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Abstract. To assess student knowledge, educators face a tradeoff be-
tween open-ended versus fixed-response questions. Open-ended questions
are easier to formulate, and provide greater insight into student learning,
but are burdensome. Machine learning methods that could reduce the as-
sessment burden also have a cost, given that large datasets of reliably
assessed examples (labeled data) are required for training and testing.
We address the human costs of assessment and data labeling using se-
lective prediction, where the output of a machine learned model is used
when the model makes a confident decision, but otherwise the model
defers to a human decision-maker. The goal is to defer less often while
maintaining human assessment quality on the total output. We refer to
the deferral criteria as a deferral policy, and we show it is possible to learn
when to defer. We first trained an autograder on a combination of histor-
ical data and a small amount of newly labeled data, achieving moderate
performance. We then used the autograder output as input to a logistic
regression to learn when to defer. The learned logistic regression equation
constitutes a deferral policy. Tests of the selective prediction method on
a held out test set showed that human-level assessment quality can be
achieved with a major reduction of human effort.
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1 Introduction

Assessment is important both for student learning and for instructors’ implemen-
tation of a curriculum. Asking students to show their reasoning through writing
is widely believed to facilitate better understanding [9], which would argue for
open-ended questions instead of fixed response ones, such as multiple choice or
true/false. But the choice between the two is heavily weighted towards fixed
response types because they can be graded automatically in little time, thus
minimizing assessment effort and maximizing timeliness. Deep learning methods
that could reduce the assessment burden also have a cost, since they depend
on large datasets of reliably assessed examples (labeled data) for training and
testing autograder models. To offset the costs of human assessment of student
work and of providing labeled data for machine learning, we present a human-in-
the-loop [15] method that also leverages transfer learning from historical data.
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The dataset used in this study was from middle school students participating
in a unit on physics. In this unit, students learned about the basic concepts in
mechanics while designing a roller coaster using a simulation. The curriculum
was designed for students to build on science knowledge, adding more concepts
as students iteratively engaged in the roller coaster design process. After each
design cycle, students wrote short answers to open-ended questions based on
the content they just learned. The questions helped teachers and researchers as-
sess students’ current understanding, as well as how they progressively learned
science ideas throughout the unit. The data was collected from a single school
from students in classes taught by three teachers. The school was situated in a
rural-suburban area in Midwestern United States. Students from rural as well as
suburban areas attended the school. Students in this district came from diverse
backgrounds representing 22 different languages. Approximately twenty two per-
cent of students in the school district identified as economically disadvantaged

Human-in-the-loop approaches include selective prediction, which uses confi-
dent decisions from a machine learned model, but otherwise defers to a human.
Recent work indicates that softmax probabilities from machine learned mod-
els can serve as a measure of relative confidence [11, 23], and that the human
decision makers perform better when they are given no information about the
model prediction [2], with the result that human effort can be offline. We refer
to the deferral criteria as a deferral policy. Using an existing high-performing
automated short answer grading (ASAG) model [13], we first train this model
on a combination of historical data and a small amount of newly labeled data,
achieving moderate accuracy. Then we compare a very simple, and therefore el-
egant, manually derived heuristic deferral policy with machine learned policies.
On a held out test set, the learned policies generalize better than the heuristic
one. Further, the learned policy has a tuning parameter to control the tradeoff
between accuracy and human effort. To our knowledge, our work is the first to
learn controllable selective prediction deferral policies.

2 Related Work

Recent machine learning for automatic short answer grading (ASAG) relies pri-
marily on deep learning, especially transformer models such as BERT [5]. Most
work trains a pipeline consisting of an encoder for the student answer and refer-
ence answer followed by a classifier layer to determine answer correctness. Two
often-used benchmark datasets are SemEval [6] and ASAP [21]. SemEval has
2-way, 3-way and 5-way correctness labels in three increasingly challenging set-
tings: unseen answers, unseen questions, and unseen domain. Using a biLSTM,
Riordan et al. [17] achieved quadratic weighted kappa of 0.77 on ASAP. On
the same dataset with a model that encodes rubric elements, Wang et al. [21]
achieved similar results. On a large, proprietary dataset from psychology, Liu et
al. [14] trained separate encoders for student and reference answers, followed by
another transformer layer to merge them, followed by a multilayer perceptron
(MLP) classifier. They achieved 0.89 accuracy against a simple logistic regres-
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sion baseline that achieved 0.83. Also on a proprietary dataset, Sung et al. [19]
achieved accuracies between 0.78 and 0.81 using BERT to separately encode the
question, and the concatenation of the student and reference answer. Saha et
al.[18] separately encoded the question, the reference answer and the student
answer using InferSent [3], and combined the three vectors with manually engi-
neered features as input to a simple classifier. On the nine SemEval tasks, their
accuracies ranged from 0.51 to 0.79. Using only the student answer and reference
answer as input, Ghavidel et al. [8] compared BERT (cased and uncased) with
XLNET on the SciEntsBank subset of SemEval, achieving SOTA accuracies. On
the full SemEval, Li et al. [13]’s work SFRN used BERT to separately encode the
question, the reference answer, and the student answer, and learned a relation
vector over the three encodings, followed by an MLP classifier. SFRN achieved
accuracies on SemEval from 0.40 to 0.91, and either beat the state-of-the-art or
was competitive. In particular, SFRN did far better than other approaches on the
5-way classification. Given that SFRN is superior on public datasets to the other
models examined here, we use SFRN in our selective prediction system. Mul-
tiple approaches to human-machine teams exist, including human-in-the-loop,
where humans intervene on items that are difficult for a given algorithm [15],
and algorithm-in-the-loop, which privileges human decision-makers but incorpo-
rates algorithms for efficiency or improvements in total accuracy [10]. Factors
that influence whether a human-machine team works better than either agent
alone include the type of decision-making algorithm, the level of risk of the de-
cision, the transparency of the machine decisions, and human attitudes towards
AT (e.g., automation bias) or biases (e.g., racial) [4]. Evidence suggests that for
the supervised learning classification task of assigning a correctness label, overall
accuracy can be maximized by a selective prediction approach to human-in-the-
loop AI [22]. In a selective prediction experiment on classification of images of
landscapes to detect animals to benefit wildlife in the Serengeti, Bondi et al.
[2] found that the total accuracy of a human-in-the-loop system was best with
defer-only, meaning humans are told only that the algorithm defers, rather than
showing the algorithm’s decision or confidence. That it is critical to present the
right information to humans in a human-machine team is consistent with ini-
tial experiments on human-in-the-loop essay grading [1]. Based on defer-only,
selective prediction can be developed by acquiring human decisions prior to de-
veloping the selective prediction system, which is what we do here. Hendrycks
and Gimpel [11] introduced a simple selective prediction method using the max-
imum softmax probability as the confidence estimator. Other work trained a
calibrator model on the softmax output as a selective prediction confidence [7,
12,20]. Our work is most similar to calibration methods, but relies on a weight
hyper-parameter to control accuracy and deferral rate.

3 Description of the Data

Our dataset consists of short answer responses to open-ended questions from a
middle school physics curriculum about roller coasters collected from classrooms
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of seven teachers. Responses were coded on a 3-point scale as incorrect, partially
correct, or correct. Here we describe the nine open-ended questions and their
relative difficulty for students, the coding reliability, the size of the dataset and
the labeled subset, and our historical data used in transfer learning with SFRN.

Students participated in a three to four week unit to learn about the physics
of energy transfer by designing a roller coaster in simulation. There were five labs
that in turn addressed the following conceptual relationships: initial drop height
and energy; the effect of hills on energy; mass and energy; height and speed;
mass and speed. At the end of each lab, students responded to two to five open-
ended questions along with some multiple-choice questions. There were thirteen
open-ended questions and six multiple choice questions across labs. The open-
ended questions covered nine relations among physics concepts (e.g., greater
height corresponds to more potential energy), including the law of conservation
of energy. The questions thus assessed students’ grasp of the interconnectedness
among science concepts. Our experiments used the nine open-ended questions
that assessed understanding of physics relations.

Four researchers working in two groups coded the answers as correct, par-
tially correct or incorrect. One group coded labs one and three; and the other
group coded the rest. Each group coded a randomly selected set of responses for
each lab. Inter-rater reliability (IRR) was assessed using two-way random, con-
sistency average-measures of intra-class correlations (ICCs). A 95% confidence
interval with two-tailed tests was performed. The cutoff for qualitative ratings
of agreement based on ICC values was 0.90, and for each question was 0.80.
The agreement measures for each question are displayed in the ICC column of
Table 1. To achieve reliability, the coders went through two to four rounds of
coding. Disagreements were resolved in team discussions. The coding scheme was
refined or extended in the process of making decisions for the disagreements.

The full dataset consists of 4,703 items, shown broken down by question
in Table 1. Table 1 also shows the breakdown by question for two phases of
coding;: the first phase where reliability was developed (Coding 1), and the second
phase after reliability was achieved (Coding 2). Counts per question, ICC, human
accuracy and average student score are shown for Coding 1, while Coding 2 and
Combined (Coding 1 + Coding 2) show the counts for each question and average
student score. We split Coding 1 into a train set of 408 examples to train SFRN,
and a dev set of 447 examples to evaluate SFRN and to develop deferral policies.
SFRN was trained on a combination of this small subset of the spring 2022 data,
and historical data that is described below. We use the Coding 2 data as a test
set to evaluate the deferral policies.

As shown by the average score column in Table 1, the number of questions
per lab decreased in later labs. With the exception of Lab 2, questions within
a lab generally increased in difficulty, with a trend towards greater difficulty in
later labs. The questions that were easiest for students (Labl.Q1, Lab3.Q3 and
Lab3.Q4) tended to have the highest ICC and human accuracy, but otherwise
these rankings do not correlate well. In the results section, we show differences
in selective prediction performance broken down by question.
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Table 1: A breakdown by question is shown for the full data set, the first and
second coding phases (Cod.1, Cod. 2), and the combination of the two codings
(Comb.). For Cod. 1, the table shows ICC, average human accuracy, and average
student scores. Cod. 2 and Comb. have the counts and average student scores.
The last Summary row has column totals of counts (Full, Cod.1, Cod.2), average
of averages for Hum. Acc. and Avg. Sc. columns, and the overall ICC score.

Qid Full |Cod. 1|ICC|Hum. Acc.|Avg. Sc.||Cod. 2|Avg. Sc.||Comb.|Avg. Sc.
Labl.Q1 | 539 92|0.93 0.97 1.88 56 1.68 148 1.80
Labl1.Q2 | 534 92|0.92 0.95 1.22 54 0.76 146 1.05
Lab1.Q4 | 513 92/0.92 0.92 1.12 54 0.70 146 0.97
Lab2.Q3 | 528 94/0.92 0.91 1.07 49 0.73 143 0.96
Lab2.Q4 | 514 94(0.84 0.89 1.43 50 1.00 144 1.28
Lab3.Q3 | 522 85(0.95 0.96 1.85 52 1.50 137 1.72
Lab3.Q4 | 507 85/0.94 0.94 1.72 50 1.60 135 1.67
Lab4.Q2 | 514 85/0.91 0.93 1.56 52 1.62 137 1.58
Lab5.Q2 | 532 136(0.87 0.91 1.31 50 1.46 186 1.35
Summary|4703 855(0.93 0.93 1.46 467 1.23| 1322 1.37

The historical data consists of 6,956 student responses to 33 questions drawn
from a decade of pre- and post-tests for assessment of middle school students’
understanding of relationships among physics concepts, such as how the height
of an inclined plane affects the amount of force needed to lift a load. Validity
of questions was ensured through consultation with physics experts, teachers,
and statisticians. As in our current data, questions were assessed on a 3-pt
scale, with 10-25% of each test coded independently by two researchers who
achieved at least 85% agreement, a standard metric at the time of the original
studies. As the original reliability coding is no longer available, we cannot apply
an agreement coefficient post-hoc. However, chance-adjusted agreement scores
reduce to percent agreement as chance agreement approaches zero [16], which
would hold for this data where the proportions of correct, partially correct and
incorrect were only mildly skewed (respectively 25%, 42% and 33%).

4 Methods

To produce a selective prediction system, we first trained a classifier to predict
correctness of each student response. Here we describe how we used historical
data combined with a small amount of labeled data to train the classifier (N=408;
from Coding 1 in Table 1), testing it on our dev data (N=447; also drawn from
Coding 1). Using this classifier, the SFRN output on the dev data was then
used to develop deferral policies, which we evaluated on the test data (N=467;
Coding 2). Here we describe the classifier, a heuristic deferral policy, and our
use of linear machine learning to learn deferral policies.

For the classifier, we chose the SFRN algorithm for its superior performance,
as reviewed above in section 2. In the SemEval dataset that SFRN was devel-
oped on, there are often multiple reference answers per question prompt. For
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each student response, three text strings are first encoded using BERT [5]: the
question prompt, a reference answer, and the student answer. This triple of em-
beddings is the input to a multilayer linear perceptron (MLP) that learns a
single relation vector for each reference answer for a given student answer. A
fusion relation is then learned that merges all the relation vectors for a given
student answer, which is then classified for correctness by a final learned MLP.
As well as creating the question prompts for the historical and spring 2022 data,
we also created reference answers for each correctness class. We first trained
SFRN on the historical data alone (6,956 student answers, 33 questions), then
in combination with the training subset of Coding 1. When trained only on the
historical data, SFRN had 45.86% accuracy on dev. By adding in the training
subset of the spring 2022 data, SFRN performance improved to 62.41%. This is
a substantial increase that shows the power of transfer learning, but it is still
well below average human accuracy of 93%.

Given that the softmax probability from a neural model’s output layer per-
forms well as a confidence estimator for selective prediction [11, 23], we develop
a heuristic deferral policy D based on a probability threshold 6:

1, if maxP(z) <6 1)
0, otherwise

where P(z) is the probability distribution over the three classes, 1 represents
the decision to defer, and 0 triggers use of the model decision. We test deferral
policies by retrieving the correct label when the policy says to defer.
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Fig. 1: Confusion matrix of SFRN on dev (N=447). Each cell contains the count
and three whisker plots for the probability distribution over the three classes.



Learning When to Defer 7

Fig. 1 is a confusion matrix of the SFRN predictions on dev, where each cell
has the count and whisker plots for the probabilities of the three classes. The
cells on the diagonal show that when SFRN predicts correct, it is both accurate
(89.58%) and quite certain (mean probability of correct above 0.90), but has
lower accuracy and confidence on its other predictions. The first column shows
that a single threshold of around 0.85 or so when SFRN predicts correct would
include most of the true correct, and exclude the predictions of correct that are
best to defer on. However, a single # is not obvious from this figure.

Again using SFRN output on dev, Fig. 2 shows a separate curve for each
correctness class with values of § on the x-axis and class accuracy on the y-axis.
The incorrect and partially correct curves intersect at 6=0.68 with accuracy
above 90%, but with lower class accuracy for correct. A heuristic policy with
0=0.68 applied to dev yields a total accuracy of 80%, and a low deferral rate of
30%. We report performance of this policy on the test set in the next section.

Based on the small size of the dev data for policy training, we use linear
classifiers to learn deferral policies from SFRN’s output on the dev data. We
selected logistic regression and random forest for their interpretability and good
performance. We tested a variety of feature representations, drawing from a set
of 11: SFRN probabilities for each class (P0, P1, P2), SFRN prediction (Max),
class with the next highest SFRN probability (Mid), SFRN accuracy on the
given question (SFRN-QJiff), average student score per question (stud-Qdiff),
ICC score per question (coder-Qdiff). We also tested a feature for noise injec-
tion, sampling numbers from a Gaussian distribution with mean and standard
deviation of 0.5. Max is the inverse of the proportion of each class in SFRN
output. This captures the class influence, and puts the values on the same scale
as the other features (0 to 1) for better interpretability of the learned weights.

As a proxy for a ground truth label of whether to defer, we use the SFRN
correctness to label each example as +defer if the model was incorrect and -defer
otherwise. We use a weighted cross entropy loss, where a weight hyperparameter
A on the positive class allows us to increase the weight on the decision to defer,
resulting in a higher deferral rate but also higher accuracy. In the next section
we show how accuracy and deferral rate on the test set varies with values of .

5 Results

Here we report performance of the deferral policies on the test data (N=467).
Because logistic regression (LR) models performed somewhat better than ran-
dom forest, we only discuss the LR policies. Below we present the LR training
parameters, followed by a discussion of the features that performed best. For
the best performing set of features, we then discuss how the A weight in our
loss function affects the tradeoff between accuracy and deferral rate. Then we
compare the performance of SFRN alone, the heuristic policy, and several of the
LR policies, showing that the heuristic policy does not generalize well. An LR
policy that has the same accuracy as humans has less reduction of human effort,
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Table 2: Feature sets (N=3 to 5), weights and performance for three LR models.

Learned Weights Intercept Performance
SFRN-QDiff| Max PO P1 P2 |Intercept|Accuracy|Deferral rate
NA NA ]-0.0963(0.8442(-0.8959| 5.4066 71.30 17.98
NA -13.2667| 2.6016|2.4180|-1.9343| 5.3704 75.18 21.61
-3.4324|-13.6363| 3.4137|3.5853|-1.5924| 5.9448| 77.97 24.17

however reasonable accuracy is achieved with a significant reduction of effort.
Finally, we report differences in performance across the nine questions prompts.

Using the logistic regression from the scikit learn python library, we found
good performance with the default hyperparameters, apart from assigning no
regularization penalty (versus the default L2 norm), and a high inverse regular-
ization strength C=20 versus the default of 1. Of the 11 features we experimented
with, we found that six did not contribute to model performance. We compared
multiple feature sets from the remaining five.

The five features that had an impact on performance were the SFRN pre-
diction (Max), the SFRN training accuracy on the question (SFRN-QDiff), and
the softmax probabilities (P0, P1, P2). A logistic regression deferral policy Dyr
is the learned linear equation for the log odds of the positive class (+defer):

DLR:Q+(ZW¢XFZ-)+6 (2)

where « is the intercept, F; represents the value of feature ¢ for a given input, W;
represents the learned weight for that feature, and € is the residual error. The
sign of W; indicates whether F; increases or decreases the log odds of +defer,
and higher magnitudes of W; indicate F; has greater influence.

Table 2 shows the learned weights and the performance of the LR policies for
the softmax probability features alone or in combination with other features; NA
indicates the feature was not used. The 5-feature model has the highest accuracy,
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Table 3: Accuracies and deferral rates of the heuristic and LR deferral policies
on the Dev and Test sets, compared to SFRN alone (None). For the learned
policies, we show 95% confidence intervals (CIs) on the test set, and also the
ICC score with the ground truth labels to compare with human ICC.

Dev Test
Deferral Policy|Accuracy|Def. Rate|Accuracy (95% CI) |Def. Rate (95% CI) | ICC
None 63.08 NA 61.75 (60.71, 62.85) NA 0.64
Heuristic 80.08 30.42 |76.33 (75.47, 77.38) |27.09 (26.18, 28,09) | 0.80
LR(A=1) 77.79 25.75 [77.97 (76.66, 79.28) [24.17 (22.85, 25.24) | 0.80
LR (A =0.9) 75.32 20.38 [75.82 (74.52, 77.14) {20.48 (19.04, 21.66)| 0.78
LR (A=1.1) 79.36 28.88 |79.49 (78.33, 80.71) |27.19 (25.70,28.33) | 0.82
LR (\=33) | 9529 | 66.72 |92.94 (92.38, 93.57)|65.03 (63.56, 66.43) [0.94

but also the highest (worst) deferral rate. Because we prioritize accuracy first, our
remaining results pertain to this LR. Two of the three negative features (Max,
SQRN-Qdiff) have high weights, meaning high values of these features reduce
the log odds more: the policy is increasingly less likely to defer for each next
class ordered as incorrect, partially correct, correct, and the policy is less likely
to defer when it is more accurate on the given question. It has a somewhat lower
negative weight on the probability of the correct class. The high positive weights
on PO and P1 mean that the higher the probabilities of incorrect or partially
correct, the more often the policy will defer, which is consistent with what we
saw in Fig. 1 of lower SFRN accuracies on incorrect and partially correct.

Fig. 3 shows the sensitivity of accuracy and deferral rate to values of A for
the 5-feature LR policy. For A = 1, accuracy is 77.97% with a low deferral rate of
24.17%. As X increases, the deferral rate increases faster than accuracy, meaning
that in our setting reducing human effort without reducing accuracy is very
challenging. Reducing A below 1 does not increase the accuracy.

Table 3 compares SFRN with no selective prediction, the heuristic policy,
and the 5-feature LR policy with 4 different values of . To assess variance, we
computed confidence intervals (CIs) using 200 iterations of bootstrapped samples
(with replacement) using 90% of the test data. All policies are clearly better than
the classifier on its own, showing it is possible to greatly increase the accuracy
through selective prediction at less than 100% human effort. The heuristic policy,
which had higher dev accuracy than LR A = 1, does not generalize as well to
the test set, and while the LR A = 1 policy does not have confidently better
accuracy and has equal ICC, it has a confidently lower deferral rate. Compared
to LR A = 1 policy, LR A = 1.1 is about as accurate (overlapping CIs), but has a
confidently higher deferral rate, further evidence that our setting is challenging.
For A = 3.3, the policy is as accurate as expert humans with somewhat higher
ICC (0.94 versus 0.93), at two thirds the human effort.

Because human reliability varied by question, we examined the performance
of the deferral policies broken down by question. Fig. 4a) shows that SFRN
accuracy varies a lot by question. On questions that are harder for SFRN, there
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Fig. 4: Performance broken down by question.

are also greater accuracy differences across policies, especially for Lab2_Q4. The
heuristic policy, with an overall deferral rate of 27.09%, defers most for questions
Lab1_Q2 and Lab5_Q2, and otherwise much less often. In contrast, LR A = 3.3,
which has a high overall deferral rate of 65.03%, has low deferral rates only on
questions Labl_Q1, Lab3_Q3 and Lab3_Q4.

6 Discussion and Conclusion

In this paper, we have shown it is possible to learn a selective prediction policy
that can achieve expert human accuracy and ICC, while reducing human effort.
Our immediate goal is to produce a reliable coding of our dataset of 4,703 items.
By labeling 1,322 items, we have learned a selective prediction policy LR A = 3.3
that can be expected to achieve expert human performance on the remaining
unlabeled data (N=3,381), where the expert humans would need to label 65.03%,
or 2,199 more items. In sum, experts would have labeled 3,521 items, for a 25%
reduction in human effort and expert human accuracy. In practice, we plan to
learn new LR policies where we split our combined set of 1,322 labels into 50%
for training and 50% for development. Instead of a reserved test set, we could
verify the quality by re-coding random samples after we use the new LR policy to
code the entire dataset using online hu. By retraining SFRN using the historical
data combined with 611 labeled examples instead of 408, SFRN should improve.
An LR policy learned on the remaining 611 examples should perform better
than our current LR A = 3.3 policy, given improved performance of SFRN and
a larger dataset for policy training of 611 instead of 447 (an increase of 28%).

The main limitation of our work is that it would be preferable to find a
learning method for selective prediction that can jointly optimize accuracy and
the deferral rate. Another limitation is that both classifier performance and
policy performance might have been higher if we had been able to code relatively
more of the questions that turned out to be difficult for the classifier. Future
work could investigate these two issues, as well as whether selective prediction
methods could work in the classroom, which could potentially increase timeliness
and accuracy of grading, and avoid the subjectivity of human graders.
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