M̃
T
]s∥
∥

∥ = 0.

(⇐) Suppose

∥

∥

∥

[

Sz1(i):M̃
T
]s

−
[

Sz1(j):M̃
T
]s∥
∥

∥ = 0.

There exists a positive constant c such that Sz1(i):M̃
T =

cSz1(j):M̃
T . Note that

Sz1(i): = Sz1(i):M̃
T

[

M̃
(

M̃T M̃
)−1

]

,

where M̃T M̃ is an invertiable diagonal matrix with positive

diagonal elements. Thus, we have Sz1(i): = cSz1(j):, which

implies

∥

∥

∥
Ss

z1(i):
− Ss

z1(j):

∥

∥

∥
= 0.

(⇒) Suppose

∥

∥

∥Ss
z1(i):

− Ss
z1(j):

∥

∥

∥ = 0. There exists

a positive constant c such that Sz1(i): = cSz1(j):,

and thus Sz1(i):M̃
T = cSz1(j):M̃

T , which implies
∥

∥

∥

[

Sz1(i):M̃
T
]s

−
[

Sz1(j):M̃
T
]s∥
∥

∥ = 0.

Therefore, we finish the proof of Lemma 3. □

C. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1: Note that the vector Sz(i): can be

folded to a tensor S ′ = [[S ′a2,...,aK
]] ∈ R

rK−1

; i.e., vec(S ′) =
Sz(i):. Define weight vectors wa2,··· ,aK

corresponding to the

elements in S ′a2,...,aK
by

wa2···aK

= [θT
z−1(a2)

⊗ · · · ⊗ θT
z−1(aK)] ∈ R

|z−1(a2)|×···×|z−1(aK)|,

for all ak ∈ [r], k = 2, . . . ,K, where ⊗ denotes the Kro-

necker product. Therefore, we have Xi: = θ(i)Padw(Sz(i):)
where w = {wa2,··· ,aK

}ak∈[r],k∈[K]/{1}. Specifically, we have

∥wa2,...,aK
∥2 =

∏K
k=2∥θz−1(ak)∥2, and by the balanced

assumption (6) we have

max
(a2,...,aK)

∥wa2,...,aK∥2 = (1 + o(1)) min
(a2,...,aK)

∥wa2,...,aK∥2. (30)

Consider the inner product of Xi: and Xj: for z(i) ̸= z(j).
By the definition of weighted padding operator (56) and the

balanced assumption (30), we have

⟨Xi:,Xj:⟩
= θ(i)θ(j)

〈

Padw(Sz(i):), Padw(Sz(j):)
〉

= θ(i)θ(j) min
(a2,...,aK)

∥wa2,...,aK
∥2
〈

Sz(i):,Sz(j):

〉

(1 + o(1)).
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Therefore, when p large enough, the inner product ⟨Xi:,Xj:⟩
has the same sign as

〈

Sz(i):,Sz(j):

〉

.

Then, we have

cos(Sz1(i):,Sz1(j):) =

〈

Sz1(i):,Sz1(j):

〉

∥Sz1(i):∥∥Sz1(j):∥

= (1 + o(1))
⟨Xi:,Xj:⟩
∥Xi:∥∥Xj:∥

= (1 + o(1)) cos(Xi:,Xj:),

where the second inequality follows by the balance assumption

on θ.

Further, notice that ∥vs
1 − vs

2∥2 = 2(1 − cos(v1,v2)). For

all i, j such that z(i) ̸= z(j), when p→∞, we have

∥Xs
i: −Xs

j:∥ ≍ ∥Ss
z1(i):

− Ss
z1(j):

∥ ≳ ∆min.

□

Proof of Lemma 2: By the definition of minimal gap in

Assumption 1, we have

L(t) =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{

z(t)(i) = b
}

∥[Sz(i):]
s − [Sb:]

s∥2

≥ 1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{

z(t)(i) = b
}

∆2
min

≥ cℓ(t)∆2
min,

where the last inequality follows from the assumption

mini∈[p] θ(i) ≥ c > 0. □

D. Proof of Theorem 2 (Impossibility)

Proof of Theorem 2 (Impossibility): Consider the general

asymmetric dTBM (26) in the special case that pk = p and

rk = r for all k ∈ [K] with K ≥ 2, 2 ≤ r ≲ p1/3 as p→∞.

For simplicity, we show the minimax rate for the estimation

on the first mode ẑ1; the proof for other modes are essentially

the same.

To prove the minimax rate (10), it suffices to take an

arbitrary S∗ ∈ PS(γ) wih γ < −(K − 1) and construct

(z∗k,θ∗
k) such that

inf
ẑ1

E [pℓ(ẑ1, z
∗
1)|(z∗k,S∗,θ∗

k)] ≥ 1.

We first define a subset of indices Tk ⊂ [pk], k ∈ [K] in

order to avoid the complication of label permutation. Based

on [13, Proof of Theorem 6], we consider the restricted family

of ẑk’s for which the following three conditions are satisfied:

(a) ẑk(i) = zk(i) for all i ∈ Tk; (b) |T c
k | ≍

p

r
;

(c) min
π∈Π

∑

i∈[p]

1{ẑk(i) ̸= π ◦ zk(i)} =
∑

i∈[p]

1{ẑk(i) ̸= zk(i)},

for all k ∈ [K]. Now, we consider the construction:

(i) {z∗k} satisfies properties (a)-(c) with misclassification

sets T c
k for all k ∈ [K];

(ii) {θ∗
k} such that θ∗

k(i) ≤ σr(K−1)/2p−(K−1)/2 for all i ∈
T c

k , k ∈ [K] and maxk∈[K],a∈[r]∥θk,z∗,−1
k (a)∥22 ≍ p/r.

Combining the inequalities (12) and (12) in the proof of

Theorem 2 in [15], we have

inf
ẑ1

E [ℓ(ẑ1, z
∗
1)|(z∗k,S∗,θ∗

k)] ≥
C

r3|T c
1 |
∑

i∈T c
1

inf
ẑ1(i)
{P[ẑ1(i) = 1|z∗1(i) = 2, z∗k,S∗,θ∗

k]

+P[ẑ1(i) = 2|z∗1(i) = 1, z∗k,S∗,θ∗
k]}, (31)

where C is some positive constant, ẑ1 on the left hand side

denote the generic assignment functions in P(γ), and the

infimum on the right hand side is taken over the generic

assignment function family of ẑ1(i) for all nodes i ∈ T c
1 .

Here, the factor r3 = r · r2 in (31) comes from two sources:

r2 ≍
(

r
2

)

comes from the multiple testing burden for all

pairwise comparisons among r clusters; and another r comes

from the number of elements |T c
k | ≍ p/r to be clustered.

Next, we need to find the lower bound of the rightmost side

in (31).

We consider the hypothesis test based on model (26). First,

we reparameterize the model under the construction (i)-(ii).

x∗
a = [Mat1 (S∗ ×2 Θ

∗
2M

∗
2 ×3 · · · ×K Θ

∗
KM∗

K)]a: ,

for all a ∈ [r], where x∗
a’s are centroids in R

pK−1

. Without loss

of generality, we consider the lower bound for the summand

in (31) for i = 1. The analysis for other i ∈ T c
1 are similar.

For notational simplicity, we suppress the subscript i and write

y, θ∗, z in place of y1,θ
∗
1(1) and z1(1), respectively. The

equivalent vector problem for assessing the summand in (31)

is

y = θ∗x∗
z + e, (32)

where z ∈ {1, 2} is an unknown parameter, θ∗ ∈ R+ is

the given heterogeneity degree, x∗
1,x

∗
2 ∈ R

pK−1

are given

centroids, and e ∈ R
pK−1

consists of i.i.d. N(0, σ2) entries.

Then, we consider the hypothesis testing under the model (32):

H0 : z = 1,y = θ∗
x

∗
1 + e ↔ H1 : z = 2,y = θ∗

x
∗
2 + e, (33)

The hypothesis testing (33) is a simple versus simple testing,

since the assignment z is the only unknown parameter in

the test. By Neyman-Pearson lemma, the likelihood ratio test

is optimal with minimal Type I + II error. Under Gaussian

model, the likelihood ratio test of (33) is equivalent to the

least square estimator ẑLS = arg mina={1,2}∥y − θ∗x∗
a∥2F .

Let S = Mat1(S). Note that

∥θ∗x∗
1 − θ∗x∗

2∥F

≤ θ∗∥S∗
1: − S∗

2:∥F
K
∏

k=2

λmax(Θ
∗
kM∗

k )

≤ θ∗∥S∗
1: − S∗

2:∥F max
k∈[K]/{1},a∈[r]

∥θk,z∗,−1
k (a)∥K−1

2

≤ σr(K−1)/2p−(K−1)/22 c4p
(K−1)/2r−(K−1)/2

≤ 2 c4σ,

where λmax(·) denotes the maximal singular value, the second

inequality follows from Lemma 6, and the third inequality
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follows from property (ii) and the boundedness constraint in

PS(γ) such that ∥S∗
1: − S∗

2:∥F ≤ ∥S∗
1:∥F + ∥S∗

2:∥F ≤ 2c4.

Hence, we have

inf
ẑ1(1)
{P[ẑ1(1) = 1|z∗1(1) = 2, z∗k,S∗,θ∗

k]

+P[ẑ1(1) = 2|z∗1(1) = 1, z∗k,S∗,θ∗
k]}

= 2P[ẑLS = 1|z∗1(1) = 2, z∗k,S∗,θ∗
k]

=2P[∥y−θ∗x∗
1∥2F ≤∥y−θ∗x∗

2∥2F |z∗1(1)=2, z∗k,S∗,θ∗
k]

= 2P[2⟨e, θ∗x∗
1−θ∗x∗

2⟩≥∥θ∗x∗
1 − θ∗x∗

2∥2F ]

= 2P[N(0, 1) ≥ θ∗∥x∗
1 − x∗

2∥F /(2σ)]

≥ 2P[N(0, 1) ≥ c4] ≥ c, (34)

where the first equation holds by symmetry, the third equation

holds by rearrangement, the fourth equation holds from the

fact that ⟨e, θ∗x∗
1 − θ∗x∗

2⟩ ∼ N(0, σ∥θ∗x∗
1 − θ∗x∗

2∥F ), and c
is some positive constant in the last inequality.

Plugging the inequality (34) into the inequality (31) for all

i ∈ T c
1 , then, we have

lim inf
p→∞

inf
ẑ1

E [pℓ(ẑ1, z
∗
1)|z∗k,θ∗

k,S∗] ≥ lim inf
p→∞

Ccp

r3
≥ Cc,

where the last inequality follows by the condition r = o(p1/3).
By the discrete nature of the misclustering error, we obtain our

conclusion

lim inf
p→∞

inf
S∗∈PS(γ)

inf
ẑstat

sup
(z∗,θ∗)∈Pz,θ

E [pℓ(ẑstat, z)] ≥ 1.

Last, with constructed z∗k,θ∗
k satisfying properties (i) and

(ii) and γ′ < −(K − 1), we construct a core tensor S∗ such

that ∆2
X∗ ≤ p−(K−1). Based on the property (ii) and the

boundedness constraint of S∗ in P , we still have ∥θ∗x∗
1 −

θ∗x∗
2∥F ≤ 2c4σ. Hence, we obtain the desired result

lim inf
p→∞

inf
ẑ1

sup
(z,S,θ)∈P′(γ′)

E [pℓ(ẑ1, z1)]

≥ lim inf
p→∞

inf
ẑstat

E [pℓ(ẑ1, z
∗
1)|z∗k,S∗,θ∗

k] ≥ 1.

□

E. Proof of Theorem 3 (Impossibility)

Proof of Theorem 3 (Impossibility): The idea of proving

computational hardness is to show the computational lower

bound for a special class of degree-corrected tensor clustering

model with K ≥ 2 and r ≥ 2. We construct the following

special class of higher-order degree-corrected tensor clustering

model. For a given signal level γ ∈ R and noise variance σ,

define a rank-2 symmetric tensor S ∈ R
3×···×3 subject to

S = S(γ) =





1
1
1





⊗K

+ σp−γ/2





1
−1
0





⊗K

. (35)

Then, we consider the signal tensor family

Pshifted(γ) = {X : X = S ×1 M1 ×2 · · · ×K MK , where

membership matrix Mk ∈ {0, 1}p×3
satisfies

|Mk( : , i)| ≍ p for all i ∈ [3] and k ∈ [K]}.
We claim that the constructed family satisfies the following two
properties:

(i) For every γ ∈ R, Pshifted(γ) ⊂ P(γ), where P(γ) is the
degree-corrected cluster tensor family (5).

(ii) For every γ ∈ R, {X − 1: X ∈ Pshifted(γ)} ⊂ Pnondegree(γ),
where Pnondegree(γ) denotes the subfamily of rank-one tensor
block model constructed in the proof of [13, Theorem 7].

The verification of the above two properties is provided in the end
of this proof.

Now, following the proof of [13, Theorem 7], when γ < −K/2,

every polynomial-time algorithm estimator (M̂k)k∈[K] obeys

lim inf
p→∞

sup
X∈Pnondegree(γ)

P(∃k ∈ [K], M̂k ̸= Mk) ≥ 1/2, (36)

under the HPC Conjecture 1. The inequality (36) implies

lim inf
p→∞

sup
X∈Pnondegree(γ)

max
k∈[K]

E[pℓ(zk, ẑk)] ≥ 1.

Based on properties (i)-(ii), we conclude that

lim inf
p→∞

sup
X∈P(γ)

max
k∈[K]

E[pℓ(zk, ẑk)] ≥ 1.

We complete the proof by verifying the properties (i)-(ii). For (i),
we verify that the angle gap for the core tensor S in (35) is on the

order of σp−γ/2. Specifically, write 1 = (1, 1, 1) and e = (1,−1, 0).
We have

Mat(S) =







Vec(1⊗K−1) + σp−γ/2Vec
(

e⊗(K−1)
)

Vec(1⊗K−1) − σp−γ/2Vec
(

e⊗(K−1)
)

Vec(1⊗K−1)







.

Based on the orthogonality ⟨1, e⟩ = 0, the minimal angle gap among
rows of Mat(S) is

∆2
min(S) ≍ tan2(Mat(S)1:, Mat(S)3:)

=

(∥e∥2

∥1∥2

)2(K−1)

σ2d−γ

≍ σ2d−γ .

Therefore, we have shown that Pshifited(γ) = P(γ). Finally, the
property (ii) follows directly by comparing the definition of S in (35)
with that in the proof of [13, Theorem 7]. □

F. Proof of Theorem 4 and Proposition 1

Proof of Theorem 4: We prove Theorem 4 under the dTBM (1)
with symmetric mean tensor, parameters (z,S,θ), fixed r ≥ 1, K ≥
2, and i.i.d. noise. For the case r = 1, we have L(z(0), z) =
0, ℓ(z(0), z) = 0 trivially. Hence, we focus on the proof of the first

mode clustering z
(0)
1 with r ≥ 2; the proofs for the other modes can

be extended similarly. We drop the subscript k in the matricizations

Mk,Xk,Sk and in the estimate z
(0)
1 . We firstly show the proof with

balanced θ.
We firstly show the upper bound for misclustering error ℓ(z(0), z).

First, by Lemma 1, there exists a positive constant such that
minz(i) ̸=z(j)

∥
∥Xs

i: −Xs
j:

∥
∥ ≥ c0∆min. By the balance assumption

on θ and Lemma 8, we have

min
π∈Π

∑

i:z(0)(i) ̸=π(z(i))

θ(i)2 ≤
∑

i∈SI

θ(i)2 + 4
∑

i∈S

θ(i)2, (37)

where

S0 = {i : ∥X̂i:∥ = 0}, S ={i ∈ Sc
0 : ∥x̂z(0)(i)−X

s
i:∥≥c0∆min/2}.
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On one hand, note that for any set P ∈ [p],

∑

i∈P

∥Xi:∥2 =
∑

i∈P

∥θ(i)Sz(i):(ΘM)T,⊗(K−1)∥2

≥
∑

i∈P

θ(i)2 min
a∈[r]
∥Sa:∥2λ2(K−1)

r (ΘM)

≳
∑

i∈P

θ(i)2pK−1r−(K−1),

where the last inequality follows Lemma 6, the assumption that

mini∈[p] θ(i) ≥ c, and the constraint mina∈[r]∥Sa:∥ ≥ c3 in

the parameter space (2). Thus, we have

∑

i∈P

θ(i)2 ≲
∑

i∈P

∥Xi:∥2p−(K−1)rK−1. (38)

On the other hand, note that

∑

i∈S

∥Xi:∥2

≤ 2
∑

i∈S

∥X̂i:∥2+2
∑

i∈S

∥X̂i: −Xi:∥2 (39)

≤ 8

c2
0∆

2
min

∑

i∈S

∥X̂i:∥2∥x̂z(0)(i)−Xs
i:∥2+2∥X̂ −X∥2F

(40)

≤ 16

c2
0∆

2
min

∑

i∈S

∥X̂i:∥2
[

∥x̂z(0)(i)−X̂s
i:∥2+∥X̂s

i:−Xs
i:∥2
]

+2∥X̂ − X∥2F (41)

≤ 16(1+η)

c2
0∆

2
min

∑

i∈S

∥X̂i:∥2∥X̂s
i: −Xs

i:∥2+2∥X̂ −X∥2F (42)

≤
(

16(1+η)

c2
0∆

2
min

+2

)

∥X̂ −X∥2F (43)

≲

(

16(1+η)

c2
0∆

2
min

+2

)

(

pK/2r+pr2+rK
)

σ2, (44)

where inequalities (39) and (41) follow from the triangle

inequality, (40) follows from the definition of S, (42) follows

from the update rule of k-means in Step 6 of Sub-algorithm 1,

(43) follows from Lemma 4, and the last inequality (44)

follows from Lemma 7. Also, note that

∑

i∈S0

∥Xi:∥2 =
∑

i∈S0

∥X̂i: −Xi:∥2

≤ ∥X̂ − X∥2F
≲

(

pK/2r + pr2 + rK
)

σ2, (45)

where the equation follows from the definition of S0. There-

fore, combining the inequalities (37), (38), (44), and (45),

we have

min
π∈Π

∑

i:z(0)(i) ̸=π(z(i))

θ(i)2

≲

(

∑

i∈S

∥Xi:∥2 +
∑

i∈S0

∥Xi:∥2
)

p−(K−1)rK−1

≲
σ2rK−1

∆2
minpK−1

(

pK/2r + pr2 + rK
)

. (46)

With the assumption that mini∈[p] θ(i) ≥ c, we finally obtain

the result

ℓ(z(0), z) ≲
1

p
min
π∈Π

∑

i:z(0)(i) ̸=π(z(i))

θ(i)2 ≲
rKp−K/2

SNR
,

where the last inequality follows from the definition SNR =
∆2

min/σ2.

Without the balanced θ, we have

minz(i) ̸=z(j)

∥

∥Xs
i: −Xs

j:

∥

∥ ≥ c0∆X . Replacing the definition

of S with ∆X , we obtain the desired result.

Next, we show the bound for L(z(0), z). Note that Xs
i: have

only r different values. We let Xs
a = Xs

i: for all i such that

z(i) = a, a ∈ [r].
Notice that

∥Xi:∥2 ≳ pK−1r−(K−1)

and

∥Xi: − X̂i:∥2 ≤ ∥X̂ − X∥2F ≲ pK/2r + pr2 + rK .

Therefore, when p is large enough, we have
∑

i∈[p]

∥Xi:∥2∥X̂s
i − x̂z(0)(i)∥2

≲
∑

i∈[p]

(

∥Xi:∥2 − ∥Xi: − X̂i:∥2
)

∥X̂s
i: − x̂z(0)(i)∥2

≲
∑

i∈[p]

∥X̂i:∥2∥X̂s
i: − x̂z(0)(i)∥2

≲ η
∑

i∈[p]

∥X̂i:∥2∥X̂s
i: −Xs

i:∥2

≲ ∥X̂ − X∥2F
≲ pK/2r + pr2 + rK . (47)

Hence, we have
∑

i∈[p]

∥X̂s
i: − x̂z(0)(i)∥2 ≲

∑

i∈[p]

θ(i)2∥X̂s
i − x̂z(0)(i)∥2

≲
rK−1

pK−1

∑

i∈[p]

∥Xi:∥2∥X̂s
i:−x̂z(0)(i)∥2

≲
rK−1

pK−1

(

pK/2r + pr2 + rK
)

,

(48)

where the first inequality follows from the assumption

mini∈[p] θ(i) ≥ c > 0, the second inequality follows from

the inequality (38), and the last inequality comes from the

inequality (47).

Next, we consider the following quantity,
∑

i∈[p]

θ(i)∥Xs
i: − x̂z(0)(i)∥2

≲
∑

i∈[p]

θ(i)2∥Xs
i: − X̂s

i:∥2 +
∑

i∈[p]

θ(i)2∥X̂s
i: − x̂z(0)(i)∥2

≲
∑

i∈[p]

θ(i)2

∥Xi:∥2
∥Xi: − X̂i:∥2+

∑

i∈[p]

θ(i)2∥X̂s
i:−x̂z(0)(i)∥2

≲
rK−1

pK−1

(

pK/2r + pr2 + rK
)

, (49)
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where the first inequality follows from the assumption of θ(i)
and triangle inequality, the second inequality follows from

Lemma 4, and the last inequality follows from (48). In addi-

tion, with Theorem 4 and the condition SNR ≳ p−K/2 log p,

for all a ∈ [r], we have

|z−1(a) ∩ (z(0))−1(a)|≥|z−1(a)| − pℓ(z(0), z) ≳
p

r
− p

log p
≳

p

r
,

when p is large enough. Therefore, for all a ∈ [r], we have

∥x̂a −X
s
a∥2 =

∑

i∈z−1(a)∩(z(0))−1(a)

∥
∥
∥X

s
i: − x̂z(0)(i)

∥
∥
∥

2

|z−1(a) ∩ (z(0))−1(a) |

≲
r

p




∑

i∈[p]

∥Xs
i:−X̂

s
i:∥2+

∑

i∈[p]

∥X̂s
i:−x̂z(0)(i)∥

2





≲
rK

pK

(

pK/2r + pr2 + rK
)

, (50)

where the last inequality follows from the inequality (48).

Finally, we obtain

L(0) =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{

z(0)(i) = b
}

∥[Sz(i):]
s − [Sb:]

s∥2

≲
1

p

∑

i∈[p],z(0)(i) ̸=z(i)

θ(i)∥Xs
i: −Xs

z(0)(i)∥2

≲
1

p

∑

i∈[p],z(0)(i) ̸=z(i)

θ(i)
(

∥Xs
i: − x̂z(0)(i)∥2

+ ∥x̂z(0)(i) −Xs
z(0)(i)∥2

)

≤ C̄
rK

pK

(

pK/2r + pr2 + rK
)

,

≤ C̄∆2
min

C̃r log p

where the first inequality follows from Lemma 1, the third

inequality follows from inequalities (49) and (50), and the

last inequality follows from the assumption that SNR ≥
C̃p−K/2 log p. □

Proof of Proposition 1: Algorithm 2 shares the same algo-

rithm strategy as Sub-algorithm 1 but with a different estima-

tion of the mean tensor, X̂ ′. Hence, the proof of Proposition 1

follows the same proof idea with the proof of Theorem 4.

Replacing the estimation X̂ by X̂ ′ in the proof of Theorem 4,

we have

min
π∈Π

∑

i:z(0)(i) ̸=π(z(i))

θ(i)2

≲

(

∑

i∈S

∥Xi:∥2 +
∑

i∈S0

∥Xi:∥2
)

p−(K−1)rK−1. (51)

By inequalities (43) and (45), we have

∑

i∈S

∥Xi:∥2 ≤
(

16(1 + η)

c2
0∆

2
min

+ 2

)

∥X̂ ′ −X∥2F , (52)

∑

i∈S0

∥Xi:∥2 ≤ ∥X̂ ′ −X∥2F . (53)

Hence, it suffices to find the upper bound of the esti-

mation error ∥X̂ ′ − X∥2F to complete our proof. Note

that the matricization Matsq(X ) ∈ R
p⌊K/2⌋×p⌈K/2⌉

has

rank(Matsq(X )) ≤ r⌈K/2⌉, and Bernoulli random variables

follow the sub-Gaussian distribution with bounded variance

σ2 = 1/4. Apply Lemma 9 to Y = Matsq(Y),X =
Matsq(X ), and X̂ = Matsq(X̂ ′). Then, with probability

tending to 1 as p→∞, we have

∥X̂ ′ −X∥2F = ∥Matsq(X̂ ′)−Matsq(X )∥2F ≲ p⌈K/2⌉. (54)

Combining the estimation error (54) with inequalities (52),

(53), and (51), we obtain

min
π∈Π

∑

i:z(0)(i) ̸=π(z(i))

θ(i)2 ≲
σ2rK−1

∆2
minpK−1

p⌈K/2⌉. (55)

Replace the inequality (46) in the proof of Theorem 4 by

inequality (55). With the the same procedures to obtain

ℓ(ẑ(0), z) and L(ẑ(0), z) for Theorem 4, we finish the proof

of Proposition 1. □

Useful Definitions and Lemmas for the Proof of Theorem 4:

Lemma 4 (Basic Inequality): For any two nonzero vectors

v1,v2 of same dimension, we have

sin(v1,v2) ≤ ∥vs
1 − vs

2∥ ≤
2 ∥v1 − v2∥

max (∥v1∥ , ∥v2∥)
.

Proof of Lemma 4: For the first inequality, let α ∈ [0, π]
denote the angle between v1 and v2. We have

∥vs
1 − vs

2∥ =
√

2(1− cos α) = 2 sin
α

2
≥ sinα,

where the equations follow from the properties of trigono-

metric function and the inequality follows from the fact the

cos α
2 ≤ 1 and sinα = 2 sin α

2 cos α
2 > 0 for α ∈ [0, π].

For the second inequality, without loss of generality,

we assume ∥v1∥ ≥ ∥v2∥. Then

∥vs
1 − vs

2∥ =

∥

∥

∥

∥

v1

∥v1∥
− v2

∥v1∥
+

v2

∥v1∥
− v2

∥v2∥

∥

∥

∥

∥

≤ ∥v1 − v2∥
∥v1∥

+
∥v2∥ ∥v1∥ − ∥v2∥
∥v1∥ ∥v2∥

≤ 2 ∥v1 − v2∥
∥v2∥

.

Therefore, Lemma 4 is proved. □

Definition 3 (Weighted Padding Vectors): For a vector a =
[[ai]] ∈ R

d, we define the padding vector of a with the weight

collection w = {wi : wi = [[wik]] ∈ R
pi}di=1 as

Padw(a) = [a1 ◦w1, . . . , ad ◦wd]
T , (56)

where ai◦wi = [aiwi1, . . . , aiwipi ]
T , for all i ∈ [d]. Here we

also view Padw(·) : R
d 7→ R

∑
i∈[d] pi as an operator. We have

the bounds of the weighted padding vector

min
i∈[d]
∥wi∥2∥a∥2 ≤ ∥Padw(a)∥2 ≤ max

i∈[d]
∥wi∥2∥a∥2. (57)

Further, we define the inverse weighted padding operator

Pad−1 : R

∑
i∈[d] pi 7→ R

d which satisfies

Pad−1
w (Padw(a)) = a.
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Lemma 5 (Angle for Weighted Padding Vectors): Suppose

that we have two nonzero vectors a, b ∈ R
d. Given the

weight collection w, we have

mini∈[d]∥wi∥
maxi∈[d]∥wi∥

sin(a, b)
∗
≤ sin(Padw(a), Padw(b))

∗∗
≤ maxi∈[d]∥wi∥

mini∈[d]∥wi∥
sin(a, b). (58)

Proof of Lemma 5: We prove the two inequalities separately

with similar ideas.

First, we prove the inequality ** in (58). Decomposing b

yields

b = cos(a, b)
∥b∥
∥a∥a + sin(a, b)

∥b∥
∥a⊥∥a

⊥,

where a⊥ ∈ R
d is in the orthogonal complement space of a.

By the Definition 3, we have

Padw(b)=cos(a, b)
∥b∥
∥a∥Padw(a)+sin(a, b)

∥b∥
∥a⊥∥Padw(a⊥).

Note that Padw(a⊥) is not necessary equal to the orthogonal

vector of Pad(a); i.e., Padw(a⊥) ̸= (Padw(a))⊥. By the

geometry property of trigonometric functions, we obtain

sin(Padw(a), Padw(b)) ≤ ∥b∥∥Padw(a⊥)∥
∥a⊥∥∥Padw(b)∥ sin(a, b)

≤ maxi∈[d]∥wi∥
mini∈[d]∥wi∥

sin(a, b),

where the second inequality follows by applying the prop-

erty (57) to vectors b and a⊥.

Next, we prove inequality * in (58). With the decomposi-

tion of Padw(b) and the inverse weighted padding operator,

we have

b = cos(Padw(a), Padw(b))
∥Padw(b)∥
∥Padw(a)∥a

+ sin(Padw(a), Padw(b))
∥Padw(b)∥

∥(Padw(a))⊥∥Pad
−1
w ((Padw(a))⊥).

Therefore, we obtain

sin(a, b)

≤ ∥Padw(b)∥∥Pad−1
w ((Padw(a))⊥)∥

∥(Padw(a))⊥∥∥b∥ sin(Padw(a), Padw(b))

≤ maxi∈[d]∥wi∥
mini∈[d]∥wi∥

sin(Padw(a), Padw(b)),

where the second inequality follows by applying the prop-

erty (57) to vectors b and Pad−1
w ((Padw(a))⊥). □

Lemma 6 (Singular Value of Weighted Membership Matrix):

Under the parameter space (2) and assumption that

mini∈[p] θ(i) ≥ c for some constant c > 0, the singular

values of ΘM are bounded as
√

p/r ≲
√

min
a∈[r]
∥θz−1(a)∥2 ≤ λr(ΘM)

≤ ∥ΘM∥σ ≤
√

max
a∈[r]
∥θz−1(a)∥2 ≲ p/r.

Proof of Lemma 6: Note that

(ΘM)T
ΘM = D,

with D = diag(D1, . . . , Dr) where Da = ∥θz−1(a)∥2, a ∈ [r].
By the definition of singular values, we have
√

min
a∈[r]
∥θz−1(a)∥2≤λr(ΘM)≤∥ΘM∥σ≤

√

max
a∈[r]
∥θz−1(a)∥2.

Since that mini∈[p] θ(i) ≥ c by the constraints in parameter

space, we have

min
a∈[r]
∥θz−1(a)∥2 ≥ c2 min

a∈[r]
|z−1(a)| ≳ p

r
,

where the last inequality follows from the constraint in param-

eter space (2). Finally, notice that
√

max
a∈[r]
∥θz−1(a)∥2 ≤ max

a∈[r]

√

∥θz−1(a)∥21 ≲
p

r
.

Therefore, we complete the proof of Lemma 6. □

Lemma 7 (Singular-Value Gap-Free Tensor Estimation

Error Bound): Consider an order-K tensor A = X + Z ∈
R

p×···×p, where X has Tucker rank (r, . . . r) and Z has

independent sub-Gaussian entries with parameter σ2. Let X̂
denote the double projection estimated tensor in Step 2 of

Sub-algorithm 1 in the main paper. Then with probability at

least 1−C exp (−cp), we have

∥X̂ − X∥2F ≤ Cσ2
(

pK/2r + pr2 + rK
)

,

where C, c are some positive constants.

Proof of Lemma 7: See [13, Proposition 1]. □

Lemma 8 (Upper Bound of Misclustering Error): Let z :
[p] 7→ [r] be a cluster assignment such that |z−1(a)| ≍ p/r
for all a ∈ [r] with r ≥ 2. Let node i correspond to a vector

xi = θ(i)vz(i) ∈ R
d, where {va}ra=1 are the cluster centers

and θ = [[θ(i)]] ∈ R
p
+ is the positive degree heterogeneity.

Assume that θ satisfies the balanced assumption (6) such that
maxa∈[r]∥θz−1(a)∥

2

mina∈[r]∥θz−1(a)∥2 = 1 + o(1). Consider an arbitrary estimate

ẑ with x̂i = v̂ẑ(i) for all i ∈ S. Then, if

min
a̸=b∈[r]

∥va − vb∥ ≥ 2c, (59)

for some constant c > 0, we have

min
π∈Π

∑

i:ẑ(i) ̸=π(z(i))

θ(i)2 ≤
∑

i∈S0

θ(i)2 + 4
∑

i∈S

θ(i)2,

where S0 is defined in Step 4 of Sub-algorithm 1 and

S = {i ∈ Sc
0 : ∥x̂i − vz(i)∥ ≥ c}.

Proof of Lemma 8: For each cluster u ∈ [r], we use Cu to

collect the subset of points for which the estimated and true

positions x̂i,xi are within distance c. Specifically, define

Cu = {i ∈ z−1(u) ∩ Sc
0 : ∥x̂i − vz(i)∥ < c},

and divide [r] into three groups based on Cu as

R1 = {u ∈ [r] : Cu = ∅},
R2 = {u ∈ [r] : Cu ̸= ∅, for all i, j ∈ Cu, ẑ(i) = ẑ(j)},
R3 = {u ∈ [r] : Cu ̸= ∅, there exist i, j ∈ Cu, ẑ(i) ̸= ẑ(j)}.
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Note that ∪u∈[r]Cu = Sc
0/Sc and Cu∩Cv = ∅ for any u ̸= v.

Suppose there exist i ∈ Cu and j ∈ Cv with u ̸= v ∈ [r] and

ẑ(i) = ẑ(j). Then we have

∥vz(i) − vz(j)∥ ≤ ∥vz(i) − x̂i∥+∥vz(j)−x̂j∥ < 2c,

which contradicts to the assumption (59). Hence, the estimates

ẑ(i) ̸= ẑ(j) for the nodes i ∈ Cu and j ∈ Cv with u ̸= v.

By the definition of R2, the nodes in ∪u∈R2
Cu have the same

assignment with z and ẑ. Then, we have

min
π∈Π

∑

i:ẑ(i) ̸=π(z(i))

θ(i)2 ≤
∑

i∈S0

θ(i)2 +
∑

i∈S

θ(i)2 +
∑

i∈∪u∈R3
Cu

θ(i)2.

We only need to bound
∑

i∈∪u∈R3
Cu

θ(i)2 to finish the proof.

Note that every Cu with u ∈ R3 contains at least two

nodes assigned to different clusters by ẑ. Then, we have

|R2| + 2|R3| ≤ r. Since |R1| + |R2| + |R3| = r, we have

|R3| ≤ |R1|. Hence, we obtain

∑

i∈∪u∈R3
Cu

θ(i)2 ≤ |R3|max
a∈[r]
∥θz−1(a)∥2

≤ |R1|max
a∈[r]
∥θz−1(a)∥2

≤ maxa∈[r]∥θz−1(a)∥2
mina∈[r]∥θz−1(a)∥2

∑

i∈∪u∈R1
z−1(u)

θ(i)2

≤ 2
∑

i∈S

θ(i)2,

where the last inequality holds by the balanced assumption on

θ when p is large enough, and the fact that ∪u∈R1z
−1(u) ⊂ S.

□

Lemma 9 (Low-Rank Matrix Estimation): Let Y = X +
E ∈ R

m×n, where n > m and E contains independent mean-

zero sub-Gaussian entries with bounded variance σ2. Suppose

rank(X) = r. Consider the least square estimator

X̂ = arg min
X′∈Rm×n,rank(X′)≤r

∥X ′ − Y ∥2F .

There exist positive constants C1, C2 such that

∥X̂ −X∥2F ≤ C1σ
2 nr,

with probability at least 1− exp(−C2nr).
Proof of Lemma 9: Note that ∥X̂ −Y ∥2F ≤ ∥X −Y ∥2F by

the definition of least square estimator.
We have

∥X̂ −X∥2
F

≤ 2
〈

X̂ −X,Y −X
〉

≤ 2∥X̂ −X∥F sup
T∈Rm×n,rank(T )≤2r,∥T∥F =1

⟨T ,Y −X⟩ (60)

with probability at least 1 − exp(−C2nr), where the second

inequality follows by re-arrangement.

Consider the SVD for matrix T = UΣV T with orthogonal

matrices U ∈ R
m×2r,V ∈ R

n×2r and diagonal matrix Σ ∈

R
2r×2r. We have

sup
T∈Rm×n,rank(T )≤2r,∥T ∥F =1

⟨T ,Y −X⟩

= sup
T∈Rm×n,rank(T )≤2r,∥T ∥F =1

⟨UΣ,EV ⟩

= sup
v∈R2nr

vT e ≤ Cσ
√

nr, (61)

with probability 1 − exp(−C2nr), where C, C2 are two

positive constants, the vectorization e = Vec(EV ) ∈ R
2nr

has independent mean-zero sub-Gaussian entries with bounded

variance σ2 due to the orthogonality of V , and the last

inequality follows from [36, Theorem 1.19].

Combining inequalities (60) and (61), we obtain the desired

conclusion. □

G. Proofs of Theorem 2 (Achievability) and Theorem 5

Proof of Theorem 2 (Achievability) and Theorem 5: The

proofs of Theorem 2 (Achievability) and Theorem 5 share the

same idea. We prove the contraction step by step. In each

step, we show the specific procedures for the algorithm loss

and address the MLE loss by stating the difference.

We consider dTBM (1) with symmetric mean tensor, param-

eters (z,S,θ), fixed r ≥ 1, K ≥ 2, and i.i.d. noise. Let

(ẑ, Ŝ, θ̂) denote the MLE in (9), and (z
(0)
k ,S(0),θ

(0)
k ) denote

parameters related to the initialization. For the case r = 1,

ℓ(z
(t)
k , z) = 0 trivially for all t ≥ 0, k ∈ [k]. Hence, we focus

on the proof of the first mode clustering z
(t+1)
1 with r ≥ 2; the

extension for other modes can be obtained similarly. We drop

the subscript k in the matricizations Θ,Mk,Sk,Xk and in

estimates z
(0)
k , z

(t+1)
k , z

(t)
k for ease of the notation. Without

loss of generality, we assume that the variance σ = 1, and that

the identity permutation minimizes the initial misclustering

error; i.e., π(0) = arg minπ∈Π

∑

i∈[p] 1
{

z(0)(i) ̸= π ◦ z(i)
}

and π(0)(a) = a for all a ∈ [r], and so for ẑ.

Step 1 (Notation and Conditions): We first introduce addi-

tional notations and the necessary conditions used in the proof.

We will verify that the conditions hold in our context under

high probability in the last step of the proof.

Notation:

1) Projection. We use Id to denote the identity matrix of

dimension d. For a vector v ∈ R
d, let Proj(v) ∈ R

d×d denote

the projection matrix to v. Then, Id−Proj(v) is the projection

matrix to the orthogonal complement v⊥.
2) We define normalized membership matrices

W = M
(

diag(1T
p M)

)−1

,W (t) = M
(t)
(

diag(1T
p M

(t))
)−1

,

weighted normalized membership matrices

P = ΘM(diag(∥θz−1(1)∥2, . . . , ∥θz−1(r)∥2))−1,

P̂ = Θ̂M̂(diag(∥θ̂z−1(1)∥2, . . . , ∥θ̂z−1(r)∥2))−1,

and the dual normalized and dual weighted normalized mem-

bership matrices

V = W⊗(K−1), V (t) =
(

W (t)
)⊗(K−1)

,

Q = P⊗K−1, Q̂ = P̂⊗K−1.

Also, let B = (ΘM)⊗(K−1), B̂ = (Θ̂M̂)⊗(K−1). By the

definition, we have BT Q = B̂T Q̂ = IrK−1 .
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3) We use S(t) to denote the estimator of S in the t-th
iteration, Ŝ for MLE, S̃ to denote the oracle estimator of S
given true assignment z, and S̄ for weighted oracle estimator;

i.e.,

S(t) = Y ×1

(

W (t)
)T

×2 · · · ×K

(

W (t)
)T

,

S̃ = Y ×1 W T ×2 · · · ×K W T ,

Ŝ = Y ×1 P̂ T ×2 · · · ×K P̂ T ,

S̄ = Y ×1 P T ×2 · · · ×K P T .

4) We define the matricizations of tensors

S = Mat(S), Y = Mat(Y), X = Mat(X ), E = Mat(E),
S(t) = Mat(S(t)), Ŝ = Mat(Ŝ), S̃ = Mat(S̃), S̄ = Mat(S̄).

5) We define the extended core tensor on K − 1 modes

A = SBT , Ā = S̄BT , Â = ŜB̂T .

By the assumption in parameter space (2), we have A =
PX = WX, Â = P̂ X̂ = Ŵ X̂.

6) We define the angle-based misclustering loss in the t-th
iteration and loss for MLE

L(t) =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1{z(t)(i) = b}∥[Sz(i):]
s − [Sb:]

s∥2,

L(ẑ) =
1

p

∑

i∈[p]

θ(i)2
∑

b∈[r]

1{ẑ(i) = b}∥[Az(i):]
s − [Ab:]

s∥2.

We also define the loss for oracle and weighted oracle estima-

tors

ξ =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{〈

Ei:V , [S̃z(i):]
s − [S̃b:]

s
〉

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2
}

· ∥[Sz(i):]
s − [Sb:]

s∥2,

ξ′ =
1

p

∑

i∈[p]

θ(i)2
∑

b∈[r]

1

{

〈

Ei:, [Āz(i):]
s − [Āb:]

s
〉

≤ −m′

4

√

pK−1

rK−1
∥[Az(i):]

s − [Ab:]
s∥2F

}

· ∥[Az(i):]
s − [Ab:]

s∥2.

where m and m′ are some positive universal constants.

Then we introduce the necessary conditions in Condition 1,

shown at the bottom of the next page.

Step 2 (Misclustering Loss Decomposition): Next, we derive

the upper bound of L(t+1) for t = 0, 1, . . . , T − 1. By Sub-

algorithm 2, we update the assignment in t-th iteration via

z(t+1)(i) = arg min
a∈[r]

∥[Yi:V
(t)]s − [S(t)

a: ]s∥2,

following the facts that ∥as−bs∥2 = 1−cos(a, b) for vectors

a, b of same dimension and Mat(Yd) = Y V (t) where Yd is

the reduced tensor defined in Step 8 of Sub-algorithm 2. Then

the event z(t+1)(i) = b implies

∥[Yi:V
(t)]s − [S

(t)
b: ]s∥2 ≤ ∥[Yi:V

(t)]s − [S
(t)
z(i):]

s∥2. (67)

Note that the event (67) also holds for the degenerate entity

i with ∥Yi:V
(t)∥ = 0 due to the convention that as = 0 if

a = 0. Arranging the terms in (67) yields the decomposition

2
〈

Ei:V , [S̃z(i):]
s − [S̃b:]

s
〉

≤ ∥Xi:V
(t)∥

(

−∥[Sz(i):]
s − [Sb:]

s∥2+G
(t)
ib +H

(t)
ib

)

+F
(t)
ib ,

where

F
(t)
ib = 2

〈

Ei:V
(t),
(

[S̃z(i):]
s−[S

(t)

z(i):]
s
)

−
(

[S̃b:]
s−[S

(t)
b: ]s

)〉

+2
〈

Ei:

(

V − V
(t)
)

, [S̃z(i):]
s − [S̃b:]

s
〉

, (68)

G
(t)
ib =

(

∥[Xi:V
(t)]s − [S

(t)

z(i):]
s∥2

−∥[Xi:V
(t)]s − [W T

:z(i)Y V
(t)]s∥2

)

−
(

∥[Xi:V
(t)]s − [S

(t)
b: ]s∥2

−∥[Xi:V
(t)]s − [W T

:b Y V
(t)]s∥2

)

, (69)

H
(t)
ib = ∥[Xi:V

(t)]s − [W T
:z(i)Y V

(t)]s∥2 − ∥[Xi:V
(t)]s

−[W T
:b Y V

(t)]s∥2 + ∥[Sz(i):]
s − [Sb:]

s∥2. (70)

Therefore, the event 1
{

z(t+1)(i) = b
}

can be upper

bounded as

1

{

z(t+1)(i) = b
}

≤ 1

{

z(t+1)(i) = b,
〈

Ej:V , [S̃z(i):]
s − [S̃b:]

s
〉

≤ −1

4
∥Xi:V

(t)∥∥[Sz(i):]
s − [Sb:]

s∥2

}

+1

{

z(t+1)(i) = b,
1

2
∥[Sz(i):]

s − [Sb:]
s∥2

≤ ∥Xi:V
(t)∥−1F

(t)
ib + G

(t)
ib + H

(t)
ib

}

. (71)

Note that

∥Xi:V
(t)∥ = θ(i)∥Si:(ΘM)⊗(K−1),T W (t),⊗K−1∥

≥ θ(i)∥Sz(i):∥λK−1
r (ΘM)λK−1

r (W (t))

≥ θ(i)m, (72)

where the first inequality follows from the property of eigen-

values; the last inequality follows from Lemma 6, Lemma 10,

and assumption that mina∈[r]∥Sz(i):∥ ≥ c3 > 0; and m > 0 is

a positive constant related to c3. Plugging the lower bound of

∥Xi:V
(t)∥ (72) into the inequality (71) gives

1

{

z(t+1)(i) = b
}

≤ Aib + Bib, (73)
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where

Aib = 1

{

z(t+1)(i) = b,
〈

Ei:V , [S̃z(i):]
s − [S̃b:]

s
〉

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2

}

,

Bib = 1

{

z(t+1)(i) = b,
1

2
∥[Sz(i):]

s − [Sb:]
s∥2

≤ (θ(i)m)−1F
(t)
ib + G

(t)
ib + H

(t)
ib

}

.

Taking the weighted summation of (73) over i ∈ [p] yields

L(t+1) ≤ ξ +
1

p

∑

i∈[p]

∑

b∈[r]/z(i)

ζ
(t)
ib ,

where ξ is the oracle loss such that

ξ =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]/z(i)

Aib∥[Sz(i):]
s − [Sb:]

s∥2. (74)

Similarly to ξ in (74), we define

ζ
(t)
ib = θ(i)Bib∥[Sz(i):]

s − [Sb:]
s∥2.

Now, we show the decomposition for MLE loss. By the

definition of Gaussian MLE, the estimator θ̂ satisfies θ̂(i) =
〈

Yi:, Âẑ(i):

〉

/∥Âẑ(i):∥2F for all i ∈ [p]. Hence, we have

ẑ(i) = arg min
a∈[r1]

∥[Yi:]
s − [Âa:]

s∥2F ,

and the decomposition

L(ẑ) ≤ ξ′ +
1

p

∑

i∈[p]

∑

b∈[r]/z(i)

ζ ′ib,

where ζ ′ib = θ(i)2B′
ib∥[Az(i):]

s − [Ab:]
s∥2 and

A′
ib = 1

{

ẑ(i) = b,
〈
Ei:, [Āz(i):]

s − [Āb:]
s〉

≤ −m′

4

√

pK−1

rK−1
∥[Az(i):]

s − [Ab:]
s∥2

F

}

,

B′
ib = 1

{

ẑ(i) = b,−1

2
∥[Az(i):]

s − [Ab:]
s∥2

F

≤
√

rK−1

(m′)2pK−1
F̂ib + Ĝib + Ĥib

}

with terms

F̂ib = 2
〈

Ei:, ([Āz(i):]
s−[Âa:]

s)−([Āb:]
s−[Âb:]

s)
〉

,

Ĝib =
(

∥Xs
i:−[Âz(i):]

s∥2F−∥Xs
i:−[P T

:z(i)Y Q̂B̂T ]s∥2F
)

−
(

∥Xs
i:−[Âb:]

s∥2F−∥Xs
i:−[P T

:b Y Q̂B̂T ]s∥2F
)

,

Ĥib = ∥Xs
i:−[P T

:z(i)Y Q̂B̂T ]s∥2F−∥Xs
i:−[P T

:b Y Q̂B̂T]s∥2F
+∥As

z(i):−As
b:∥2F .

Step 3 (Derivation of Contraction Inequality): In this step

we derive the upper bound of ζib and obtain the contraction

inequality (24). We show the analysis in the following

one-column box for a better presentation, shown at the bottom

of the next page.

Step 4 (Verification of Condition 1): Last, we verify the

Condition 1 under high probability to finish the proof. Note

that the inequalities (62), (63), and (64) describe the property

of the sub-Gaussian noise tensor E , and the readers can find

the proof directly in [13, Step 5, Proof of Theorem 2]. The

initial condition (66) for MLE is satisfied by Lemma 13. Here,

we include only the verification of inequalities (65) and (66)

for algorithm estimators.
Now, we verify the oracle loss condition (65). Recall the

definition of ξ,

ξ =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{〈

Ei:V , [S̃z(i):]
s − [S̃b:]

s
〉

Condition 1: (Intermediate Results) Let Op,r denote the collection of all the p-by-r matrices with orthonormal columns.

We have

∥EV ∥σ ≲

√

rK−1

pK−1

(

p1/2 + r(K−1)/2
)

, ∥EV ∥F ≲

√

r2(K−1)

pK−2
, ∥W T

a:EV ∥ ≲
rK

pK/2
, for all a ∈ [r], (62)

sup
Uk∈Op,r,k=2,...,K

∥E(U2 ⊗ · · · ⊗UK)∥σ ≲
(√

rK−1 + K
√

pr
)

, (63)

sup
Uk∈Op,r,k=2,...,K

∥E(U2 ⊗ · · · ⊗UK)∥F ≲
(

√

prK−1 + K
√

pr
)

, (64)

ξ ≤ exp

(

−M
∆2

minpK−1

rK−1

)

, ξ′ ≲ exp

(

−∆2
minpK−1

rK−1

)

, (65)

L(t) ≤ C̄

C̃

∆2
min

r log p
, for t = 0, 1, . . . , T, L(ẑ) ≤ C̄

C̃

∆2
min

r log p
, (66)

where M is a positive universal constant in inequality (84), C̄, C̃ are positive universal constants in the proof of Theorem 4

and assumption SNR ≥ C̃p−K/2 log p, respectively. Further, inequality (62) holds by replacing V to V (t),Q, Q̂ and W:a to

W
(t),T
:a ,P T

:a , P̂ T
:a when initialization condition (66) holds.
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≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2
}

·∥[Sz(i):]
s − [Sb:]

s∥2.

Let ei = Ei:V denote the aggregated noise vector for all i ∈
[p], and ei’s are independent zero-mean sub-Gaussian vector

in R
rK−1

. The entries in ei are independent zero-mean sub-

Gaussian variables with sub-Gaussian norm upper bounded by

m1

√

rK−1/pK−1 with some positive constant m1. We have

the probability inequality

P

(

〈

ei, [S̃z(i):]
s − [S̃b:]

s
〉

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2
)

≤ P1 + P2 + P3,

where

P1 = P

(
〈
ei, [Sz(i):]

s−[Sb:]
s〉 ≤−θ(i)m

8
∥[Sz(i):]

s−[Sb:]
s∥2

)

,

P2 = P

(〈

ei, [S̃z(i):]
s−[Sz(i):]

s
〉

≤−θ(i)m

16
∥[Sz(i):]

s−[Sb:]
s∥2

)

,

P3 = P

(〈

ei, [Sb:]
s−[S̃b:]

s
〉

≤−θ(i)m

16
∥[Sz(i):]

s−[Sb:]
s∥2

)

.

For P1, notice that the inner product
〈

ej ,S
s
z(j): − Ss

b:

〉

is

a sub-Gaussian variable with sub-Gaussian norm bounded

by m2

√

rK−1/pK−1∥Ss
z(i): − Ss

b:∥ with some positive

Step 3: Choose the constant C̃ in the condition SNR ≥ C̃p−K/2 log p that satisfies the condition of Lemma 11, inequalities (98),

and (102). Note that

ζ
(t)
ib = θ(i)∥[Sz(i):]

s − [Sb:]
s∥21

{

z(t+1)(i) = b,
1

2
∥[Sz(i):]

s − [Sb:]
s∥2 ≤ (θ(i)m)−1F

(t)
ib + G

(t)
ib + H

(t)
ib

}

≤ θ(i)∥[Sz(i):]
s − [Sb:]

s∥21
{

z(t+1)(i) = b,
1

4
∥[Sz(i):]

s − [Sb:]
s∥2 ≤ (θ(i)m)−1F

(t)
ib + G

(t)
ib

}

≤ 641
{

z(t+1)(i) = b
}

(

(F
(t)
ib )2

cm2∥[Sz(i):]s − [Sb:]s∥2
+

θ(i)(G
(t)
ib )2

∥[Sz(i):]s − [Sb:]s∥2

)

where the first inequality follows from the inequality (89) in Lemma 11, and the last inequality follows from the assumption

that mini∈[p] θ(i) ≥ c > 0. Following [13, Step 4, Proof of Theorem 2] and Lemma 11, we have

1

p

∑

i∈[p]

∑

b∈[r]/z(i)

1

{

z(t+1)(i) = b
} (F

(t)
ib )2

cm2∥[Sz(i):]s − [Sb:]s∥2
≤ C0C̄

cm2C̃2
L(t),

for a positive universal constant C and

1

p

∑

i∈[p]

∑

b∈[r]/z(i)

1

{

z(t+1)(i) = b
} θ(i)(G

(t)
ib )2

∥[Sz(i):]s − [Sb:]s∥2
≤ 1

512

1

p

∑

i∈[p]

θ(i)
∑

b∈[r]/z(i)

1

{

z(t+1)(i) = b
}

(∆2
min + L(t))

≤ 1

512
(L(t+1) + L(t)),

where the last inequality follows from the definition of L(t) and the constraint of θ in parameter space (2). For C̃ also satisfies

C0C̄

cm2C̃2
≤ 1

512
, (75)

we have

1

p

∑

i∈[p]

∑

b∈[r]/z(i)

ζ
(t)
ib ≤

1

8
L(t+1) +

1

4
L(t). (76)

Plugging the inequality (76) into the decomposition (74), we obtain the contraction inequality

L(t+1) ≤ 3

2
ξ +

1

2
L(t), (77)

where 1
2 is the contraction parameter.

Therefore, with C̃ satisfying inequalities (75), (98) and (102), we obtain the conclusion in Theorem 5 via inequality (77)

combining the inequality (65) in Condition 1 and Lemma 2.

We also have the contraction inequality for MLE.

Following the same derivation of (77) with the upper bound of F̂ib, Ĝib, Ĥib in Lemma 12, we also have

L(ẑ) ≤ 3

2
ξ′ +

1

2
L(ẑ),

which indicates the conclusion ℓ(ẑ, z) ≲ ∆2
min exp

(

−pK−1

rK−1 ∆2
min

)

.
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constant m2. Then, by Chernoff bound, we have

P1 ≲ exp

(

−pK−1

rK−1
∥[Sz(j):]

s − [Sb:]
s∥2
)

. (78)

For P2 and P3, we only need to derive the upper bound

of P2 due to the symmetry. By the law of total probability,

we have

P2 ≤ P21 + P22, (79)

where with some positive constant t > 0,

P21 = P

(

t ≤ ∥[S̃z(i):]
s − [Sz(i):]

s∥
)

,

P22 = P

(

〈

ei, [S̃z(i):]
s − [Sz(i):]

s
〉

≤ −θ(i)m

16

·∥[Sz(i):]
s − [Sb:]

s∥2
∣

∣

∣

∣

∥[S̃z(i):]
s − [Sz(i):]

s∥ < t

)

.

For P21, note that the term W T
:z(i)EV =

∑
j ̸=i,j∈[p] 1{z(j)=z(i)}ej
∑

j∈[p] 1{z(j)=z(i)} is a sub-Gaussian vector with

sub-Gaussian norm bounded by m3

√

rK/pK with some

positive constant m3. This implies

P21 ≤ P

(

t∥Sz(i):∥ ≤ ∥S̃z(i): − Sz(i):∥
)

≤ P

(

c3t ≤ ∥W T
:z(i)EV ∥

)

≲ exp

(

−pKt2

rK

)

, (80)

where the first inequality follows from the basic inequality in

Lemma 4, the second inequality follows from the assumption

that mina∈[r]∥Sz(i):∥ ≥ c3 > 0 in (2), and the last inequality

follows from the Bernstein inequality.

For P22, the inner product
〈

ei, [S̃z(i):]
s − [Sz(i):]

s
〉

is

also a sub-Gaussian variable with sub-Gaussian norm

m4

√

rK−1/pK−1t, conditioned on ∥[S̃z(i):]
s − [Sz(i):]

s∥ < t
with some positive constant m4. Then, by Chernoff bound,

we have

P22 ≲ exp

(

− pK−1

rK−1t2
∥[Sz(j):]

s − [Sb:]
s∥4
)

. (81)

We take t = ∥[Sz(i):]
s − [Sb:]

s∥ in P21 and P22, and plug

the inequalities (80) and (81) into to the upper bound for

P2 in (79). We obtain that

P2 ≲ exp

(

−pK−1

rK−1
∥[Sz(i):]

s − [Sb:]
s∥2
)

. (82)

Combining the upper bounds (78) and (82) gives

P

(

〈

ei, [S̃z(i):]
s − [S̃b:]

s
〉

≤ −θ(i)m

4
∥[Sz(i):]

s − [Sb:]
s∥2
)

≲ exp

(

−pK−1

rK−1
∥[Sz(i):]

s − [Sb:]
s∥2
)

. (83)

Hence, we have

Eξ =
1

p

∑

i∈[p]

θ(i)
∑

b∈[r]

P

{

〈

Ei:V , [S̃z(i):]
s−[S̃b:]

s
〉

≤−θ(i)m

4
∥[Sz(i):]

s−[Sb:]
s∥2
}

∥[Sz(i):]
s−[Sb:]

s∥2

≲
1

p

∑

i∈[p]

θ(i) max
i∈[p],b∈[r]

∥[Sz(i):]
s−[Sb:]

s∥2

· exp

(

−pK−1

rK−1
∥[Sz(i):]

s−[Sb:]
s∥2
)

≤ exp

(

−M pK−1

rK−1
∆2

min

)

, (84)

where M is a positive constant, the first inequality follows

from the constraint that
∑

i∈[p] θ(i) = p, and the last inequality

follows from (83).

By Markov’s inequality, we have

P

(

ξ ≲ Eξ + exp

(

−MpK−1

2rK−1
∆2

min

))

≥ 1− C exp

(

−MpK−1

2rK−1
∆2

min

)

,

and thus the condition (65) holds with probability at least 1−
C exp

(

−MpK−1

2rK−1 ∆2
min

)

for some constant C > 0.

The initialization condition for MLE also holds. For ξ′,
notice that ⟨Ei,A

s
a: −As

b:⟩ is a sub-Gaussian vector with

variance bounded by ∥As
a: −As

b:∥2 and

P
(

t ≤ ∥[Āa:]
s−As

a:∥
)

≤
(

t ≤ ∥[P T
:aY Q]s−[P T

:aXQ]s∥
)

≤ P(t min
a∈[r]
∥Sa:∥ ≤ ∥P T

:aEQ∥)

≲ exp

(

−pKt2

rK

)

,

where the first inequality follows from the property in later

inequality (105). We also have

ξ′ ≲

(

−pK−1

rK−1
∆2

min

)

.

Finally, we verify the bounded loss condition (66) for algo-

rithm estimator by induction. With output z(0) from Sub-

algorithm 2 and the assumption SNR≥ C̃p−K/2 log p, by The-

orem 4, we have

L(0) ≤ C̄∆2
min

C̃r log p
, when p is large enough.

Therefore, the condition (66) holds for t = 0. Assume that

the condition (66) also holds for all t ≤ t0. Then, by the

decomposition (77), we have

L(t0+1) ≤ 3

2
ξ +

1

2
L(t0)

≤ exp

(

−M
pK−1

rK−1
∆2

min

)

+
∆2

min

r log p

≤ C̄

C̃

∆2
min

r log p
,
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where the second inequality follows from the condition (65)

and the last inequality follows from the assumption that

∆2
min ≳ p−K/2 log p. Thus, the condition (66) holds for t0+1,

and the condition (66) is proved by induction. □

Useful Lemmas for the Proof of Theorem 5:

Lemma 10 (Singular-Value Property of Membership Matri-

ces): Under the setup of Theorem 5, suppose that the condi-

tion (66) holds. Then, for all a ∈ [r], we have |
(

z(t)
)−1

(a)| ≍
p/r. Moreover, we have

λr(M) ≍ ∥M∥σ ≍
√

p/r, λr(W ) ≍ ∥W ∥σ ≍
√

r/p,

λr(P ) ≍ ∥P ∥σ ≍ min
a∈[r]
∥θz−1(a)∥−1 ≲

√

r/p. (85)

The inequalities (85) also hold by replacing M and W to

M (t) and W (t) respectively. Further, we have

λr(WW T ) ≍
∥

∥WW T
∥

∥

σ
≍ r/p, (86)

which is also true for W (t)W (t),T .

Proof of Lemma 10: The proof for the inequality (85)

for M ,W can be found in [13, Proof of Lemma 4]. The

inequalities for P follows the same derivation with balance

assumption on θ and mini∈[p] θ(i) ≥ c.

For inequality (86), note that for all k ∈ [r],

λk(WW T ) =
√

eigenk(WW T WW T )

≍
√

r

p
eigenk(WW T )

=

√

r

p
λ2

k(W ) ≍ r

p
,

where eigenk(A) denotes the k-th largest eigenvalue of the

square matrix A, the first inequality follows the fact that

W T W is a diagonal matrix with elements of order r/p, and

the second equation follows from the definition of singular

value. □

Lemma 11 (Upper Bound for F
(t)
ib , G

(t)
ib and H

(t)
ib ): Under

the Condition 1 and the setup of Theorem 5 with fixed r ≥ 2,

assume the constant C̃ in the condition SNR ≥ C̃p−K/2 log p
is large enough to satisfy the inequalities (98) and (102). As

p→∞, we have

max
i∈[p]

max
b̸=z(i)

(

F
(t)
ib

)2

∥[Sz(i):]s − [Sb:]s∥2

≲
rL(t)

∆2
min

∥Ei:V ∥2 +

(

1 +
rL(t)

∆2
min

)

∥Ei:(V − V
(t))∥2, (87)

max
i∈[p]

max
b̸=z(i)

(

G
(t)
ib

)2

∥[Sz(i):]s − [Sb:]s∥2
≤ 1

512

(

∆2
min + L(t)

)

, (88)

max
i∈[p]

max
b̸=z(i)

∣
∣
∣H

(t)
ib

∣
∣
∣

∥[Sz(i):]s − [Sb:]s∥2
≤ 1

4
. (89)

Similarly, when the SNR ≥ C̃p−(K−1) log p with a large

constant C̃, we have

max
i∈[p]

max
b̸=z(i)

(

F̂ib

)2

∥[Az(i):]s − [Ab:]s∥2
≲ pK−1 rL(ẑ)

∆2
min

max
i∈[p]

max
b̸=z(i)

(

Ĝib

)2

∥[Az(i):]s − [Ab:]s∥2
≤ 1

512

(
∆2

min + L(ẑ)
)
,

max
i∈[p]

max
b̸=z(i)

∣
∣
∣Ĥib

∣
∣
∣

∥[Az(i):]s − [Ab:]s∥2
≤ 1

4
.

Proof of Lemma 11: We prove the the first three inequalities

in Lemma 11 separately.

1) Upper bound for F
(t)
ib , i.e., inequality (87). Recall the

definition of F
(t)
ib ,

F
(t)
ib = 2

〈

Ei:V
(t),
(

[S̃z(i):]
s − [S

(t)

z(i):]
s
)

−
(

[S̃b:]
s − [S

(t)
b: ]s

)〉

+2
〈

Ei:(V − V
(t)), [S̃z(i):]

s − [S̃b:]
s
〉

.

By Cauchy-Schwartz inequality, we have
(

F
(t)
ib

)2

≤ 8
(〈

Ei:V
(t),
(

[S̃z(i):]
s−[S

(t)

z(i):]
s
)

−
(

[S̃b:]
s−[S

(t)
b: ]s

)〉)2

+8
(〈

Ei:(V −V
(t)), [S̃z(i):]

s−[S̃b:]
s
〉)2

≤ 8
(

∥Ei:V ∥2 + ∥Ei:(V −V
(t))∥2

)

max
a∈[r]s

∥[S̃a:]
s−[S(t)

a: ]s∥

+∥Ei:(V −V
(t))∥2∥[S̃z(i):]

s−[S̃b:]
s∥. (90)

Note that for all a ∈ [r],

∥[S̃a:]
s−[S(t)

a: ]s∥2 = ∥[W T
:aY V ]s−[W (t),T

:a Y V (t)]s∥2

≤ 2∥[W T
:aY V ]s−[W (t),T

:a Y V ]s∥2

+2∥[W (t),T
:a Y V ]s−[W (t),T

:a Y V (t)]s∥2

≲
r2(L(t))2

∆2
min

+
rr2K + prK+2

pK

L(t)

∆2
min

≲ rL(t) +
rr2K + prK+2

pK

L(t)

∆2
min

≲ rL(t), (91)

where the second inequality follows from the inequalities (108)

and (109) in Lemma 12, the third inequality follows from the

condition (66) in Condition 1, and the last inequality follows

from the assumption that ∆2
min ≥ C̃p−K/2 log p.

Note that

∥[S̃z(i):]
s − [S̃b:]

s∥2

= ∥[S̃z(i):]
s − [Sz(i):]

s + [Sz(i):]
s − [Sb:]

s + [Sb:]
s − [S̃b:]

s∥2

≲ ∥[Sz(i):]
s − [Sb:]

s∥2 + max
a∈[r]

∥[Sa:]
s − [S̃a:]

s∥2

≲ ∥[Sz(i):]
s − [Sb:]

s∥2 + max
a∈[r]

1

∥Sa:∥2
∥W T

:aEV ∥2

≲ ∥[Sz(i):]
s − [Sb:]

s∥2, (92)
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where the second inequality follows from Lemma 4, and the

last inequality follows from the assumptions on ∥Sa:∥ in the

parameter space (2), the inequality (62) in Condition 1 and

the assumption ∆2
min ≳ p−K/2 log p.

Therefore, we finish the proof of inequality (87) by plugging

the inequalities (91) and (92) into the upper bound (90).

2) Upper bound for G
(t)
ib , i.e., inequality (88). By definition

of G
(t)
ib , we rearrange terms and obtain

G
(t)
ib =

(

∥[Xi:V
(t)]s − [S

(t)
z(i):]

s∥2

−∥[Xi:V
(t)]s − [W T

:z(i)Y V (t)]s∥2
)

−
(

∥[Xi:V
(t)]s − [S

(t)
b: ]s∥2

−∥[Xi:V
(t)]s − [W T

:b Y V (t)]s∥2
)

= 2
〈

[Xi:V
(t)]s,

(

[W T
:z(i)Y V (t)]s − [S

(t)
z(i):]

s
)

−
(

[W T
:b Y V (t)]s − [S

(t)
b: ]s

)〉

= G1 + G2 −G3, (93)

where

G1 = ∥[W T
:z(i)Y V

(t)]s−[S
(t)

z(i):]
s∥2−∥[W T

:b Y V
(t)]s−[S

(t)
b: ]s∥2,

G2 =2
〈

[Xi:V
(t)]s−[W T

:z(i)Y V
(t)]s, [W T

:z(i)Y V
(t)]s−[S

(t)

z(i):]
s
〉

,

G3 = 2
〈

[Xi:V
(t)]s−[W T

:b Y V
(t)]s, [W T

:b Y V
(t)]s−[S

(t)
b: ]s

〉

.

For G1, we have

|G1|2 ≤
∣

∣

∣
∥[W T

:z(i)Y V (t)]s − [S
(t)
z(i):]

s∥2

−∥[W T
:b Y V (t)]s − [S

(t)
b: ]s∥2

∣

∣

∣

2

≤ max
a∈[r]
∥[W T

:aY V (t)]s − [W (t),T
:a Y V (t)]s∥4

≤ C4 r4

∆4
min

(L(t))4 +
r2r4K + p2r2K+4

p2K

(L(t))2

∆4
min

≤ C4 C̄

C̃3

(

∆4
min + ∆2

minL(t)
)

, (94)

where the third inequality follows from the inequality (110) in

Lemma 12 and the last inequality follows from the assumption

that ∆2
min ≥ C̃p−K/2 log p and inequality (66) in Condition 1.

For G2, noticing that [Xi:V
(t)]s = [W T

z(i):XV (t)]s,

we have

|G2|2 ≤ 2∥[Xi:V
(t)]s−[W T

:z(i)Y V (t)]s∥2

·∥[W T
:z(i)Y V (t)]s−[S

(t)
z(i):]

s∥2

≤ 2

∥W T
z(i):XV (t)∥2 max

a∈[r]
∥W T

:aEV (t)∥2

·max
a∈[r]
∥[W T

:aY V (t)]s−[W (t),T
:a Y V (t)]s∥2

≤ C ′ r
2K−1 + KprK+1

pK

·
(

r2

∆2
min

(L(t))2 +
rr2K + prK+2

pK

L(t)

∆2
min

)

≤ C ′

C̃2
∆2

minL(t), (95)

where C ′ is a positive universal constant, the second inequality

follows from Lemma 4, the third inequality follows from the

inequality (63) in Condition 1, the inequalities (110) and (129)

in the proof of Lemma 12, and the last inequality follows from

the assumption ∆2
min ≥ C̃p−K/2 log p and inequality (66) in

Condition 1.

For G3, note that by triangle inequality

∥[Xi:V
(t)]s − [W T

:b XV (t)]s∥2

≤ ∥Ss
z(i): − Ss

b:∥2 + 2 max
a∈[r]
∥[W T

:aXV (t)]s − [W T
:aXV ]s∥2

≤ ∥Ss
z(i): − Ss

b:∥2 + C
r2(L(t))2

∆2
min

, (96)

where the last inequality follows from the inequality (128) in

the proof of Lemma 12 and C is a positive constant. Then we

have

|G3|2 ≤ 2∥[Xi:V
(t)]s−[W T

:b Y V
(t)]s∥2

·max
a∈[r]

∥[W T
:aY V

(t)]s−[W (t),T
:a Y V

(t)]s∥2

≤ 2
(

∥[Xi:V
(t)]s−[W T

:b XV
(t)]s∥2

+∥[W T
:b Y V

(t)]s−[W T
:b XV

(t)]s∥2
)

·max
a∈[r]

∥
∥
∥[W

T
:aY V

(t)]s−[W (t),T
:a Y V

(t)]s
∥
∥
∥

2

≤ C2

(

∥Ss
z(i):−S

s
b:∥2 + C

r2(L(t))2

∆2
min

)

·
(

r2(L(t))2

∆2
min

+
rr2K + prK+2

pK

L(t)

∆2
min

)

+
C′

C̃2
∆2

minL(t)

≤ C2C̄2

C̃
∥Ss

z(i):−S
s
b:∥2(∆2

min + L(t))

+
C3C′C̄2

C̃2

(

∆4
min + ∆2

minL(t)
)

, (97)

where the third inequality follows from the same procedure

to derive (94) and (95), and the last inequality follows from

the assumption ∆2
min ≥ C̃p−K/2 log p and inequality (66) in

Condition 1.

Choose the C̃ such that

3

(

C4 C̄

C̃3
+

C ′

C̃2
+

C2C̄2

C̃
+

C3C ′C̄2

C̃2

)

≤ 1

512
. (98)

Then, we finish the proof of inequality (88) by plugging the

inequalities (94), (95), and (97) into the upper bound (93).
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3) Upper bound for H
(t)
ib , i.e., the inequality (89). By defi-

nition of Hib, we rearrange terms and obtain

Hib = ∥[Xi:V
(t)]s−[W T

:z(i)Y V
(t)]s∥2

−∥[Xi:V
(t)]s−[W T

:b Y V
(t)]s∥2 + ∥[Sz(i):]

s−[Sb:]
s∥2

= ∥[Xi:V
(t)]s−[W T

:z(i)Y V
(t)]s∥2

+
(

∥[Sz(i):]
s−[Sb:]

s∥2−∥[Xi:V
(t)]s−[W T

:b XV
(t)]s∥

)

−
(

∥[Xi:V
(t)]s−[W T

:b Y V
(t)]s∥

−∥[Xi:V
(t)]s−[W T

:b XV
(t)]s∥

)

= H1 + H2 + H3,

where

H1 = ∥[Xi:V
(t)]s − [W T

:z(i)Y V
(t)]s∥2

−∥[W T
:b XV

(t)]s − [W T
:b Y V

(t)]s∥2,

H2 = ∥[Sz(i):]
s − [Sb:]

s∥2 − ∥[Xi:V
(t)]s − [W T

:b XV
(t)]s∥2,

H3 = 2
〈

[Xi:V
(t)]s − [W T

:b XV
(t)]s,

[W T
:b Y V

(t)]s − [W T
:b XV

(t)]s
〉

.

For H1, we have

|H1| ≤
4 maxa∈[r]∥W T

:aEV (t)∥2
∥W T

z(i):XV (t)∥2

≤ r2K−1 + KprK+1

pK

≤ C̃−2∥[Sz(i):]
s − [Sb:]

s∥2, (99)

following the derivation of G2 in inequality (95) and the

assumption that ∆2
min ≥ C̃p−K/2 log p.

For H2, by the inequality (96), we have

|H2| ≲ 2 max
a∈[r]
∥[W T

:aXV (t)]s − [W T
:aXV ]s∥2

≲
r2(L(t))2

∆2
min

≤ C
C̄2

C̃2
∥[Sz(i):]

s − [Sa:]
s∥2, (100)

where the last inequality follows from the condition (66) in

Condition 1.

For H3, by Cauchy-Schwartz inequality, we have

|H3| ≲ ∥[Xi:V
(t)]s − [W T

:b XV (t)]s∥|H1|1/2

≤ 2C̃−1∥[Sz(i):]
s − [Sa:]

s∥2, (101)

following the inequalities (96) and (99).

Choose C̃ such that

C̃−2 + C
C̄2

C̃2
+ C̃−1 ≤ 1

4
. (102)

Therefore, we finish the proof of inequality (89) combining

inequalities (99), (100), and (101).

Next, we show the upper bounds for F̂ib, Ĝib and Ĥib. By

Lemma 1, we have

∥Ss
a: − Ss

b:∥ = (1 + o(1))∥As
a: −As

b:∥.

Also, notice that the matrix product of BT corre-

sponds to the padding operation in Lemma 5, and the

padding weights are balanced such that ∥vB∥ = (1 +
o(1)) maxa∥θz−1(a)∥(K−1)/2∥v∥ for all v ∈ R

r(K−1). For

two vectors v1,v2 ∈ R
rK−1

, we have

∥vs
1 − vs

2∥ = (1 + o(1))∥[v1B
T ]s − [v2B

T ]s∥. (103)

The equation (103) also holds for B̂T .

Note that for all i ∈ [p] we have

∥Ai:Q̂∥ = ∥Sz(i:)B
T
Q̂∥

= ∥Sz(i:)D̂
⊗(K−1)∥

= (1 + o(1))∥Sz(i:)∥

= (1 + o(1))max
a

∥θz−1(a)∥−(K−1)/2∥Ai:∥, (104)

where the third inequality follows from the singular property

of MLE confusion matrix (135) and the last inequality follows

from the fact that Ai = Sz(i:)B
T and Lemma 10. Above equa-

tion indicates that Ai: is the span space of the singular values

as p→∞. Also, notice that the row space of P T
:aY Q̂B̂T is

equal to the column space of Q̂, and Ai: ̸= P T
:aY Q̂B̂T in

noisy case.

Hence, for all a ∈ [r], we have

∥[XiQ̂]s − [P T
:aY Q̂]s∥

=

∥

∥

∥

∥

∥

Az(i:)Q̂

∥Az(i:)Q̂∥
− P T

:aY Q̂

∥P T
:aY Q̂∥

∥

∥

∥

∥

∥

= (1 + o(1))

∥

∥

∥

∥

∥

Az(i:)

∥Az(i:)∥
− P T

:aY Q̂B̂T

∥P T
:aY Q̂B̂T ∥

∥

∥

∥

∥

∥

= (1 + o(1))∥[Xi]
s − [P T

:aY Q̂B̂T ]s∥ (105)

where the second equation follows

from (104), ∥P T
:aY Q̂B̂T ∥ = (1 +

o(1)) maxa∥θz−1(a)∥(K−1)/2∥P T
:aY Q̂∥, and singular

property of B̂T . Similar result holds after replacing

P T
:aY Q̂ by P T

:aY Q or P T
:aY Q̂.

We are now ready to show the upper bounds for F̂ib, Ĝib

and Ĥib.

For F̂ib, we have

(F̂ib)
2 ≤ ∥Ei:∥2∥[Āa:]

s−[Âa:]
s∥2

≤ ∥Ei:∥2
[

∥[S̄a:B
T ]s−[S̄a:B̂

T ]s∥

+∥[S̄a:B̂
T ]s−[Ŝa:B̂

T ]s∥
]2

≲ ∥Ei:∥2
[

∥[S̄a:B
T Q̂]s−[S̄a:]

s∥+∥[S̄a:]
s−[Ŝa:]

s∥
]2

.

Following similar derivations in inequalities (91), (92), and the

upper bound for J1 in the proof of Lemma 12, respectively,
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we have

∥[S̄a:]
s−[Ŝa:]

s∥ ≲ rL(ẑ), ∥[S̄a:]
s−[S̄b:]

s∥ ≲ ∥Ss
a:−Ss

b:∥2,
and

∥[S̄a:B
T Q̂]s − [S̄a:]

s∥ ≲ L(ẑ).

We then obtain the upper bound for F̂ib by noticing that

∥Ei∥2 ≲ pK−1.

For Ĝib and Ĥib, by the property (105), we have

(1 + o(1))Ĝib

=
(

∥[Xi:Q̂]s−[Ŝa:]
s∥2F−∥[Xi:Q̂]s−[P T

:aY Q̂]s∥2F
)

−
(

∥[Xi:Q̂]s−[Ŝb:]
s∥2F−∥[Xi:Q̂]s−[P T

:b Y Q̂]s∥2F
)

,

(1 + o(1))Ĥib

= ∥[Xi:Q̂]s−[P T
:aY Q̂]s∥2F−∥[Xi:Q̂]s−[P T

:b Y Q̂]s∥2F
+∥As

a:−As
b:∥2F .

We obtain the upper bounds following the proof for inequali-

ties (88) and (89).

□

Lemma 12 (Relationship Between Misclustering Loss and

Intermediate Parameters): Under the Condition 1 and the setup

of Theorem 5 with fixed r ≥ 2, as p→∞, we have

∥V − V
(t)∥σ ≲

√

rK−1

pK−1

r

∆2
min

L(t), (106)

∥E(V − V
(t))∥σ ≲

√

rK−1(prK−1 + pr)

pK−1

r

∆2
min

L(t), (107)

max
b∈[r]

∥[W T
:b Y V ]s − [W

(t),T
:b Y V ]s∥

≤ C

(

rL(t)

∆min
+

√

r2K + prK+1

pK

√
L(t)

∆min

)

, (108)

max
b∈[r]

∥[W (t),T
:b Y V ]s − [W

(t),T
:b Y V

(t)]s∥

≤ C

(√

rr2K + prK+2

pK

√
L(t)

∆min
+

rL(t)

∆min

)

, (109)

max
b∈[r]

∥[W T
:b Y V

(t)]s − [W
(t),T
:b Y V

(t)]s∥

≤ C

(

rL(t)

∆min
+

√

rr2K + prK+2

pK

√
L(t)

∆min

)

, (110)

for some positive universal constant C. In addition, the

inequality (109) also holds by replacing W
(t)
:b to W:b. Further,

the above inequalities holds after replacing W to P , V to Q,

and L(t) to L(ẑ).
Proof of Lemma 12: We follow and use several intermediate

conclusions in [13, Proof of Lemma 5]. We prove each

inequality separately.

1) Inequality (106). By [13, Proof of Lemma 5], we have

∥V − V (t)∥σ ≲

√

rK−1

pK−1
rℓ(t).

Then, we complete the proof of inequality (106) by applying

Lemma 2 to the above inequality.

2) Inequality (107). By [13, Proof of Lemma 5], we have

∥E(V − V (t))∥σ ≲

√

rK−1(prK−1 + pr)

pK−1
rℓ(t).

Also, we complete the proof of inequality (106) by applying

Lemma 2 to the above inequality.

3) Inequality (108). We upper bound the desired quantity

by triangle inequality,

∥[W T
:b Y V ]s − [W

(t),T
:b Y V ]s∥ ≤ I1 + I2 + I3,

where

I1 =

∥

∥

∥

∥

∥

W T
:b Y V

∥W T
:b XV ∥ −

W
(t),T
:b Y V

∥W (t),T
:b XV ∥

∥

∥

∥

∥

∥

,

I2 =

∥

∥

∥

∥

(

1

∥W T
:b Y V ∥ −

1

∥W T
:b XV ∥

)

W T
:b Y V

∥

∥

∥

∥

,

I3 =

∥

∥

∥

∥

∥

(

1

∥W (t),T
:b Y V ∥

− 1

∥W (t),T
:b XV ∥

)

W
(t),T
:b Y V

∥

∥

∥

∥

∥

.

Next, we upper bound the quantities I1, I2, I3 separately.

For I1, we further bound I1 by triangle inequality,

I1 ≤ I11 + I12,

where

I11 =

∥

∥

∥

∥

∥

W T
:b XV

∥W T
:b XV ∥ −

W
(t),T
:b XV

∥W (t),T
:b XV ∥

∥

∥

∥

∥

∥

,

and

I12 =

∥

∥

∥

∥

∥

W T
:b EV

∥W T
:b XV ∥ −

W
(t),T
:b EV

∥W (t),T
:b XV ∥

∥

∥

∥

∥

∥

.

We first consider I11. Define the confusion matrix D =
MT

Θ
T W (t) = [[Dab]] ∈ R

r×r where

Dab =

∑

i∈[p] θ(i)1
{

z(i) = a, z(t)(i) = b
}

∑

i∈[p]1
{

z(t)(i) = b
} , for all a, b ∈ [r].

By Lemma 10, we have
∑

i∈[p] 1
{

z(t)(i) = b
}

≳ p/r. Then,

we have

∑

a̸=b,a,b∈[r]

Dab ≲
r

p

∑

i : z(t)(i) ̸=z(i)

θ(i) ≲
L(t)

∆2
min

≲
1

log p
, (111)

and for all b ∈ [r],

Dbb =

∑

i∈[p] θ(i)1
{

z(i) = z(t)(i) = b
}

∑

i∈[p] 1
{

z(t)(i) = b
}

≥
c(
∑

i∈[p] 1
{

z(t)(i) = b
}

− pℓ(t))
∑

i∈[p] 1
{

z(t)(i) = b
}

≳ 1− 1

log p
, (112)
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under the inequality (66) in Condition 1. By the definition of

W ,W (t),V , we have

W T
:b XV

∥W T
:b XV ∥ = [Sb:]

s
,

and

W
(t),T
:b XV

∥W (t),T
:b XV ∥

= [DbbSb: +
∑

a̸=b,a∈[r]

DabSa:]
s.

Let α denote the angle between Sb: and DbbSb: +
∑

a̸=b,a∈[r] DabSa:. To roughly estimate the range of α,

we consider the inner product

〈

Sb:, DbbSb: +
∑

a̸=b,a∈[r]

DabSa:

〉

= Dbb ∥Sb:∥2 +
∑

a̸=b

Dab ⟨Sb:,Sa:⟩

≥ Dbb ∥Sb:∥2 −
∑

a̸=b,a∈[r]

Dab ∥Sb:∥max
a∈[r]

∥Sa:∥

≥ C,

where C is a positive constant, and the last inequality holds

when p is large enough following the constraint of ∥Sb:∥ in

parameter space (2) and the bounds of D in (111) and (112).

The positive inner product between Sb: and DbbSb: +
∑

a̸=b,a∈[r] DabSa: indicates α ∈ [0, π/2), and thus 2 sin α
2 ≤√

2 sinα. Then, by the geometry property of trigonometric

function, we have

∥[DbbSb: +
∑

a̸=b,a∈[r]

DabSa:] sinα∥

= ∥(Id − Proj(Sb:))
∑

a̸=b,a∈[r]

DabSa:∥

≤
∑

a̸=b,a∈[r]

Dab ∥(Id − Proj(Sb:))Sa:∥

=
∑

a̸=b,a∈[r]

Dab ∥Sa: sin(Sb:,Sa:)∥

≤
∑

a̸=b,a∈[r]

Dab ∥Sa:∥ ∥Ss
b: − Ss

a:∥ , (113)

where the first inequality follows from the triangle inequality,

and the last inequality follows from Lemma 4. Note that with

bounds (111) and (112), when p is large enough, we have

∥W (t),T
:b XV ∥ = ∥DbbSb: +

∑

a̸=b,a∈[r]

DabSa:∥

≥ Dbb ∥Sb:∥ −
∑

a̸=b,a∈[r]

Dab ∥Sa:∥

≥ C1, (114)

for some positive constant C1. Notice that I11 =√
1− cos α = 2 sin α

2 . Therefore, we obtain

I11 ≤
√

2 sinα

=
∥[DbbSb: +

∑

a̸=b,a∈[r] DabSa:] sinα∥
∥DbbSb: +

∑

a̸=b,a∈[r] DabSa:∥

≤ 1

C1

∑

a̸=b,a∈[r]

Dab ∥Sa:∥ ∥Ss
b: − Ss

a:∥

≲
r

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1

{

z(t)(i) = b
}

∥Ss
b: − Ss

a:∥

≤ rL(t)

∆min
, (115)

where the second inequality follows from (113) and (114),

and the last two inequalities follow by the definition of Da

and L(t), and the constraint of ∥Sb:∥ in parameter space (2).

We now consider I12. By triangle inequality, we have

I12 ≤ 1

∥W T
:b XV ∥∥(W

T
:b −W

(t),T
:b )EV ∥

+
∥(W T

:b −W
(t),T
:b )XV ∥

∥W T
:b XV ∥∥W (t),T

:b XV ∥
∥W (t),T

:b EV ∥.

By [13, Proof of Lemma 5], we have

∥(W T
:b −W

(t),T
:b )EV ∥ ≲

√

r2K + prK+1

pK

√
L(t)

∆min
. (116)

Notice that

∥(W T
:b −W

(t),T
:b )XV ∥ ≤ ∥W T

:b −W
(t),T
:b ∥ ∥XV ∥F

≲
r3/2L(t)

√
p∆2

min

∥S∥∥ΘM∥σ

≲

√
rL(t)

∆min
, (117)

where the second inequality follows from [13, Inequality

(121), Proof of Lemma 5] and the last inequality follows from

Lemma 6 and (66) in Condition 1. Note that
∥

∥W T
:b XV

∥

∥ =

∥Sb:∥ ≥ c3 and ∥W (t),T
:b XV ∥ ≥ C1 by inequality (114).

Therefore, we have

I12 ≲ ∥(W T
:b −W

(t),T
:b )EV ∥

+∥(W T
:b −W

(t),T
:b )XV ∥∥W (t),T

:b EV ∥

≲

√

r2K + prK+1

pK

√
L(t)

∆min
+

√
rL(t)

∆min

√

r2K

pK

≲

√

r2K + prK+1

pK

√
L(t)

∆min
, (118)

where second inequality follows from the inequalities (116),

(117), and (62) in Condition 1.

Hence, combining inequalities (115) and (118) yields

I1 ≲
rL(t)

∆min
+

√

r2K + prK+1

pK

√
L(t)

∆min
. (119)
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For I2 and I3, recall that
∥

∥W T
:b XV

∥

∥ = ∥Sb:∥ ≥ c3 and

∥W (t),T
:b XV ∥ ≥ C1 by inequality (114). By triangle inequal-

ity and (62) in Condition 1, we have

I2 ≤
∥W T

:b EV ∥
∥W T

:b XV ∥ ≲ ∥W T
:b EV ∥ ≲

rK

pK/2
, (120)

and

I3 ≤
∥W (t),T

:b EV ∥
∥W (t),T

:b XV ∥
≲ ∥W (t),T

:b EV ∥ ≲
rK

pK/2
. (121)

Therefore, combining the inequalities (119), (120), and (121),

we finish the proof of inequality (108).

4) Inequality (109). Here we only show the proof of

inequality (109) with W
(t)
:b . The proof also holds by replacing

W
(t)
:b to W:b, and we omit the repeated procedures.

We upper bound the desired quantity by triangle inequality

∥[W (t),T
:b Y V ]s − [W

(t),T
:b Y V (t)]s∥ ≤ J1 + J2 + J3,

where

J1 =

∥
∥
∥
∥
∥

W
(t),T
:b Y V

∥W (t),T
:b XV ∥

− W
(t),T
:b Y V (t)

∥W (t),T
:b XV (t)∥

∥
∥
∥
∥
∥

,

J2 =

∥
∥
∥
∥
∥

(

1

∥W (t),T
:b Y V ∥

− 1

∥W (t),T
:b XV ∥

)

W
(t),T
:b Y V

∥
∥
∥
∥
∥

,

J3 =

∥
∥
∥
∥
∥

(

1

∥W (t),T
:b Y V (t)∥

− 1

∥W (t),T
:b XV (t)∥

)

W
(t),T
:b Y V

(t)

∥
∥
∥
∥
∥
.

Next, we upper bound the quantities J1, J2, J3 separately.

For J1, by triangle inequality, we have

J1 ≤ J11 + J12,

where

J11 =

∥

∥

∥

∥

∥

W
(t),T
:b XV

∥W (t),T
:b XV ∥

− W
(t),T
:b XV (t)

∥W (t),T
:b XV (t)∥

∥

∥

∥

∥

∥

and

J12 =

∥

∥

∥

∥

∥

W
(t),T
:b EV

∥W (t),T
:b XV ∥

− W
(t),T
:b EV (t)

∥W (t),T
:b XV (t)∥

∥

∥

∥

∥

∥

.

We first consider J11. Define the matrix V k := W⊗(k−1) ⊗
W (t),⊗(K−k) for k = 2, . . . ,K − 1, and denote V 1 =
V (t),V K = V . Also, define the quantity

Jk
11 = ∥[W (t),T

:b XV k]s − [W
(t),T
:b XV k+1]s∥,

for k = 1, . . . ,K − 1. Let βk denote the angle between

W
(t),T
:b XV k and W

(t),T
:b XV k+1. With the same idea to

prove I11 in inequality (115), we bound Jk
11 by the trigono-

metric function of βk.

To roughly estimate the range of βk, we consider the inner

product between W
(t),T
:b XV k and W

(t),T
:b XV k+1. Before

the specific derivation of the inner product, note that

W
(t),T
:b XV k = Mat1(Tk), W

(t),T
:b XV k+1 = Mat1(Tk+1),

where

Tk = X ×1 W
(t),T
:b ×2 W T ×3 · · · ×k W T

×k+1W
(t),T ×k+2 · · · ×K W (t),T

Tk+1 = X ×1 W
(t),T
:b ×2 W T ×3 · · · ×k W T

×k+1W
T ×k+2 · · · ×K W (t),T .

Recall the definition of confusion matrix D =
MT

Θ
T W (t) = [[Dab]] ∈ R

r×r. We have

〈

W
(t),T
:b XV

k,W
(t),T
:b XV

k+1
〉

= ⟨Matk+1(Tk), Matk+1(Tk+1)⟩

=
〈

D
T
SZ

k,SZ
k
〉

=
∑

b∈[r]



Dbb∥Sb:Z
k∥2 +

∑

a̸=b,a∈[r]

Dab

〈

Sa:Z
k,Sb:Z

k
〉





≳ (1 − log p−1) min
a∈[r]

∥Sa:Z
k∥2 − log p−1 max

a∈[r]
∥Sa:Z

k∥2,

(122)

where Zk = D:b ⊗ I
⊗(k−1)
r ⊗ D⊗(K−k−1), the equations

follow by the tensor algebra and definitions, and the last

inequality follows from the bounds of D in (111) and (112).

Note that

∥D∥σ ≤ ∥D∥F
≤

√

∑

b∈[r]

D2
bb + (

∑

a̸=b,a,b∈[r]

Dab)2

≲

√

r + log2 p−1 ≲ 1, (123)

where the second inequality follows from inequality (111), and

the fact that for all b ∈ [r],

Dbb ≲
r

p

∑

i : z(i)=b

θ(i) ≲ 1.

Also, we have

λr(D) ≥ λr(W
(t))λr(ΘM) ≳ 1, (124)

following the Lemma 6 and Lemma 10. Then, for all k ∈ [K],
we have

1 ≲ ∥D:b∥λr(D)K−k−1 ≤ λrK−2(Zk)

≤ ∥Zk∥σ ≤ ∥D:b∥ ∥D∥K−k−1
σ ≲ 1. (125)

Thus, we have bounds

max
a∈[r]
∥Sa:Z

k∥ ≤ max
a∈[r]

∥Sa:∥ ∥Zk∥σ ≲ 1,

min
a∈[r]
∥Sa:Z

k∥ ≥ min
a∈[r]
∥Sa:∥λrK−2(Zk) ≳ 1.

Hence, when p is large enough, the inner product (122) is

positive, which implies βk ∈ [0, π/2) and thus 2 sin βk

2 ≤√
2 sinβk.
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Next, we upper bound the trigonometric function sinβk.

Note that

sinβk = sin(DT
:bSI⊗k−1

r ⊗D⊗K−k,DT
:bSI⊗k

r ⊗D⊗K−k−1)

≤ sinβk1 + sinβk2,

where

sinβk1 = sin(DT
:bSI⊗k−1

r ⊗D⊗K−k,

DT
:bSI⊗k−1

r ⊗ D̃ ⊗D⊗K−k−1),

sinβk2 = sin(DT
:bSI⊗k−1

r ⊗ D̃ ⊗D⊗K−k−1,

DT
:bSI⊗k

r ⊗D⊗K−k−1),

and D̃ is the normalized confusion matrix with entries D̃ab =∑
i∈[p] θ(i)1{z(t)=b,z(i)=a}
∑

i∈[p] θ(i)1{z(t)=b} .

To bound sinβk1, recall Definition 2 that for any cluster

assignment z̄ in the ε-neighborhood of true z,

p(z̄) = (|z̄−1(1)|, . . . , |z̄−1(r)|)T ,

pθ(z̄) = (∥θz̄−1(1)∥1, . . . , ∥θz̄−1(r)∥1)T .

Note that we have ℓ(t) ≤ L(t)

∆2
min
≤ C̄

C̃
r log−1(p) by Condi-

tion 1 and Lemma 2. Then, with the locally linear stability

assumption, the θ is ℓ(t)-locally linearly stable; i.e.,

sin(p(z(t)),pθ(z(t))) ≲
L(t)

∆min
.

Note that diag(p(z(t)))D = diag(pθ(z(t)))D̃, and

sin(a, b) = minc∈R

∥a−cb∥
∥a∥ for vectors a, b of same

dimension. Let c0 = arg minc∈R

∥p(z(t))−cpθ(z(t))∥
∥p(z(t))∥ . Then,

we have

min
c∈R

∥D−cD̃∥F

≤ ∥Ir − c0diag(p(z(t)))diag−1(pθ(z(t)))∥F ∥D∥F

≲
∥p(z(t))− c0pθ(z(t))∥
mina∈[r]∥θz(t),−1(a)∥1

=
∥p(z(t))∥

mina∈[r]∥θz(t),−1(a)∥1
sin(p(z(t)),pθ(z(t)))

≲
L(t)

∆min
,

where the last inequality follows from Lemma 10, the

constraint mini∈[p] θ(i) ≥ c > 0, ∥p(z(t))∥ ≲ p and

mina∈[r]∥θz(t),−1(a)∥1 ≳ p.

By the geometry property of trigonometric function,

we have

sinβk1 = min
c∈R

∥DT
:bSI⊗k−1

r ⊗ (D−cD̃)⊗D⊗K−k−1∥
∥DT

:bSI⊗k−1
r ⊗D⊗K−k∥

≤ ∥DT
:bS∥∥D − c0D̃∥σ∥D∥K−k−1

σ

∥DT
:bS∥λK−k

r (D)

≲ ∥D − c0D̃∥F

≲
L(t)

∆min
, (126)

where the second inequality follows from the singular property

of D in (123), (124) and the constraint of S in (2).

To bound sinβk2, let C = diag({∥Sa:∥}a∈[r]). We have

sinβk2 ≲

∥

∥

∥DT
:bSI⊗k−1

r ⊗ (Ir − D̃)⊗D⊗K−k−1
∥

∥

∥

∥DT
:bSI⊗k

r ⊗D⊗K−k−1∥

≲
∥(Ir − D̃T )SZk∥F
∥DT

:bS∥λK−k−1
r (D)

≲ ∥(Ir − D̃T )SC−1∥F ∥CZk∥σ
≲

r

p

∑

i∈[p]

θ(i)
∑

b∈[r]

1{z(t)(i) = b}∥Ss
b: − Ss

z(i):∥

≲
L(t)

∆min
, (127)

where the third inequality follows from the singular property

of D and the boundedness of S, and the fourth inequality

follows from the definition of D̃, boundedness of S, the

lower bound of θ, and the singular property of Zk in inequal-

ity (125), and the last line follows from the definition of L(t).

Combining (126) and (127) yields

sinβk ≤ sinβk1 + sinβk2 ≲
L(t)

∆min
.

Finally, by triangle inequality, we obtain

J11 ≤
K−1
∑

k=1

Jk
11 ≲

K−1
∑

k=1

sinβk ≲ (K − 1)
rL(t)

∆min
. (128)

We now consider J12. By triangle inequality, we have

J12 ≤
1

∥W (t),T
:b XV ∥

∥W (t),T
:b E(V − V (t))∥

+
∥W (t),T

:b X(V − V (t))∥
∥W (t),T

:b XV ∥∥W (t),T
:b XV (t)∥

∥W (t),T
:b EV (t)∥.

Note that

∥W (t),T
:b XV (t)∥ = ∥DT SZ1∥

≥ λr(D) ∥S∥λrK−2(Z1) ≳ 1,

(129)

where the inequality follows from the bounds (124) and (125).

By [13, Proof of Lemma 5], we have

∥W (t),T
:b E(V − V (t))∥

≲

√

r2K+1 + pr2+K

pK

(K − 1)
√

L(t)

∆min
. (130)

Notice that

∥X(V k − V k+1)∥F
≤ ∥(I −DT )S(I⊗(k−1)

r ⊗D⊗(K−k−1))∥F
≤ ∥(W T −W (t),T )ΘM∥F ∥S∥F ∥D∥

K−k−1
σ

≲ ∥W T −W (t),T ∥ ∥ΘM∥σ

≲

√
rL(t)

∆min
, (131)
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where the first inequality follows from the tensor algebra in

inequality (122), the second inequality follows from the fact

that I = W T
ΘM , and the last inequality follows from [13,

Proof of Lemma 5]. It follows from (131) and Lemma 10

that

∥W (t),T
:b X(V − V

(t))∥ ≤ ∥W (t),T
:b ∥

K−1∑

k=1

∥X(V k − V
k+1)∥F

≲

√
rL(t)

√
p∆min

. (132)

Note that ∥W (t),T
:b XV ∥ and ∥W (t),T

:b XV (t)∥ are lower

bounded by inequalities (114) and (129), respectively. We have

J12 ≲ ∥W (t),T
:b E(V − V (t))∥

+∥W (t),T
:b X(V − V (t))∥∥W (t),T

:b EV (t)∥

≲

√

r2K+1 + pr2+K

pK

√
L(t)

∆min
+

√
rL(t)

√
p∆min

√

r2K

pK

≲

√

r2K+1 + pr2+K

pK

√
L(t)

∆min
,

where the second inequality follows from inequalities (130),

(132), and the inequality (62) in Condition 1.

For J2 and J3, recall that ∥W (t),T
:b XV ∥ and

∥W (t),T
:b XV (t)∥ are lower bounded by inequalities (114)

and (129), respectively. By triangle inequality and inequality

(62) in Condition 1, we have

J2 ≤
∥W (t),T

:b EV ∥
∥W (t),T

:b XV ∥
≲ ∥W (t),T

:b EV ∥ ≲
rK

pK/2
, (133)

and

J3 ≤
∥W (t),T

:b EV (t)∥
∥W (t),T

:b XV (t)∥
≲ ∥W (t),T

:b EV ∥ ≲
rK

pK/2
. (134)

Therefore, combining the inequalities (128), (133), and

(134), we finish the proof of inequality (109).

5) Inequality (110). By triangle inequality, we upper bound

the desired quantity

∥[W T
:b Y V (t)]s − [W

(t),T
:b Y V (t)]s∥

≤ ∥[W T
:b Y V (t)]s − [W T

:b Y V ]s∥

+∥[W T
:b Y V ]s − [W

(t),T
:b Y V ]s∥

+∥[W (t),T
:b Y V ]s − [W

(t),T
:b Y V (t)]s∥

≲ rL(t)

∆min
+
√

rr2K+prK+2

pK

√
L(t)

∆min
,

following the inequalities (108) and (109). Therefore, we finish

the proof of inequality (110).
Next, we show that the intermediate inequalities hold

with P ,Q and L(ẑ). Consider the MLE confusion matrix

D̂ = MT
Θ

T P̂ = [[D̂ab]] ∈ R
r×r with entries

D̂ab =

∑

i∈[p] θ(i)θ̂(i)1{z(i) = a, ẑ(i) = b}
∥θ̂ẑ−1(b)∥2

=

∑

i∈[p](1 + o(pK−2))(θ̂(i))21{z(i) = a, ẑ(i) = b}
∥θ̂ẑ−1(b)∥2

, (135)

where the second equation follows from Lemma 13, and thus
∑

a∈[r] D̂ab = 1 + o(1). By the derivation of (111), (112),

(124), and (123), we have

∑

a̸=b∈[r]

D̂ab ≲
1

p

∑

i∈[p]

1{ẑ(i) ̸= z(i)}(θ̂(i))2 ≲
1

log p
,

D̂bb ≳ 1− 1

log p
, λmin(D̂) ≍ ∥D̂∥σ = (1 + o(1)).

for all a ̸= b ∈ [r].
Now, we are ready to show the intermediate inequalities.

First, by Lemma 1 and mini∈[p] θ(i) ≥ c, we have

∥Ss
a: − Ss

b:∥ ≍ ∥As
a: −As

b:∥.
Then we can replace the L(t) by L(ẑ) in the proof of

Lemma 12. The analogies of inequalities (106), (107), (108),

(109), and (110) hold by using the MLE confusion matrix and

the definition of L(ẑ).
Particularly, for the analogy of (109), the usage of MLE

confusion matrix avoids the stability condition on θ. Let

D̄ be the normalized version of D̂. The angle in inequal-

ity (126) decays to 0 at speed p−(K−2) ≲ ∆min when

K ≥ 3, and the inequality (127) holds by the fact

that

∥(Ir − D̄)SC−1∥F ≲
r

p

∑

i∈[p]

(θ(i))2
∑

b∈[r]

∥Ss
b: − Ss

z(i):∥

≲
r

p

∑

i∈[p]

(θ(i))2
∑

b∈[r]

∥As
b: −As

z(i):∥.

□

Lemma 13 (Polynomial Estimation Error of MLE): Let

(ẑ, Ŝ, θ̂) denote the MLE in (9) with fixed K ≥ 2 and

symmetric mean tensor, and X̂ denote the mean tensor

consisting of parameter (ẑ, Ŝ, θ̂). With high probability going

to 1 as p→∞, we have

∥X − X̂∥2F ≲ σ2
(

rK + Kpr
)

,

with probability going to 1. When SNR ≳ p−(K−1) log p, θ

is balanced, and mini∈[p] θ(i) ≥ c for some positive constant

c, the MLE satisfies

1

p

∑

i∈[p]

1{ẑ(i) ̸= z(i)}(θ(i))2 ≲
1

r log p
,

1

p

∑

i∈[p]

1{ẑ(i) ̸= z(i)}(θ̂(i))2 ≲
1

r log p
,

and L(ẑ) ≲
∆2

min

r log p
,

Further, we have

θ(i)2 = (1 + o(p−(K−2)))θ̂(i)2.
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Proof of Lemma 13: Without loss of generality, we assume

σ2 = 1 and identity mapping minimizes the miscluster-

ing error for MLE. For arbitrary two sets of parameters

(z,S,θ), (z′,S ′,θ′) ∈ P(γ) and corresponding mean tensors

X ,X ′, we have

rank(Matk(X )−Matk(X ′))

≤ rank(Matk(X )) + rank(Matk(X ))

≤ 2 r, k ∈ [K].

Hence, we have

X − X ′ ∈ Q(2r, . . . , 2 r), (136)

where Q(r, . . . , r) := {Tucker tensor with rank (r, . . . , r)}.
Then, we obtain that

P(∥X − X̂ML∥F ≥ t)

≤ 2P

(

sup
X ,X ′∈P(r,...,r)

〈 X − X ′

∥X − X ′∥F
, E
〉

≥ t

)

≤ 2P

(

sup
T ∈Q(2r,...,2r)∩{∥T ∥F =1}

⟨T , E⟩ ≥ t

)

≲ exp(−Kpr),

with the choice t ≍ σ
√

(Kpr + rK). Here the first inequality

follows from [10, Lemma 1], the second inequality follows

from (136), and the last inequality follows from [37, Lemma

E5].

When ∆2
min ≳ p−(K−1) log p, we replace the vector x̂ẑ(i)

and X̂ by our MLE estimator in the proof of Theorem 4.

With estimation error ∥X −X̂∥2F ≲
(

rK + Kpr
)

and ∆2
min ≳

p−(K−1) log p, we have

1

p

∑

i∈[p]

1{ẑ(i) ̸= z(i)}(θ(i))2 ≲
rK−1

∆2
minpK

∥X − X̂∥2F

≲
rK−2

pK−1∆2
min

≲
1

r log p
,

and

L(ẑ) ≲
∆2

min

r log p
.

Above result holds for θ̂(i) after switching the parameters X

with X̂ and switch θ with θ̂ in the proof.

Last, notice that for all a ∈ [r]

(1−O(1))
p2

r2
∥W T

:aX − Ŵ T
:aX̂∥2F

≤ ∥
∑

ẑ(i)=z(i)=a

(θ(i)W T
:aX − θ̂(i)Ŵ T

:aX̂)∥2F

≤ ∥X − X̂∥2F ≤ pr,

where the first inequality follows from the facts that ℓ(ẑ, z) ≲
1

log p , |z−1(a)| ≍ p/r,

|z−1(a)|−C
p

r
ℓ(ẑ, z) ≤ |ẑ−1(a)| ≤ |z−1(a)|+ C

p

r
ℓ(ẑ, z),

|z−1(a)|−C
p

r
ℓ(ẑ, z) ≤

∑

z(i)=z(i)=a

θ(i) ≤ |z−1(a)|,

and

|ẑ−1(a)|−C
p

r
ℓ(ẑ, z) ≤

∑

ẑ(i)=z(i)=a

θ̂(i) ≤ |ẑ−1(a)|.

Hence, for all i ∈ [p]

(θ(i)− θ̂(i))2∥W T
:aX∥2F −O(p)

≤ ∥(θ(i)− θ̂(i))W T
:aX∥2F − ∥θ̂(i)(W T

:aX − Ŵ T
:aX̂)∥2F

≤ ∥X − X̂∥2F ≤ pr,

where the first inequality follows from ∥W T
:aX−Ŵ T

:aX̂∥2F ≲

1/p and θ̂(i) ≲ p
r . Notice that for all a ∈ [r]

∥W T
:aX∥2F ≥ ∥Sa:∥2F λ

2(K−1)
min (ΘM) ≳ pK−1.

The inequality indicates that θ(i)2 = (1 + o(p−(K−2)))θ̂(i)2.

□
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