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The study of rare events in molecular and atomic systems such as conformal changes
and cluster rearrangements has been one of the most important research themes in
chemical physics. Key challenges are associated with long waiting times rendering
molecular simulations inefficient, high dimensionality impeding the use of PDE-
based approaches, and the complexity or breadth of transition processes limiting the
predictive power of asymptotic methods. Diffusion maps are promising algorithms
to avoid or mitigate all these issues. We adapt the diffusion map with Mahalanobis
kernel proposed by Singer and Coifman (2008) for the SDE describing molecular
dynamics in collective variables in which the diffusion matrix is position-dependent
and, unlike the case considered by Singer and Coifman, is not associated with a
diffeomorphism. We offer an elementary proof showing that one can approximate
the generator for this SDE discretized to a point cloud via the Mahalanobis diffusion
map. We use it to calculate the committor functions in collective variables for two
benchmark systems: alanine dipeptide, and Lennard-Jones-7 in 2D. For validating
our committor results, we compare our committor functions to the finite-difference
solution or by conducting a “committor analysis” as used by molecular dynamics
practitioners. We contrast the outputs of the Mahalanobis diffusion map with those
of the standard diffusion map with isotropic kernel and show that the former gives
significantly more accurate estimates for the committors than the latter.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Molecular simulation commonly deals with high-dimensional systems that reside in stable states over

very large timescales and transition quickly between these states on extremely small scales. These transi-

tions, rare events such as protein folding or conformational changes in a molecule, are crucial to molecular
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simulations but difficult to characterize due to the timescale gap. Transition path theory (TPT) is a math-
ematical framework for direct study of rare transitions in stochastic systems, and it is particularly utilized
for metastable systems arising in molecular dynamics (MD) [1]. The key function of TPT is the committor
function, a mathematically well-defined reaction coordinate with which one can compute reaction channels
and expected transition times between a reactant state A and a product state B in the state space. However,
the committor is the solution to an elliptic PDE that can be solved using finite difference or finite element
methods only in low dimensions. As a result, the typical use of transition path theory for high-dimensional
systems consists of finding an estimate for a zero-temperature asymptotic transition path and then using
techniques like umbrella sampling to access the committor [2,3]. While this approach is viable, it relies on the
assumption that the transition process is localized to a narrow tube around the found path. In practice, the
transition process may be broad and complex, and the found asymptotic path may give a poor prediction.

One can utilize intrinsic dimensionality of the system that is typically much lower than 3N,, where N,
is the number of atoms, and analyze transition paths in terms of collective variables [4,5]. However, a large
number of internal coordinates such as contact distances and dihedral angles may be required for a proper
representation of a biomolecule [6-9]. Hence, one still may be unable to leverage traditional mesh-based PDE
solvers to even dimensionally-reduced data given either in physics-informed or machine-learned collective
variables.

1.2. An overview

Meshless approaches to solving the committor PDE discretize it to point clouds obtained from MD
simulations. The two most promising approaches utilize neural networks [10-12] and/or diffusion maps [13].
The approach based on neural networks is more straightforward in its implementation, while the one based
on diffusion maps is more interpretable, visual, and intuitive, and we will focus on it in this work. We also
would like to acknowledge the work of Lai and Lu (2018) [14] on computing committors discretized to point
clouds. They proposed and advocated the “local mesh” algorithm and highlighted its advantage over an
approach utilizing diffusion maps. Contrary to diffusion maps, the “local mesh” does not require the input
data to be sampled from an invariant distribution, which is indeed a very appealing feature. However, the
“local mesh” implementation only considers SDEs with constant noise and has no theoretical guarantees of
convergence, while we found diffusion maps simple, robust, reliable, and deserving further development.

The diffusion map algorithm introduced in 2006 in the seminal work by Coifman and Lafon [15] is a widely
used manifold learning algorithm. Like its predecessors such as locally linear embedding [16], isomap [17],
and the Laplacian eigenmap [18], diffusion map relies on the assumption that the dataset lies in the vicinity
of a certain low-dimensional manifold, while the dimension of the ambient space can be high. Importantly,
this manifold does not need to be known a priori. Diffusion map inherits the use of a kernel for learning the
local geometry from its predecessors and upgrades it with the remarkable ability to approximate a class of
differential operators discretized to the dataset. These include the backward Kolmogorov operator (a.k.a.
the generator) needed for computing the committor function.

More specifically, the standard diffusion map with isotropic Gaussian kernel [15] yields an approximation
to the backward Kolmogorov operator if the input data comes from an Ito diffusion process with a gradient
drift and an isotropic additive noise. The problem of finding the committor then reduces to solving a system
of linear algebraic equations of a manageable size. This strategy would be suitable for MD data in the
original R*Ne-dimensional space of atomic positions, and has been utilized heavily in previous work [7,13,
19-22]. As mentioned above, biophysicists prefer to keep track of collective variables rather than positions
of atoms, as it lowers the dimension and gives more useful information about the molecular configuration.
Unfortunately, the transformation to collective variables induces anisotropy and position-dependence on the
noise term [1,4,5,23]. The resulting SDE describing the dynamics in collective variables has a non-gradient
drift and a multiplicative anisotropic noise:
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dey = [—M(2)VF () + V - M(x)] dt + /261 MY?(2,)dw,. (1)

Here, the diffusion matriz M (z), is a symmetric positive definite matrix function, VF(z) is the mean force,
the gradient of the free energy, and dw is the increment of the standard multidimensional Brownian motion.
The definitions and the computation of M (x) and VF(z) are detailed in Appendix A.

1.83. The goal and a brief summary of main results

The goal of the present work is to extend the diffusion map algorithm for computing the committor
functions for data sampled from the invariant density of SDE (1) and prove theoretical guarantees for its
correctness. We emphasize that our application of diffusion maps is not for learning order parameters or
doing dimensional reduction as in many previous works, e.g. [7,19,20,22]. We assume that we already have
a dimensionally reduced system due to the use of collective variables. Instead, we are going to approximate
the generator of SDE (1) by means of diffusion maps and use it to compute the committor.

If the diffusion matrix M (x) in SDE (1) arose from a diffeomorphism, we could straightforwardly apply
the diffusion map with the Mahalanobis kernel introduced by Singer and Coifman in 2008 [24]. However, the
transformation to collective variables is not a diffeomorphism. Typically, the number of collective variables
is much smaller than 3V, and the computation of collective variables involves an averaging with respect to
the invariant probability density. As a result, all that can be guaranteed is that the diffusion matrix M (x)
in (1) is symmetric positive definite. Furthermore, it is known that not every symmetric positive definite
matrix function M (z) is decomposable to M (z) = J(x)J " (z) where J(x) is the Jacobian matrix for some
diffeomorphism [25], as required for the formalism introduced in [24].

Our results are the following:

e We offer an elementary proof showing that a smooth symmetric positive definite d x d matrix function
defined in an open set € is not necessarily decomposable as JJ T (x) where J(x) is the Jacobian matrix
of some smooth vector-function f(x) in Q. Moreover, we establish a criterion for the existence of such a
decomposition for a special class of 2 x 2 matrix functions of the form M (x) = m?(x)Isx2 where m(z)
is a nonnegative twice continuously differentiable function in a simply connected open set 2 C R2.

e We prove a theorem establishing a family of differential operators approximated by the family of dif-
fusion maps with Mahalanobis kernel with an arbitrary smooth symmetric positive definite matrix
function M (z) parametrized by the renormalization parameter o € R. We also prove that if o = 1/2 the
corresponding diffusion map with the Mahalanobis kernel approximates exactly the generator for SDE
(1). Our proofs involve only elementary tools such as multivariable calculus and linear algebra. We will
refer to the resulting diffusion map algorithm with the Mahalanobis kernel as mmap. We will compare its
results to the original diffusion map algorithm with isotropic Gaussian kernel and refer to it as dmap.

o We apply mmap with o = 1/2 to two common test systems: the alanine dipeptide molecule [7,13,19,26-28]
and the Lennard-Jones cluster of 7 particles in 2 dimensions (LJ7) [29-31]. For both systems, we compute
the committor function on trajectory data and provide validation for the results. For alanine dipeptide,
we compare the committor obtained using mmap with the one computed using a finite difference method
and demonstrate good agreement between these two. We contrast the committor obtained from mmap
with the one obtained by dmap and show that the latter is notably less accurate. We also compute the
reactive currents for both mmap and dmap and obtain an estimate for the transition rate. In addition,
we investigate the dependence of the error in the estimate for the committor on the scaling parameter
€ in the kernel of mmap and dmap and conclude that mmap is consistently more accurate and at least
as robust as dmap. For LLJ7, we conduct a committor analysis, a simulation-based validation technique
for the committor [5,32,33]. Our results indicate that mmap produces a reasonable approximation for
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the 1/2-isocommittor surface, while dmap places this surface at an utterly wrong place in the collective
variable space.

The rest of the paper is organized as follows. In Section 2 we review relevant concepts from MD in
collective variables, transition path theory and diffusion maps. Our theoretical results are presented in
Section 3. Applications to alanine dipeptide and LJ7 are detailed in Section 4. Concluding remarks are
given in Section 5. Various technical points and proofs are worked out in the appendices.

2. Background

In this section, we give a quick overview on collective variables, transition path theory, and diffusion
maps.

2.1. Effective dynamics and collective variables

Our primary interest in this work is in datasets arising in MD simulations. We consider the overdamped
Langevin equation, a simplified model for molecular motion which describes the molecular configuration in
terms of the positions y of its atoms:

dys = =VV(y)dt + /26~ dwy, (2)

where y € R™, V : R™ — R is a potential function, S~ = kT is temperature in units of Boltzman-
n’s constant, t is time, and w; is a Brownian motion in R™. Given certain conditions on the potential
V, a system governed by overdamped Langevin dynamics is ergodic with respect to the Gibbs distribu-
tion p(y) = Z‘;le_ﬁv(y)7 where Zy is a normalizing constant. The overdamped Langevin dynamics has
infinitesimal generator

Lf=B7IAf—Vf - VV =51 VV. (e PVV)) (3)

defined for twice continuously differentiable, square-integrable functions f.

As mentioned in the introduction, the number of atoms in biomolecules is typically very large. Even
for such a small molecule as alanine dipeptide, the number of atoms is 22 and results in a 66-dimensional
configuration space (m = 66). Furthermore, to describe the state of a biomolecule one does not need atomic
positions y per se but rather certain functions in y specifying desired geometric characteristics. Therefore,
to reduce the dimensionality and obtain a more useful and comprehensive description of the system-at-
hand, one uses collective variables (CVs). CVs are functions of the atomic coordinates designed to give a
coarse-grained description of the system’s dynamics, preserving transitions between metastable states but
erasing small-scale vibrations. Physical intuition has traditionally driven the choice of collective variables
including dihedral angles, intermolecular distances, macromolecular distances and various experimental
measurements.

We denote the set of CVs as the vector-valued function = 6(y). Since our goal is to compute the
committor (its precise definition is given in Section 2.2), a chosen set of CVs is good if the committor
is well-approximated by a function that depends only on 6(y). The dynamics in collective variables is
approximated by a diffusion process governed by [5] SDE (1):

dzy = [~M(2)VE(z¢) + 87V - M(xy)] dt + /2871 M ()" *dwy.

Here, F(x) is the free energy and M (z) is the diffusion matriz, a symmetric positive definite matrix function.
They are computed by averaging the appropriate functions of © = 6(y) over all y € R™ with respect to
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Fig. 1. A segment of a long trajectory. Reactive pieces from reactant state A to product state B are shown with solid lines.

the invariant density u(y) = Z;,'e V). The exact formulas for F(z) and M(x) and their evaluation in
practice are detailed in Appendix A.
The generator for SDE (1) is given by

Lf=(-MVF+ 7YV -M)"Vf+ B "tr[MVVf], (4)
which can also be written in divergence form as
Lf=p7"1PIV . (e PFMVS). (5)

One can check [2] that the process given by an SDE of the form (1) is reversible and the invariant
probability measure for (1) is p(z) = Z~'e #F(®) the Gibbs measure. Moreover, we would like to remark
that any reversible diffusion process must be of the form (1) [34].

2.2. Transition path theory in collective variables

Throughout this section we assume that the system under consideration is governed by the overdamped
Langevin SDE in collective variables (1). Suppose we have an infinite trajectory {z:}2,. Further, suppose
that we have designated a priori two minima x 4, xp of the potential F' with corresponding disjoint open
subsets A 3 x4, B © xp which we refer to as the reactant and product sets respectively. Transition path
theory (TPT) [2,3] is a mathematical framework to analyze statistics of transitions between the reactant A
and the product B. The subject of TPT is the ensemble of reactive trajectories, defined as any continuous
pieces of the trajectory x; which start at 9A and end at 0B without returning to A in-between (see Fig. 1).
Key concepts of TPT are the forward and backward committor functions with respect to A and B. Since the
governing SDE (1) is reversible, the forward ¢4 and backward g_ committors are related via ¢_ = 1 — ¢4
[2]. Hence, for brevity, we will refer to the forward committor as the committor and denote it merely by
q(x). The committor ¢ has a straightforward probabilistic interpretation:

q(x) =P(tp < 7a | 20 = ), (6)

where 74 :=inf{t > 0| 2, € A} and 75 = inf{t > 0 | z, € B} are the first entrance times of the sets A and
B, respectively. In words, g(x) is the probability that a trajectory starting at x will arrive at the product
set B before arriving at the reactant set A. One can show that ¢ satisfies the boundary value problem [2]

Lg(z)=0 z¢ (AUDB)

g(z)=0 z€0A (7)
q(x)=1 =z €0dB,

where L is the infinitesimal generator (4). Once the committor is computed, one can find the reactive current
that reveals the mechanism of the transition process:
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J =B 1z e PF@ M () V(). (8)

The integral of the flux of the reactive current through any hypersurface ¥ separating the sets A and B
gives the reaction rate:

N
vap = lim % = /J.ﬁda, (9)

where N 4p is the total number of transitions from A to B performed by the system within the time interval
[0,t], and 7 is the unit normal to the surface ¥ pointing in the direction of B.

Transition path theory has been extended to Markov jump processes [35,36] on a finite state space S,
|S| = n, defined by the generator matrix L satisfying

(10)

ZjeSLij =0, i€8
LZJZO, ’L;é]7 ’L,jGS

The settings and concepts in discrete TPT mimic those from its continuous counterpart. In particular, the
committor is the vector [q] = [q1,...,q,]" with

[qi =P(rB <Ta| Xo =1).

Analogously, [g] solves the matrix equation

[Lqli =0 i€ S\(AUB),
[qi=0 icA, (11)

Our goal is the following. Let {z;}?" ; be a dataset sampled from SDE (1). We need to construct a discrete
generator L such that, given a smooth scalar function f(z), we have

ZLijf(xj) ~ Lf(x;) foreach z;, 1<i<n,
j=1

where L is the generator of (1) defined in (4). We refer to this approximation as a pointwise approzimation of
the generator with respect to the dataset. Given a pointwise approximate generator matrix L, we can then
pointwise approximate the continuous committor ¢ via our solution to the discrete committor equation (11).
In this work, we will show that the Mahalanobis diffusion map (mmap) yields the desired approximation.

2.8. Diffusion maps

The diffusion map algorithm takes as input a dataset X = {x;}"_; C R? of independent samples drawn
from a distribution p(z) that does not need to be known in advance. The manifold learning framework
assumes that X lies near a manifold M which has low intrinsic dimension. Pairwise similarity of data is
encoded through a kernel function k. (z,y) whose simplest form is given by

ko) = exp (12220, (12)
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The user-chosen parameter € > 0 is the kernel bandwidth parameter (or the scaling parameter). The original
diffusion map algorithm [15] requires an isotropic kernel h(||z—y||?) with exponential decay as ||z—y|| — oc.
Let us describe the construction of a diffusion map following the steps in [15]. The kernel k.(x,y) is used
to define an n x n similarity matrix K. with [K.];; = ke(z;, ;). The strong law of large numbers implies
that for a scalar f(z) on RY we have:

n

Tim =S k(1) () = / k(i y)f(y)p(y)dy  almost surely. (13)
Jj=1 R4

It follows from the Central Limit Theorem that the error of this estimate decays as O(n~2). The action of
the kernel on sufficiently large datasets is approximated by an integral operator G, defined by

(Gef)() == / ke(,9) £ (4)dy. (14)

R4
Namely, for a sufficiently large dataset,
1 n
nh—>n;o - Z ke(zi,z) f(z;) = Ge(fp)(z;) almost surely. (15)

j=1

The main innovation of the diffusion map algorithm [15] in comparison with Laplacian eigenmap [18] is
the introduction of the parameter a € R allowing us to control the influence of the density p and approximate
a whole family of differential operators. Let us review the construction of diffusion maps. The first step is
to compute the normalizing factor p.(x), where

pe(z) = /ke(w, y)p(y)dy. (16)
Rd

The right-normalized kernel is defined as

keo(z,y) = (17)

We note that one can write the action of the right-normalized kernel on density-weighted functions f(z)p(z)
as

/ oo (2, 9) f (0)p(y)dy = / ke, 1) £ (00w () dy.
R4 R4

Hence the right normalization regulates the influence of the density p(z) in Monte Carlo integrals. We define
vector p. as the vector of row sums of the matrix K.:

n

[pe]i = Z[KG]ZJ (18)

j=1

We define the diagonal matrix D, = diag(p.). Then, the discrete counterpart for the right-normalized kernel
(17) is

K., :=K.D °. (19)
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Next, we fix

Peal@) = / Fea (2, 9)0(y)dy (20)

Rd

to left-normalize the kernel, and define the Markov operator P, on f as

Jra kea(@:y) [ (y)py)dy

= 21
Peaf(@) e (21)
Finally, we define a family of operators L. , as
Pe,a - 1 ge e_a
€ €\ Ge(ppc®)

To obtain its discrete counterpart, we form a diagonal matrix D, , with row sums of K , along its diagonal
and use it to left-normalize the matrix K., and get the Markov matrix P, , = D;éKeya. Then the family
of discrete operators L o is defined as

Lo = =%~ (23)

The discrete and continuous operators L. o, and L., relate via the pointwise infinite data limit. Let us
fix an arbitrary point 27 drawn from the invariant density p and keep adding more points drawn from p(x)
into a dataset containing x1. Then

lim [Leo[f]]; = [Leal f(z1), almost surely (24)

n—oo

with error decaying as O(n~2). It is proven in [15] that!

) 1 A 1—af —fA 11—«
lg%ﬁe,af=§< (p ;1_a (p )).

(25)

If the input dataset X comes from the overdamped Langevin SDE (2), and hence the invariant measure is
Gibbs, i.e., p(x) = Z7'e #V(*) and the kernel is given by (12), then

lim £eof = % [Af —2B8(1—a)VFf VV]. (26)

The series of steps described here leading to the construction of the matrix operator L , (23) will be referred
to as dmap (an abbreviation for the diffusion map algorithm).

The renormalization parameter o tunes the influence of the density p in the operator L. .. Setting o =0
yields, up to a multiplicative constant 1/2, the standard graph Laplacian, which converges to the Laplace-
Beltrami operator only if p is uniform. With o = 1 the density p(x) is reweighted so that the limiting
density for ¢ — 0,n — oo is uniform and the Laplace-Beltrami operator Lf = %A f is recovered. Setting
a = 1/2 recovers the backward Kolmogorov operator,

i Lo = 2 (577~ vTVV] = ey, (27)

which is needed for computing the committor.

1 We believe that a multiplicative constant is missing in Theorem 2 and in Proposition 10 in [15].
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The diffusion map algorithm has also seen many other modifications and improvements which are used
heavily in practice. A primary development concerns the kernel bandwidth parameter e, which usually
requires extensive tuning in practice. Diffusion map variations such as locally scaled diffusion maps [7]
and variable bandwidth diffusion kernels [37] utilize a bandwidth which varies at each data point and can
improve stability as well as accuracy at the boundary points of a dataset.

2.4. Diffusion maps for data coming from SDFEs with multiplicative noise

An important limitation of the original class of diffusion maps with isotropic kernels [15] is that it can
only approximate infinitesimal generators of the form (26) that are relevant only for gradient flows [38,39].
This limitation is caused by the fact that the construction relies on the sampling density of the data but not
dynamical properties of the data. For example, the reversible diffusion process in collective variables (1) has
the Gibbs distribution p(z) and diffusion matrix M (z), but application of diffusion maps will approximate
the generator of gradient dynamics with density p(z) and constant diffusion matrix [38]. Hence, to approx-
imate generators for diffusion processes with multiplicative noise, a modified diffusion maps algorithm is
required [24,38].

2.4.1. Mahalanobis diffusion maps
The foundational approach for applying diffusion maps to diffusion processes with multiplicative noise is
proposed by Singer and Coifman (2008) [24]. They consider a diffusion process

dzy = b(ze)dt +V2dw,, 2z € M, (28)

where M is a d-dimensional manifold. The generator for this process is given by
L,=A+b-V. (29)
The dynamics (28) are considered as the unobserved intrinsic dynamics of interest, while the observed
dynamics is the process 2y = ((2;), where ( is an injective, smooth function from M to R™, where m > d.

To elucidate the key idea from [24], we assume that M = R? m = d, and that the mapping = = ((2) is a
diffeomorphism. From Ito’s Lemma, the differential of ( is

d i\t 2 i\ %t d i\ 2t
a6z = (ac’(, V() + 3;“) a2y K (30)

Thus, the noise term for d((z;) is given by v/2J(z)dw;, where J(z) is the Jacobian of ¢ with entries
[T = 52
The crucial fact utilized in [24] is the following relationship between the (JJ ')~ l-weighted quadratic

form in the space of observed variables 2 = ((z) and the Euclidean distance in the z-space:

S =T [T @) + () 0)] (€@ - )

= llz = ZII* + O(ll= = ='I1"). (31)

This relationship motivated the introduction of the anisotropic kernel

k) = esp (= =) (T @)+ (I W) ). (32)
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Algorithm 1: Mahalanobis Diffusion Map Algorithm (mmap).

Input: data X = {x;}]",, diffusion matrices {M (x;)}]_,, bandwidth ¢, renormalization parameter o

Output: Matrix operator L¢ o
Construct kernel using (33)

1 [Kclij = ke(zi,zy), 4,j=1,...,n
Find row sums of the kernel matrix and form a diagonal matrix
2 [peli =D [Kij, i=1,...,n
j=1
3 Dezdiag{[pe]la---y[pe]n}
Right normalize the kernel
4 Ke,o) := KcD_“
Left normalize the kernel
n
5 [pe,ali = Z[Ke,a}ij’ i=1,...,n
j=1
6 De,a :diag{[pe,uc]lwua[pe,a]n}
7 PE,Q = D;;Ke,a

Construct generator

e, T
8 Leo =
€

The diffusion map with kernel (33) approximates the generator £, for the unknown latent dynamics z; in
the case where b(z;) = —VU(z;) for some potential U(z). The fact that the diffusion matrix is of the form
JJ T is essential for the proof of this approximation presented in [24]. Relationship (31) essentially reduces
this to the proof for diffusion maps with rotationally symmetric Gaussian kernel in [15].

The algorithm proposed in [24] and variants have been applied to multiscale fast slow-processes [24,40],
nonlinear filtering problems [41], optimal transport and data fusion problems [42,43], chemical reaction
networks [44], localization in sensor networks [45], and molecular dynamics [46]. Further, kernel (33) has
recently been used for isometric embeddings to high-dimensional latent spaces [47] and for deep learning
frameworks [45,47].

This work addresses the case where diffusion matrix M (z) in SDE (1) is not necessarily decomposable as
M(z) = (JJ") (z) and hence there is no relationship of the form (31) to utilize. Following [24], we use the
Mahalanobis kernel

ele) = exp (= (=) T (@) + M7 ) ). (3)

4e
Other than the choice of the kernel, the Mahalanobis diffusion map algorithm (mmap) follows the steps of the
diffusion map algorithm (dmap) detailed in Section 2.3. For the reader’s convenience, we summarize mmap in
Algorithm 1. The family of differential operators approximated by mmap will be derived in Section 3.

Remark 2.1. The term Mahalanobis kernel is related to the Mahalanobis distance. If data points z and y
are sampled from a multivariate Gaussian distribution with covariance matrix C, then

(z—y) C z—y)

is the squared Mahalanobis distance between x and y. In the orthonormal basis of eigenvectors of C, the
difference between each component of z and y is normalized by the corresponding variance, which reflects
the difficulty to deviate along each direction. Hence, kernel (33) is a decaying exponential function of
an approximate squared Mahalanobis distance. Therefore, it is designed to account for anisotropy of the
diffusion process the data is coming from.

2.4.2. Local kernels
A further development facilitating data-driven analysis of anisotropic diffusion processes was done by
Berry and Sauer (2016) [39]. Their local kernels theory generalizes theoretical results of [15,24] to a class
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of anisotropic kernels which utilize user-defined drift vectors b(z;) and diffusion matrices A(x;). The local
kernel approach has been extended to related work in solving elliptic PDEs with diffusion maps [48] and
to computing reaction coordinates for molecular simulation [38]. In [38] the authors incorporate arbitrary
sampling densities into the local kernel approach [39] and prove that for user-defined drift vector b(z) and
user-defined diffusion matrix A(x), kernels of the form

0 o) = exp (4o =+ ) A @) -y + o)) (349)

applied to data {z;}, with arbitrary density can be normalized (similarly to the diffusion map with oo = 1)
to approximate the differential operator

Lf(x) = b(x)V f(z) + tr[A(z)VV [ (2)]. (35)

Equation (35) describes a broader class of generators than (4), which is advantageous. On the downside, the
local kernel diffusion map algorithm of [38] requires drift estimates at all data points, as well as a second
kernel kz(z,y) with additional scaling parameter € in order to normalize the density of the dataset. As a
result, implementation of the local kernel approach requires adjustment of two scaling parameters € and €,
which can be challenging.

We are primarily interested in the reversible dynamics in collective variables coming from MD simulations.
On the other hand, the density of the data is far from being uniform, and may change by orders of magnitude
thereby complicating the tuning of scaling parameters. Therefore, we choose to use mmap rather than the
local kernel approach.

3. Theoretical results

Our goal is to prove that the mmap algorithm (Algorithm 1) with o« = 1/2 approximates the generator
(4) for SDE (1), the overdamped Langevin dynamics in collective variables. First we show that not every
symmetric positive definite smooth matrix function M (z) admits the decomposition J.J ' (x) where J(z)
is the Jacobian matrix function for some smooth vector-function. This will justify the lengthy calculation
conducted in our proof of the main theorem (Theorem 3.3 below). Next, we derive the family of differential
operators approximated by mmap with an arbitrary o € R (Theorem 3.3). Finally, we evaluate the resulting
differential operator at a = 1/2 and show that it is the generator for (1) (Corollary 3.1).

3.1. Not every diffusion matriz is associated with a variable change

The fact that not every smooth symmetric positive definite matrix function M (x) can be decomposed as

d

M(z) = J(z)J(z)" where J= (8fi> (36)
Ox; i,j=1

for some smooth vector-function f : Q — R%, where € is an open set in R, is not new but it is not widely
known. The non-existence of decomposition (36) is pointed out for the position-dependent diffusion matrix
in the Moro-Cardin 2D example [49] by M. Johnson and G. Hummer [50] with a reference to the textbook by
H. Risken [25] (Section 4.10), where the general criterion for the existence of decomposition (36) consisting
in vanishing a certain complicated differential form is presented.

Here we will give a simple proof of the fact that not every symmetric positive definite smooth matrix
function admits decomposition (36) by establishing a necessary condition for a class of 2 x 2 symmetric
positive definite matrix functions



L. Evans et al. / Appl. Comput. Harmon. Anal. 64 (2023) 62-101 73

M(x,y) = m*(x,y)Iaxa, m(x,y) € C3Q), m(x,y) >0 V(z,y) € Q, (37)

for decomposition (36) to exist. Precisely, the necessary condition requires the function logm(z,y) to be
harmonic. Moreover, if the open set  is simply connected, this condition is also sufficient for the class (37).

Theorem 3.1. Let M (x,y) be a symmetric positive definite matriz function of the form (37) where m(x,y)
is a positive twice continuously differentiable function in an open set Q C R? and Isxo is a 2 x 2 identity
matriz. Suppose that M admits decomposition M (x,y) = JJ " (z,y) where J(x,y) is the Jacobian matriz of
some twice continuously differentiable vector-function f : @ — R2. Then logm(z,y) must be harmonic, i.e.,

0? 0?
(ﬁ + 8—y2> logm(z,y) =0 V(z,y) € Q. (38)
Moreover, if the open set S is simply connected, then (38) is also a sufficient condition for the existence of
decomposition (36). If Q is not simply connected, (38) is not a sufficient condition.

A proof of Theorem 3.1 is given in Appendix B.
Thus, any matrix function of the form (37) where logm(z,y) is not harmonic in  does not admit
decomposition (36) in 2. For example, the function m in the Moro-Cardin example [49]

2242 —1/2
+y ) (39)

m(x,y) = (1+6_ 2

is such that its logarithm is not harmonic:

1 (2=72)(1+e T /2)e /2 4 p2e—r”
Alogm(r) = ) l( X (1+6T)2/2)2 , r=yat YR

Furthermore, any d x d twice continuously differentiable matrix function M (z,y) that has a principal
2 x 2 submatrix of the form (37) where log m(z,y) is not harmonic in §2 does not admit decomposition (36).

3.2. The family of differential operators approximated by mmap
We will adopt three technical assumptions. The first one deals with the space of collective variables x:

Assumption 1. The range of z representing the set of collective variables constitutes a d-dimensional manifold
M which is either R?, or the d-dimensional torus T¢, or a direct product of torus T* and R?%. In all cases,
M is of the form

M=TFxR¥* forsome 0<Ek<d. (40)

By the torus T*, 1 < k < d, we mean the “flat” torus, i.e., the direct product of intervals with periodic
boundary conditions, i.e.,

TF x REF = [a1,b1]  [ag,b2] X ... X [ag, by] x R4,
(1, 21—, a0, %141, -2, 2q) = (21, -1, b, 24, -, 2g), 1 << E.

The metric on such a torus is locally Euclidean [51], i.e., within any open ball of radius

=
Rpguc = lrélllélk —
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Therefore, the metric on M is Euclidean if M = R? or locally Euclidean within any ball of radius Rgy. if
M=TFx R4 * for some 1 < k < d.

Assumption 1 is nonrestrictive in view of chemical physics applications, as usually collective variables
are dihedral angles or distances between certain atoms. For example, the alanine dipeptide molecule is
represented in two or four dihedral angles, M = Ty or Ty, a 2D or a 4D torus respectively. Assumption 1
allows us to prove our main theoretical result from scratch using only elementary tools.

The second and third assumptions impose integrability and differentiability conditions on the diffusion
matrix M (z) and a class of functions f : M — R to which we apply the constructed family of operators.
We need the following definition:

Definition 3.2. We say that a continuous function f : R4 — R grows not faster than a polynomial as
|z|| = oo if there exist constants A > 0, B > 0, and [ € N such that

|f(z)]| < A+ B|z|' VzeR™

Assumption 2. The diffusion matrix M (z) is symmetric positive definite. Its inverse M ~!(z) is a four-times
continuously differentiable matrix-valued function M~! : M — R%*? and the determinant of M~1(z) is
bounded away from zero. If the manifold M is unbounded (i.e., 0 < k < d — 1 in (40)), then the entries
(M~1);;(z) and their first derivatives mMgili“(x) grow not faster than a polynomial as ||| — oo.
Assumption 3. The function f(x) is four-times continuously differentiable. If M is unbounded then f(x)
grows not faster than a polynomial as ||z|| — oo.

Now we are ready to formulate our convergence results for mmap.

Theorem 3.3. Suppose a manifold M and a diffusion matriz M(x) : M — RI¥*? satisfy Assumptions 1 and
2 respectively. Let o € R be fized and the kernel k. o be the Mahalanobis kernel (33), and the operator L. 4
be constructed according to (16), (17), (20), (21), and (22). Then for any function f(x): M — R satisfying
Assumption (3) we have

. 1
!I_If(l) Ee,af(x) = 5

p (03

(tr (M99 [p'1]) - fVVpl‘“])>

Lo (w1 oA - 1o ()] Fir)
2 plfoz

(DU I gy g )

where | M| denotes the determinant of M, and wi(x) is a vector-valued function defined by

M(z)|~1/?% 1 2T M@~ B
wi,i(2) = (2(7T6))|d/2462 e 2 2 (2T [VM ™ 2)z2]z] dz. (43)
M

A proof of this theorem is done by a direct calculation of limit (42). It is carried out from scratch and
involves only elementary tools from linear algebra and multivariable calculus. It is found in Appendix C.
We remark that, in turn, the corresponding discrete operator applied to f(z) discretized to a point cloud
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drawn from the invariant density p(z) and with L o [f] defined by (18), (19), (23) converges pointwise with
probability one to L. o f as the number of data points tends to infinity.

Equation (42) defines a family of differential operators parametrized by o € R. Since our goal is to
compute committors, we are primarily concerned with approximating the generator (4) for the overdamped
Langevin SDE in collective variables (1). Setting o = 1/2 approximates the generator that we need:

Corollary 3.1. Let M and M (z) be as in Theorem 3.5. Suppose that the invariant density p(x) takes the form
of the Gibbs distribution p(x) = Z~ e PF®) for free energy F, temperature parameter B, and normalizing
constant Z = [, e PF@) dg. Then for a = 1/2 the limit (42) reduces to

lim £, (2) = ng(x) Vo e M, (44)
where
Lf=(-MVF+B Y (V-M)) Vf+B 'tr[MVV/] (45)
is the generator for the SDE
dzy = [~M(z,)VF(x) + 671V - M(x)] dt + /2687 MY? (2)dw. (46)

A proof of Corollary 3.1 is found in Appendix D. Our main interest is in solving the committor PDE
(7). Our approach consists in approximating the generator £ in (7) by the matrix operator L. ;o which
converges to L 1/2 as the number of data points n tends to infinity as O(n=1/?).

Finally, we remark that the use of the symmetric Mahalanobis kernel (33) is essential for the convergence
of L1, f(x) to the generator (45). If one processes data sampled from a long trajectory of SDE (46) with
dmap, i.e., implements the isotropic Gaussian kernel (12) in the diffusion map algorithm, one obtains an
approximation to the generator for the diffusion process governed by

d.]]‘t = —VF(.I‘t) + v 26—1dwt

which has the same invariant density Z ! exp(—SF(z)) as (46) but a different drift and a different diffusion

matrix. If one replaces the half-sum % (M (z) + M(y)) in (33) with M (), all terms containing derivatives
of M in (42) do not arise, and only the first term in (42) remains. For a = 1/2 this yields —-MVF - V[ +

B~ Ltr[MVV f], the generator for the dynamics

dwy = —M () VF(xy)dt + /28~ M2 () dwy,

which approximates (46) only if M is constant or 37! is small. In our examples presented in the next section,
M varies considerably and 87! is not so small, rendering the term 8~V - M (x;) non-negligible.

4. Examples

In this section, we test mmap on two examples: alanine dipeptide and Lennard-Jones-7 in 2D. The results
obtained with mmap will be validated by comparing them to results of other established methods and
contrasted to those of the diffusion map with isotropic Gaussian kernel (dmap). In view of the remark at
the end of Section 3, the fact that the committors obtained using dmap are significantly less accurate than
the mmap committors is unsurprising.
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Fig. 2. (a): Structure of alanine dipeptide and dihedral angles ® and ¥ serving as collective variables. (b): Free energy surface of
alanine dipeptide in vacuum at temperature 7' = 300 K in vicinity of C5 and CTeq minima, in ®, ¥ coordinates. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Ellipses corresponding to the principal components of the estimated diffusion matrices for the alanine dipeptide data (faint
gray dots). Each ellipse is plotted with center on the point whose diffusion matrix it represents. The ellipses are plotted on a
representative subsampling of the trajectory data.

4.1. Transitions between metastable states C5 and C7eq in alanine dipeptide

Alanine dipeptide, a small biomolecule comprising 22 atoms, is a popular test example in chemical
physics [5,4,52,13]. A typical set of collective variables effectively representing its motion consists of four or
just two dihedral angles. We choose the set of only two dihedral angles ® and ¥ shown in Fig. 2(a). Their
range comprises a two-dimensional torus, i.e. the manifold M is T 2.

4.1.1. Obtaining input data

We used a velocity-rescaling thermostat to set the temperature to 300 K in a vacuum and ran a 1 nanosec-
ond trajectory under constant number, volume, and temperature (NVT) conditions, integrating Newton’s
equations of motion with timestep 2 femtoseconds using the molecular dynamics software GROMACS [53].
For use with diffusion maps, we subsampled the trajectory at equispaced intervals of timesteps to obtain
n = 5000 data points {z;}?%° with z; € T2 The diffusion matrices M(x;) were obtained following the
methodology of [5] (see Appendix A) and are visualized in Fig. 3. The reactant and product sets A and B
are the small ellipses centered at the C5 and C7eq minima in the (®, ¥)-space shown in Fig. 2(b). In &, ¥
coordinates the C5 and C7eq minima are (—2.548,2.744) and (—1.419,1.056) respectively, and the ellipses
shown are the level sets of the free energy F' at 1.4 kcal/mol.

To compare the committors computed via mmap and dmap with the one obtained by a traditional PDE
solver, we discretized the range [—m,7]? of (®,V¥) into a uniform square mesh 128 x 128 as in [4] and
generated M (x) and VF(z) using the procedure from [5], summarized in Appendix A. We then posed a
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Fig. 4. (a): Alanine dipeptide dataset. Its subset lying in the region of interest marked with magenta is used for computing the
RMS error. (b): RMS errors for dmap and mmap committors as functions of the scaling parameter e. The dotted lines indicate lower
bound for e-values related to the minimal distance between data points.

boundary-value problem for the committor PDE from (4), (7) and solved it using a finite difference scheme
with central second-order accurate approximations to the derivatives.

Often (see e.g. [5,11] and many other works) a much rarer transition in alanine dipeptide is studied:
the one between the combined metastable state comprising C5 and C7eq and the metastable state called
C7ax located near ® = 75°, ¥ = —75°. We chose the transition between C5 and C7eq for our tests because
it can be easily sampled at room temperature T = 300 K. It is essential for mmap to have sufficient data
coverage of the transition region, and the data must be sampled from the invariant distribution. The study
of this transition gives us another benefit: unlike that for the transition between (C5, C7eq) and C7ax,
the free energy barrier between C5 and CTeq is not large in comparison with k;T. This renders the term
B~V - M(zx) in SDE (1) non-negligible which is nonzero if and only if M (x) is nonconstant. As a result, the
contrast between the results of mmap and dmap is amplified. We leave the task of upgrading mmap to make
it applicable to datasets obtained using enhanced sampling techniques for the future.

4.1.2. Results and validation

We computed the committor using the mmap and dmap algorithms with k-nearest neighbor (kNN) sparsified
kernels and a large range of values of the scaling parameter €. This range is naturally bounded from above
and below by the diameter of the point cloud and by the minimal distance between data points, respectively.
In addition, we computed the committor by solving the boundary-value problem for the committor PDE
using finite differences as mentioned in Section 4.1.1 and took it as a ground truth gsyy.. To quantify the
error of the mmap and dmap committors, we evaluated the root-mean-square (RMS) error

n

I \/ S (e () = dappros (2,))°

where {z; }}‘:1 are the data points. The finite difference solution ¢, was evaluated on the data through
bilinear interpolation. It is clear that the committor computed with diffusion maps cannot be expected to
be accurate on the outskirts of the dataset where the data coverage is insufficient. On the other hand, the
mmap and dmap committors are exact at A and B by construction and highly accurate near them, and these
are the regions containing the majority of data points as they are sampled from the invariant density. We
care the most about the accuracy of the mmap and dmap committors in the transition region. Therefore,
we select the subset of points marked with magenta dots in Fig. 4(a). The graphs of the RMS errors for
mmap (red) and dmap (blue) over this subset as functions of ¢ are displayed in Fig. 4(b). The epsilon values
minimizing the RMS error of the mmap and dmap committor are € = 0.01 and ¢ = 0.003 with RMS errors
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Fig. 5. Level sets for the approximate committor functions obtained from mmap (a) and dmap (b) on the point cloud (gray dots), with
A as the reactant region and B the product region. The dotted lines represent the committor level sets obtained by mmap (a) and
dmap (b), while the solid lines depict the committor level sets obtained by the finite-difference method.
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Fig. 6. The intensity of the reactive current computed using the mmap (a) and dmap (b) committors.

0.014 and 0.036 respectively. We know that the range of € used for mmap is shifted with respect to the range
of dmap due to the fact that the eigenvalues of M~! range from 1.16 to 8.11 and average to 4.06. As a
result, the optimal e for mmap is approximately larger than that for dmap by a factor of 3.33. Moreover, for
all e-values in the overlap of ranges the error for mmap is smaller than that of dmap. The level sets of the
computed committor using mmap and dmap for the values of ¢ minimizing the error are shown, respectively,
in Fig. 5(a) and 5(b) with dashed lines. The solid lines are the corresponding level sets of the committor
Gtrue computed by finite differences. The level sets of the mmap committor closely match those of g¢ye, while
the level sets of the dmap committor notably deviate from them.

As we have explained in Section 2.2 the committor allows us to compute the reactive current and the
transition rate. The calculation of the reactive current and the reaction rate is detailed in Appendix E. The
reactive currents computed using the mmap and dmap committors, respectively, are visualized in Fig. 6 (a) and
(b). Notably, the intensity for the respective currents differs by an order of magnitude. The corresponding
reaction rates for mmap and dmap are, respectively, vap = 0.092 x 1072 571 and vap = 0.31 x 10712 s~ L,
To verify the rate, we ran 10 long trajectories and for each calculated the transition rate as the ratio
of the number of transitions from A to B over the elapsed time. The mean rate over the trajectories is
vap = 0.093 x 10712 s7! (standard deviation 0.003 x 10712 s~1) which is very close to the mmap rate and
notably differs from the dmap rate.
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Fig. 7. Free energy surface of LJ7 system with respect to 2nd and 3rd moment of coordination numbers CVs. The four minima Cy,
k =0,1,2,3, are marked in the free energy plot and depicted on the right.

4.2. Transitions between the trapezoid and the hexagon in Lennard-Jones 7 in 2D

The cluster of seven 2D particles interacting according to the Lennard-Jones pair potential

b= [(2) - ()]

where o > 0 and a > 0 are parameters controlling, respectively, range and strength of interparticle inter-
action, has been another benchmark problem in chemical physics [22,29-31]. If the particles are treated as

indistinguishable, the potential energy surface

V(@) =Y Voair(llzi —25l), 1<6,5<7,

i<j

has four local minima denoted by Cj (hexagon), C; (capped parallelogram 1), Cs (capped parallelogram
2), and Cj5 (trapezoid) — see Fig. 7.

4.2.1. Choosing collective variables

Following [54,55], we chose the 2nd and 3rd central moments of the distribution of coordination numbers
as collective variables (CVs). These CVs allow us to separate all four minima in a 2D space. The coordination
number of particle i, 1 < ¢ < 7, is a smooth function approximating the number of nearest neighbors of i:

)16, where 1y = ||z; — ]| (47)

e
Let us elaborate on it. The interparticle distance minimizing Vjq.r(r) is 7* = 21/65. We would like to treat
particles as nearest neighbors if the distance between them is close to r*. If four particles arranged into a
square, the diagonal particles at distance r*v/2 ~ 1.5874¢ should be “not quite” nearest neighbors. Particles
at distance 2r* should not count as nearest neighbors. Normalizing the distance to 1.5¢0 in (47) makes the
desired distinction. Indeed, we have:

r* \8 7’*\/5 8 9r* \8
1- 1-— 1—
% ~0.91 ~ 1, % ~ (.39, (1‘50)16 ~ 0.04 ~ 0.
1_(1.5a) 1_(1.5a) — (155
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Fig. 8. Ellipses corresponding to the principal components of the estimated diffusion matrices M (z;) for a subsampled set of the
LJ7 dataset depicted with faint gray dots.

The kth central moment of ¢;(z) is

pr(z) = %Z(cl(a:) —¢&(z)*,  where ¢&(x) = Z(cj(a:)) (48)

( J

~|

The moments py are invariant with respect to permutation of particles, which is important as the particles
are indistinguishable. The space of the chosen collective variables (jz, u13) is R

4.2.2. Obtaining data

We set the temperature for the simulation to O.2’“TT and used a Langevin thermostat with relaxation
time O.lm . To prevent clusters from evaporating, we imposed restraints to keep the atoms from moving
further than 20 from the center of mass from the cluster. Then we simulated the trajectory at timestep
0.0()5\/mTU2 for 107 steps using the velocity Verlet algorithm as implemented in the PLUMED software [52].
For use with diffusion maps, we subsampled the trajectory at regular intervals of time to obtain 7500 data
points. The diffusion matrices obtained as described in [5] and Appendix A, and are visualized in Fig. 8.
The reactant set A and product set B are chosen to be the energy minima C3 and Cj respectively. This
choice was motivated by the fact that C3 and Cj are the most distant pair of metastable states, separated by
the highest potential energy barrier [29,30], and connected with a wide transition channel passing through
the basins of Cy and C5. It is worth noting that such a situation where the region between two stable
states of interest is interspersed with other metastable states is quite common in practical situations [56].
Furthermore, transitions between Cy and C3 occur very infrequently, and it takes much longer time to
accumulate statistics for them in numerical simulation than for the transition in alanine dipeptide considered

in Section 4.1.
The scaling parameters e for mmap and dmap were set, respectively, to

€ = max m;iél_l s(i,7), where (49)
e
. 1 _ _
s(i,J) = 5 (@i = 25) "M (@i) + M~ () (@i — ;) for mmap, (50)
s(i,7) == ||z; — x;||3 for dmap. (51)

This simple procedure for choosing € worked remarkably well. As with the previous example, we used kNN
sparsification for the mmap kernel.
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Fig. 9. Level sets for the mmap (a) and dmap (b) committors are depicted with dashed lines. The set of data points is shown with
gray dots.
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Fig. 10. The intensity of the reactive current obtained with the mmap (a) and dmap (b) committors.

4.2.3. Results and validation

The level sets of the mmap and dmap committors are shown in Fig. 9. Notably, these committors signifi-
cantly differ from each other. In particular, the ¢ = 0.5 level sets for the mmap and dmap committors lie on
opposite sides of the dynamical trap surrounding the basins of C; and C5 minima. The reactive currents
computed using the mmap and dmap committors respectively, are displayed in Fig. 10 (a) and (b).

To validate our results and determine which of the mmap or dmap committors is more accurate, we per-
formed committor analysis [5,32,33], a common statistical validation technique for committors in collective
variables. Committor analysis checks a particular committor level set by using the definition of the com-
mittor at x as the probability that a stochastic trajectory starting at x first reaches B rather than A. We
verified the most important level set ¢ = 0.5, the transition state. We sampled a set of Np; = 1000 points
x; along this level set and launched an ensemble of N. = 200 trajectories from each of them. For each
xj, we counted the number of trajectories Np that reached first Cy rather than Cs and denoted the ratio
N5 /N. by pg(x;). We then plotted a histogram with each bin defined by a pp value and counts determined
by the number of selected points in the level set ¢ = 0.5 with that pp value normalized by Np; (Fig. 11).
A well-approximated ¢ = 0.5 level set should have a unimodal histogram with a sharp peak at pg = 0.5.
We see that the distribution for mmap peaks at 0.5 as expected, while the dmap distribution peaks at 0.75,
missing the correct statistical behavior by a large margin. Therefore, we conclude that mmap produces a
good approximation for the committor while dmap gives a qualitatively wrong result.
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Fig. 11. Committor analysis of the ¢ = 0.5 level sets from Fig. 9, with orange corresponding to mmap and cyan corresponding to dmap.

5. Conclusion

The main conclusion of this work is that the Mahalanobis diffusion map algorithm (mmap) is a provably
correct, robust and reliable tool for computing the committor in collective variables discretized to a point
cloud of data generated by MD simulations. The dynamics in collective variables is governed by a reversible
SDE with anisotropic and position-dependent diffusion matrix M (z). The Mahalanobis kernel proposed in
[24] accurately captures this anisotropy regardless of whether M (x) is decomposable or not into a product
J(x)J T (x) where J(z) is the Jacobian matrix for some diffeomorphism.

Specifically, we have calculated the limiting family of differential operators converged to by the a-indexed
mmap family of matrix operators, where convergence is with respect to the number of data points tending
to infinity and scaling parameter € tending to 0. If & = 1/2, the limiting operator is the generator for the
overdamped Langevin SDE in collective variables. In our derivation, we have discarded the key assumption
of [24] that M (z) is associated with a diffeomorphism.

We have chosen two benchmark chemical physics systems as test problems: transitions in alanine dipeptide
and rearrangement of an LJ7 cluster of 2D particles. On these examples, we have demonstrated that mmap
is easy to implement and gives good results for any reasonable choice of the scaling parameter epsilon. We
have validated our results by comparing the committors computed with mmap to the one obtained using a
traditional finite difference method or by conducting committor analysis. We have contrasted the committor
by mmap with the one by the diffusion map with isotropic Gaussian kernel and shown that the latter can
lead to a wrong placement of the transition state and highly inaccurate estimate for the reaction rate.

In the current setting, mmap has a significant limitation: it requires the input data to be sampled from the
invariant probability density. This prevents us from using enhanced sampling techniques such as temperature
acceleration [57] and metadynamics [58] which are standard techniques applied to promote transitions
between metastable states in MD simulations. We plan to address this problem in our future work.

Data availability

The code used for diffusion maps will be shared at “https://github.com/aevansl /targetmeasure-mmap”.
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Appendix A. The free energy and the diffusion tensor

The free energy F(z) and the diffusion matrix M (z) in SDE (1) are defined, respectively, as follows:

d
F(z)=—-p""'In / Z‘;le—ﬂv(y)Hé(el(y) —a)dy |, (A1)
B =1
d
M(z) = e PF) / TJW) T () 2y e VI T 6(0u(y) — z)dy. (A2)
R™ =1

In (A.2), J(z) is the Jacobian matrix whose entries are

00;(y)

J

To apply the mmap algorithm, we do not need to know the free energy. However, we do need evaluate the
diffusion matrix M (x) at the data points. A method for estimating the diffusion matrix M (x) of (A.2) was
described in [5]. Here we outline it for the reader’s convenience.

First, we approximate the distribution Hle §(6;(y) — ;) with a Gaussian. We fix x € R%, choose a large
spring constant x > 0, and consider a constrained system with the “extended potential” given by

K
Ulys i,2) = V(y) + 2110) — 2l (4.3
evolving according to the overdamped Langevin dynamics

dys = —VU (ys; k, x)dt + /28~ 1dW;
= [-VV(y) — kJ(y) " (0(y) — x)] dt + /2B~ 1dW,. (A.4)

The restrained dynamics (A.4) has stationary distribution

ply; ko) = Z(k,x) Le T PUWRD)  where  Z(k, ) ::/e_ﬁU(y;“’z)dy,
Rd
with limiting distribution

lim f( )p(y; &, wdy—/f v “’U(y)Hé (61(y) — z1)dy

K—»00
=1

Next, we generate trajectory data {y,}7, for the restrained dynamics (A.4). These data enable us to
estimate the conditional expectation for an arbltrary function f as follows:
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nAt

1 n
lim lim —Zf(yti = lim lim —/fyt o(ye; K, x)dt

K—00 n—00 T, 4 1 k—00 n—oo AL
i=

= PP / fy)Zile PV W H6<9l(y> a)dy

= E[f16(y) = . (A.5)

In particular, the diffusion tensor M (x) for the collective variables x = 6(y) is estimated according the
formula:

99 (yt,) 90 (ys,) _
oy oy

NE

<3y

i=1

3I>—‘

(A.6)

1

The mean force, i.e., the gradient of the free energy VF(z), also can be estimated in a similar manner:

==Y (z (A7)

i=1

BIE

We evaluate M (x) by (A.6) in both applications presented in this work. This procedure is an outgrowth of
well-established uses for constrained dynamics within the molecular dynamics community, particularly in
fundamental works for computing free energy differences [59,60] and position-dependent friction [61].

For a general diffusion matrix not necessarily of form (A.2) or for when the Jacobian J(y) is not available,
one can utilize local covariances as described in [24,38,41,44,47]. These approaches utilize that for (1),

. E [($t+At - xt)($t+At - $t)T|33t = iC]
M(z) = Jim 28-TAt ’

and derive estimators of M (x) by approximating the right-hand side through short simulation bursts initi-
ated at = or from small neighborhoods of the trajectory near x.

Appendix B. Proof of Theorem 3.1

We will need two auxiliary lemmas. The first lemma gives a necessary condition for a matrix-function to
be Jacobian.

Lemma B.1. Let z = f(x) be a twice continuously differentiable coordinate change f : RY — R? with
Jacobian matriz

of ... Oh
aml aibd
J)=| : : (B.1)
9fs ... Ofa
31‘1 Bxd
Then, the entries of J satisfy
0Ji;  0Jik . )
= V1l < k<d k. B.2
ox ~ Ox <ijk<d j# (B.2)

Proof. Indeed, the left and right-hand side of (B.2) are the mixed partials that are equal as they are
continuous:
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0Ji; O fi fi 0

Ory  Oxpdxr; Ox;j0x)  Oxj

O

The second lemma shows that any decomposition M = AAT of a symmetric positive definite matrix
relates to M'/? via an orthogonal transformation.

Lemma B.2. Let M be a symmetric positive definite matriz, and A be any matriz such that M = AAT.
Then, there exists an orthogonal transformation O such that A = M'/20.

Proof. We have:
M= MY2MY? = AAT.

Multiplying this identity by M ~'/2 on the right and on the left we get:
[=MY2A4T M2 = M-124 (M—UQA)T .
Hence O := M~1/?A is orthogonal. Therefore, A = M'/20 as desired. O

Proof of Theorem 3.1. First we prove that (38) is necessary for the existence of decomposition (36). We
observe that M/2(z,y) = m(x,y)laxs is a Jacobian of a vector-function f : Q — R? if and only if m(z, y)
is constant. Indeed, condition (B.2) applied to M/2(x,y) = m(z,y)I2x2 reduces to my = 0 and m, = 0.
Note that any constant function is harmonic.

Suppose that m(x,y) is not constant. In this case, by Lemma B.2, if M admits decomposition (36) then
J(x,y) must be of the form M/?(z,y)O(z,y) for some orthogonal matrix O(z,y). There are two families
of orthogonal 2 x 2 matrix functions:

[ eosotwn) snotwrn) | Ly o [0sol) sinot,y
O“’y)‘[smw,y) cos¢<z,y>] wnd O] [sin¢<x7y> cosas(x,y)]' ()

Hence, M'/2(x,y)O(z,y) is of the form

oy | 0@y sno@o)] o Teoso(y)  sinofr) |
W sing(r,y) cosdla.y) Y sing(a,y) —cos¢(a,y)

Condition (B.2) applied to M'/?(z,3)O(z,y) requires the following equalities to hold:

— (mcos¢) = — (msing),

dy ox

9 (msin ¢) = —% (mcos @) .

dy

Performing differentiation, we get:

My COS @ — My, Sin ¢ = My sin ¢ + me, cos ¢

My sin @ + mey cos ¢ = — (M4 cos p — Mm@y sin P)

Regrouping the terms, we obtain:



86 L. Evans et al. / Appl. Comput. Harmon. Anal. 64 (2023) 62-101

My COS ) — My SIN G = M [Py cOS P + Py, sin @]

e
SRS

—my, sin ¢ — my cos ¢ = m (P, cos d — Py sin @) .

The last set of identities can be rewritten in a matrix form:

cos¢ sing my | cos¢ sing | | ¢g
[—sin¢ cosqb] [—mz] _m[—sin(b COS(b] [qby] (B.6)

The matrix in (B.6) is orthogonal. Hence, multiplying (B.6) by its transpose we get:

my m

m = [logm]y = ¢, _# = —[logm]. = ¢y. (B.7)
The fact that the mixed partials of ¢ must be equal implies that
[log m]ze + [log m]y, = 0. (B.8)

This completes the proof that (38) is necessary for the existence of decomposition (36).

Next, we prove that (38) is sufficient for the existence of decomposition (36) if Q is simply connected.
This immediately follows from the theorem of calculus saying that if the components of a two-dimensional
continuously differentiable vector field [p,q]" satisfy Py = ¢ in a simply connected domain € then this
vector field is conservative. Indeed, we define the vector field [p,q]" by p = [logm], and ¢ = —[logm],.
This vector field satisfies the condition p, = g, as logm is harmonic. We choose a point (z¢,yo) € €, fix it,
and for any other point (x,y) € Q choose a path v C §2 from (z,yo) to (z,y) and integrate the vector field
(p,q) along it (see the integral in the right-hand side of equation (B.10) below). We claim that the value of
this integral is independent of the path + from (xg,y) to (z,y). Indeed, if 4/ is some other path connecting
these points, then we define a closed contour by reversing the path 4" and apply Green’s theorem

%pdas +qdy = //(py — qz)dxdy, (B.9)
C U

where U is the region bounded by the simple closed contour C'. Since p, — ¢, is identically zero, the contour
integral also must be zero. If the contour formed by the paths v and the reverse of 7’ is self-intersecting,
we apply Green’s theorem to all simple closed contours formed by these paths. Therefore, we can define a
function ¢(x,y) by

/logm lydx — [log m),dy (B.10)
5

where v C  is any path from (x,y0) to (z,y) set J(z,y) = m(z,y)O(x,y) where O(z,y) is any orthogonal
matrix function of the form (B.3) with ¢ defined by (B.10).

Finally, we show that if Q is not simply connected, the condition (38) is not sufficient for the existence of
decomposition (36). We adapt the famous counterexample of a non-conservative vector field. Consider the

Pl a
q| 22+

where a # 0 is a constant, with the property that p, = g,. It is smooth in R?\{(0,0)}. Let

vector field

_y] , (B.11)

T
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e (B.12)

m(z,y) = (2° +y°)
It is easy to check that [logm], = p and —[logm], = ¢ and hence logm is harmonic everywhere except for
the origin. Let us choose ¢(x,y) satisfying ¢, = p and ¢, = ¢ to be?

aarctan (¥/z), x>0
P(z,y) = & =0 (B.13)

2
wa + aarctan (Y/z), x <0

The function ¢ is smooth everywhere except for the origin and the negative y-axis. It has a jump discontinuity
of size 2ma along the negative y-axis. If a ¢ Z, the functions sin ¢ and cos ¢ will be discontinuous along the
negative y-axis. Hence decomposition (36) does not exist. O

Remark B.1. However, if a € Z in (B.12), the orthogonal matrices (B.3) with ¢ given by (B.13) are smooth
everywhere except for the origin. In particular, if a = 1, we have:

v y] and !

-y /x2 +y2

1

Appendix C. Proof of Theorem 3.3

Yy —x

o y] (B.14)

We fix 7 > 0, x € R?, and a symmetric positive definite matrix A € R?¥¢, Then B,.(x; A) denotes the
ellipsoid

Bi(x;A):={y e R | (y —a)T Ay — x) <r?}.
The proof of Theorem 3.3 includes two technical lemmas.

Lemma C.1. Let 2 € R? be fived, ¢(z+a) be a function that grows not faster than a polynomial as ||al| — oo,
and A be a positive definite matriz. Then, for all small enough € > 0 and any p € (0,1/2), we have:

2u—1

I = / e~ 2 W=D T AW=D g (y)dy| < WV Pp(Ph e T, (C.1)

RA\By (w5A)

where p is a polynomial.

Proof. We implement two variable changes. First we introduce z := e~1/241/ 2(y — x) and then switch to
spherical coordinates in R?. We calculate:

)T

1=| [ eeagga
RAN\Bep (z;A)

_ / eI g 1 \JeA=1/2)ed/2] A1 2

RI\B, 2,1 (0:])

2 Acknowledgment of lecture notes by E. L. Lady: http://www.math.hawaii.edu/~lee/calculus/potential.pdf.
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Note that 2u—1 < 0, hence €2#~1 — oo as € — 0. Further, since ¢(z +a) grows not faster than a polynomial
as ||la|| — oo, there are constants C; and Cs and a positive integer k such that

|(#@) + VeAT122) | < €1 + VEC2Amax(A7/2) 2|
Therefore, aiming at switching to spherical coordinates in R?, we write:
12177 (6(2) + VeA™/22)| < Cll2]*" + VeCohmax (A7 2)||2] 41 < 2™,

where C' is some constant, and m is the smallest odd integer greater or equal to d+ k — 1. Finally, switching
to spherical coordinates and denoting the surface of the (d — 1)-dimensional unit sphere by |Sg_1]|, we derive
the desired estimate:

oo

Ce¥/?|S,_1] a2
IS—|A|1/2 /e z "M dr

en—1/2

Ced/2|5’d,1| ¥ _¢,m=1
:w—l/Z / e 'tz dt

2u—1
2

2p—1
S G

where the polynomial p is obtained from integrating by parts (m —1)/2 times and multiplying the result by
ClA|=Y2. o

Lemma C.2. Let G. be an integral operator defined by

1 AT 1l -1 r—
Gi(a) = [ e ORI gy (€2)
Rd

where the matriz function M and the scalar function f satisfy Assumption 2. Let M = M~" and
M(y) = M(x) + VM(z)(y — ) +ra(z;y — ) +rs(zsy — z) + Oy — z||), (C3)
where VM (z)(y — x) is a matriz with entries

(VM (x)(y —2)),, = VM;(y — ),

and ro(x;2) and r3(x;z) are the matrices whose entries are the second and third-order terms in Taylor
expansions of Mij. Then

_ (2me)¥/?
Gef(r) = W (f(x) + €[~V (@) wi(z) = flx)wa(x)

—l—%tr(M(m)_lH(m))} + 0(62>) , (C.4)

where H(x) := VV f(x) is the Hessian matrixz for f evaluated at x, and
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@) = [ AT b, 1< i< (©5)
wr,i(z = e 12 e zi |z x)z|z| dz, <i<d, .
Ré
~ ~ 2
|2 / _ s 2Try(z;2)z (27 [VM()2]2)
wa(x) = re)i? e 1 3908 dz. (C.6)
Rd
Proof. The proof utilizes the Taylor expansion f(z + z) around f(z):
1
flo+2) = f(2) + VI(@) 2+ 52T VVf(@)2 + ps(2) + pa(2), (€7

where p3(z) is a homogeneous third degree polynomial in z, and p4(2) is O(z*). To establish (C.4), we will
need to integrate the products of each of these terms with the Mahalanobis kernel

ke(z,y) = e ae@v)  [M@+M W) (e—y) (C.8)

First we eliminate the dependence of the matrix M on the integration variable y in the exponent by using
Taylor expansions. Let z := y — 2 and g be the residual in the expansion (C.3):

oz, x +2) = M(z + 2) — {M(x) + VM (2)z + ra(z; 2) + r3(252) } = O(||]2]|*).

Then

_ (=) T[N (2)+ M ()] (y—2) _ 2 M@z _ 2T [VM(@)ztry(@iz)try(@z)to(e,y)z
4e 2e 4e

e (C.9)

The Taylor series for exp(—t) converges on R. Hence, expanding the second exponent in (C.9) we get:
7zT[VI\Z(z)z+7‘2(z)+r3(z)+g(z,y)]z
e 1e

1 i (=T [VN (2)2 + ra(a; 2) + 3(w; 2) + o(x, y))2)

g (2T [VA(@)e + ralas )+ 7s(as2) + ole,)]2)”

(="

K (4e)k (2" [VM(2)z + roa; 2) + r3(x; 2) + ol y)]z)k 4o

Second, we will split the integral of each term in (C.7) multiplied by k.(z,y) into the sum

[ ]

Rd Byen  RINBg cu

where B, .« denotes the ellipse Beu (z; M) and p € (0,1/2) is fixed. Where appropriate, we will apply
Lemma C.1 to the integral over Rd\Bm,eu. We will need the following ingredients.
Integral 1:

/ ke(z,y)dy (C.10)

By, en

zT VI (2)z ]_ ~
_ / R {1 - (2T [V M (2)z + ra(a; 2) + 73(2; 2) + O(|12]| )] 2)
Bo,en
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+ (T [V M (2)z + ra(; 2) + r3(25 2) + pla, y)]2)”° — ...

32€2

b+ U T OT (@) 4 oo 2) & (o) + ol )le) ]

We will tackle this integral term-by-term. For brevity, we will omit the argument (z) of M. Thus,

2T 2mre)d/2
/ e e dz:%(l—i—(ﬁ(e)%

Bo,en

where 1 (€) decays exponentially fast as e — 0. Further,

2 g =0 k=012

/ TR (zT [VMZ]Z) 2kt
e

BO,EM

k=1,2,...;

/ a2 (2T[VMz]2) 2 (2me) /2

i gm0
0,eH

z

k
[ e e ey
(4e)k |M|/2

Bo,en

_ k+1 _
(de)oF T dz = |M|1/20(6 ), k=1,2,....

/ LS 2 (zT[VMz]z)Qk 2T ro(z;2)2 (2me) /2
Bo,en

The rest of the integrals originating from (C.10) will be either zero or O(e?/2¢*) for some k > 2. Putting
the integrals together and organizing them according to the order in powers of €, we get:

(2me)?/2 2
/ ke(z,y)dy = W [1— ews(x) + O(e”)] (C.11)

By,en

where

dz. (C.12)

|M|1/2 / 2T |2 ra(z;2)2 (ZT[VMz]z)z
wo(x) = ——7~ [ e 2 -
(2me)d/2 4e? 3263
Rd
Note that the value wq is of the order of 1. We have applied Lemma C.1 to replace the integral over By eu
with the one over R<.
Integral 2:

/ ke(z,x + 2)z;dz

Bo,en

2 Nz 1 ~
= / e~ TE T {1 L (2T [VMz +ra(2) +r3(2) + O(|2|M))2) + ... | dz
Bo,en

me)d/2
:% [—ews,i(z) + O(€%)] (C.13)
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where, with the aid of Lemma C.1,

‘M|1/2 1 2T e T ~ .
w,i(z) == (2r)72 12 e 7z [z [VMz]z]dz, 1<i<d. (C.14)
Rd

Integral 3:

/ ke(z, 2+ 2)2" Hzdz

BO,EI"

= / e~ =yl 2T"Hz [1 - 4i (ZT[VM(x)z +7ra2(2) +r3(2) + O(||Z||4)]z) dz

€
Bo,en

(2me)?/ 1 2
:W [etr(M~'H) + O(€?)] . (C.15)

Using Integrals 1, 2, and 3, we calculate:
2—r V1 €T Vi x z)|z
Gef(z) = /67 B flx+2)dz = / [...]dz+ / [...]d=.
R4 Bo,en RIN\Bg, cn

The second integral in the right-hand side decays exponentially as € — 0 by Lemma C.1. Therefore, we will
incorporate its value into O(e?) term below. We continue, omitting the argument x for brevity and recalling
that M~ = M:

ZT Y x Vi x z)|z 1
G.f= / o~ et [f+Vsz+§zTVsz—|—...]dz+ / [...]dz
Bo,en RI\By, cn

1
= (2me)¥/2| M |}/? <f +€ [—VfTwl — fuy + §tr(MVVf)} + 0(62)> . O
Now we prove Theorem 3.3.

Proof. To carry out the proof of Theorem 3.3, we need to calculate the limit

lim Le o f(x) = lim Peaf(@) = /(z) (C.16)

e—0 €
for any fixed z € M. Central to the calculation of P, f(x) is the calculation of integrals over M which is
done by splitting each integral into the sum

]

x, el M\Bwyeﬂ

where p € (0,1/2) meaning that é* — 0 as € — 0. Since the manifold M is either R? or T* x R?~* for some
1 <1 < d with the Euclidean metric within any open ball of radius Rg,. (41), for the purpose of integration
over it, M can be treated either as R? or as a hyperstrip or a hyperbox in R? (See Assumption 1). Therefore,
if € is small enough so that the whole ellipse B, .« lies within a ball of radius Rgy., for each integral with
an integrand satisfying the assumptions of Lemma C.1 we have:
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[S ] o

zet M\Bg en \Bg,cn RA\B, cn

According to Lemma C.1, this last integral over R%\B, .. decays exponentially as ¢ — 0. Therefore, the
integrals over M\B; ex do not affect the limit (C.16), i.e., (C.16) is completely determined by the inte-
grals over the ellipse B, .~ which are the same whether M is R< or T* x R4 provided that it satisfies
Assumption 1. Hence, Lemma C.2 remains valid for the manifold M.

We will omit the argument x in the calculations within this proof to shorten expressions. Lemma C.2
implies that

pe(x) = / ke(x,y)p(y)dy

M

1
= (2me)¥2| M |'/? <p+ € {—Vp—rwl — pwa + §tr(MVVp)} + 0(62)) . (C.17)
Therefore,

-«
€

+0(€?) (C.18)

_ (2me)=@d/2 | M|/ [1 B aEprTwl — pws + 2tr(MVVp)
p p

To perform right renormalization, we need to multiply the kernel k(z,y) by p-*(y). The dependence of
ke(z,y)p-“(y) on y will be shifted to terms of Taylor expansions. As before, let z = y — z. First, we expand
| M (y)[*/>

_ ~ ~ ~ a/2
¥ 2)1 = |1 + V18| + 52T V9T @l + O]

o VIM(@)| T2 2TV (2)|2 o2
e |14 T 1 2 TR 4 o)
« Y €T TZ
VT ()2 {1 -2 Vﬁé((;)'l + %JAI(:C)Z + O(||z||3)} (C.19)

where

aVV|M(@)]) | ala - 2)VIN(@)|VI3 ()|

A1 X)) = = =
) = ) GE

Second, we denote the term multiplied by ae in (C.18) by R:

R —VpTwi — pws + 2tr(MVVp)
= 5 .

Now, using (C.19), we start the calculation of K. o f(z):

[ ke(z,y)
Kol (2) = / ot Sty

M
_ / ke(z,y) [p2° (W)p(w) £ (v)] dy
M
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_ [181(@)[]"" .
- [(gﬂe)d} A[ke(x’y) [P () f(y)] (C.20)

x [1 — aeR(y) + O(€%)]

LR

G +%@—x)ml(x)(y—m)+0<||y—w||3> dy.

To tackle the integral in (C.20), we split it to several integrals each of which we evaluate using Lemma C.2.
For brevity, we will omit arguments z in the gradients and Hessians and in the matrix M. We continue:

[ ko) [ W) f@)] [1 - ack(y) + O()]
M

aVIM|Tz 1 + 3
1+ -—— —z'A
X [ + 2 [i] + 5% 12+ O(||z]I°) | d=

=Gl W) fW)](x) — aeGe[p'~*(y) f (y) R(y)](z)

@y [y s YT (= 2)
+50 {P (y)f(y)T] (z)
e d/2
#59 [ W) =) Aty = )] () + 0, (21

Applying Lemma C.2 we compute the four operators G in the last equation:

o) d/2
Gelp'f] = (|2Z\ZI|)1/2 [P f [1 — ews ()]
+e {—V(fpla)Twl + %tr(MVV [plaf])} + 0(62)] ; (C.22)
l1-a _ (2me)!/? 1-a 247.
acG[p' " fR] RiLE laep' ™ fR+ O(e?)] ; (C.23)
1-a VIM|T(y — ) _ @meo 2 f p VM| wy
6. ot s T ) - B {
€ 1-a VIM|T(y — ) 2
+ ot (MVyVy [p (y)f(y)T} . + O(e )> } . (C.24)

Let us calculate the Hessian matrix in (C.24):

1-a VIM|T(y — ) _ 1o VIM|T(y —x)
VyVy [p W16 sz =Vy [Vy [P W) f(y)] Wi
—a VIM|T(y — ) _ o VIMIT
+ (W) f(y)Vy T] T 2V [p' 7] T (C.25)
Finally, we compute the operator G, in (C.21):
me)¥/? re
G [ )=o) Ay = 2)] () = CEO [So Ay 0] (c2)

Putting together (C.20)—(C.26) we obtain:
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Kenf(x) = ['éffgﬁ'] P ()]

+e {—V(fpl_”‘)Twl + %tr(MVV [P f]) + %tr <MV [P f] Vl—W)}

+0(e)], (C.27)
where

aV|IM|Tw, 1

h(z) = —wa(x) — aR(z) — 2 i + Ztr(MAl).

To facilitate the calculation, we denote the expression in the curly brackets in (C.27) divided by ¢* =< by

—V(fplfo‘)—rm + %tr(Mvv [Plfaﬂ) + %tr (MV [pliaf] V\IJ\A%IT)

B(p, f) =

plfa

Then K. o f(z) can be written as:

Keof(z) = [éff)li'] e [F L+ eh(@)] + eBp, ) + O()]. (C.28)

Observing that pe o (x) = K o1, i.e., we need to use f =1 to get pe o(z), we calculate the operator P q:

Peaf(@) = [ %j(—wf(y)p(y)dy
U e

_ f{l+eh(z)} +€eB(p, f) + 0(62).

14+ eh(z) + €B(p,1) + O(e?) (C.29)
Expanding Pe . f(x) in powers of € we obtain:
Peaf(@) = [f (1 +eh(x)) +eBlp, f) + O(e*)] [1 — eh(x) — eB(p, 1) + O(e*)]
_v(fplfa)Twl + %tr(Mflvv [plfa.ﬂ) + %tr (Mflv [plfaf] V||J\;1|‘T)
= f te plfa
_V(pl—@ T + lt Mflvv 1—a 4 ot Mflv 11—« VU\Z[‘T
—ef i [pla]) - r( o = ) (C.30)
p
Finally, we compute the operator L. ., take the limit ¢ — 0, and obtain the desired result:
i Peaf (@) = f@@) _ 1 (w(M[VV [ f] = fVVpI=2])
51—1;((1) € o 2 plfa
. <tr (M [V [p=g] = 19 [p]] V,'?é”))
+3 -
2 pl [eY
- ([V(fpl_a) ;J_Va(pl_a)]Twl]> g (C.31)
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Appendix D. Proof of Corollary 3.1

Proof. Term 1 in (C.31). First we compute

1 (t(MVV [pY2f])  tr(MVV [p/?])
2 pl/2 —f pl/2 :

Since p is the Gibbs density, we have:
p=2Zte P Hence p'/?= Z_l/ze_gF, Vpl/? = — {gVF] p'/2.
We will use the fact that
YV = [INVp 2+ Vo (V) T+ V(PR T 4 ot PV
Applying the property tr(AB) = tr(BA) and recalling that M is symmetric, we obtain:

tr[M[Vp 2 (V)T +VF(Vp!/?)T]] =tr[MVp PV fT] + tr[M TV fVp'/?]
—tr[MVp'*V [T + [V f(Vp'/?) T MT]
—tr[MVp' 2V fT] + [V f(MVp'/*)T]
=tr[MVp'?V 1] + tr[(MVp'/*)V fT]
=2tr[MVp/?VfT]
=2(MVp?) TV Y.

This yields:

r 1/2 r 1/2
(G TR < e sy

Note that this is #/2 times the generator (45) for the case where the diffusion matrix M is constant.
Term 2 in (C.31). Utilizing the fact that

[V(fp'"%) = [V (p'?)]

pl/2

=V/,

we simplify the second term in (C.31):

o (M -V [P ) e
B) plfa 2

Let us introduce the notation

It follows from Jacobi’s formula for the derivative of the determinant that
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ﬁ%&i =tr (M_lg—ii) =tr (M_l/Qg—ZM_l/2> = trR. (D.3)

Hence, we obtain:
1
Ztr (MV f[trRy,. .., trRy])

Term 3 in (C.31). Finally, we compute

[V(fp'/?) = [V ()] Twn

pl/2

=VfTw, where (D.5)

2me) /2 1 2w ~ .
qu(@ =12 e 2z [2T[VM(z)2]z]dz, 1<i<d. (D.6)

Bo, e

To compute the integral in (D.6), we do the variable change t := e Y2012z Then
Z; 1= 61/262—M_1/2t, where e; is the standard unit vector.

The polynomial in the integrand in (D.6) resulting from this change is:

d
~ oM
% [ZT [VM(a:)z}z] =ziz! lz 8—%%1 z= Zzzz —zzk
k=1
A -1 OM -
=&Y e/ MV T N P M P T M ey (D.7)
1 a%‘k
Using the notation Ry, introduced in (D.2) we get:
1 < 2
o Tr—1/2 -2 T T —1/2
wy,i(z) = 12n)i7? I;ei M /e Tt Ritt ' dt| M~/ %ey. (D.8)

Rd

First we compute the integral in the square brackets in (D.8). This integral is a d X d matrix, and its entries
are:

d d
(tt"Rytt")ij =D > tits[Rilimtmt;.
=1 m=1

Case ¢ = j: Taking into account that in order to produce a nonzero integral, we must have [ = m in this
case. Hence

/ S (4T Ryt )udt = / Z Ry |ut?t2dt
=1

Rd

= (2m)*? | 3[Rilii + > Ru | = (2m)*? (2[Ri)ii + trRy). (D.9)
1#i
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Case i # j: In this case, to produce a nonzero integral, we must have [ = i and m = j or the other way
around. Hence

/e’g(ttTRkttT)iidt: /e*g [[Re)ij + [Rilje) t7t5dt
R4 R4
= (2m)2 ([Re]i; + [Ralji) = (2m)"22[Ry];; (D.10)

as Ry is symmetric.
Therefore, the integral in the square brackets in (D.8) is

(2m)4? (2R, + ItrRy) . (D.11)

Plugging this result into (D.8) and recalling (D.2) we obtain:

d
1
wi () = ZZeIM V2 2Ry, + ItrRy) M~/ 2%¢,,
k=

)
1

1 N 1<
_ Tar—1 ~ Tar—1
=3 Zei M 8—ka er + 1 Zei M~ trRey. (D.12)
k=1 k=1
Now we recall that
OM~! -~ OM -
=M 1M1
a%‘k axk
Using this formula, we get:
d d
1 OM;p, 1
wl’i(m) = —5 Z 3l‘k + Z ZMiktrRk' (D13)
k=1 k=1
Therefore,
1A G OMy, 0f 1 of
ViTw =—-2 . - MptrR . D.14
s 22 an a2y 2 Mg P

Getting the final result. Finally, we plug the calculated terms in (C.31). We also use the fact that M is
symmetric, i.e. My = My; for 1 < i,k < d. We get:
(tr[MVV f] — B(MVE)'Vf)

lim L, , =
e—0 ’

M., ﬁtl’Rk
333@

oMy, Of 1
ML 1SS wtawr L

1 zlkl

1
2
1
4

M=

M= I
M- ©

+
DN | =

k

([ MVVf] - B(MVF)TVf)+%(V~M)TVf. (D.15)

-
Il
_

[\3|'—‘

The last expression is the generator £ for the dynamics in collective variables (45) multiplied by £/2 as
desired. O
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Appendix E. Obtaining the reactive current and the reaction rate from the committor computed by mmap

We have computed the reactive current based on the Gamma operator defined for an Ito diffusion with
generator L as

L(f,9)(x) = 5 (L(f9)(@) — fLg(x) — gLf (x)). (E.1)

DN | =

This operator is sometimes referred to as the carré du champ operator [34,62]. We apply it to the discrete
generator matrix L from mmap.
Applying the Gamma operator to the generator £ of (4) gives

L(fg) = fLg+ gL +267'V [ MVy, (E.2)
and hence T'(f, g) simplifies to

I'(f,9)(x) =B 'V MVg(z). (E.3)

Choosing f(x) to be the committor ¢(x) and g(z) to be x, : R — R, mapping x to its vth component, we
obtain the vth component of the reactive current by:

p(@)L (g, x0)(x) = B~ p(a)[MVq(z)], - (E.4)

Therefore, in order to obtain the reactive current discretized to a dataset, we need to construct a discrete
counterpart of the Gamma operator and obtain an estimate for the density p.

We recall that the discrete generator L approximates gﬁ pointwise on a dataset {z;}! ;. Let f and ¢
be arbitrary smooth functions and [f], [g] € R™ be their discretization to the dataset, i.e., [f]; = f(z;) and
[9]; = g(z;). Since L approximates gﬁ pointwise on the dataset, we have:

Z Lij([f51915) = [f1iLislal; — [9)iLi; [f]; = BL(f, 9)(w:) = Vf T MV g(x). (E.5)

Since the row sums of the matrix L are zeros, the left-hand side of (E.5) can be written as
> Lig((f15l915) — FliLislgls — [9liLii /15 = D Lis([fli = 1F15)((ali — [aly). (E.6)
J J

This allows us to define the discrete analogue of the Gamma operator by:

n

[L(f.9)i = 87" Lis([f)s = [£15)([g)i = [9])- (E.7)

J=1

Now, it remains to obtain an estimate for the density p. We proceed as follows. First we construct an
isotropic Gaussian kernel [ke];; = exp|—||z; — z;]|?/(2€)]. Setting M(z) = I and f(x) = 1 in the kernel
expansion (C.4), we observe that

tin, s 3 Mkl = o(e) + 0@, (E5)

n—»00 n(27r€)d/2 ‘

So, we define a kernel density estimate with the vector [p] € R™ defined by
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[p}z’ = Wz_;[iﬂg}w i=1,...,n. (Eg)

Alternatively, we can use the Mahalanobis kernel from mmap with entries [kc];; and utilize (C.4) to define
[p]i := (n(2me)¥/2| M ()| /?)~1 > jlkelij fori=1,....n.

Let [g] € R™ be the discrete committor obtained by mmap. Using the constructed discrete density [p], we
estimate the reactive current using the formula

[j]m = [pf‘([q],m”)]i = ﬁ_l[p]i

J

Lij(lali = lal;) (=7 — 27) (E.10)

n

where 1 <v <d, 1<4i<n,and 2z}, 2 denote the v-th coordinate for data points i and j respectively.
The reaction rate v4p is given by (9) and can be rewritten as [3]

vap =71 / Va(x) " M(z)Vq(z)p(x)de. (E.11)
M\(AUB)

Observing that 8~'Vq(z) " M (x)Vq(z) =T'(q,q), we get:

an= [ Tao@pd (E.12)
M\ (AUB)

Hence, we compute an estimate 04 p as the Monte Carlo integral

pap = —— S [P(lah )], = —— S S Lis(lali - ) (E13)

|IAB| i€lap j=1
where Iyp = {i: z; € M\(AU B)}.
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