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Abstract

The brain injury modeling community has recommended improving model subject
specificity and simulation efficiency. Here, we extend an instantaneous (<1 sec)
convolutional neural network (CNN) brain model based on the anisotropic Worcester Head
Injury Model (WHIM) V1.0 to account for strain differences due to individual
morphological variations. Linear scaling factors relative to the generic WHIM along the
three anatomical axes are used as additional CNN inputs. To generate training samples, the
WHIM is randomly scaled to pair with augmented head impacts randomly generated from
real-world data for simulation. An estimation of voxelized peak maximum principal strain
of the whole brain is said to be successful when the linear regression slope and Pearson’s
correlation coefficient relative to directly simulated do not deviate from 1.0 (when
identical) by more than 0.1. Despite a modest training dataset (N=1363 vs. ~5.7 k
previously), the individualized CNN achieves a success rate of 86.2% in cross-validation for
scaled model responses, and 92.1% for independent generic model testing for impacts
considered as complete capture of kinematic events. Using 11 scaled subject-specific
models (with scaling factors determined from pre-established regression models based on
head dimensions and sex and age information, and notably, without neuroimages), the
morphologically individualized CNN remains accurate for impacts that also yield successful
estimations for the generic WHIM. The individualized CNN instantly estimates subject-
specific and spatially detailed peak strains of the entire brain and thus, supersedes others
that report a scalar peak strain value incapable of informing the location of occurrence.
This tool could be especially useful for youths and females due to their anticipated greater
morphological differences relative to the generic model, even without the need for
individual neuroimages. It has potential for a wide range of applications for injury
mitigation purposes and the design of head protective gears. The voxelized strains also
allow for convenient data sharing and promote collaboration among research groups. The

upgraded CNN is freely available at: https://github.com/Jilab-biomechanics/CNN-brain-

strains.
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Introduction

Traumatic brain injury (TBI) remains a leading contributor to mortality and
morbidity! with an estimated 64 to 74 million incidents worldwide.? They often lead to
debilitating negative neurological sequelae.? About three quarters of TBI incidents are mild
TBI (mTBI),* which is particularly common in contact sports.>® The incidents of sports-
related mTBI are increasing in recent years,’” especially for youth and female athletes due
to their increased participation in sports.®® Studies have suggest that females are generally
at a greater risk of mTBI, often referred to as concussion in symptom, than males.'® The
number of concussion incidents is also likely underestimated because of the significant

under-reporting issue.!

Indisputably, TBI, regardless of the severity, is initiated by brain deformation large
or rapid enough from external head impact to cause tissue damage. Therefore,
understanding the biomechanical mechanism of TBI is critical for designing improved head
protective countermeasures to better protect the brain. Given that it is infeasible to
directly measure live human brain deformation in an accident scenario, brain
biomechanical models have been widely used to estimate tissue deformation.'%3 There is
general consensus that a physics-based and validated brain model has strong potential to
improve the detection of injury and interpretation of subconcussive impact exposure over

impact kinematics, alone.**

Nevertheless, several challenges remain for effective and practical use of a brain
model. First, most brain models developed to date represent a generic, adult male
head/brain.'2'* They may suffer in accuracy when investigating brain injury mechanisms
on a subject-specific basis,>7 especially for youth and female athletes because of the
anticipated larger differences in brain morphology (shape and size) relative to the generic,
adult male head/brain.?® It is known that a larger (adult male) brain would lead to larger
stress,'? pressure,?® and strain'®!72%22 than a smaller (youth and female) brain when
applying the same head impact kinematics as model input. The second challenge is that
brain injury models are notoriously poor in impact simulation efficiency, typically requiring

23-25

hours or even days?'?® to simulate a single head impact and on a high-performance
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computing platform. To address these challenges, the brain modeling community has

recently recommended to enhance brain model subject specificity as well as to employ

modern data science techniques to dramatically improve simulation efficiency.'*

An early effort to improve model subject specificity was to scale a generic model to
represent a 5" or a 95™ percentile individual for a much smaller or larger brain,
respectively.?”?® More recently, subject-specific models are developed via mesh warping,
by morphing a template brain model based on the deformation field obtained from co-
registration between individual neuroimages and those from the template brain.'>2°30
Alternatively, brain anatomy can also be meshed directly from neuroimages.?%?*3! Most
recently, another technique was developed to approximate subject-specific brain models
by linearly scaling the brain along the three anatomical axes using pre-established
statistical regression models between brain outer surface and head dimensions, along with
subject’s sex and age information.’” Once the regression models are developed, this
technique does not require individual neuroimages for scaling. It retains high accuracy

I"

compared to the presumably more accurate, “morphed model” developed from image
warping. For example, for the smallest brain from a dataset of N=191 that is also
anticipated to differ the greatest relative to the generic model, the scaled model had a
strain difference of less than 1-3% for group-wise white and gray matter regions in terms

of linear regression slope relative to those from the morphed subject-specific models.

On the other hand, deep learning has demonstrated remarkable success in
dramatically improving model simulation efficiency without significant degradation in
accuracy. It reduces hours of impact simulation on a high-end computing platform to
under a second on an ordinary laptop. The first deep learning model in TBI biomechanics
was a convolutional neural network (CNN) developed to instantly estimate regional peak
strains.3? It was then enhanced to estimate element-wise, spatially detailed peak strains of
the entire brain33 and those of automotive head impacts.* The CNN was further enhanced
along with a separate transformer neural network (TNN) to rapidly estimate the complete
spatiotemporal details of dynamic brain strain and strain rate, and with high accuracy (e.g.,
R2>0.99 with normalized root mean squared error (NRMSE) of 2-3% for peak strains).®

The earlier CNN studies have motivated others to use a U-Net®® or explicit kinematic
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5
features3”38 to efficiently estimate stress and injury risk, whole-brain peak strains, or

several peak strain/strain rate quantities, respectively. These deep learning brain models
could allow for large-scale impact simulations, which are especially relevant to sports-
related concussion and subconcussive exposure due to the large number of impacts
typically sustained by each athlete.'* A limitation, nonetheless, is that all existing deep
learning brain models to-date are based on a generic model, representing a typical adult

male brain.

Therefore, the purpose of this study is to enhance an existing CNN brain model to
further account for strain differences due to individual variations in brain morphology
(shape and size). Developing a separate CNN for each subject’s brain is not optimal, as
each CNN requires thousands of impact-response samples for training, and that each
training sample requires a substantial simulation runtime.33 Instead, here we take the
advantage of approximating subject-specific brain models via simple linear scaling.!” The
three linear scaling factors are used as additional inputs to the existing, generic CNN to
inform how strain values should be adjusted relative to those from the generic brain

model.

The accuracy of the resulting individualized CNN is first evaluated for whole-brain
strain prediction based on a generic model to ensure that it maintains the same level of
accuracy relative to the generic CNN. Its accuracy for subject-specific brain models is
further tested by comparing predicted strains with those directly simulated using scaled
brain models from 11 subjects (with brain volume ranging from the smallest to largest in a
dataset) and representative real-world impacts. The individualized CNN would lead to
rapid whole-brain strain estimation on a subject-specific basis, and notably, without the
need for individual neuroimages. Therefore, this tool could facilitate large-scale and
individualized head impact simulations in the future. This may have important implications
in designing improved head protective countermeasures and rapid estimation of
concussion risks on a subject-specific basis. Finally, the individualized CNN purposefully
outputs voxelized whole-brain peak strains® to allow for convenient data sharing and to

promote collaboration among research groups.4
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Methods

To train a neural network for predicting spatially detailed whole-brain peak strains
for an arbitrary brain model subjecting to an arbitrary head impact, it is necessary to first
generate appropriate training samples. This requires creating arbitrary brain models as
well as impact kinematics as model simulation inputs. A recent study has demonstrated
the feasibility of approximating subject-specific brain models by linearly scaling a generic
counterpart along the three anatomical axes. The scaling factors are based on statistical
linear regression models established between brain outer surface morphology (length,
width, volume) and head dimensions (length, breadth, circumference, and tragion-to-top),
along with the subject’s sex and age information (see Eqns. A1-A3 in Appendix).l’ They are
ideal for serving as additional inputs to the previously developed CNN model to inform
how brain strains should be adjusted, without altering the neural network output data
size. In the following sections, we describe the details of generating random scaled models

and impact kinematics to prepare for training samples.
Randomly scaled models to generate training samples

The anisotropic Worcester Head Injury Model (WHIM) version 1.0 (V1.0)*° served
as the generic model (Fig. 1a). The WHIM was developed based on high-resolution T1-
weighted MRI of an 18-year-old male athlete.?’ The head coordinate system was chosen
such that the posterior-to-anterior, right-to-left, and inferior-to-superior directions
corresponded to the x, y, and z directions, respectively. Compared with the previous
isotropic version, the anisotropic V1.0 implements anisotropic material properties of the
white matter based on whole brain tractography. Both isotropic and anisotropic WHIM
V1.0 models have been successfully validated against high- and mid-rate cadaveric impact
data in terms of relative brain-skull displacement and marker-based strain, as well as strain

from low-rate in vivo volunteer rotations.*!

Ideally, a statistical distribution model of the three scaling factors corresponding to
brain length, width and height (in the x, y, and z directions, respectively) among real-world
subjects could be used to generate random brain models for training samples. The three

linear scaling factors are likely dependent, which would ensure the resulting training
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samples to be “life-like”. However, such a distribution model does not yet exist, and its

establishment is outside the scope of this study. Therefore, we assumed a uniform
distribution to randomly and independently produce the three linear scaling factors. They
were empirically limited to be within a range of [0.8, 1.2], representing up to 20% decrease
or increase in the corresponding brain dimension relative to that of the generic WHIM.
Following a dimensional analysis, the scaling factors for the brain volume would be the
multiplication of the three linear scaling factors.’” Figure 1 compares the generic WHIM

with three representative scaled models.

Some scaled models may not yield a plausible real-world brain model (e.g., an
extreme case would be to have a scaling factor of 0.8 along the x and y axes coupled with a
scaling factor of 1.2 along the z direction). Nevertheless, all of the scaled models and the
associated impact simulations would be useful to probe the impact-strain response
hypersurface in neural network training. This was analogous to generating augmented
impact kinematic profiles that may not be physical in the real world for producing neural

network training data.3?
[Figure 1]
Augmented impact profiles to generate training samples

Three real-world impact datasets were available for this study. They included
laboratory reconstructed National Football League (NFL) impacts (N=53),*> mouthguard-
measured on-field impacts from various sports (SF; N=110)* and from American High
School Football (HF; N=314).** The average length of temporal window of recorded non-
zero rotational velocity profiles was 88+63 ms (range of 18—240 ms) for the NFL dataset. In
comparison, the temporal length for the SF and HF datasets were fixed to 97 ms and 50
ms, respectively.** It has been shown that the deep brain corpus callosum has reached
peak strains for a significantly more impacts in the first two datasets than in the third (79%
and 88% vs. 34%). As the corpus callosum usually reaches peak strains the last, these
observations suggest that significantly more head impact profiles in the first two datasets
have sufficient durations to capture the complete kinematic events in modeling than the

third. Therefore, we used the NFL and SF datasets usually of longer impact durations to
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generate training samples while the HF dataset of a shorter duration was used for

independent testing.

Similar to previous studies,3>33 data augmentation was used to increase the
number of training samples. Briefly, it involves permuting the x, y, and z components of
the kinematic rotational profile, randomly rotating the rotational axis (assessed at the peak
resultant rotational velocity magnitude) about the head center of gravity, and random
scaling of the rotational velocity magnitude so that its peak was within a range of 2-40
rad/s. The range was determined from measured on-field impacts.* Each batch of data

augmentation generated six times the number of profiles in the dataset (3! = 6).

For each NFL/SF dataset, two batches of augmented impacts were generated. This
led to a total of 1956 impact rotational velocity profiles (53x6x2+110x6x2). Similarly,33
“outliers” with out-of-range peak velocity (N=31), initial velocity greater than 10% of peak
velocity (N=292), and peak acceleration below 10% percentile or over 90t percentile
(N=365) were removed. They led to a total of 1363 impact cases (the same outlier could
occur in multiple criteria). They were paired with the randomly scaled brain models for

impact simulation in Abaqus/Explicit (Version 2018; Dassault Systémes, France).
Data preprocessing

For kinematic input, the rotational velocity profile and the corresponding
acceleration profile (determined by forward differentiation of velocity and scaled to 1%;
both at a 1 ms temporal resolution) were concatenated. Explicitly combining velocity and
acceleration as input was necessary (same for a fully connected neural network?®’), as the
current CNN architecture may not be effective in deriving one from the other (but both are
important to brain deformation).3® The concatenated signals were then padded into 200
ms in length and were further shifted so that the resultant peak rotational velocity occurs
at 100 ms.33 Finally, the resulting 6-by-201 matrix data were uniformed scaled by a factor
of 40, which led to a data range of approximately [-1 1]. This is typical for data

normalization.*®

Directly providing the three scaling factors as inputs to the CNN was not optimal as

their values did not have the same data range relative to the kinematic data. Instead, they
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9
were similarly transformed into a data range of [-1 1]. With trial and error to finetune

parameters for the mapping of scaling factors, we found that transforming into a range of
[-2, 2] further improved performance (e.g., by 5% in “success rate” as defined later in
baseline training for the best fold in 10-fold cross-validation). Therefore, the following

transformation was employed to each scaling factor, s, before providing to the CNN as

input (scyn):

seny = 10X (s —1),

(1)
Voxelized deformation field

In order to promote data sharing without the need to access a biomechanical
model, itself,'* we adopted a meshfree postprocessing technique® to generate voxelized
peak maximum principal strain (MPS) for response representation. The resampling
effectively applies an average filter among peak strains at neighboring element centroids,
which would mitigate numerical artefacts associated with peak strains from model
simulation (thus, avoiding the need to compute the 95" or 90™ percentile peak strains
commonly used). An isotropic spatial resolution of 4 mm was chosen for the generic
model, which was consistent with our previous work.>> Fig. 2 compares FE elementwise
MPS and the voxelized counterpart. The same deformation voxelization strategy was
applied to the scaled brain models, with spatial resolutions along the three anatomical
axes appropriately scaled to account for the difference in brain morphology. This approach
retains the same image volume dimensions among various scaled or generic brain models,

which is necessary to preserve the same CNN output size for training and prediction.
[Figure 2]
CNN architecture

The earlier generic CNN architecture®® was modified to accept three morphological
scaling factors as additional inputs. The CNN convolutional layers and pooling operations
output a series of feature maps that are flattened into a 1D vector. They were expected to
generate strain patterns for the generic brain model. Given that the scaling factors are

anticipated to alter brain strain magnitude, but not strain pattern in a significant way,!’ the
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three morphological scaling factors were provided to the flattening layer after the

convolutional layers as inputs. In fact, providing the scaling factors as inputs to any of the
three fully connected layers could also inform the neural network to adjust strain

magnitudes resulting from brain morphological variations.

After trial and error, we identified that providing the scaling factors to the
flattening layer led to the highest performance (e.g., SR increased by 5% compared to
adding scaling factors to the second fully connected layer in baseline training for the best
fold in a 10-fold cross-validation). Finally, the output size for the last fully connected layer
was also modified to match the number of resampled voxel centroids corresponding to the
brain parenchyma (N=20043 voxels in an image volume of dimension of 36-by-47-by-35,
after removing non-brain regions). Fig. 3 shows the final architecture of the resulting

“individualized CNN”.
[Figure 3]
CNN training

Compared to the previous work,333 the number of training samples in this study
was significantly fewer (~1.4 k vs. ~5.7 k). To mitigate the challenge in training, we adopted
transfer learning, which has been successfully applied to a CNN designed for rapid brain
strain estimation for automotive impacts.3* Specifically, the previously simulated impacts
based on the augmented NFL and SF datasets using the generic WHIM32 (~5.7 k) were first
employed to retrain the same earlier CNN architecture for outputting voxelwise peak
strains at a 4 mm isotropic resolution. The resulting pretrained CNN provided initial
weights for further training (all layers unfrozen) using the impact-response samples from
the scaled brain models. To evaluate the effectiveness of transfer learning, a separate CNN
with random initial weights was also trained using impacts from the scaled brain models
(“baseline training"). Mean squared error (MSE) was used to define the following loss

function:

loss = %Zﬁl(%Zﬁ-”’:l(xu - Yij)z) , (2)
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where x;; and y;; are the CNN estimated peak MPS value and the directly simulated

counterpart for the j-th voxel of the i-th training sample, respectively. M is the number of
brain voxels in the resampled image representation, and N is the number of training

samples.

The same batch size of 256 was adopted.3? The number of training epochs of 500
was determined from early stopping to avoid overfitting3* (see Fig. Al in Appendix for a
typical learning curve). With transfer learning, the learning rate was usually set to be lower

than the pretrained model (e.g., 0.0001 or 10% of that in the pretrained model).
Performance evaluation: 10-fold cross-validation using training impact data

We adopted 10-fold cross-validation to assess the individualized CNN prediction
performance. The impact-response samples based on the random scaled brain models and
random impact kinematics were divided into 10 approximately equal subsets. Nine subsets
were used for training and the remaining subset unseen by the training process was used
for validation. The process was repeated 10 times until each subset was used for testing
exactly once. After the cross-validation, all samples were combined to train a single

individualized CNN for further accuracy assessment.

Linear regression slope (k) and Pearson’s coefficient (r) between CNN-predicted
voxelized MPS and those resampled from simulation results were calculated. They offer
the convenience to intuitively indicate an overall over- or under-estimation in magnitude
(k greater or less than 1.0) and the similarity in strain spatial pattern (r), respectively. A
prediction was considered sufficiently accurate when both k and r did not deviate from
their “perfect” score of 1.0 by more than 0.1, as adopted before.3® A success rate (SR) was
defined as the percentage of impact cases that the CNN estimation was sufficiently
accurate. To provide a sense of error magnitude (e.g., relative to WHIM injury threshold of
0.2 previously established)*’, root mean squared error (RMSE) was also reported.
Compared to k, RMSE loses the ability of informing over- or under-estimation, and does
not effectively differentiate relative error for high vs. low strains. Additionally, stratified
random sampling was also explored to confirm that the individualized CNN is stable across

different datasets (Table Al in Appendix).
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Performance evaluation: generic model responses using testing impact data

To ensure that the individualized CNN remains accurate when predicting responses
for the generic brain model, three scaling factors of 1.0 (prior to transformation; Eqn. 1)
were provided as inputs. The HF dataset was used for independent testing, where k and r

were obtained for each impact, along with SR for all the impacts.

However, the HF impacts had a relatively shorter time window than the NFL/SF
datasets, and significantly more impacts were considered inadequate to capture the
complete kinematic events (66.2% vs. 20.8% and 11.8% for NFL and SF dataset,
respectively).** Therefore, we also investigated whether this had a role in CNN prediction
performance. Specifically, we excluded HF impacts if the peak resultant rotational velocity
occurred within the last 5 ms relative to the temporal window right-handed boundary (as
empirically used earlier).** They were considered to not have captured the complete
kinematic event because all real-world head impacts are expected to include a
deceleration phase to reach to a zero velocity. Figure 4 illustrates sample HF impact

profiles and their distribution of temporal peak locations.
[Figure 4]

Performance evaluation: scaled subject-specific model responses using testing impact

data

For feasibility considerations, eleven subjects (same as before!’) with brain
volumes ranging from the smallest to the largest among 191 college and high school
athletes (141 males aged 14-25 and 50 females aged 18-24; approved by the Institutional
Review Board at Dartmouth College) were selected for evaluation.!” The subject
recruitment and neuroimage acquisitions (T1-weighted MR images; an isotropic resolution
of 1.5 mm X 1.5 mm X 1.5 mm, with image dimension of 112 X 171 X171) were part of
the previous effort to investigate the biomechanical basis of mild TBI.?° In a previous
study,?” each subject’s MR images were rigidly registered to the template MR volume of
the subject used to develop the generic WHIM.?® This ensured a consistent measurement
of brain length and width. Brain volume was calculated after segmentation, which was

then used to determine “brain height” through a dimensional analysis, where brain



Downloaded by Worcester Polytechnic Institute from www.liebertpub.com at 06/02/23. For personal use only.

Page 13 of 40

Journal of Neurotrauma

A morphologically individualized deep learning brain injury model (DOI: 10.1089/neu.2022.0413)

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

13
volume is expected to be correlated to the product of brain length, width, and height.’

The three scaling factors for the selected brain models are provided in Table 1.
[Table 1]

Similarly, it was not feasible or cost-effective to simulate hundreds of impacts for
each scaled subject-specific brain model for performance evaluation due to the substantial
simulation runtime required. We hypothesized that if the individualized CNN was
successful in estimating brain strains for the generic model and for a given impact profile,
likely it would be successful for a scaled model when using the same impact and the
corresponding scaling factors as inputs. Therefore, we strategically selected ten impact
profiles (N=10), where the individualized CNN either succeeded (N=4) or failed (N=3) to
estimate strains with sufficient accuracy, or the performance was at the borderline in the
k-r space (N=3). The selected impact profiles were then used as inputs for each of the 11

scaled models for direct simulation (N=110).
Significance of scaling factors: parametric investigation

Finally, the individualized CNN was used to parametrically investigate how, each
scaling factor affected brain strains. A baseline response was first estimated by setting all
scaling factors to 1.0. Each scaling factor was then parametrically swept across its value
range while keeping the other two at 1.0. Two successfully estimated impacts (randomly
chosen from the four) were used as kinematic inputs. The resulting k and r relative to the

baseline responses were calculated.

Given the significant correlation between brain size/volume and peak brain
MPS,16:21.25 we further investigated how the scaling factor of brain volume (sv) was related
to k and r for whole brain voxelwise strains. To limit the investigation to “life-like” scaled
models, a convex hull in the parametric space of (sx, sy, and sz) was established (Fig. 5)
based on the scaling factors from the 11 subjects, as well as those of the generic model
(scaling factors uniformly of 1.0). Combinations of random sx, sy, sz were generated from
their value ranges (N=10,000), and only those fell within the convex hull were retained

(N=639), from which sv was calculated as the multiplication of the three factors. The
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corresponding scaled models were used to determine the relationship between sv and k/r.

For comparison, the convex hull formed by the 191 subjects is also shown.
[Figure 5]
Data analysis

All head impacts were simulated using the anisotropic WHIM V1.0, which took ~30
min for one impact of ~100 ms duration (double precision with 15 central processing units
[CPUs]; Intel Xeon E5-2698 with 256 GB memory). Another ~30 min was necessary to
generate voxelized peak MPS. All data analyses were conducted using MATLAB (R2022b;
MathWorks, Natick, MA). Statistical significance was reached when the p value was <0.05.
In the following section, we first present results of various performance evaluations and

then report the significance of each scaling factor.

Results
Performance evaluation: 10-fold cross-validation using training impact data

Fig. 6 summarizes k, r, RMSE and SR for each impact in the 10-fold cross-validation,
using either the baseline training or transfer learning. The baseline training had an SR of

69.3%, which was improved to 86.2% with transfer learning.
[Figure 6]
Performance evaluation: generic model responses using testing impact data

Fig. 7 summarizes k, r, RMSE and SR for the HF dataset when using the
individualized CNN for estimating brain strains for the generic model (i.e., with scaling
factors of 1.0). An SR of 72.9% was obtained for the whole HF dataset, which improved to
92.1% when limiting to impacts that were considered to have captured the complete
kinematics events. This result suggests higher accuracy to follow when the testing and
training datasets both capture brain peak strains in model simulation. The ten impacts

selected for performance evaluations for the 11 scaled subject-specific models are
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identified (Fig. 7a), with six of them labeled for further illustration (for visualization

considerations). Their rotational velocity and acceleration profiles are reported in the

Appendix (Fig. A2-A7).

[Figure 7]

Performance evaluation: scaled subject-specific model responses using testing impact

data

For all ten selected impacts with estimation either successful, failed, or at the
borderline for the generic model (Fig. 7a), the same happened for the individualized CNN
for the scaled models. Fig. 8 summarizes results for predicting 11 scaled models (Table 1)
using each of the six labeled impacts as kinematic input. Without scaling to account for
morphological variation (Fig. 8b), the k-r coordinates of the scaled models along with that
of the generic model were largely aligned along a line for each given impact, with k linearly
increasing with the decrease of brain volume. However, no considerable variation of r

III

happened, especially for “successful” impacts, suggesting that a similar strain pattern was

retained when not accounting for brain morphological variations.

[Figure 8]

Fig. 9 shows the directly simulated peak MPS distribution for the odd-numbered
scaled models using impact #1 in Fig. 7a as kinematic input (even-numbered subjects in
Fig. A8). Their differences from estimation by the individualized CNN are also shown, when
using either the appropriate scaling factors as additional inputs or uniformly of 1.0 without
considering morphological variations. For the latter, over- or under-estimation was
apparent for smaller or larger brains, respectively. This finding highlights the effectiveness

of the individualized CNN to account for brain morphological differences.

[Figure 9]

Significance of scaling factors: parametric investigation

Fig. 10 reports how, each individual scaling factor affected the MPS prediction of

the individualized CNN using a representative impact as kinematic input. The resulting k
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and r were computed relative to the reference response obtained when setting all scaling

factors uniformly to 1.0. In addition, the relationship between brain volume ratio relative
to the generic WHIM (i.e., sv) and reference responses is also shown, for random scaling
factors falling within the convex hull in the parametric space (Fig. 5). For all scaling factors
including the volume ratio, increasing their values also increased k, or overall whole-brain
strain magnitude. However, the strain pattern remained rather similar, with minimum
differences in r, and for both impacts (see Fig. A9 in Appendix for an additional example).
Nevertheless, the relative significance among the scaling factors (i.e., amount of increase)

depended on the given head impact.
[Figure 10]
Discussion

We have successfully enhanced a convolutional neural network (CNN) brain injury
model to further account for strain differences due to individual brain morphological
variations (shape and size) relative to the generic anisotropic WHIM V1.0.%° The latter
represents a 60™ percentile adult male head.?? The outcome is a morphologically
individualized CNN with improved subject-specificity that remains instantaneous in

estimating peak strain distributions of the whole brain.

The individualized CNN takes three scaling factors along the anatomical axes as
additional inputs to adjust brain strains. A notable advantage with this approach is that no
neuroimages are necessary to approximate individualized brain models, and without
significant degradation of strain accuracy!’ relative to the “morphed models” created from
a more sophisticated neuroimage-based mesh warping.”® When subject-specific
information such as head dimensions and age/sex is not available, the individualized CNN
can still be used in place of the generic CNN, by setting the scaling factors uniformly to 1.0
(Fig. 7). Certainly, the model accuracy is expected to improve when neuroimages are
otherwise available to directly determine scaling factors relative to WHIM, without relying

on the regression models.
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Training and testing datasets

Recent advancement in brain modeling has identified the importance of sufficient
temporal duration for head impact profiles to ensure that brain strains reach peaks within
the simulation time window.?** The inconsistency among the three impact datasets used
for training and testing appears important for the accuracy disparity between cross-
validation (Fig. 6) and independent testing (Fig. 7). The majority of impacts from the NFL
and SF datasets (~80-90%) were considered to have captured the kinematic events
completely in model simulation, vs. ~34% in the HF dataset.** It was not surprising that
after limiting HF impacts to those considered to have captured the complete kinematic
events similarly to training data, the success rate (SR) considerably increased (from 72.9%

to 92.1%; Fig. 7).

The importance of ensuring impact profiles to capture the complete kinematic
event in terms of peak strains was more obvious when using the same CNN architecture to
train and predict peak strain distributions separately for the surface layer brain voxels and
for the corpus callosum deep in the brain (Fig. A10 and Fig. A11 in Appendix). The former
achieved an SR of 91%, which was considerably higher than the latter of 63% in cross-
validation. The brain surface and deep regions are usually the first and last, respectively, to
reach peak strains in an impact simulation. Therefore, the performance difference was
most likely because many impacts did not allow the corpus callosum region to reach peak
strains in simulation. On the other hand, the two regions had a rather similar RMSE value
overall (0.014 vs. 0.015); confirming that this accuracy metric may not be effective in

differentiating performance between high vs. low strains.

It should be recognized that the discrepancy in estimation performance of peak
strains is not likely to apply to the recent TNN and another CNN that predict the entire
temporal evolution of brain deformation, including strain.>® As long as impacts of
sufficiently long durations capturing the complete kinematic events are used for training,
strain estimation would likely still remain accurate for testing impacts, even of shorter
durations. However, they may lead to strain time histories not reaching peak responses,

which is the result of the impact data, themselves, independent of the TNN or CNN model.
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The opposite (i.e., impacts of shorter durations for training but for impacts of longer

durations for testing), nevertheless, may not be true, which was why the HF dataset was
not used for training in this study. To summarize, longer duration impacts are

recommended to serve as training data for developing deep learning brain models.
CNN accuracy performance

Transfer learning was effective at improving the accuracy of the individualized CNN,
increasing the cross-validation SR from 69.3% (with random initial weights) to 86.2% for
scaled model responses (Fig. 6). Nevertheless, the performance was notably poorer than
the earlier generic CNN in cross-validation (vs. SR of 92-97%).33 This was likely because of
the much fewer training samples used here (~1.4 k vs. ~5.7 k). In terms of RMSE, all testing

had a similar range of 0.012—-0.017, representing 6—8.5% of the injury threshold of 0.2.

While more training samples could further improve accuracy, it is worth
investigating how to generate the training samples more intelligently—using the fewest
training samples to achieve a desirable accuracy.*® This line of work may also explain why
the CNN failed for some impacts, even though their peak velocity/acceleration magnitudes
were unremarkable. In fact, the earlier CNN based on training data with peak rotational
velocity capped at 40 rad/s remains accurate for testing data with peak rotational velocity
up to ~80 rad/s.33 In this study, for impacts that were successful predicted or failed to
predict when treating them in a generic model, the individualized CNN also largely
followed the same trend (Fig. 8). This suggests that the actual impact profile shapes,*>>°
or, the physical processes of head acceleration/deceleration event play a critical role in the
CNN accuracy. Similarly, it is also important that impact profiles have sufficient durations
to capture the complete kinematic events so that brain strains reach peak values in model
simulation. The CNN performance would benefit when both the training and testing
impacts are of sufficient durations (Fig. 7). These findings are not surprising, given the
causal relationship between impact physical event and the resulting brain strains. It is,
thus, recommended that future deep learning brain injury models fully consider impact

biomechanical physics (vs. various kinematic peaks, alone) to maximize performance.
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Morphological scaling factors on strain over- or under-estimation

Morphological scaling factors mostly affected regression slope, k, or overall strain
magnitude (Fig. 8). Without them, the individualized CNN would over- or under-estimate
peak MPS for smaller or larger brains relative to the generic WHIM, respectively, as
expected (Figs. 8 and 9). Although estimations remained "successful” for most scaled

I”

models when using the two “successful” impacts as inputs, accounting for morphological
variations considerably improved accuracy, even with a more stringent success criterion
(i.e., both k and r not deviating from the perfect score of 1.0 by more than 0.05; Fig. 8).
However, scaling factors had little effect on strain pattern as characterized by r, which was

consistent with the parametric analysis (Fig. 10 and Fig. A9).

Interestingly, sx and sz (along the anterior-posterior and inferior-to-superior
direction, respectively) had the largest and least effect, respectively. This was likely
because the corresponding brain length and height is usually the longest and shortest,
respectively. Therefore, with the same percentage of increase/decrease, sx and sz would
lead to larger or smaller magnitude increase or decrease of the corresponding brain
dimension. Therefore, they would be expected to result in larger or smaller change in brain
strain as well. Obviously, the magnitude of this change depends on the actual impact used
as input, which explains why the selected two impacts had slightly different magnitudes of
effects from the scaling factors as well as that from brain volume ratio (Fig. 10 and Fig.

A9).
Postprocessing of brain biomechanical responses with neuroimage awareness

Neuroimage-based brain model development and enhancement are common.!%14
However, model response postprocessing has largely relied on strain output directly from
model simulations, e.g., peak strain of the whole brain>! and fiber/axonal strain through
elementwise strain tensor projection.?®°>°3 The inherent mesh-image mismatch poses a
challenge in translating biomechanical strains into a native neuroimage space for
multimodal injury correlation and subsequent analysis.*%>* The challenge is obliviated by

processing brain deformation such as strain, stress, and strain rate directly in a
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neuroimage space, which would then facilitate multimodal analysis between biomechanics

and neuroimaging.

A voxelized brain displacement field allows easily deriving an image representation
of strain, strain rate, and the complete strain tensor over time in a high-dimensional matrix
form. By properly adjusting the spatial resolution, the same image dimension can be
retained across subjects (generic vs. scaled brain models). When using a common
neuroimage atlas such as the MNI (Montreal neurological imaging) for brain response
resampling across different research groups, all brain models would conform to a common
standard for response representation. This may significantly promote data sharing and
collaboration among research groups, as no explicit access is necessary to the brain model,

itself.14
Comparison of deep learning brain injury model architectures

To date, several deep learning brain injury models have been developed based on
either a CNN3273>, 3 TNN3°, a U-Net3®, or a fully connected neural network3”3® architecture.
Models that use CNN, TNN, or U-Net employ kinematic temporal profiles as input,
emulating a two-dimensional image that these architectures were originally designed for.
They retain the complete kinematic information required for direct FE model simulation
and thus, may achieve a high estimation accuracy. However, their fixed input dimension
requires kinematic input resampling or retraining the network when using data of a
different temporal resolution. Their architectures are also relatively more complex and
thus, more challenging to train than a fully connected neural network. The latter typically
uses “engineered features” from kinematics, such as combinations of extrema magnitudes
of accelerations, velocities, and other variants including integrations and differences.
However, the extracted features could lose relative temporal information about the
physical process of impact important to brain deformation. As a result, fully connected
neural networks may suffer in accuracy. On the other hand, a TNN uses an attention
mechanism to correlate history-dependent brain deformation, which is highly accurate in
estimation (R? close to 1.0).3> Nevertheless, this architecture requires significantly more

computing resources for training. In comparison, a multi-task CNN using a one hot vector
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for task representation achieves a comparable (though, slightly degraded) accuracy but is

much lighter weight. More detailed comparisons of CNN/TNN models and with

architectures used in other research fields can be found in Ref.3*

Nevertheless, deep learning brain injury models have only emerged recently.'*
More efforts are necessary to compare their performances and optimize strategies for
generating training samples, as each sample remains rather costly to produce from direct

FE model simulation.
Limitations

Due to the fewer training samples compared to the previous work, the
individualized CNN suffered in accurate compared to the generic CNN. Future work should
investigate how best to design a minimum training dataset that is most effective in
achieving a desirable accuracy.”® For this reason, we also limited the scope of our study to
estimating element-/voxel-wise peak strains of the whole brain, rather than the complete
spatiotemporal details of brain strain now achievable with a TNN or a multi-task CNN.3°
Nevertheless, spatially detailed peak strains of the whole brain still supersede others that
report a single peak strain value (e.g., 90™ or 95% percentile peak strains), which is
incapable of informing the location of occurrence.** Computing the latter from the former

is trivial.

Second, the three scaling factors used to define head dimensions in training
samples were generated randomly from a relatively large range of 0.8—1.2 (vs. within 0.9—
1.1 for the 11 scaled models; Table 1). A more definitive statistical model among the
scaling factors (vs. independent here), if known, “may” help establish a more effective
training dataset in the future, with the caveat of costly re-simulations of many head
impacts. Still, this hypothesis needs to be tested, as the earlier CNN model remains
accurate even when testing on impacts quite different from the training samples (e.g.,
peak rotational velocity of ~80 rad/s, vs. peak magnitudes capped at 40 rad/s in training)33
and the performance does not seem to depend on how peak kinematics are distributed in

a parametric space.3*
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Finally, we have only focused on peak MPS responses in this study. Individual

variations in fiber/axonal strains will be tackled in the future, as this strain measure will
necessarily require subject-specific diffusion tensor images to account for individual

differences of white matter tracts at greater anatomical details.>
Conclusion

Despite a modest training dataset, the individualized CNN achieves reasonable
accuracy for instantaneous predictions of voxelwise peak maximum principal strains. The
individualized CNN improves model subject specificity by taking three morphological
scaling factors as additional inputs. The scaling factors can be determined based on
measurements of head dimensions, along with subject’s sex and age information, and
notably, without neuroimages necessary (certainly, accuracy anticipated to improve when
neuroimages are otherwise available). Therefore, the individualized CNN has the potential
to facilitate large-scale impact simulations, either for a generic brain or on a subject-
specific basis. This could be especially useful for brain injury studies of youth and female
athletes due to anticipated larger morphological variations relative to the generic, adult
male model. The voxelized strain output also allows for convenient data sharing and

promotes collaboration among research groups.
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Table 1. Morphological scaling factors, sx, sy, and sz along the three anatomical

directions for 11 selected subjects whose brain volumes ranged from the smallest to the

largest (from left to right) within the dataset. The scaling factors for brain volume (sv) are

also shown.
Subject 1 2 3 4 5 6 7 8 9 10 11
Age/sex | 23/F | 21/F | 18/F | 18/F | 22/M | 22/M | 21/M | 19/M | 20/M | 19/M | 19/M
sx 0.915 | 0.955 | 0.979 | 0.992 | 0.971 | 0.999 | 1.022 | 1.014 | 1.014 | 1.037 | 1.045
sy 0.949 | 0.995 | 0.979 | 1.016 | 1.071 | 1.053 | 1.021 | 1.059 | 1.059 | 1.049 | 1.056
sz 0.934 | 0.954 | 0.964 | 0.966 | 0.988 | 0.991 | 1.001 | 1.001 | 1.009 | 1.026 | 1.011
sv 0.811 | 0.907 | 0.923 | 0.973 | 1.027 | 1.043 | 1.047 | 1.081 | 1.084 | 1.116 | 1.117
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Figure legends:

(a) (L1, 1] (b) [1.1,1,1] (c) [1,0.9,1] (d) 09,11 11]

0.2 0.2

0.15 0.15

0.1 0.1

Figure 1. The generic anisotropic WHIM V1.0 (a) in comparison with three representative
scaled models (b—d). Their corresponding scaling factors along the three anatomical axes

are shown in brackets. Axis units are in meters.
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Figure 2. (ac) Elementwise MPS and its (bd) voxelized counterpart resampled at an
isotropic spatial resolution of 4 mm for the generic WHIM, showing an oblique (top) and a

coronal (bottom) view, respectively.
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Figure 3. Architecture of the individualized CNN, where the three morphological scaling

33

factors along the anatomical axes are provided as additional inputs to the flattening layer.

The last output layer size is modified accordingly to produce voxelized peak MPS

estimation of the brain. The scaling factors and the kinematic inputs are properly

transformed to a data range of [-2, 2] and [-1 1], respectively, to facilitate CNN training and

prediction.
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1.05+

generic

smallest

0.95 . largest

0.9~
0.9

X 11 0.9 sy

Figure 5. A convex hull in a 3D parametric space is formed by the three scaling factors from
11 subject-specific models (stars) and those of the generic model (circle). It is used to
define an admissible range of or “life-like” scaled models for parametric investigations of
the relationship between brain volume scaling factor, sv, and k and r (linear regression
slope and Pearson correlation coefficient, respectively). The convex hull from the larger
population of 191 subjects is also shown for comparison (gray boundaries). To improve

visualization, 2D projections of the two hulls in the sx-sy plane are also shown.
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Figure 6. Summary of k, r, RMSE, and success rate (SR) for (a) baseline training and (b)

transfer learning. To improve visualization, k and r values are capped. Points within the

“shaded box” (i.e., when 0.9<k<1.1 and r>0.9) indicate successful estimations of sufficient

accuracy.
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Figure 7. Summary of k, r, RMSE and SR when using the individualized CNN to predict peak
strain distributions for (a) the entire HF dataset or (b) limited to impacts considered to
have captured the complete kinematic events. The evaluations are based on generic model
responses (i.e., scaling factors uniformly set to 1.0). Ten impact cases were selected (a;

circles) to further assess accuracy for 11 scaled subject-specific models, from which six are
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Figure 8. Comparison of k-r plots with the individualized CNN when (a) applying
appropriate scaling factors for the 11 subject-specific models and the generic model or (b)
using a uniform scaling factor of 1.0 as inputs, i.e., without accounting for morphological
variations. With additional scaling factors as input, the estimated strains are considerably
more accurate as the k values have a much smaller range and are clustered close to 1.0
(“perfect”). The shaded boxes indicate the criteria used to define estimation success: when
both k and r do not deviate from the “perfect” value of 1.0 (when identical) by more than
0.1 or 0.05, respectively. The latter is a more stringent criterion for success. Markers
indicating the largest, smallest, and the generic brain model are shown, along with

kinematic impact numbers as identified in Fig. 7.
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Figure 9. Directly simulated peak MPS of the whole brain using scaled subject-specific
models (from left to right: odd-numbered subjects from smallest to largest brain in volume
according to Table 1; top); difference of peak MPS using the individualized CNN with
appropriate scaling factors as inputs relative to directly simulated counterparts (middle);
the same difference when, instead, using scaling factors of 1.0 as inputs (bottom; i.e.,
without accounting for brain morphological differences), where over- or under-estimation
is apparent from left to right. Comparisons for the even-numbered subjects are in

Appendix (Fig. A8).
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Figure 10. Significance of each anatomical scaling factor, sx, sy, and sz (left) and that for
brain volume, sv (right) relative to the generic WHIM on peak MPS variations in terms of k
and r, using a representative head impact as kinematic input (#1 in Fig. 7a). Example for an

additional impact (#2 in Fig. 7a) is shown in Appendix (Fig. A9).



