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Abstract 

The brain injury modeling community has recommended improving model subject 

specificity and simulation efficiency. Here, we extend an instantaneous (<1 sec) 

convolutional neural network (CNN) brain model based on the anisotropic Worcester Head 

Injury Model (WHIM) V1.0 to account for strain differences due to individual 

morphological variations. Linear scaling factors relative to the generic WHIM along the 

three anatomical axes are used as additional CNN inputs. To generate training samples, the 

WHIM is randomly scaled to pair with augmented head impacts randomly generated from 

real-world data for simulation. An estimation of voxelized peak maximum principal strain 

of the whole brain is said to be successful when the linear regression slope and Pearson’s 

correlation coefficient relative to directly simulated do not deviate from 1.0 (when 

identical) by more than 0.1. Despite a modest training dataset (N=1363 vs. ~5.7 k 

previously), the individualized CNN achieves a success rate of 86.2% in cross-validation for 

scaled model responses, and 92.1% for independent generic model testing for impacts 

considered as complete capture of kinematic events. Using 11 scaled subject-specific 

models (with scaling factors determined from pre-established regression models based on 

head dimensions and sex and age information, and notably, without neuroimages), the 

morphologically individualized CNN remains accurate for impacts that also yield successful 

estimations for the generic WHIM. The individualized CNN instantly estimates subject-

specific and spatially detailed peak strains of the entire brain and thus, supersedes others 

that report a scalar peak strain value incapable of informing the location of occurrence. 

This tool could be especially useful for youths and females due to their anticipated greater 

morphological differences relative to the generic model, even without the need for 

individual neuroimages. It has potential for a wide range of applications for injury 

mitigation purposes and the design of head protective gears. The voxelized strains also 

allow for convenient data sharing and promote collaboration among research groups. The 

upgraded CNN is freely available at: https://github.com/Jilab-biomechanics/CNN-brain-

strains. 

Keywords: traumatic brain injury; brain model; convolutional neural network; deep 

learning; subject-specific model; Worcester Head Injury Model 
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Introduction 

Traumatic brain injury (TBI) remains a leading contributor to mortality and 

morbidity1 with an estimated 64 to 74 million incidents worldwide.2 They often lead to 

debilitating negative neurological sequelae.3 About three quarters of TBI incidents are mild 

TBI (mTBI),4 which is particularly common in contact sports.5,6 The incidents of sports-

related mTBI are increasing in recent years,7 especially for youth and female athletes due 

to their increased participation in sports.8,9 Studies have suggest that females are generally 

at a greater risk of mTBI, often referred to as concussion in symptom, than males.10 The 

number of concussion incidents is also likely underestimated because of the significant 

under-reporting issue.11  

Indisputably, TBI, regardless of the severity, is initiated by brain deformation large 

or rapid enough from external head impact to cause tissue damage. Therefore, 

understanding the biomechanical mechanism of TBI is critical for designing improved head 

protective countermeasures to better protect the brain. Given that it is infeasible to 

directly measure live human brain deformation in an accident scenario, brain 

biomechanical models have been widely used to estimate tissue deformation.12,13 There is 

general consensus that a physics-based and validated brain model has strong potential to 

improve the detection of injury and interpretation of subconcussive impact exposure over 

impact kinematics, alone.14  

Nevertheless, several challenges remain for effective and practical use of a brain 

model. First, most brain models developed to date represent a generic, adult male 

head/brain.12,14 They may suffer in accuracy when investigating brain injury mechanisms 

on a subject-specific basis,15–17 especially for youth and female athletes because of the 

anticipated larger differences in brain morphology (shape and size) relative to the generic, 

adult male head/brain.18 It is known that a larger (adult male) brain would lead to larger 

stress,19 pressure,20 and strain16,17,21,22 than a smaller (youth and female) brain when 

applying the same head impact kinematics as model input. The second challenge is that 

brain injury models are notoriously poor in impact simulation efficiency, typically requiring 

hours23–25 or even days21,26 to simulate a single head impact and on a high-performance 
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computing platform. To address these challenges, the brain modeling community has 

recently recommended to enhance brain model subject specificity as well as to employ 

modern data science techniques to dramatically improve simulation efficiency.14  

An early effort to improve model subject specificity was to scale a generic model to 

represent a 5th or a 95th percentile individual for a much smaller or larger brain, 

respectively.27,28 More recently, subject-specific models are developed via mesh warping, 

by morphing a template brain model based on the deformation field obtained from co-

registration between individual neuroimages and those from the template brain.15,29,30 

Alternatively, brain anatomy can also be meshed directly from neuroimages.21,24,31 Most 

recently, another technique was developed to approximate subject-specific brain models 

by linearly scaling the brain along the three anatomical axes using pre-established 

statistical regression models between brain outer surface and head dimensions, along with 

subject’s sex and age information.17 Once the regression models are developed, this 

technique does not require individual neuroimages for scaling. It retains high accuracy 

compared to the presumably more accurate, “morphed model” developed from image 

warping. For example, for the smallest brain from a dataset of N=191 that is also 

anticipated to differ the greatest relative to the generic model, the scaled model had a 

strain difference of less than 1–3% for group-wise white and gray matter regions in terms 

of linear regression slope relative to those from the morphed subject-specific models.  

On the other hand, deep learning has demonstrated remarkable success in 

dramatically improving model simulation efficiency without significant degradation in 

accuracy. It reduces hours of impact simulation on a high-end computing platform to 

under a second on an ordinary laptop. The first deep learning model in TBI biomechanics 

was a convolutional neural network (CNN) developed to instantly estimate regional peak 

strains.32 It was then enhanced to estimate element-wise, spatially detailed peak strains of 

the entire brain33 and those of automotive head impacts.34 The CNN was further enhanced 

along with a separate transformer neural network (TNN) to rapidly estimate the complete 

spatiotemporal details of dynamic brain strain and strain rate, and with high accuracy (e.g., 

R2>0.99 with normalized root mean squared error (NRMSE) of 2–3% for peak strains).35 

The earlier CNN studies have motivated others to use a U-Net36 or explicit kinematic 
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features37,38 to efficiently estimate stress and injury risk, whole-brain peak strains, or 

several peak strain/strain rate quantities, respectively. These deep learning brain models 

could allow for large-scale impact simulations, which are especially relevant to sports-

related concussion and subconcussive exposure due to the large number of impacts 

typically sustained by each athlete.14 A limitation, nonetheless, is that all existing deep 

learning brain models to-date are based on a generic model, representing a typical adult 

male brain.  

Therefore, the purpose of this study is to enhance an existing CNN brain model to 

further account for strain differences due to individual variations in brain morphology 

(shape and size). Developing a separate CNN for each subject’s brain is not optimal, as 

each CNN requires thousands of impact-response samples for training, and that each 

training sample requires a substantial simulation runtime.33 Instead, here we take the 

advantage of approximating subject-specific brain models via simple linear scaling.17 The 

three linear scaling factors are used as additional inputs to the existing, generic CNN to 

inform how strain values should be adjusted relative to those from the generic brain 

model.  

The accuracy of the resulting individualized CNN is first evaluated for whole-brain 

strain prediction based on a generic model to ensure that it maintains the same level of 

accuracy relative to the generic CNN. Its accuracy for subject-specific brain models is 

further tested by comparing predicted strains with those directly simulated using scaled 

brain models from 11 subjects (with brain volume ranging from the smallest to largest in a 

dataset) and representative real-world impacts. The individualized CNN would lead to 

rapid whole-brain strain estimation on a subject-specific basis, and notably, without the 

need for individual neuroimages. Therefore, this tool could facilitate large-scale and 

individualized head impact simulations in the future. This may have important implications 

in designing improved head protective countermeasures and rapid estimation of 

concussion risks on a subject-specific basis. Finally, the individualized CNN purposefully 

outputs voxelized whole-brain peak strains39 to allow for convenient data sharing and to 

promote collaboration among research groups.14  
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Methods 

To train a neural network for predicting spatially detailed whole-brain peak strains 

for an arbitrary brain model subjecting to an arbitrary head impact, it is necessary to first 

generate appropriate training samples. This requires creating arbitrary brain models as 

well as impact kinematics as model simulation inputs. A recent study has demonstrated 

the feasibility of approximating subject-specific brain models by linearly scaling a generic 

counterpart along the three anatomical axes. The scaling factors are based on statistical 

linear regression models established between brain outer surface morphology (length, 

width, volume) and head dimensions (length, breadth, circumference, and tragion-to-top), 

along with the subject’s sex and age information (see Eqns. A1–A3 in Appendix).17 They are 

ideal for serving as additional inputs to the previously developed CNN model to inform 

how brain strains should be adjusted, without altering the neural network output data 

size. In the following sections, we describe the details of generating random scaled models 

and impact kinematics to prepare for training samples.  

Randomly scaled models to generate training samples 

The anisotropic Worcester Head Injury Model (WHIM) version 1.0 (V1.0)40 served 

as the generic model (Fig. 1a). The WHIM was developed based on high-resolution T1-

weighted MRI of an 18-year-old male athlete.29 The head coordinate system was chosen 

such that the posterior-to-anterior, right-to-left, and inferior-to-superior directions 

corresponded to the x, y, and z directions, respectively. Compared with the previous 

isotropic version, the anisotropic V1.0 implements anisotropic material properties of the 

white matter based on whole brain tractography. Both isotropic and anisotropic WHIM 

V1.0 models have been successfully validated against high- and mid-rate cadaveric impact 

data in terms of relative brain-skull displacement and marker-based strain, as well as strain 

from low-rate in vivo volunteer rotations.41  

Ideally, a statistical distribution model of the three scaling factors corresponding to 

brain length, width and height (in the x, y, and z directions, respectively) among real-world 

subjects could be used to generate random brain models for training samples. The three 

linear scaling factors are likely dependent, which would ensure the resulting training 

D
ow

nl
oa

de
d 

by
 W

or
ce

st
er

 P
ol

yt
ec

hn
ic

 In
st

itu
te

 fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
02

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 7 of 40 
 
 
 

7 

Jo
u

rn
al

 o
f 

N
eu

ro
tr

au
m

a 

A
 m

o
rp

h
o

lo
gi

ca
lly

 in
d

iv
id

u
al

iz
ed

 d
ee

p
 le

ar
n

in
g 

b
ra

in
 in

ju
ry

 m
o

d
el

 (
D

O
I:

 1
0

.1
0

8
9

/n
eu

.2
0

2
2

.0
4

1
3

) 

Th
is

 p
ap

er
 h

as
 b

e
e

n
 p

ee
r-

re
vi

e
w

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g 
an

d
 p

ro
o

f 
co

rr
e

ct
io

n
. T

h
e 

fi
n

al
 p

u
b

lis
h

ed
 v

er
si

o
n

 m
ay

 d
if

fe
r 

fr
o

m
 t

h
is

 p
ro

o
f.

 

samples to be “life-like”. However, such a distribution model does not yet exist, and its 

establishment is outside the scope of this study. Therefore, we assumed a uniform 

distribution to randomly and independently produce the three linear scaling factors. They 

were empirically limited to be within a range of [0.8, 1.2], representing up to 20% decrease 

or increase in the corresponding brain dimension relative to that of the generic WHIM. 

Following a dimensional analysis, the scaling factors for the brain volume would be the 

multiplication of the three linear scaling factors.17 Figure 1 compares the generic WHIM 

with three representative scaled models.  

Some scaled models may not yield a plausible real-world brain model (e.g., an 

extreme case would be to have a scaling factor of 0.8 along the x and y axes coupled with a 

scaling factor of 1.2 along the z direction). Nevertheless, all of the scaled models and the 

associated impact simulations would be useful to probe the impact-strain response 

hypersurface in neural network training. This was analogous to generating augmented 

impact kinematic profiles that may not be physical in the real world for producing neural 

network training data.32  

[Figure 1] 

Augmented impact profiles to generate training samples 

Three real-world impact datasets were available for this study. They included 

laboratory reconstructed National Football League (NFL) impacts (N=53),42 mouthguard-

measured on-field impacts from various sports (SF; N=110)43 and from American High 

School Football (HF; N=314).44 The average length of temporal window of recorded non-

zero rotational velocity profiles was 88±63 ms (range of 18–240 ms) for the NFL dataset. In 

comparison, the temporal length for the SF and HF datasets were fixed to 97 ms and 50 

ms, respectively.44 It has been shown that the deep brain corpus callosum has reached 

peak strains for a significantly more impacts in the first two datasets than in the third (79% 

and 88% vs. 34%). As the corpus callosum usually reaches peak strains the last, these 

observations suggest that significantly more head impact profiles in the first two datasets 

have sufficient durations to capture the complete kinematic events in modeling than the 

third. Therefore, we used the NFL and SF datasets usually of longer impact durations to 
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generate training samples while the HF dataset of a shorter duration was used for 

independent testing.  

Similar to previous studies,32,33 data augmentation was used to increase the 

number of training samples. Briefly, it involves permuting the x, y, and z components of 

the kinematic rotational profile, randomly rotating the rotational axis (assessed at the peak 

resultant rotational velocity magnitude) about the head center of gravity, and random 

scaling of the rotational velocity magnitude so that its peak was within a range of 2–40 

rad/s. The range was determined from measured on-field impacts.45 Each batch of data 

augmentation generated six times the number of profiles in the dataset (3! = 6).  

For each NFL/SF dataset, two batches of augmented impacts were generated. This 

led to a total of 1956 impact rotational velocity profiles (53×6×2+110×6×2). Similarly,33 

“outliers” with out-of-range peak velocity (N=31), initial velocity greater than 10% of peak 

velocity (N=292), and peak acceleration below 10th percentile or over 90th percentile 

(N=365) were removed. They led to a total of 1363 impact cases (the same outlier could 

occur in multiple criteria). They were paired with the randomly scaled brain models for 

impact simulation in Abaqus/Explicit (Version 2018; Dassault Systèmes, France). 

Data preprocessing 

For kinematic input, the rotational velocity profile and the corresponding 

acceleration profile (determined by forward differentiation of velocity and scaled to 1%; 

both at a 1 ms temporal resolution) were concatenated. Explicitly combining velocity and 

acceleration as input was necessary (same for a fully connected neural network37), as the 

current CNN architecture may not be effective in deriving one from the other (but both are 

important to brain deformation).33 The concatenated signals were then padded into 200 

ms in length and were further shifted so that the resultant peak rotational velocity occurs 

at 100 ms.33 Finally, the resulting 6-by-201 matrix data were uniformed scaled by a factor 

of 40, which led to a data range of approximately [-1 1]. This is typical for data 

normalization.46  

Directly providing the three scaling factors as inputs to the CNN was not optimal as 

their values did not have the same data range relative to the kinematic data. Instead, they 
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were similarly transformed into a data range of [-1 1]. With trial and error to finetune 

parameters for the mapping of scaling factors, we found that transforming into a range of 

[-2, 2] further improved performance (e.g., by 5% in “success rate” as defined later in 

baseline training for the best fold in 10-fold cross-validation). Therefore, the following 

transformation was employed to each scaling factor, 𝑠, before providing to the CNN as 

input (𝑠𝐶𝑁𝑁): 

𝑠𝐶𝑁𝑁 = 10 × (𝑠 − 1) , 

 (1) 

Voxelized deformation field 

In order to promote data sharing without the need to access a biomechanical 

model, itself,14 we adopted a meshfree postprocessing technique39 to generate voxelized 

peak maximum principal strain (MPS) for response representation. The resampling 

effectively applies an average filter among peak strains at neighboring element centroids, 

which would mitigate numerical artefacts associated with peak strains from model 

simulation (thus, avoiding the need to compute the 95th or 90th percentile peak strains 

commonly used). An isotropic spatial resolution of 4 mm was chosen for the generic 

model, which was consistent with our previous work.35 Fig. 2 compares FE elementwise 

MPS and the voxelized counterpart. The same deformation voxelization strategy was 

applied to the scaled brain models, with spatial resolutions along the three anatomical 

axes appropriately scaled to account for the difference in brain morphology. This approach 

retains the same image volume dimensions among various scaled or generic brain models, 

which is necessary to preserve the same CNN output size for training and prediction.  

[Figure 2] 

CNN architecture 

The earlier generic CNN architecture33 was modified to accept three morphological 

scaling factors as additional inputs. The CNN convolutional layers and pooling operations 

output a series of feature maps that are flattened into a 1D vector. They were expected to 

generate strain patterns for the generic brain model. Given that the scaling factors are 

anticipated to alter brain strain magnitude, but not strain pattern in a significant way,17 the 
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three morphological scaling factors were provided to the flattening layer after the 

convolutional layers as inputs. In fact, providing the scaling factors as inputs to any of the 

three fully connected layers could also inform the neural network to adjust strain 

magnitudes resulting from brain morphological variations.  

After trial and error, we identified that providing the scaling factors to the 

flattening layer led to the highest performance (e.g., SR increased by 5% compared to 

adding scaling factors to the second fully connected layer in baseline training for the best 

fold in a 10-fold cross-validation). Finally, the output size for the last fully connected layer 

was also modified to match the number of resampled voxel centroids corresponding to the 

brain parenchyma (N=20043 voxels in an image volume of dimension of 36-by-47-by-35, 

after removing non-brain regions). Fig. 3 shows the final architecture of the resulting 

“individualized CNN”. 

[Figure 3] 

CNN training  

Compared to the previous work,33,35 the number of training samples in this study 

was significantly fewer (~1.4 k vs. ~5.7 k). To mitigate the challenge in training, we adopted 

transfer learning, which has been successfully applied to a CNN designed for rapid brain 

strain estimation for automotive impacts.34 Specifically, the previously simulated impacts 

based on the augmented NFL and SF datasets using the generic WHIM33 (~5.7 k) were first 

employed to retrain the same earlier CNN architecture for outputting voxelwise peak 

strains at a 4 mm isotropic resolution. The resulting pretrained CNN provided initial 

weights for further training (all layers unfrozen) using the impact-response samples from 

the scaled brain models. To evaluate the effectiveness of transfer learning, a separate CNN 

with random initial weights was also trained using impacts from the scaled brain models 

(“baseline training"). Mean squared error (MSE) was used to define the following loss 

function: 

𝑙𝑜𝑠𝑠 =  
1

𝑁
∑ (

1

𝑀
∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)

2𝑀
𝑗=1 )𝑁

𝑖=1  , (2) 
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where 𝑥𝑖𝑗  and 𝑦𝑖𝑗 are the CNN estimated peak MPS value and the directly simulated 

counterpart for the 𝑗-th voxel of the 𝑖-th training sample, respectively. 𝑀 is the number of 

brain voxels in the resampled image representation, and 𝑁 is the number of training 

samples. 

The same batch size of 256 was adopted.33 The number of training epochs of 500 

was determined from early stopping to avoid overfitting34 (see Fig. A1 in Appendix for a 

typical learning curve). With transfer learning, the learning rate was usually set to be lower 

than the pretrained model (e.g., 0.0001 or 10% of that in the pretrained model).  

Performance evaluation: 10-fold cross-validation using training impact data 

We adopted 10-fold cross-validation to assess the individualized CNN prediction 

performance. The impact-response samples based on the random scaled brain models and 

random impact kinematics were divided into 10 approximately equal subsets. Nine subsets 

were used for training and the remaining subset unseen by the training process was used 

for validation. The process was repeated 10 times until each subset was used for testing 

exactly once. After the cross-validation, all samples were combined to train a single 

individualized CNN for further accuracy assessment.  

Linear regression slope (k) and Pearson’s coefficient (r) between CNN-predicted 

voxelized MPS and those resampled from simulation results were calculated. They offer 

the convenience to intuitively indicate an overall over- or under-estimation in magnitude 

(k greater or less than 1.0) and the similarity in strain spatial pattern (r), respectively. A 

prediction was considered sufficiently accurate when both k and r did not deviate from 

their “perfect” score of 1.0 by more than 0.1, as adopted before.33 A success rate (SR) was 

defined as the percentage of impact cases that the CNN estimation was sufficiently 

accurate. To provide a sense of error magnitude (e.g., relative to WHIM injury threshold of 

0.2 previously established)47, root mean squared error (RMSE) was also reported. 

Compared to k, RMSE loses the ability of informing over- or under-estimation, and does 

not effectively differentiate relative error for high vs. low strains. Additionally, stratified 

random sampling was also explored to confirm that the individualized CNN is stable across 

different datasets (Table A1 in Appendix).  
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Performance evaluation: generic model responses using testing impact data 

To ensure that the individualized CNN remains accurate when predicting responses 

for the generic brain model, three scaling factors of 1.0 (prior to transformation; Eqn. 1) 

were provided as inputs. The HF dataset was used for independent testing, where k and r 

were obtained for each impact, along with SR for all the impacts.  

However, the HF impacts had a relatively shorter time window than the NFL/SF 

datasets, and significantly more impacts were considered inadequate to capture the 

complete kinematic events (66.2% vs. 20.8% and 11.8% for NFL and SF dataset, 

respectively).44 Therefore, we also investigated whether this had a role in CNN prediction 

performance. Specifically, we excluded HF impacts if the peak resultant rotational velocity 

occurred within the last 5 ms relative to the temporal window right-handed boundary (as 

empirically used earlier).44 They were considered to not have captured the complete 

kinematic event because all real-world head impacts are expected to include a 

deceleration phase to reach to a zero velocity. Figure 4 illustrates sample HF impact 

profiles and their distribution of temporal peak locations.  

[Figure 4] 

Performance evaluation: scaled subject-specific model responses using testing impact 

data 

For feasibility considerations, eleven subjects (same as before17) with brain 

volumes ranging from the smallest to the largest among 191 college and high school 

athletes (141 males aged 14–25 and 50 females aged 18–24; approved by the Institutional 

Review Board at Dartmouth College) were selected for evaluation.17 The subject 

recruitment and neuroimage acquisitions (T1-weighted MR images; an isotropic resolution 

of 1.5 mm × 1.5 mm ×  1.5 mm, with image dimension of 112 × 171 ×171) were part of 

the previous effort to investigate the biomechanical basis of mild TBI.29 In a previous 

study,17 each subject’s MR images were rigidly registered to the template MR volume of 

the subject used to develop the generic WHIM.29 This ensured a consistent measurement 

of brain length and width. Brain volume was calculated after segmentation, which was 

then used to determine “brain height” through a dimensional analysis, where brain 
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volume is expected to be correlated to the product of brain length, width, and height.17 

The three scaling factors for the selected brain models are provided in Table 1.  

[Table 1] 

Similarly, it was not feasible or cost-effective to simulate hundreds of impacts for 

each scaled subject-specific brain model for performance evaluation due to the substantial 

simulation runtime required. We hypothesized that if the individualized CNN was 

successful in estimating brain strains for the generic model and for a given impact profile, 

likely it would be successful for a scaled model when using the same impact and the 

corresponding scaling factors as inputs. Therefore, we strategically selected ten impact 

profiles (N=10), where the individualized CNN either succeeded (N=4) or failed (N=3) to 

estimate strains with sufficient accuracy, or the performance was at the borderline in the 

k-r space (N=3). The selected impact profiles were then used as inputs for each of the 11 

scaled models for direct simulation (N=110).  

Significance of scaling factors: parametric investigation 

Finally, the individualized CNN was used to parametrically investigate how, each 

scaling factor affected brain strains. A baseline response was first estimated by setting all 

scaling factors to 1.0. Each scaling factor was then parametrically swept across its value 

range while keeping the other two at 1.0. Two successfully estimated impacts (randomly 

chosen from the four) were used as kinematic inputs. The resulting k and r relative to the 

baseline responses were calculated.  

Given the significant correlation between brain size/volume and peak brain 

MPS,16,21,25 we further investigated how the scaling factor of brain volume (sv) was related 

to k and r for whole brain voxelwise strains. To limit the investigation to “life-like” scaled 

models, a convex hull in the parametric space of (sx, sy, and sz) was established (Fig. 5) 

based on the scaling factors from the 11 subjects, as well as those of the generic model 

(scaling factors uniformly of 1.0). Combinations of random sx, sy, sz were generated from 

their value ranges (N=10,000), and only those fell within the convex hull were retained 

(N=639), from which sv was calculated as the multiplication of the three factors. The 
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corresponding scaled models were used to determine the relationship between sv and k/r. 

For comparison, the convex hull formed by the 191 subjects is also shown.  

[Figure 5] 

Data analysis 

All head impacts were simulated using the anisotropic WHIM V1.0, which took ~30 

min for one impact of ~100 ms duration (double precision with 15 central processing units 

[CPUs]; Intel Xeon E5-2698 with 256 GB memory). Another ~30 min was necessary to 

generate voxelized peak MPS. All data analyses were conducted using MATLAB (R2022b; 

MathWorks, Natick, MA). Statistical significance was reached when the p value was <0.05. 

In the following section, we first present results of various performance evaluations and 

then report the significance of each scaling factor.  

 

Results 

Performance evaluation: 10-fold cross-validation using training impact data 

Fig. 6 summarizes k, r, RMSE and SR for each impact in the 10-fold cross-validation, 

using either the baseline training or transfer learning. The baseline training had an SR of 

69.3%, which was improved to 86.2% with transfer learning. 

[Figure 6] 

Performance evaluation: generic model responses using testing impact data 

Fig. 7 summarizes k, r, RMSE and SR for the HF dataset when using the 

individualized CNN for estimating brain strains for the generic model (i.e., with scaling 

factors of 1.0). An SR of 72.9% was obtained for the whole HF dataset, which improved to 

92.1% when limiting to impacts that were considered to have captured the complete 

kinematics events. This result suggests higher accuracy to follow when the testing and 

training datasets both capture brain peak strains in model simulation. The ten impacts 

selected for performance evaluations for the 11 scaled subject-specific models are 
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identified (Fig. 7a), with six of them labeled for further illustration (for visualization 

considerations). Their rotational velocity and acceleration profiles are reported in the 

Appendix (Fig. A2–A7).  

[Figure 7] 

Performance evaluation: scaled subject-specific model responses using testing impact 

data  

For all ten selected impacts with estimation either successful, failed, or at the 

borderline for the generic model (Fig. 7a), the same happened for the individualized CNN 

for the scaled models. Fig. 8 summarizes results for predicting 11 scaled models (Table 1) 

using each of the six labeled impacts as kinematic input. Without scaling to account for 

morphological variation (Fig. 8b), the k-r coordinates of the scaled models along with that 

of the generic model were largely aligned along a line for each given impact, with k linearly 

increasing with the decrease of brain volume. However, no considerable variation of r 

happened, especially for “successful” impacts, suggesting that a similar strain pattern was 

retained when not accounting for brain morphological variations.  

[Figure 8] 

Fig. 9 shows the directly simulated peak MPS distribution for the odd-numbered 

scaled models using impact #1 in Fig. 7a as kinematic input (even-numbered subjects in 

Fig. A8). Their differences from estimation by the individualized CNN are also shown, when 

using either the appropriate scaling factors as additional inputs or uniformly of 1.0 without 

considering morphological variations. For the latter, over- or under-estimation was 

apparent for smaller or larger brains, respectively. This finding highlights the effectiveness 

of the individualized CNN to account for brain morphological differences.  

[Figure 9] 

Significance of scaling factors: parametric investigation  

Fig. 10 reports how, each individual scaling factor affected the MPS prediction of 

the individualized CNN using a representative impact as kinematic input. The resulting k 
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and r were computed relative to the reference response obtained when setting all scaling 

factors uniformly to 1.0. In addition, the relationship between brain volume ratio relative 

to the generic WHIM (i.e., sv) and reference responses is also shown, for random scaling 

factors falling within the convex hull in the parametric space (Fig. 5). For all scaling factors 

including the volume ratio, increasing their values also increased k, or overall whole-brain 

strain magnitude. However, the strain pattern remained rather similar, with minimum 

differences in r, and for both impacts (see Fig. A9 in Appendix for an additional example). 

Nevertheless, the relative significance among the scaling factors (i.e., amount of increase) 

depended on the given head impact.  

[Figure 10] 

Discussion 

We have successfully enhanced a convolutional neural network (CNN) brain injury 

model to further account for strain differences due to individual brain morphological 

variations (shape and size) relative to the generic anisotropic WHIM V1.0.40 The latter 

represents a 60th percentile adult male head.29 The outcome is a morphologically 

individualized CNN with improved subject-specificity that remains instantaneous in 

estimating peak strain distributions of the whole brain.  

The individualized CNN takes three scaling factors along the anatomical axes as 

additional inputs to adjust brain strains. A notable advantage with this approach is that no 

neuroimages are necessary to approximate individualized brain models, and without 

significant degradation of strain accuracy17 relative to the “morphed models” created from 

a more sophisticated neuroimage-based mesh warping.29 When subject-specific 

information such as head dimensions and age/sex is not available, the individualized CNN 

can still be used in place of the generic CNN, by setting the scaling factors uniformly to 1.0 

(Fig. 7). Certainly, the model accuracy is expected to improve when neuroimages are 

otherwise available to directly determine scaling factors relative to WHIM, without relying 

on the regression models. 
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Training and testing datasets 

Recent advancement in brain modeling has identified the importance of sufficient 

temporal duration for head impact profiles to ensure that brain strains reach peaks within 

the simulation time window.25,44 The inconsistency among the three impact datasets used 

for training and testing appears important for the accuracy disparity between cross-

validation (Fig. 6) and independent testing (Fig. 7). The majority of impacts from the NFL 

and SF datasets (~80–90%) were considered to have captured the kinematic events 

completely in model simulation, vs. ~34% in the HF dataset.44 It was not surprising that 

after limiting HF impacts to those considered to have captured the complete kinematic 

events similarly to training data, the success rate (SR) considerably increased (from 72.9% 

to 92.1%; Fig. 7).  

The importance of ensuring impact profiles to capture the complete kinematic 

event in terms of peak strains was more obvious when using the same CNN architecture to 

train and predict peak strain distributions separately for the surface layer brain voxels and 

for the corpus callosum deep in the brain (Fig. A10 and Fig. A11 in Appendix). The former 

achieved an SR of 91%, which was considerably higher than the latter of 63% in cross-

validation. The brain surface and deep regions are usually the first and last, respectively, to 

reach peak strains in an impact simulation. Therefore, the performance difference was 

most likely because many impacts did not allow the corpus callosum region to reach peak 

strains in simulation. On the other hand, the two regions had a rather similar RMSE value 

overall (0.014 vs. 0.015); confirming that this accuracy metric may not be effective in 

differentiating performance between high vs. low strains.  

It should be recognized that the discrepancy in estimation performance of peak 

strains is not likely to apply to the recent TNN and another CNN that predict the entire 

temporal evolution of brain deformation, including strain.35 As long as impacts of 

sufficiently long durations capturing the complete kinematic events are used for training, 

strain estimation would likely still remain accurate for testing impacts, even of shorter 

durations. However, they may lead to strain time histories not reaching peak responses, 

which is the result of the impact data, themselves, independent of the TNN or CNN model. 
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The opposite (i.e., impacts of shorter durations for training but for impacts of longer 

durations for testing), nevertheless, may not be true, which was why the HF dataset was 

not used for training in this study. To summarize, longer duration impacts are 

recommended to serve as training data for developing deep learning brain models.  

CNN accuracy performance  

Transfer learning was effective at improving the accuracy of the individualized CNN, 

increasing the cross-validation SR from 69.3% (with random initial weights) to 86.2% for 

scaled model responses (Fig. 6). Nevertheless, the performance was notably poorer than 

the earlier generic CNN in cross-validation (vs. SR of 92–97%).33 This was likely because of 

the much fewer training samples used here (~1.4 k vs. ~5.7 k). In terms of RMSE, all testing 

had a similar range of 0.012–0.017, representing 6–8.5% of the injury threshold of 0.2. 

While more training samples could further improve accuracy, it is worth 

investigating how to generate the training samples more intelligently—using the fewest 

training samples to achieve a desirable accuracy.48 This line of work may also explain why 

the CNN failed for some impacts, even though their peak velocity/acceleration magnitudes 

were unremarkable. In fact, the earlier CNN based on training data with peak rotational 

velocity capped at 40 rad/s remains accurate for testing data with peak rotational velocity 

up to ~80 rad/s.33 In this study, for impacts that were successful predicted or failed to 

predict when treating them in a generic model, the individualized CNN also largely 

followed the same trend (Fig. 8). This suggests that the actual impact profile shapes,49,50 

or, the physical processes of head acceleration/deceleration event play a critical role in the 

CNN accuracy. Similarly, it is also important that impact profiles have sufficient durations 

to capture the complete kinematic events so that brain strains reach peak values in model 

simulation. The CNN performance would benefit when both the training and testing 

impacts are of sufficient durations (Fig. 7). These findings are not surprising, given the 

causal relationship between impact physical event and the resulting brain strains. It is, 

thus, recommended that future deep learning brain injury models fully consider impact 

biomechanical physics (vs. various kinematic peaks, alone) to maximize performance. 
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Morphological scaling factors on strain over- or under-estimation  

Morphological scaling factors mostly affected regression slope, k, or overall strain 

magnitude (Fig. 8). Without them, the individualized CNN would over- or under-estimate 

peak MPS for smaller or larger brains relative to the generic WHIM, respectively, as 

expected (Figs. 8 and 9). Although estimations remained "successful” for most scaled 

models when using the two “successful” impacts as inputs, accounting for morphological 

variations considerably improved accuracy, even with a more stringent success criterion 

(i.e., both k and r not deviating from the perfect score of 1.0 by more than 0.05; Fig. 8). 

However, scaling factors had little effect on strain pattern as characterized by r, which was 

consistent with the parametric analysis (Fig. 10 and Fig. A9).  

Interestingly, sx and sz (along the anterior-posterior and inferior-to-superior 

direction, respectively) had the largest and least effect, respectively. This was likely 

because the corresponding brain length and height is usually the longest and shortest, 

respectively. Therefore, with the same percentage of increase/decrease, sx and sz would 

lead to larger or smaller magnitude increase or decrease of the corresponding brain 

dimension. Therefore, they would be expected to result in larger or smaller change in brain 

strain as well. Obviously, the magnitude of this change depends on the actual impact used 

as input, which explains why the selected two impacts had slightly different magnitudes of 

effects from the scaling factors as well as that from brain volume ratio (Fig. 10 and Fig. 

A9).  

Postprocessing of brain biomechanical responses with neuroimage awareness 

Neuroimage-based brain model development and enhancement are common.12,14 

However, model response postprocessing has largely relied on strain output directly from 

model simulations, e.g., peak strain of the whole brain51 and fiber/axonal strain through 

elementwise strain tensor projection.29,52,53 The inherent mesh-image mismatch poses a 

challenge in translating biomechanical strains into a native neuroimage space for 

multimodal injury correlation and subsequent analysis.40,54 The challenge is obliviated by 

processing brain deformation such as strain, stress, and strain rate directly in a 
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neuroimage space, which would then facilitate multimodal analysis between biomechanics 

and neuroimaging.  

A voxelized brain displacement field allows easily deriving an image representation 

of strain, strain rate, and the complete strain tensor over time in a high-dimensional matrix 

form. By properly adjusting the spatial resolution, the same image dimension can be 

retained across subjects (generic vs. scaled brain models). When using a common 

neuroimage atlas such as the MNI (Montreal neurological imaging) for brain response 

resampling across different research groups, all brain models would conform to a common 

standard for response representation. This may significantly promote data sharing and 

collaboration among research groups, as no explicit access is necessary to the brain model, 

itself.14  

Comparison of deep learning brain injury model architectures 

To date, several deep learning brain injury models have been developed based on 

either a CNN32–35, a TNN35, a U-Net36, or a fully connected neural network37,38 architecture. 

Models that use CNN, TNN, or U-Net employ kinematic temporal profiles as input, 

emulating a two-dimensional image that these architectures were originally designed for. 

They retain the complete kinematic information required for direct FE model simulation 

and thus, may achieve a high estimation accuracy. However, their fixed input dimension 

requires kinematic input resampling or retraining the network when using data of a 

different temporal resolution. Their architectures are also relatively more complex and 

thus, more challenging to train than a fully connected neural network. The latter typically 

uses “engineered features” from kinematics, such as combinations of extrema magnitudes 

of accelerations, velocities, and other variants including integrations and differences. 

However, the extracted features could lose relative temporal information about the 

physical process of impact important to brain deformation. As a result, fully connected 

neural networks may suffer in accuracy. On the other hand, a TNN uses an attention 

mechanism to correlate history-dependent brain deformation, which is highly accurate in 

estimation (R2 close to 1.0).35 Nevertheless, this architecture requires significantly more 

computing resources for training. In comparison, a multi-task CNN using a one hot vector 
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for task representation achieves a comparable (though, slightly degraded) accuracy but is 

much lighter weight. More detailed comparisons of CNN/TNN models and with 

architectures used in other research fields can be found in Ref.35  

Nevertheless, deep learning brain injury models have only emerged recently.14 

More efforts are necessary to compare their performances and optimize strategies for 

generating training samples, as each sample remains rather costly to produce from direct 

FE model simulation.  

Limitations 

Due to the fewer training samples compared to the previous work, the 

individualized CNN suffered in accurate compared to the generic CNN. Future work should 

investigate how best to design a minimum training dataset that is most effective in 

achieving a desirable accuracy.48 For this reason, we also limited the scope of our study to 

estimating element-/voxel-wise peak strains of the whole brain, rather than the complete 

spatiotemporal details of brain strain now achievable with a TNN or a multi-task CNN.35 

Nevertheless, spatially detailed peak strains of the whole brain still supersede others that 

report a single peak strain value (e.g., 90th or 95th percentile peak strains), which is 

incapable of informing the location of occurrence.14 Computing the latter from the former 

is trivial.  

Second, the three scaling factors used to define head dimensions in training 

samples were generated randomly from a relatively large range of 0.8–1.2 (vs. within 0.9–

1.1 for the 11 scaled models; Table 1). A more definitive statistical model among the 

scaling factors (vs. independent here), if known, “may” help establish a more effective 

training dataset in the future, with the caveat of costly re-simulations of many head 

impacts. Still, this hypothesis needs to be tested, as the earlier CNN model remains 

accurate even when testing on impacts quite different from the training samples (e.g., 

peak rotational velocity of ~80 rad/s, vs. peak magnitudes capped at 40 rad/s in training)33 

and the performance does not seem to depend on how peak kinematics are distributed in 

a parametric space.34 
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Finally, we have only focused on peak MPS responses in this study. Individual 

variations in fiber/axonal strains will be tackled in the future, as this strain measure will 

necessarily require subject-specific diffusion tensor images to account for individual 

differences of white matter tracts at greater anatomical details.55  

Conclusion 

Despite a modest training dataset, the individualized CNN achieves reasonable 

accuracy for instantaneous predictions of voxelwise peak maximum principal strains. The 

individualized CNN improves model subject specificity by taking three morphological 

scaling factors as additional inputs. The scaling factors can be determined based on 

measurements of head dimensions, along with subject’s sex and age information, and 

notably, without neuroimages necessary (certainly, accuracy anticipated to improve when 

neuroimages are otherwise available). Therefore, the individualized CNN has the potential 

to facilitate large-scale impact simulations, either for a generic brain or on a subject-

specific basis. This could be especially useful for brain injury studies of youth and female 

athletes due to anticipated larger morphological variations relative to the generic, adult 

male model. The voxelized strain output also allows for convenient data sharing and 

promotes collaboration among research groups. 
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Table 1. Morphological scaling factors, sx, sy, and sz along the three anatomical 

directions for 11 selected subjects whose brain volumes ranged from the smallest to the 

largest (from left to right) within the dataset. The scaling factors for brain volume (sv) are 

also shown.  

Subject  1 2 3 4 5 6 7 8 9 10 11 

Age/sex 23/F 21/F 18/F 18/F 22/M 22/M 21/M 19/M 20/M 19/M 19/M 

sx 0.915 0.955 0.979 0.992 0.971 0.999 1.022 1.014 1.014 1.037 1.045 

sy 0.949 0.995 0.979 1.016 1.071 1.053 1.021 1.059 1.059 1.049 1.056 

sz 0.934 0.954 0.964 0.966 0.988 0.991 1.001 1.001 1.009 1.026 1.011 

sv 0.811 0.907 0.923 0.973 1.027 1.043 1.047 1.081 1.084 1.116 1.117 
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Figure legends:  

 

Figure 1. The generic anisotropic WHIM V1.0 (a) in comparison with three representative 

scaled models (b–d). Their corresponding scaling factors along the three anatomical axes 

are shown in brackets. Axis units are in meters.  
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Figure 2. (ac) Elementwise MPS and its (bd) voxelized counterpart resampled at an 

isotropic spatial resolution of 4 mm for the generic WHIM, showing an oblique (top) and a 

coronal (bottom) view, respectively.  
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Figure 3. Architecture of the individualized CNN, where the three morphological scaling 

factors along the anatomical axes are provided as additional inputs to the flattening layer. 

The last output layer size is modified accordingly to produce voxelized peak MPS 

estimation of the brain. The scaling factors and the kinematic inputs are properly 

transformed to a data range of [-2, 2] and [-1 1], respectively, to facilitate CNN training and 

prediction. 
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Figure 4. Illustration of HF impact profiles that are considered to have captured the 

complete kinematic event or not (a and b, respectively) based on the temporal peak 

location of the resultant rotational velocity profiles (circles). Histogram shows the 

distribution of the temporal peak locations (c).  
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Figure 5. A convex hull in a 3D parametric space is formed by the three scaling factors from 

11 subject-specific models (stars) and those of the generic model (circle). It is used to 

define an admissible range of or “life-like” scaled models for parametric investigations of 

the relationship between brain volume scaling factor, sv, and k and r (linear regression 

slope and Pearson correlation coefficient, respectively). The convex hull from the larger 

population of 191 subjects is also shown for comparison (gray boundaries). To improve 

visualization, 2D projections of the two hulls in the sx-sy plane are also shown.  
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Figure 6. Summary of k, r, RMSE, and success rate (SR) for (a) baseline training and (b) 

transfer learning. To improve visualization, k and r values are capped. Points within the 

“shaded box” (i.e., when 0.9<k<1.1 and r>0.9) indicate successful estimations of sufficient 

accuracy.  
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Figure 7. Summary of k, r, RMSE and SR when using the individualized CNN to predict peak 

strain distributions for (a) the entire HF dataset or (b) limited to impacts considered to 

have captured the complete kinematic events. The evaluations are based on generic model 

responses (i.e., scaling factors uniformly set to 1.0). Ten impact cases were selected (a; 

circles) to further assess accuracy for 11 scaled subject-specific models, from which six are 

labeled here for subsequent case illustration.  

 

  

D
ow

nl
oa

de
d 

by
 W

or
ce

st
er

 P
ol

yt
ec

hn
ic

 In
st

itu
te

 fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
02

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 38 of 40 
 
 
 

38 

Jo
u

rn
al

 o
f 

N
eu

ro
tr

au
m

a 

A
 m

o
rp

h
o

lo
gi

ca
lly

 in
d

iv
id

u
al

iz
ed

 d
ee

p
 le

ar
n

in
g 

b
ra

in
 in

ju
ry

 m
o

d
el

 (
D

O
I:

 1
0

.1
0

8
9

/n
eu

.2
0

2
2

.0
4

1
3

) 

Th
is

 p
ap

er
 h

as
 b

e
e

n
 p

ee
r-

re
vi

e
w

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g 
an

d
 p

ro
o

f 
co

rr
e

ct
io

n
. T

h
e 

fi
n

al
 p

u
b

lis
h

ed
 v

er
si

o
n

 m
ay

 d
if

fe
r 

fr
o

m
 t

h
is

 p
ro

o
f.

 

 

Figure 8. Comparison of k-r plots with the individualized CNN when (a) applying 

appropriate scaling factors for the 11 subject-specific models and the generic model or (b) 

using a uniform scaling factor of 1.0 as inputs, i.e., without accounting for morphological 

variations. With additional scaling factors as input, the estimated strains are considerably 

more accurate as the k values have a much smaller range and are clustered close to 1.0 

(“perfect”). The shaded boxes indicate the criteria used to define estimation success: when 

both k and r do not deviate from the “perfect” value of 1.0 (when identical) by more than 

0.1 or 0.05, respectively. The latter is a more stringent criterion for success. Markers 

indicating the largest, smallest, and the generic brain model are shown, along with 

kinematic impact numbers as identified in Fig. 7. 
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Figure 9. Directly simulated peak MPS of the whole brain using scaled subject-specific 

models (from left to right: odd-numbered subjects from smallest to largest brain in volume 

according to Table 1; top); difference of peak MPS using the individualized CNN with 

appropriate scaling factors as inputs relative to directly simulated counterparts (middle); 

the same difference when, instead, using scaling factors of 1.0 as inputs (bottom; i.e., 

without accounting for brain morphological differences), where over- or under-estimation 

is apparent from left to right. Comparisons for the even-numbered subjects are in 

Appendix (Fig. A8).  
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Figure 10. Significance of each anatomical scaling factor, sx, sy, and sz (left) and that for 

brain volume, sv (right) relative to the generic WHIM on peak MPS variations in terms of k 

and r, using a representative head impact as kinematic input (#1 in Fig. 7a). Example for an 

additional impact (#2 in Fig. 7a) is shown in Appendix (Fig. A9).  

 

D
ow

nl
oa

de
d 

by
 W

or
ce

st
er

 P
ol

yt
ec

hn
ic

 In
st

itu
te

 fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
02

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 


