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Abstract—We characterize upper and lower bounds for the
covert capacity of lossy thermal-noise bosonic channels when
measuring covertness using fidelity and trace distance. Although
we fall short of characterizing the exact covert capacity, we
also provide bounds on the number of secret-key bits required
to achieve covertness. The bounds are established by combin-
ing recent quantum information theory results in separable
Hilbert spaces, including position based coding (Oskouei et al.,
arXiv: 1804.08144 [1]), convex splitting (Khatri et al., arXiv:
1910.03883 [2]), and perturbation theory (Grace and Guha,
arXiv: 2106.05533 [3]).

I. INTRODUCTION

As quantum communications leap out of the lab [4], [5],

there has been much interest in exploiting and demonstrating

every advantage that quantum communications offer over clas-

sical ones. A prime example of such advantage is the ability

to exploit the innate uncertainty of quantum measurements

to achieve security levels beyond those that classical systems

can offer. In particular, there has been tremendous progress in

quantum key distribution showing the possibility of generating

provably secret keys against quantum adversaries [6]–[8].

Most recently, the problem of ensuring low-probability of de-

tection, also known as covertness, against quantum adversaries

has been investigated [9].

Unlike reliable communications for which the number of

reliable bits transmitted scales linearly with the number of

channel uses, covert communications impose a sublinear scal-

ing known as the square-root law [10]. This constraint is

similar to what is known in steganography [11]. One can define

an appropriate notion of covert capacity [12], [13], which is

now known for a wide range of channels, including point-to-

point discrete memoryless channels [12], [13], multiple access

channels [14], some broadcast channels [15], interference

channels [16], MIMO channels [17], [18], classical quantum

channels [19], [20] and most recently bosonic channels [21],

[22]. A subtle but crucial aspect in the definition of covert

capacity is that it depends on the choice of covertness met-

ric [23]. In particular, while using quantum relative entropy

as a covertness metric offers convenient analytical tractability,

detection performance is fundamentally related to the trace

distance. In the classical case, the covert capacity under a trace

distance metric, which then reduces to a total variation metric,
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is known [18], [23], [24]. The extension of these results to the

quantum realm still poses challenges.

We make progress towards characterizing the covert capac-

ity of lossy thermal-noise bosonic channels under a trace dis-

tance covertness metric by analyzing covertness using fidelity.

In particular, we exploit the known relations between trace

distance, fidelity, and quantum relative entropy of two density

matrices Ä and Ã [25]:

1−
"
F (Ä, Ã) ⩽

1

2
∥Ä− Ã∥1 ⩽

"
1− F (Ä, Ã) ⩽

"
D(Ä ∥Ã) .

(1)

These inequalities suggest fidelity is a natural intermediate

between quantum relative entropy and trace distance. In ad-

dition, fidelity simultaneously offers analytical tractability for

product states like the quantum relative entropy and retains the

properties of a distance (through the purified distance) like the

trace distance.

After a brief review of notation in Section II, we introduce

our model and discuss our main results in Section III. We

offer concluding remarks in Section IV and sketch proofs in

Section V.

II. NOTATION

We use logarithms with base e. Let D(H) denote the set

of density operators acting on a separable Hilbert space H,

let D⩽(H) denote the set of subnormalized density operators

with trace less than 1. The trace distance between two states

Ä and Ã is defined as 1
2∥Ä− Ã∥1, where ∥Ã∥1 ≜ tr

"√
Ã Ã

�
.

The fidelity for Ä, Ã ∈ D(H) is defined as F (Ä, Ã) ≜""√Ä√Ã
""2
1
. The purified distance for Ä, Ã ∈ D⩽(H) is defined

as P (Ä, Ã) ≜
"
1− F (Ä· [1− tr (Ä)], Ã · [1− tr (Ã)]). The

hypothesis testing relative entropy of Ä, Ã ∈ D(H) is defined

as [26]

D
ϵ
H(Ä ∥Ã) ≜ − log inf

0⩽Π⩽I:tr(ΠÄ)⩾1−ϵ
tr (ΠÃ) .

The hypothesis testing mutual information is defined

as Ĩ
ϵ
H(A;B)Ä ≜ D

ϵ
H(ÄAB ∥ ÄA ¹ ÄB). The max relative

entropy of Ä, Ã ∈ D⩽(H) such that supp (Ä) ¦ supp (Ã) is

defined as [27] Dmax(Ä ∥Ã) ≜ inf
�
¼ ∈ R : Ä ⩽ e¼Ã

�
.

The ϵ-smooth max relative entropy is defined

as D
ϵ
max(Ä ∥Ã) ≜ infÄ′∈Bϵ(Ä) Dmax(Ä

′ ∥Ã), where
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Fig. 1. Covert communication over a lossy thermal-noise bosonic channel.

Bϵ(Ä) ≜ {Ã ∈ D(H) : P (Ä, Ã) ⩽ ϵ}. The ϵ-smooth max

information is defined as

Ĩ
ϵ
max(B;A)Ä ≜ inf

Ä′

AB :Ä′

AB∈Bϵ(ÄAB)
Dmax(Ä

′
AB ∥ ÄA ¹ Ä′B) .

Moreover, for two integers +a, and +b, such that +a, ⩽ +b,,

we define �a, b� ≜ {+a,, +a,+1, · · · , +b,− 1, +b,}; otherwise

�a, b� ≜ ∅. For any x ∈ R, we also define the Q-function

Q(x) ≜
�∞
x

1√
2Ã
e

−x2

2 dx and its inverse function Q−1(·).

III. COVERT COMMUNICATION MODEL AND MAIN

RESULTS

We consider the problem of covert communication over

multiple uses of a single-mode lossy thermal-noise bosonic

channel L(¸,k)
A→BW [28], where ¸ is the transmissivity and k

is the mean photon number characterizing the thermal noise.

A transmitter (Alice) attempts to reliably transmit a message

to a receiver (Bob) while avoiding detection by an adversary

(Willie).

As illustrated in Fig. 1, the channel is described by a

beamsplitter with transmissivity ¸ and an environment in a

thermal bath Äk with mean photon number k, where Äk =
1
Ãk

�
exp

"
− |³|2

k

�
d2³ |³ð ï³| =

�∞
n=0

kn

(k+1)n+1 |nð ïn| ,
{|³ð}³∈C is a set of coherent states and {|nð}n∈N is Fock

basis. The relations between annihilation operators at the input

and output of the channel are described by b̂ =
√
¸â+

√
1− ¸ê

and ŵ =
√
1− ¸â+

√
¸ê.

Alice aims to transmit a uniformly-distributed message

W ∈ �1,M� with the aid of a uniformly-distributed se-

cret key S ∈ �1,K� only known to Bob. Specifically,

Alice’s encoder is described by a set of encoding chan-

nels {E(s,w)
SW→An}s∈�1,K�,w∈�1,M� mapping a pair (s, w) ∈

�1,K� × �1,M� to an n-mode state ÄAn(s, w). Upon ob-

serving ÄBn(s, w) ≜ trW

�"
L(¸,k)
A→BW

�¹n

ÄAn(s, w)

�
at

the output of the channel, Bob uses his knowledge of the

secret key s to apply Positive Operator-Valued Measures

(POVMs) {Π(s,w)
Bn }w∈�1,M� and obtain an estimate �W of W .

Reliability is measured by the maximal average probabil-

ity of error: Pe ≜ maxs∈�1,K� P

"
�W ̸=W |S = s

�
, where

P

"
�W ̸= w|W = w, S = s

�
= tr

""
I −Π

(s,w)
Bn

�
ÄBn

�
. Alice

may also choose to not transmit, in which case her input state

is the n-mode vacuum state |0ð ï0|¹n
.

Unlike Bob, Willie’s objective is merely to detect whether

Alice is transmitting or not based on his observation ÄWn via a

hypothesis test TWn→{0,1} described by a POVM {T, I−T}.

In particular, Willie expects Ä¹n
0,W ≜ Ä¹n

¸k when there is

no transmission between Alice and Bob (null hypothesis

H0), while he expects Ä̂Wn when the transmission occurs

(alternative hypothesis H1), where Ä̂Wn is the density operator

induced by the codebook

Ä̂Wn ≜
1

MK

K�

s=1

M�

w=1

trBn

�"
L(¸,k)
A→BW

�¹n

ÄAn(s, w)

�
.

(2)

Note that Willie knows Alice’s coding scheme but is unaware

of the specific realizations of the message and the key. Any

hypothesis test conducted by Willie on ÄWn satisfies 1 ⩾ ³+

´ ⩾ 1− 1
2

"""Ä̂Wn − Ä¹n
0,W

"""
1
, where ³ and ´ are the probabilities

of false alarm and missed detection, respectively; the lower

bound is achieved by an optimal test [29, Chapter IV.2], [30,

Lemma 9.1.1], and [31, Theorem 13.1.1]. Consequently, as

already pointed out in [9], [21] (see also [18], [23], [24] for

the classical case), the most natural covertness metric is the

trace distance between Ä¹n
0,W and Ä̂Wn . Other metrics, such as

the quantum relative entropy or the fidelity, are merely proxies

to bound the adversary’s detector performance [21], [22].

Definition III.1. An (M,K, n, ϵ, ¶) code with"
{E(s,w)

WK→An}, {Π(s,w)
Bn }

�
is both ϵ-reliable and ¶-covert

if Pe ⩽ ϵ and 1
2

"""Ä̂Wn − Ä¹n
0,W

"""
1
⩽ ¶. The maximum number

of messages that can be transmitted by an (M,K, n, ϵ, ¶)
code is denoted by M∗(n, ϵ, ¶) and the covert capacity is

Ccov ≜ lim
n→∞

logM∗(n, ϵ, ¶)√
n

.

For a sequence of codes achieving the covert capacity, the

associated secret key throughput is limn→∞
logK√

n
.

In the sequel, we further constrain the coding scheme

encoders to use n-mode coherent states, which essentially

precludes the use of entanglement across modes. We briefly

discuss in Section IV how to approach a more general scheme

with n-mode Gaussian states. Our main results are the follow-

ing.

Proposition III.2. The covert capacity of the lossy thermal-

noise bosonic channel under a trace distance covertness

constraint ¶ is lower bounded as

Ccov ⩾
2
"
¸k(¸k + 1)

1− ¸
¸log

�
1 +

1

(1− ¸)k

�
¶.

The lower bound is achieved using a secret key throughput of

2
"
¸k(¸k + 1)

"
log
"
1 + 1

¸k

�
− ¸

1−¸ log
"
1 + 1

(1−¸)k

��+
¶,

where (x)+ ≜ max(x, 0).

As expected, no secret key is required when ¸ ⩾ 1
2 , in

which case Bob has a better channel than Willie.





sn =
2
√

¸k(¸k+1)

1−¸ Q−1
�
1−¶
2

�
would achieve the upper bound

in Proposition III.3. Indeed, the fact that thermal states are

diagonal in Fock basis simplifies the direct analysis of trace

distance 1
2

"""Ä¹n
n,W − Ä¹n

0,W

"""
1

in Lemma IV.1.

Lemma IV.1. The trace distance between two thermal states

Ä¹n
¸k and Ä¹n

¸k+(1−¸)sn
is

1

2

"""Ä¹n
¸k − Ä¹n

¸k+(1−¸)sn

"""
1
⩽ 1− 2Q

� √
n(1− ¸)sn

2
"
¸k(1 + ¸k)

�

+O
�

1√
n

�
. (4)

Proof: The proof is similar to [23, Lemma 8] and [18,

Lemma 9].

The technical issues are: (i) the above Gaussian ensemble

has an uncountable alphabet C, which prevents us from using

the known results of [1] and derandomizing the code; and,

(ii) since the displaced thermal state cannot be diagonalized

in Fock basis, a direct analysis on the trace distance between

the Quadrature Phase-Shift Keying (QPSK) ensemble and a

thermal state is challenging.

Similarly, while our converse is presently claimed only

for encoding with product coherent states, we conjecture

that the result holds for general n-mode Gaussian states or

even more generally. In fact, for general n-mode Gaussian

state, one can analyze a suboptimal test by first applying

the following entanglement-breaking channel for each mode

independently: ÄW �→�
m tr (|mð ïm| ÄW )¹|mð ïm|M . This

operation reduces the observation into n-independent single-

mode Gaussian states. Since a single-mode Gaussian state

can be decomposed into a thermal state with a symplectic

transform and displacement, the analysis of photon-number

statistics would be more tractable. Our ongoing work is

exploring ways to consolidate the above argument and address

the aforementioned technical challenges.

V. PROOF OF MAIN RESULTS

A. Achievability

We first recall one-shot channel reliability and resolvability

results via position-based coding and convex splitting lemma.

Lemma V.1 (one-shot channel reliability and resolvability

adapted from [1], [2], [32], [33]). Fix ϵ ∈ (0, 1), » ∈ (0, ¶2 ),

µ1 ∈ (0, ϵ2

10 ), µ2 ∈ (0, »2 ), and µ3 ∈ (0, »2 − µ2). Then for a

bi-partite state ÄXA and a channel G : ÄXA �→ ÄXBW , there

exists a coding scheme such that

logM ⩾ D
ϵ2/10−µ1

H (ÄXB ∥ ÄX ¹ ÄB)− log

�
4ϵ2

10µ21

�
, (5)

logMK ⩽ D
»/2−µ2−µ3
max (ÄXW ∥ ÄX ¹ ÄW ) + 2log

�
1

µ2

�

+ log

�
8

µ23

�
, (6)

EC,S
�
P

"
�W ̸=W |S

��
⩽ ϵ2

10 ,EC
�

1
2∥Ä̂W − ÄW ∥1

�
⩽ »− µ2,

where C is the codebook.

We now specialize the above results to n-channel uses for

n sufficiently large and define the following state:

Än,XA ≜
�

x∈�0,3�

|xð ïx|X ¹
���unejÃx/2

��
une

jÃx/2
���
A
, (7)

where
��unejÃx/2

�
is a coherent state and u2n = sn ≜√

4¸k(¸k+1)(¶−2»)2

(1−¸)
√
n

. Essentially, the above ensemble repre-

sents the QPSK symbols used in [22]. The received states

at Bob’s and Willie’s systems therefore become Än,XB ≜�
x∈�0,3� |xð ïx|X ¹ Ä(1−¸)k,B(

√
¸une

jÃx/2) and Än,XW ≜�
x∈�0,3� |xð ïx|X ¹ Ä¸k,W (

√
1− ¸une

jÃx/2), respectively,

where ÄN̄ (³) is a displaced thermal state with mean photon

number N̄ and displacement |³ð.
It then follows from [22, Lemma 1 and 2] and [2, Corollary

11] that there exists a coding scheme with

logM ⩾ nD(Än,XB ∥ ÄX ¹ Än,B)

−
�
nV (Än,XB∥ÄX ¹ Än,B)Q

−1(ϵ)

+O
�
R(Än,XB∥ÄX ¹ Än,B)

3/4

V (Än,XB∥ÄX ¹ Än,B)

�
(8)

logMK ⩽ nD(Än,XW ∥ ÄX ¹ Än,W )

+
�
nV (Än,XW ∥ÄX ¹ Än,W )Q−1

�
»2

4

�

+O
�
R(Än,XW ∥ÄX ¹ Än,W )3/4

V (Än,XB∥ÄX ¹ Än,W )

�
, (9)

such that EC,S
�
P

"
�W ̸=W |S

��
⩽ ϵ2

10 and

EC
�

1
2

"""Ä̂nW − Ä¹n
n,W

"""
1

�
⩽ »− 1√

n
, where R(ÄXB∥ÄX ¹ ÄB)

is the fourth central moment of quantum relative entropy,

µ1 = µ2 = µ3 = 1√
n

and Ä¹n
n,W ≜ (trX (Än,XW ))

¹n
.

We next show that the specific choice of un leads to

1
2

"""Ä¹n
n,W − Ä¹n

0,W

"""
1
⩽

�
1− F

"
Ä¹n
n,W , Ä¹n

0,W

�
⩽ ¶ − 2» with

Lemma V.2.

Lemma V.2. The fidelity between QPSK ensemble Än,W and

thermal state Ä¸k+(1−¸)sn is

F
�
Än,W , Ä¸k+(1−¸)sn

�
= 1− (1− ¸)2s2n

4¸k(¸k + 1)
+O(s3n). (10)

Proof: The proof follows from the techniques developed

by [29, Chapter VI. eq(1.31)] and [21] with the perturbation

theory applied to fidelity [3, Theorem 5].

By the above lemma and tensor product property of fidelity,

we immediately obtain F
"
Ä¹n
n,W , Ä¹n

0,W

�
= F (Än,W , Ä0,W )

n
⩾

1− (¶ − 2»)2 + (¶−2»)4

2 .

To identify a specific codebook, Markov’s inequality shows

that there exists a codebook C with n large enough and

ES

"
P

"
�W ̸=W |S

��
⩽ ϵ2

5 and 1
2

"""Ä̂nW − Ä¹n
n,W

"""
1
⩽ 2»− 1√

n
,

so that 1
2

"""Ä̂nW − Ä¹n
0,W

"""
1
⩽ ¶. To control the maximal average

probability of error without affecting the covertness, we apply



the rearranging argument in [24] and [18, Lemma 10] as

follows.

Lemma V.3. Suppose a code C contains K sub -

codebooks of size M such that ES

"
P

"
�W ̸=W |S

��
⩽

ϵ2

5 and 1
2

"""Ä̂nW − Ä¹n
0,W

"""
1

⩽ ¶. Then, there exists a code

C′ containing K ′ sub-codebooks of size M ′ such that

maxs∈�1,K� P

"
�W ̸=W |S = s

�
⩽ ϵ and 1

2

"""Ä̂nW − Ä¹n
0,W

"""
1
⩽

¶. In particular, M ′K ′ =MK and logM ′ = logM +O(ϵ).

Eventually, the information quantity in (8) and (9) can be

obtained by [22, Lemma 2 and Appendix A] and

logM∗(n, ϵ, ¶) ⩾

2
"
¸k(¸k + 1)

1− ¸
¸log

�
1 +

1

(1− ¸)k

�√
n(¶ − 2»)

−
�

2
"
¸k(¸k + 1)¸(1 + 2(1− ¸)k)(¶ − 2»)

1− ¸
n1/4

× log

�
1 +

1

(1− ¸)k

�
Q−1(

ϵ2

10
) +O(n1/8),

logMK(n, ϵ, ¶) ⩽ 2
"
¸k(¸k + 1)log

�
1 +

1

¸k

�√
n(¶ − 2»)

+

�
2
"
¸k(¸k + 1)(1 + 2¸k)(¶ − 2»)

× n1/4log

�
1 +

1

¸k

�
Q−1

�
»2

4

�
+O(n1/8).

Proposition III.2 follows with n→ ∞ and » arbitrarily small.

B. Converse proof for coherent-state codebook

We now provide a converse under a trace distance metric.

We assume the codebook used by Alice is only comprised of

coherent states, i.e., each codeword has the form:
��È(c)

�n
=���³(c)

1

�
¹ · · · ¹

���³(c)
n

�
, without entanglement between modes.

Proposition V.4. Consider a sequence of covert com-

munication schemes with coherent-state codebook and in-

creasing blocklength n ∈ N
∗ characterized by ϵn ≜

Pmax
e and ¶ ⩾ 1

2

"""Ä̂nW − Ä¹n
0,W

""". If lim
n→∞

ϵn = 0

and lim
n→∞

M = ∞, then we have liminf
n→∞

logM√
n

⩽

2
√

¸k(¸k+1)

1−¸ ¸log
"
1 + 1

(1−¸)k

�
Q−1

�
1−¶
2

�
.

The proof extends techniques in [9], [10], [18], [23], [24] by

constructing a test for Willie that is sub-optimal yet powerful

enough to obtain a tight upper bound. The main idea is to show

that there cannot be too many codewords with high photon

number, for otherwise the covertness would be violated. We

start by establishing a lower bound relating the covertness

metric to the minimum received photon number of codewords

at Willie within a given code M. Consider a hypothesis testing

problem with two hypotheses H0 and H1 corresponding to

two ensembles of states Ä¹n
0,W = Ä¹n

¸k and Ä̂Wn . We define a

sub-optimal photon number detector {T, I − T}, where T ≜�
m1+m2+···+mn⩾Ä |m1ð ïm2|¹|m2ð ïm2|¹· · ·¹|mnð ïmn|,

and the threshold Ä will be specified later. As the codewords

are n-mode coherent states with no entanglement, the re-

ceived observations are n-independent displaced thermal state

Ä¸k(³
(m)
i ). Equivalently, this test counts the photon numbers

independently for each mode, and reduces to a classical

hypothesis testing problem T (mn) = 1{�n
i=1mi ⩾ Ä}.

With the photon number statistics, we then choose Ä =
(1−¸)N∗

2 + n¸k, where N∗ ≜ minm∈M
�n

i=1

���³(m)
i

���
2

, and

use Berry-Esseen Theorem to obtain

1

2

"""Ä̂Wn − Ä¹n
0,W

"""
1
⩾ 1− ³− ´ ⩾ 1− B0 +B1√

n

− (1− ¸)2(1 + 2¸k)N2
∗

4
√
2Ãn3/2[¸k(¸k + 1)]3/2

− 2Q

�
(1− ¸)N∗

2
"
n¸k(¸k + 1)

�
.

(11)

We next show that for a covert codebook C, the maximum pho-

ton number of a non-empty low-photon-number sub-codebook

is bounded. The key idea is to use (11) to analyze the

covertness [23, Lemma 12] and [18, Lemma 6].

Lemma V.5. For any covert codebook C, given a de-

creasing sequence {µn} with µn ∈ (0, 1) and lim
n→∞

µn =

0, there exists a subset of codewords C(ℓ) such that��C(ℓ)
�� ⩾ µn |C| and N (c) ⩽ A

√
n, where A ≜

2
√

¸k(¸k+1)

1−¸ Q−1
"

1−¶
2 − ¿2(1−¸)2(1+2¸k)

4
√
2Ãn[¸k(¸k+1)]3/2

− µn

�
, and ¿

depends on the channel.

The codebook C can be partitioned into Kn sub-codebooks

Cs indexed by the key value s for all s ∈ �1,Kn� such that

C = ∪s∈�1,Kn�Cs, and the size of each sub-codebook is Mn.

Let C(ℓ)
s ≜ Cs ∩C(ℓ). By the pigeonhole principle, there exists

a sub-codebook Cs satisfying

���C(ℓ)
s

��� ⩾ µnMn. Furthermore,

since the average probability of error of Cs is at most ϵn, we

have P

"
W ̸= �W |S = s

�
⩽ ϵn

µn
for the codebook C(ℓ)

s , which

vanishes in the limit of large n upon choosing {µn}∞n=1 such

that lim
n→∞

ϵn
µn

= 0.

By Fano’s inequality, Holevo bound, and the fact that the

capacity of bosonic channel is additive [34],

log
���C(ℓ)

s

��� (1− ϵn

µn
)− 1

(a)

⩽ nC(
A√
n
, ¸, k) (12)

⩽ ¸A
√
nlog

�
1 +

1

(1− ¸)k

�
, (13)

where (a) follows from the fact that capacity of bosonic

channel is additive [34] and C(N,N, ¸) ≜ g(¸N+(1−¸)N)−
g((1−¸)N), where g(x) = (x+1) log(x+1)−x log x. Com-

bining Lemma V.5 and (13), and the fact that lim
n→∞

µn = 0,

we then have

log
���C(ℓ)

s

��� ⩽
2¸
√

n¸k(¸k+1)log(1+ 1
(1−¸)k )

1−¸ Q−1
�
1−¶
2

�
+O(1)

1− ϵn
µn

.

We further choose the sequence {µn} such that lim
n→∞

− log µn√
n

=

0, then the result follows.
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