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Using simulations or experiments performed at some set of temperatures to learn
about the physics or chemistry at some other arbitrary temperature is a problem
of immense practical and theoretical relevance. Here we develop a framework based
on statistical mechanics and generative artificial intelligence that allows solving this
problem. Specifically, we work with denoising diffusion probabilistic models and show
how these models in combination with replica exchange molecular dynamics achieve
superior sampling of the biomolecular energy landscape at temperatures that were never
simulated without assuming any particular slow degrees of freedom. The key idea is to
treat the temperature as a fluctuating random variable and not a control parameter as is
usually done. This allows us to directly sample from the joint probability distribution
in configuration and temperature space. The results here are demonstrated for a chirally
symmetric peptide and single-strand RNA undergoing conformational transitions in
all-atom water. We demonstrate how we can discover transition states and metastable
states that were previously unseen at the temperature of interest and even bypass the
need to perform further simulations for a wide range of temperatures. At the same
time, any unphysical states are easily identifiable through very low Boltzmann weights.
The procedure while shown here for a class of molecular simulations should be more
generally applicable to mixing information across simulations and experiments with
varying control parameters.

molecular simulations | generative artificial intelligence | enhanced sampling

How does one learn physics and chemistry at a certain temperature on the basis of exper-
iment or experiments performed at certain other temperatures? The Arrhenius equation
(1) provides the simplest way to do it, if one is willing to make significant simplifying
assumptions about the energy landscape of the system. Often arbitrarily complex systems
indeed display kinetics conforming to the Arrhenius picture (2), but frequently one also
observes its violations (3). Even when the Arrhenius picture is applicable, it allows only
extrapolation of a single number, i.e., reaction rate across the temperatures. It thus remains
desirable to develop techniques that allow inferring much more detailed information
across a temperature range. These could be thermodynamic observables such as relative
probabilities of a molecule’s different conformations or of a crystal’s different polymorphs
or more detailed kinetic observables than just an overall rate constant. Even more generally,
given observations of the positions and velocities of all constituents of an V-body system
at some set of temperatures, we seek to estimate what they will be at a temperature
where the experiment or simulation was never performed. The problem is hard because
the probability distribution connecting configurational coordinates across temperatures is
hard to sample from, especially since N is extremely large for most systems of interest,
equaling at least tens of thousands.

Here we propose a framework using generative artificial intelligence (Al) that learns
to efficiently sample such high-dimensional, complex probability distributions for
N -body molecular systems valid across temperatures. There are two central ideas guiding
our framework. First, we do not treat the temperature 71" as just a control parameter.
By noting that the temperature is a measure of the average kinetic energy, we instead
work directly with the fluctuating kinetic energy, using the equipartition theorem to
define an instantaneous, effective temperature that we call 7. For finite N not yet
in the thermodynamic limit, 7 so defined will display significant relative fluctuations

proportional to 1/v/N. Second, if we have experiments or simulations performed with
heat bath temperatures T, T, . .., Tk, we can view them all together as being sampled
from the same, but unknown, joint probability p(x,7") for N-body configurations x.
We then use a generative Al method, specifically denoising diffusion probabilistic models
(DDPMs) (4, 5) to generate many more samples from p(x,7 ), given the sparse, high-
dimensional dataset.

To learna p(x, 7") from such a high-dimensional and sparse dataset, we use the DDPM
(4, 5), a generative Al framework inspired by nonequilibrium dynamics to approximate
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and sample from very high-dimensional distributions. By learning
p(x,T) we are referring to the ability to generate many more
samples from p(x, T') given the dataset we have from simulations
or experiments performed so far. The DDPM has been shown to
possess the ability to infer and learn the underlying relationship
from complicated data, i.e., high dimensional and with complex
correlations, but also noisy and sparse (4, 5). DDPMs learn two
diffusion processes called noising and denoising. The forward
diffusion or noising process converts the samples from high-
dimensional, structured, and unknown probability distribution
into simpler and analytically tractable white noise. The backward
diffusion or denoising process learns the mapping back from
noise to meaningful data. The central idea is that it is easy to
generate numerous samples from the noisy distribution, which can
then be denoised back to structured data. The process has been
demonstrated to be comparable to, or even outperform, other
generative Al models for generating high-quality samples and in
its ability to model the underlying semantics behind meaningful
data in an unsupervised manner (4, 5).

Despite their promising potential, to the best of our knowledge
DDPM:s have not yet been used in the context of mixing infor-
mation across processing conditions as done here. We are able to
achieve this through recognizing that for finite-size systems, as one
has in molecular simulations, the temperature can be associated
with a random variable that has significant fluctuations rather than
just a control parameter. The protocol developed here should be
applicable quite generally to data coming from simulations or ex-
periments at different temperatures. It should also be extensible to
mixing data from control parameters other than temperatures—
possibly including concentration, pressure, and volume. Here we
focus on a specific class of molecular simulations known as replica
exchange molecular dynamics (REMD) (6, 7) that use informa-
tion generated at a ladder of temperatures to swap configurations
across temperatures. REMD has been extremely powerful over the
decades for the study of molecular systems with rough energy
landscapes for fundamental science and practical applications
(8, 9). Numerous advances have been introduced over this basic
idea to make it more efficient computationally (10-17) and it
continues to be an area of very active research. We demonstrate
how the DDPM applied to all-atom, femtosecond resolution
REMD simulations of a small peptide and an RNA nucleotide
very significantly improves the quality of data generated across
temperatures, including temperatures at which the simulation was
never performed and even at temperatures outside the ladder of
temperatures. DDPM significantly improves the estimates of free
energies made through REMD and provides accurate sampling
of configurations that were not previously visited in the lowest-
temperature replica during REMD. This could be metastable
states or transition states. We also show how this can be used to
generate samples at temperatures not included in the ladder of
replicas. The samples we generate have thermodynamic relevance
and correspond to correct Boltzmann weights as opposed to
being just wild hallucinations (5, 18). Due to its generalizable
framework and simple postprocessing nature of application, we
thus believe that this work should be extensible to a wide range
of studies to supplement and extend the range of simulations and
experiments without actually performing them at all conditions
of interest.

Results

Defining a Fluctuating Effective Temperature. We work with
the equivalent pr(x) where T is the thermodynamics temper-
ature. Molecular dynamics (MD) or Monte Carlo (MC) methods
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allow sampling configurations x as per the equilibrium prob-

ability pr(x) = G_W%U(x)/Z, where U(x) is the potential

energy of the N-body system and Z = [ dxe BT U™ i the

partition function. For systems of practical interest in biology,
chemistry, and materials science, if T' is not large enough, it
becomes nearly impossible to sample reliably from pp(x), as
many regions of interest in conﬁguration space such as transition
states will have extremely low probability compared with low
free-energy states. To deal with this problem, in REMD one
simulates K + 1 replicas of the system at temperatures T =
To < Ty <...,< Tk.For high enough Tk, the sampling from

pre(X) =€ TR U(x)/ZK is expected to be more ergodic. One
then periodically exchanges conformations between consecutive
pairs of replicas with a Metropolis-type acceptance probability that
depends on the potential energies of the two replicas and their
temperatures. This way even the low-temperature T replica can
explore configurations that would not have been visited otherwise.

We now argue that by treating the temperature just as a control
parameter REMD is not making full use of the information gath-
ered across the ladder of temperatures. In most current incarna-
tions of REMD (excluding exceptions such as ref. 19), all that the
higher temperatures do is to help the lower-temperature replicas
discontinuously appear in different locations of the configuration
space. We take a slightly different view of the temperature in
REMD in this article, but this idea should be easily generalizable
to other thermodynamic variables that show fluctuations for finite
system size. Therefore, we are able to treat the approximate,
effective temperature as a random variable rather than a control
parameter. Additionally, the effective temperature of the system
is associated with its kinetic energy instead of the temperature
of the heat bath that we expect the thermostat to enforce on
average. More rigorously, we are sampling the joint p(x,7),
where the instantaneous temperature 7 is associated with the per-
particle kinetic energy  through %kB'T = k and is related to the
thermodynamics or heat bath temperature through its ensemble
average; i.e., (7) = T. The instantaneous temperature can be
calculated at each frame of a simulation.

Our motivation in doing so is that all replicas across different
temperatures can be viewed as being sampled from the same joint
probability p(x, 7 )—as opposed to different replicas sampling
from their respective pp(x). This change of perspective allows
us to combine together the data collected from different tem-
peratures as having arisen from the same, although intractable,

probability distribution p(x, 7).

Challenge in Sampling the Intractable Joint Probability across
Configurations and Temperatures. Our task at hand now is to
learn the joint probability p(x, 7') given sampling that has already
been performed through REMD across x space and temperatures
T=Ty<Th<...,<Tk. There are two main challenges in
this. The first challenge is due to the curse of dimensionality: The
memory or computational resources needed to track a very high-
dimensional distribution function increase exponentially with the
number of degrees of freedom. For instance, for REMD of a small
nine-residue peptide in explicit water, which we study here, we
exchange all 749 atomic coordinates between the replicas, but for
the purpose of analysis we set x as 18 Ramachandran dihedral
angles. This means we already have a 19-dimensional space where
binning procedures are out of the question. The second challenge
comes from the sparsity of the data. Most of our samples come
from high-probability regions of p(x,7") and we have very few
samples of low-probability states or even high-probability states
at low temperature due to inefficient exchange between replicas.
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Fig. 1. (Lower panel) The neural network architecture used in this work. It has the basic structure of the U-Net model (20). During the diffusion process, which
is indicated by the direction of blue arrows in Upper panel, noise is gradually added to the sampled data, in this case the picture of a very good dog, through
a diffusion process labeled with diffusion step t;. This changes the sampled distribution (for example, more pictures of dogs) to a simpler isotropic Gaussian
distribution from which one can easily generate more samples. An Al model is then trained to reverse such a diffusion process and starting from sampled
noise, to learn to generate images similar to the input image by following the direction indicated by the orange arrows. It takes a one-dimensional (1-d) array
s’, which is the noisy sample at diffusion step t;, as input and outputs the parameterization of a Gaussian distribution to get the reversed-transition kernel
go(s,ti—1 | s, t;). Each residue block consists of three components: two 1-d convolution operations with kernel size 3 and a group normalization (21) between
them. The diffusion step ¢; is added to each convolutional block after being transformed by the sinusoidal position embedding (22). The final conv label denotes
the convolution operation with kernel size equal to 1. Max-pooling reduces size of the features by half, while up-sampling uses the transposed convolution to

expand the size of features.

In summary, we have sparse sampling of data points in very high-
dimensional (x,7") space and wish to construct p(x,7) from
this information so that we can create many more samples at any
temperature of interest.

DDPMs Can Generate Many More Samples from p(x, 7). The
main idea behind the use of DDPM here is to learn a simple and
casy-to-sample-from distribution gg(x, 7") that approximates the
true p(x, T ). For notational simplicity, we denote s = {x, T}
and refer to gg(s) and p(s) henceforth. DDPM does this by
learning to reverse a gradual, multistep noising process that starts
with the relatively limited number of samples generated from the
distribution p(s) and diffuses to the simpler distribution pgimpic(s)
that is easy to sample. For instance, pyimplc(S) could be an isotropic
Gaussian. In addition to learning this noising process, DDPMs
also learn the reverse denoising process that allows us to go back
from samples generated using Pymple(S) to samples that would
have been generated from the underlying p(s). Both the noising
and denoising processes are modeled using diffusion processes that
convert probability distributions to one another and are imple-
mented using the architecture shown in Fig. 1, which is based on
the standard architecture for DDPMs as described in ref. 5.

Noising and Denoising Processes. The noising diffusion process
carried out in the space s that converts p(s) to the simpler
Dsimple (8) can be decomposed into M discrete steps denoted
by corresponding transition probabilities p(s’, t;+1]s, ¢;), where
i €0, M], p(s, to) = p(x,T),and p(s, tar) = Psimple(x, 7). In
DDPM, this noising diffusion process that converts sampled data
to essentially noise is set to be an Ornstein—Uhlenbeck (OU)
process in which the transition probability follows a simple Gaus-
sian form. One can then easily generate samples from p(s, ) =
p(x, T'). The tricky bit is now to convert these samples back to the
original distribution. In ref. 4, it was shown that this transition-
reversed diffusion kernel p(s, t;|s’, t;+1) can also be written in a
Gaussian form. A deep neural network (Fig. 1) is then trained
using variational inference to learn the approximate reversed
transition kernel gy(s, ;|s’, t;11) = p(s, t;|s, t;+1). Thus by
generating samples from a normal Gaussian distribution, which
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we can easily do in large numbers, and then passing these through
the reversed-transition kernel, we can generate samples that follow
the target distribution p(x,7") as desired. Note that instead of
learning the joint probabilities p(s1,s2), it can be advantageous
to learn the conditional probability p(s1|sz2). This can be done
through the protocol in ref. 4 by adding a delta function to allow
only a subset of s to change during the noising and denoising pro-
cess, i.e., 0(s2 — sh)p(s1, S2, t;|s], Sh, ti+1). This is very useful
when for instance we are interested in generating samples only at a
certain temperature or only in certain regions of the configuration
space. In the most general form of diffusion probabilistic mod-
els (DPMs) (4), the reversed-transition kernel go(s, t;|s’, t;41)
is considered as gp(s,t — 1|8, t) =N (s; f1y(s’, 1), 09(s', 1))
and the neural network is trained to learn the mean f1,(s’, ¢) and
variance &¢(s’, t). In practice, however, there are many different
ways to choose the Gaussian distribution parameterization. In
ref. 5, DDPM was introduced with a different parameterization
approach to reduce the complexity of the training task. DDPM
got its name because such a design makes the learning task
resemble a denoising score-matching procedure (23). In ref. 5, it
was shown that with such a design, DDPM can generate samples
of a quality that is comparable to or even better than that in other
generative models.

DDPM Applied to Replica Exchange MD: Desirables. We now
demonstrate how the above protocol can be applied to mix
data collected from different temperatures and configurations
in REMD and significantly improve the quality of sampling.
Specifically, we consider the following two challenging tasks:

1) Can we improve the sampling quality for the lowest-
temperature replica with more accurate probability estimates
than directly seen after REMD? This includes being able to
generate samples in low-probability regions such as transition
and metastable states and reliably estimate their free energies.

2) Can we generate samples at temperatures that are not included
in the replica ladder? This would include temperatures within
the range of the replica ladder and also extrapolation to tem-
peratures outside the range.

https://doi.org/10.1073/pnas.2203656119 3 of 8
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(A) AlBg in left-handed (L) and right-handed (R) conformations in explicit TIP3P water. (B) Free-energy profile of residues (with residue 5 as an example)

with two stable states labeled as L, R and two excited state labeled as La, Ra. When all residues are in L states, the peptide chain is in the left-handed state and
similarly for the right-handed state. The samples used to estimate this free energy are generated by 4-us-long MD simulation at 400 K. Free energies in B here

as well as throughout the article and S/ Appendix are provided in units of kgT.

Peptide Conformational Transitions. To demonstrate the perfor-
mance of DDPM, we first study a small peptide chain Aibg in
explicit water with transferable intermolecular potential with 3
points potential (TIP3P water) (24) using the CHARMM36m
force field (25). This nine-residue system (Fig. 24) displays rich
and complex conformational dynamics (26) including the transi-
tions between fully left-handed and right-handed helices. How-
ever, even in 4-ps unbiased MD at 400 K, one can see only
around two to three transitions between these two dominant
equiprobable conformations and even fewer, if any, transitions
to the higher-energy metastable states. To improve the sampling
of this system, we perform 100-ns REMD with 10 replicas at
geometrically spaced temperatures ranging from 400 to 518 K,
with temperature increased by 3% for each replica. The attempt
to exchange configurations was made every 20 ps, with acceptance
rate around 1% ~ 2% between neighboring replicas, which is
intentionally kept lower than what one usually has in REMD.
This is because we want to show that even in the extreme cases
where the number of atoms N is so large that replicas do not
have enough overlap, or if one wants to reduce the number of
replicas to save computational resources, our DDPM can still do
a decent job of complementing REMD and reconstructing the
true probability distribution at any temperature of interest. To
benchmark our results, we ran unbiased MD at 400 K for 4 us
and at 500 K for 0.6 ps. These simulations are long enough such
that there are multiple transitions between the left-handed state
and the right-handed state. Therefore, we can use the free-energy
profiles estimated from these unbiased simulations to benchmark
the performance of DDPM.

To quantify the quality of sampling, we focus on the 18 dihe-
dral angles corresponding to all nine residues (®1, Uy, $o, Uy,
-+-®g,Wg). As shown in the Ramachandran plot in Fig. 2B,
the free-energy surface along any pair of dihedrals is mainly
characterized by four metastable states: two equiprobable low-
energy ground states (L, R) and two excited states (La, Ra). The
Ramachandran plots for all nine residues in the system look
qualitatively similar but the middle residues of the peptide are
known to be less flexible with higher-energy barriers (27, 28). We
thus focus on the sampling for residues 5 and 8 as shown in Fig. 3.
We train our DDPM on the 100-ns-long REMD trajectories.
At the lowest temperature of interest (400 K), this trajectory
has not yet achieved sufficient sampling. As shown in Fig. 3,
DDPM successfully mixes information from all temperatures and
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configurations and generates samples in states that are not present
in the training dataset for both residues, indicated with thick black
arrows in Fig. 3, Right. Specifically, for residue 5 we can see that
the transition states between state R and state La, which were not
being sampled in the 400-K replica, are populated in samples from
DDPM. For residue 8 the improvement is even more striking as
the state Ra that was simply not sampled in REMD now gets pop-
ulated after DDPM. To further quantify the improvement gained
due to DDPM, we compare the free-energy differences between
different configurations from both REMD and DDPM against
much longer reference unbiased MD at 400 K. As shown in
SI Appendix, Fig. S2, the free-energy differences calculated from
samples generated by DDPM are much closer to that from the
reference MD. Thus, DDPMs are able to accomplish the first task
highlighted above. We also highlight that while some spurious
samples are generated, seen through dots outside the free-energy
contours in Fig. 3, their Boltzmann weights are very low. Thus, our
model “dreams” additional configurations without hallucinating
spurious configurations.

We now move to the second task from the list above and
test DDPM’s ability to generate samples by interpolating or even
extrapolating across temperatures not considered in the ladder of
replicas. In the first example, we use it to generate samples at
500 K, as in the training set with 10 replicas at geometrically
spaced temperatures between 400 and 518 K, there is no replica
with temperature 500 K. As shown in S/ Appendix, Fig. S2B, the
AG calculated from samples of DDPM is in good agreement with
that from the reference MD at 500 K. In the second example,
we completely remove the samples from the 400-K replica in the
training set and use it train a new model, which is then used
to generate samples at 400 K. Even though in the training set,
the lowest temperature is 412 K, the model can make accurate
prediction of the free-energy difference between states as shown
in Fig. 4. We are particularly encouraged by this last finding as
sampling at lower temperatures generally tends to be more difficult
than at higher temperatures.

To further push the limit of this model, we also investigated
the extreme case of when there is no exchange of configurations
between replicas. We ran the simulations with the same temper-
ature ladder and simulation steps as in the previous experiment,
but without any exchange of configurations between replicas. We
trained the DDPM model with these trajectories and repeated
the previous tests. As shown in S/ Appendix, Figs. S4-S9, even

pnas.org


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203656119/-/DCSupplemental
https://doi.org/10.1073/pnas.2203656119

Downloaded from https://www.pnas.org by UNIV OF MARYLAND ACQ SERIALS/ MCKELDIN LIB on June 2, 2023 from IP address 129.2.192.44.

(o]

[=)]

.p

N

Fig. 3.

Samples (dots) from REMD (Left) and DDPM (Right) at 400 K. The Boltzmann weights for different samples are indicated through their free energy

(contour lines, separated every 0.74 k,T). (A) Samples generated from DDPM and free-energy profile projected on dihedral angles of residue 5. (B) Samples
generated from DDPM and free-energy profile projected on dihedral angles of residue 8. DDPM was able to generate samples in states that are not present in
the training dataset for both residues, indicated with thick black arrows in A and B, Right.

without any exchange of configurations between replicas, DDPM
still successfully generated samples of metastable states that are
not sampled through parallel unbiased simulation. Furthermore,
by comparing the free-energy profiles calculated from DDPM
samples and estimated by the multistate Bennett acceptance ratio
estimator MBAR (29), we observed that both methods yield
similar free-energy profiles when the target temperature is within
the ladder of simulated temperatures. However, DDPM signif-
icantly outperforms MBAR in estimating free-energy profiles at
temperatures that are not included in the MD simulations (see

SI Appendix for more details.)

RNA Conformational Transitions. As a second example to illus-
trate the general applicability of our DDPM+REMD approach,

10

we turn our attention toward sampling an RNA conformational
ensemble. Rare RNA structures have been previously shown to be
biologically relevant (30-32), but estimating the conformational
ensemble still remains computationally intractable using tradi-
tional sampling techniques (33). RNA dynamics may occupy a
wide range of timescales—f{rom several hours for conformational
changes that require breaking base pairs to picoseconds for more
continuous deformations (32). As a consequence, identifying rare
transient structures and estimating their contribution to the RNA
ensemble have proved to be difficult. In this example, we consider
a GACC tetranucleotide as our model system (Fig. 54). As a
single-stranded RNA consisting of four nucleotides labeled G1,
A2, C3, and C4, GACC has been previously used as a challenging
test system for REMD-based sampling methods for its conforma-
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Free-energy differences between different metastable states AG calculated from samples from DDPM by extrapolating to a temperature at 400 K, which

is lower than any temperature included in the dataset. The DDPM model was trained with REMD trajectories with nine replicas starting at the lowest temperature
412 K. Green open crosses and purple open triangles are reference free-energy differences AG from 4-us-long unbiased MD at 400 K. Green solid plus signs and
purple diamonds show the energy differences from DDPM. AG, ., is the free-energy difference between ground-stateL (—2.2 < ® < —0.1, —1.6 < ¥ < 0.9)and
excited-state Ra (—1.6 < ® < —0.2, 1.4 < ¥ < 3.14); and AG, 1s is the free-energy difference between the ground-state L (—2.2 < ® < —0.1, —1.6 < ¥ < 0.9)
and a transition state (—1.8 < ® < —0.8,0.8 < ¥ < 1.5).
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Projection of samples and free-energy profile on dihedral angles ¢ and v of A2 in GACC at 325 K. The Boltzmann weights for different samples are

indicated through their free energy (contour lines, separated every 0.74 k, T). (A) The structure of GACC. (B) Samples from REMD. (C) Samples from the benchmark
Sus-long unbiased MD. (D) Samples from DDPM. The metastable states that are not present in the training dataset are indicated with thick black arrows.

tional flexibility (34). Despite the fact that GACC has been widely
studied, it still remains challenging to effectively sample possible
configurations and is a good system to test new methods (33).
For example, in a previous study, to get the converged structural
populations, a multidimensional replica exchange molecular dy-
namics (M-REMD) simulation was performed with 192 replicas
with around 1 ps of simulation time per replica, thus totaling
almost 192 ms of all-atom simulations (34). Here we show that
with DDPM, we can better estimate the free-energy landscape
using fewer computational resources, totaling only 12 ms of all-
atom simulations adding all replicas.

We trained our DDPM model on 250-ns REMD trajectories
from 48 replicas with temperatures ranging from 277 to 408 K
(see MD Simulations Setup for details). In each frame of the
trajectory, the structure of GACC is characterized by six dihedral
angles for each nucleotide. In these REMD simulations, the
sampling is not sufficient, especially for replicas at very low
temperatures. Fig. 5B and S/ Appendix, Figs. S4 and S5 show
the free-energy profiles of GACC projected on the v and ¢ angles
of A2 and C3 at different temperatures. We can see that expected
high-energy metastable states indicated by a black arrow in Fig. 5B
were not sampled in REMD. In contrast, for different target
temperatures, DDPM successfully generates the ensemble of such
high free-energy states that were never visited at low temperatures.
Here as well, any spurious configurations can be seen through
dots outside the free-energy contours in Fig. 5 with negligible
Boltzmann weights.

Discussion

We have presented a generative Al-based approach that combines
physics from simulations performed at different temperatures
to generate reliable molecular configurations and accurate ther-
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modynamic estimates at any arbitrary temperature even if no
actual simulation was performed there. The central idea is to
not work with the thermodynamic temperature T' of the system
as a parameter set by the heat bath, but instead work with an
effective temperature, calculated from the instantaneous kinetic
energy of the system. This effective temperature shows nontrivial
fluctuations for a finite-size system and on an average equals the
thermodynamic temperature. Given sparse sampling from the
high-dimensional space comprising configurational space coor-
dinates and the effective temperature, we train a generative Al
model that generates countless more samples of configurations at
any temperature of interest. Here we demonstrate its usefulness
in the context of the widely used REMD framework to improve
the sampling of REMD through a postprocessing framework.
We show how this significantly improves the quality of sampling
at low temperatures and even generates samples of states that
have not been visited in the replicas and at temperatures not
considered in the ladder of replicas. Since the kinetic energy fluc-
tuations are an important component of this method, we believe
DDPM will benefit from algorithms that precisely simulate these
fluctuations, such as the Gaussian moment thermostat (35), or
enhanced sampling methods that can generate more continuous
temperature distributions, such as the extended Hamiltonian
approach proposed in ref. 36. On the other hand, based on our
experiments on systems simulated with different thermostats and
under the condition of extremely low exchange rates, we can see
the advantage of this method learning from data with limited
fluctuations and its potential for application to a very wide range
of simulation scenarios, including those with limited thermal fluc-
tuations. It is worth mentioning here that a recent application (37)
of normalizing flows also attempts to enhance REMD sampling
through somewhat similar ideas to ours. However, in that work
the machinery is used to directly affect the acceptance protocol
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in REMD while ours is a purely postprocessing scheme. Our
work also bears similarity to the T"WHAM approach of ref. 19
and the MBAR approach of ref. 29, which intend to estimate
a similar joint probability over configuration and energy space.
However, as shown in S/ Appendix, Figs. S$4-S9, compared with
MBAR, numerically our approach is far superior in extrapolat-
ing free energy at temperatures outside the ladder of simulated
temperatures.

The generative Al framework of DDPM used here belongs to
the broad class of flow-type methods, which have been shown
to have the ability to generate samples from high-dimensional
space with many interdependent degrees of freedom. Compared
with other flow-type models such as normalizing flow (38, 39)
that use deterministic functions to map from an easy-to-sample
distribution to target distribution, the stochastic nature of DDPM
avoids the restriction of preserving the topology of configuration
space and thus allows the learning of significantly more compli-
cated distributions. At the same time the design of the transition
kernels in DDPM reduces the learning task to just learning means
of Gaussian kernels. This makes the training easier compared to
other methods (40) while at the same time being able to learn
more complicated transition kernels.

We also believe that our generative Al model, while “dreaming”
thermodynamically relevant structures at different temperatures,
avoids the so-called hallucinations suffered by other generative Al
models; i.e., we do not generate meaningless, unphysical struc-
tures with significant thermodynamic weights (18). We believe
this is through the use of relatively simple transition kernels,
which avoids overparameterization of the model, and through
utilizing molecular basis functions instead of all-atom coordi-
nates, which reduces the space that needs to be sampled. The
issue of generating out-of-distribution samples that has been
problematic in other methods attempting to generate molecular
structure, such as the Boltzmann generator, is usually avoided by
discarding the translational and rotational degrees of freedom and
reweighting the samples (39, 40). However, in the Boltzmann
generator, the reweighting factors for each sample are functions
of samples’ potential energy, which is well defined only when
all coordinates of a system are given. Therefore, in principle, the
Boltzmann generator can only be applied to samples generated
in the full configuration space. In the case that a system contains
explicit water molecules, the configuration space of the samples
will again become too sparse to be effectively sampled. For a
subset of the degrees of freedom of the system where the poten-
tial is not known, normalizing flows are a category of methods
that may also be used to learn the probability distribution of
states. Nevertheless, the method of normalizing flows, which also
underlies the Boltzmann generator, has been observed to have
limited expressiveness compared to stochastic methods such as
DDPM (38, 40).

We finally point out that this work shows the possibility of
learning generative models in the space of generic thermodynamic
ensembles, by following the simple recipe that control parameters
can also be viewed as fluctuating variables. As long as one is not in
the thermodynamic limit—something we do not have to worry
about in molecular simulations—this should be thus a practical
and useful procedure for problems far beyond replica exchange
molecular dynamics.

MD Simulations Setup.

AlBy. The simulation of AIBg was set up by following a previous
study (28). The Protein Data Bank (PDB) file was taken from
the authors with permission, and the simulations are done with

the CHARMM36m all-atom force field (25) using TIP3P water

PNAS 2022 Vol. 119 No.32 e2203656119

molecules (24), a Parrinello-Rahman barostat (41), and a Nose—
Hoover thermostat (42, 43) under the constant number, pressure,
and temperature (NPT) ensemble. Simulations were performed
using GROMACS 2016 (44). The structures of AIBg were saved
every 0.2 ps for all simulations and the dihedral angles were
calculated using PLUMED 2.4 (45). These datasets with 0.2-ps
temporal resolution were used for both Al model training and free
energy estimation.

GACC. The simulations of GACC were done with the AMBER
ff12 all-atom force field, using TIP3P water molecules (24), a
Parrinello-Rahman barostat (41), and a Bussi—Parrinello velocity
rescaling thermostat (46) under the NPT ensemble. The simula-
tions were performed using GROMACS 2016 (44). The AMBER
force field was chosen because it exhibits more conformational
variability compared with the CHARMM force field in a previous
study (34). The structures of GACC were also saved every 0.2 ps
and the dihedral angles defined in S/ Appendix, Table S1 were
calculated using PLUMED 2.4 (45). Similar to AIBg, the datasets
with 0.2-ps temporal resolution were used for both Al model
training and free-energy estimation.

The PDB file of the GACC structure that served as the starting
point for our simulation was generated using PyMOL. The initial
structure was assumed to be at a temperature of 10 K, and
the system’s energy was minimized with positional restraints of

25 keal ‘mol1 A" in a two-step process—iirst, the steepest-
descent algorithm was applied for 1,000 steps followed by the
conjugate gradient algorithm for another 1,000 steps. Next, the
system was equilibrated to 150 K over 100 ps under the constant
number, volume, and temperature (NVT) ensemble with posi-

tional restraints of 25 keal - mol~! - A~~. Then, the GACC was
equilibrated from 150 to 277 K at 1 atm under the NPT ensemble

for 100 ps with positional restraints of 5 kcal - mol~* A2
Finally, a long 5-ns equilibration was performed over 5 ns at
298 K under the NPT ensemble with positional restraints of

0.5 keal - mol= - A%, after which the system was copied to 48
replicas, and each replica was equilibrated to its target temper-
ature under the NPT ensemble with positional restraints of 0.5

keal -mol =1 - A7,

The replica temperatures were geometrically spaced tempera-
tures ranging from 277 to 408 K, with temperature increased
by 1% for each replica. The attempt to exchange configurations
was made every 10 ps, which is determined by checking the time
correlation function of the potential energy.

Network Structure and Hyperparameters. The structure of the
network is shown in Fig. 1. It has a U-net structure (20), where
the input is down-sampled by four residue blocks and then up-
sampled by another four residue blocks. The diffusion process
is divided into 1,000 discrete steps. The network parameters are
optimized by the Adam algorithm (47) with a learning rate equal
to 2 x 107°. Exponential moving average (EMA) with a decrease
rate 0.995 is used to stabilize the stochastic gradient descent.

Data Availability. Code forimplementing DDPM on REMD data is available at
https://github.com/tiwarylab/DDPM_REMD (48). All PLUMED input files required
to calculate the observables of two example systems are available on PLUMED-
NEST (https://www.plumed-nest.org/), the public repository of the PLUMED con-
sortium (45), as plumID:22.030, (49).
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