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Abstract—To capture the problem of joint communication and
sensing in the quantum regime, we consider the problem of
reliably communicating over a Classical-Quantum (c-q) channel
that depends on a random parameter while simultaneously
estimating the random parameter at the transmitter through a
noisy feedback channel. Specifically, for non-adaptive estimation
strategies, we obtain an exact characterization of the optimal
tradeoffs between the rate of communication and the error
exponent of parameter estimation. As in the classical setting,
the tradeoff is governed by the empirical distribution of the
codewords, which simultaneously controls the rate of reliable
communication and the error exponent.

I. INTRODUCTION

The use of dual-purpose signal waveforms for communica-

tion and sensing is attracting growing interest, motivated in

large part by the convergence of frequencies for radar and

communication in the mmWave range [1], [2]. Accordingly,

there have been attempts at characterizing the fundamental

information-theoretic limits of joint communication and sens-

ing, with the hope of quantifying and developing insights into

the optimal tradeoffs incurred by the joint objectives.

From an information-theoretic perspective, joint communi-

cation and sensing can be modeled as communication over a

channel that depends on an unknown random parameter, in

which the objective is to not only ensure reliable communica-

tion but also accurately estimate the parameter. In this context,

the channel parameter abstracts properties of the environment,

e.g., the presence of an obstacle, that affect the communication

and this modeling allows one to leverage results on joint com-

munication and state estimation [3].1 Broadly speaking, results

obtained thus far fall into two categories. If the parameter

to estimate has independent and identically distributed (i.i.d.)

statistics and is known strictly causally at the transmitter,

the information-theoretic limits of joint communication and

sensing take the form of a rate/distortion region capturing the

tradeoff between the rate of reliable communication and the

minimum distortion incurred when estimating the channel pa-

rameter. This region has been characterized for several models,

including multi-user networks [4]–[7]. One should note that
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1In communication and information theory, the channel parameter is often
called a “state;” we will not follow this terminology to avoid confusion with
quantum states.

no prediction is possible when the channel parameter has i.i.d.

statistics, so that coding strategies are inherently open-loop and

do not exploit the estimation to adapt the communication. On

the other hand, if the parameter to estimate is a fixed parameter

taking finitely many values, the information-theoretic limits

take the form of a rate/error exponent region capturing the

tradeoff between the rate of reliable communication and the

exponential speed at which the detection error probability

decays. The open-loop region has been characterized for

discrete memoryless channels [8] (see also [9], [10] for special

cases, including Gaussian channels) and leverages insights

from controlled sensing and active hypothesis testing [11],

[12]. The previous work [8] also highlights the significant

performance gains brought by closed-loop strategies, in which

the estimation informs the communication.

The objective of our present work is to extend the study

initiated in [8] to the quantum regime. While mostly theoretical

in nature, our study is motivated by a joint communication

sensing operation at very low power, for which quantum

effects need to be accounted for. Specifically, we consider the

problem of joint quantum communication and sensing over

a c-q channel that depends on an a priori unknown random

parameter, which brings together two active lines of work in

quantum information theory. On one hand, there has been

recent interest in studying communication over c-q channel

that depends on parameters [13]. On the other hand, there

has been a regain of interest for the study of quantum state

discrimination [14]–[18]. The remainder of the paper is orga-

nized as follows. After a brief review of notation in Section II,

we formally introduce the c-q channel model of interest in

Section III. The characterization of the rate-exponent region

for open-loop strategies constitutes our main result and is given

in Section IV along with numerical examples. We develop

proof sketches in Section V.

II. NOTATION

We use logarithms with base e. For any discrete set X ,

PX is the set of all probability distributions on X . For

n ∈ N
∗, a sequence of length n is implicitly denoted by

x ≜ (x1, · · · , xn) ∈ Xn, while xi ≜ (x1, · · · , xi) ∈ X i

denotes a sequence of length i. For x ∈ Xn, p̂x denotes the

type of x, i.e., p̂x(x) = 1
n

�n

i=1 1{xi = x}. For any type

P , T n
P is the corresponding type class, i.e., the set of all

sequence x ∈ Xn such p̂x = P . Finally, PX ,n is the set



of all possible types of length n sequence on Xn. Moreover,

for two integers +a, and +b, such that +a, ⩽ +b,, we define

[a; b] ≜ {+a,, +a,+1, · · · , +b, − 1, +b,}; otherwise [a; b] ≜ ∅.

Let H be a finite-dimensional Hilbert space. Let P(H)
and D(H) be the sets of all positive operators and all den-

sity operators acting on H, respectively. Given an ensemble

E ≜ {PX , ÄxB}, we define the Holevo information Ç(E) ≜
H(ÄB) −

�
x PX(x)H(ÄxB). In particular, if E corresponds

to a c-q channel NX→B(x) with an input distribution PX ,

we also write I(PX ,NX→B) ≜ Ç(E). For Ä, Ã ∈ D(H)
and s ∈ (0, 1), the Petz-Renyi divergence [19] is defined as

Ds(Ä ∥Ã) ≜
1

s−1 log tr
�
ÄsÃ1−s

�
. For any Hermitian linear op-

erator X , {X > 0} denotes the projection onto the eigenspaces

of positive eigenvalues.

III. JOINT QUANTUM COMMUNICATION AND SENSING

MODEL

As illustrated in Fig. 1, we consider a c-q channel that

depends on a random parameter ¹ ∈ Θ described by N
(¹)
X→AB :

X → D(HA ¹ HB), where |X | < ∞ and |Θ| < ∞.

Without loss of generality, we assume the set Θ is partially

ordered. For every value of ¹ ∈ Θ, the channel maps a

classical input symbol x to a density operator Ä
x,¹
AB . The

system A captures observations obtained by the transmitter

(Alice) while the system B captures observations obtained

by the receiver (Bob). The prior probabilities {p¹}¹∈Θ of

the unknown parameter ¹ are known and ¹ is assumed fixed

during the entire transmission. The objective is for Alice to

simultaneously transmit information to Bob while estimat-

ing the unknown parameter ¹. Specifically, Alice encodes a

uniformly-distributed message W ∈ [1;M ] with a known

classical encoding function f : [1;M ] → Xn to create a

classical codeword of length n, Xn ≜ f(W ) , and transmits

Xn over the c-q channel. Alice receives the state

Ä
f(W ),¹
An ≜ trBn

�
N

(¹)¹n

X→AB(f(W ))
�

(1)

and uses a collection of Positive Operator-Valued Measures

(POVMs) {{Π
(w)
¹ }¹∈Θ}w∈[1;M ] (i.e., for every w ∈ [1;M ],

{Π
(w)
¹ }¹∈Θ is a POVM), to obtain an estimate of the chan-

nel parameter ¹̂. On the other hand, Bob uses a POVM

{Λw}w∈[1;M ] on his observations

Ä
f(W ),¹
Bn ≜ trAn

�
N

(¹)¹n

X→AB(f(W ))
�

(2)

{Π
(w)
¹ }

¹∈Θ,w∈[1;M ]

θ ∈ Θ

xn
N

(¹)
X→AB

ρ
f(w),¹
An

ρ
f(w),¹
Bn

f(w)w

�w{Λw}w∈[1;M ]

�θ

Fig. 1: Joint quantum communication and sensing model.

to obtain an estimate �W of the transmitted

message. A code C then consists of the tuple

(n,M, f, {{Π
(w)
¹ }¹∈Θ}w∈[1;M ], {Λw}w∈[1;M ]).

Remark III.1. Our code definition does not allow adaptivity,

and we refer to the coding strategy as open-loop. The study of

closed-loop strategies will be the topic of a forthcoming work.

The performance of the code is measured in terms of the

detection-error and communication-error probabilities defined

as

P ∗
e

�
{{Π

(w)
¹ }¹}w

�
≜ max

¹∈Θ
max

w∈[1;M ]
tr
�
(I−Π

(w)
¹ )Ä

f(w),¹
An

�

(3)

P (n)
c ({Λw}w) ≜ max

¹∈Θ
max

w∈[1;M ]
tr
�
(I− Λw) Ä

f(w),¹
Bn

�
, (4)

respectively. The rate and detection-error exponent are

1

n
logM and E

(n)
d ≜ −

1

n
logP ∗

e , (5)

respectively.

Definition III.2 (Achievable pair). A rate/detection-error ex-

ponent (R,E) is achievable if for every ϵ > 0, there exist a

sufficiently large n and a code C of length n such that

P (n)
c ⩽ ϵ, E

(n)
d ⩾ E − ϵ, and

1

n
logM ⩾ R− ϵ. (6)

For the analysis of the detection error, we also introduce the

average Bayesian and maximal error probabilities as follows:

Pe({p¹Ä
x,¹
An}¹; {Π¹}¹) ≜

*

¹∈Θ

tr
�
p¹Ä

x,¹
An (I−Π¹)

�
, (7)

P ∗
e ({p¹Ä

x,¹
An}¹∈Θ; {Π¹}¹) ≜ max

¹∈Θ
tr
�
p¹Ä

x,¹
An (I−Π¹)

�
. (8)

In terms of asymptotics, the error exponents of these two

probabilities are the same for n large enough, as (7) would

be asymptotically dominated by (8).

IV. MAIN RESULT

Our main result is an exact characterization of the region

of achievable rate/error-exponent pairs.

Theorem IV.1. The set of achievable rate/detection-error

exponent pairs is

�

PX∈PX





(R,E) ∈ R
2
+ :

R ⩽ min¹∈Θ I

�
PX ,N

(¹)
X→B

�

E ⩽ ϕ(PX)





with

ϕ(PX) = min
¹

min
¹′ ̸=¹

sup
s∈[0,1]

*

x

PX(x)(1− s)Ds(Ä
x,¹
A ∥Äx,¹

′

A )

and Ä
x,¹
AB = N

(¹)
X→AB(x).

As expected, the result is the direct generalization of our

result reported for classical channels in [8, Theorem 3].

As detailed in Section V-A, although the proof requires a

specific new approach relying in part on [16, Theorem 2]





For a fixed message w and its codeword f(w) = x ∈ T n
PX

,

applying Theorem V.1 to the operators

Ã¹ ≜ p¹

n�

k=1

Ä
xk,¹
A (11)

for ¹ ∈ Θ, we obtain that there exists a POVM {Π
(w)
¹ } such

that for any s ∈ [0, 1],

Pe({p¹Ä
x,¹
An}¹; {Π

(w)
¹ }¹)

⩽ f(|Θ|, T )
*

¹

*

¹′>¹

*

k,ℓ

min(p¹¼¹k, p¹′¼¹′,ℓ)tr (Q¹kQ¹′ℓ)

⩽ f(|Θ|, T )
*

¹

*

¹′>¹

*

k,ℓ

max(p¹, p¹′)¼s
¹k¼

1−s
¹′,ℓ tr (Q¹kQ¹′ℓ)

= f(|Θ|, T )
*

¹

*

¹′>¹

max(p¹, p¹′)tr
�
(Äx,¹An )

s(Äx,¹
′

An )1−s
�
.

Hence,

P ∗
e ({p¹Ä

x,¹
An}¹; {Π

(w)
¹ }¹) ⩽ Pe({p¹Ä

x,¹
An}¹; {Π

(w)
¹ }¹)

⩽ f(|Θ|, T )

�
|Θ|

2

�
max({p¹}¹∈Θ)×

max
¹

max
¹′ ̸=¹

inf
s∈[0,1]

tr
�
(Äx,¹An )

s(Äx,¹
′

An )1−s
�
.

Note that f(|Θ|, T ) < 10(|Θ| − 1)2T 2, where T in our

case will be determined by the number of different types

conditioned on the given input codeword x. Since the channel

input x is classical, one can therefore conclude that T ⩽
(n + 1)|H||X | by the type counting lemma [23, Lemma 2.2],

and it immediately follows that this bound is universal for any

choice of input x and grows polynomially with n.

From (11), we obtain

tr
�
(Äx,¹An )

s(Äx,¹
′

An )1−s
�
=

n�

k=1

tr
�
(Äxk,¹

A )s(Äxk,¹
′

A )1−s
�
.

Observe that

min
¹′

p¹′P ∗
e ({Ä

x,¹
An}¹; {Π

(w)
¹ }¹) ⩽ Pe({p¹Ä

x,¹
An}¹; {Π

(w)
¹ }¹).

Since x has type PX , we get, ∀s ∈ [0, 1]

−
1

n
logP ∗

e ({Ä
x,¹
An}¹; {Π

(w)
¹ }¹)

⩾ min
¹

min
¹′ ̸=¹

sup
s∈[0,1]

−
n*

k=1

log tr
�
(Äxk,¹

A )s(Äxk,¹
′

A )1−s
�
− ϵ

= min
¹

min
¹′ ̸=¹

sup
s∈[0,1]

−
*

u

PX(u) log tr
�
(Äu,¹A )s(Äu,¹

′

A )1−s
�
− ϵ

= min
¹

min
¹′ ̸=¹

sup
s∈[0,1]

*

u

PX(u)(1− s)Ds

�
Ä
u,¹
A ∥Äu,¹

′

A

�
− ϵ,

where we have used the fact that there exists a universal ϵ > 0
(i.e., no dependency on x) such that for n large enough,

log f(|Θ|, T )

n
+

log
�
|Θ|
2

�

n
−min

¹′

log p¹′

n
⩽ ϵ.

Thus,

−
1

n
logP ∗

e ({Ä
x,¹
An}¹∈Θ; {Π

(w)
¹ }¹∈Θ)

⩾ min
¹

min
¹′ ̸=¹

sup
s∈[0,1]

*

u

PX(u)(1− s)Ds

�
Ä
u,¹
A ∥Äu,¹

′

A

�
− ϵ.

Therefore, as we are using a constant-composition code with

type PX , E
(n)
d ⩾ ϕ(PX)− ϵ.

c) Rate/detection-error exponent region: Taking the

union over all possible PX ∈ PX and choosing ϵ > 0
arbitrarily small for n large enough, we obtain the result.

B. Converse Proof

Assume that the rate/detection-error exponent pair (R,E)
is achievable. That is, for all ϵ > 0, there exists Nϵ > 0 and

a code C with block length n ⩾ Nϵ such that

P (n)
c ⩽ ϵ, E

(n)
d ⩾ E − ϵ, and

logM

n
⩾ R− ϵ.

a) Rate analysis: We first identify a set T of types to

which exponentially and significantly many codewords of C
belong. Since the channel input X is classical, the type count-

ing lemma for classical types asserts that there are at most a

polynomial number of classical types of sequence Xn [23,

Lemma 2.2]. Then, there exists a set of types T such that, for

all PX ∈ T , the subcode CPX
≜ {f(w) : p̂f(w) = PX} ¢ C

satisfies max¹∈Θ maxw∈f−1(CPX
) tr
�
(I− Λw) Ä

¹,f(w)
Bn

�
⩽ ϵ

and
logMPX

n
> logM

n
− ¶ ⩾ R − ϵ − ¶ for some ¶ > 0

vanishing with ϵ. Fix any PX ∈ T . Let

�Pn
X(x) ≜

1

MPX

*

x̃∈CPX

1{x = x̃}.

Observe that the average type

PX(x) ≜
1

n

n*

i=1

�PXi
(x) = PX(x), (12)

where �PXi
is the i-th marginal distribution of �Pn

X . Then, for

any ¹,

(1− ϵ) logMPX
− hb (ϵ)

(a)

⩽ Ç({ �Pn
X , Ä

x,¹
Bn}) (13)

(b)

= H
�
Ä¹Bn

�
−
*

x∈Xn

�Pn
X(x)

n*

i=1

H

�
Ä
xi,¹
B

�
(14)

(c)

⩽

n*

i=1

H

�
Ä
¹,(i)
B

�
−

n*

i=1

*

xi∈X

�PXi
(xi)H

�
Ä
xi,¹
B

�
(15)

=

n*

i=1

Ç({ �PXi
, Ä

x,¹
B })

(d)

⩽ nÇ({PX , Ä
x,¹
B }), (16)

where hb (·) is the binary entropy function, (a) follows from

Fano’s inequality and the Holevo bound, (b) follows by

defining Ä¹Bn as the density operator of ensemble { �Pn
X , Ä

x,¹
Bn}

and the definition of Holevo information, (c) follows from the

subaddivity of von Neumann entropy and by defining Ä
¹,(i)
B as



the ensemble density operator of { �PXi
, Ä

xi,¹
B }, and (d) follows

from the concavity of the Holevo information in the input

distribution. Then, we obtain

logMPX

n
⩽

Ç({PX , Ä
x,¹
B }) + C

n

1− ϵ
=

I

�
PX ,N

(¹)
X→B

�
+ C

n

1− ϵ
,

(17)

where we have used (12) and hb (ϵ) ⩽ log 2 ≜ C, ∀ϵ ∈ [0, 1].
Since (17) is valid for any ϵ and ¹, the size of subcode CPX

is upper-bounded by the mutual information in a compound

channel sense, i.e.,

logMPX

n
< min

¹
I(PX ,N

(¹)
X→B) + Ä (18)

for some Ä > 0 vanishing with ϵ.

b) Reduction to a Binary Hypothesis Testing: We use

the proof technique in [15, Theorem 1] to show that, for

any sequence of POVM discriminating the M -ary hypotheses,

we can lower bound the detection error by that of a binary

hypothesis test between any pair of hypotheses.

For a sequence x ∈ Xn, consider a POVM {Πx

¹}¹∈Θ and

fix a pair of indices ¹, ¹′ ∈ Θ. For simplicity, we ignore

the dependency of the POVM on x. Let A, B ∈ P(H¹n
A )

such that A + B = I − Π¹ − Π¹′ . We construct operators
�Π¹ ≜ Π¹ + A and �Π¹′ ≜ Π¹′ + B to form a POVM for the

binary hypothesis testing for ¹ against ¹′.

We next show that the error of this binary hypothesis

test forms a valid lower bound for the original problem.

Indeed, since �Π¹ ° Π¹, we have by monotonicity that

tr
�
Ä
x,¹
An (I− �Π¹)

�
⩽ tr

�
Ä
x,¹
An (I−Π¹)

�
. Then,

Pe

�
{p¹Ä

x,¹
An}; {Π¹}¹

�
(19)

⩾ p¹tr
�
Ä
x,¹
An (I−Π¹)

�
+ p¹′ tr

�
Ä
x,¹′

An (I−Π¹′)
�

(20)

⩾ p¹tr
�
Ä
x,¹
An (I− �Π¹)

�
+ p¹′ tr

�
Ä
x,¹′

An (I− �Π¹′)
�

(21)

⩾ min{p¹, p¹′}
�

tr
�
Ä
x,¹
An (I− �Π¹)

�
+ tr

�
Ä
x,¹′

An (I− �Π¹′)
��

(22)

(a)

= min{p¹, p¹′}
�

tr
�
Ä
x,¹
An (I− �Π¹)

�
+ tr

�
Ä
x,¹′

An
�Π¹

��
, (23)

where (a) follows since {�Π¹, I− �Π¹} is a POVM by construc-

tion.

c) Reduction to classical hypothesis testing: We now

construct a lower bound on the error probability for any binary

hypothesis testing between Ä
x,¹
An and Ä

x,¹′

An . Let {Λ¹, I−Λ¹} be

any POVM for discriminating between Ä
x,¹
An and Ä

x,¹′

An . Observe

that

tr
�
(I− Λ¹)Ä

x,¹
An

�
+ tr

�
Λ¹Ä

x,¹′

An

�

⩾ 1− max
0⩽Λ⩽I

tr
�
Λ
�
Ä
x,¹′

An − Ä
x,¹
An

��
(24)

= tr
�
(I− Λ∗)Äx,¹An

�
+ tr

�
Λ∗Ä

x,¹′

An

�
, (25)

where we note that max0⩽Λ⩽I tr
�
Λ
�
Ä
x,¹′

An − Ä
x,¹
An

��
=

1
2

���Äx,¹
′

An − Ä
x,¹
An

���
1

and the optimizer Λ∗ ≜ {Äx,¹
′

An − Ä
x,¹
An > 0},

which is the Holevo-Helstrom test [24, Chapter IV.2] and [25],

is indeed a Projection-Valued Measure (PVM). Without loss

of generality, we shall develop a lower bound on the error

probability for any PVM {Γ¹, I− Γ¹}, which then also holds

for the optimal test Λ∗.

Lemma V.2. Fix ¹, ¹′ ∈ Θ. For any sequence x ∈ Xn and

any PVM {Γ¹, I − Γ¹}, we have, for any À > 0 and n large

enough,

³n + ´n ⩾

�
1

2
− À

�
×

exp

�
−n sup

s∈[0,1]

*

u

p̂x(u)(1− s)Ds

�
Ä
u,¹
A

��� Äu,¹
′

A

��
, (26)

where ³n ≜ tr
�
(I− Γ¹) Ä

x,¹
An

�
and ´n ≜ tr

�
Γ¹Ä

x,¹′

An

�
.

Proof: The proof follows from the techniques developed

in [14, Theorem 2.2] to construct a classical binary hypothesis

as a lower bound on error and [11, Appendix A] to analyze

this lower bound.

Thus, by combining (26) with (23) and (25),

Pe

�
{p¹Ä

x,¹
An}¹; {Π¹}¹

�
⩾ max

¹
max
¹ ̸=¹′

min{p¹, p¹′}

�
1

2
− À

�
×

exp

�
−n sup

s∈[0,1]

*

u

p̂x(u)(1− s)Ds

�
Ä
u,¹
A

��� Äu,¹
′

A

��
. (27)

Note that
�

¹∈Θ tr
�
p¹Ä

x,¹
An (I−Π¹)

�
⩽

max¹∈Θ tr
�
Ä
x,¹
An (I−Π¹)

�
. Then, we conclude that for

any x ∈ Xn and POVM {Π¹}¹∈Θ,

−
1

n
logP ∗

e ({Ä
x,¹
An}¹∈Θ, {Π¹}¹∈Θ)

⩽ −
1

n
logPe({p¹Ä

x,¹
An}¹∈Θ, {Π¹}¹∈Θ)

⩽ min
¹

min
¹′ ̸=¹

sup
s∈[0,1]

*

u

p̂x(u)(1− s)Ds

�
Ä
u,¹
A

��� Äu,¹
′

A

�
+ ¶

= ϕ(p̂x) + ¶.

d) Rate/detection-error exponent region: Since

for any codeword f(w) ∈ C, w ∈ [1;M ] and the

collection of POVMs {{Π
(w)
¹ }¹}w, E − ϵ ⩽ E

(n)
d =

− 1
n
logmax¹∈Θ maxw∈[1;M ] tr

�
(I−Π

(w)
¹ )Ä

f(w),¹
An

�
⩽

ϕ(p̂f(w)) + ¶. Choose now P ∗
X ∈ T such that

P ∗
X ≜ argminPX∈T ϕ(PX). We then obtain that for all

ϵ > 0, there exist Ä, ¶ > 0 vanishing with ϵ,

R ⩽ min
¹

I

�
P ∗
X ,N

(¹)
X→B

�
+ Ä + ϵ+ ¶

E ⩽ ϕ(P ∗
X) + ϵ+ ¶.

Since ϵ can be chosen arbitrarily small as the block length

goes to infinity, E is upper-bounded by ϕ(PX) and the rate is

achieved by PX for some PX ∈ PX . Taking the union over

all possible PX completes the result.
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