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Abstract—We characterize upper and lower bounds for the
covert capacity of lossy thermal-noise bosonic channels when
measuring covertness using fidelity and trace distance. Although
we fall short of characterizing the exact covert capacity, we
also provide bounds on the number of secret-key bits required
to achieve covertness. The bounds are established by combin-
ing recent quantum information theory results in separable
Hilbert spaces, including position based coding (Oskouei et al.,
arXiv: 1804.08144 [1]), convex splitting (Khatri et al., arXiv:
1910.03883 [2]), and perturbation theory (Grace and Guha,
arXiv: 2106.05533 [3]).

I. INTRODUCTION

As quantum communications leap out of the lab [4], [5],
there has been much interest in exploiting and demonstrating
every advantage that quantum communications offer over clas-
sical ones. A prime example of such advantage is the ability
to exploit the innate uncertainty of quantum measurements
to achieve security levels beyond those that classical systems
can offer. In particular, there has been tremendous progress in
quantum key distribution showing the possibility of generating
provably secret keys against quantum adversaries [6]-[8].
Most recently, the problem of ensuring low-probability of de-
tection, also known as covertness, against quantum adversaries
has been investigated [9].

Unlike reliable communications for which the number of
reliable bits transmitted scales linearly with the number of
channel uses, covert communications impose a sublinear scal-
ing known as the square-root law [10]. This constraint is
similar to what is known in steganography [11]. One can define
an appropriate notion of covert capacity [12], [13], which is
now known for a wide range of channels, including point-to-
point discrete memoryless channels [12], [13], multiple access
channels [14], some broadcast channels [15], interference
channels [16], MIMO channels [17], [18], classical quantum
channels [19], [20] and most recently bosonic channels [21],
[22]. A subtle but crucial aspect in the definition of covert
capacity is that it depends on the choice of covertness met-
ric [23]. In particular, while using quantum relative entropy
as a covertness metric offers convenient analytical tractability,
detection performance is fundamentally related to the trace
distance. In the classical case, the covert capacity under a trace
distance metric, which then reduces to a total variation metric,
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is known [18], [23], [24]. The extension of these results to the
quantum realm still poses challenges.

We make progress towards characterizing the covert capac-
ity of lossy thermal-noise bosonic channels under a trace dis-
tance covertness metric by analyzing covertness using fidelity.
In particular, we exploit the known relations between trace
distance, fidelity, and quantum relative entropy of two density
matrices p and o [25]:

1
1= VF(p,0) < 5l =0l < V1= F(p,0) < VDo) -
(D

These inequalities suggest fidelity is a natural intermediate
between quantum relative entropy and trace distance. In ad-
dition, fidelity simultaneously offers analytical tractability for
product states like the quantum relative entropy and retains the
properties of a distance (through the purified distance) like the
trace distance.

After a brief review of notation in Section II, we introduce
our model and discuss our main results in Section III. We
offer concluding remarks in Section IV and sketch proofs in
Section V.

II. NOTATION

We use logarithms with base e. Let D(H) denote the set
of density operators acting on a separable Hilbert space H,
let D¢ () denote the set of subnormalized density operators
with trace less than 1. The trace distance between two states
p and o is defined as 3| p — ol|;, where |o||; £ tr (VoTo).
The fidelity for p,0 € D(H) is defined as F(p,0) =
H\/ﬁ\/EHi The purified distance for p,o € D (H) is defined
as P(p,0) £ \/1-F(p®[1—tr(p)],0 & [l —tr (0)]). The
hypothesis testing relative entropy of p,o € D(H) is defined
as [26]

inf

De £ ]
H(p || U) 0g OKIIL e (IIp) >1—€

tr (Tlo) .

The hypothesis testing mutual information is defined
as Ig(A; B), £ Df(pas | pa® pp). The max relative
entropy of p,0 € D¢(H) such that supp (p) C supp (o) is
defined as [27] D, (pllo) = inf{AeR:p<eio}.
The e-smooth max relative entropy is defined
as Drgﬁax(p ” 0) £ infp’EBE(p) Dmax(pl ” U)’ where
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Fig. 1. Covert communication over a lossy thermal-noise bosonic channel.
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Moreover, for two integers LaJ and [lﬂ such that |a]| < [b],
we deﬁne [a,b] = {|al, |a] + ,[0] —1, [b]}; otherwise
[a, b]] (. For any € R, we also define the Q-function

Qz) £ [ re 5" dz and its inverse function Q).

III. COVERT COMMUNICATION MODEL AND MAIN
RESULTS

We consider the problem of covert communication over
multiple uses of a single-mode lossy thermal-noise bosonic
channel C%’jgw [28], where 7 is the transmissivity and £
is the mean photon number characterizing the thermal noise.
A transmitter (Alice) attempts to reliably transmit a message
to a receiver (Bob) while avoiding detection by an adversary
(Willie).

As illustrated in Fig. 1, the channel is described by a
beamsplitter with transmissivity 7 and an environment in a
thermal bath Pk with mean photon number k, where p; =
& Jexp (<55) dala) (ol = 3 gy In) (],
{|a)}aec is a set of coherent states and {|n)},en is Fock
basis. The relations between annihilation operators at the input
and output of the channel are described by b = Vna+y/1—né
and w = /T —na + \/né.

Alice aims to transmit a uniformly-distributed message
W € [1,M] with the aid of a uniformly-distributed se-
cret key S € [1,K] only known to Bob. Specifically,
Alice’s encoder is described by a set of encoding chan-
nels {5§SV’;”LM}SEHLK]],ME[[LM]] mapping a pair (s,w) €
[1,K] x [1,M] to an n-mode state pa~(s,w). Upon ob-

. N k) \®"
serving ppn(s,w) = L4 sw pan(s,w) | at

the output of the channel, Bob uses his knowledge of the
secret key s to apply Positive Operator-Valued Measures
(POVMs) {H(Q,L }wep1,a) and obtain an estimate W of W.
Reliability is measured by the maximal average probabil-

ity of error: P, £ maxse[[LK]]IP’(/W £AW|S = s), where
PG?#umvzu%S:s>:¢r«j—H§f)pBQ.AMe

may also choose to not transmit, in which case her input state
is the n-mode vacuum state |0) (0|°".

Unlike Bob, Willie’s objective is merely to detect whether
Alice is transmitting or not based on his observation pyy» via a
hypothesis test Tyyn_, 10,11 described by a POVM {T', 1 —T'}.
In particular, Willie expects pff"fv £ p%" when there is
no transmission between Alice and Bob (null hypothesis
Hy), while he expects py» when the transmission occurs
(alternative hypothesis H1), where py» is the density operator

induced by the codebook

MK Z Z trpn (( AaBW)®n pAr (Saw)) .
s=1w=1
2)

Note that Willie knows Alice’s coding scheme but is unaware
of the specific realizations of the message and the key. Any
hypothe51s test conducted by Willie on py» satisfies 1 > a+

ﬂ >1-— 2 an
of false alarm and mlssed detection, respectively; the lower
bound is achieved by an optimal test [29, Chapter IV.2], [30
Lemma 9.1.1], and [31, Theorem 13.1.1]. Consequently, as
already pointed out in [9], [21] (see also [18], [23], [24] for
the classical case), the most natural covertness metric is the
trace distance between pngr‘}v and py~. Other metrics, such as
the quantum relative entropy or the fidelity, are merely proxies
to bound the adversary’s detector performance [21], [22].

Definition 1. An  (M,K,n,e,8) code  with
({El(;ﬁLAn} {HB" }) is both e-reliable and §-covert

pW"

, where « and 3 are the probabilities

if P. < € and inwn — pg%" < 6. The maximum number

of messages that can be transmitted by an (M,K, n,e,J)
code is denoted by M*(n,e€,d) and the covert capacity is
log M*(n, €, )

vn '
For a sequence of codes achieving the covert capacity, the
associated secret key throughput is lim,, _, o lo\%( .

A .
Coov = lim

n—oo

In the sequel, we further constrain the coding scheme
encoders to use n-mode coherent states, which essentially
precludes the use of entanglement across modes. We briefly
discuss in Section IV how to approach a more general scheme
with n-mode Gaussian states. Our main results are the follow-
ing.

Proposition IIL.2. The covert capacity of the lossy thermal-
noise bosonic channel under a trace distance covertness
constraint § is lower bounded as

2+/nk(nk + 1)

1
log(1+—-— )4
1-n ng( ﬂ—n%)

The lower bound is achieved using a secret key throughput of

2+/nk(nk + 1) (log (1 + nik) — 1% log (1 + ﬁ))Jré,

where ()t £ max(z,0).

C’COV 2

As expected, no secret key is required when n > % in

which case Bob has a better channel than Willie.



Proposition II1.3. The covert capacity of the lossy thermal-
noise bosonic channel under a trace distance covertness
constraint § when encoding is limited to n-mode coherent state
encoding is upper bounded as

o ) ()

We now briefly discuss the meaning and consequences of
the results, especially in relation with the existing charac-
terization of the covert capacity under a quantum relative
entropy metric [21], [22]. Specifically, [22, Theorem 1] shows
that under a quantum relative entropy constraint 6, the covert
capacity is

2nk(nk + 1) ( 1 )
1l 1+ — ) V6. 3
p nlog | 1+ A=k 3)

2¢/nk(nk + 1)

CvC(JV< 1777

1—

The lower bound for C,, in Proposition III.2 can be derived
from [22, Theorem 1] using the quantum Pinsker inequality.
However, our approach is to study covertness using a fidelity
metric F(pyn, pg?}fv,,,) and then exploit the inequalities in (1).
The study of fidelity as an intermediate metric is what allows
us to characterize the associated key throughput and requires a
distinct analysis. Specifically, our result exploit position based
coding [1], convex splitting [2], and perturbation theory results
for fidelity [3] in separable Hilbert spaces. Proof sketches are
given in Section V.

We next illustrate the bounds obtained for a lossy thermal-
noise bosonic channel with mean photon number £ = 20
and transmissivity n = 0.7. The covert capacity charac-
terized in [22] under a quantum relative entropy constraint
D(pwn || pSn) < 6 is denoted fp(d). Because of the
quantum Pinsker’s inequality, we have Cy > fp(202).
The achievable covert throughput under a fidelity constraint
F(ﬁwvz,p?%n) > § characterized in our proof of Proposi-
tion IIL.2 is denoted fr(d). Because of the inequalities in (1),
we have C.oy > fr(6%) and it turns out that fr(6%) =
fp(262). Finally, the upper bound on the covert capacity under

< 4 derived in

. . 1 A~ ®n
a trace distance constraint 5 ‘ Pwn — pU’W,,,‘

Proposition II1.3 is denoted by fy (8). As expected and seen
in Fig. 2, fy(8) > fr(0%) = fp(262). The gap between the
bounds converges to % — 1 as 6 — 0, which one can check
analytically and as illustrated in Fig. 3 through a plot of the
relative increase of the upper bound with respect to (w.r.t.) the

lower bound as a function of 9.

We also point out that the analysis of [22] does not subsume
the steps involved in our analysis of fidelity for the proof
of Proposition III.2 in Section V-A. In fact, because the
relation between quantum relative entropy and fidelity in (1)
is weaker than Pinsker’s inequality [25], one can only ensure
that fp(0?) < fr(6?), which is illustrated in Fig. 2. One can
check that the relative gap between fp(6%) and fr(62) w.r.t.
fp(6?) converges to /7 — 1 as § — 0, which is illustrated in
Fig. 4.
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Fig. 2. Comparison of throughputs under different covertness metrics.
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IV. CONCLUDING REMARKS

While our results fall short of establishing the covert ca-
pacity for a trace distance metric, we conjecture that our
upper bound in Proposition I1I.3 is the correct characterization,
which would give a 25% improvement. In fact, the main
weakness of our achievability proof is to rely on fidelity merely
because of its convenient factorization for product states. As
conjectured in [22], we also expect that using a Gaussian
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Fig. 4. Relative increase of the upper bound to the lower bound obtained by
quantum relative entropy through fidelity.



sy = ;\W Q! (152) would achieve the upper bound
in Proposition III.3. Indeed, the fact that thermal states are

diagonal in Fock basis simplifies the direct analysis of trace

Pt = Aty ||, in Lemma IV.1.

Lemma IV.1. The trace distance between two thermal states

Xn Xn .
Py and Pt (1—n)s, 1S

distance % ‘

Xn
pnk+(1*n)8n

1 on
|

1 2v/nk(1 + nk)

1
+0 ( \/ﬁ> : “)
Proof: The proof is similar to [23, Lemma 8] and [18,
Lemma 9]. n

The technical issues are: (i) the above Gaussian ensemble
has an uncountable alphabet C, which prevents us from using
the known results of [1] and derandomizing the code; and,
(ii) since the displaced thermal state cannot be diagonalized
in Fock basis, a direct analysis on the trace distance between
the Quadrature Phase-Shift Keying (QPSK) ensemble and a
thermal state is challenging.

Similarly, while our converse is presently claimed only
for encoding with product coherent states, we conjecture
that the result holds for general n-mode Gaussian states or
even more generally. In fact, for general n-mode Gaussian
state, one can analyze a suboptimal test by first applying
the following entanglement-breaking channel for each mode
independently: py — > tr (|m) (m| pw)®|m) (m|,, . This
operation reduces the observation into n-independent single-
mode Gaussian states. Since a single-mode Gaussian state
can be decomposed into a thermal state with a symplectic
transform and displacement, the analysis of photon-number
statistics would be more tractable. Our ongoing work is
exploring ways to consolidate the above argument and address
the aforementioned technical challenges.

V. PROOF OF MAIN RESULTS

A. Achievability

We first recall one-shot channel reliability and resolvability
results via position-based coding and convex splitting lemma.
Lemma V.1 (one-shot channel reliability and resolvability
adapted from [1], [2], [32], [33]). Fix e € (0,1), x € (0, %)
71 € (0,%), 72 € (0,%), and 73 € (0, % — 42). Then for a
bi-partite state px A and a channel G : px 4 — pxpw, there
exists a coding scheme such that

€2 _ 462
log M > Dy """ (pxp || px ® pp) — log (W) - ©
1

1
log MK < D727 (pxw || px @ pw) + 2log ()

V2
+ log (82) , (6)
V3
£7% &2 14
EM{PQV¢W¢?}<1wEdQWWpwm}<nw,
where C is the codebook.

We now specialize the above results to n-channel uses for
n sufficiently large and define the following state:

prxa® D o) laly ® ’unejm/2> <un€j”/2‘A, )
z€[0,3]

(1>

where |unej”/2> is a coherent state and u2 = s,
V/Ank(nk+1)(6—2k)2 .
mk(nk+1)(0—2r) . Essentially, the above ensemble repre-

sents (tlhen)(\)/gSK symbols used in [22]. The received states
at Bob’s and Willie’s systems therefore become p, xp £
> zeo,3) |12) (2lx ® P(1—nyk, B (y/TUn€’™/2) and p, xw =
Suepos |2 (@lx © porw (VI = Tunel™/2), respectively,
where py(a) is a displaced thermal state with mean photon
number N and displacement |a).

It then follows from [22, Lemma 1 and 2] and [2, Corollary
11] that there exists a coding scheme with

log M = nD(pn,xB | px @ pn,B)

— ’I’LV(pn,XB HpX ® p7L,B)Q71(€)

Rip, ® pr )3/
—|—(’)( (P .,XB”pX P ,B) (8)
V(pn.xBllpx © pn,B)
log MK < nD(pp,xw || px @ pn,w)
1 (K2
+\/nV (oo xwllpx @ prw)Q" (4>
Rip. 3/4
V(on,xBllpx @ pnw)
such  that Eas{P(W + W|S)} < % and
Ec{%‘ Pl — pf”{ﬁ/ ‘ } <K -— ﬁ where R(pxslpx ® pB)

is the fourth centrail moment of quantum relative entropy,
1 A ®
M =72 =73 = 5 and Pf?;}/ £ (trx (pn,xw))" "
We next show that the specific choice of w, leads to
1 ®n ®Xn
5‘ Pnw — Po,w

< \/1 —F (. A ) < 6 = 26 with
Lemma V.2.

Lemma V.2. The fidelity between QPSK ensemble p,, w and
thermal state pyjy(1—y)s, iS

)&
dnk(nk + 1)
Proof: The proof follows from the techniques developed

by [29, Chapter VI. eq(1.31)] and [21] with the perturbation

theory applied to fidelity [3, Theorem 5]. [ ]
By the above lemma and tensor product property of fidelity,

=F(pnw,pow)" =

F (pn.w Pok+(1=n)s,) = +0(s3). (10)

we immediately obtain F (Pg?/w p? [
2, (6=2r)*
1 —(0—2K)" + 5.
To identify a specific codebook, Markov’s inequality shows
that there exists a codebook C with n large enough and

ES(P(W ] W|S)) << and %’

A &1 1
Py — pn,’&/Hl S26- =,

so that % P — pg@% < 4. To control the maximal average

probability of error without affecting the covertness, we apply



the rearranging argument in [24] and [18, Lemma 10] as
follows.

Lemma V3. Suppose a code C contains K sub -
codebooks of size M such that ES(P(W;&W|5)) <

62
5
C' containing K’ sub codebooks of size M' such that
max,e[1, k] IP’(W £ZW|S = s) < e and §Hp
. In particular, M'K' = MK and log M’

and l < J. Then, there exists a code

IOOWH
= log M + O(e).

Eventually, the information quantity in (8) and (9) can be
obtained by [22, Lemma 2 and Appendix A] and

log M*(n,€,0) >
1—mn (L—nk

B \/2 nk(nk +1)n(1+2(1 —n)k)(d — 2’43)711/4
1—n

62

<og (14 ) Q74 ) + 0,
log MK (n,e,6) < 24/nk(nk + 1)log (1+n1k> Vn(d — 2k)
+ \/2\/77141(7)1@ + 1)1+ 2nk) (6 — 2kK)

2
x n'/*log (1 + nlk') Q! <Z) + O(n'/®).

Proposition III.2 follows with n — oo and & arbitrarily small.

B. Converse proof for coherent-state codebook

We now provide a converse under a trace distance metric.

We assume the codebook used by Alice is only comprised of
. . n

coherent states, i.e., each codeword has the form: ’z/J(°)> =

‘ (()> ale )> , without entanglement between modes.

Proposition V4. Consider a sequence of covert com-
munication schemes with coherent-state codebook and in-

creasing blocklength n € N* characterized by €, =
P and 5§ > ilp Swll. If lime, = 0
n—oo
and lim M = oo, then we have liminf lo\g/iw <
n—00 n—o00 n
2¢/nk(nk+1) 1 —1(1=4
1-n 7710g (1 + (1—n)k) Q ! (?) .

The proof extends techniques in [9], [10], [18], [23], [24] by
constructing a test for Willie that is sub-optimal yet powerful
enough to obtain a tight upper bound. The main idea is to show
that there cannot be too many codewords with high photon
number, for otherwise the covertness would be violated. We
start by establishing a lower bound relating the covertness
metric to the minimum received photon number of codewords
at Willie within a given code M. Consider a hypothesis testing
problem with two hypotheses Hy and H; corresponding to
two ensembles of states p0 W= pf?k” and pyn~. We define a
sub-optimal photon number detector {T',I — T'}, where T' =

Zm1+7TL2+”'+m7LZT |m1> <m2|®|m2> <m2|® ’ ®|m”> <m”|’

and the threshold 7 will be specified later. As the codewords
are n-mode coherent states with no entanglement, the re-
ceived observations are n-independent displaced thermal state
pnk(agm)). Equivalently, this test counts the photon numbers
independently for each mode, and reduces to a classical
hypothesis testing problem 7'(m™) = 1{>""" , m; > 7}.

With the photon number statistics, we then choose T =

m + nnk, where N, £ minpmem Y iy , and
use Berry Esseen Theorem to obtain
1 By + By
Nown = p20 | 21-a-p=1- 2
2 ‘pW pO’WH1 a=p vn
(I =mPA+2pk)NZ (L —=n)N.
42103/ 2 [nk(nk + 1)]3/2 2y/nnk(nk +1) )
1D

We next show that for a covert codebook C, the maximum pho-
ton number of a non-empty low-photon-number sub-codebook
is bounded. The key idea is to use (11) to analyze the
covertness [23, Lemma 12] and [18, Lemma 6].

Lemma V.5. For any covert codebook C, given a de-
creasing sequence {y,} with v, € (0,1) and lim ~, =
oo

n—
0, there exists a subset of codewords CO such that

’C(Q’ > yulCl and N9 < Ayn, where A =
QW 1 v?(1—n)>(1+2nk)
1=n Q (T - \/ﬂ[nk(nlﬂ.l)]s/z - ’Yn) , and v

depends on the channel.

The codebook C can be partitioned into K, sub-codebooks
Cs indexed by the key value s for all s € [1, K,,] such that
C= USE[[LK"]]CS’ and the size of each sub-codebook is M,,.

a sub-codebook C; satisfying ng)‘ > YnM,. Furthermore,
since the average probability of error of C; is at most €, we
have IP’(W #* /V[7|S = s) < an for the codebook ng), which
vanishes in the limit of large n upon choosing {7, }32; such
that lim = =0.

B; ?201?10’5 inequality, Holevo bound, and the fact that the
capacity of bosonic channel is additive [34],

)’(1

Let ng) 2 ¢,nCW. By the pijeonhole principle, there exists

€ @ A
-y —1<nC
vn) (\f

< yAy/log (1 e 1n)k) , (13)

where (a) follows from the fact that capacity of bosonic
channel is additive [34] and C(N, N,7n) £ g(nN+(1—n)N)—
g((1=n)N), where g(x) = (z+1)log(z+1) —z log z. Com-
bining Lemma V.5 and (13), and the fact that Yli_rhoofyn =0,
we then have

12)

.1, k)

27]\/nnk(nk+1)10g(l+m)
1-n

1_ﬁ
Tn

Q' (5

ng)’ < ) JrO(l)'

We further choose the sequence {,,} such that lim —°82» —
n—oo

0, then the result follows.
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