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The study of rare events in molecular and atomic systems such as conformal changes 
and cluster rearrangements has been one of the most important research themes in 
chemical physics. Key challenges are associated with long waiting times rendering 
molecular simulations inefficient, high dimensionality impeding the use of PDE-
based approaches, and the complexity or breadth of transition processes limiting the 
predictive power of asymptotic methods. Diffusion maps are promising algorithms 
to avoid or mitigate all these issues. We adapt the diffusion map with Mahalanobis 
kernel proposed by Singer and Coifman (2008) for the SDE describing molecular 
dynamics in collective variables in which the diffusion matrix is position-dependent 
and, unlike the case considered by Singer and Coifman, is not associated with a 
diffeomorphism. We offer an elementary proof showing that one can approximate 
the generator for this SDE discretized to a point cloud via the Mahalanobis diffusion 
map. We use it to calculate the committor functions in collective variables for two 
benchmark systems: alanine dipeptide, and Lennard-Jones-7 in 2D. For validating 
our committor results, we compare our committor functions to the finite-difference 
solution or by conducting a “committor analysis” as used by molecular dynamics 
practitioners. We contrast the outputs of the Mahalanobis diffusion map with those 
of the standard diffusion map with isotropic kernel and show that the former gives 
significantly more accurate estimates for the committors than the latter.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Molecular simulation commonly deals with high-dimensional systems that reside in stable states over 
very large timescales and transition quickly between these states on extremely small scales. These transi-
tions, rare events such as protein folding or conformational changes in a molecule, are crucial to molecular 
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simulations but difficult to characterize due to the timescale gap. Transition path theory (TPT) is a math-
ematical framework for direct study of rare transitions in stochastic systems, and it is particularly utilized 
for metastable systems arising in molecular dynamics (MD) [1]. The key function of TPT is the committor 
function, a mathematically well-defined reaction coordinate with which one can compute reaction channels 
and expected transition times between a reactant state A and a product state B in the state space. However, 
the committor is the solution to an elliptic PDE that can be solved using finite difference or finite element 
methods only in low dimensions. As a result, the typical use of transition path theory for high-dimensional 
systems consists of finding an estimate for a zero-temperature asymptotic transition path and then using 
techniques like umbrella sampling to access the committor [2,3]. While this approach is viable, it relies on the 
assumption that the transition process is localized to a narrow tube around the found path. In practice, the 
transition process may be broad and complex, and the found asymptotic path may give a poor prediction.

One can utilize intrinsic dimensionality of the system that is typically much lower than 3Na, where Na

is the number of atoms, and analyze transition paths in terms of collective variables [4,5]. However, a large 
number of internal coordinates such as contact distances and dihedral angles may be required for a proper 
representation of a biomolecule [6–9]. Hence, one still may be unable to leverage traditional mesh-based PDE 
solvers to even dimensionally-reduced data given either in physics-informed or machine-learned collective 
variables.

1.2. An overview

Meshless approaches to solving the committor PDE discretize it to point clouds obtained from MD 
simulations. The two most promising approaches utilize neural networks [10–12] and/or diffusion maps [13]. 
The approach based on neural networks is more straightforward in its implementation, while the one based 
on diffusion maps is more interpretable, visual, and intuitive, and we will focus on it in this work. We also 
would like to acknowledge the work of Lai and Lu (2018) [14] on computing committors discretized to point 
clouds. They proposed and advocated the “local mesh” algorithm and highlighted its advantage over an 
approach utilizing diffusion maps. Contrary to diffusion maps, the “local mesh” does not require the input 
data to be sampled from an invariant distribution, which is indeed a very appealing feature. However, the 
“local mesh” implementation only considers SDEs with constant noise and has no theoretical guarantees of 
convergence, while we found diffusion maps simple, robust, reliable, and deserving further development.

The diffusion map algorithm introduced in 2006 in the seminal work by Coifman and Lafon [15] is a widely 
used manifold learning algorithm. Like its predecessors such as locally linear embedding [16], isomap [17], 
and the Laplacian eigenmap [18], diffusion map relies on the assumption that the dataset lies in the vicinity 
of a certain low-dimensional manifold, while the dimension of the ambient space can be high. Importantly, 
this manifold does not need to be known a priori. Diffusion map inherits the use of a kernel for learning the 
local geometry from its predecessors and upgrades it with the remarkable ability to approximate a class of 
differential operators discretized to the dataset. These include the backward Kolmogorov operator (a.k.a. 
the generator) needed for computing the committor function.

More specifically, the standard diffusion map with isotropic Gaussian kernel [15] yields an approximation 
to the backward Kolmogorov operator if the input data comes from an Ito diffusion process with a gradient 
drift and an isotropic additive noise. The problem of finding the committor then reduces to solving a system 
of linear algebraic equations of a manageable size. This strategy would be suitable for MD data in the 
original R3Na -dimensional space of atomic positions, and has been utilized heavily in previous work [7,13,
19–22]. As mentioned above, biophysicists prefer to keep track of collective variables rather than positions 
of atoms, as it lowers the dimension and gives more useful information about the molecular configuration. 
Unfortunately, the transformation to collective variables induces anisotropy and position-dependence on the 
noise term [1,4,5,23]. The resulting SDE describing the dynamics in collective variables has a non-gradient 
drift and a multiplicative anisotropic noise:
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dxt = [−M(xt)∇F (xt) + ∇ · M(xt)] dt +
√

2β−1M1/2(xt)dwt. (1)

Here, the diffusion matrix M(x), is a symmetric positive definite matrix function, ∇F (x) is the mean force, 
the gradient of the free energy, and dw is the increment of the standard multidimensional Brownian motion. 
The definitions and the computation of M(x) and ∇F (x) are detailed in Appendix A.

1.3. The goal and a brief summary of main results

The goal of the present work is to extend the diffusion map algorithm for computing the committor 
functions for data sampled from the invariant density of SDE (1) and prove theoretical guarantees for its 
correctness. We emphasize that our application of diffusion maps is not for learning order parameters or 
doing dimensional reduction as in many previous works, e.g. [7,19,20,22]. We assume that we already have 
a dimensionally reduced system due to the use of collective variables. Instead, we are going to approximate 
the generator of SDE (1) by means of diffusion maps and use it to compute the committor.

If the diffusion matrix M(x) in SDE (1) arose from a diffeomorphism, we could straightforwardly apply 
the diffusion map with the Mahalanobis kernel introduced by Singer and Coifman in 2008 [24]. However, the 
transformation to collective variables is not a diffeomorphism. Typically, the number of collective variables 
is much smaller than 3Na and the computation of collective variables involves an averaging with respect to 
the invariant probability density. As a result, all that can be guaranteed is that the diffusion matrix M(x)
in (1) is symmetric positive definite. Furthermore, it is known that not every symmetric positive definite 
matrix function M(x) is decomposable to M(x) = J(x)J�(x) where J(x) is the Jacobian matrix for some 
diffeomorphism [25], as required for the formalism introduced in [24].

Our results are the following:

• We offer an elementary proof showing that a smooth symmetric positive definite d × d matrix function 
defined in an open set Ω is not necessarily decomposable as JJ�(x) where J(x) is the Jacobian matrix 
of some smooth vector-function f(x) in Ω. Moreover, we establish a criterion for the existence of such a 
decomposition for a special class of 2 × 2 matrix functions of the form M(x) = m2(x)I2×2 where m(x)
is a nonnegative twice continuously differentiable function in a simply connected open set Ω ⊂ R2.

• We prove a theorem establishing a family of differential operators approximated by the family of dif-
fusion maps with Mahalanobis kernel with an arbitrary smooth symmetric positive definite matrix 
function M(x) parametrized by the renormalization parameter α ∈ R. We also prove that if α = 1/2 the 
corresponding diffusion map with the Mahalanobis kernel approximates exactly the generator for SDE 
(1). Our proofs involve only elementary tools such as multivariable calculus and linear algebra. We will 
refer to the resulting diffusion map algorithm with the Mahalanobis kernel as mmap. We will compare its 
results to the original diffusion map algorithm with isotropic Gaussian kernel and refer to it as dmap.

• We apply mmap with α = 1/2 to two common test systems: the alanine dipeptide molecule [7,13,19,26–28]
and the Lennard-Jones cluster of 7 particles in 2 dimensions (LJ7) [29–31]. For both systems, we compute 
the committor function on trajectory data and provide validation for the results. For alanine dipeptide, 
we compare the committor obtained using mmap with the one computed using a finite difference method 
and demonstrate good agreement between these two. We contrast the committor obtained from mmap
with the one obtained by dmap and show that the latter is notably less accurate. We also compute the 
reactive currents for both mmap and dmap and obtain an estimate for the transition rate. In addition, 
we investigate the dependence of the error in the estimate for the committor on the scaling parameter 
ε in the kernel of mmap and dmap and conclude that mmap is consistently more accurate and at least 
as robust as dmap. For LJ7, we conduct a committor analysis, a simulation-based validation technique 
for the committor [5,32,33]. Our results indicate that mmap produces a reasonable approximation for 
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the 1/2-isocommittor surface, while dmap places this surface at an utterly wrong place in the collective 
variable space.

The rest of the paper is organized as follows. In Section 2 we review relevant concepts from MD in 
collective variables, transition path theory and diffusion maps. Our theoretical results are presented in 
Section 3. Applications to alanine dipeptide and LJ7 are detailed in Section 4. Concluding remarks are 
given in Section 5. Various technical points and proofs are worked out in the appendices.

2. Background

In this section, we give a quick overview on collective variables, transition path theory, and diffusion 
maps.

2.1. Effective dynamics and collective variables

Our primary interest in this work is in datasets arising in MD simulations. We consider the overdamped 
Langevin equation, a simplified model for molecular motion which describes the molecular configuration in 
terms of the positions y of its atoms:

dyt = −∇V (yt)dt +
√

2β−1dwt, (2)

where y ∈ Rm, V : Rm → R is a potential function, β−1 = kbT is temperature in units of Boltzman-
n’s constant, t is time, and wt is a Brownian motion in Rm. Given certain conditions on the potential 
V , a system governed by overdamped Langevin dynamics is ergodic with respect to the Gibbs distribu-
tion μ(y) = Z−1

V e−βV (y), where ZV is a normalizing constant. The overdamped Langevin dynamics has 
infinitesimal generator

Lf = β−1Δf − ∇f · ∇V = β−1eβV ∇ · (e−βV ∇f) (3)

defined for twice continuously differentiable, square-integrable functions f .
As mentioned in the introduction, the number of atoms in biomolecules is typically very large. Even 

for such a small molecule as alanine dipeptide, the number of atoms is 22 and results in a 66-dimensional 
configuration space (m = 66). Furthermore, to describe the state of a biomolecule one does not need atomic 
positions y per se but rather certain functions in y specifying desired geometric characteristics. Therefore, 
to reduce the dimensionality and obtain a more useful and comprehensive description of the system-at-
hand, one uses collective variables (CVs). CVs are functions of the atomic coordinates designed to give a 
coarse-grained description of the system’s dynamics, preserving transitions between metastable states but 
erasing small-scale vibrations. Physical intuition has traditionally driven the choice of collective variables 
including dihedral angles, intermolecular distances, macromolecular distances and various experimental 
measurements.

We denote the set of CVs as the vector-valued function x = θ(y). Since our goal is to compute the 
committor (its precise definition is given in Section 2.2), a chosen set of CVs is good if the committor 
is well-approximated by a function that depends only on θ(y). The dynamics in collective variables is 
approximated by a diffusion process governed by [5] SDE (1):

dxt =
[
−M(xt)∇F (xt) + β−1∇ · M(xt)

]
dt +

√
2β−1M(xt)1/2dwt.

Here, F (x) is the free energy and M(x) is the diffusion matrix, a symmetric positive definite matrix function. 
They are computed by averaging the appropriate functions of x = θ(y) over all y ∈ Rm with respect to 
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Fig. 1. A segment of a long trajectory. Reactive pieces from reactant state A to product state B are shown with solid lines.

the invariant density μ(y) = Z−1
V e−βV (y). The exact formulas for F (x) and M(x) and their evaluation in 

practice are detailed in Appendix A.
The generator for SDE (1) is given by

Lf = (−M∇F + β−1(∇ · M))�∇f + β−1tr[M∇∇f ], (4)

which can also be written in divergence form as

Lf = β−1eβF ∇ · (e−βF M∇f). (5)

One can check [2] that the process given by an SDE of the form (1) is reversible and the invariant 
probability measure for (1) is ρ(x) = Z−1e−βF (x), the Gibbs measure. Moreover, we would like to remark 
that any reversible diffusion process must be of the form (1) [34].

2.2. Transition path theory in collective variables

Throughout this section we assume that the system under consideration is governed by the overdamped 
Langevin SDE in collective variables (1). Suppose we have an infinite trajectory {xt}∞

t=0. Further, suppose 
that we have designated a priori two minima xA, xB of the potential F with corresponding disjoint open 
subsets A � xA, B � xB which we refer to as the reactant and product sets respectively. Transition path 
theory (TPT) [2,3] is a mathematical framework to analyze statistics of transitions between the reactant A
and the product B. The subject of TPT is the ensemble of reactive trajectories, defined as any continuous 
pieces of the trajectory xt which start at ∂A and end at ∂B without returning to ∂A in-between (see Fig. 1). 
Key concepts of TPT are the forward and backward committor functions with respect to A and B. Since the 
governing SDE (1) is reversible, the forward q+ and backward q− committors are related via q− = 1 − q+
[2]. Hence, for brevity, we will refer to the forward committor as the committor and denote it merely by 
q(x). The committor q has a straightforward probabilistic interpretation:

q(x) = P (τB < τA | x0 = x), (6)

where τA := inf{t > 0 | xt ∈ A} and τB = inf{t > 0 | xt ∈ B} are the first entrance times of the sets A and 
B, respectively. In words, q(x) is the probability that a trajectory starting at x will arrive at the product 
set B before arriving at the reactant set A. One can show that q satisfies the boundary value problem [2]

⎧⎪⎪⎨
⎪⎪⎩

Lq(x) = 0 x /∈ (A ∪ B)
q(x) = 0 x ∈ ∂A

q(x) = 1 x ∈ ∂B,

(7)

where L is the infinitesimal generator (4). Once the committor is computed, one can find the reactive current 
that reveals the mechanism of the transition process:



L. Evans et al. / Appl. Comput. Harmon. Anal. 64 (2023) 62–101 67
J = β−1Z−1e−βF (x)M(x)∇q(x). (8)

The integral of the flux of the reactive current through any hypersurface Σ separating the sets A and B
gives the reaction rate:

νAB := lim
t→∞

NAB

t
=
ˆ

Σ

J · n̂dσ, (9)

where NAB is the total number of transitions from A to B performed by the system within the time interval 
[0, t], and n̂ is the unit normal to the surface Σ pointing in the direction of B.

Transition path theory has been extended to Markov jump processes [35,36] on a finite state space S, 
|S| = n, defined by the generator matrix L satisfying

{∑
j∈S Lij = 0, i ∈ S

Lij ≥ 0, i 	= j, i, j ∈ S.
(10)

The settings and concepts in discrete TPT mimic those from its continuous counterpart. In particular, the 
committor is the vector [q] = [q1, . . . , qn]� with

[q]i = P (τB < τA | X0 = i).

Analogously, [q] solves the matrix equation

⎧⎪⎪⎨
⎪⎪⎩

[Lq]i = 0 i ∈ S\(A ∪ B),
[q]i = 0 i ∈ A,

[q]i = 1 i ∈ B.

(11)

Our goal is the following. Let {xi}n
i=1 be a dataset sampled from SDE (1). We need to construct a discrete

generator L such that, given a smooth scalar function f(x), we have

n∑
j=1

Lijf(xj) ≈ Lf(xi) for each xi, 1 ≤ i ≤ n,

where L is the generator of (1) defined in (4). We refer to this approximation as a pointwise approximation of 
the generator with respect to the dataset. Given a pointwise approximate generator matrix L, we can then 
pointwise approximate the continuous committor q via our solution to the discrete committor equation (11). 
In this work, we will show that the Mahalanobis diffusion map (mmap) yields the desired approximation.

2.3. Diffusion maps

The diffusion map algorithm takes as input a dataset X = {xi}n
i=1 ⊂ Rd of independent samples drawn 

from a distribution ρ(x) that does not need to be known in advance. The manifold learning framework 
assumes that X lies near a manifold M which has low intrinsic dimension. Pairwise similarity of data is 
encoded through a kernel function kε(x, y) whose simplest form is given by

kε(x, y) = exp
(

−||x − y||2
)

. (12)
2ε
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The user-chosen parameter ε > 0 is the kernel bandwidth parameter (or the scaling parameter). The original 
diffusion map algorithm [15] requires an isotropic kernel hε(||x −y||2) with exponential decay as ‖x −y‖ → ∞. 
Let us describe the construction of a diffusion map following the steps in [15]. The kernel kε(x, y) is used 
to define an n × n similarity matrix Kε with [Kε]ij = kε(xi, xj). The strong law of large numbers implies 
that for a scalar f(x) on Rd we have:

lim
n→∞

1
n

n∑
j=1

kε(xi, xj)f(xj) =
ˆ

Rd

kε(xi, y)f(y)ρ(y)dy almost surely. (13)

It follows from the Central Limit Theorem that the error of this estimate decays as O(n− 1
2 ). The action of 

the kernel on sufficiently large datasets is approximated by an integral operator Gε defined by

(Gεf)(x) :=
ˆ

Rd

kε(x, y)f(y)dy. (14)

Namely, for a sufficiently large dataset,

lim
n→∞

1
n

n∑
j=1

kε(xi, xj)f(xj) = Gε(fρ)(xi) almost surely. (15)

The main innovation of the diffusion map algorithm [15] in comparison with Laplacian eigenmap [18] is 
the introduction of the parameter α ∈ R allowing us to control the influence of the density ρ and approximate 
a whole family of differential operators. Let us review the construction of diffusion maps. The first step is 
to compute the normalizing factor ρε(x), where

ρε(x) =
ˆ

Rd

kε(x, y)ρ(y)dy. (16)

The right-normalized kernel is defined as

kε,α(x, y) = kε(x, y)
ρα

ε (y) . (17)

We note that one can write the action of the right-normalized kernel on density-weighted functions f(x)ρ(x)
as

ˆ

Rd

kε,α(x, y)f(y)ρ(y)dy =
ˆ

Rd

kε(x, y)f(y)ρ(y)ρ−α
ε (y)dy.

Hence the right normalization regulates the influence of the density ρ(x) in Monte Carlo integrals. We define 
vector pε as the vector of row sums of the matrix Kε:

[pε]i =
n∑

j=1
[Kε]i,j . (18)

We define the diagonal matrix Dε = diag(pε). Then, the discrete counterpart for the right-normalized kernel 
(17) is

Kε,α := KεD
−α
ε . (19)
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Next, we fix

ρε,α(x) :=
ˆ

Rd

kε,α(x, y)ρ(y)dy (20)

to left-normalize the kernel, and define the Markov operator Pε,α on f as

Pε,αf(x) =
´
Rd kε,α(x, y)f(y)ρ(y)dy

ρε,α(x) . (21)

Finally, we define a family of operators Lε,α as

Lε,αf = Pε,αf − f

ε
≡ 1

ε

(
Gε(fρρ−α

ε )
Gε(ρρ−α

ε )
− f

)
. (22)

To obtain its discrete counterpart, we form a diagonal matrix Dε,α with row sums of Kε,α along its diagonal 
and use it to left-normalize the matrix Kε,α and get the Markov matrix Pε,α = D−1

ε,αKε,α. Then the family 
of discrete operators Lε,α is defined as

Lε,α := Pε,α − I

ε
. (23)

The discrete and continuous operators Lε,α and Lε,α relate via the pointwise infinite data limit. Let us 
fix an arbitrary point x1 drawn from the invariant density ρ and keep adding more points drawn from ρ(x)
into a dataset containing x1. Then

lim
n→∞

[Lε,α[f ]]1 = [Lε,α] f(x1), almost surely (24)

with error decaying as O(n− 1
2 ). It is proven in [15] that1

lim
ε→0

Lε,αf = 1
2

(
Δ(ρ1−αf) − fΔ(ρ1−α)

ρ1−α

)
. (25)

If the input dataset X comes from the overdamped Langevin SDE (2), and hence the invariant measure is 
Gibbs, i.e., ρ(x) = Z−1e−βV (x), and the kernel is given by (12), then

lim
ε→0

Lε,αf = 1
2
[
Δf − 2β(1 − α)∇f�∇V

]
. (26)

The series of steps described here leading to the construction of the matrix operator Lε,α (23) will be referred 
to as dmap (an abbreviation for the diffusion map algorithm).

The renormalization parameter α tunes the influence of the density ρ in the operator Lε,α. Setting α = 0
yields, up to a multiplicative constant 1/2, the standard graph Laplacian, which converges to the Laplace-
Beltrami operator only if ρ is uniform. With α = 1 the density ρ(x) is reweighted so that the limiting 
density for ε → 0, n → ∞ is uniform and the Laplace-Beltrami operator Lf = 1

2Δf is recovered. Setting 
α = 1/2 recovers the backward Kolmogorov operator,

lim
ε→0

Lε,1/2f = β

2
[
β−1Δf − ∇f�∇V

]
≡ β

2 Lf, (27)

which is needed for computing the committor.

1 We believe that a multiplicative constant is missing in Theorem 2 and in Proposition 10 in [15].
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The diffusion map algorithm has also seen many other modifications and improvements which are used 
heavily in practice. A primary development concerns the kernel bandwidth parameter ε, which usually 
requires extensive tuning in practice. Diffusion map variations such as locally scaled diffusion maps [7]
and variable bandwidth diffusion kernels [37] utilize a bandwidth which varies at each data point and can 
improve stability as well as accuracy at the boundary points of a dataset.

2.4. Diffusion maps for data coming from SDEs with multiplicative noise

An important limitation of the original class of diffusion maps with isotropic kernels [15] is that it can 
only approximate infinitesimal generators of the form (26) that are relevant only for gradient flows [38,39]. 
This limitation is caused by the fact that the construction relies on the sampling density of the data but not 
dynamical properties of the data. For example, the reversible diffusion process in collective variables (1) has 
the Gibbs distribution ρ(x) and diffusion matrix M(x), but application of diffusion maps will approximate 
the generator of gradient dynamics with density ρ(x) and constant diffusion matrix [38]. Hence, to approx-
imate generators for diffusion processes with multiplicative noise, a modified diffusion maps algorithm is 
required [24,38].

2.4.1. Mahalanobis diffusion maps
The foundational approach for applying diffusion maps to diffusion processes with multiplicative noise is 

proposed by Singer and Coifman (2008) [24]. They consider a diffusion process

dzt = b(zt)dt +
√

2dwt, zt ∈ M, (28)

where M is a d-dimensional manifold. The generator for this process is given by

Lz = Δ + b · ∇. (29)

The dynamics (28) are considered as the unobserved intrinsic dynamics of interest, while the observed 
dynamics is the process xt = ζ(zt), where ζ is an injective, smooth function from M to Rm, where m ≥ d. 
To elucidate the key idea from [24], we assume that M ≡ Rd, m = d, and that the mapping x = ζ(z) is a 
diffeomorphism. From Ito’s Lemma, the differential of ζ is

dζi(zt) =
d∑

j=1

(
∂ζi(zt)

∂zj
bj(zt) + ∂2ζi(zt)

∂z2
j

)
dt +

√
2

d∑
j=1

∂ζi(zt)
∂zj

[dwt]j . (30)

Thus, the noise term for dζ(zt) is given by 
√

2J(zt)dwt, where J(zt) is the Jacobian of ζ with entries 
[J(z)]ij = ∂ζi

∂zj
.

The crucial fact utilized in [24] is the following relationship between the (JJ�)−1-weighted quadratic 
form in the space of observed variables x = ζ(z) and the Euclidean distance in the z-space:

1
2(ζ(z) − ζ(z′))�

[
(JJ

�
)−1(x) + (JJ

�
)−1(y)

]
(ζ(z) − ζ(z′))

= ||z − z′||2 + O(||z − z′||4). (31)

This relationship motivated the introduction of the anisotropic kernel

kε(x, y) = exp
(

− 1 (x − y)�((JJ�)−1(x) + (JJ�)−1(y))(x − y)
)

. (32)
4ε
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Algorithm 1: Mahalanobis Diffusion Map Algorithm (mmap).
Input: data X = {xi}n

i=1, diffusion matrices {M(xi)}n
i=1, bandwidth ε, renormalization parameter α

Output: Matrix operator Lε,α

Construct kernel using (33)
1 [Kε]i,j = kε(xi, xj), i, j = 1, . . . , n

Find row sums of the kernel matrix and form a diagonal matrix

2 [pε]i =
n∑

j=1
[Kε]ij , i = 1, . . . , n

3 Dε = diag{[pε]1, . . . , [pε]n}
Right normalize the kernel

4 [Kε,α] := KεD
−α
ε

Left normalize the kernel

5 [pε,α]i =
n∑

j=1
[Kε,α]ij , i = 1, . . . , n

6 Dε,α = diag{[pε,α]1, . . . , [pε,α]n}
7 Pε,α := D

−1
ε,αKε,α

Construct generator

8 Lε,α =
Pε,α − I

ε

The diffusion map with kernel (33) approximates the generator Lz for the unknown latent dynamics zt in 
the case where b(zt) = −∇U(zt) for some potential U(z). The fact that the diffusion matrix is of the form 
JJ� is essential for the proof of this approximation presented in [24]. Relationship (31) essentially reduces 
this to the proof for diffusion maps with rotationally symmetric Gaussian kernel in [15].

The algorithm proposed in [24] and variants have been applied to multiscale fast slow-processes [24,40], 
nonlinear filtering problems [41], optimal transport and data fusion problems [42,43], chemical reaction 
networks [44], localization in sensor networks [45], and molecular dynamics [46]. Further, kernel (33) has 
recently been used for isometric embeddings to high-dimensional latent spaces [47] and for deep learning 
frameworks [45,47].

This work addresses the case where diffusion matrix M(x) in SDE (1) is not necessarily decomposable as 
M(x) =

(
JJ�) (x) and hence there is no relationship of the form (31) to utilize. Following [24], we use the 

Mahalanobis kernel

kε(x, y) = exp
(

− 1
4ε

(x − y)�(M−1(x) + M−1(y))(x − y)
)

. (33)

Other than the choice of the kernel, the Mahalanobis diffusion map algorithm (mmap) follows the steps of the 
diffusion map algorithm (dmap) detailed in Section 2.3. For the reader’s convenience, we summarize mmap in 
Algorithm 1. The family of differential operators approximated by mmap will be derived in Section 3.

Remark 2.1. The term Mahalanobis kernel is related to the Mahalanobis distance. If data points x and y
are sampled from a multivariate Gaussian distribution with covariance matrix C, then

(x − y)�C−1(x − y)

is the squared Mahalanobis distance between x and y. In the orthonormal basis of eigenvectors of C, the 
difference between each component of x and y is normalized by the corresponding variance, which reflects 
the difficulty to deviate along each direction. Hence, kernel (33) is a decaying exponential function of 
an approximate squared Mahalanobis distance. Therefore, it is designed to account for anisotropy of the 
diffusion process the data is coming from.

2.4.2. Local kernels
A further development facilitating data-driven analysis of anisotropic diffusion processes was done by 

Berry and Sauer (2016) [39]. Their local kernels theory generalizes theoretical results of [15,24] to a class 
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of anisotropic kernels which utilize user-defined drift vectors b(xi) and diffusion matrices A(xi). The local 
kernel approach has been extended to related work in solving elliptic PDEs with diffusion maps [48] and 
to computing reaction coordinates for molecular simulation [38]. In [38] the authors incorporate arbitrary 
sampling densities into the local kernel approach [39] and prove that for user-defined drift vector b(x) and 
user-defined diffusion matrix A(x), kernels of the form

kA,b
ε (x, y) = exp

(
− 1

4ε
(x − y + εb(x))�A−1(x)(x − y + εb(x))

)
, (34)

applied to data {xi}n
i=1 with arbitrary density can be normalized (similarly to the diffusion map with α = 1) 

to approximate the differential operator

Lf(x) = b(x)∇f(x) + tr[A(x)∇∇f(x)]. (35)

Equation (35) describes a broader class of generators than (4), which is advantageous. On the downside, the 
local kernel diffusion map algorithm of [38] requires drift estimates at all data points, as well as a second 
kernel kε̃(x, y) with additional scaling parameter ε̃ in order to normalize the density of the dataset. As a 
result, implementation of the local kernel approach requires adjustment of two scaling parameters ε and ε̃, 
which can be challenging.

We are primarily interested in the reversible dynamics in collective variables coming from MD simulations. 
On the other hand, the density of the data is far from being uniform, and may change by orders of magnitude 
thereby complicating the tuning of scaling parameters. Therefore, we choose to use mmap rather than the 
local kernel approach.

3. Theoretical results

Our goal is to prove that the mmap algorithm (Algorithm 1) with α = 1/2 approximates the generator 
(4) for SDE (1), the overdamped Langevin dynamics in collective variables. First we show that not every 
symmetric positive definite smooth matrix function M(x) admits the decomposition JJ�(x) where J(x)
is the Jacobian matrix function for some smooth vector-function. This will justify the lengthy calculation 
conducted in our proof of the main theorem (Theorem 3.3 below). Next, we derive the family of differential 
operators approximated by mmap with an arbitrary α ∈ R (Theorem 3.3). Finally, we evaluate the resulting 
differential operator at α = 1/2 and show that it is the generator for (1) (Corollary 3.1).

3.1. Not every diffusion matrix is associated with a variable change

The fact that not every smooth symmetric positive definite matrix function M(x) can be decomposed as

M(x) = J(x)J(x)� where J =
(

∂fi

∂xj

)d

i,j=1
(36)

for some smooth vector-function f : Ω → Rd, where Ω is an open set in Rd, is not new but it is not widely 
known. The non-existence of decomposition (36) is pointed out for the position-dependent diffusion matrix 
in the Moro-Cardin 2D example [49] by M. Johnson and G. Hummer [50] with a reference to the textbook by 
H. Risken [25] (Section 4.10), where the general criterion for the existence of decomposition (36) consisting 
in vanishing a certain complicated differential form is presented.

Here we will give a simple proof of the fact that not every symmetric positive definite smooth matrix 
function admits decomposition (36) by establishing a necessary condition for a class of 2 × 2 symmetric 
positive definite matrix functions
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M(x, y) = m2(x, y)I2×2, m(x, y) ∈ C2(Ω), m(x, y) > 0 ∀(x, y) ∈ Ω, (37)

for decomposition (36) to exist. Precisely, the necessary condition requires the function log m(x, y) to be 
harmonic. Moreover, if the open set Ω is simply connected, this condition is also sufficient for the class (37).

Theorem 3.1. Let M(x, y) be a symmetric positive definite matrix function of the form (37) where m(x, y)
is a positive twice continuously differentiable function in an open set Ω ⊂ R2 and I2×2 is a 2 × 2 identity 
matrix. Suppose that M admits decomposition M(x, y) = JJ�(x, y) where J(x, y) is the Jacobian matrix of 
some twice continuously differentiable vector-function f : Ω → R2. Then log m(x, y) must be harmonic, i.e.,

(
∂2

∂x2 + ∂2

∂y2

)
log m(x, y) = 0 ∀(x, y) ∈ Ω. (38)

Moreover, if the open set Ω is simply connected, then (38) is also a sufficient condition for the existence of 
decomposition (36). If Ω is not simply connected, (38) is not a sufficient condition.

A proof of Theorem 3.1 is given in Appendix B.
Thus, any matrix function of the form (37) where log m(x, y) is not harmonic in Ω does not admit 

decomposition (36) in Ω. For example, the function m in the Moro-Cardin example [49]

m(x, y) =
(

1 + e− x2+y2
2

)−1/2
(39)

is such that its logarithm is not harmonic:

Δ log m(r) = 1
2

[
(2 − r2)(1 + e−r2/2)e−r2/2 + r2e−r2

(1 + e−r2/2)2

]
, r =

√
x2 + y2.

Furthermore, any d × d twice continuously differentiable matrix function M(x, y) that has a principal 
2 ×2 submatrix of the form (37) where log m(x, y) is not harmonic in Ω does not admit decomposition (36).

3.2. The family of differential operators approximated by mmap

We will adopt three technical assumptions. The first one deals with the space of collective variables x:

Assumption 1. The range of x representing the set of collective variables constitutes a d-dimensional manifold 
M which is either Rd, or the d-dimensional torus Td, or a direct product of torus Tk and Rd−k. In all cases, 
M is of the form

M = Tk × Rd−k, for some 0 ≤ k ≤ d. (40)

By the torus Tk, 1 ≤ k ≤ d, we mean the “flat” torus, i.e., the direct product of intervals with periodic 
boundary conditions, i.e.,

Tk × Rd−k = [a1, b1] × [a2, b2] × . . . × [ak, bk] × Rd−k,

(x1, . . . , xl−1, al, xl+1, . . . , xd) = (x1, . . . , xl−1, bl, xl+1, . . . , xd), 1 ≤ l ≤ k.

The metric on such a torus is locally Euclidean [51], i.e., within any open ball of radius

REuc := min |bl − al|
. (41)
1≤l≤k 2
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Therefore, the metric on M is Euclidean if M = Rd or locally Euclidean within any ball of radius REuc if 
M = Tk × Rd−k for some 1 ≤ k ≤ d.

Assumption 1 is nonrestrictive in view of chemical physics applications, as usually collective variables 
are dihedral angles or distances between certain atoms. For example, the alanine dipeptide molecule is 
represented in two or four dihedral angles, M = T2 or T4, a 2D or a 4D torus respectively. Assumption 1
allows us to prove our main theoretical result from scratch using only elementary tools.

The second and third assumptions impose integrability and differentiability conditions on the diffusion 
matrix M(x) and a class of functions f : M → R to which we apply the constructed family of operators. 
We need the following definition:

Definition 3.2. We say that a continuous function f : Rd → R grows not faster than a polynomial as 
‖x‖ → ∞ if there exist constants A ≥ 0, B ≥ 0, and l ∈ N such that

|f(x)| ≤ A + B‖x‖l ∀x ∈ Rd.

Assumption 2. The diffusion matrix M(x) is symmetric positive definite. Its inverse M−1(x) is a four-times 
continuously differentiable matrix-valued function M−1 : M → Rd×d and the determinant of M−1(x) is 
bounded away from zero. If the manifold M is unbounded (i.e., 0 ≤ k ≤ d − 1 in (40)), then the entries 
(M−1)ij(x) and their first derivatives ∂(M−1)ij(x)

∂x�
grow not faster than a polynomial as ‖x‖ → ∞.

Assumption 3. The function f(x) is four-times continuously differentiable. If M is unbounded then f(x)
grows not faster than a polynomial as ‖x‖ → ∞.

Now we are ready to formulate our convergence results for mmap.

Theorem 3.3. Suppose a manifold M and a diffusion matrix M(x) : M → Rd×d satisfy Assumptions 1 and 
2 respectively. Let α ∈ R be fixed and the kernel kε,α be the Mahalanobis kernel (33), and the operator Lε,α

be constructed according to (16), (17), (20), (21), and (22). Then for any function f(x) : M → R satisfying 
Assumption (3) we have

lim
ε→0

Lε,αf(x) = 1
2

(
tr
(
M
[
∇∇
[
ρ1−αf

]
− f∇∇ρ1−α

])
ρ1−α

)

+ α

2

⎛
⎝ tr
(

M
[
∇
[
ρ1−αf

]
− f∇

[
ρ1−α

]] ∇|M |−�

|M |−1

)
ρ1−α

⎞
⎠

−
(

[∇(fρ1−α) − f∇(ρ1−α)]�ω1]
ρ1−α

)
∀x ∈ M, (42)

where |M | denotes the determinant of M , and ω1(x) is a vector-valued function defined by

ω1,i(x) := |M(x)|−1/2

(2πε)d/2
1

4ε2

ˆ

M

e− z�M(x)−1z
2ε zi

[
z�[∇M−1(x)z]z

]
dz. (43)

A proof of this theorem is done by a direct calculation of limit (42). It is carried out from scratch and 
involves only elementary tools from linear algebra and multivariable calculus. It is found in Appendix C. 
We remark that, in turn, the corresponding discrete operator applied to f(x) discretized to a point cloud 
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drawn from the invariant density ρ(x) and with Lε,α[f ] defined by (18), (19), (23) converges pointwise with 
probability one to Lε,αf as the number of data points tends to infinity.

Equation (42) defines a family of differential operators parametrized by α ∈ R. Since our goal is to 
compute committors, we are primarily concerned with approximating the generator (4) for the overdamped 
Langevin SDE in collective variables (1). Setting α = 1/2 approximates the generator that we need:

Corollary 3.1. Let M and M(x) be as in Theorem 3.3. Suppose that the invariant density ρ(x) takes the form 
of the Gibbs distribution ρ(x) = Z−1e−βF (x) for free energy F , temperature parameter β−1, and normalizing 
constant Z =

´
M e−βF (x)dx. Then for α = 1/2 the limit (42) reduces to

lim
ε→0

Lε,1/2f(x) = β

2 Lf(x) ∀x ∈ M, (44)

where

Lf =
(
−M∇F + β−1 (∇ · M)

)� ∇f + β−1tr[M∇∇f ] (45)

is the generator for the SDE

dxt =
[
−M(xt)∇F (xt) + β−1∇ · M(xt)

]
dt +

√
2β−1M1/2(xt)dwt. (46)

A proof of Corollary 3.1 is found in Appendix D. Our main interest is in solving the committor PDE 
(7). Our approach consists in approximating the generator L in (7) by the matrix operator Lε,1/2 which 
converges to Lε,1/2 as the number of data points n tends to infinity as O(n−1/2).

Finally, we remark that the use of the symmetric Mahalanobis kernel (33) is essential for the convergence 
of Lε,1/2f(x) to the generator (45). If one processes data sampled from a long trajectory of SDE (46) with
dmap, i.e., implements the isotropic Gaussian kernel (12) in the diffusion map algorithm, one obtains an 
approximation to the generator for the diffusion process governed by

dxt = −∇F (xt) +
√

2β−1dwt

which has the same invariant density Z−1 exp(−βF (x)) as (46) but a different drift and a different diffusion 
matrix. If one replaces the half-sum 1

2 (M(x) + M(y)) in (33) with M(x), all terms containing derivatives 
of M in (42) do not arise, and only the first term in (42) remains. For α = 1/2 this yields −M∇F · ∇f +
β−1tr[M∇∇f ], the generator for the dynamics

dxt = −M(xt)∇F (xt)dt +
√

2β−1M1/2(xt)dwt,

which approximates (46) only if M is constant or β−1 is small. In our examples presented in the next section, 
M varies considerably and β−1 is not so small, rendering the term β−1∇ · M(xt) non-negligible.

4. Examples

In this section, we test mmap on two examples: alanine dipeptide and Lennard-Jones-7 in 2D. The results 
obtained with mmap will be validated by comparing them to results of other established methods and 
contrasted to those of the diffusion map with isotropic Gaussian kernel (dmap). In view of the remark at 
the end of Section 3, the fact that the committors obtained using dmap are significantly less accurate than 
the mmap committors is unsurprising.
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Fig. 2. (a): Structure of alanine dipeptide and dihedral angles Φ and Ψ serving as collective variables. (b): Free energy surface of 
alanine dipeptide in vacuum at temperature T = 300 K in vicinity of C5 and C7eq minima, in Φ, Ψ coordinates. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Ellipses corresponding to the principal components of the estimated diffusion matrices for the alanine dipeptide data (faint 
gray dots). Each ellipse is plotted with center on the point whose diffusion matrix it represents. The ellipses are plotted on a 
representative subsampling of the trajectory data.

4.1. Transitions between metastable states C5 and C7eq in alanine dipeptide

Alanine dipeptide, a small biomolecule comprising 22 atoms, is a popular test example in chemical 
physics [5,4,52,13]. A typical set of collective variables effectively representing its motion consists of four or 
just two dihedral angles. We choose the set of only two dihedral angles Φ and Ψ shown in Fig. 2(a). Their 
range comprises a two-dimensional torus, i.e. the manifold M is T 2.

4.1.1. Obtaining input data
We used a velocity-rescaling thermostat to set the temperature to 300 K in a vacuum and ran a 1 nanosec-

ond trajectory under constant number, volume, and temperature (NVT) conditions, integrating Newton’s 
equations of motion with timestep 2 femtoseconds using the molecular dynamics software GROMACS [53]. 
For use with diffusion maps, we subsampled the trajectory at equispaced intervals of timesteps to obtain 
n = 5000 data points {xi}5000

i=1 with xi ∈ T 2. The diffusion matrices M(xi) were obtained following the 
methodology of [5] (see Appendix A) and are visualized in Fig. 3. The reactant and product sets A and B
are the small ellipses centered at the C5 and C7eq minima in the (Φ, Ψ)-space shown in Fig. 2(b). In Φ, Ψ
coordinates the C5 and C7eq minima are (−2.548, 2.744) and (−1.419, 1.056) respectively, and the ellipses 
shown are the level sets of the free energy F at 1.4 kcal/mol.

To compare the committors computed via mmap and dmap with the one obtained by a traditional PDE 
solver, we discretized the range [−π, π]2 of (Φ, Ψ) into a uniform square mesh 128 × 128 as in [4] and 
generated M(x) and ∇F (x) using the procedure from [5], summarized in Appendix A. We then posed a 
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Fig. 4. (a): Alanine dipeptide dataset. Its subset lying in the region of interest marked with magenta is used for computing the 
RMS error. (b): RMS errors for dmap and mmap committors as functions of the scaling parameter ε. The dotted lines indicate lower 
bound for ε-values related to the minimal distance between data points.

boundary-value problem for the committor PDE from (4), (7) and solved it using a finite difference scheme 
with central second-order accurate approximations to the derivatives.

Often (see e.g. [5,11] and many other works) a much rarer transition in alanine dipeptide is studied: 
the one between the combined metastable state comprising C5 and C7eq and the metastable state called 
C7ax located near Φ = 75◦, Ψ = −75◦. We chose the transition between C5 and C7eq for our tests because 
it can be easily sampled at room temperature T = 300 K. It is essential for mmap to have sufficient data 
coverage of the transition region, and the data must be sampled from the invariant distribution. The study 
of this transition gives us another benefit: unlike that for the transition between (C5, C7eq) and C7ax, 
the free energy barrier between C5 and C7eq is not large in comparison with kbT . This renders the term 
β−1∇ ·M(x) in SDE (1) non-negligible which is nonzero if and only if M(x) is nonconstant. As a result, the 
contrast between the results of mmap and dmap is amplified. We leave the task of upgrading mmap to make 
it applicable to datasets obtained using enhanced sampling techniques for the future.

4.1.2. Results and validation
We computed the committor using the mmap and dmap algorithms with k-nearest neighbor (kNN) sparsified 

kernels and a large range of values of the scaling parameter ε. This range is naturally bounded from above 
and below by the diameter of the point cloud and by the minimal distance between data points, respectively. 
In addition, we computed the committor by solving the boundary-value problem for the committor PDE 
using finite differences as mentioned in Section 4.1.1 and took it as a ground truth qtrue. To quantify the 
error of the mmap and dmap committors, we evaluated the root-mean-square (RMS) error

RMS error =

√∑n
j=1(qtrue(xj) − qapprox(xj))2

n
,

where {xj}n
j=1 are the data points. The finite difference solution qtrue was evaluated on the data through 

bilinear interpolation. It is clear that the committor computed with diffusion maps cannot be expected to 
be accurate on the outskirts of the dataset where the data coverage is insufficient. On the other hand, the
mmap and dmap committors are exact at A and B by construction and highly accurate near them, and these 
are the regions containing the majority of data points as they are sampled from the invariant density. We 
care the most about the accuracy of the mmap and dmap committors in the transition region. Therefore, 
we select the subset of points marked with magenta dots in Fig. 4(a). The graphs of the RMS errors for
mmap (red) and dmap (blue) over this subset as functions of ε are displayed in Fig. 4(b). The epsilon values 
minimizing the RMS error of the mmap and dmap committor are ε = 0.01 and ε = 0.003 with RMS errors 
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Fig. 5. Level sets for the approximate committor functions obtained from mmap (a) and dmap (b) on the point cloud (gray dots), with 
A as the reactant region and B the product region. The dotted lines represent the committor level sets obtained by mmap (a) and
dmap (b), while the solid lines depict the committor level sets obtained by the finite-difference method.

Fig. 6. The intensity of the reactive current computed using the mmap (a) and dmap (b) committors.

0.014 and 0.036 respectively. We know that the range of ε used for mmap is shifted with respect to the range 
of dmap due to the fact that the eigenvalues of M−1 range from 1.16 to 8.11 and average to 4.06. As a 
result, the optimal ε for mmap is approximately larger than that for dmap by a factor of 3.33. Moreover, for 
all ε-values in the overlap of ranges the error for mmap is smaller than that of dmap. The level sets of the 
computed committor using mmap and dmap for the values of ε minimizing the error are shown, respectively, 
in Fig. 5(a) and 5(b) with dashed lines. The solid lines are the corresponding level sets of the committor 
qtrue computed by finite differences. The level sets of the mmap committor closely match those of qtrue, while 
the level sets of the dmap committor notably deviate from them.

As we have explained in Section 2.2 the committor allows us to compute the reactive current and the 
transition rate. The calculation of the reactive current and the reaction rate is detailed in Appendix E. The 
reactive currents computed using the mmap and dmap committors, respectively, are visualized in Fig. 6 (a) and 
(b). Notably, the intensity for the respective currents differs by an order of magnitude. The corresponding 
reaction rates for mmap and dmap are, respectively, νAB = 0.092 × 10−12 s−1 and νAB = 0.31 × 10−12 s−1. 
To verify the rate, we ran 10 long trajectories and for each calculated the transition rate as the ratio 
of the number of transitions from A to B over the elapsed time. The mean rate over the trajectories is 
νAB = 0.093 × 10−12 s−1 (standard deviation 0.003 × 10−12 s−1) which is very close to the mmap rate and 
notably differs from the dmap rate.



L. Evans et al. / Appl. Comput. Harmon. Anal. 64 (2023) 62–101 79
Fig. 7. Free energy surface of LJ7 system with respect to 2nd and 3rd moment of coordination numbers CVs. The four minima Ck, 
k = 0, 1, 2, 3, are marked in the free energy plot and depicted on the right.

4.2. Transitions between the trapezoid and the hexagon in Lennard-Jones 7 in 2D

The cluster of seven 2D particles interacting according to the Lennard-Jones pair potential

Vpair(r) = 4a

[(σ

r

)12
−
(σ

r

)6
]

where σ > 0 and a > 0 are parameters controlling, respectively, range and strength of interparticle inter-
action, has been another benchmark problem in chemical physics [22,29–31]. If the particles are treated as 
indistinguishable, the potential energy surface

V (x) =
∑
i<j

Vpair(‖xi − xj‖), 1 ≤ i, j ≤ 7,

has four local minima denoted by C0 (hexagon), C1 (capped parallelogram 1), C2 (capped parallelogram 
2), and C3 (trapezoid) – see Fig. 7.

4.2.1. Choosing collective variables
Following [54,55], we chose the 2nd and 3rd central moments of the distribution of coordination numbers 

as collective variables (CVs). These CVs allow us to separate all four minima in a 2D space. The coordination 
number of particle i, 1 ≤ i ≤ 7, is a smooth function approximating the number of nearest neighbors of i:

ci(x) =
∑
j 
=i

1 −
( rij

1.5σ

)8
1 −
( rij

1.5σ

)16 , where rij := ‖xi − xj‖. (47)

Let us elaborate on it. The interparticle distance minimizing Vpair(r) is r∗ = 21/6σ. We would like to treat 
particles as nearest neighbors if the distance between them is close to r∗. If four particles arranged into a 
square, the diagonal particles at distance r∗√

2 ≈ 1.5874σ should be “not quite” nearest neighbors. Particles 
at distance 2r∗ should not count as nearest neighbors. Normalizing the distance to 1.5σ in (47) makes the 
desired distinction. Indeed, we have:

1 −
(

r∗

1.5σ

)8(
r∗ )16 ≈ 0.91 ∼ 1,

1 −
(

r∗√
2

1.5σ

)8(
r∗

√
2)16 ≈ 0.39,

1 −
( 2r∗

1.5σ

)8( 2r∗ )16 ≈ 0.04 ∼ 0.

1 − 1.5σ 1 − 1.5σ 1 − 1.5σ
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Fig. 8. Ellipses corresponding to the principal components of the estimated diffusion matrices M(xj) for a subsampled set of the 
LJ7 dataset depicted with faint gray dots.

The kth central moment of ci(x) is

μk(x) := 1
7
∑

i

(ci(x) − c̄(x))k, where c̄(x) = 1
7
∑

j

(cj(x)). (48)

The moments μk are invariant with respect to permutation of particles, which is important as the particles 
are indistinguishable. The space of the chosen collective variables (μ2, μ3) is R2.

4.2.2. Obtaining data
We set the temperature for the simulation to 0.2kbT

a and used a Langevin thermostat with relaxation 
time 0.1

√
a

mσ2 . To prevent clusters from evaporating, we imposed restraints to keep the atoms from moving 
further than 2σ from the center of mass from the cluster. Then we simulated the trajectory at timestep 
0.005

√
a

mσ2 for 107 steps using the velocity Verlet algorithm as implemented in the PLUMED software [52]. 
For use with diffusion maps, we subsampled the trajectory at regular intervals of time to obtain 7500 data 
points. The diffusion matrices obtained as described in [5] and Appendix A, and are visualized in Fig. 8. 
The reactant set A and product set B are chosen to be the energy minima C3 and C0 respectively. This 
choice was motivated by the fact that C3 and C0 are the most distant pair of metastable states, separated by 
the highest potential energy barrier [29,30], and connected with a wide transition channel passing through 
the basins of C1 and C2. It is worth noting that such a situation where the region between two stable 
states of interest is interspersed with other metastable states is quite common in practical situations [56]. 
Furthermore, transitions between C0 and C3 occur very infrequently, and it takes much longer time to 
accumulate statistics for them in numerical simulation than for the transition in alanine dipeptide considered 
in Section 4.1.

The scaling parameters ε for mmap and dmap were set, respectively, to

ε = max
i

min
j 
=i

s(i, j), where (49)

s(i, j) := 1
2(xi − xj)�(M−1(xi) + M−1(xj))(xi − xj) for mmap, (50)

s(i, j) := ||xi − xj ||22 for dmap. (51)

This simple procedure for choosing ε worked remarkably well. As with the previous example, we used kNN 
sparsification for the mmap kernel.
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Fig. 9. Level sets for the mmap (a) and dmap (b) committors are depicted with dashed lines. The set of data points is shown with 
gray dots.

Fig. 10. The intensity of the reactive current obtained with the mmap (a) and dmap (b) committors.

4.2.3. Results and validation
The level sets of the mmap and dmap committors are shown in Fig. 9. Notably, these committors signifi-

cantly differ from each other. In particular, the q = 0.5 level sets for the mmap and dmap committors lie on 
opposite sides of the dynamical trap surrounding the basins of C1 and C2 minima. The reactive currents 
computed using the mmap and dmap committors respectively, are displayed in Fig. 10 (a) and (b).

To validate our results and determine which of the mmap or dmap committors is more accurate, we per-
formed committor analysis [5,32,33], a common statistical validation technique for committors in collective 
variables. Committor analysis checks a particular committor level set by using the definition of the com-
mittor at x as the probability that a stochastic trajectory starting at x first reaches B rather than A. We 
verified the most important level set q = 0.5, the transition state. We sampled a set of Npt = 1000 points 
xj along this level set and launched an ensemble of Ne = 200 trajectories from each of them. For each 
xj , we counted the number of trajectories NB that reached first C0 rather than C3 and denoted the ratio 
NB/Ne by pB(xj). We then plotted a histogram with each bin defined by a pB value and counts determined 
by the number of selected points in the level set q = 0.5 with that pB value normalized by Npt (Fig. 11). 
A well-approximated q = 0.5 level set should have a unimodal histogram with a sharp peak at pB = 0.5. 
We see that the distribution for mmap peaks at 0.5 as expected, while the dmap distribution peaks at 0.75, 
missing the correct statistical behavior by a large margin. Therefore, we conclude that mmap produces a 
good approximation for the committor while dmap gives a qualitatively wrong result.
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Fig. 11. Committor analysis of the q = 0.5 level sets from Fig. 9, with orange corresponding to mmap and cyan corresponding to dmap.

5. Conclusion

The main conclusion of this work is that the Mahalanobis diffusion map algorithm (mmap) is a provably 
correct, robust and reliable tool for computing the committor in collective variables discretized to a point 
cloud of data generated by MD simulations. The dynamics in collective variables is governed by a reversible 
SDE with anisotropic and position-dependent diffusion matrix M(x). The Mahalanobis kernel proposed in 
[24] accurately captures this anisotropy regardless of whether M(x) is decomposable or not into a product 
J(x)J�(x) where J(x) is the Jacobian matrix for some diffeomorphism.

Specifically, we have calculated the limiting family of differential operators converged to by the α-indexed
mmap family of matrix operators, where convergence is with respect to the number of data points tending 
to infinity and scaling parameter ε tending to 0. If α = 1/2, the limiting operator is the generator for the 
overdamped Langevin SDE in collective variables. In our derivation, we have discarded the key assumption 
of [24] that M(x) is associated with a diffeomorphism.

We have chosen two benchmark chemical physics systems as test problems: transitions in alanine dipeptide 
and rearrangement of an LJ7 cluster of 2D particles. On these examples, we have demonstrated that mmap
is easy to implement and gives good results for any reasonable choice of the scaling parameter epsilon. We 
have validated our results by comparing the committors computed with mmap to the one obtained using a 
traditional finite difference method or by conducting committor analysis. We have contrasted the committor 
by mmap with the one by the diffusion map with isotropic Gaussian kernel and shown that the latter can 
lead to a wrong placement of the transition state and highly inaccurate estimate for the reaction rate.

In the current setting, mmap has a significant limitation: it requires the input data to be sampled from the 
invariant probability density. This prevents us from using enhanced sampling techniques such as temperature 
acceleration [57] and metadynamics [58] which are standard techniques applied to promote transitions 
between metastable states in MD simulations. We plan to address this problem in our future work.

Data availability

The code used for diffusion maps will be shared at “https://github .com /aevans1 /targetmeasure -mmap”.
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Appendix A. The free energy and the diffusion tensor

The free energy F (x) and the diffusion matrix M(x) in SDE (1) are defined, respectively, as follows:

F (x) = −β−1 ln

⎛
⎝ ˆ

Rm

Z−1
V e−βV (y)

d∏
l=1

δ(θl(y) − xl)dy

⎞
⎠ , (A.1)

M(x) = e−βF (x)
ˆ

Rm

J(y)J�(y)Z−1
V e−βV (y)

d∏
l=1

δ(θl(y) − xl)dy. (A.2)

In (A.2), J(x) is the Jacobian matrix whose entries are

Jij(y) = ∂θi(y)
∂yj

1 ≤ i ≤ d, 1 ≤ j ≤ m.

To apply the mmap algorithm, we do not need to know the free energy. However, we do need evaluate the 
diffusion matrix M(x) at the data points. A method for estimating the diffusion matrix M(x) of (A.2) was 
described in [5]. Here we outline it for the reader’s convenience.

First, we approximate the distribution 
∏d

l=1 δ(θl(y) − xl) with a Gaussian. We fix x ∈ Rd, choose a large 
spring constant κ > 0, and consider a constrained system with the “extended potential” given by

U(y; κ, x) = V (y) + κ

2 ||θ(y) − x||2, (A.3)

evolving according to the overdamped Langevin dynamics

dyt = −∇U(yt; κ, x)dt +
√

2β−1dWt

=
[
−∇V (y) − κJ(y)�(θ(y) − x)

]
dt +

√
2β−1dWt. (A.4)

The restrained dynamics (A.4) has stationary distribution

ρ(y; κ, x) := Z(κ, x)−1e−βU(y;κ,x) where Z(κ, x) :=
ˆ

Rd

e−βU(y;κ,x)dy,

with limiting distribution

lim
κ→∞

ˆ

Rd

f(y)ρ(y; κ, x)dy =
ˆ

Rd

f(y)Z−1
V e−βU(y)

d∏
l=1

δ(θl(y) − xl)dy

Next, we generate trajectory data {yti
}n

i=0 for the restrained dynamics (A.4). These data enable us to 
estimate the conditional expectation for an arbitrary function f as follows:
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lim
κ→∞

lim
n→∞

1
n

n∑
i=1

f(yti
) = lim

κ→∞
lim

n→∞
1

nΔt

nΔtˆ

0

f(yt)ρ(yt; κ, x)dt

= eβF (x)
ˆ

Rn

f(y)Z−1
V e−βV (y)

d∏
l=1

δ(θl(y) − xl)dy

= E[f |θ(y) = x]. (A.5)

In particular, the diffusion tensor M(x) for the collective variables x = θ(y) is estimated according the 
formula:

Mij(x) ≈ 1
n

n∑
i=1

m∑
l=1

∂θi(yti
)

∂yl

∂θj(yti
)

∂yl
. (A.6)

The mean force, i.e., the gradient of the free energy ∇F (x), also can be estimated in a similar manner:

∇F (x) = κ

n

n∑
i=1

(x − θ(yti
)) . (A.7)

We evaluate M(x) by (A.6) in both applications presented in this work. This procedure is an outgrowth of 
well-established uses for constrained dynamics within the molecular dynamics community, particularly in 
fundamental works for computing free energy differences [59,60] and position-dependent friction [61].

For a general diffusion matrix not necessarily of form (A.2) or for when the Jacobian J(y) is not available, 
one can utilize local covariances as described in [24,38,41,44,47]. These approaches utilize that for (1),

M(x) = lim
Δt→0

E
[
(xt+Δt − xt)(xt+Δt − xt)�|xt = x

]
2β−1Δt

,

and derive estimators of M(x) by approximating the right-hand side through short simulation bursts initi-
ated at x or from small neighborhoods of the trajectory near x.

Appendix B. Proof of Theorem 3.1

We will need two auxiliary lemmas. The first lemma gives a necessary condition for a matrix-function to 
be Jacobian.

Lemma B.1. Let z = f(x) be a twice continuously differentiable coordinate change f : Rd → Rd with 
Jacobian matrix

J(x) =

⎡
⎢⎢⎣

∂f1
∂x1

· · · ∂f1
∂xd

...
...

∂fd

∂x1
· · · ∂fd

∂xd

⎤
⎥⎥⎦ . (B.1)

Then, the entries of J satisfy

∂Jij

∂xk
= ∂Jik

∂xj
∀1 ≤ i, j, k ≤ d, j 	= k. (B.2)

Proof. Indeed, the left and right-hand side of (B.2) are the mixed partials that are equal as they are 
continuous:
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∂Jij

∂xk
= ∂2fi

∂xk∂xj
= ∂2fi

∂xj∂xk
= ∂Jik

∂xj
. �

The second lemma shows that any decomposition M = AA� of a symmetric positive definite matrix 
relates to M1/2 via an orthogonal transformation.

Lemma B.2. Let M be a symmetric positive definite matrix, and A be any matrix such that M = AA�. 
Then, there exists an orthogonal transformation O such that A = M1/2O.

Proof. We have:

M = M1/2M1/2 = AA�.

Multiplying this identity by M−1/2 on the right and on the left we get:

I = M−1/2AA�M−1/2 = M−1/2A
(

M−1/2A
)�

.

Hence O := M−1/2A is orthogonal. Therefore, A = M1/2O as desired. �
Proof of Theorem 3.1. First we prove that (38) is necessary for the existence of decomposition (36). We 
observe that M1/2(x, y) = m(x, y)I2×2 is a Jacobian of a vector-function f : Ω → R2 if and only if m(x, y)
is constant. Indeed, condition (B.2) applied to M1/2(x, y) = m(x, y)I2×2 reduces to my = 0 and mx = 0. 
Note that any constant function is harmonic.

Suppose that m(x, y) is not constant. In this case, by Lemma B.2, if M admits decomposition (36) then 
J(x, y) must be of the form M1/2(x, y)O(x, y) for some orthogonal matrix O(x, y). There are two families 
of orthogonal 2 × 2 matrix functions:

O(x, y) =
[

cos φ(x, y) sin φ(x, y)
− sin φ(x, y) cos φ(x, y)

]
and O(x, y) =

[
cos φ(x, y) sin φ(x, y)
sin φ(x, y) − cos φ(x, y)

]
. (B.3)

Hence, M1/2(x, y)O(x, y) is of the form

m(x, y)
[

cos φ(x, y) sin φ(x, y)
− sin φ(x, y) cos φ(x, y)

]
or m(x, y)

[
cos φ(x, y) sin φ(x, y)
sin φ(x, y) − cos φ(x, y)

]
.

Condition (B.2) applied to M1/2(x, y)O(x, y) requires the following equalities to hold:

∂

∂y
(m cos φ) = ∂

∂x
(m sin φ) ,

∂

∂y
(m sin φ) = − ∂

∂x
(m cos φ) .

Performing differentiation, we get:

my cos φ − mφy sin φ = mx sin φ + mφx cos φ

my sin φ + mφy cos φ = − (mx cos φ − mφx sin φ)

Regrouping the terms, we obtain:
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my cos φ − mx sin φ = m [φx cos φ + φy sin φ] (B.4)

−my sin φ − mx cos φ = m (φy cos φ − φx sin φ) . (B.5)

The last set of identities can be rewritten in a matrix form:[
cos φ sin φ

− sin φ cos φ

][
my

−mx

]
= m

[
cos φ sin φ

− sin φ cos φ

][
φx

φy

]
(B.6)

The matrix in (B.6) is orthogonal. Hence, multiplying (B.6) by its transpose we get:

my

m
≡ [log m]y = φx, −mx

m
≡ −[log m]x = φy. (B.7)

The fact that the mixed partials of φ must be equal implies that

[log m]xx + [log m]yy = 0. (B.8)

This completes the proof that (38) is necessary for the existence of decomposition (36).
Next, we prove that (38) is sufficient for the existence of decomposition (36) if Ω is simply connected.

This immediately follows from the theorem of calculus saying that if the components of a two-dimensional 
continuously differentiable vector field [p, q]� satisfy py = qx in a simply connected domain Ω then this 
vector field is conservative. Indeed, we define the vector field [p, q]� by p = [log m]y and q = −[log m]x. 
This vector field satisfies the condition py = qx as log m is harmonic. We choose a point (x0, y0) ∈ Ω, fix it, 
and for any other point (x, y) ∈ Ω choose a path γ ⊂ Ω from (x0, y0) to (x, y) and integrate the vector field 
(p, q) along it (see the integral in the right-hand side of equation (B.10) below). We claim that the value of 
this integral is independent of the path γ from (x0, y0) to (x, y). Indeed, if γ′ is some other path connecting 
these points, then we define a closed contour by reversing the path γ′ and apply Green’s theorem

˛

C

pdx + qdy =
¨

U

(py − qx)dxdy, (B.9)

where U is the region bounded by the simple closed contour C. Since py − qx is identically zero, the contour 
integral also must be zero. If the contour formed by the paths γ and the reverse of γ′ is self-intersecting, 
we apply Green’s theorem to all simple closed contours formed by these paths. Therefore, we can define a 
function φ(x, y) by

φ(x, y) =
ˆ

γ

[log m]ydx − [log m]xdy (B.10)

where γ ⊂ Ω is any path from (x0, y0) to (x, y) set J(x, y) = m(x, y)O(x, y) where O(x, y) is any orthogonal 
matrix function of the form (B.3) with φ defined by (B.10).

Finally, we show that if Ω is not simply connected, the condition (38) is not sufficient for the existence of 
decomposition (36). We adapt the famous counterexample of a non-conservative vector field. Consider the 
vector field [

p

q

]
= a

x2 + y2

[
−y

x

]
, (B.11)

where a 	= 0 is a constant, with the property that py = qx. It is smooth in R2\{(0, 0)}. Let
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m(x, y) =
(
x2 + y2)−a/2

. (B.12)

It is easy to check that [log m]y = p and −[log m]x = q and hence log m is harmonic everywhere except for 
the origin. Let us choose φ(x, y) satisfying φx = p and φy = q to be2

φ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

a arctan (y/x) , x > 0
πa
2 , x = 0

πa + a arctan (y/x) , x < 0
(B.13)

The function φ is smooth everywhere except for the origin and the negative y-axis. It has a jump discontinuity 
of size 2πa along the negative y-axis. If a /∈ Z, the functions sin φ and cos φ will be discontinuous along the 
negative y-axis. Hence decomposition (36) does not exist. �
Remark B.1. However, if a ∈ Z in (B.12), the orthogonal matrices (B.3) with φ given by (B.13) are smooth 
everywhere except for the origin. In particular, if a = 1, we have:

1√
x2 + y2

[
x y

−y x

]
and 1√

x2 + y2

[
x y

y −x

]
(B.14)

Appendix C. Proof of Theorem 3.3

We fix r ≥ 0, x ∈ Rd, and a symmetric positive definite matrix A ∈ Rd×d. Then Br(x; A) denotes the 
ellipsoid

Br(x; A) := {y ∈ Rd | (y − x)�A(y − x) ≤ r2}.

The proof of Theorem 3.3 includes two technical lemmas.

Lemma C.1. Let x ∈ Rd be fixed, φ(x +a) be a function that grows not faster than a polynomial as ‖a‖ → ∞, 
and A be a positive definite matrix. Then, for all small enough ε > 0 and any μ ∈ (0, 1/2), we have:

I :=

∣∣∣∣∣∣∣
ˆ

Rd\Bεμ (x;A)

e− 1
2ε (y−x)�A(y−x)φ(y)dy

∣∣∣∣∣∣∣ ≤ εd/2p(ε2μ−1)e− ε2μ−1
2 , (C.1)

where p is a polynomial.

Proof. We implement two variable changes. First we introduce z := ε−1/2A1/2(y − x) and then switch to 
spherical coordinates in Rd. We calculate:

I =

∣∣∣∣∣∣∣
ˆ

Rd\Bεμ (x;A)

e− 1
2ε (y−x)�A(y−x)φ(y)dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ˆ

Rd\Bε2μ−1 (0;I)

e− 1
2 ‖z‖2

φ(x +
√

εA−1/2z)εd/2|A|−1/2dz

∣∣∣∣∣∣∣
2 Acknowledgment of lecture notes by E. L. Lady: http://www .math .hawaii .edu /~lee /calculus /potential .pdf.

http://www.math.hawaii.edu/~lee/calculus/potential.pdf
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Note that 2μ −1 < 0, hence ε2μ−1 → ∞ as ε → 0. Further, since φ(x +a) grows not faster than a polynomial 
as ‖a‖ → ∞, there are constants C1 and C2 and a positive integer k such that

∣∣∣(φ(x) +
√

εA−1/2z
)∣∣∣ ≤ C1 +

√
εC2λmax(A−1/2)‖z‖k.

Therefore, aiming at switching to spherical coordinates in Rd, we write:
∣∣∣‖z‖d−1

(
φ(x) +

√
εA−1/2z

)∣∣∣ ≤ C1‖z‖d−1 +
√

εC2λmax(A−1/2)‖z‖k+d−1 ≤ C‖z‖m,

where C is some constant, and m is the smallest odd integer greater or equal to d + k − 1. Finally, switching 
to spherical coordinates and denoting the surface of the (d −1)-dimensional unit sphere by |Sd−1|, we derive 
the desired estimate:

I ≤ Cεd/2|Sd−1|
|A|1/2

∞̂

εμ−1/2

e− r2
2 rmdr

=Cεd/2|Sd−1|
|A|1/2

∞̂

ε2μ−1
2

e−tt
m−1

2 dt

=εd/2p(ε2μ−1)e− ε2μ−1
2 ,

where the polynomial p is obtained from integrating by parts (m − 1)/2 times and multiplying the result by 
C|A|−1/2. �
Lemma C.2. Let Gε be an integral operator defined by

Gεf(x) =
ˆ

Rd

e− 1
4ε (x−y)�[M−1(x)+M−1(y)](x−y)f(y)dy, (C.2)

where the matrix function M and the scalar function f satisfy Assumption 2. Let M̃ ≡ M−1 and

M̃(y) = M̃(x) + ∇M̃(x)(y − x) + r2(x; y − x) + r3(x; y − x) + O(‖y − x‖4), (C.3)

where ∇M̃(x)(y − x) is a matrix with entries

(
∇M̃(x)(y − x)

)
ij

= ∇M̃�
ij (y − x),

and r2(x; z) and r3(x; z) are the matrices whose entries are the second and third-order terms in Taylor 
expansions of M̃ij. Then

Gεf(x) = (2πε)d/2

|M̃ |1/2

(
f(x) + ε

[
−∇f(x)�ω1(x) − f(x)ω2(x)

+1
2 tr(M̃(x)−1H(x))

]
+ O(ε2)

)
, (C.4)

where H(x) := ∇∇f(x) is the Hessian matrix for f evaluated at x, and
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ω1,i(x) := |M̃ |1/2

(2πε)d/2
1

4ε2

ˆ

Rd

e− z�M̃z
2ε zi

[
z�[∇M̃(x)z]z

]
dz, 1 ≤ i ≤ d, (C.5)

ω2(x) := |M̃ |1/2

(2πε)d/2

ˆ

Rd

e− z�M̃z
2ε

[
z�r2(x; z)z

4ε2 −
(
z�[∇M̃(x)z]z

)2
32ε3

]
dz. (C.6)

Proof. The proof utilizes the Taylor expansion f(x + z) around f(x):

f(x + z) = f(x) + ∇f(x)�z + 1
2z�∇∇f(x)z + p3(z) + p4(z), (C.7)

where p3(z) is a homogeneous third degree polynomial in z, and p4(z) is O(z4). To establish (C.4), we will 
need to integrate the products of each of these terms with the Mahalanobis kernel

kε(x, y) = e− 1
4ε (x−y)�[M̃(x)+M̃(y)](x−y). (C.8)

First we eliminate the dependence of the matrix M̃ on the integration variable y in the exponent by using 
Taylor expansions. Let z := y − x and � be the residual in the expansion (C.3):

�(x, x + z) := M̃(x + z) −
{

M̃(x) + ∇M̃(x)z + r2(x; z) + r3(x; z)
}

= O(‖z‖4).

Then

e− (y−x)�[M̃(x)+M̃(y)](y−x)
4ε = e− z�M̃(x)z

2ε e− z�[∇M̃(x)z+r2(x;z)+r3(x;z)+�(x,y)]z
4ε . (C.9)

The Taylor series for exp(−t) converges on R. Hence, expanding the second exponent in (C.9) we get:

e− z�[∇M̃(x)z+r2(z)+r3(z)+�(x,y)]z
4ε

=1 − 1
4ε

(
z�[∇M̃(x)z + r2(x; z) + r3(x; z) + �(x, y)]z

)
+ 1

32ε2

(
z�[∇M̃(x)z + r2(x; z) + r3(x; z) + �(x, y)]z

)2 − . . .

+ (−1)k

k!(4ε)k

(
z�[∇M̃(x)z + r2(x; z) + r3(x; z) + �(x, y)]z

)k + . . . .

Second, we will split the integral of each term in (C.7) multiplied by kε(x, y) into the sum
ˆ

Rd

=
ˆ

Bx,εμ

+
ˆ

Rd\Bx,εμ

,

where Bx,εμ denotes the ellipse Bεμ(x; M̃) and μ ∈ (0, 1/2) is fixed. Where appropriate, we will apply 
Lemma C.1 to the integral over Rd\Bx,εμ . We will need the following ingredients.

Integral 1:
ˆ

Bx,εμ

kε(x, y)dy (C.10)

=
ˆ

e− z�M̃(x)z
2ε

[
1 − 1

4ε

(
z�[∇M̃(x)z + r2(x; z) + r3(x; z) + O(‖z‖4)]z

)

B0,εμ
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+ 1
32ε2

(
z�[∇M̃(x)z + r2(x; z) + r3(x; z) + ρ(x, y)]z

)2 − . . .

+ (−1)k

k!(4ε)k

(
z�[∇M̃(x)z + r2(x; z) + r3(x; z) + ρ(x, y)]z

)k + . . .

]
dz.

We will tackle this integral term-by-term. For brevity, we will omit the argument (x) of M̃ . Thus,

ˆ

B0,εμ

e− z�M̃z
2ε dz = (2πε)d/2

|M̃ |1/2
(1 + δ1(ε)),

where δ1(ε) decays exponentially fast as ε → 0. Further,

ˆ

B0,εμ

e− z�M̃z
2ε

(
z�[∇M̃z]z

)2k+1

(4ε)2k+1 dz = 0, k = 0, 1, 2, . . . ;

ˆ

B0,εμ

e− z�M̃z
2ε

(
z�[∇M̃z]z

)2k

(4ε)2k
dz = (2πε)d/2

|M̃ |1/2
O
(
εk
)

, k = 1, 2, . . . ;

ˆ

B0,εμ

e− z�M̃z
2ε

(
z�r2(x; z)z

)k
(4ε)k

dz = (2πε)d/2

|M̃ |1/2
O
(
ε2k−1) , k = 1, 2, . . . ;

ˆ

B0,εμ

e− z�M̃z
2ε

(
z�[∇M̃z]z

)2k
z�r2(x; z)z

(4ε)2k+1 dz = (2πε)d/2

|M̃ |1/2
O
(
εk+1) , k = 1, 2, . . . .

The rest of the integrals originating from (C.10) will be either zero or O(εd/2εk) for some k > 2. Putting 
the integrals together and organizing them according to the order in powers of ε, we get:

ˆ

Bx,εμ

kε(x, y)dy = (2πε)d/2

|M̃ |1/2

[
1 − εω2(x) + O(ε2)

]
, (C.11)

where

ω2(x) := |M̃ |1/2

(2πε)d/2

ˆ

Rd

e− z�M̃z
2ε

[
z�r2(x; z)z

4ε2 −
(
z�[∇M̃z]z

)2
32ε3

]
dz. (C.12)

Note that the value ω2 is of the order of 1. We have applied Lemma C.1 to replace the integral over Bx,εμ

with the one over Rd.
Integral 2:

ˆ

B0,εμ

kε(x, x + z)zidz

=
ˆ

B0,εμ

e− z�M̃z
2ε zi

[
1 − 1

4ε

(
z�[∇M̃z + r2(z) + r3(z) + O(‖z‖4)]z

)
+ . . .

]
dz

=(2πε)d/2

|M̃ |1/2

[
−εω1,i(x) + O(ε2)

]
, (C.13)
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where, with the aid of Lemma C.1,

ω1,i(x) := |M̃ |1/2

(2πε)d/2
1

4ε2

ˆ

Rd

e− z�M̃z
2ε zi

[
z�[∇M̃z]z

]
dz, 1 ≤ i ≤ d. (C.14)

Integral 3:
ˆ

B0,εμ

kε(x, x + z)z�Hzdz

=
ˆ

B0,εμ

e− z�M̃z
2ε z�Hz

[
1 − 1

4ε

(
z�[∇M̃(x)z + r2(z) + r3(z) + O(‖z‖4)]z

)]
dz

=(2πε)d/2

|M̃ |1/2

[
εtr(M̃−1H) + O(ε2)

]
. (C.15)

Using Integrals 1, 2, and 3, we calculate:

Gεf(x) =
ˆ

Rd

e− z�[M̃(x)+M̃(x+z)]z
4ε f(x + z)dz =

ˆ

B0,εμ

[. . .]dz +
ˆ

Rd\B0,εμ

[. . .]dz.

The second integral in the right-hand side decays exponentially as ε → 0 by Lemma C.1. Therefore, we will 
incorporate its value into O(ε2) term below. We continue, omitting the argument x for brevity and recalling 
that M̃−1 ≡ M :

Gεf =
ˆ

B0,εμ

e− z�[M̃(x)+M̃(x+z)]z
2ε

[
f + ∇f�z + 1

2z�∇∇fz + . . .

]
dz +

ˆ

Rd\B0,εμ

[. . .]dz

= (2πε)d/2|M |1/2
(

f + ε

[
−∇f�ω1 − fω2 + 1

2 tr(M∇∇f)
]

+ O(ε2)
)

. �
Now we prove Theorem 3.3.

Proof. To carry out the proof of Theorem 3.3, we need to calculate the limit

lim
ε→0

Lε,αf(x) ≡ lim
ε→0

Pε,αf(x) − f(x)
ε

(C.16)

for any fixed x ∈ M. Central to the calculation of Pε,αf(x) is the calculation of integrals over M which is 
done by splitting each integral into the sum

ˆ

M

=
ˆ

Bx,εμ

+
ˆ

M\Bx,εμ

,

where μ ∈ (0, 1/2) meaning that εμ → 0 as ε → 0. Since the manifold M is either Rd or Tk ×Rd−k for some 
1 ≤ 1 ≤ d with the Euclidean metric within any open ball of radius REuc (41), for the purpose of integration 
over it, M can be treated either as Rd or as a hyperstrip or a hyperbox in Rd (See Assumption 1). Therefore, 
if ε is small enough so that the whole ellipse Bx,εμ lies within a ball of radius REuc, for each integral with 
an integrand satisfying the assumptions of Lemma C.1 we have:
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ˆ

M

=
ˆ

Bx,εμ

+
ˆ

M\Bx,εμ

and

∣∣∣∣∣∣∣
ˆ

M\Bx,εμ

∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
ˆ

Rd\Bx,εμ

∣∣∣∣∣∣∣ .

According to Lemma C.1, this last integral over Rd\Bx,εμ decays exponentially as ε → 0. Therefore, the 
integrals over M\Bx,εμ do not affect the limit (C.16), i.e., (C.16) is completely determined by the inte-
grals over the ellipse Bx,εμ which are the same whether M is Rd or Tk × Rd−k provided that it satisfies 
Assumption 1. Hence, Lemma C.2 remains valid for the manifold M.

We will omit the argument x in the calculations within this proof to shorten expressions. Lemma C.2
implies that

ρε(x) =
ˆ

M

kε(x, y)ρ(y)dy

= (2πε)d/2|M |1/2
(

ρ + ε

[
−∇ρ�ω1 − ρω2 + 1

2 tr(M∇∇ρ)
]

+ O(ε2)
)

. (C.17)

Therefore,

ρ−α
ε = (2πε)−αd/2|M̃ |α/2

ρα

[
1 − αε

−∇ρ�ω1 − ρω2 + 1
2 tr(M∇∇ρ)

ρ
+ O(ε2)

]
. (C.18)

To perform right renormalization, we need to multiply the kernel kε(x, y) by ρ−α
ε (y). The dependence of 

kε(x, y)ρ−α
ε (y) on y will be shifted to terms of Taylor expansions. As before, let z = y − x. First, we expand 

|M̃(y)|α/2

|M̃(x + z)|α/2 =
[
|M̃(x)| + ∇|M̃(x)|�z + 1

2z�∇∇|M̃(x)|z + O(‖z‖3)
]α/2

=|M̃(x)|α/2
[
1 + ∇|M̃(x)|�z

|M̃(x)|
+ z�∇∇|M̃(x)|z

2|M̃(x)|
+ O(‖z‖3)

]α/2

=|M̃(x)|α/2
[
1 + α

2
∇|M̃(x)|�z

|M̃(x)|
+ 1

2z�A1(x)z + O(‖z‖3)
]

(C.19)

where

A1(x) = α∇∇|M̃(x)|)
2|M̃(x)|

+ α(α − 2)∇|M̃(x)|∇|M̃(x)|�
4|M̃(x)|2

.

Second, we denote the term multiplied by αε in (C.18) by R:

R :=
−∇ρ�ω1 − ρω2 + 1

2 tr(M∇∇ρ)
ρ

.

Now, using (C.19), we start the calculation of Kε,αf(x):

Kε,αf(x) :=
ˆ

M

kε(x, y)
ρα

ε (y) ρ(y)f(y)dy

=
ˆ

kε(x, y)
[
ρ−α

ε (y)ρ(y)f(y)
]

dy
M
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=
[

|M̃(x)|
(2πε)d

]α/2 ˆ

M

kε(x, y)
[
ρ1−α(y)f(y)

]
(C.20)

×
[
1 − αεR(y) + O(ε2)

]
×
[
1 + α

2
∇|M̃(x)|�(y − x)

|M̃(x)|
+ 1

2(y − x)�A1(x)(y − x) + O(‖y − x‖3)
]

dy.

To tackle the integral in (C.20), we split it to several integrals each of which we evaluate using Lemma C.2. 
For brevity, we will omit arguments x in the gradients and Hessians and in the matrix M̃ . We continue:

ˆ

M

kε(x, y)
[
ρ1−α(y)f(y)

] [
1 − αεR(y) + O(ε2)

]

×
[
1 + α

2
∇|M̃ |�z

|M̃ |
+ 1

2z�A1z + O(‖z‖3)
]

dz

=Gε[ρ1−α(y)f(y)](x) − αεGε[ρ1−α(y)f(y)R(y)](x)

+α

2 Gε

[
ρ1−α(y)f(y)∇|M̃ |�(y − x)

|M̃ |

]
(x)

+1
2Gε

[
ρ1−α(y)f(y)(y − x)�A1(y − x)

]
(x) + (2πε)d/2

|M̃ |1/2
O(ε2). (C.21)

Applying Lemma C.2 we compute the four operators Gε in the last equation:

Gε[ρ1−αf ] = (2πε)d/2

|M̃ |1/2

[
ρ1−αf [1 − εω2(x)]

+ε

{
−∇(fρ1−α)�ω1 + 1

2 tr(M∇∇
[
ρ1−αf

]
)
}

+ O(ε2)
]

; (C.22)

αεGε[ρ1−αfR] = (2πε)d/2

|M̃ |1/2

[
αερ1−αfR + O(ε2)

]
; (C.23)

Gε

[
ρ1−α(y)f(y)∇|M̃ |�(y − x)

|M̃ |

]
(x) = (2πε)d/2

|M̃ |1/2

{
−ε

ρ1−αf∇|M̃ |�ω1

|M̃ |

+ ε

2 tr
(

M∇y∇y

[
ρ1−α(y)f(y)∇|M̃ |�(y − x)

|M̃ |

]
y=x

+ O(ε2)
)}

. (C.24)

Let us calculate the Hessian matrix in (C.24):

∇y∇y

[
ρ1−α(y)f(y)∇|M̃ |�(y − x)

|M̃ |

]
y=x

= ∇y

[
∇y

[
ρ1−α(y)f(y)

] ∇|M̃ |�(y − x)
|M̃ |

+ ρ1−α(y)f(y)∇y
∇|M̃ |�(y − x)

|M̃ |

]
y=x

= 2∇
[
ρ1−αf

] ∇|M̃ |�
|M̃ |

. (C.25)

Finally, we compute the operator Gε in (C.21):

Gε

[
ρ1−α(y)f(y)(y − x)�A1(y − x)

]
(x) = (2πε)d/2

|M̃ |1/2

[ ε

2ρ1−αftr(MA1) + O(ε2)
]

. (C.26)

Putting together (C.20)–(C.26) we obtain:
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Kε,αf(x) =
[

|M̃(x)|
(2πε)d

]α−1
2 [

ρ1−αf [1 + εh(x)]

+ε

{
−∇(fρ1−α)�ω1 + 1

2 tr(M∇∇
[
ρ1−αf

]
) + α

2 tr
(

M∇
[
ρ1−αf

] ∇|M̃ |�
|M̃ |

)}

+ O(ε2)
]

, (C.27)

where

h(x) = −ω2(x) − αR(x) − α

2
∇|M̃ |�ω1

|M̃ |
+ 1

4 tr(MA1).

To facilitate the calculation, we denote the expression in the curly brackets in (C.27) divided by q1−α by

B(ρ, f) :=

⎡
⎣−∇(fρ1−α)�ω1 + 1

2 tr(M∇∇
[
ρ1−αf

]
) + α

2 tr
(

M∇
[
ρ1−αf

] ∇|M̃ |�

|M̃ |

)
ρ1−α

⎤
⎦ .

Then Kε,αf(x) can be written as:

Kε,αf(x) =
[

|M̃(x)|
(2πε)d

]α−1
2

ρ1−α
[
f [1 + εh(x)] + εB(ρ, f) + O(ε2)

]
. (C.28)

Observing that ρε,α(x) = Kε,α1, i.e., we need to use f ≡ 1 to get ρε,α(x), we calculate the operator Pε,α:

Pε,αf(x) =
ˆ

M

kε,α(x, y)
ρε,α(x) f(y)ρ(y)dy

= f {1 + εh(x)} + εB(ρ, f) + O(ε2)
1 + εh(x) + εB(ρ, 1) + O(ε2) . (C.29)

Expanding Pε,αf(x) in powers of ε we obtain:

Pε,αf(x) =
[
f (1 + εh(x)) + εB(ρ, f) + O(ε2)

] [
1 − εh(x) − εB(ρ, 1) + O(ε2)

]
= f + ε [B(ρ, f) − fB(ρ, 1)]

= f + ε
−∇(fρ1−α)�ω1 + 1

2 tr(M̃−1∇∇
[
ρ1−αf

]
) + α

2 tr
(

M̃−1∇
[
ρ1−αf

] ∇|M̃ |�

|M̃ |

)
ρ1−α

− εf
−∇(ρ1−α)�ω1 + 1

2 tr(M̃−1∇∇
[
ρ1−α

]
) + α

2 tr
(

M̃−1∇
[
ρ1−α

] ∇|M̃ |�

|M̃ |

)
ρ1−α

(C.30)

Finally, we compute the operator Lε,α, take the limit ε → 0, and obtain the desired result:

lim
ε→0

Pε,αf(x) − f(x)
ε

= 1
2

(
tr
(
M
[
∇∇
[
ρ1−αf

]
− f∇∇ρ1−α

])
ρ1−α

)

+ α

2

⎛
⎝ tr
(

M
[
∇
[
ρ1−αf

]
− f∇

[
ρ1−α

]] ∇|M̃ |�

|M̃ |

)
ρ1−α

⎞
⎠

−
(

[∇(fρ1−α) − f∇(ρ1−α)]�ω1]
1−α

)
. � (C.31)
ρ
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Appendix D. Proof of Corollary 3.1

Proof. Term 1 in (C.31). First we compute

1
2

(
tr(M∇∇

[
ρ1/2f

]
)

ρ1/2 − f
tr(M∇∇

[
ρ1/2])

ρ1/2

)
. (D.1)

Since ρ is the Gibbs density, we have:

ρ = Z−1e−βF . Hence ρ1/2 = Z−1/2e− β
2 F , ∇ρ1/2 = −

[
β

2 ∇F

]
ρ1/2.

We will use the fact that

∇∇[ρ1/2f ] = f∇∇ρ1/2 + [∇ρ1/2(∇f)� + ∇f(∇ρ1/2)�] + ρ1/2∇∇f.

Applying the property tr(AB) = tr(BA) and recalling that M is symmetric, we obtain:

tr[M [∇ρ1/2(∇f)� + ∇f(∇ρ1/2)�]] =tr[M∇ρ1/2∇f�] + tr[M�∇f∇ρ1/2]

=tr[M∇ρ1/2∇f�] + tr[∇f(∇ρ1/2)�M�]

=tr[M∇ρ1/2∇f�] + tr[∇f(M∇ρ1/2)�]

=tr[M∇ρ1/2∇f�] + tr[(M∇ρ1/2)∇f�]

=2tr[M∇ρ1/2∇f�]

=2(M∇ρ1/2)�∇f.

This yields:

1
2

(
tr(M∇∇

[
ρ1/2f

]
)

ρ1/2 − f
tr(M∇∇

[
ρ1/2])

ρ1/2

)
= 1

2
(
tr[M∇∇f ] − β(M∇F )�∇f

)
.

Note that this is β/2 times the generator (45) for the case where the diffusion matrix M is constant.
Term 2 in (C.31). Utilizing the fact that

[∇(fρ1/2) − f∇(ρ1/2)]
ρ1/2 = ∇f,

we simplify the second term in (C.31):

α

2

⎛
⎝ tr
(

M
[
∇
[
ρ1−αf

]
− f∇

[
ρ1−α

]] ∇|M̃ |�

|M̃ |

)
ρ1−α

⎞
⎠ = α

2

(
tr [M∇f ] ∇|M̃ |�

|M̃ |

)
.

Let us introduce the notation

Rk := M̃−1/2 ∂M̃

∂xk
M̃−1/2 (D.2)

It follows from Jacobi’s formula for the derivative of the determinant that
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1
|M̃ |

∂|M̃ |
∂xk

= tr
(

M̃−1 ∂M̃

∂xk

)
≡ tr

(
M̃−1/2 ∂M̃

∂xk
M̃−1/2

)
≡ trRk. (D.3)

Hence, we obtain:

1
4 tr (M∇f [trR1, . . . , trRd]) = 1

4

d∑
k=1

d∑
i=1

Mki
∂f

∂xi
trRk. (D.4)

Term 3 in (C.31). Finally, we compute

[∇(fρ1/2) − f∇(ρ1/2)]�ω1

ρ1/2 = ∇f�ω1, where (D.5)

(2πε)d/2

|M̃ |1/2
ω1,i(x) = 1

4ε2

ˆ

B0,
√

ε

e− z�M̃z
2ε zi

[
z�[∇M̃(x)z]z

]
dz, 1 ≤ i ≤ d. (D.6)

To compute the integral in (D.6), we do the variable change t := ε−1/2M̃1/2z. Then

zi := ε1/2e�
i M̃−1/2t, where ei is the standard unit vector.

The polynomial in the integrand in (D.6) resulting from this change is:

zi

[
z�[∇M̃(x)z]z

]
= ziz

�

[
d∑

k=1

∂M̃

∂xk
zk

]
z =

d∑
k=1

ziz
� ∂M̃

∂xk
zzk

= ε2
d∑

k=1

e�
i M̃−1/2tt�M̃−1/2 ∂M̃

∂xk
M̃−1/2tt�M̃−1/2ek. (D.7)

Using the notation Rk introduced in (D.2) we get:

ω1,i(x) = 1
4(2π)d/2

d∑
k=1

e�
i M̃−1/2

⎡
⎣ ˆ

Rd

e− t2
2 tt�Rktt�dt

⎤
⎦ M̃−1/2ek. (D.8)

First we compute the integral in the square brackets in (D.8). This integral is a d × d matrix, and its entries 
are:

(tt�Rktt�)ij =
d∑

l=1

d∑
m=1

titl[Rk]lmtmtj .

Case i = j: Taking into account that in order to produce a nonzero integral, we must have l = m in this 
case. Hence

ˆ

Rd

e− t2
2 (tt�Rktt�)iidt =

ˆ

Rd

e− t2
2

d∑
l=1

[Rk]llt2
l t2

i dt

= (2π)d/2

⎛
⎝3[Rk]ii +

∑
l 
=i

Rll

⎞
⎠ = (2π)d/2 (2[Rk]ii + trRk) . (D.9)
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Case i 	= j: In this case, to produce a nonzero integral, we must have l = i and m = j or the other way 
around. Hence

ˆ

Rd

e− t2
2 (tt�Rktt�)iidt =

ˆ

Rd

e− t2
2 [[Rk]ij + [Rk]ji] t2

i t2
jdt

= (2π)d/2 ([Rk]ij + [Rk]ji) = (2π)d/22[Rk]ij (D.10)

as Rk is symmetric.
Therefore, the integral in the square brackets in (D.8) is

(2π)d/2 (2Rk + ItrRk) . (D.11)

Plugging this result into (D.8) and recalling (D.2) we obtain:

ω1,i(x) = 1
4

d∑
k=1

e�
i M̃−1/2 [2Rk + ItrRk] M̃−1/2ek

= 1
2

d∑
k=1

e�
i M̃−1 ∂M̃

∂xk
M̃−1ek + 1

4

d∑
k=1

e�
i M̃−1trRek. (D.12)

Now we recall that

∂M̃−1

∂xk
= −M̃−1 ∂M̃

∂xk
M̃−1.

Using this formula, we get:

ω1,i(x) = −1
2

d∑
k=1

∂Mik

∂xk
+ 1

4

d∑
k=1

MiktrRk. (D.13)

Therefore,

∇f�ω1 = −1
2

d∑
i=1

d∑
k=1

∂Mik

∂xk

∂f

∂xi
+ 1

4

d∑
i=1

d∑
k=1

MiktrRk
∂f

∂xi
. (D.14)

Getting the final result. Finally, we plug the calculated terms in (C.31). We also use the fact that M is 
symmetric, i.e. Mik = Mki for 1 ≤ i, k ≤ d. We get:

lim
ε→0

Lε,α = 1
2
(
tr[M∇∇f ] − β(M∇F )�∇f

)

+ 1
4

d∑
k=1

d∑
i=1

Mki
∂f

∂xi
trRk

+ 1
2

d∑
i=1

d∑
k=1

∂Mik

∂xk

∂f

∂xi
− 1

4

d∑
i=1

d∑
k=1

MiktrRk
∂f

∂xi

= 1
2
(
tr[M∇∇f ] − β(M∇F )�∇f

)
+ 1

2 (∇ · M)� ∇f. (D.15)

The last expression is the generator L for the dynamics in collective variables (45) multiplied by β/2 as 
desired. �
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Appendix E. Obtaining the reactive current and the reaction rate from the committor computed by mmap

We have computed the reactive current based on the Gamma operator defined for an Ito diffusion with 
generator L as

Γ(f, g)(x) = 1
2
(
L(fg)(x) − fLg(x) − gLf(x)). (E.1)

This operator is sometimes referred to as the carré du champ operator [34,62]. We apply it to the discrete 
generator matrix L from mmap.

Applying the Gamma operator to the generator L of (4) gives

L(fg) = fLg + gLf + 2β−1∇f�M∇g, (E.2)

and hence Γ(f, g) simplifies to

Γ(f, g)(x) = β−1∇f�M∇g(x). (E.3)

Choosing f(x) to be the committor q(x) and g(x) to be χν : Rd → R, mapping x to its νth component, we 
obtain the νth component of the reactive current by:

ρ(x)Γ(q, χν)(x) = β−1ρ(x)[M∇q(x)]ν . (E.4)

Therefore, in order to obtain the reactive current discretized to a dataset, we need to construct a discrete 
counterpart of the Gamma operator and obtain an estimate for the density ρ.

We recall that the discrete generator L approximates β
2 L pointwise on a dataset {xi}n

i=1. Let f and g
be arbitrary smooth functions and [f ], [g] ∈ Rn be their discretization to the dataset, i.e., [f ]i = f(xi) and 
[g]i = g(xi). Since L approximates β

2 L pointwise on the dataset, we have:

∑
j

Lij([f ]j [g]j) − [f ]iLij [g]j − [g]iLij [f ]j ≈ βΓ(f, g)(xi) = ∇f�M∇g(xi). (E.5)

Since the row sums of the matrix L are zeros, the left-hand side of (E.5) can be written as
∑

j

Lij([f ]j [g]j) − [f ]iLij [g]j − [g]iLij [f ]j =
∑

j

Lij([f ]i − [f ]j)([g]i − [g]j). (E.6)

This allows us to define the discrete analogue of the Gamma operator by:

[Γ̂(f, g)]i := β−1
n∑

j=1
Lij([f ]i − [f ]j)([g]i − [g]j). (E.7)

Now, it remains to obtain an estimate for the density ρ. We proceed as follows. First we construct an 
isotropic Gaussian kernel [k̃ε̃]ij = exp[−||xi − xj ||2/(2ε̃)]. Setting M(x) ≡ I and f(x) ≡ 1 in the kernel 
expansion (C.4), we observe that

lim
n→∞

1
n(2πε̃)d/2

n∑
j=1

[k̃ε̃]ij = ρ(x) + O(ε̃). (E.8)

So, we define a kernel density estimate with the vector [p] ∈ Rn defined by



L. Evans et al. / Appl. Comput. Harmon. Anal. 64 (2023) 62–101 99
[p]i = 1
n(2πε̃)d/2

n∑
j=1

[k̃ε̃]ij i = 1, . . . , n. (E.9)

Alternatively, we can use the Mahalanobis kernel from mmap with entries [kε]ij and utilize (C.4) to define 
[p]i := (n(2πε)d/2|M(xi)|1/2)−1∑

j [kε]ij for i = 1, . . . , n.
Let [q] ∈ Rn be the discrete committor obtained by mmap. Using the constructed discrete density [p], we 

estimate the reactive current using the formula

[Ĵ ]νi :=
[
pΓ̂
(
[q], xν

)]
i

= β−1[p]i
n∑

j=1
Lij([q]i − [q]j)(xν

i − xν
j ) (E.10)

where 1 ≤ ν ≤ d, 1 ≤ i ≤ n, and xν
i , xν

j denote the ν-th coordinate for data points i and j respectively.
The reaction rate νAB is given by (9) and can be rewritten as [3]

νAB = β−1
ˆ

M\(A∪B)

∇q(x)�M(x)∇q(x)ρ(x)dx. (E.11)

Observing that β−1∇q(x)�M(x)∇q(x) ≡ Γ(q, q), we get:

νAB =
ˆ

M\(A∪B)

Γ(q, q)(x)ρ(x)dx. (E.12)

Hence, we compute an estimate ν̂AB as the Monte Carlo integral

ν̂AB = 1
|IAB |

∑
i∈IAB

[
Γ̂
(
[q], [q]

)]
i

= 1
|IAB |

∑
i∈IAB

n∑
j=1

Lij([q]i − [q]j)2, (E.13)

where IAB = {i : xi ∈ M\(A ∪ B)}.
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