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Abstract—To capture the problem of joint communication and
sensing in the quantum regime, we consider the problem of
reliably communicating over a Classical-Quantum (c-q) channel
that depends on a random parameter while simultaneously
estimating the random parameter at the transmitter through a
noisy feedback channel. Specifically, for non-adaptive estimation
strategies, we obtain an exact characterization of the optimal
tradeoffs between the rate of communication and the error
exponent of parameter estimation. As in the classical setting,
the tradeoff is governed by the empirical distribution of the
codewords, which simultaneously controls the rate of reliable
communication and the error exponent.

I. INTRODUCTION

The use of dual-purpose signal waveforms for communica-
tion and sensing is attracting growing interest, motivated in
large part by the convergence of frequencies for radar and
communication in the mmWave range [1], [2]. Accordingly,
there have been attempts at characterizing the fundamental
information-theoretic limits of joint communication and sens-
ing, with the hope of quantifying and developing insights into
the optimal tradeoffs incurred by the joint objectives.

From an information-theoretic perspective, joint communi-
cation and sensing can be modeled as communication over a
channel that depends on an unknown random parameter, in
which the objective is to not only ensure reliable communica-
tion but also accurately estimate the parameter. In this context,
the channel parameter abstracts properties of the environment,
e.g., the presence of an obstacle, that affect the communication
and this modeling allows one to leverage results on joint com-
munication and state estimation [3].! Broadly speaking, results
obtained thus far fall into two categories. If the parameter
to estimate has independent and identically distributed (i.i.d.)
statistics and is known strictly causally at the transmitter,
the information-theoretic limits of joint communication and
sensing take the form of a rate/distortion region capturing the
tradeoff between the rate of reliable communication and the
minimum distortion incurred when estimating the channel pa-
rameter. This region has been characterized for several models,
including multi-user networks [4]-[7]. One should note that
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'In communication and information theory, the channel parameter is often
called a “state;” we will not follow this terminology to avoid confusion with
quantum states.

no prediction is possible when the channel parameter has i.i.d.
statistics, so that coding strategies are inherently open-loop and
do not exploit the estimation to adapt the communication. On
the other hand, if the parameter to estimate is a fixed parameter
taking finitely many values, the information-theoretic limits
take the form of a rate/error exponent region capturing the
tradeoff between the rate of reliable communication and the
exponential speed at which the detection error probability
decays. The open-loop region has been characterized for
discrete memoryless channels [8] (see also [9], [10] for special
cases, including Gaussian channels) and leverages insights
from controlled sensing and active hypothesis testing [11],
[12]. The previous work [8] also highlights the significant
performance gains brought by closed-loop strategies, in which
the estimation informs the communication.

The objective of our present work is to extend the study
initiated in [8] to the quantum regime. While mostly theoretical
in nature, our study is motivated by a joint communication
sensing operation at very low power, for which quantum
effects need to be accounted for. Specifically, we consider the
problem of joint quantum communication and sensing over
a c-q channel that depends on an a priori unknown random
parameter, which brings together two active lines of work in
quantum information theory. On one hand, there has been
recent interest in studying communication over c-q channel
that depends on parameters [13]. On the other hand, there
has been a regain of interest for the study of quantum state
discrimination [14]-[18]. The remainder of the paper is orga-
nized as follows. After a brief review of notation in Section II,
we formally introduce the c-q channel model of interest in
Section III. The characterization of the rate-exponent region
for open-loop strategies constitutes our main result and is given
in Section IV along with numerical examples. We develop
proof sketches in Section V.

II. NOTATION

We use logarithms with base e. For any discrete set X,
Px is the set of all probability distributions on X. For
n € N*, a sequence of length n is implicitly denoted by
x 2 (21, ,2,) € X", while 2° & (z1,---,2;) € &?
denotes a sequence of length i. For x € A", px denotes the
type of x, ie., px(z) = 13"  1{x; =x}. For any type
P, Tp is the corresponding type class, i.e., the set of all
sequence x € X" such py = P. Finally, Py, is the set



of all possible types of length n sequence on X™. Moreover,
for two integers |a| and [b] such that |a| < [b], we define
[a;b] £ {la],a] +1,---,[b] — 1, [b]}; otherwise [a;b] = 0.

Let 1 be a finite-dimensional Hilbert space. Let P(H)
and D(H) be the sets of all positive operators and all den-
sity operators acting on 7, respectively. Given an ensemble
& £ {Px,p%}, we define the Holevo information x(&) =
H(pp) — >, Px(x)H(pE). In particular, if £ corresponds
to a c-q channel Nx_,p(z) with an input distribution Py,
we also write I(Px,Nx_5) £ x(€). For p,oc € D(H)
and s € (0,1), the Petz-Renyi divergence [19] is defined as
Ds(p|| o) £ 5 logtr (p*c~*). For any Hermitian linear op-
erator X, {X > 0} denotes the projection onto the eigenspaces
of positive eigenvalues.

III. JOINT QUANTUM COMMUNICATION AND SENSING
MODEL

As illustrated in Fig. 1, we consider a c-q channel that
depends on a random parameter € © described by N )((01) AB -
X — D(Ha ® Hp), where |X| < oo and |0 < oo.
Without loss of generality, we assume the set © is partially
ordered. For every value of § € ©, the channel maps a
classical input symbol x to a density operator pﬁ’%. The
system A captures observations obtained by the transmitter
(Alice) while the system B captures observations obtained
by the receiver (Bob). The prior probabilities {py}eco of
the unknown parameter # are known and 6 is assumed fixed
during the entire transmission. The objective is for Alice to
simultaneously transmit information to Bob while estimat-
ing the unknown parameter 6. Specifically, Alice encodes a
uniformly-distributed message W € [1; M] with a known
classical encoding function f : [1;M] — X" to create a
classical codeword of length n, X™ £ f (W) , and transmits
X™ over the c-q channel. Alice receives the state

P 2w (N2 (FO) M

and uses a collection of Positive Operator-Valued Measures
(POVMs) {{Hg”)}(;e@}we[l;M] (i.e., for every w € [1; M],
{H(ew)}gee is a POVM), to obtain an estimate of the chan-
nel parameter . On the other hand, Bob uses a POVM
{Aw}wei;n on his observations
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Fig. 1: Joint quantum communication and sensing model.
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to obtain an estimate W  of the
message. A code C then consists of

(na M, f7 {{Héw)}ee@}we[l;lﬂb {Aw}wé[l;M})'

Remark IIl.1. Our code definition does not allow adaptivity,
and we refer to the coding strategy as open-loop. The study of
closed-loop strategies will be the topic of a forthcoming work.

transmitted
the tuple

The performance of the code is measured in terms of the
detection-error and communication-error probabilities defined
as

P ({{Héw)}g}w) £ max max tr ((I _ HéW))PQ(er)ﬁ)

0€® well;M]
3)
P ({Ay}e) 2 o (@=A)pB), @
¢ ({Awh) = max max o (( )ppn ") @)
respectively. The rate and detection-error exponent are
1 1
—log M and Eén) £ " log Pr, (5)
n n

respectively.

Definition IIL.2 (Achievable pair). A rate/detection-error ex-
ponent (R, E) is achievable if for every € > 0, there exist a
sufficiently large n and a code C of length n such that

n ]‘
PM<e B >E—¢ and —logM >R—¢. (6)
n

For the analysis of the detection error, we also introduce the
average Bayesian and maximal error probabilities as follows:

P.({poplYe; {Tp}e) 2 Z tr (pepffg(l - He)) . (D
9co

Pr({popYoco; {Tlp}e) 2 max tr (pep’;’f(l - He)) . (8

In terms of asymptotics, the error exponents of these two
probabilities are the same for n large enough, as (7) would
be asymptotically dominated by (8).

IV. MAIN RESULT
Our main result is an exact characterization of the region
of achievable rate/error-exponent pairs.

Theorem IV.1. The set of achievable rate/detection-error
exponent pairs is

(R, E)eR% :
U R < mingep I (PX,N)((GLB>
PxePx E < (Px)

with

¢(Px) = minmin sup Px(x)(1 — s)Dy pm’g pz’e/
(Px) = mjnpigy sup 3> P ()1 = 9Dy ")

,0 6
and pyp = N;(LAB(x)'

As expected, the result is the direct generalization of our
result reported for classical channels in [8, Theorem 3].
As detailed in Section V-A, although the proof requires a
specific new approach relying in part on [16, Theorem 2]



TABLE I: p§(0) for all z and 6.

0 0 1
0 09 | 0.3
1 09 | 0.2
2 0.7 | 0.2

TABLE II: pj(0) for all = and 6.

P 0 1
0 09 | 0.1
1 0.8 | 0.2

2 0.7 | 0.3

for discriminating multiple hypotheses. Theorem IV.1 shows
once more that the tradeoff between rate and error exponent
is governed by the type of the codewords.

Remark IV.2. Our result for the error exponent, which is in
fact the quantum Chernoff information, is different from [17,
Proposition 32], which is not the tightest characterization even
without adaptivity. The main reason is their derivation for the
upper bound relies on the divergence sphere optimization [20],
and the log-Euclidean Renyi divergence [21] turns out to be
the optimization solution. However, our exponent is consistent
with the upper bound obtained in [18] for the c-q channel. As
detailed later in the proof, regardless of adaptivity, we both
employ a classical interpretation (See also [18, Lemma 1]
and [14]) to construct a classical hypothesis testing properly
lower-bounding the error performance for any quantum test.

We illustrate Theorem IV.1 with a few numerical examples.
Let X ={0,1}, © ={0,1,2},

A 1|1 A
i) 2 5 [y and o), 2 Relun).

where R(¢) is a rotation matrix on R? with angle ¢. Then,
we construct pf;’e according to Table I and II as follows:

The construction for pge is the same. The numerical result of
the rate/detection-error exponent region corresponding to the
c-q channel defined by (9) and Table I is shown in Fig. 2a,
where different curves correspond to different rotation angles
and labels indicate the inner product [{tg|t1)| = cos ¢. This
example is one in which there exist tradeoffs, and the inner
products control the areas of the tradeoff regions. Alternatively,
if we choose the c-q channel to be defined by (9) and Table II,
Fig. 2b shows an example in which there exist no tradeoff,
since the optimal error exponent and the optimal rate can be
simultaneously achieved by the same Py.

V. PROOF OF THEOREM IV.1

A. Achievability Proof

In the achievability, we show that it suffices to use a
sequence of constant-composition codes to achieve the optimal
trade-off between reliable rate and Chernoff information. The

0.005 A

o
=)
=]
=

0.00
0.31
0.59
0.81

l 0.95
- |

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Achievable Rate (nats per channel use)

Achievable Exponent (AU)
j=3 (=]
=3 =}
S S
n w

0.001 A

0.000

(a) Region corresponding to (9) and Table. I.
0.007

0.006 A ‘ l
5

0.00
0.31
0.59
0.81
0.95

0.08

(AU)
j=1
j=3
=

Achievable Exponent
j=3 (=] (=]
(=3 (= o
S & 3
iy & i

0.001

0.000 T I
0.00  0.01

0.02 003 004 005 0.06
Achievable Rate (nats per channel use)

0.07

(b) Region corresponding to (9) and Table. II.

Fig. 2: Illustrations of rate/detection-error exponent region.

rate/detection-error exponent region is then characterized by
the type of these constant-composition codewords. Let all the
codewords of C have type Px.

a) Rate analysis: We first characterize the performance
of this constant-composition code in terms of code rate and
error probability. [22, Theorem 1] provides us with an explicit
construction such that, if all the codewords belong to the type

Px with code rate R < mingeg ]I(PX,N )(fl B), then there

exists a sequence of codes such that PC(") < eforany e >0
and n large enough.

b) Error exponent analysis: We show that the detection-
error exponent only depends on the type of the codewords.
We first recall a one-shot bound on the Bayesian probability
of error for discriminating between r quantum states from [16,
Theorem 2].

Theorem V.1 ( [16]). Let 01, ,0, € P(H). For all 1 <
1<, leto; = Zle ik Qir be the spectral decomposition of
04, and T 2 max{Ty,--- ,T,}. There exist a function f(r,T)
and a POVM {11;};e[1.r) such that

P€ ({017 e 70T}; {Hh e ’H'f“})
<fT) D0 ) min{i, At (QuQ)  (10)
(i,§)ii<] kot

and we have f(r,T) < 10(r — 1)*T2.



For a fixed message w and its codeword f(w) =x €
applying Theorem V.1 to the operators

0p = po ®Pm’” !

for § € O, we obtain that there exists a POVM {Héw)} such
that for any s € [0,1],

P.({pori Yo (11" }o)
<FIOLT) YD 0 min(pedor, pordero)tr (QoxQore)

(1)

0 0'>0 k.t
<FIOLT) YD 0 max(pe, por) Agp A tr (QorQore)
0 0'>0 kt
= F101,7) > 3 max(po, po)tr (057 (057~ -
0 0'>0

Hence,
P ({popsyo; (115" 0) < Po({por’s Yo; {115 }5)
[E]
J1el, (') max({po}oco)

: x,0\s/ x,0'\1—s
maxmax Inf U ((pAn) (g ) )

Note that f(|O],T) < 10(|©| — 1)>T?, where T in our
case will be determined by the number of different types
conditioned on the given input codeword x. Since the channel
input x is classical, one can therefore conclude that T' <
(n 4 1)/M1¥1 by the type counting lemma [23, Lemma 2.2],
and it immediately follows that this bound is universal for any
choice of input x and grows polynomially with n.

From (11), we obtain

(05 (o5

) ﬁ ( xkes ik,a’)ps).

Observe that
* x,0 w
P57} {113 }) <

Since x has type Px, we get, Vs € [0, 1]

Héi/npe/ Pe({pepj’g}e; {Héw)}9)~

1 *
~ ~log B ({75 }o: {11 })

Z minmin sup — logtr ((plk7 )s(pwk79/)1_s) .
0 020 seo1] ; A A

= minmin sup — Px (u)lo tr( ub’ )—e
o 6[0101 Z X ( gtr (o4 )(PA )’
u, u,0’
Pa ||PA )—6,

= minmin sup Px(u

0 0'#6 s€[0,1] Z
where we have used the fact that there exists a universal € > 0
(i.e., no dependency on x) such that for n large enough,

log f(|©],T) log('@')f L Jogper
n n 6’ n =

Thus,
1 *
- IOg Pe ({pAn}OGOv {H }06@)
> minmin su Px (u)(1 — s)D, ( u,0 u,a/) B
0 040 e[op1 Z x ( Il

Therefore, as we are using a constant-composition code with
type Px, EY” > ¢(Px) — e.

c) Rate/detection-error exponent region: Taking the
union over all possible Px € Py and choosing ¢ > 0
arbitrarily small for n large enough, we obtain the result.

B. Converse Proof

Assume that the rate/detection-error exponent pair (R, E)
is achievable. That is, for all € > 0, there exists N, > 0 and
a code C with block length n > N, such that
log M

n

PC(”) ge,Ef;” > F — ¢, and > R—e

a) Rate analysis: We first identify a set 7 of types to
which exponentially and significantly many codewords of C
belong. Since the channel input X is classical, the type count-
ing lemma for classical types asserts that there are at most a
polynomial number of classical types of sequence X" [23,
Lemma 2.2]. Then, there exists a set of types 7 such that, for
all Px € T, the subcode Cp, £ {f(w) : pyy = Px} CC

satisfies maxgpco Inaxwef—l(cpx)tr (I—Aw) %Z w)) Se

and 28Mrx 1OgTM—5>R—e—dforsome§>0
vanishing with e. Fix any Px € 7. Let

Pr(x) 2 MZ > 1{x=x}.

x€Cpy

Observe that the average type

£ %Zﬁx(x) = Px(z),

where IBX,L, is the ¢-th marginal distribution of ?}} Then, for
any 0,
(1 —¢€)log Mp, — hy (€)
(a)

12)

<xXUPE, 250 (13)
(b)
=H(pla) — > PR(x Z (h") (14)
xEX™
QZH( N3 Y Peom(pp) as
1=1x2,€X
—ZX {Px..p%’ }) < nx({Px, n3"}), (16)

where hy, (+) is the binary entropy function, (a) follows from
Fano’s 1nequa11ty and the Holevo bound, (b) follows by
defining p%,. as the density operator of ensemble {PX7 p’éf}
and the definition of Holevo information, (c) follows from the
subaddivity of von Neumann entropy and by defining pg 6 as



the ensemble density operator of { Py, p‘g’e}, and (d) follows
from the concavity of the Holevo information in the input
distribution. Then, we obtain

(PX’N)((HLB> QL
1—¢

XUPx. ")+ §

n 1—c¢

log Mp, <

(17)

where we have used (12) and h;, (€) < log2 £ C, Ve € [0, 1].

Since (17) is valid for any € and 6, the size of subcode Cp,
is upper-bounded by the mutual information in a compound
channel sense, i.e.,

log Mp,

< ngnﬂ(PX,N;fLB) 7 (18)

n
for some 7 > 0 vanishing with e.

b) Reduction to a Binary Hypothesis Testing: We use
the proof technique in [15, Theorem 1] to show that, for
any sequence of POVM discriminating the M -ary hypotheses,
we can lower bound the detection error by that of a binary
hypothesis test between any pair of hypotheses.

For a sequence x € X", consider a POVM {II} }yco and
fix a pair of indices 6, ¢’ € ©. For simplicity, we ignore
the dependency of the POVM on x. Let A, B € P(H3")
such that A+ B = I — Il — IIy». We construct operators
H@ IIy + A and Hgl = Ilg: + B to form a POVM for the
binary hypothesis testing for 6 against ¢’.

We next show that the error of this binary hypothesis
test forms a valid lower bound for the original problem.
Indeed, since IIy > IIy, we have by monotonicity that

tr (pAn - H(,)) tr (pAn (I1— Hg)) . Then,
({pepAn} {H9}9> (19)
> patr (Pfx’n (I- Ha)) + portr (Pj’g/ (I- He/)) (20)
= petr (Pf{f(I - ﬁe)) + portr (Pm (I- He/)) 2n

> min{po,por} (15 (500~ o) ) +tr (57 (T~ o)) )
(22)

v min{ps, pe} (tr (p’;’f(l - ﬁe)) tu (pAn )) . (23)

where (a) follows since {ﬁg, I- ﬁg} is a POVM by construc-
tion.

¢) Reduction to classical hypothesis testing: We now
construct a lower bound on the error probability for any binary
hypothesis testing between p’y. % and p* An . Let {Ag7 I— Ay} be

any POVM for discriminating between p Af and p’ A" . Observe
that

tr ((I — Ag)pj’f) +tr (Agpj’g/)
x,6’ _ox,0
>1- 021221 tr (A (pAn pAn))

=tr ((I — A*)pAn) +tr (A*pm )

(24)

(25)

where we note that maxogagrtr (A (pj’f — pif{f )) =

p’:,f — %21l and the optimizer A* £ {pAn -5 >0,

Wthh is the Holevo Helstrom test [24, Chapter IV.2] and [25],
is indeed a Projection-Valued Measure (PVM). Without loss
of generality, we shall develop a lower bound on the error
probability for any PVM {['y,I — 'y}, which then also holds
for the optimal test A*.

Lemma V.2. Fix 6,0 € ©. For any sequence x € X" and
any PVM {T9,I1 — Ty}, we have, for any £ > 0 and n large
enough,

an+6n> (;_§> X

()1 =)Dy (s’ | p,‘f;’)) . 6)

exp | —n sup Zﬁx
sel0,1] %,

where a,, = tr ((I —Ty) An) and B, & tr (ngf"f/).

Proof: The proof follows from the techniques developed
in [14, Theorem 2.2] to construct a classical binary hypothesis
as a lower bound on error and [11, Appendix A] to analyze
this lower bound. |

Thus, by combining (26) with (23) and (25),

1
({pepm}e, {Ha}e) meaxrer;éaexmm{pe,po,} (2 - 5) x

Pe(w)(1 = 9D, (0" | @fﬂ)) e

Yocolr (pgpj’f(I - He)) <
maxgee tr (pj’g(l — Hg)). Then,
any X € X™ and POVM {Hg}gee,

1 /X
— —log P {p5)Yoco, {To}oco)

exp | —mn sup
( s€10,1] zu:

Note that

we conclude that for

1 x
<~ log P.({por’5 Yoco, {To}oco)

< minmin su (u)(1 —s)D ( w0 ‘ “’0,) +4
i s D > bxlu P’ || P4
= ¢(ﬁX) + 9.
d) Rate/detection-error  exponent  region: Since
for any codeword f(w) € C, w € [1;M] and the

collection of POVMs {{Héw)}g}w, E — ¢ < E((in) =
—% log maxgee max,,c[1; ] tr ((I — H(Ow))pi(,:“)’e) <
¢(Dfaw)) + 0. Choose now Py € T such that
Py £ argminp . ¢(Px). We then obtain that for all
€ > 0, there exist 7, > 0 vanishing with e,

R < HgnH(P§7N§fLB) +74+€e+4
E < ¢(Py)+e+6.

Since € can be chosen arbitrarily small as the block length
goes to infinity, F is upper-bounded by ¢(Px ) and the rate is
achieved by Px for some Px € Px. Taking the union over
all possible Px completes the result.
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