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Abstract

We extend a technique, originally due to the first author and Poonen, for proving cases
of the Strong Uniform Boundedness Principle (SUBP) in algebraic dynamics over
function fields of positive characteristic. The original method applied to unicritical
polynomials for which the characteristic does not divide the degree. We show that
many new 1-parameter families of polynomials satisfy the SUBP, including the family
of all quadratic polynomials in even characteristic. We also give a new family of
non-polynomial, non-Lattes rational functions that satisfies the SUBP.

1 Introduction

Our goal is to extend a technique of the first author and Poonen for proving cases of
the Strong Uniform Boundedness Conjecture in arithmetic dynamics over function
fields. For notation, let K be a field and f € K(z) a nonconstant rational function.
Define the set of K -rational preperiodic points of f to be

PrePer(f, K) := {x € P!(K) : x has finite forward orbit under f}.

Uniform Boundedness Principles. Let K be any field with algebraic closure K. Let
d > 1,and let F C K (z) be a set of rational functions of degree d.

e We say that F satisfies the Uniform Boundedness Principle (UBP) over K if
there isabound A = A(F, K) such that #PrePer(f, K) < A foreach f € F(K).
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e We say that F satisfies the Strong Uniform Boundedness Principle (SUBP) over
K if forevery D > 1 thereisabound B = B(F, D) such that #PrePer(f, L) < B
for every extension L/K of degree D and every f € F(L).

In order for either of these Uniform Boundedness Principles to hold over a field K,
the number of K -rational preperiodic points for maps in the family F must be finite.
Thus, for example, (S)UBP will not be satisfied over an algebraically closed field. On
the other hand, when K is a number field, Northcott showed that any rational function
of degree at least 2 has only finitely many K -rational preperiodic points [24]. In this
setting, Morton and Silverman have conjectured that the set F = Raty(Q) of degree-
d rational functions with algebraic number coefficients satisfies the Strong Uniform
Boundedness Principle over Q [21, p. 100]. We give a summary of the current state of
knowledge in the next section.

Let k be afield. Throughout this article, a function field over « is any finite extension
of the rational function field k(7T"). Equivalently, a function field over k is the field of
rational functions of some integral k-curve. We refer to k as the constant subfield of
the function field.

The primary test case for many ideas in dynamics on the projective line is the
family of quadratic polynomials f,(z) = z? + c. The first author and Poonen proved
the Strong Uniform Boundedness Principle for this family over a function field' in
characteristic different from 2 [9]. Though global in spirit, the argument for the positive
characteristic case in [9] leaned heavily on an analysis of the dynamics of the map
f(z) = 7>+t on the Julia set over the Laurent series field F,((1/t)). By generalizing
this dynamical setup, we can extend this argument to other 1-parameter families.

More precisely, take f; € F,(t)(z) with d := deg,(f;) > 1. We can associate to
f1 a countable collection of smooth algebraic IF;-curves, known as dynatomic curves,
whose L-rational points (for an extension L /F,) parameterize maps f; with s € L
together with a marked L-rational preperiodic point of f;. Each dynatomic curve Z is
equipped with a canonical morphism ¢z : Z — P!, projecting onto the 7-coordinate
and forgetting the marked preperiodic point. See Sect. 3.2 for more details. For con-
venience, we will say that a property of dynatomic curves holds “as Z — 00’ if that
property holds as i — oo for any ordering Z1, Z;, Z3, ... of the set of dynatomic
curves. Consider the following statements:

(1) The degree of definition and the ramification index of the geometric points in the
fiber (pgl (00) remain uniformly bounded as Z — oc.

(2) The degree of ¢z : Z — P! tends to infinity as Z — oo.

(3) Thereisr > 1 such that #Z(IF,r) — oo as Z — oo.

(4) The gonality? of Z tends to infinity as Z — oo.

(5) For any extension k/IF,, and for any function field K over k, the Strong Uniform
Boundedness Principle over K holds for the set

F={fs; : s € K and f; is not K-conjugate to an element of k(z)}.

1 For the SUBP to hold in this setting, one must generally exclude those parameters ¢ lying in the constant
subfield.

2 The gonality of an irreducible k-curve C is the minimum degree of a nonconstant k-morphism C — Pl
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For brevity, we will say “the Strong Uniform Boundedness Principle over K holds
for the family f;” if (5) is true. The arguments in [9] give the chain of implications

MH+Q2) = B) = @ = 5.

We provide sufficient conditions for (1) and (2) to hold in Sect. 4. Applying them
to some special cases, we are able to execute the above plan for new families of
polynomials, including the first case where the characteristic of the ground field divides
the degree.

Theorem 1.1 Let Iy be a finite field, letd > 1, and let ay, . .., aq € F4[t] be distinct
polynomials. Set

i@ =@ —a)--(z2—ag).

Assume that for each i # j, the following inequality is true:

deg(o; — aj) + Zdeg(oag —oj) > m?x deg(ay).
23

Then, for any extension k/F, and any function field K over k, the Strong Uniform
Boundedness Principle over K holds for the family f;.

For example, we could enumerate the elements of Fy as ey, ..., g; and seto; = &;t.
The hypothesis of the theorem is satisfied, and we have f;(z) = z7 — 17~ !z. Cases
where the characteristic of the ground field divides the degree of the family have been
a sticking point in much previous work.

The first author and Poonen proved that the Strong Uniform Boundedness Principle
holds for the set of all quadratic polynomials over a function field of characteristic
p # 2[9]. That approach focused on the family z>4-c, which does not capture a general
quadratic in even characteristic. We now prove the Strong Uniform Boundedness
Principle for this family in all positive characteristics by studying a family of quadratic
polynomials which is more appropriate in characteristic 2.

Corollary 1.2 Let k be any field, and let K be a function field over k. For each D > 1,
there exists a bound B = B (D) such that #PrePer(f, L) < B for any finite extension
L/K of degree at most D and any quadratic polynomial f with coefficients in L that
is not conjugate to a polynomial with coefficients in k.

Proof We may assume that the characteristic of k is positive, as the characteristic-zero
case was handled in [9].

By Theorem 1.1, the Strong Uniform Boundedness Principle holds for the family
f:(z) = z(z +1).Fix D > 1,and set D’ = 2D. Then there exists abound B = B(D’)
such that for any function field L’/K with [L': K] < D’ and any s € L'~k, we have

#PrePer(f;, L') < B.

We claim that B is the bound we seek.
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Let L/K be an extension of degree D, and let g(z) = az” + bz + ¢ be a quadratic
polynomial over L. Replacing g(z) with ag(z/a) allows us to assume @ = 1 without
affecting the number of L-rational preperiodic points. Set L' = L(u), where u is a
solution to the equation 22+ (b — 1)z 4 ¢ = 0, and define

h(z) =gz +u) —u=z2(z+2u+Db).

Since [L': K] <2[L: K] < D’, and since h is a member of the quadratic family f;,
we find that

#PrePer(g, L) < #PrePer(h, L") < B.

O

A rational function is of polynomial type if it has a totally ramified fixed point. Aside
from trivial examples like finite sets, we are aware of three sets of non-polynomial
type rational functions for which the Strong Uniform Boundedness Principle has been
shown to hold over number fields or function fields: Lattes maps, functions with
a bounded amount of bad reduction, and twists of a single rational function with
nontrivial automorphism group. We give further details and provide references on
these examples in Sect. 2. We close this introduction with an example of an algebraic
family of non-polynomial type rational functions that avoids all of these special cases.

Theorem 1.3 Let k be a field of characteristic p > 0, and let K be a function field
over k. Let d > 2 and e < d — 2 be nonnegative integers such that p does not
divide d. Define

24—t

fi(@) = .

ZE

Then the Strong Uniform Boundedness Principle over K holds for f;.

Remark 1.4 By taking ¢ = 0 and replacing ¢ with —¢, Theorem 1.3 applies to the
family z¢ + ¢ with p 1 d, thus allowing us to recover the main results of [9] in positive
characteristic.

2 The dynamical uniform boundedness conjecture

Inspired by the strong uniform boundedness conjecture for torsion points on elliptic
curves (later proved by Merel [19]), Morton and Silverman posed the following con-
jecture, which we state in terms of the Strong Uniform Boundedness Principle. For a
field K, write Rat;(K) for the set of all degree-d rational functions defined over K.

Conjecture 2.1 (Dynamical Uniform Boundedness Conjecture; [21, p. 100]) For each
integer d > 2, the family Rat(Q) satisfies the Strong Uniform Boundedness Principle
over Q.
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Conjecture 2.1 is currently wide open. To illustrate the difficulty in proving this

conjecture, we note that just the d = 4 case of Conjecture 2.1 is sufficient to prove
Merel’s theorem, since a point P on an elliptic curve in Weierstrass form is a tor-
sion point if and only if its x-coordinate is preperiodic under the “duplication map”
x(P) — x(2P), which is a degree-4 rational function on P!.

There has been considerable progress, however, especially when restricting to poly-

nomial maps. We summarize the current state of affairs by describing subsets of
Raty(Q) for which the (S)UBP has been proven.

ey

(@)

3

“)

®)

Looper has shown that, assuming a strong version of the abc-conjecture for number
fields, the set Polyd(@) of degree-d polynomials satisfies the UBP over every
number field [16, 17].

A Lattes map is an endomorphism of P! of degree at least 2 that is covered by
an endomorphism of an elliptic curve [27, §6.4]. Using deep results of Mazur,
Kamienny, and Merel, one can show that the SUBP holds for the set of Lattes
maps over a number field [27, §6.7].

For a number field K and a rational function f € K(z), we say that f has good
reduction at the prime ideal p of the ring of integers O if the reduction® of f
modulo p has degree equal to the degree of f. Then for any integer s > 0, it is
known that

Raty ;@ = | {f € Raty(K) :

f has good reduction away }
K /Q finite

from a set of s primes of Og

satisfies the SUBP over Q. There is a substantial literature on this topic; we men-
tion the articles [2, 5, 21, 22], but we recommend [27, Remark 3.16] for a more
comprehensive list.
It was conjectured in [11] that a quadratic polynomial in Q[z] cannot have rational
periodic points of period larger than 3, and there is a significant amount of evidence
to support this; see [11, 12, 20, 28]. Poonen proved that the set
) . deg(f) =2 and f has no rational
Fi= {f € Qlzl point of period greater than 3 }

satisfies the UBP over Q [25]. In fact, the explicit bound #PrePer(f, Q) < 9 is
given for f € F.

Recall that the automorphism group of arational function f € K (z) is the subgroup
of elements g € PGL,(K) such that g~! o f o g = f. Manes has proved that the
set

Fo {fEQ(z) _ deg(f) =2, Aut(f) # l,andfhasno}

rational point of period greater than 4

satisfies the UBP over Q [18]. Moreover, Manes showed that the bound
#PrePer(f, Q) < 12 holds for all f € F.

3 To define the reduction modulo p, one should normalize f so that the minimum p-adic valuation of the
coefficients is 0.

@ Springer



J.R. Doyle, X. Faber

(6) For a fixed number field K and rational function f* € K (z) of degree at least 2, let
[ f] denote the set of all rational functions in K (z) that are PGL, (K )-conjugate
to f. Levy, Manes, and Thompson have shown that [ f] satisfies the UBP over K
[15].4

We also recommend [6-8, 13] for additional results toward uniform boundedness
over number fields.

A version of Conjecture 2.1 for function fields is also believed to be true, once
one removes certain obvious sources of counterexamples. Recall that elements of the
group PGL; act on rational functions by conjugation.

Conjecture 2.2 (Dynamical Uniform Boundedness Conjecture for function fields) Let
k be a field, and let K be the function field of an integral curve over k. For each integer
d > 2, the family

Rat, (K )~PGL1(K).Raty (k)

satisfies the Strong Uniform Boundedness Principle over K.

We must remove the rational functions that are conjugate to an element of k(z)—
the so-called isotrivial functions—because they can have infinitely many preperiodic
points if the field k is infinite.

Let k be a field, and let K be a function field over k.

(1) Looper showed that if k£ has characteristic zero and a strong version of the abc-
conjecture holds for K, then the family

Poly,, (K)~Aff,(K).Poly,, (k)

satisfies the UBP over K [16, 17]. Here Aff,(K) is the subgroup of PGL,(K) that
preserves the point at infinity.

(2) The SUBP holds for the set of Lattés maps over K that do not arise from an elliptic
curve whose j-invariant is algebraic over k [23, 26].

(3) Benedetto showed that the space Poly, (K) of degree-d polynomials with good
reduction away from a set of s places satisfies the SUBP over K [1]. Assuming k
has characteristic zero, Canci has shown that Ratg ¢ (k(T)) satisfies the UBP over
k(T) [4].

(4) The first author and Poonen showed that if the characteristic of k does not divide
d, then the family

Fd):={'+c:ceK~k}

satisfies the SUBP over K [9]. (Compare Remark 1.4.)

4 The content of this statement comes from the fact that a rational function f may admit infinitely many
nontrivial twists: rational functions conjugate to f over K, but not over K.
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3 Sufficient local conditions for the SUBP

We begin with a technical lemma that is restrictive in its hypotheses, but still general
enough to aid with all of our examples. Then we use local considerations to derive
consequences for the dynatomic curves associated to a one-parameter family.

3.1 Nonarchimedean preliminaries

Lemma 3.1 Letk be anonarchimedean field with nontrivial absolute value |-|. Suppose
that D C k is an open disk and f: D — D is an analytic map such that f(D) C D,
and such that D contains a fixed point of f. Then f has finitely many preperiodic
points, and each preperiodic point eventually maps to the fixed point.

Proof Without loss of generality, we may assume that k is algebraically closed. After
a possible change of coordinate, we may assume that D = D(0, 1)~ is the open unit
disk and f(0) = 0. Write f(z) = ) _,-; anz" witha, € k. Since f(D) C D, there is
r < 1 such that |a,| < r forall n > 0. For x € D, we have

[f@)] = Ix|-| D anx" | < fxfmax fapx" ] < rlal.
n=

n>1

By induction, we find | f/(x)| < r/|x| for all j > 1, and hence, every point in D
converges to 0 under iteration. In particular, every preperiodic point must eventually
map to 0.

By Weierstrass Preparation, an analytic function on an affinoid domain has only
finitely many zeros. Thus, there is ¢ > 0 such that the only solution to f(z) = 0
in the disk D(0, &)~ is the origin. Fix a positive integer j such that r/ < ¢. Then
|f7(x)] <r/|x| < e. So if x is preperiodic for f, then we must have f/(x) = 0.
Since j depends only on f, we conclude there are finitely many preperiodic points for
f, and they all eventually map to the fixed point in D. O

Lemma 3.2 Let k be a complete nonarchimedean field with nontrivial absolute value
|- |. Let f € k(z) be a separable rational function of degree d > 1 with an attracting
fixed point at 0co. Write D, for the maximal open disk in the immediate basin of oo,
and write Y for the complement of Doo. Assume that f~'(Y) is a disjoint union of d
closed disks. Then the following conclusions hold:

e Every preperiodic point either eventually maps to oo or else lies in the Julia set
for f.

o There exists a finite extension k' /k such that every preperiodic point for f lies in
P! (k).

e All of the finite preperiodic points for f lie inside a disk about the origin.

Proof First, we argue that D, is well defined. Take Do, to be the union of all open
disks D about oo such that f" (D) converges to co as n grows. There exists at least
one such disk since oo is an attracting fixed point, so D, is nonempty. Since f has
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d + 1 > 1 fixed points counted with multiplicity, and since an attracting fixed point
must have multiplicity 1, there is some fixed point of f not in Dy,. It follows that
Do # P}, and hence Do is an open disk.

Now we show that (D) C Dxo. Since there is a fixed point of f that does not
lie in Do, we see that f (Do) # IP’,&. Thus f(Dy) is an open disk that contains co,
and that is contained in the basin of co. By maximality, it follows that f (D) C Do.

SetY = IP}(\DOO. Then Y is a closed disk. Write f~'(Y) = X, U---U X4, where
each X; is a closed disk. We claim that each X; is properly contained in Y. Take
x € UX;. If x ¢ Y, then x € Do By the preceding paragraph, f (Do) C Doo, SO
we find that f(x) ¢ Y, a contradiction. So each X; C Y. If X; = Y for some i, then
X; C X, for j # i, which contradicts the hypothesis that the X ; are pairwise disjoint.
Thus, X; C Y.

Next we argue that f(Ds) # Doo. Since the X; are disjoint, we may enlarge each
disk slightly to obtain disks X; C ¥ that are pairwise disjoint and contain no pole of f,
andsuchthatY C f(X l/ ).Choose any x € D« thatlies in the intersection of the f (X l’ ).
Then f ~1(x) consists of d distinct points inside Y. In particular, x € Doo\ f (Do)

Write Y = D(b, r), the disk of radius r about some b € k. We now argue that
re |§x |. Let us change coordinates in order to move Dy, to Do := D(0, 1/r)~. More
precisely, set

1

$@= o1 b
Then the previous paragraph shows g maps Dy strictly into itself. Now g is given by
a series Y _ g,z" on Dy. If the radius of convergence of this series were larger than
1/r, then by continuity, there would be a slightly larger disk D D Dg such that
g(Dgy) C Dy. This would violate maximality of Dso. Thus, the radius of convergence
of the series is 1/r. But g is a rational function, so the obstruction to extending the
domain of convergence of the series is a pole of g. As every pole lies in K, we see
thatr € |%X|, as desired.

We may now define the extension k'/k. Take Y = D(b,r) as before. Let
ai, ...,aq € k be the distinct solutions to f(z) = b. Then X; = D(a;, r;). Choose
¢; € k such that |c;| = r;; this is possible since the radius of Y lies in |§X |. Define

P = {x € Pl(k)~{oo}: f(x) € Dy and x is preperiodic for f}.

Since f(Ds) & Doo, Lemma 3.1 shows that the set P is finite. (This proves the
final conclusion of the lemma.) Define k' to be the extension of k given by adjoining
PUlai,...,aq,c1,...,cq}.

In general, if g: D — D’ is a separable injective k’-analytic map from a disk D
onto a disk D’, then the inverse of g exists as an analytic function and is defined
over k’. Applying this observation to each of the inverses h;: Y — D(a;, r;), we see
that the solutions to f"(z) = oo are k’-rational for every n > 0. Additionally, this
setup allows us to use the argument in the proof of Proposition 4.1 of [14] to conclude
that the Julia set of f is contained inside PL(k’), and that the Fatou set of f is the
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immediate basin of attraction of co. In particular, every preperiodic point for f either
lies in the Julia set or else eventually maps to oo, and all such preperiodic points lie
in P (k). o

Remark 3.3 The strategy of Proposition 4.1 in [14] shows that the dynamics of f on
the Julia set J(f) is conjugate to the left-shift map on the space of sequences of d
symbols. The map is given by sending x € J(f) to its itinerary (io, i1, i2, . ..), Where
f7(x) € X;; foreach j > 0.

Remark 3.4 We can rephrase the hypothesis of the lemma in terms of ramification of
the morphism of associated analytic spaces. If k is a complete nonarchimedean field,
we write P}( for the associated analytic space in the sense of Berkovich. For a rational
function f € k(z), we write Ry for the ramification locus of f inside P,l. If fis
separable, then Ry # P,l and f is locally injective on P,l\Rf. By [3, Thm. 6.3.2],
f~1(Y) is a disjoint union of d disks if and only if f(Ry) C Doo. Here Do is the
closure of Dy inside P,i. See [10] for additional mapping properties related to the
ramification locus.

3.2 Dynatomic curves

Let k be any field. Given a family of rational functions f;(z) € k(t)(z) withdeg,(f;) =
d > 2, one can define a dynamical analogue of the classical modular curves, typically
referred to as dynatomic curves. First, write f;(z) = a(z)/b(z) with a, b € k[t][z].
Without loss of generality, we may assume that gcd, (a, b) = 1 and that the coefficients
of a and b have no common factor in k[#] of positive degree. This determines a, b up
to a common scalar in k. Set A(X,Y) = Y%a(X/Y) and B(X,Y) = Y?b(X/Y),
and let F = (A, B) be the induced family of morphisms on IP’,i. Inductively define
polynomials A,, and B, by

A0:X7 By =Y, Am:Am—l(AaB)9 Bm:Bm—l(A7B)~

We set F'" = (A, By); this corresponds to the m-th iterate of the morphism F'. Let
H be an irreducible factor of

Am+an - AmBm—i-n € k[t][X, Y]

for some m > 0 and n > 1. Then H is a polynomial in X, Y, t, homogeneous in
X and Y, and so its vanishing defines an algebraic curve inside P}( X A}(. In this
paper, a dynatomic curve Z is the normalization of the projective closure of the
curve {H = 0}. Two dynatomic curves are considered distinct if they have different
associated polynomials. The rational function 7 gives a morphism ¢z: Z — P!; by
the degree of Z we will mean the degree of the morphism ¢z. For a field extension
K /k and s € P'(K), elements of the fiber (pgl(s) correspond to points x € P! (K)
which satisfy f;(x)"*" = f(x). (They may also satisfy this equation for smaller
values of m and n.)
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For each place v of k(¢), we can form the associated completion k(¢), with respect
to v. These are fields of formal Laurent series. For example, if v = ords, then
k(t)y = k((1/t)), while if v = ord, for some a € k, then k(¢), = k((t — a)). Given
a family f; € k(¢)(z) of rational functions parameterized by ¢, we abuse notation and
write f = f; for the associated rational function defined over the function field k(¢)
or any of its completions k(z),.

Proposition 3.5 Let f; € F,(t)(z) be a separable family of rational functions
satisfying d := deg,(f;) > 1. Suppose the following hypotheses hold:

e At the place v = ordy, the point at oo is an attracting fixed point for f, and the
pre-image of the complement of the maximal open disk in the immediate basin of
oo is a union of d disjoint closed disks.

o At each place v # ordw, the finite preperiodic points of f are integral.

Then oo is a superattracting fixed point for f, and the following also hold:

(1) There exist integers r, e > 1 such that for any dynatomic curve Z, the points of
the fiber of 7 : Z — P! over oo all lie in Z(Fyr) and have ramification index at
most e.

(2) The degrees of the dynatomic curves for f; tend to infinity as Z — oo.

(3) The gonalities of the dynatomic curves for f; tend to infinity as Z — o0.

(4) For each dynatomic curve Z, the irreducible components of the base extension
Zy,, are geometrically irreducible, where r is the integer in (1).

Remark 3.6 The integers r, e in the statement of the proposition are the residue degree
and ramification index of the extension k’/k from Lemma 3.2. The proof of the lemma
is constructive, so one can calculate r and e explicitly.

Proof of Proposition 3.5 We begin by arguing that oo is superattracting for f. Suppose
otherwise, and let A € F,(¢) be the multiplier at co. Since oo is an attracting fixed
point at the place ord,, we have ords, (1) > 0. By the product formula, there exists
a place v such that v(X) < 0; that is, oo is v-adically repelling. Repelling fixed points
belong to the Julia set 7, (f), and the backward orbit of any Julia point is dense in the
Julia set. It follows that there is some « € [F,; (¢) such that f" (o) = oo for somen > 0
and v(a) < 0. This contradicts our assumption that all preperiodic points except co
are v-adically integral.
Let Z be a dynatomic curve with associated polynomial

HX,Y)=H X'+ [iXx“ 'Y+ -+ H_ XY ' + H, Y',

where each H; € [F,[t]. The degree of the morphism ¢z: Z — Plis¢. If Hy = 0,
then H is divisible by Y. As H is irreducible, this means that, after possibly dividing
by an element of ]F;, we have H = Y. The first three conclusions of the proposition
are indifferent to the behavior of any one curve, and the final conclusion is clearly true
for {Y = 0}. In what remains, we may suppose that Hy # 0. Consider the univariate
polynomial

h(z) =z‘f+ﬂz“1 +"'+E2+ﬂ e Fy(0)lz]
' Hy Hy ~ Hy ! .
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The zeros of h are preperiodic points for the map f in A! (m).

Let v = orde, and view A as living in F, (#),[z]. By Lemma 3.2, the roots of &
are defined over some finite extension K /IF,(),. Let r and e be the degree of the
residue extension and ramification index of K /I, (), respectively. Observe that r, e
depend only on f and not on Z. The points of cpgl (00) are defined over Fr and have
ramification index at most e. This completes the proof of conclusion (1).

Now we claim that the degrees of the H; are uniformly bounded in terms of £ and
the family f;. As the H; are polynomials over a finite field, this means there are only
finitely many possibilities for the H;, and hence finitely many dynatomic curves of
degree ¢ over the ¢-line. The hypothesis that the finite preperiodic points of f are
integral at all v # ords, means Hy € IF,’; Without loss of generality, we may assume
Hy = 1. Now view #h as living in Fy (¢),[z] with v = ord. We may apply the final
conclusion of Lemma 3.2 to obtain a nonnegative integer N, depending only on f,
such that ord (x) > — N for all roots x of A. Since the coefficients H; are symmetric
polynomials in the roots of %, we find that

ordeo(H;) > —iN forall 1 <i < £.

But ordoc = — deg, so we learn that deg(H;) < iN < ¢N. That is, the degrees of the
coefficients H; are uniformly bounded. Conclusion (2) is now proved.

Let Z be a dynatomic curve and consider the morphism ¢z: Z — P!. We have
already shown that every point in the fiber over infinity is defined over [, and
has ramification index at most e. In particular, #Z(IF;r) > deg(pz)/e. If y is the
gonality of Z, then we also know that #Z(IF;r) < y(¢" + 1) since every point of
IE”I(Iqu) has at most y geometric points above it in Z. Combining these inequalities
shows that

deg(pz)
y =z 0.
e(g"+1)

Since the degree of ¢z tends to infinity as Z — oo, so does the gonality of Z, as
desired in conclusion (3).

Finally, let Z" = Zﬂ?q, , the base extension of Z to Fr. Let W be an irreducible
component of Z’. If W is not geometrically irreducible, then the base extension WE

has irreducible components V # V' that are Gal(qu/qu)—conjugate. Note that W
projects onto P! via the map ¢/. In particular, W has an IF,r-rational point since every
point in the fiber of Z’ over infinity is F,--rational. But then V N V’ contains each of
these rational points, all of which must be singular on W. This is impossible since Z’
is smooth. It follows that W is geometrically irreducible, and conclusion (4) holds. O

The connection between gonality and the Strong Uniform Boundedness Principle
is given by the following proposition. The proof is a straightforward generalization of
the argument for Theorem 1.7 in [9].

Proposition 3.7 Let f; € F,(t)(z) be a family of rational functions satisfying
deg,(f:) > 1, and let k be any field containing F,. If the gonalities of the dynatomic
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curves for f; tend to infinity in any ordering, then the family f; satisfies the Strong
Uniform Boundedness Principle over any function field over k.

Remark 3.8 The proof of Proposition 3.7 can be used to give an upper bound for the
constant B = B(F, D) in the statement of the SUBP, which depends on g and D
as well as the quantities r, e, and N appearing in the proof of Proposition 3.5. The
bound obtained in this way, which is larger than Dg P 4 s rather cumbersome and
unlikely to be anywhere near optimal.

4 New families

As promised in the introduction, we now give sufficient conditions to be able to utilize
Proposition 3.7.

Proposition 4.1 Let I be a finite field, and let f;(z) be a family of rational functions
of the form

_ @
fi@) = b@)’

where

(1) a and b are coprime monic polynomials with coefficients in F[t];
(2) deg(a) > deg(b) + 1, and
(3) ais separable.

For v = orde, let R be the maximum v-adic absolute value of the roots of a. Then we
further assume that

(4) R > 1;

(5) the roots of b all lie in the v-adic disk D(0, R);

(6) there exists a root of a(z) — zb(z) with v-adic absolute value R;

(7) for each root o of a, there is a disk D(«, ry) that maps onto D(0, R); and
(8) the disks D(a, ro) and D(B, rg) are disjoint if o, B are distinct roots of a.

Then for any field k containing ¥, and any function field K over k, the family f;
satisfies the Strong Uniform Boundedness Principle over K.

Proof By Proposition 3.7, it suffices to show that the gonalities of the dynatomic
curves for f; tend to infinity. We accomplish this by showing that the hypotheses of
Proposition 3.5 are satisfied.

Let v # ordy be a place of Fy(¢). Let x € m be an element with |x|, > 1.
Then x is larger than any root of a or b, as both polynomials are monic with v-adic
integral coefficients. Thus,

d —deg(b
|f )]y = |x[0B@79EB) S 12 iy,

It follows that x is not preperiodic. That is, all finite preperiodic points of f are
v-adically integral.
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Next, take v = ords,. Write A = deg(a) and B = deg(b). Since a, b are coprime
and A — B > 2, the point at infinity is a superattracting fixed point. Let R > 1 be the
maximum absolute value of aroot of @ in IF,; (¢). Set U = P!\.D(0, R). We claim that
U = Dso, the maximal open disk in the immediate basin of oco. If |x|, > R, then the
fact that all roots of @ and b lie in D(0, R) shows that

la()ly

A—B 2
bl X[y 7 = |xly > Rlx|o.
v

|f )] =

So U C D« . By hypothesis, the polynomial a(z) — zb(z) has a root with absolute
value R, which means f has a fixed point of absolute value R. That is, no disk larger
than U lies in D. Thus, U = D4, as desired.

Let Y = D(0, R). Hypotheses (3), (7), and (8) of the lemma say that f‘l(Y)
consists of deg(f) = deg(a) pairwise disjoint disks. This completes the proof. O

Remark 4.2 The applicability of Proposition 4.1 may depend on the choice of
coordinate. For example, the proposition does not apply to

fi@) = G-t —1>—1),

since condition (8) fails, though outside of characteristic 5 it does apply to the conjugate

8@ = fiz+1) -t = —tz7 1%

We now show that the families from the introduction satisfy the hypotheses of
Proposition 4.1. Let IF; be a fixed finite field throughout.

Example 4.3 Fix anintegerd > 1,andletay, ..., aq € IF,[¢] be distinct polynomials.
Set

i@ =GC—a) - (2—oa).

Assume that for each i # j, the following inequality is true:

deg(o; — ) + Zdeg(ag —oj) > m?x deg(op). (€))]
L#£j

We now prove Theorem 1.1 by verifying the conditions of Proposition 4.1. Set M =
max, deg(cy) for ease of notation.

(1-3,5) Clear, since f; is a polynomial in z of degree d > 1, and the ¢; are distinct.
(4) Let v = ordy. Note that M > 0, for otherwise every «; is constant and
equation (1) does not hold. Since f is in factored form, it is immediate that

the maximum absolute value of a root is R = |t|UM > 1.

(6) All roots of f(z) have nonpositive v-adic valuation. As f is monic and at
least one of the ¢; is nonconstant, each segment of the Newton polygon lies
below the x-axis. It follows that f(z) — z and f(z) have the same Newton
polygon. In particular, f(z) — z has a root with v-adic absolute value R.
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(7) Fix j and define

R

ri==.
J
l_[[;ﬁj |oce _Olj|v

Equation (1) is equivalent to the assertion that r; < |o; —a|, foralli # j.
Set x = oj + y, where |y|, < r;. Then

1F@)l = Iyl [ ] lej — e + vl
]

= Iyl [ ] lej = el

£

since |y|y < rj < |aj — aygly forall £ # j. That is,

[l

rj

R.

lf)]o =

As |y, varies from 0 to r;, we obtain elements f (c; +y) with absolute value
from O to R. It follows that f maps D(«;, r;) onto D(0, R), as desired.

(8) If i # j, then the disks D(«;, r;) and D(c;, r;) are disjoint. Indeed, by the
ultrametric inequality it suffices to check that |o; — o;| > max(r;, r;), and
this was already observed in our proof of condition (7).

Example 4.4 Fix integers d > 2 and e < d — 2 such that p = char(IF,;) does not
divide d. Define

Zd

fi(@) = Ze_ .
We once again verify the conditions of Proposition 4.1 are met, thus proving
Theorem 1.3.

(1-2) Clear.

(3) Since p does not divide d, the numerator z¢ — 7 is separable.

(4) Let v = ordeo. The roots of the numerator of f are of the form &¢!/¢ for some
d-th root of unity ¢. These all have v-adic absolute value R = |t|3,/ ..

(5) Clear.

(6) The Newton polygon of (z¢ +1) — z - z¢ has a single segment, so that all fixed
points of f have absolute value R = |t|11)/ d

(7) Let x = a + y for some root « of z¢ — ¢ and some y with |y|, < R**¢~4,
Then

d /d o
f(x) zxfez (l>adlyl
i=1
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Since p does not divide d, the i = 1 term in the sum strictly dominates the
others, so we find

e |y
|f @)y =Ryl = RT:_d R.

That is, as |y|, varies from 0 to R?t¢~“  we obtain elements f(x + y)
with absolute value from 0 to R. It follows that f maps D(a, R*+¢~¢) onto
D(0, R).

(8) The fact that p does not divide d implies that any pair of distinct roots of z¢ —¢
are at distance R from each other. Since R > 1 > R?t¢~4 e find that the
disks D(a, R*¢~%) are disjoint as o varies through the roots of z¢ — .
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