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rings. Motivation for this core structure stemmed from the previous work done by Burgess
and others which demonstrated that bis(phenolate) aza-BODIPYs can achieve absorption
and emission maxima upwards of 780 nm [12–18]. Additionally, very recent work by
Sauvé and coworkers detailed that the addition of phenylacetylene groups on the 2- and
6-positions of the bis(phenolate) aza-BODIPY core can further shift absorption and emission
maxima past 820 nm [19].

The structurally related bis(phenolate) dipyrromethene core (D), whose boron chelates
were also originally reported by Burgess and coworkers [20], represents a secondary source
of inspiration as numerous elements beyond boron have also been chelated to afford a
diverse array of compounds with interesting structural and photophysical properties. For
example, Nabeshima and coworkers explored the insertion of heavier Group 13 centers (Al,
Ga, In, E) and found that such complexes were able to serve as efficient luminescent sensors
to both alkaline earth and transition metals [21–23]. Further work by their group also
considered the insertion of Group 14 and 15 centers which yielded chelates that incorporate
both bent and linear oxygen bonds and serve as zwitterionic NIR pH sensors [24–27].
Significant work on inserting transition metal centers into the bis(phenolate) DIPY core has
also been performed. For example, Nozaki and coworkers explored Group 4 and heavier
Group 14 (Ti, Zr, Ge, Sn, F) DIPY chelates as catalysts for the copolymerization of epoxides
with carbon dioxide [28]. Work by Thomas and others have also demonstrated that DIPY
chelates containing Mn can serve as catalysts for olefin epoxidations [29–31]. Furthermore,
numerous reports have indicated that both mid- and late-transition metal DIPY chelates
can exhibit both innocent and non-innocent redox properties [32–35]. Indeed, a recent
2019 report by Kadish and coworkers [36] directly suggested that such behavior with
bis(phenolate) DIPYs may very well serve as an analogy for the well-known corrole macro-
cycle which has received significant attention in its own right over the past three decades.
This analogy is also the subject of a very recent review by Paolesse and coworkers [37].

To the best of our knowledge, no chelates outside of boron that contain the bis(phenolate)
aza-DIPY core structure are currently known to the literature. Given the likely structural
properties that such chelates will share with their DIPY congeners in addition to their
expected NIR traits, further research is of clear interest. Here, we disclose the synthesis of
a series of aza-BODIPY (1a-b), aza-ALDIPY (2a-b), aza-GADIPY (3a-b), and aza-INDIPY
(4a-b) complexes. This series of compounds lays the groundwork for a thorough investiga-
tion of this comparatively underexplored class of molecules and validates their expected
structural and spectral properties. In addition to their 1H, 11B, 13C and HRMS data, we also
report the X-ray structures of 1a, 2a-b, 3a-b, and 4a-b which unambiguously confirm their
structural identities. Finally, the computational and photophysical properties of 1a-b, 2a-b,
3a-b, and 4a-b are discussed and compared.

2. Results and Discussion

2.1. Synthesis and Structural Characterization

The synthesis of bis(phenolate) aza-MDIPYs 1a-b, 2a-b, 3a-b, and 4a-b follows the well-
established procedures previously outlined by Burgess [18] and Nabeshima [23] as depicted
in Scheme 1. Bis(phenolate) aza-DIPY core structures 7a-b, containing para-functionalized
methyl- and methoxyphenyl groups, were specifically chosen as they possess relatively sim-
ilar electron donating capabilities and will likely exhibit the most bathochromically shifted
absorption and emission spectra based on prior work by ourselves and others [11–18]. The
first step involves subjecting known chalcones 5a-b to a Henry reaction with nitromethane
to give compounds 6a-b in excellent yields (>95%). Next, 6a-b are reacted with an excess
of ammonium acetate in refluxing 1-butanol to generate bis(phenolate) aza-DIPYs 7a-b in
moderate yields (37–63%).
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mixture was evaporated to dryness and 1,4-product 6a (7.17 g, 95%) was obtained as a tan
brown oil. 1H NMR (CDCl3): δ 11.99 (s, 1H), 7.73 (dd, J = 1.6, 7.2 Hz, 1H), 7.48 (dt, J = 1.6,
7.6 Hz, 1H), 7.17 (m, 4H), 6.98 (d, J = 9.2 Hz), 6.91 (t, J = 8.4 Hz), 4.74 (m, 1H), 4.68 (m,
1H), 4.20 (quintet, 1H), 3.48 (m, 2H), 2.33 (s, 3H). 13C NMR (CDCl3): δ 202.9, 162.7, 138.0,
137.0, 135.7, 130.0, 129.7, 127.4, 119.3, 119.2, 118.9, 79.9, 41.3, 39.0, 21.3. HRMS (ESI) for
C17H17NO4 [M + Na]+: calcd 322.1050, found 322.1090.

3.2.2. 1,4-Product 6b

Chalcone 5b (5.00 g, 19.7 mmol) was dissolved in EtOH (150 mL) where diethylamine
(10.1 mL, 98.3 mmol) and nitromethane (5.26 mL, 98.3 mmol) were added and the reaction
mixture was heated to reflux and allowed to stir overnight. Upon cooling, the resulting
mixture was evaporated to dryness and 1,4-product 6b (6.03 g, 97%) was obtained as a tan
brown oil. The compound’s 1H NMR spectrum matched the known spectrum [18].

3.2.3. Bis(phenolate) Aza-DIPY 7a

1,4–Product 6a (5.00 g, 16.7 mmol) and ammonium acetate (40.0 g, 519 mmol) were
dissolved in 1-butanol (75 mL). The reaction mixture was heated to reflux and allowed to
stir overnight. Upon cooling to room temperature, the resulting precipitate was collected
over filter paper, washed with H2O (200 mL) and EtOH (200 mL), and the solid was allowed
to dry in the oven at 85 ◦C to obtain 7a (1.57 g, 37%) as a brown iridescent solid. 1H NMR
(DMSO-d6): δ 8.09 (d, J = 7.6 Hz, 2H), 7.97 (d, J = 8.0 Hz, 4H), 7.70 (s, 2H), 7.38 (dt, J = 1.6,
7.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 4H), 7.12 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 7.6 Hz, 2H), 2.40
(s, 6H). Due to insolubility, a 13C NMR spectrum could not be obtained. HRMS (ESI) for
C34H27N3O2 [M + H]+: calcd 510.2176, found 510.2169.

3.2.4. Bis(phenolate) Aza-DIPY 7b

1,4–Product 6b (5.00 g, 15.9 mmol) and ammonium acetate (40.0 g, 519 mmol) were
dissolved in 1-butanol (75 mL). The reaction mixture was heated to reflux and allowed to
stir overnight. Upon cooling to room temperature, the resulting precipitate was collected
over filter paper, washed with H2O (200 mL) and EtOH (200 mL), and the solid was allowed
to dry in the oven at 85 ◦C to obtain 7b (1.60 g, 37%) as a brown iridescent solid. The
compound’s 1H NMR spectrum matched the known spectrum [18].

3.2.5. Bis(phenolate) Aza-BODIPY 1a

To a degassed (30 min) solution of THF, bis(phenolate) aza-DIPY 7a (0.050 g, 0.098 mmol)
was added along with N,N-diisopropylethylamine (0.26 mL, 1.5 mmol). BF3·OEt2 (0.24 mL,
2.0 mmol) was added carefully and the mixture was allowed to stir at reflux overnight.
After completion by NMR, the mixture was evaporated to dryness and subsequently
chromatographed on silica (CH2Cl2) to afford the appropriate bis(phenolate) aza-BODIPY
1a (0.023 g, 45%) as an iridescent green powder. 1H NMR (DMSO-d6): δ 8.14 (d, J = 8.0 Hz,
4H), 8.09 (d, J = 8.0 Hz, 2H), 7.82 (s, 2H), 7.48 (t, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 4H), 7.20
(t, J = 8.4 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 2.41 (s, 6H). 13C NMR (DMSO–d6): δ 155.4, 149.5,
144.0, 141.2, 139.7, 133.9, 129.7, 129.1, 128.7, 127.3, 121.3, 119.7, 118.4, 113.9, 21.1. 11B NMR
(DMSO–d6): δ -3.36. HRMS (ESI) for C34H24BN3O2 [M + EtOH + NH4]+: calcd 581.2178,
found 581.2717.

3.2.6. Bis(phenolate) Aza-BODIPY 1b

To a degassed (30 min) solution of THF, bis(phenolate) aza-DIPY 7b (0.050 g, 0.092 mmol)
was added along with N,N-diisopropylethylamine (0.24 mL, 1.4 mmol). BF3·OEt2 (0.23 mL,
1.8 mmol) was added carefully and the mixture was allowed to stir at reflux overnight.
After completion by NMR, the mixture was evaporated to dryness and subsequently
chromatographed on silica (CH2Cl2) to afford the appropriate bis(phenolate) aza-BODIPY
1b (0.023 g, 52%) as an iridescent green powder. The compound’s 1H NMR spectrum
matched the known spectrum [18].
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3.2.7. Bis(phenolate) Aza-ALDIPY 2a

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7a (0.150 g, 0.294 mmol)
and Al(acac)3 (0.146 g, 0.441 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 2a (0.212 g,
72%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.58 (m, 4H), 7.97 (d, J = 8.0 Hz), 7.78
(m, 2H), 7.70 (dd, J = 2.0, 8.2 Hz, 2H), 7.38 (m, 4H), 7.37 (s, 2H), 7.23 (d, J = 8.0 Hz), 7.11 (dt,
J = 0.8, 7.8 Hz, 2H), 6.69 (dd, J = 0.8, 7.8 Hz, 2H), 2.38 (s, 6H). 13C NMR (DMSO-d6): δ 163.8,
156.5, 149.6, 147.0, 140.3, 136.8, 136.1, 131.5, 131.3, 128.6, 128.0, 123.9, 121.0, 119.1, 115.2,
114.2, 20.9. HRMS (ESI) for C34H24AlN3O2 [M + 3H]+: calcd 536.1913, found 536.1911.

3.2.8. Bis(phenolate) Aza-ALDIPY 2b

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7b (0.150 g, 0.277 mmol)
and Al(acac)3 (0.124 g, 0.415 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 1b (0.134 g,
67%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 4H), 8.00 (d, J = 8.8 Hz, 4H),
7.78 (m, 2H), 7.69 (dd, J = 1.2, 7.8Hz, 2H), 7.39 (m, 4H), 7.32 (s, 2H), 7.10 (dt, J = 1.2, 7.8 Hz,
2H), 6.99 (d, J = 8.8 Hz, 4H), 6.68 (d, J = 8.0 Hz, 2H), 6.56 (t, J = 8.0 Hz, 2H), 3.83 (s, 6H).
13C NMR (DMSO-d6): δ 163.8, 158.9, 156.5, 149.7, 149.9, 140.2, 139.2, 131.5, 130.1, 128.1,
126.8, 123.9, 121.1, 119.2, 115.2, 113.6, 55.2. HRMS (ESI) for C34H24AlN3O4 [M + 4H]+: calcd
569.1890, found 569.1899.

3.2.9. Bis(phenolate) Aza-GADIPY 3a

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7a (0.150 g, 0.294 mmol)
and Ga(acac)3 (0.162 g, 0.441 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 3a (0.156 g,
72%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 2H), 7.97 (d, J = 8.0 Hz, 4H),
7.79 (m, 2H), 7.74 (dt, J = 2.0, 8.2 Hz, 2H), 7.46 (s, 2H), 7.39 (m, 4H), 7.24 (d, J = 8.0 Hz, 4H),
7.12 (dt, J = 2.0, 7.2 Hz, 2H), 6.73 (dd, J = 1.2, 8.2 Hz, 2H), 6.59 (dt, 1.2, 7.4 Hz, 2H), 2.39
(s, 6H). 13C NMR (DMSO-d6): δ 165.8, 157.0, 149.6, 146.3, 140.4, 137.1, 136.2, 131.6, 131.1,
128.8, 128.7, 128.6, 123.9, 121.9, 117.7, 115.4, 114.4, 21.0. HRMS (ESI) for C34H24GaN3O2

[M + 3H]+: calcd 578.1354, found 578.1347.

3.2.10. Bis(phenolate) Aza-GADIPY 3b

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7b (0.150 g, 0.277 mmol)
and Ga(acac)3 (0.152 g, 0.415 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 3b (0.151 g,
71%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 4H), 8.00 (d, J = 9.2 Hz, 4H),
7.79 (m, 2H), 7.73 (dt, J = 1.2, 8.2 Hz, 2H), 7.39 (m, 6H), 7.11 (dt, J = 1.6, 7.8 Hz, 2H), 7.00
(d, J = 9.2 Hz, 4H), 6.73 (d, J = 8.0 Hz, 2H), 6.58 (t, J = 8.0 Hz, 2H), 3.84 (s, 6H). 13C NMR
(DMSO-d6): δ 165.8, 159.1, 157.0, 149.6, 146.2, 140.3, 136.3, 136.2, 131.6, 130.2, 128.6, 126.5,
124.0, 121.9, 117.8, 115.4, 113.7, 113.6, 55.2. HRMS (ESI) for C34H24GaN3O4 [M + 3H]+:
calcd 610.1252, found 610.1278.

3.2.11. Bis(phenolate) Aza-INDIPY 4a

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7a (0.150 g, 0.294 mmol)
and In(acac)3 (0.182 g, 0.441 mmol) were added and the mixture was heated to reflux
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overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 4a (0.149 g,
65%) as a dark green solid. 1H NMR (DMSO–d6): δ 8.57 (m, 4H), 7.94 (d, J = 8.4 Hz, 4H),
7.84 (dd, J = 1.6, 8.0 Hz, 2H), 7.79 (m, 2H), 7.59 (s, 2H), 7.38 (m, 4H), 7.23 (d, J = 8.0 Hz, 4H),
7.14 (dt, J = 1.6, 7.6 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.61 (dt, J = 0.8, 7.4 Hz, 2H), 2.39 (s,
6H). 13C NMR (DMSO–d6): δ 167.2, 158.7, 149.6, 146.0, 141.6, 137.1, 136.2, 131.3, 131.2, 129.9,
129.0, 128.7, 123.9, 123.2, 118.4, 116.0, 115.4, 21.0. HRMS (ESI) for C34H24InN3O2 [M + 3H]+:
calcd 624.1137, found 624.1128.

3.2.12. Bis(phenolate) Aza-INDIPY 4b

To a solution of pyridine (15 mL), bis(phenolate) aza-DIPY 7b (0.150 g, 0.277 mmol)
and In(acac)3 (0.171 g, 0.415 mmol) were added and the mixture was heated to reflux
overnight. Upon cooling to room temperature, hexanes (30 mL) was added to the mixture
and cooled to 0 ◦C. Once cold, the resulting precipitate was collected over filter paper,
washed with additional hexanes (30 mL) and evaporated from dryness to afford 4b (0.157 g,
70%) as a dark green solid. 1H NMR (DMSO-d6): δ 8.57 (m, 4H), 7.98 (d, J = 8.0 Hz, 4H),
7.83 (dd, J = 1.6, 8.0 Hz, 2H), 7.79 (m, 2H), 7.53 (s, 2H), 7.38 (m, 4H), 7.13 (dt, J = 1.6, 7.6 Hz,
2H), 6.99 (d, J = 8.8 Hz, 4H), 6.78 (dd, J = 0.8, 8.0 Hz, 2H), 6.61 (dt, J = 0.8, 7.6 Hz, 2H), 3.84
(s, 6H). 13C NMR (DMSO-d6): δ 167.2, 159.1, 158.6, 149.6, 145.9, 141.4, 136.2, 131.2, 130.5,
129.8, 126.7, 123.9, 123.2, 118.5, 115.4, 115.2, 113.6, 55.2. HRMS (ESI) for C34H24InN3O4

[M + 2H]+: calcd 655.0957, found 655.0953.

4. Conclusions

The synthesis and characterization of stable NIR absorbing and emitting bis(phenolate)
aza-BODIPYs 1a-b, aza-ALDIPYs 2a-b, aza-GADIPYs, 3a-b, and aza-INDIPYs 4a-b are
reported. Single crystal X-ray diffraction data was able to elucidate that heavier group
13 analogues are able to exist as octahedral complexes that can support either THF or
pyridine groups as coordinating ligands. Combined, these experimental results lead to the
conclusion that the bis(phenolate) aza-DIPY core is a viable choice for chelating elements
beyond boron. Future work will explore the structural consequences of chelating the
bis(phenolate) aza-DIPY core to both main group and transition metals.
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