
SyReNN: A Tool for Analyzing Deep Neural
Networks

Matthew Sotoudeh © (»)*, Zhe Tao 9 (»)*, and Aditya V. Thakur 0 (»)

University of California, Davis CA 95616, USA
{masotoudeh,zhetao,avthakur}@ucdavis.edu

Abstract. Deep Neural Networks (DNNs) are rapidly gaining popular­
ity in a variety of important domains. Unfortunately, modern DNNs have
been shown to be vulnerable to a variety of attacks and buggy behavior.
This has motivated recent work in formally analyzing the properties of
such DNNs. This paper introduces SyReNN, a tool for understanding
and analyzing a DNN by computing its symbolic representation. The key
insight is to decompose the DNN into linear functions. Our tool is de­
signed for analyses using low-dimensional subsets of the input space, a
unique design point in the space of DNN analysis tools. We describe the
tool and the underlying theory, then evaluate its use and performance on
three case studies: computing Integrated Gradients, visualizing a DNN’s
decision boundaries, and repairing buggy DNNs.

Keywords: Deep Neural Networks • Symbolic representation • Inte­
grated Gradients • Repair

1 Introduction

Deep Neural Networks (DNNs) [20] have become the state-of-the-art in a variety
of applications including image recognition [58,37] and natural language pro­
cessing [11]. Moreover, they are increasingly used in safety- and security-critical
applications such as autonomous vehicles [35] and medical diagnosis [9,42,32,41].
These advances have been accelerated by improved hardware and algorithms.

DNNs (Section 2) are programs that compute a vector-valued function, i.e.,
from Rn to Rm. They are loop-free programs written as a concatenation of
alternating linear and non-linear layers. The coefficients of the linear layers are
learned from data via gradient descent during a training process. A number
of different non-linear layers (called activation functions) are commonly used,
including the rectified linear and maximum pooling functions.

Owing to the variety of application domains and deployment constraints,
DNNs come in many different sizes. For instance, large image-recognition and
natural-language processing models are trained and deployed using cloud re­
sources [37,11], medium-size models could be trained in the cloud but deployed
on hardware with limited resources [35], and finally small models could be trained

Equal contribution.

2 M. Sotoudeh, Z. Tao and A. Thakur

and deployed directly on edge devices [52,8,24,38,39], There has also been a re­
cent push to compress trained models to reduce their size [27], Such smaller
models play an especially important role in privacy-critical applications, such
as wake word detection for voice assistants, because they allow sensitive user
data to stay on the user’s own device instead of needing to be sent to a remote
computer for processing.

Although DNNs are very popular, they are not perfect. One particularly
concerning development is that modern DNNs have been shown to be extremely
vulnerable to adversarial examples, inputs that are intentionally manipulated to
appear unmodified to humans but become misclassihed by the DNN [59,21,44,7],
Similarly, fooling examples are inputs that look like random noise to humans, but
are classified with high confidence by DNNs [46], Mistakes made by DNNs have
led to loss of life [40,19] and wrongful arrests [30,31], For this reason, it is impor­
tant to develop techniques for analyzing, understanding, and repairing DNNs.

This paper introduces SyReNN, a tool for understanding and analyzing
DNNs. SyReNN implements state-of-the-art algorithms for computing precise
symbolic representations of piece wise-linear DNNs (Section 3). Given a bounded
polytope subset of the input space of a DNN, SyReNN computes a symbolic rep­
resentation that decomposes the behavior of the DNN on that infinite subspace
into finitely many linear functions. SyReNN implements the one-dimensional
analysis algorithm of Sotoudeh and Thakur [55] and extends it to the two-
dimensional setting as described in Section 4.
Key insights. There are two key insights enabling this approach, initially iden­
tified in Sotoudeh and Thakur [55]. First, most popular DNN architectures to­
day are piecewise-linear, meaning they can be precisely decomposed into finitely
many linear functions. This allows us to reduce their analysis to equivalent ques­
tions in linear algebra, one of the most well-understood fields of modern math­
ematics. Second, many applications only require analyzing the behavior of the
DNN on a low-dimensional subset of the input space. Whereas prior work has
attempted to give up precision for efficiency while analyzing high-dimensional in­
put regions [53,54,16], our work has focused on algorithms that are both efficient
and precise while analyzing lower-dimensional regions (Section 4).
Use cases. We demonstrate the utility of SyReNN on three main applications,
each highlighting the key advantage of SyReNN; viz., the ability to provide pre­
cise information about the DNN by restricting the analysis to a low-dimensional
subset of its input space.

The first application is in visualizing the decision boundaries of a DNN. With
SyReNN, we can precisely plot the decision boundaries for a two-dimensional
subset of the input space. The two-dimensional nature of the plot makes it
ideal for a human designer to look at to understand the behavior of the DNN.
The precise nature of the information provided by SyReNN ensures that the plot
shows the true behavior on the infinite set of points. Figure la shows one such 2-
dimensional plot for the AC AS Xu network ([35]), which determines what action
an aircraft (ownship) should take to avoid a collision with an intruder. Notably,
this is not, the result of plotting the behavior of the DNN on a finite sampling

SyReNN: A Tool for Analyzing Deep Neural Networks 3

(a) (b)

Fig. 1: Precise visualization of decision boundaries computed using SyReNN for
the (a) ACAS Xu network and (b) MNIST digit recognition network. This is not
a plot interpolating between hnitely-many sampled points, instead SyReNN was
used to quickly and precisely compute the exact decision boundaries.

of the inputs — such an approach would likely miss key behavior of the DNN,
whereas our approach guarantees to End the exact decision boundaries. The
network takes 5 inputs corresponding to the velocity and position of the aircraft;
the plot shows the behavior of the DNN for a 2-dimensional subspace of the input
space. From this plot, one can already see interesting and potentially dangerous
behavior of the network: there is a region behind the plane where an intruder on
the left may cause the network to recommend performing a weak left towards
the intruder; there are small regions in which the network recommends strong
right (or strong left) which should be weak right (or weak left). For safety-critical
applications, such as aircraft collision avoidance, such precise visualization can be
invaluable to a developer. Visualization of the ACAS Xu network is described in
detail in Section 8.1. Section 8.2 describes the visualization of decision boundaries
of image recognition networks. For instance, Figure lb shows the visualization
of the decision boundaries of an MNIST handwritten digit recognition DNN.
The corners of the triangle are three different drawings of the number 5, while
points interior to the triangle correspond to interpolations between those images.
The different colors show exactly where the network begins to misclassify fives
as a variety of other digits, helping human designers better understand, and
eventually improve, the behavior of the DNN.

The second application of SyReNN is the provable repair of DNNs (Sec­
tion 8.3). DNN repair deals with the increasingly important problem of correct­
ing DNN behavior to satisfy a given specification of a DNN after it has been
trained. In contrast to heuristic approaches, e.g., based on gradient descent,
provable repair guarantees that the repaired DNN does in fact satisfy the repair
specification. Prior work can repair the behavior of the DNN for a finite set of

4 M. Sotoudeh, Z. Tao and A. Thakur

input points [18,56], With SyReNN one can extend these techniques to repair
the behavior for an infinite set of points (represented as a 2D polytope).

The last application of SyReNN is the precise computation of Integrated
Gradients (IG) [57], a state-of-the-art measure used to determine which input
dimensions, e.g., pixels for an image-recognition network, were most important
in the final classification produced by the network (Section 8.4). IG is defined in
terms of the DNN’s behavior on the line connecting the all-zero input and the
input in question. Without the precise and efficient low-dimensional analysis of
SyReNN, all prior work had only been approximating the IG.
Tool design. The SyReNN tool is designed to be easy to use and extend, as
well as efficient (Section 7). The core of SyReNN is written as a highly-optimized,
parallel C++ server using Intel TBB for parallelization [50] and Eigen for matrix
operations [25]. CPU-based SyReNN uses Intel MKL-DNN for DNN evaluation
while GPU-based SyReNN uses Nvidia cuDNN and cuBLAS for DNN evaluation
as well as a mix of Intel TBB and Nvidia C-UDA for symbolic representation
computation. A user-friendly Python front-end interfaces with the PyTorch deep
learning framework [49].
Contributions. The contributions of this paper are:

- A definition of symbolic representation of DNNs (Section 3).
- Efficient algorithms for computing symbolic representations for DNNs over

low-dimensional input subspaces on CPU (Section 4) and GPU (Section 5).
- A generalization of the algorithm to arbitrary-dimensional input subspaces

(Section 6).
- A design of a usable and well-engineered tool implementing these ideas called

SyReNN (Section 7).
- Three applications of SyReNN (Section 8).

Section 2 presents preliminaries about DNNs; Section 9 presents related work;
Section 10 concludes. SyReNN is available on GitHub at https://github.com/
95616ARG/SyReNN_GPU.

2 Preliminaries

We now formally define the notion of DNN we will use in this paper.

Definition 1. A Deep Neural Network (DNN) is a function f : Rn —> Rm
which can he written f = fn o fn_1 • • • o _// for a sequence of layer functions f\,

, A-
Our work is primarily concerned with the popular class of piecewise-linear

DNNs, defined below. In this definition and the rest of this paper, we will use
the term “polytope” to mean a convex and hounded polytope, i.e., a bounded,
finite intersection of linear constraints.

Definition 2. A function f : Rn —> Rm is piecewise-linear (PWL) if its input,
domain Rn can he partitioned into finitely many possibly-unbounded polytopes
A"i, AN,..., Xk such that /gy. is linear for every A*.

SyReNN: A Tool for Analyzing Deep Neural Networks 5

The most common activation function used today is the ReLU function, a
PWL activation function defined below.

Definition 3. The rectified linear function (ReLU) is a function ReLU : Rn —>
Rm defined component-wise by

RELU(y)i
0 if Vi < 0

where ReLU(if)* is the ith component of the vector ReLU(if) and u,, is the ith
component of the vector v.

To show that ReLU is PWL, we must partition its input domain Rn so that,
in each partition, ReLU is linear. In this case, we can use the orthants of Rn as
our partitioning: within each orthant, the signs of the components do not change
hence ReLU is the linear map that just zeros out the negative components.

Although we focus on ReLU due to its popularity and expository power,
SyReNN works with a number of other popular PWL layers including MaxPool,
Leaky ReLU, Hard Tanh, Fully-Connected, and Convolutional layers, as defined
in [20]. PWL layers have become exceedingly common. In fact, nearly all of the
state-of-the-art image recognition models bundled with PyTorch [48] are PWL.

Example 1. The DNN / : R1 —> R1 defined by

f{x) := [1 -1 -1] ReLU

can be broken into layers / = fs o /2 o _/{ where

1 -1
1 0

-1 0

AM :=
" 1 -1"

1 0 X

1-1 0
fo = ReLU, and fsiv) = [l —1 —l] v.

The DNN’s input-output behavior on the domain [-1, 2] is shown in Figure 2.

3 A Symbolic Representation of DNNs

We formalize the symbolic representation according to the following definition:

Definition 4. Given a PWL function f : Rn —> Rm and a bounded convex
polytope X C Rn , we define the symbolic representation of f on X, written f\x,
to be a finite set of polytopes /gy = {Pi, .. ., Pn}, such that:

1. The set {Pi, Po,.. ., Pn} partitions X, except possibly for overlapping bound-
uriea.

R Puck P* w a 5owWed concez:
3. Within each Pi, the function f\p. is linear.

6 M. Sotoudeh, Z. Tao and A. Thakur

Input x

Fig. 2: Input-output behavior of the DNN from Example 1.

Notably, if / is a DNN using only PWL layers, then / is PWL and so we can
define f\X. This symbolic representation allows one to reduce questions about the
DNN / to questions about finitely many linear functions. For example, because
linear functions are convex, to verify that Vx € X. f(x) E Y for some polytope
Y, it suffices to verify Vp E f\X. W E Vert(p). f(v) E Y, where Vert(p) is
the (finite) set of vertices for the bounded convex polytope p; thus, here both of
the quantifiers are over finite sets. The symbolic representation described above
can be seen as a generalization of the ExactLine representation [55], which
considered only one-dimensional restriction domains of interest. ExactLine is
now included in SyReNN as an optimization for the case of one-dimensional
input polytopes.

Example "2. Consider again the DNN / : l1 -> R1 given by

f(x) := [1 -1 -1] ReLU

and the region of interest X = [-1, 2], The input-output behavior of / on X is
shown in Figure 2. From this, we can see that

7t^ = {[-1,0], [0,1], [1,2]}.

Within each of these partitions, the input-output behavior is linear, which for
R1 —> R1 we can see visually as just a line segment. As this set fully partitions
X, then, this is a valid f\X.

4 Computing the Symbolic Representation on 2D
Regions

This section presents an efficient algorithm for computing f\X for a DNN / com­
posed of PWL layers. To retain both scalability and precision, in this section we
will require the input region X be two-dimensional. This design choice is rela­
tively unexplored in the neural-network analysis literature (most analyses strike

SyReNN: A Tool for Analyzing Deep Neural Networks 7

Algorithm 1: Computing /g\- for a function / using the
ExtendPWL(-, •). Assumes / can be decomposed into the sequence
of piece wise-linear maps (layers) of the form / = fn o fn± o ■ ■ ■ o f1.

1

2
3
4
5
6

Input:
Output: /|.\-
s <- {!'} // Holds /; o • • • o /!| Y after ith iteration,
for i e 1, • • • n do

if fi is linear then
| s <— s // Linear layers do not impact linear regions

else
|_ s EXTENDPWL(/i, s) // PWL layers handled by Algorithm 2

7 return s

a balance between precision and scalability, ignoring dimensionality). We show
that, for two-dimensional X, we can use an efficient polytope representation to
produce an algorithm that demonstrates good best-case and in-practice efficiency
while retaining full precision. This algorithm represents a direct generalization
of the approach of [55].

The difficulties our algorithm addresses arise from three areas. First, when
computing /g\- there may be exponentially many such partitions on all of Rn but
only a small number of them may intersect with X. Consequently, the algorithm
needs to be able to find those partitions that intersect with X efficiently without
explicitly listing all of the partitions on Rn. Second, it is often more convenient
to specify the partitioning via hyperplanes separating the partitions than by
explicit polytopes. For example, for the one-dimensional ReLU function we may
simply state that the point x = 0 separates the two partitions, because ReLU
is linear both in the region x < 0 and x > 0. Finally, neural networks are
typically composed of sequences of linear and piece wise-linear layers, where the
partitioning imposed by each layer individually may be well-understood but their
composition is more complex. For example, identifying the linear partitions of
y = ReLU(4 • ReLU(-3x - 1) + 2) is non-trivial, even though we know the
linear partitions of each composed function individually.

Our algorithm only requires the user to specify the hyperplanes defining the
partitioning for the activation function used in each layer, and the current imple­
mentation comes with common PWL activation functions built-in. For example,
if a ReLU layer is used for an n-dimensional input vector, then the hyperplanes
would be defined by the equations x\ = 0,x2 = 0,..., xn = 0. SyReNN com­
putes the symbolic representation for a single layer at a time, composing them
sequentially to compute the symbolic representation across the entire network.

To allow such compositions of layers, instead of directly computing /gY, we
will define another primitive, denoted by the operator ® and sometimes referred

8 M. Sotoudeh, Z. Tao and A. Thakur

to as ExtendPWL, such that

ExtendPWL(h, g\x) = h @ = hog]x. (1)

Consider / = fn ° fn-i ° • • • ° /i, and let / : i 4 x be the identity map. I is
linear across its entire input space, and, thus, I\X = {A"}. By the definition of
ExtendPWL(/i, •), we have fi®I\x = (/x o I) |A = f1 (A, where the final equal­
ity holds by the definition of the identity map /. We can then iteratively apply
this procedure to inductively compute (j) o • • • o /i) |A- from o • • • o /i) |A
like so: ____ ____

A ® (A-i ° ° A) pv = (A ° A-i ° ° A)
until we have computed (/„ o fn_1 o • • • o A)| \- = /|A', which is the required
symbolic representation. Notably, linear functions do not change linear parti­
tions, hence if / is linear then f®cpx = f ° 9\x = gpv- This process is formalized
in Algorithm 1.

4.1 Algorithm for ExtendPWL

Algorithm 2 presents an algorithm for computing ExtendPWL for arbitrary
PWL functions, where ExtendPWL(/?., <Av) = h @ gpv = h o g^x.
Geometric intuition for the algorithm. Consider the ReLU function (Def­
inition 3). It can be shown that, within any orthant (i.e., when the signs of all
coefficients are held constant), ReLU(x) is equivalent to some linear function,
in particular the element-wise product of x with a vector that zeroes out the
negative-signed components. However, for our algorithm, all we need to know is
that the linear partitions of ReLU (in this case the orthants) are separated by
hyperplanes aq = 0, x2 = 0,..., xn = 0.

Given a two-dimensional polytope X, the execution of the algorithm for
/ = ReLU can be visualized as follows. We pick some vertex v of X, and begin
traversing the boundary of the polytope in counter-clockwise order. If we hit an
orthant boundary (corresponding to some hyperplane x* = 0), it implies that
the behavior of the function behaves differently at the points of the polytope to
one side of the boundary from those at the other side of the boundary. Thus, we
partition X into Xi and AC, where Xi lies to one side of the hyperplane and AT
lies to the other side. We recursively apply this procedure to Ai and AT until
the resulting polytopes all lie on exactly one side of every hyperplane (orthant
boundary). But lying on exactly one side of every hyperplane (orthant boundary)
implies each polytope lies entirely within a linear partition of the function (a
single orthant), hence the application of the function on that polytope is linear,
and hence we have our partitioning.
Functions used in algorithms. Given a two-dimensional polytope A, Vert (A)
returns a list of its vertices in counter-clockwise order, repeating the initial ver­
tex at the end. Given a set of points S', ConvexHull (S) represents their convex
hull (the smallest polytope containing every point in S'). Given a scalar value x,

SyReNN: A Tool for Analyzing Deep Neural Networks 9

Sign(x) computes the sign of that value (i.e., -1 if x < 0, +1 if x > 0, and
0 if x = 0). Given an n-dimensional polytope P, Facets(P) is the set of n - 1-
dimensional facets that make up the boundary of P.

Algorithm description. The key insight of the algorithm is to recursively
partition the polytopes until such a partition lies entirely within a linear region
of the function /. Algorithm 2 begins by constructing a queue containing the
polytopes of g^. Each iteration either removes a polytope from the queue that
lies entirely in one linear region (placing it in Y), or splits (partitions) some
polytope into two smaller polytopes that get put back into the queue. When we
pop a polytope P from the queue, Line 6 iterates over all hyperplanes Nk ■ x = bk
defining the piece wise-linear partitioning of /, looking for any for which some
vertex V; lies on the positive side of the hyperplane and another vertex Vj lies
on the negative side of the hyperplane. If none exist (Line 7), by convexity we
are guaranteed that the entire polytope lies entirely on one side with respect to
every hyperplane, meaning it lies entirely within a linear partition of /. Thus, we
can add it to Y and continue. If two such vertices are found (starting Line 10),
we then call SplitPlane () (Algorithm 3) to actually partition the polytope on
opposite sides of the hyperplane, adding both to our worklist. SplitPlane ()
works by finding “extreme” i and j indices such that F) is the last vertex in a
counter-clockwise traversal to lie on the same side of the hyperplane as V) and
Vj is the last vertex lying on the opposite side of the hyperplane, then solving
for the new vertex where that edge intersects the hyperplane.

In the best case, each partition is in a single orthant. Then, the algorithm
never calls SplitPlane () at all — it merely iterates over all of the n input
partitions, checks their v vertices, and appends to the resulting set (for a best-
case complexity of O(nv)). In the worst case, it splits each polytope in the queue
on each hyperplane, resulting in exponential time complexity. As we will show
in Section 8, this exponential worst-case behavior is not encountered in practice,
thus making SyReNN a practical tool for DNN analysis.

Example of the algorithm. Consider the polytope shown in Figure 3a with
vertices {i>i, c2, v3}, and suppose our activation function has two piece wise-linear
regions separated by the vertical line (ID hyperplane) Nx + 6 = 0 shown.

(a) Before extending (b) After extending

Fig. 3: Diagrams demonstrating the 2D ExtendPWL algorithm

10 M. Sotoudeh, Z. Tao and A. Thakur

Algorithm 2: Ordered ExtendPWL for computing / / g\ for two-
dimensional X. / is a PWL function such that the hyperplanes Ni -x =
b1 through Nm ■ x = bm impose a partitioning of the space where /
is equivalent to some linear function within any partition. This is a
specialization of Algorithm 5 for two-dimensional X, a discussion of
differences is available in Section 6.

Input: gi"x = {Pi,.. • , Pn}, hyperplanes Nk ■ x = bk for k G [1, m].
Output: f o g| y

1 W G- ConstructQueue(g\x)
2 Y G- 0 // Polytopes that lie entirely in one linear region.
3 while W not em.pty do
4 Pi- Pop(W)
5 V G- Vert (P)
6 K G- {(Nk, bk) | 3Vi,Vj G V : Sign(Afc • g(Vt) - bk) > 0 A

Sign(Afc • g(Vj) - bk) < 0}
7 if K = 0 then
8 y <- y u {P}
9 continue

10
11
12

N,b ir- any element from K
for V' G SplitPlane(lz, g, N, b) do

|_ W t— Push(W, ConvexHull(y'))

13 return Y

Because this hyperplane has some of the vertices of the polytope on one side
and some on the other, we will use it as the N, b hyperplane on Line 10. Then
SplitPlane is called. We will assume the vertices are ordered so that the extremal
vertices found starting at Line 1 are V; = iq and vj = v3. SplitPlane will
then add new vertices pi = y4 (shown in Figure 3b) where the edge iq —> m
intersects the hyperplane, as well as pj = v5 where the edge v3 —> iq intersects
the hyperplane. Separating all of the vertices on the left of the hyperplane from
those on the right, we find that this has partitioned the original polytope into
two sub-polytopes, each on exactly one side of the hyperplane, as desired. If
there were more intersecting hyperplanes, we would then recurse on each of the
newly-generated polytopes to further subdivide them by the other hyperplanes.
Proofs of correctness. The two theorems below formally argue for correct­
ness of Algorithm 3 and Algorithm 2. They are a special case of the arguments
in Section 6.

Theorem 1. Algorithm 3 correctly splits a 2D polytope ConvexHull)!7) by the
hyperplane Nx = b.

Proof. The intuition was described earlier in this section. Formally, Algorithm 3
is the special case of Algorithm 6 for A: = 2. See Theorem 4 for the proof of its
correctness.

SyReNN: A Tool for Analyzing Deep Neural Networks 11

Algorithm 3: SplitPlane(V, g, N, b)
Input: V, the vertices of the polytope in the input space of g. A function g.

N and b define the hyperplane N • x = b to split on.
Output: {Pi, P2}, two sets of vertices whose convex hulls form a partitioning

of V such that each lies on only one side of the N ■ x = b hyperplane.
i 4- argmaxi{Sign(7V • g{Vf) - b) = Sign(A • g{\i) - b)}
j 4- argmax^{Sign(A - g(I^) - 6) / Sigm(A - g(T;) - 6)}

Vi +
■ V) +

6-N g(V^)
JV (9(Vi+l)-9(VJ)

6-N g(V,)
(E + l — Vi)
% + l% ^ -T N (9(to+i)-g(VC))'

A 4— {pi,pj } U {v G V | Sign (TV ■ v — b) = Sign(TV ■ Vi — b)}
B 4— {pi,pj } U {y G V | Sign(A ■ v — b) = Sign(A • Vj — b)}
return {A, B}

This special-casing relies on one key observation, which is that, in Algo­
rithm 6 for k = 2, exactly two of the facets (edges) will cross the hyperplane. To
see why, first consider the restriction of the hyperplane Nx = b to the poly­
tope ConvexHull(lz). Notice that, assuming the hyperplane actually crosses
ConvexHull(lz) (i.e., does not contain it entirely), then this restriction will corre­
spond to a line crossing a polytope. But, if this line crossed three distinct edges,
then it would have at least three distinct intersection points with the polytope.
But these three points must make a line, meaning one of those points must be
between the other two, meaning one of those edges must have points that can
be written as a convex combination of those on the other two edges, i.e., one of
the edges must be on the interior of the polytope, a contradiction. □

Theorem 2. Algorithm 2 correctly computes f ®g\x-

Proof. The intuition was described earlier in this section. For a formal correct­
ness proof, see the proof of the generalized Theorem 5, from which this claim
follows as a special case. The only difference in the algorithms is that we call the
2D-specialized SplitPlane instead of SplitHyperPlane [2]. □

4.2 Representing Polytopes

We close this section with a discussion of implementation concerns when repre­
senting the polytopes that make up the partitioning of f\X- In standard compu­
tational geometry, polytopes can be represented in two equivalent forms:

1. The half-space or H-representation, which encodes the polytope as an in­
tersection of finitely many half-spaces. (Each half-space being defined by a
linear inequality ax < b.)

2. The vertex or V-representation, which encodes the polytope as a set of
finitely many points; the polytope is then taken to be the convex hull of
the points (i.e., smallest convex shape containing all of the points).

12 M. Sotoudeh, Z. Tao and A. Thakur

Certain operations are more efficient when using one representation compared
to the other. For example, finding the intersection of two polytopes in an El-
representation can be done in linear time by conjoining their representative lin­
ear constraints, but the same is not possible in V-representation. On the other
hand, checking if a polytope in V-representation is empty is as simple as check­
ing whether it has any vertices at all, while the same query for a polytope in
El-representation requires solving a considerably more expensive linear program­
ming problem.

There are three main operations on polytopes we need perform in our algo­
rithms: (i) identifying which hyperplanes a polytope intersects, (ii) splitting a
polytope with a hyperplane, and (hi) applying a linear map to all points in the
polytope. In general, the first and third are significantly more efficient in a V-
representation, while the second is often more efficient in an H-representation. In
particular, (i) is linear time on a V-representation but requires solving a compli­
cated linear programming problem on an H-representation. Similarly, unless the
linear map happens to be invertible, which almost never happens for DNN weight
matrices which are usually learned and between different-dimensional spaces,
(hi) is only as expensive as a matrix multiplication on a V-representation, but
requires a doubly-exponential variable elimination algorithm such as Fourier-
Motzkin [68] for polytopes in the H-representation.

While it is true in general that splitting a V-representation polytope with
a hyperplane is difficult, when restricted to two-dimensional polytopes, it is
actually efficient in a V-representation, as demonstrated by Algorithm 3, helping
to motivate our use of the V-representation in our algorithm. Our algorithm
shows how to do polytope splitting efficiently for two-dimensional polytopes
embedded in any dimensional space, i.e., even though the polytopes are two-
dimensional, they (and their vertices) live in a much higher-dimensional space.

Furthermore, even though it is easy to split an H-representation polytope,
determining when such a split leads to a non-empty polytope requires solving a
relatively expensive LP problem. This is exacerbated by the fact that, although
the polytopes in question are two-dimensional, they lie within a much higher-
dimensional space. This means that the corresponding LP problem will have
thousands of variables, even if the actual polytope it describes has at most
two dimensions. This significantly increases overhead in the H-representation
approach, a problem neatly avoided by specifying the vertices directly in the
V-representation.

Comparing performance. To better quantify the performance characteristics
of both representations for our particular application area, we evaluated two
different operations in the H-representation and compare to our results using
the V-representation in Section 8.

First, we used an off-the-shelf Fourier-Motzkin implementation [17] to trans­
form a single two-dimensional input polytope through the first layer of the AC AS
Xu network as evaluated in Section 8.1, except using the H-representation. Trans­
forming even this single polytope requires over 0.1 seconds on modern hardware.
Such transformation operations would have to be performed at least once for

SyReNN: A Tool for Analyzing Deep Neural Networks 13

each of the approximately 30,000 linear regions identified by SyReNN in Sec­
tion 8.1 and Table 1, leading to almost an hour of solving time compared to 0.1
seconds for the entire run with SyReNN using a V-representation.

Alternatively, a different way to implement SyReNN with H-representation
polytopes but avoiding the expensive projection step would be to perform the
entire analysis in a space with as many dimensions as DNN nodes. This would
avoid projection, but still relies on an LP solver to determine which linear re­
gions, i.e., assignment of activated nodes, are feasible. We performed a similar
experiment, using the Gurobi LP solver [26] to identify a linear region of the
DNN by iteratively asking the LP solver if there exists an input that causes the
ith DNN node to be activated. If so, we modify the LP to assert it is activated
and continue to the (i + l)th node. Otherwise, we assert it is not activated and
again continue to the (i + l)th node. Even with a state-of-the-art LP solver,
Gurobi solving time for even a single linear region of the network is over 0.3
seconds, which is larger than it takes our V-representation SyReNN to identify
over 30,000 linear regions.

While it is likely that optimizations may reduce the runtime for an H-
representation based approach, it is unlikely to make up the four-orders-of-
magnitude difference in runtime demonstrated by these experiments. Further­
more, such approaches require the use of complicated polytope projection and
feasibility solvers, compared to the relatively simple SplitPlane algorithm used
by SyReNN.

Numerical precision. Furthermore, the two polytope representations have
different resiliency to floating-point operations. In particular, H-representations
for polytopes in Rn are notoriously difficult to achieve high-precision with, be­
cause the error introduced from using floating point numbers gets arbitrarily
large as one goes in a particular direction along any hyperplane facet. Ideally,
we would like the hyperplane to be most accurate in the region of the polytope
itself, which corresponds to choosing the magnitude of the norm vector correctly.
Unfortunately, to our knowledge, there is no efficient algorithm for computing
the ideal floating point H-representation of a polytope, although libraries such as
APRON [34] are able to provide reasonable results for low-dimensional spaces.
However, because neural networks utilize extremely high-dimensional spaces (of­
ten hundreds or thousands of dimensions) and we wish to iteratively apply our
analysis, we have found that errors from using floating-point H-representations
can quickly multiply and compound to become infeasible. By contrast, floating­
point inaccuracies in a V-representation are directly interpretable as slightly
misplacing the vertices of the polytope; no “localization” process is necessary to
penalize inaccuracies close to the polytope more than those far away from it.

Another difference is in the space complexity of the representation. In gen­
eral, H-representations can be more space-efficient for common shapes than V-
representations. However, when the polytope lies in a low-dimensional subspace
of a larger space, the V-representation is usually significantly more efficient.

Thus, V-representations are a good choice for low-dimensionality polytopes
embedded in high-dimensional space, which is exactly what we need for analyzing

14 M. Sotoudeh, Z. Tao and A. Thakur

neural networks with two-dimensional restriction domains of interest. This is
why we designed our algorithms to rely on Vert(A"), so that they could be
directly computed on a V-representation. Importantly, our algorithm operates
entirely within the V-representation: we never need to convert between them.
This is particularly nice when the polytope lies in a two-dimensional subspace,
as storing the vertices in counter-clockwise order allows us to recover the edges
from the vertices. Meanwhile, converting to a full H-representation would likely
incur significant overhead due to the very high-dimensional space the polytope
is embedded in.

5 Batched ExtendPWL Algorithm

This section presents Batched ExtendPWL algorithm for computing / ® g\x
for two-dimensional X. / is a PWL function such that the hyperplanes impose
a partitioning of the space where / is equivalent to some linear function within
any partition. The algorithm is presented in Algorithm 4. The batched nature
of the algorithm allows it to exploit GPU-style parallelism. In this algorithm,
we introduce the notion of edges of polytopes (1-dimensional faces). Edges(P)
returns the set of edges of the polytope P. The algorithm begins by initializing
the result Y with (Line 1). Each of the following iterations over all k £ [1, m]
hyperplanes (Line 2-10) splits each polytope in Y by the A:th hyperplane and
adds the resulting partitions back to Y. This ensures that, after the A:th iteration,
none of the polytopes in Y cross the first k hyperplanes. During iteration A:, the
algorithm first collects all vertices (Line 3) and edges (Line 6) of all polytopes
in Y as V and E, respectively. The algorithm then computes a map S from any
vertex v £ V to its sign regarding the working hyperplane k (Line 5). With the
sign map S, the algorithm then identifies edges that cross the A:th hyperplane
(Line 6) as E' . CrossPlane checks if the two endpoints of edge e has different
signs. Then the algorithm computes a map from each such edge e in E' to its
intersection vertex with the hyperplane k as I by interpolation (Line 7). The
algorithm then collects polytopes p in Y that intersect with the A:th hyperplane
as P ' (Line 8), splits each of them using SplitPlane (presented later) and collects
all partitions as PA (Line 9). The A:th iteration ends by replacing intersected
polytopes in Y with their partitions regarding the hyperplane k.

The procedure SplitPlane (Line 12-29) splits the polytope p into two halves,
one on either side of the A:th hyperplane, using the sign map S and intersection
map I. It begins by initializing the sets pos and neg to contain edges of polytope
p which lie on the positive and negative side of the hyperplane A:, with empty
sets (Line 13), as well as the set V' , which will contain the vertices lying on
the Arth hyperplane itself (shared by both partitions), with empty set (Line 14).
The procedure then iterates over edges of polytope k (Line 15-26). The iteration
for edge e begins by checking if it crosses the hyperplane k (Line 16). If so,
the procedure first adds the intersection vertex 1(e) to V' (Line 17). Then the
procedure splits the intersected edge e by the intersection vertex 1(e) as new
edges (e.M, 1(e)) and (eve, 1(e)) (Line 18), where e.u and e.v are two endpoints

SyReNN: A Tool for Analyzing Deep Neural Networks 15

Algorithm 4: Batched ExtendPWL for computing f (g> gfX for two­
dimensional X. f is a PWL function such that the hyperplanes N1 ■ x =
b1 through Nm ■ x = bm impose a partitioning of the space where f is
equivalent to some linear function within any partition. * 1

Input: gX = {Pi,... ,Pn}.
Output: f o gfX
/* Interatively split gJX by hyperplanes */

1 y — gjx
2 for k e [1, m] do
3 V — UpiGy Vert(pi)
4 E — U P.ey Edges(pi)

*5 S — {v ^ Sign(Nk • g(v) - bk) | v e V} // Sign map for vertices
*6 E% — {e | e e E, CrossPlane(e, S)} // Intersected edges
*7 I — {e ^ Interp(e, Nk, bk) | e e E% } // Intersection vertex map
*8 P% — {p | p e Y, Edges(p) n E% = 0} // Intersected polytopes
x9 P A — UpGpx SplitPlane(p, S, I)
10 Y — (Y\P%) U PA

11 return Y

12 def SplitPlane(p, S, I):
13
14
15
16
17
18
19
20
21
22

0, 0pos, neg
V % — 0
for e e Edges(P) do

if CrossPlane(e, S) then
V% — V% U I(e)
for e' e {(e.u, I(e)), (e.v, I(e))} do

if OnPosSide(e, S) then
| pos — pos U e'

else
neg — neg U e'

// Edges lie in the positive/negative
// Intersection vertices on the

side.
face.

23
24
25
26

else if OnPosSide(e, S) then
| pos — pos U e'

else
neg — neg U e'

27
28
29

pos — pos U ConvexHull(V%)
neg — neg U ConvexHull(V%)
return {FaceHull(pos), FaceHull(neg)}

16 M. Sotoudeh, Z. Tao and A. Thakur

of edge e. For each new edge e', the procedure adds e' to the pos set if it is on the
positive side of the hyperplane k (Line 19-20), otherwise to the neg set (Line 21-
22). If the iterating edge e does not cross hyperplane k, then the procedure
adds e to the pos set if it is on the positive side of the hyperplane k (Line 23-
24), otherwise to the neg set (Line 25-26). After the iterations, the procedure
ends by adding the convex hull of intersected vertices V' to both pos and neg
(Line 27-28), and returns the set of face hulls of pos and neg (Line 29).

Theorem 3. Algorithm 4 correctly computes f ®g\x-

Proof. It suffices to show that the algorithm correctly partitions each input
polytope P such that the signs within a partition are constant. Notably, because
of convexity, it suffices to show that the signs of the vertices of each partition
are constant.

In iteration k, Algorithm 4 splits all polytopes which cross the hyperplane k
and maintains the invariant that each SplitPlane splits an intersected polytope
into two new ones such that the signs within each partition regarding hyperplanes
[1,/s] are constant. This invariant ensures that the algorithm is correct. □

Algorithm 4 is optimized to utilize GPU. Specifically, lines marked by *
(Line 5-8) can be parallelized on GPU and lines marked by o (Line 9) can be
parallelized on CPU. Thus, one would expect that this algorithm when executed
using a GPU would perform significantly better than the same algorithm on a
CPU; we empirically confirm this in Section 8.2. Furthermore, we also see that
this Batched ExtendPWL algorithm when executed using a GPU outperforms
the Ordered ExtendPWL algorithm (2) on a CPU. Two major overheads when
using GPU are data movement and kernel launches. To avoid redundant data
movement between GPU memory and CPU memory, we maintain vertices as a
matrix on GPU memory and only access it from GPU. We also maintain the
endpoints of all edges in a contiguous GPU memory. There are only two floating­
point computations; viz., computing the signs of vertices and the intersection
vertices of the intersected edges. To avoid redundant launches of the GPU kernel,
we perform these computations in batches, and cache the results in maps for later
use (Line 5 and 7).

6 Extending to Higher-Dimensional Regions

The 2D algorithm described in Section 4.1 can be seen as implementing the
recursive case of a more general, ^dimensional version of the algorithm that
recurses on each of the (n - 1 (-dimensional facets. In 2D, we trace the edges
(ID faces) and use the ID algorithm from [55] to subdivide them based on
intersections with the hyperplanes defining the function.

In this section, we will describe the more general ^dimensional recursive
algorithm. This generalized algorithm is given in Algorithm 5 and Algorithm 6.

The overall operation of Algorithm 5 is identical to that of Algorithm 2, as
we repeatedly split the input polytopes by the hyperplanes until each resulting

SyReNN: A Tool for Analyzing Deep Neural Networks 17

Algorithm 5: f®gfx for ^-dimensional X. The hyperplanes Ni -x = b\
through Nm -x = bm are such that / is equivalent to some linear function
within any partition imposed by these hyperplanes.

Input: gfx = {Pi,.. • , P„}, hyperplanes AT • x = bk for k G [1, rn].
Output: f o g| y

1 W G- ConstructQueue(g\x)
2 Y G- 0 // Polytopes that lie entirely in one linear region.
3 while W not em.pty do
4 Pi- Pop(W)
5 Ft—Vert (P)
6 A'G- {(AT, bk) | 3F, F, € V : Sign(AT • g(F) - 6fc) > 0 A

Sign(AT • fl(Fj) - 6fc) < 0}
7 if K = 0 then
8 y <- y u {P}
9 continue

10
11
12

AT b G- any element from A'
for V' G SplitHyperPlane[n] (P, g, AT 6) do

|_ W G- Push(W, ConvexHull(F'))

13 return Y

partition lies in exactly one linear region, i.e., on exactly one side of each hy­
perplane. The key difference is that now the polytopes are no longer 2D, hence,
we can no longer use the 2D-optimized SplitPlaneO and instead call the more
general SplitHyperPlane[A:] (P, g, N, b) defined in Algorithm 6.

The rest of the changes occur in Algorithm 6. The goal of this algorithm is
to take a polytope P and split it into (at most) two polytopes Pi and P2, such
that each Pi lies entirely on one side of the hyperplane defined by Nx < b.

In the one-dimensional base case, this is relatively simple, as we can directly
compute the point m at which the line interpolating between the endpoints s, e
of the one-dimensional polytope (line segment) P crosses the hyperplane.

In the ^-dimensional recursive case, we recurse on each facet of P. We then
partition each of those facets into sub-facets Pi, P2 such that each sub-facet lies
on entirely one side of the hyperplane. We collect all of the sub-facets that he on
one side into the set l and those that he on the other side into the set g. Then B
collects the vertices that lie on the border, i.e., ConvexHull(B) = Pn{x | Nx =
b}. Now, consider the surfaces of our desired partitions Pi and P2. Every point
on the surface of Pi is either a point on the surface of P that lies on one side of
the hyperplane (i.e., in one of the l facets), or it is a point on the intersection
ConvexHull(B). Therefore, FaceHull(Z) gives a satisfying Pi and FaceHull(u) a
satisfying P2.

We have experimented with such approaches, but found that the overhead
of keeping track of all (n - A:)-dimensional faces (commonly known as the face
poset or combinatorial structure [15] of a polytope) was too large in higher di­
mensions. The two-dimensional algorithm addresses this concern by storing the

18 M. Sotoudeh, Z. Tao and A. Thakur

Algorithm 6: SplitHyperPla,ne[A:](P, g, A, b)
Input: P, the polytope in the input space of g. A function g. The

dimensionality k of the polytope P. A and b define the hyperplane
A • x = b to split on.

Output: {Pi, P2}, two polytopes forming a partitioning of P such that each
lies on only one side of the N ■ x = b hyperplane.

if k = 1 then
/* Base case */
s,ef- Vert(P)
if (Ng(s) — b) (Ng(e) — b) < 0 then

rn 4— s + (e — s)N-(g(e)-g(s))

return {ConvexHull({s, m}), ConvexHull({m, e})}

return {P}

/* Recursive case
7 Z,« 4-0,0
8 Bt-0
9 for P G Facets(P) do

*/

10
11
12
13
14
15

for S G SplitHyperPlane[fe — 1](P, g, A, 6) do
B 4— B U {c G Vert (S’) | Au = b}
if OnPosSide(S, A, 6) then

I « 4— w U {S}
else
L /4-/U{g}

16 Z 4— Z U {ConvexHull(S)}
17 w 4— « U {ConvexHull(S)}
18 return {FaceHull(Z), FaceHull(w)} \ {0}

combinatorial structure implicitly, representing 2D polytopes by their vertices
in counter-clockwise order, from which edges correspond exactly to sequential
vertices. To our knowledge, such a compact representation allowing arbitrary
(n — A: {-dimensional faces to be read off is not known for higher-dimensional poly­
topes.

Theorem 4. Algorithm 6 correctly splits a polytope ConvexHullfV) by the hy­
perplane Nx = b.

Proof. In the A: = 1 case, we have two options:

- If both endpoints are on the same side of the hyperplane, then the splitting
is just the polytope (line segment) itself, so we return {P} correctly.

- Otherwise, we wish to split the line segment P defined by s + a(e - s) by
the intersecting, non-parallel line defined by Nx = b. This intersection point
can be computed algebraically to be the point in as shown, leaving the two
partition segments ConvexHull({s, ro}) and ConvexHull({ro, e}) returned.

SyReNN: A Tool for Analyzing Deep Neural Networks 19

Next, the recursive case. Notice that the algorithm only ever partitions poly­
topes (never adding new points outside the input polytope), so FaceHull(Z) U
FaceHull(u) C P.

Therefore, it suffices to show that the facets in l form the surface of L =
P n {x | Nx < b} and the facets in u form the surface of U = P n {x \ Nx > b}.
We will argue for l here, u is analogous.

Consider any point x on the surface of L. Either (i) x is also on the surface
of P, or (ii) x is interior to P, and thus must be on the facet P A {x \ Nx = b}.

Case (i) implies x will be on some facet F of P, and thus x will be in the
sub-facet F) of F intersected with the lower-half L. This facet is included in l by
line 13.

Case (ii) implies x will be on P A {x \ Nx = b}. Notice that this is a
single facet, hence its vertices will all be adjacent to other facets. Hence, each
of the vertices will be added to set B on line 11. So these points will be in
ConvexHull(B), and thus in l as of line 16.

Therefore, all of the surface points are accounted for in the facet sets and
therefore the returned polytopes are supersets of the desired Pi, P2. We already
saw that they are also subsets, hence they are the desired partitions Pi and P2.

□

Theorem 5. Algorithm 5 correctly computes fwgjw-

Proof. It suffices to show that the algorithm correctly partitions each input
polytope P such that the signs within a partition are constant. Notably, because
of convexity, it suffices to show that the signs of the vertices of each partition
are constant.

We maintain two invariants every time we process some polytopes from the
queue. The first is that the corresponding polytope will only be added to Y if
the signs of all vertices are constant (or zero). The second is that at each step,
we partition the polytope into two new ones (using SplitPlane) such that fewer
sign switches happen in each than the original polytope. This follows from the
correctness of the SplitPlane algorithm.

The first invariant ensures that, if it halts, the algorithm is correct. The
second ensures that it will halt, as there are finitely many dimensions to consider.

□

7 SyReNN tool

This section provides more details about the design and implementation of our
tool, SyReNN (Symbolic Representations of Neural Networks), which computes
f\x, where / is a DNN using only piecewise-linear layers and X is a union of
one- or two-dimensional polytopes. The tool is available under the MIT license
at https://github.com/95616ARG/SyReNN_GPU.
Input and output format. SyReNN supports reading DNNs from two stan­
dard formats: ERAN (a textual format used by the ERAN project [1]) as well as

20 M. Sotoudeh, Z. Tao and A. Thakur

ONNX (an industry-standard format supporting a wide variety of different mod­
els) [47]. Internally, the input DNN is described as an instance of the Network
class, which is itself a list of sequential Layers. A number of layer types are
provided by SyReNN, including FullyConnectedLayer, ConvolutionalLayer,
and ReLULayer. To support more complicated DNN architectures, we have im­
plemented a ConcatLayer, which represents a concatenation of the output of
two different layers. The input region of interest, X, is defined as a polytope
described by a list of its vertices in counter-clockwise order. The output of the
tool is the symbolic representation /gy.

Overall architecture. We designed SyReNN in a client-server architecture us­
ing gRPC- [22] and protocol buffers [23] as a standard method of communication
between the two. This architecture allows the bulk of the heavy computation
to be done in efficient C++ code, while allowing user-friendly interfaces in a
variety of languages. It also allows practitioners to run the server remotely on a
more powerful machine if necessary. The C++ server implementation uses the
Intel TBB library for parallelization. Our front-end library pysyrenn is written
in Python. The entire project can be built using the Bazel build system.

Server architecture. The major algorithms are implemented as a gRPC
server written in C++. When a connection is first made, the server initializes
the state with an empty DNN f{x) = x. During the session, three operations
are permitted: (i) append a layer g so that the current session’s DNN is updated
from /o to fi(x) := g{fo{x)), (h) compute /gy for a one-dimensional X, or
(iii) compute /gy for a two-dimensional X. We have separate methods for one-
and two-dimensional X, because the one-dimensional case has specific optimiza­
tions for controlling memory usage. The SegmentedLine and UPolytope types
are used to represent one- and two-dimensional partitions of X, respectively.
When operation (i) is performed, a new instance of the LayerTransf ormer class
is initialized with the relevant parameters and added to a running vector of the
current layers. When operation (ii) is performed, a new queue of SegmentedLines
is constructed, corresponding to X, and the before-allocated LayerTr ansf ormers
are applied sequentially to compute /gy. In this case, extra control is pro­
vided to automatically gauge memory usage and pause computation for por­
tions of X until more memory is made available. Finally, when operation (iii)
is performed, a new instance of UPolytope is initialized with the vertices of X
and the LayerTransformers are again applied sequentially to compute /gy.
In this case, SyReNN can optimize the memory layout of UPolytopes and
LayerTransf ormers for GPU as well as perform the GPU-based algorithm if
the client asks for it.

Client architecture. Our Python client exposes an interface for defining
DNNs similar to the popular Sequential-Network Keras API [10]. Objects repre­
sent individual layers in the network, and they can be combined sequentially into
a Network instance. The key addition of our library is that this Network exposes
methods for computing /gy given a V-representation description of X. To do

SyReNN: A Tool for Analyzing Deep Neural Networks 21

this, it invokes the server and passes a layer-by-layer description of / followed
by the polytope X, then parses the response /1 \-.
Extending to support different layer types. Different layer types are sup­
ported by sub-classing the LayerTransf ormer class. Instances of this class ex­
pose a method for computing ExtendPWL(/?., •) for the corresponding layer
h. To simplify implementation, two sub-classes of LayerTransformer are pro­
vided: one for linear layers (such as fully-connected and convolutional layers),
and one for piecewise-linear layers. For linear layers, all that needs to be pro­
vided is a method computing the layer function itself. For piecewise-linear layers,
two methods need to be provided: (i) computing the layer function itself, and
(ii) describing the hyperplanes which separate the linear regions. The base class
then directly implements Algorithm 2 for that layer. At least one CPU and one
GPU implementation should be provided. This architecture makes supporting
new layers a straight-forward process.
Float safety. Like Reluplex [36], SyReNN uses floating-point arithmetic to
compute fix efficiently. Unfortunately, this means that in some cases its results
will not be entirely precise when compared to a real-valued or multiple-precision
version of the algorithm. If a perfectly precise solution is required, the server
code can be modified to use multiple-precision rationals instead of floats. Alter­
natively, a confirmation pass can be run using multiple-precision numbers after
the initial float computation to confirm the accuracy of its results. The use of
over-approximations may also be explored for ensuring correctness with floating­
point evaluation, like in DeepPoly [54]. Unfortunately, our algorithm does not
directly lift to using such approximations, since they may blow the originally-2D
region into a higher-dimensional (but very “flat”) over-approximate polytope,
preventing us from applying the 2D algorithm for the next layer.
Usage examples. The tool user will begin by loading a model from disk, like

from pysyrenn import Network
network = Network . from.file (” model. eran”)

We can use this network to compute the network on finite input points like so

import nurnpy as np
in_l = np . array ([1. , -1., 0.5])
in_2 = np . array ([2 . , -1.5, 2.5])
out_l , out_2 = network . compute ([in_l , in_2])

Or we can compute the behavior of the network on all points between in_l and
in_2 like so:

syrenn.endpoints = network . exactline (in_l , in_2 ,
compute_preimages=True ,
include_post=False)

Here, syrenmendpoints is a Nurnpy array where each element is an endpoint
between in_l and in_2, defining the partitioning f\X. The include.post option

22 M. Sotoudeh, Z. Tao and A. Thakur

allows us to avoid re-computing the DNN on those endpoints, if its output is
important:

pre , post = network . exactline (in_l , in_2 ,
compute_preimages=True ,
include_post=True)

is equivalent to . . .
pre = network . exactline (in_l , in_2 ,

compute_preimages=True ,
include_post=False)

post = network . compute (pre)

Meanwhile, compute.preimages controls whether the preimages will be relative
(a ratio between 0 and 1) or absolute (a point between in_l and in_2).

Similarly, given the vertices of a 2D polytope, we can compute the f\X like so

in_3 = np.array([4., 1., 2.])
polytope = [in_1 , in_2 , in_3]
syrenn = network . transform_plane (polytope ,

compute_preimages=True ,
include_post=False)

The resulting variable syrenn will be a list of partitions, which each partition
being an array of its vertices.

8 Applications of SyReNN

This section presents the use of SyReNN in four example case studies.

8.1 Visualization of Decision Boundaries for ACAS Xu Networks

Our first major task is visualizing the decision boundaries of a DNN on infinitely
many input points. Figure 4 shows a visualization of an ACAS Xu DNN [35]
which takes as input the position of an airplane and an approaching attacker,
then produces as output one of five advisories instructing the plane, such as
“clear of conflict” or to move “weak left.” Every point in the diagram repre­
sents the relative position of the approaching plane, while the color indicates
the advisory.

One approach to such visualizations is to simply sample finitely many points
and extrapolate the behavior on the entire domain from those finitely many
points. Flowever, this approach is imprecise and risks missing vital information
because there is no way to know the correct sampling density to use to identify
all important features.

Another approach is to use a tool such as DeepPoly [54] to over-approximate
the output range of the DNN. Flowever, because DeepPoly is a coarse over-
approximation, there may be regions of the input space for which it cannot state
with confidence the decision made by the network. In fact, the approximations

SyReNN: A Tool for Analyzing Deep Neural Networks 23

(a) SyReNN (b) DeepPoly [fc = 252] (c) DeepPoly [fc = 1002]

Legend: ■ Clear-of-Conflict, ■ Weak Right, ■ Strong Right, ■ Strong Left, ■ Weak Left.

Fig. 4: Visualization of decision boundaries for the AC AS Xu network using
three different approaches. Using SyReNN (left) quickly produces the exact deci­
sion boundaries. Using abstract interpretation-based tools like DeepPoly (middle
and right) is slower and produces only imprecise approximations of the decision
boundaries, k gives the number of partitions used by the DeepPoly algorithm,
impacting the coarseness of the resulting approximation.

used by DeepPoly are extremely coarse. A naive application of DeepPoly to this
problem results in it being unable to make claims about any of the input space
of interest. In order to utilize it, we must partition the space and run DeepPoly
within each partition, which significantly slows down the analysis. Even when
using 252 partitions, Figure 4b shows that most of the interesting region is still
unclassifiable with DeepPoly (shown in white). Only with 1002 partitions can
DeepPoly effectively approximate the decision boundaries, although it is still
quite imprecise.

By contrast, SyReNN can be used to exactly determine the decision bound­
aries on any 2D polytope subset of the input space, which can then be plotted.
This is shown in Figure 4a. Furthermore, as shown in Table 1, the approach
using SyReNN is significantly faster than that using DeepPoly, even as we get
the precise answer instead of an approximation. Such visualizations can be par­
ticularly helpful in identifying issues to be fixed using techniques such as those
in Section 8.3.

Implementation. The helper class PlanesClassifier is provided by our
Python client library. It takes as input a DNN / and an input region X, then
computes the decision boundaries of / on X.

The MNIST and CIFAR-10 DNNs used are from the FRAN project [1],
and more details about the models are available on the FRAN repository. For
example, the MNIST 3 x 100 model has three layers and 210 nodes, while the
MNIST 9 x 200 model has nine layers with 1610 nodes. The AC AS Xu networks
have 300 nodes each [36].

24 M. Sotoudeh, Z. Tao and A. Thakur

Table 1: Comparing the performance of DNN visualization using SyReNN versus
DeepPoly for the AC AS Xu network [35]. / size is the number of partitions
in the symbolic representation. SyReNN time is the time taken to compute /(A-
using SyReNN. DeepPoly[k] time is the time taken to compute DeepPoly for
approximating decision boundaries with k partitions. Each scenario represents a
different two-dimensional slice of the input space; within each slice, the heading
of the intruder relative to the ownship along with the speed of each involved
plane is fixed.

Scenario f\x size SyReNN time (secs)

DeepPoly time (secs)

k = 252 k = 552 k = 1002

Head-On, Slow 33200 0.09 26.7 127.9 421.7
Head-On, Fast 30769 0.09 25.2 119.7 394.1
Perpendicular, Slow 37251 0.12 26.7 127.0 418.9
Perpendicular, Fast 33931 0.09 24.9 118.3 389.7
Opposite, Slow 36743 0.10 27.8 132.4 436.9
Opposite, Fast 38965 0.11 27.1 129.1 425.1
-Perpendicular, Slow 36037 0.09 27.4 130.5 430.0
-Perpendicular, Fast 33208 0.09 25.1 119.9 394.6

Performance evaluation. Timing comparisons are given in Table 1. We see
that SyReNN is quite performant, and the time taken to compute the exact
SyReNN is negligible even comparing with the coarsest approximation from
DeepPoly using 252 partitions. Experiments were performed on an Intel Core
i9-9960X with 32 cores at 4.4GHz and 128GB of memory.

8.2 Visualization of Decision Boundaries for Image Recognition
Networks

This section compares the performance of the ordered ExtendPWL (Algo­
rithm 2) implemented on CPU against the batched ExtendPWL (Algorithm 4)
implemented on both CPU and GPU, in visualization tasks for larger image
recognition networks including MNIST and CIFAR-10. Table 2 shows the pre­
trained models we used from ERAN [1], All models only use the ReLU activation
function. The models labeled with m x n are fully-connected feed-forward neu­
ral networks with m layers in total, n neurons at each hidden layer. MNIST
ConvSmall is a four-layer convolutional network with 3,604 neurons. The input
plane we chose to visualize for all MNIST networks or all CIFAR-10 networks
are the same respectively. The MNIST networks take as input a 28 x 28 image
of a handwritten digit embedded in a 784-dimensional input space, and predict
the digit. The CIFAR-10 DNNs take as input a 32 x 32 color image embedded
in a 3,072-dimensional input space, and predict one of ten labels including “air­
plane” , “bird”, “dog”, etc. Figure 5 visualizes the decision boundaries of four
MNIST networks over the same input plane (which correspond to the first four

SyReNN: A Tool for Analyzing Deep Neural Networks 25

(c) ReLU 6 x 500 (d) ReLU ConvSmall

Fig. 5: Visualization of decision boundaries for the MNIST networks.

rows in Table 3). The diagrams present the classified input planes computed
using SyReNN in its two-dimensional subspace. Every point inside the triangle
formed by the three input images represents an image interpolated from the
three vertex images, while the color indicates the classification.

Performance evaluation. All experiments were performed on an Intel Core
i9-9960X with 32 cores at 4.4GHz with 128GB of memory and Titan RTX with
24GB of GPU memory.

Table 3 shows the total time taken to compute SyReNN using different imple­
mentations of ExtendPWL. The Ordered-CPU column uses the Ordered Ex-
tendPWL algorithm (Algorithm 2) on a CPU; the Batched-CPU and Batched-
GPU columns use the Batched ExtendPWL algorithm (Algorithm 4) on a CPU
and a GPU, respectively. All three implementations exploit multi-threading on
CPU; additionally Batched-GPU exploits CUBA on GPU.

For all but the smallest two networks (MNIST 3 x 100 and CIFAR-10 4 x 100),
Batched-GPU is significantly faster than Ordered-CPU. For those two small
networks the total SyReNN time is negligible; the slowdown of Batched-GPU
could be attributed to the overhead of using the GPU (e.g., kernel launch time).

26 M. Sotoudeh, Z. Tao and A. Thakur

Table 2: Pretrained MNIST and C-IFAR-10 models used to evaluate the perfor­
mance of DNN visualization using different implementations. f\X is the number
of partitions in the symbolic representation. #Neurons is the number of neurons.
#Split is the number (in millons) of calls to SplitPlane in batched ExtendPWL
Algorithm 4.

Model #Neurons fix #Split

3x100 210 7,852 0.5M

MNIST 6 x
1,610 460,236 227M
3,000 665,990 607M

ConvSmall 3,604 430,502 530M

4x100 410 37,682 4M
CIFAR-10 9 x 200 1,810 1,523,301 814M

6x500 3,000 295,888 248M

Except for MNIST 9 x 200 network, Ordered-C-PU outperforms Batched-
CPU. Batched-CPU and Ordered-C-PU should have the same performance in
computing linear layers. Thus, one can infer that the slowdown of Batched-C-PU
can be attributed to the poor performance of Batched ExtendPWL (Algo­
rithm 4) compared to that of Ordered ExtendPWL (Algorithm 2). Specifically,
the implementation of Ordered ExtendPWL uses pipeline parallelism, which
is better suited for the CPU. In contrast, the batched parallelism in Batched
ExtendPWL is ill suited for the CPU. Consequently, we see that the Batched-
GPU is significantly faster than Batched-CPU.

Table 4 shows the time spent in ExtendPWL when computing SyReNN.
The Ordered-C-PU column uses the Ordered ExtendPWL algorithm (Algo­
rithm 2) on a CPU; the Batched-CPU and Batched-GPU columns use the
Batched ExtendPWL algorithm (Algorithm 4) on a CPU and a GPU, re­
spectively. For all but the smallest two networks (MNIST 3 x 100 and C-IFAR-10
4 x 100), Batched-GPU is significantly faster than Ordered-C-PU. Thus, we can
conclude that the speedup of SyReNN when using Batched-GPU compared to
Ordered-C-PU (as seen in Table 3) cannot only be attributed to the fact that the
computation of the linear layers is significantly faster on a GPU owing to faster
matrix multiplications; the use of the Batched ExtendPWL plays an important
role in achieving the speedup.

8.3 Provable Repair of DNNs

We have so far seen how SyReNN can be used to analyze trained DNNs and
better understand their behavior. A natural next step is to repair DNNs to
remove buggy behavior. In this section, we briefly describe Provable Repair of
DNNs [561, and show how SyReNN forms a key component of Provable Polytope
Repair of DNNs.

SyReNN: A Tool for Analyzing Deep Neural Networks 27

Table 3: Total time for computing /gy of X using SyReNN for image recognition
networks. The parenthesized number is speed up comparing to Ordered-C-PU.

Model SyReNN time (sec)

Ordered-CPU Batched-CPU Batched-GPU

3x100 0.03 0.05 (0.60x) 0.07 (0.43x)
MNIST 9 X 200 5.40 2.12 (2.55x) 1.76 (3.07x)

6 x 500 78.27 122.86 (0.64x) 3.70 (21.15x)
ConvSmall 9.12 94.69 (0.10x) 4.04 (2.26x)

4x100 0.13 0.20 (0.65x) 0.17 (0.76x)
CIFAR-10 9 x 200 25.28 43.12 (0.59x) 4.70 (5.37x)

6x500 19.60 41.04 (0.48x) 1.92 (10.20x)

Table 4: Total time spent in ExtendPWL when computing /gy of X using
SyReNN for image recognition networks. The parenthesized number is speed up
comparing to Ordered-C-PU.

Model ExtendPWL time (sec)

Ordered-CPU Batched-CPU Batched-GPU

3x100 0.02 0.05 (0.40x) 0.07 (0.29x)
MNIST 9 X 200 3.12 1.90 (1.64x) 1.76 (1.77x)

6 x 500 10.80 63.47 (0.17x) 3.70 (2.92x)
ConvSmall 7.80 93.61 (0.08x) 3.99 (1.95x)

4x100 0.10 0.18 (0.56x) 0.17 (0.59x)
CIFAR-10 9 x 200 17.43 35.83 (0.49x) 4.70 (3.71x)

6x500 2.30 26.43 (0.09x) 1.92 (1.20x)

Traditional methods for fixing DNNs involve simply re-training the DNN
while focusing on the identihed-buggy points. However, this approach has a
number of issues. First, it does not provide any guarantees that a repair will be
found. This is exacerbated by the many hyperparameters involved with DNN
re-training, so the user must try many combinations hoping that one works.
Second, even if a repair is found, it does not provide any guarantee that this is
the smallest, repair — indeed, DNNs often over-correct, forgetting things they
learned earlier, causing drawdown, or a degradation of accuracy on the original
dataset after re-training. Finally, re-training operates inherently on finitely many
input points at a time, whereas we often want to guarantee a DNN’s behavior
on infinitely many inputs, as described below.

Point-wise Repair. The simplest setting for repair is what we call point-wise
repair. In the image recognition case, pointwise repair consists of correcting the
DNN so it assigns the correct classification to every one of a set of finitely
many input images. For example, [29] describes a dataset of Natural Adversarial

28 M. Sotoudeh, Z. Tao and A. Thakur

Fig. 6: Natural adversarial example [29] Fig. 7: Fog-corrupted digit [45]

Examples, i.e., challenging images that many state-of-the-art image recognition
models fail to correctly classify. An example of such an image is given in Figure 6.
We can use provable pointwise repair to find a minimal modification to a given
DNN that causes it to correctly classify those images.

The key theory behind pointwise DNN repair we will use was developed
in [56]. In that work, we consider the satisfiability problem corresponding to the
single-layer pointwise DNN repair. In essence, we can describe the DNN’s output
as an equation in terms of the input points and the weights of the DNN. We then
want to solve these equations for the weights that produce the desired outputs
on the given inputs. The key source of non-linearity is that, even if the input
is fixed, changing a weight in the DNN can change which nodes are activated
or inactivated, i.e., more generally, which linear region each of the intermediate
vectors in the DNN’s evaluation falls into.

To address this, [56] introduced a new DNN architecture called Decoupled
DNNs (DDNNs), where there are two sets of weights: the activation weights and
the value weights. The former have sole control over which nodes are activated,
while the latter have sole control over what the nodes output if they are activated.
Once the weights are decoupled in this manner, we see that changing the value
weights alone will never change which nodes are activated or inactivated, and
this turns out to be enough to make the single-layer repair problem linear (thus
solvable in polynomial time) for DDNNs. This is summarized by the following
theorem, reproduced from [56]:

Theorem 6. Let N be a DDNN with layers (I.Fl0-4)^) and fix an
index j. Then, for any v, N(v) varies linearly as a function of I-F^O).

Fortunately, there is a simple, syntactic procedure to convert any DNN into
an equivalent DDNN. Thus, we can take the user-provided DNN, convert it to
a DDNN, and then repair the DDNN as a linear programming problem using
off-the-shelf solvers such as Gurobi [26].
Polytope Repair. A more challenging setting for repair is polytope repair. For
this, we consider an image classifier that has been trained to correctly recognize
digits in clear images, and want to modify this classifier so it also correctly
classifies foggy variants of those images (Figure 7). The key is that we want to
ensure it works no matter the level of fog corruption applied. In pixel space, a
single image forms a point and the set of all foggy variants of that image forms
a line segment, with each point on the line segment corresponding to the image
with some percent of fog applied. We can use provable polytope repair to find a

SyReNN: A Tool for Analyzing Deep Neural Networks 29

minimal modification to a given DNN that causes it to classify all of the points
on those lines correctly.

The key result we need for polytope repair of DDNNs was presented in [56]:

Theorem 7. Let N be a PWL DNN with layers {W^\ <rW) and define a DDNN
M with layers a^). Then, within any linear region of the DNN
N, the DDNN M is also linear.

This theorem states that modifications to the value weights in a DDNN do not
change the partitioning of the SyReNN for the DDNN. Recall further that, by
definition, the DDNN behaves linearly within each SyReNN partition, and due
to properties of linear maps, we can say that the entire partition satisfies some
linear constraint if and only if its finitely many vertex points do. Thus, as these
partitions do not change during repair for a DDNN, provable polytope repair
reduces to provable pointwise repair on the finitely many vertices of the linear
regions. The key is that one must compute those vertex points, but this is exactly
what SyReNN allows us to do.

Case Studies. Here we report on three case studies from [56]. In the first,
Provable Repair was used to repair an image-recognition network that struggled
to classify a set of challenging images. In the second, Provable Repair was used to
repair a digit-recognition network that struggled to classify images with varying
amounts of fog applied. Finally, the third uses Provable Repair to enforce a safety
specification on the AC-AS Xu DNN seen in Section 8.1.

Implementation. The DNN Repair code is available as a separate Python
library called PRDNN that interfaces with our Python client. It takes as input
a DNN f and pairs of input region, output label X% 1% then computes a new
DNN /' which maps all points in each X.,, into Y,,.

Baseline. We compared against a baseline using fine-tuning, i.e., re-training
the DNN with the buggy inputs until they are all correctly classified. We discuss
a variety of alternative repair methods in Section 9; to our knowledge, almost
none have publicly-available implementations, none support the guarantees of
time complexity and completeness that PRDNN does, and none support provable
polytope repair.

Empirical results. Results for the challenging-images task are summarized
in Table 5. Results for the foggy-digits task are summarized in Table 6. Draw­
down is the drop in accuracy on the original dataset, while generalization is the
increase in accuracy on points that are misclassified by the buggy network in a
similar way to those repaired on.

For the aircraft collision-avoidance task, Provable Polytope Repair succeeded
in under 22 seconds, with zero drawdown and 95% generalization. Meanwhile,
the fine-tuning baseline timed out after over 1 hour, and had negative efficacy;
while the original network misclassified only 3 points in the sampled repair set,
the FT-repaired network misclassified 181 points; 12% drawdown; and 96% gen­
eralization.

30 M. Sotoudeh, Z. Tao and A. Thakur

Table 5: Summary of experimental results for task 1. D: Drawdown (%), T:
Time, BD: Best Drawdown, PR: Provable Repair, FT: Fine-Tuning baseline.

Points

PR (BD) FT[1] FT [2]

D T D T D T

100 3.6 lm39.0s 10.2 4m31.8s 8.2 9m24.0s
200 1.1 2m50.8s 9.6 12ml 9.5s 9.6 26m35.0s
400 5.1 4m45.3s 13.8 34m2.6s 11.1 Ili9m26.8s
752 5.3 8m28.1s 15.4 Ih22ml8.7s 13.4 2h33m8.2a

Table 6: Summary of experimental results for task 2. D: Drawdown (%), G:
Generalization (%), T: Time, PR: provable repair, FT: fine-tuning baseline. *
means fine-tuning diverged and timed out after 1000 epochs, the results shown
are from the last iteration of fine-tuning before the timeout.

PR (Layer 2) PR (Layer 3) FT[1] FT [2]

Lines Points D G T D G T D G T D G T

10 1730 1.3 30.7 2m 5.7 32.1 2s 56.0 4.2 0.4a 8.3 27.5 0.6a
25 4314 1.8 35.5 3m 5.5 38.3 4s 36.5 22.4 Is 3.8 51.0 0.4a
50 8354 2.6 38.3 4m 5.9 44.5 8s 85.2* -8.2* 30m* 4.7 55.8 0.8a
100 16024 2.4 42.9 11m 5.9 46.0 18s 31.4 37.7 3s 3.2 60.0 2a

8.4 Integrated Gradients

A common problem in the held of explainable machine learning is understanding
why a DNN made the prediction it did. For example, given an image classified
by a DNN as a ‘cat,’ why did the DNN decide it was a cat instead of, say, a dog?
Were there particular pixels which were particularly important in deciding this?
Integrated Gradients (IG) [57] is the state-of-the-art method for computing such
model attributions.

Definition 5. Given a DNN /, the integrated gradients along dimension i for
input x and baseline x' is defined to be:

+ a x (a — a/)) da. (2)

The computed value IG.fix) determines relatively how important the ith input
(e.g., pixel) was to the classification.

However, exactly computing this integral requires a symbolic, closed form
for the gradient of the network. Until [55], it was not known how to compute
such a closed-form and so IGs were always only approximated using a sampling-
based approach. Unfortunately, because it was unknown how to compute the true
value, there was no way for practitioners to determine how accurate their ap­
proximations were. This is particularly concerning in fairness applications where
an accurate attribution is exceedingly important.

SyReNN: A Tool for Analyzing Deep Neural Networks 31

In [55], it was recognized that, when X = ConvexHull({x,x'}), f\X can be
used to exactly compute IGi(x). This is because within each partition of /gy the
gradient of the network is constant because it behaves as a linear function, and
hence the integral can be written as the weighted sum of such finitely many gra­
dients.1 Using our symbolic representation, the exact IG can thus be computed
as follows:

E (3)

Where here yt,y[are the endpoints of the segment with % closer to x and yi
closest to x'.
Implementation. The helper class IntegratedGradientsHelper is provided
by our Python client library. It takes as input a DNN / and a set of (x, x')
input-baseline pairs and then computes IG for each pair.
Empirical results. In [55] SyReNN was used to show conclusively that existing
sampling-based methods were insufficient to adequately approximate the true
IG. This realization led to changes in the official IG implementation to use the
more-precise trapezoidal sampling method we argued for.
Timing numbers. In those experiments, we used SyReNN to compute f\X
for three different DNNs /, namely the small, medium, and large convolutional
models from [1], For each DNN, we ran SyReNN on 100 one-dimensional lines.
The 100 calls to SyReNN completed in 20.8 seconds for the small model, 183.3
for the medium model, and 615.5 for the big model. Tests were performed on an
Intel Core i7-7820X CPU at 3.60GHz with 32GB of memory.

9 Related Work

SyReNN Primitive. The related problem of exact reach set analysis for DNNs
was investigated in [64]. However, the authors use an algorithm that appears
to suggest explicitly enumerating all exponentially-many (2n) possible signs at
each ReLU layer. By contrast, our algorithm adapts to the actual input poly­
topes, efficiently restricting its consideration to activations that are actually
possible. Furthermore, they focus on the particular problem of reach set anal­
ysis for full-dimensional subsets of the DNN’s input domain, whereas the key
focus of SyReNN is enabling analyses such as IG, visualization, and repair that
rely on precise and efficient analysis of low-dimensional subsets of the input
domain. These differences in focus become clear in the evaluation, where the
approach of [64] takes multiple minutes to identify 1250 linear regions, while
SyReNN identifies tens of thousands of lower-dimensional linear regions in less
than a second (Section 8). Newer algorithms and representations [61] may fur­
ther improve the performance of higher-dimensional exact analysis in the future,

1 As noted in [55], this technically requires a slight strengthening of the definition of
fix which is satisfied by our algorithms as defined above.

32 M. Sotoudeh, Z. Tao and A. Thakur

however we expect techniques specialized to the low-dimensional case to continue
to be significantly faster. Thus, the choice of which approach to use is mostly
driven by application domain constraints, e.g., the applications in Section 8 were
inherently low-dimensional.

Hanin and Rolnick [28] prove theoretical properties about the cardinality of
f\x for ReLU networks, showing that |/|x| is expected to grow polynomially
with the number of nodes in the network for randomly-initialized networks.

Thrun [60] and Bastani et al.[4] extract symbolic rules meant to approximate
DNNs, which can approximate the symbolic representation /1 \-.

DNN Visualization and Understanding. Integrated Gradients was first proposed
by [57], however they used a Riemann sum approximation instead of computing
it exactly. The one-dimensional version of SyReNN [55] was the first approach
able to exactly compute IG.

The ERAN [1] tool and underlying DeepPoly [54] domain were designed to
verify the non-existence of adversarial examples. Breutel et al. [5] give an iterative
refinement algorithm for an overapproximation of the weakest precondition as a
polytope where the required output is also a polytope.

Scheibler et al. [51] verify the safety of a machine-learning controller using
the SMT-solver iSAT3, but support small unrolling depths and basic safety prop­
erties. Zhu et al. [67] use a synthesis procedure to generate a safe deterministic
program that can enforce safety conditions by monitoring the deployed DNN
and preventing potentially unsafe actions. The presence of adversarial and fool­
ing inputs for DNNs as well as applications of DNNs in safety-critical systems
has led to efforts to verify and certify DNNs [3,36,13,33,16,6,63,54,2], Approxi­
mate reachability analysis for neural networks safely overapproximates the set
of possible outputs [16,64,65,63,12,62,61].

Given polytopes in the output space, Yang et al. [66] compute the exact set
of corresponding input polytopes. Their technique is restricted to DNNs with
ReLU but supports polytopes in arbitrary-dimensional subspaces. They utilize
the facet-vertex incidence matrix (FVIM), which is a compact representation of
convex polytopes.

Provable Repair. Prior work in the area of network repair focuses on enforcing
constraints on the network during training. DiffAI [43] is an approach to train
neural networks that are certihably robust to adversarial perturbations. DL2 [14]
allows for training and querying neural networks with logical constraints.

The layer-wise repair process described in [18] is most similar to the one de­
scribed in this paper. The key advantage of our approach is the use of Decoupled
DNNs. Decoupled DNNs allow for both guaranteed polytope repair as well as
guaranteed polynomial-time pointwise repair, neither of which is guaranteed by
any other system that we are aware of. Furthermore, to our knowledge, the repair
system in [18] is not publicly available for comparison. In theory, any pointwise
repair algorithm (such as the one in [18]) could be used along with Decoupled
DNNs in order to enable polytope repair.

SyReNN: A Tool for Analyzing Deep Neural Networks 33

10 Conclusion

We presented SyReNN, a tool for understanding and analyzing DNNs. Given a
piecewise-linear network and a low-dimensional polytope subspace of the input
space, SyReNN computes a symbolic representation that decomposes the behav­
ior of the DNN into finitely many linear functions. We showed how to efficiently
compute this representation, and presented the design of the corresponding tool.
We illustrated the utility of SyReNN on three application domains: visualizing
the behavior of DNNs, repairing DNNs, and computing exact IG.

In contrast to prior work, SyReNN explores a unique point in the design
space of DNN analysis tools. Instead of trading off precision of the analysis
for efficiency, SyReNN focuses on analyzing DNN behavior on low-dimensional
subspaces of the domain, for which we can provide both efficiency and precision.

Acknowledgements. We thank the reviewers for their comments, which greatly
improved the quality of the paper. Matthew Sotoudeh is supported by NSF grant
DGE-1656518. This work is supported in part by NSF grant CCF-2048123 and
DOE Award DE-SC0022285.

References

1. ETH robustness analyzer for neural networks (ERAN). https://github.com/
eth-sri/eran (2019), accessed: 2019-05-01

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a
synergistic approach for analyzing neural network robustness. In: McKinley, K.S.,
Fisher, K. (eds.) Proceedings of the 40th ACM SIGPLAN Conference on Program­
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019. pp. 731-744. ACM (2019). https://doi.org/10.1145/3314221.3314614,
https://doi.org/10.1145/3314221.3314614

3. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Lee, D.D., Sugiyama,
M., von Luxburg, LL, Guyon, I., Garnett, R. (eds.) Advances in Neural Informa­
tion Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 2613-2621 (2016), http:
//papers, nips.ee/paper/6339-measuring- neural- net-robustness- with-constraints

4. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via pol­
icy extraction. In: Bengio, S., Wallach, H.M., Larochelle, LL, Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurlPS
2018, December 3-8, 2018, Montreal, Canada, pp. 2499-2509 (2018), http://papers.
nips.cc/paper/7516-verifiable-reinforcement-learning-via-policy-extraction

5. Breutel, S., Ma.ire, F., Hayward, R.: Extracting interface assertions from neural net­
works in polyhedral format. In: ESANN 2003, 11th European Symposium on Artifi­
cial Neural Networks, Bruges, Belgium, April 23-25, 2003, Proceedings, pp. 463-468
(2003), https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2003-72.pdf

6. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A uni­
fied view of piecewise linear neural network verification. In: Bengio, S., Wal­
lach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)

34 M. Sotoudeh, Z. Tao and A. Thakur

Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurlPS 2018, December 3-
8, 2018, Montreal, Canada, pp. 4795-4804 (2018), http://papers.nips.ee/paper/
7728- a- unified- view- of-piecewise- linear- neural- network- verification

7. Carlini, N., Wagner, D.A.: Audio adversarial examples: Targeted attacks on
speech-to-text. In: 2018 IEEE Security and Privacy Workshops, SP Workshops
2018, San Francisco, CA, USA, May 24, 2018. pp. 1-7. IEEE Computer Society
(2018). https://doi.org/10.1109/SPW.2018.00009, https://doi.org/10.1109/SPW.
2018.00009

8. Chen, J., Ran, X.: Deep learning with edge computing: A review. Proc. IEEE
107(8), 1655-1674 (2019). http8://doi.org/10.1109/JPROC.2019.2921977, https:
//doi.org/10.1109/JPROC.2019.2921977

9. Clung, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way,
G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M., Xie, W., Rosen, G.L.,
Lengerich, B.J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A.E., Shriku-
mar, A., Xu, J., Gofer, E.M., Lavender, C.A., Turaga, S.C., Alexandari, A.M., Lu,
Z., Harris, D.J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L.K., Segler,
M.H.S., Boca, S.M., Swamidass, S.J., Huang, A., Gitter, A., Greene, C.S.: Opportu­
nities and obstacles for deep learning in biology and medicine. Journal of The Royal
Society Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387

10. Chollet, F., et ah: Keras. https://keras.io (2015)
11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec­

tional transformers for language understanding. In: Burstein, J., Doran, C., Solorio,
T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, LTSA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171-4186. Association for Computational Linguistics (2019).
https://doi.org/10.18653/vl/nl9-1423, https://doi.org/10.18653/vl/nl9-1423

12. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwa.ri, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Munoz, C.A., Narkawicz, A.
(eds.) NASA Formal Methods - 10th International Symposium, NFM 2018, New­
port News, VA, LTSA, April 17-19, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10811, pp. 121-138. Springer (2018). https://doi.org/10.1007/978-3-
319-77935-5.9, https://doi.org/10.1007/978-3-319-77935-5_9

13. Fillers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-
6, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10482, pp. 269-
286. Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_19, https://doi.
org/10.1007/978-3-319-68167-2_19

14. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev,
M.T.: DL2: training and querying neural networks with logic. In: Chaudhuri, K.,
Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Ma­
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, LTSA. Pro­
ceedings of Machine Learning Research, vol. 97, pp. 1931-1941. PMLR (2019),
http://proceedings.mlr.press/v97 / hscherl9a.html

15. Fukuda, K., et ah: Frequently asked questions in polyhedral computation. ETH,
Zurich, Switzerland (2004)

16. Gehr, T., Mirnran, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract

SyReNN: A Tool for Analyzing Deep Neural Networks 35

interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro­
ceedings, 21-23 May 2018, San Francisco, California, USA. pp. 3-18. IEEE Com­
puter Society (2018). https://doi.org/10.1109/SP.2018.00058, https://doi.org/10.
1109/SP.2018.00058

17. Glafile, T.: C++11 fourier motzkin elimination utilities, https://github.com/
coldfix/cfme (2016)

18. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural
networks using verification. In: Albert, E., Kovacs, L. (eds.) LPAR 2020: 23rd
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Alicante, Spain, May 22-27, 2020. EPiC Series in Computing, vol. 73,
pp. 260-278. EasyChair (2020). https://doi.org/10.29007/699q, https://doi.org/
10.29007/699q

19. Gonzales, R.: Feds say self-driving Uber SUV did not recognize jaywalking
pedestrian in fatal crash. NPR https://www.npr.org/2019/ll/07/777438412/
feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
(Nov 2019), accessed: 2020-06-06

20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
/ / www.deeplearningbook.org

21. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn­
ing Representations, ICLR 2015, San Diego, CA, LTSA, May 7-9, 2015, Conference
Track Proceedings (2015), http://arxiv.org/abs/1412.6572

22. Google: grpc: A high-performance, open source universal rpc framework, "https:
//grpc.io/ (2020)

23. Google: Protocol buffers - google’s data interchange format, https://developers,
google.com/protocol-buffers/ (2020)

24. Gopinath, S., Ghanathe, N., Seshadri, V., Sharma, R.: Compiling kb-sized machine
learning models to tiny iot devices. In: McKinley, K.S., Fisher, K. (eds.) Proceed­
ings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, LTSA, June 22-26, 2019. pp. 79-95.
ACM (2019). https://doi.org/10.1145/3314221.3314597, https://doi.org/10.1145/
3314221.3314597

25. Guennebaud, G., Jacob, B., et ah: Eigen v3. http://eigen.tuxfarnily.org (2010)
26. Gurobi Optimization, LEG: Gurobi Optimizer Reference Manual (2022), https:

//www.gurobi.com
27. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network

with pruning, trained quantization and huffman coding. In: Bengio, Y., LeCun, Y.
(eds.) 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016), http:
//arxiv.org/abs/1510.00149

28. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: Chaud-
huri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, LTSA.
Proceedings of Machine Learning Research, vol. 97, pp. 2596-2604. PMLR (2019),
http://proceedings.mlr.press/v97/haninl9a.html

29. Hendry cks, D., Zhao, K., B as art, S., Steinhardt, J., Song, D.: Natural adversarial
examples. arXiv preprint arXiv:1907.07174 (2019)

30. Hern, A.: Facebook translates ’good morning’ into ’attack them’, lead­
ing to arrest. https://www.theguardiau.com/technology/2017/oct/24/
facebook-palestine-israel-translates-good-morning-attack-them-arrest (Jun
2017), accessed: 2020-06-06

36 M. Sotoudeh, Z. Tao and A. Thakur

31. Hill, K.: Wrongfully accused by an algorithm. New York Times. https://www.
nytimes.com/2020/06/24/technology/facial-recognition-arrest.html (Jun 2020),
accessed: 2020-06-06

32. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.: Artificial
intelligence in radiology. Nature Reviews Cancer p. 1 (2018)

33. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3-29.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_l, https://doi.org/10.
1007/978-3-319-63387-9_l

34. Jeannet, B., Mine, A.: Apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Ma.ler, O. (eds.) Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661-667.
Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_52, https://doi.org/
10.1007/978-3-642-02658-4^52

35. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. CoRR abs/1810.04240 (2018), http://
arxiv.org/abs/1810.04240

36. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Relu-
plex: An efficient SMT solver for verifying deep neural networks. In: Ma­
jumdar, R., Kuncak, V. (eds.) Computer Aided Verification - 29th Interna­
tional Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro­
ceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 97-117.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_5, https://doi.org/10.
1007/978-3-319-63387-9^5

37. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con­
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Pro­
cessing Systems 25: 26th Annual Conference on Neural Information Process­
ing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, LTnited States, pp. 1106-1114 (2012), http://papers.nips.ee/paper/
4824- imagenet- classification- with-deep- convolutional- neural- networks

38. Kunrar, A., Seshadri, V., Sharma, R.: Shiftry: RNN inference in 2kb
of RAM. Proc. ACM Program. Lang. 4(OOPSLA), 182:1-182:30 (2020).
https://doi.org/10.1145/3428250, https://doi.org/10.1145/3428250

39. Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P., Varma, M.: Fastgrnn:
A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In:
Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer­
ence on Neural Information Processing Systems 2018, NeurlPS 2018, December
3-8, 2018, Montreal, Canada, pp. 9031-9042 (2018)

40. Lee, D.: ITS opens investigation into Tesla after fatal crash. BBC. https://www.
bbc.co.uk/news/technology-36680043 (Jul 2016), accessed: 2020-06-06

41. Mendelson, E.B.: Artificial intelligence in breast imaging: potentials and limita­
tions. American Journal of Roentgenology 212(2), 293-299 (2019)

42. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for health-
care: review, opportunities and challenges. Briefings Bioinform. 19(6), 1236-1246
(2018). https://doi.org/10.1093/bib/bbx044, https://doi.org/10.1093/bib/bbx044

SyReNN: A Tool for Analyzing Deep Neural Networks 37

43. Mirnran, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmassan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 3575-3583. PMLR (2018), http://proceedings.mlr.
press / v80/mirmanl 8b.html

44. Moosa.vi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and ac­
curate method to fool deep neural networks. In: 2016 IEEE Confer­
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las Ve­
gas, NV, LTSA, June 27-30, 2016. pp. 2574-2582. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.282, https://doi.org/10.1109/CVPR.
2016.282

45. Mu, N., Gilmer, J.: MNIST-C: A robustness benchmark for computer vision. CoRR
abs/1906.02337 (2019), http://arxiv.org/abs/1906.02337

46. Nguyen, A.M., Yosinski, J., Clune, J.: Deep neural networks are eas­
ily fooled: High confidence predictions for unrecognizable images. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, LTSA, June 7-12, 2015. pp. 427-436. IEEE Computer So­
ciety (2015). https://doi.org/10.1109/CVPR.2015.7298640, https://doi.org/10.
1109/CVPR.2015.7298640

47. ONNX: Open neural network exchange, https://onnx.ai/ (2020)
48. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (2017)
49. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Ginrelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An imperative style, high-performance deep learning library. In: Wallach,
H.M., Larochelle, H., Beygelzimer, A., d’Alche-Buc, F., Fox, E.B., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurlPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 8024-8035 (2019), http://papers.nips.ee/paper/
9015- py torch- an- imperative-style- high- performance- deep-learning- library

50. Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core pro­
cessor parallelism. ” O’Reilly Media, Inc.” (2007)

51. Scheibler, K., Winterer, L., Winuner, R., Becker, B.: Towards verification of arti­
ficial neural networks. In: Heinkel, IT., Kriesten, D., Rofiler, M. (eds.) Methoden
und Beschreibungssprachen zur Modellierung und Verihkation von Schaltungen
und Systemen, MBMV 2015, Chemnitz, Germany, March 3-4, 2015. pp. 30-40.
Sachsische Landesbibliothek (2015)

52. Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J.K., Shao, C., Mishra, A.,
Esmaeilzadeh, H.: From high-level deep neural models to fpgas. In: 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2016, Taipei,
Taiwan, October 15-19, 2016. pp. 17:1-17:12. IEEE Computer Society (2016).
https://doi.org/10.1109/MICRO.2016.7783720, https://doi.org/10.1109/MICRO.
2016.7783720

53. Singh, G., Gehr, T., Mirnran, M., Piischel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,

38 M. Sotoudeh, Z. Tao and A. Thakur

NeurlPS 2018, December 3-8, 2018, Montreal, Canada, pp. 10825-10836 (2018),
http://papers, nips, cc/paper/8278- fast-and-effective- robustness-certification

54. Singh, G., Gehr, T., Puschel, M., Vechev, M.T.: An abstract domain for certi­
fying neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1-41:30 (2019).
https://doi.org/10.1145/3290354, https://doi.org/10.1145/3290354

55. Sotoudeh, M., Thakur, A.V.: Computing linear restrictions of neural networks.
In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alche-Buc, F., Fox, E.B.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: An­
nual Conference on Neural Information Processing Systems 2019, NeurlPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 14132-14143 (2019), http:
//papers.nips.ee/paper/9562-computing-linear-restrictions-of-neural-networks

56. Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI). ACM (2021)

57. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, vol. 70, pp. 3319-3328. PMLR (2017),
http://proceedings, nrlr. press / v70/sundarara j anl 7 a. html

58. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethink­
ing the inception architecture for computer vision. In: 2016 IEEE Confer­
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las Ve­
gas, NV, LTSA, June 27-30, 2016. pp. 2818-2826. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.308, https://doi.org/10.1109/CVPR.
2016.308

59. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y.
(eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014),
http://arxiv.org/abs/1312.6199

60. Thrun, S.: Extracting rules from artihcal neural networks with distributed repre­
sentations. In: Tesa.uro, G., Touretzky, D.S., Been, T.K. (eds.) Advances in Neural
Information Processing Systems 7, [NIPS Conference, Denver, Colorado, LTSA,
1994]. pp. 505-512. MIT Press (1994)

61. Tran, H., Lopez, D.M., Musa.u, P., Yang, X., Nguyen, L.V., Xiang, W., John­
son, T.T.: Star-based reachability analysis of deep neural networks. In: ter
Seek, M.H., Mclver, A., Oliveira, J.N. (eds.) Formal Methods - The Next
30 Years - Third World Congress, EM 2019, Porto, Portugal, October 7-11,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11800, pp. 670-686.
Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_39, https://doi.org/
10.1007/978-3-030-30942-8_39

62. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analy­
sis of neural networks using symbolic intervals. In: Buck, W., Felt, A.P. (eds.)
27th LTSENIX Security Symposium, LTSENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. pp. 1599-1614. LTSENIX Association (2018), https:
/ / www.usenix.org/conference/usenixsecurityl8/presentation/ wang-shiqi

63. Weng, T., Zhang, LL, Chen, LL, Song, Z., Hsieh, C., Daniel, L., Boning, D.S.,
Dhilion, I.S.: Towards fast computation of certified robustness for rein networks.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmassan, Stockholm, Sweden, July

SyReNN: A Tool for Analyzing Deep Neural Networks 39

10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273-5282.
PMLR (2018), http://proceedings.mlr.press/v80/wengl8a.html

64. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety verifi­
cation for neural networks with rein activations. CoRR abs/1712.08163 (2017),
http: / / arxiv. org/ abs /1712.08163

65. Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable set es­
timation and safety verification for piecewise linear systems with neu­
ral network controllers. In: 2018 Annual American Control Conference,
ACC 2018, Milwaukee, WI, USA, June 27-29, 2018. pp. 1574-1579. IEEE
(2018). https://doi.org/10.23919/ACC.2018.8431048, https://doi.org/10.23919/
ACC.2018.8431048

66. Yang, X., Johnson, T.T., Tran, H., Yamaguchi, T., Hoxha, B., Prokhorov, D.V.:
Reachability analysis of deep rein neural networks using facet-vertex incidence.
In: HSCC ’21: 24th ACM International Conference on Hybrid Systems: Com­
putation and Control, Nashville, Tennessee, May 19-21, 2021. pp. 18:1-18:7.
ACM (2021). https://doi.org/10.1145/3447928.3456650, https://doi.org/10.1145/
3447928.3456650

67. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis frame­
work for verifiable reinforcement learning. In: McKinley, K.S., Fisher, K. (eds.)
Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan­
guage Design and Implementation, PLDI 2019, Phoenix, AZ, LTSA, June 22-
26, 2019. pp. 686-701. ACM (2019). https://doi.org/10.1145/3314221.3314638,
https://doi.org/10.1145/3314221.3314638

68. Ziegler, G.M.: Lectures on polytopes, vol. 152. Springer Science & Business Media
(2012)

