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ABSTRACT: Cinnamalmalononitrile (CM) derivatives have been

shown to exhibit a strong photomechanical response in the crystal R WY
form. In this paper, the effects of fluorine substitution on the molecular N E&
properties, crystal packing, and solid-state photochemical reactivity on ’
this family of photochromes are explored. The addition of fluorines
shifts the molecular S; — S; gap to a higher energy up to 0.4 eV.
Fluorination also enables polymorphism in some of the derivatives that Solvent
effectively controls whether or not they can undergo the [2 + 2]
photodimerization. Depending on the substitution pattern, either the
head-to-tail (HT, unreactive) or head-to-head (HH, reactive) crystal
forms could be obtained. For some derivatives, both polymorphs could N
be grown depending on the solvent. Theoretical calculations on a Z
subset of these molecules clarify how the fluorination of the CM

framework modifies the polymorph landscape and shifts the energetics

of the different packing motifs. The CMs appear to support a rich polymorph landscape where HH and HT structures coexist within
a few kJ/mol of each other, allowing the simple exchange of an aromatic H atom for an F atom to cause a complete loss of
photomechanical activity due to changes in crystal packing. The experimental and computational results highlight how even minor
modifications to the molecular structure can alter the resulting crystal structures and photomechanical behavior.
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B INTRODUCTION work. To demonstrate this, we recently grew crystalline
nanowires of (E)-4-fluoro-cinnamalmalononitrile (4FCM) in-
side a porous anodic aluminum oxide template.” This hybrid

crystalline environment can control the outcomes of chemical organic—inorganic composite could bend in response to 405 nm
reactions.” Their development of the topochemical principle light that initiated the photodimerization inside the template. A
has provided one of the cornerstones of solid-state chemistry.” > few milligrams of embedded 4FCM could generate sufficient

The intermolecular [2 + 2] photodimerization reaction played a forrlcﬂc; to g;[up to 400 g | d ¢ oh hanical
central role in those studies. For example, Schmidt showed that ¢ s represent a novel ¢ as,s ot p Qt_omec anica
different crystal polymorphs composed of the same molecule, compounds that have demonstrated high reactivity and large

trans-4-chlorocinnamic acid, could produce completely different force generatlon. ['Jslng thl,s basic framework, it is 1mp0rtant' to
. . establish whether it is possible to enhance the photomechanical
reaction products, or no product at all, due to different crystal

packing geometries.”” The [2 + 2] photodimerization continues response of this 2 + 2] p hotodlimer.lzatl(‘)n reaction by tl.mlng
X . . ) the molecular structure. Fluorination is a well-established
to be widely studied as a prototypical crystal state chemical

o .29 )
reaction,® especially because of its relevance to solid-state strategy f(?r modifying crystal prop erties and this strategy has
Kinetics. 2~ been applied to other photomechanical systems based on the [2

. . . 30 . . .

From a practical standpoint, the topochemical principle can +2] dlm.erlzatlon. In .all these cases, ﬂuormatlon ‘resulted in
be exploited for organic synthesis. Crystalline [2 + 2] reactions changes in crystal packing and mechanical properties, but no
have been used to prepare a variety of cyclobutane derivatives —
and polymers.'®'” In addition, the [2 + 2] photodimerization in Received: August 16, 2022 e
molecular crystals can generate a mechanical response that takes Revised:  October 19, 2022 j '
many forms, like bending, photosalient behavior, and Published: November 3, 2022
expansion.'®~*’ Although the limited reversibility of the [2 +
2] photodimerization probably prevents its wide adoption for
practical actuators, it does have the ability to generate substantial

In their pioneering studies of molecular crystal photochemistry,
Schmidt and coworkers showed how the constraints of the

© 2022 American Chemical Society https://doi.org/10.1021/acs.cgd.2c00930
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Table 1. Molecular Structures of the CM Derivatives Studied in this Paper along with their Abbreviations
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increased tendency toward polymorphism was reported. Thus
the addition of fluorine atoms to the CM phenyl ring would
seem to be a viable strategy to tune the crystal photomechanical
response. Rather than the direct addition of fluorine to the
phenyl ring of the CM, we can take advantage of the commercial
availability of different fluorinated benzaldehydes and the Wittig
coupling reaction to form the desired CM. This allows us to
quickly explore a large space of fluorinated derivatives.

In this paper, we report the synthesis of multiple fluorinated
CM derivatives and characterize their molecular properties,
crystal packing, and solid-state photochemical reactivity. Our
strategy is to vary the position and number of fluorine atoms on
the benzene portion of the CM molecular frame. The CMs
experience significant absorption blueshifts upon fluorination.
We also find that fluorination enables polymorphism in some of
the derivatives that effectively controls whether or not they can
undergo the [2 + 2] photodimerization. Theoretical calculations
on a subset of these molecules clarify how substituents on the
CM framework can modify the polymorph landscape and shift
the energetics of two different packing motifs, head-to-tail (HT)
and head-to-head (HH). Since the HT motif is reactive and the
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HH motif is unreactive, the polymorphism effectively
determines whether the crystal exhibits photomechanical
response. In some cases, the growth of different polymorphs
can be controlled by solvent. Overall, the effect of fluorination
on phenylbutadiene photomechanical crystals is qualitatively
different from that on 9-anthracenecaboxylic acid (9AC)
crystals, illustrating how chemical substitution can have
dramatically different effects across different molecular photo-
chrome families.

B EXPERIMENTAL SECTION

Synthesis of the Fluorinated CM Derivatives. The detailed
syntheses of the derivatives are provided in the Supporting Information
section.

Crystal Growth. Crystals were grown either by simply allowing a
concentrated solution to dry by evaporation, or by using ethanol hot
water extraction. In the first case, growth by solvent evaporation was
accomplished by putting S mg of the compound into a vial and
dissolving the derivative in 2 mL of the desired solvent. Solvents used
were chloroform, ethanol, methanol, toluene, ethyl acetate (EA), and
dimethylformamide (DMF). The solvent was allowed to evaporate in
the dark for a couple of days. The solution was placed in a refrigerator at

https://doi.org/10.1021/acs.cgd.2c00930
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Figure 1. (a) Absorption spectra of unsubstituted CM, Methoxy-CM, 4FCM, and 2,3,4,5,6FCM. (b) Calculated (black squares) and experimental
(red circles, measured at absorption peak) optical gaps for a subset of the CM derivatives studied in this paper.

4 °C or a furnace at 40 °C to slow or speed up the evaporation,
depending on the solvent used. Hot water and ethanol extraction was
performed by adding around 4 mg of the compound into a vial. Around
1 mL of ethanol was added, and the mixture was warmed to boiling. 1.5
mL of hot water was added to the ethanol solution, mixed slightly, then
capped. The vial was allowed to cool down very slowly to room
temperature while being protected from ambient light.

Crystal Structure Determination. The crystal structure of each
derivative was obtained using a Bruker D8 Venture Duo diffractometer.
Specific detectors, radiation, and refinement procedures varied
depending on each molecule. The complete details of the X-ray
diffraction analysis can be found in the Supporting Information. Note
that the structure of Methoxy-CM has been reported previously’' and
the structure determined in this paper is almost identical to that one.

Optical Microscopy. An Olympus IX70-inverted microscope with
an Olympus IX-FLA fluorescence observation attachment was used to
observe the crystals. Images and videos were obtained using an
Amscope MU1000 camera.

UV-Vis Spectrospcopy. Samples were prepared by dissolving
approximately 1 mg of each compound in 10 mL of chloroform. The
solution was then placed into a quartz cuvette with a 1 cm pathlength
and analyzed in a Cary 60 spectrometer from 200 to 800 nm.

Theoretical Calculations and Crystal Structure Prediction.
Gas-phase calculations on dimer pairs and photodimers were
performed using spin-component-scaled, dispersion-corrected sec-
ond-order Moller—Plesset perturbation theory (SCS-MP2D),** using
PSI4 v1.5%* and the MP2D library.>* The results were extrapolated to
the complete-basis-set (CBS) limit*® by combining HF/aug-cc-pVQZ
with the extrapolation of the correlation energies computed in the aug-
cc-pVTZ and aug-cc-pVQZ basis sets.>® The structures used in these
calculations were either optimized in the gas-phase at the B3LYP/6-
311+G* level of theory or taken from density functional theory (DFT)-
optimized crystal structures (as described below).

Crystal structure prediction was carried out using a hierarchical
procedure. CM and 4FCM were initially optimized in the gas phase at
the B3LYP/6-311+G* level of theory. 84,000 random crystal packings
from the 12 most common space groups for organic crystals (P1, P-1,
P2,, C2, P;, C¢ P2,/c, C2/c, P2,2,2,, Pca2,, Pna2,, and Pbca)
containing a single molecule in the asymmetric unit (Z' = 1) were
generated using PyXtal.’” These structures were initially geometry
optimized using the generalized Amber force field.>® All crystal
structures lying within 20 kJ/mol of the most stable structure on each
landscape were then relaxed with the empirically corrected minimal
basis set model, HE-3¢,* as implemented in CRYSTAL17.*° Next, the
crystal structures lying within 10 kJ/mol of the minimum on the HF-3¢
landscape were optimized with periodic planewave DFT using the
B86bPBE density functional’”*' and the exchange hole dipole moment
(XDM) dispersion correction,* using Quantum Espresso v6.4. The
DFT calculations employed projector augmented wave potentials, a SO
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Ry planewave cutoff, and a k-point spacing of 0.06 A™'. Given the
similar structures of CM and 4FCM, we further enriched the two
landscapes via “cross-pollination” to increase the completeness of the
search: all structures from the 4FCM landscape structures had their
fluorine replaced with hydrogen and were relaxed with DFT to place
them on the CM landscape, while all CM structures were converted to
4FCM and similarly relaxed.

Because the CM and 4FCM molecules are not strictly planar and
generalized gradient approximation density functionals like BS6bPBE-
XDM are known to exhibit biases toward certain conformations in
systems with extended 7-conjugation, final single point energies of the
crystal structures were computed by employing an intramolecular
energy correction which has previously been demonstrated to be
important in a number of other polymorphic crystals.*** This
correction adjusts the B86bPBE-XDM lattice energy based on the
intramolecular energy difference computed with SCS-MP2D and
B86bPBE-XDM (computed in the gas-phase using the molecular
geometry directly extracted from each crystal):

/Z =E

ystat(DFT)/Z — E

(DFT)

Ecrystal ‘molec

+ E, 010 (SCS—MP2D)

See ref 50 for details. This correction shifted the relative lattice energies
in CM and 4FCM by 1-2 kJ/mol, on average. After the removal of
duplicate structures, the final CM and 4FCM crystal energy landscapes
included 88 and 104 candidate crystal structures within the 10 kJ/mol
thermodynamic energy window typically associated with organic crystal
polymorphism.*"**

Simulated optical gaps for CM and fluorinated derivatives were
performed using time-dependent DFT (TDDFT). The derivatives
were optimized in the gas g_hase at the BLYP-D3(BJ)/def2-TZVP level
of theory using PSI4 v1.5.”> TDDFT calculations were carried out with
QB97X-D/def2-TZVP in a chloroform polarizable continuum model
as implemented in Gaussian16 Rev. C.01.%*

B RESULTS

Experimental Characterization of FCM Derivatives.
The syntheses of the molecules shown in Table 1 were carried
out following a two-step process. First, the Wittig reaction was
used to link a commercially available fluoro-benzaldehyde
analog with ((1,3-dioxolan-2-yl)methyl)triphenylphosphonium
bromide. Acid hydrolysis and purification by column
chromatography, afforded the trans-fluorinated cinnamaldehyde
analog. Second, the trans-fluorinated cinnamaldehyde derivative
was condensed with excess malononitrile via the Knoevenagel
condensation using ethanol/water as the solvent to afford the
target compound in moderately high yields. This modular

https://doi.org/10.1021/acs.cgd.2c00930
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Figure 2. (a) Nonreactive 4FCM crystal polymorph packs in a HH conformation. (b) Photoreactive crystal polymorph of 4FCM packs in a HT
conformation. Both (a) and (b) are views down the crystal b-axis. (c) Side view along the c-axis of the nonreactive 4FCM HH packing. (d) Side view

along the a-axis of the reactive 4FCM HT packing.

Reactive
packing

Initial Crystal Light on 1.5 seconds Light on 5 seconds
- - -
Nonreactive
packing
Initial Crystal Light on 30 seconds of irradiation (light

on)

Figure 3. (Top) Photosalient 4FCM HT polymorph crystal quickly breaks apart when exposed to 405 nm light. (Bottom) Nonphotosalient 4FCM
HH polymorph crystal yields a constant blue fluorescence and no mechanical response under the same illumination conditions. Scale bar is S0 gm.

synthetic strategy enabled the generation of a large family of
substituted CM compounds.

The solution-phase absorption spectra of molecules in Table 1
provide the first indication that fluorine or methoxide
substitution modifies their electronic structures. The absorption
spectra of this class of molecules were strongly redshifted due to
the cyano groups that terminate the butadiene. Previous studies
have shown that the presence of these electron-withdrawing
groups imparts some charge-transfer (CT) character to the
excited state and lowers its energy.”**° Adding an electron
donating group like a methoxy to the phenyl ring enhances the
CT nature of the excited state and the absorption spectrum shifts
to alower energy. When fluorines are added to the phenyl ring, it
gains more electron withdrawing power that would be expected
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to partially cancel out the electron withdrawing character of the
CN groups. The net effect would be to lessen the CT character
of the transition and shift the absorption to higher energies and
shorter wavelengths. Indeed, this is what is observed in Figure
la, where the S F atoms on 2,3,4,5,6FCM lead to the largest
blue-shift of the absorption peak. The trend in observed S, — S;
shifts is reasonably well-reproduced by TDDFT calculations, as
shown in Figure 1b.

In addition to shifting the absorption spectra, fluorine
substitution also modified the crystal packing. Two broad
classes of packing motifs were identified and classified as HH
and HT. Two molecules (4FCM, 2,3,4,5,6FCM) exhibited both
HH and HT polymorphs, and 4FCM serves as a good
representative example of both forms, as outlined in Figure 2.

https://doi.org/10.1021/acs.cgd.2c00930
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The packing motifs for the other derivatives were similar and can
be found in the Supporting Information. Both HH and HT
forms consist of neighboring one-dimensional stacks of 4FCM
molecules (Figure 2a,b). In the HH form, the phenyls are all
aligned on the same side of the stack. In 4FCM, the HH stacks
alternate orientations, so that each one makes a nonzero angle
with respect to its neighbors (Figure 2c). This angling of the
stacks depends on the compound, and in Methoxy-CM, the HH
stacks are parallel. Although the double bonds lie within the 4.2
A reaction range needed to support the [2 + 2] dimerization, the
HH crystal is not reactive. The HT configuration, on the other
hand, has the phenyl groups on alternate sides within the stack.
Furthermore, the stacks are all aligned, so that the phenyl planes
are all parallel (Figure 2d). This HT packing is similar to that of
other phenylbutadiene derivatives that also exhibit [2 + 2]
photodimerization in the crystal form.”” This motif was reported
in our earlier paper on 4FCM, but as we examined other
derivatives and crystallization solvents, we found that the
fluorinated derivatives can support both HH and HT crystal
forms. 4FCM exhibited the HH polymorph when crystals were
grown from nonhydrogen-bonding solvents (toluene, chloro-
form, EA, and acetone). When crystals were grown from
hydrogen bonding solvents like methanol, ethanol, and DMF,
the HT form was obtained. Crystallographic parameters for all
compounds and polymorphs can be found in Table S1 in the
Supporting Information.

The polymorph form, HH versus HT, controlled crystal
reactivity. In all cases except one, the HT polymorph could
undergo the [2 + 2] photodimerization reaction as judged from
the disappearance of the fluorescence and NMR evidence for the
photodimer (Supporting Information). All the reactive crystals
showed a photomechanical response, usually taking the form of
photosalient breaking and jumping. The sole exception to this
rule was 2FCM, which grew in two HT polymorphs, one of
which was unreactive due to a large intermolecular distance
between the double bonds. In Figure 3, we contrast the behavior
of the 4FCM HH and HT polymorphs. The crystal growth
habits are quite different, as well as their response to 405 nm
light. The HT polymorph is nonfluorescent and absorbs light
until it suddenly cracks, and its fragments scatter outside the
field of view. The HH polymorph, on the other hand, is
fluorescent and remains stable for the duration of the light
exposure. Videos showing the different responses can be found
in the Supporting Information. Table 2 summarizes the results
for all the CM derivatives and their reactivity, along with the
solvents used for crystal growth. Note that we did not determine
the crystal structure for all growth solvents, but the similar
growth habits and reactivity within a class of solvents made it
safe to assume that they generate the same crystal polymorph.

Examining Table 2, it is clear that the choice of solvent had a
strong influence on whether a reactive polymorph was observed
experimentally. For 2FCM and 4FCM, hydrogen-bonding
solvents led to the photomechanical HT form, while other
organic solvents led to either an unreactive HT form (2FCM) or
the HH form (4FCM). Interestingly, this trend was reversed for
2,3,4,5,6FCM, where the HH form was favored in hydrogen-
bonding solvents. Solvent control of polymorphism has been
observed in other molecular systems and has been attributed to
several different factors.”® One mechanism for solvent-induced
polymorphism occurs when the molecule adopts different
conformations in different solvents, with these different
conformations leading to different packing geometries.”
However, examination of the crystal structures revealed that
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Table 2. Solvent Growth Conditions Used to Obtain
Polymorphs of the Various CM Derivatives®

solvent for XRD photomechanical
compound packing structure response observed
CM HT Me All
2FCM HT (close) Me Me, Et, Et/H,0, DMF
HT (far) Cl
3FCM HH Me None
4FCM HT Me, Et Me, Et, Et/H,0, DME
HH cl, T
2,6FCM HH Cl None
3,5FCM HH Et None
2,4FCM HT Me All
3,4,SFCM HH Me None
2,3,5,6FCM HH Me None
Methoxy-CM  HH Me None
2,3,4,56FCM  HT cl Cl T, EA, A
HH Me, Et

“Me is Methanol, Et is Ethanol, DMF is Dimethylformamide, T is
Toluene, Cl is Chloroform, EA is Ethyl Acetate, A is Acetone, and Et/
H,0 is Ethanol and hot water extraction.

the 2FCM, 4FCM, and 2,3,4,5,6FCM molecules had similar
conformations in all polymorphs. There was only a slight (+10°)
variation in twisting angles across the length of the molecule for
all the derivatives. This slight twisting was not correlated with
the solvent or crystal type, so we suspect that it reflects local
stresses in the crystal packing arrangements, rather than a stable
conformational change enabled by the solvent.

Crystal growth is a kinetic process and rapid nucleation can
favor less stable polymorphs if they can assemble more quickly.
Rapid solvent evaporation, low viscosity, and low solubility are
all thought to favor rapid nucleation. In fact, a previous paper
that observed solvent-dependent polymorphism in fluorinated
aromatic compounds speculated that rapid solvent evaporation
could favor a specific polymorph.” However, attempts to
correlate 4FCM polymorph formation with solvent vapor
pressure and 4FCM solubility were unsuccessful, as shown in
Figure 4a,b. HT formation does seem to correlate with solvent
viscosity, as shown in Figure 4c. This correlation was not perfect,
however, the more viscous toluene gave rise to the HH
polymorph while ethanol gave rise to the HT form. Never-
theless, these data suggest that the properties of the solvent play
a role in determining polymorph formation.

Computational Analysis of Crystal Polymorphism. The
experimental observations described above raise several
questions about the CM family of molecules that can be
addressed using theoretical tools. The first question is why the
HH polymorphs are unreactive. For the [2 + 2] dimerization to
occur, the reacting z-bonds must have a center-to-center
distance of less than 4.1 A, the nominal cut-off for the [2 + 2]
photodimerization. We found that in 4FCM and other
derivatives, the HH polymorphs fulfilled this distance criterion
but exhibited no reactivity. Since the cinnamates can be reactive
in either arrangement,(”7 the lack of reactivity in the HH
polymorphs was surprising. For further insight, we investigated
the gas-phase photodimerization of 4FCM in the HH and HT
configurations using SCS-MP2D. While the HT monomer pair
is about 5 kJ/mol more stable than the HH pair in the gas-phase,
the photodimerization reaction energies are similar for both, at
+14.9 and +16.3 kJ/mol for HT and HH, respectively (Figure
5a). In other words, the observed reactivity differences do not
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appear to stem from the thermodynamics of the isolated HH and
HT dimer pair. The origin of the reactivity differences between
the HH and HT polymorphs must be found in crystal packing
effects, rather than at the molecular level.

In support of this hypothesis, we observe that the HH and HT
unreacted pairs extracted from the DFT-optimized experimental
4FCM crystal structures lie 15—16 kJ/mol higher than the gas-
phase-optimized dimers (Figure Sb), while the HT photodimer
from the solvent-grown photodimer crystal”® lies more than 20
kJ/mol above its gas-phase-optimized analog. These substantial
energy changes arise from clear differences in some of the dimer
geometries (Figure Sc). For example, the gas-phase-optimized
HH dimer stacks the two molecules with a 32° twist, in contrast
to the parallel alignment found in the crystal. Similarly, the HT
photodimer conformation extracted from the recrystallized
material differs considerably from the gas-optimized one.
Finally, whereas the monomer pairs in the reactive HT
polymorph pack in planar sheets, the monomer pairs in the
HH polymorph adopt a very different herringbone packing. In
other words, crystal packing effects have a substantial impact on
the molecular geometry and packing of 4FCM, and they would
also be expected to play an important role in the energetics of
photodimer formation. Determination of the full energetics of
the photodimerization reaction in the crystal, including the
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transition state, would be an interesting but challenging problem
that is beyond the scope of the present work.

Given the influence of the crystal packing on whether the CM
derivatives can undergo the [2 + 2] photodimerization and
exhibit a photomechanical response, the next question is what
controls this polymorphism? In an effort to understand how
fluorination impacts the observed polymorphism, we turned to
first-principles crystal structure prediction calculations. As
limiting cases, we focused on CM, which always crystallizes in
the same reactive HT polymorph, and 4FCM, which can grow in
both reactive HT and nonreactive HH motifs, depending on the
solvent. For simplicity, the crystal structure prediction search
focused on structures containing only a single molecule in the
asymmetric unit and residing in one of the 12 most common
space groups. The final CM and 4FCM crystal energy
landscapes contain 88 and 104 crystal structures within 10 kJ/
mol of the lowest-energy structure, respectively (Figure 6). After
classifying the packing motifs based on whether they adopt HH
or HT arrangements (albeit not necessarily within viable
reaction distances), we find that CM prefers HH packing, with
61% HH structures on the landscape, 35% HT ones, and 4%
alternative motifs. In contrast, 4FCM exhibits no clear
preference for HH or HT packing, with the landscape being
comprised of 47% HH, 51% HT, and 2% other structural motifs.
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Both crystal structure prediction searches produced the
experimentally known crystal structures as low-energy struc-
tures. For CM (Figure 6a), the experimental structure occurs at
Rank 6, lying 1.5 kJ/mol above the predicted global minimum
energy structure. For 4FCM (Figure 6b), the experimentally
observed HH and HT polymorphs occur at Ranks 2 (+0.2 kJ/
mol) and 5 (+1.0 kJ/mol). For both species, the SCS-MP2D
conformational energy correction improved the ranking of the
experimentally known structures by 1—2 kJ/mol. Interestingly,
the most stable predicted structure on the CM landscape shares
the same packing as the 4FCM HT polymorph, while the Rank 4
CM structure matches the HH polymorph of 4FCM. The
different observed crystal packing motifs in these two systems
are all energetically competitive with each other.

Ideally, the lowest-energy structures on the crystal structure
prediction landscape would match the experimentally observed
polymorphs. This is not the case for CM and 4FCM, however,
which may reflect non-zero temperature effects. On the one
hand, a benchmark crystal structure prediction study of rigid,
planar molecules which employed the same B86bPBE-XDM
density functional used here found that the experimental
structure was correctly predicted to be the global minimum
lattice energy structure for 12 of 13 neutral species (often
achieving sub-kJ/mol resolution between candidate struc-
tures).’ On the other hand, phonon contributions frequently
impact the relative polymorph energies by up to 1—2 kJ/mol’”
and could be sufficient to re-order the CM and 4FCM
landscapes and stabilize the experimentally observed forms.
Indeed, correct predictions for the 13th case in the
aforementioned benchmark study were obtained once finite-
temperature free energy effects were included. Whether all the
minima in Figure 6 correspond to distinct polymorphs that can
be isolated at room temperature is an open question. The main
point is that crystal structure prediction demonstrates that both
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CM and its 4-fluorinated analog can adopt a variety of
energetically competitive crystal packing motifs. There is no
obvious thermodynamic reason why 4FCM exhibits poly-
morphism while CM does not. In fact, our results suggest that
CM does not have a strong thermodynamic preference for HT
packing—HH motifs are actually much more common in the
lower-energy region of the CM landscape.

B DISCUSSION

In previous work, we found that the fluorination of 9AC had
little effect on the molecular electronic properties, e.g., the
optical gap, but did lead to photomechanical crystals with
improved mechanical and photophysical properties.”~** All the
derivatives studied in that work shared a similar crystal packing
that allowed the [4 + 4] photodimerization reaction to proceed
and no polymorphism was observed. For the 9ACs, the
carboxylic acid group acts as a powerful director of crystal
growth thanks to intermolecular hydrogen bonding. The CM
frame lacks a strong crystal directing group, however, the
expected effect of fluorination was less clear.

Indeed, we found that fluorine substitution on the CM family
leads to a surprisingly rich landscape of polymorph crystal forms,
only some of which are reactive. Attempts to rationalize
polymorph formation on the basis of crystal energy calculations
were not successful because the polymorphs were essentially
indistinguishable. These results suggest that crystallization
kinetics may be of central importance in determining which
polymorphs occur experimentally. The viscosity dependence of
4FCM suggests that controlling the rate of crystal growth can
favor different polymorphs. As mentioned above, however, the
viscosity correlation is not perfect. A stronger correlation was
found for hydrogen-bonding solvents, which always gave the
same polymorph (HH or HT) for a given molecule. It is possible
that solvent hydrogen bonding with the fluorinated phenyl ring
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is strong enough to affect crystal growth kinetics. Some evidence
for this is found by examining 3,SFCM, which only crystallized
as a co-crystal with ethanol molecules localized around the
phenyl ring (Supporting Information). This structure is
consistent with the idea that the fluorinated phenyl ring provides
an opportunity for solvent molecules to form transient hydrogen
bonds. How such intermolecular bonds could steer polymorph
growth is a subject for future investigation. Specific solvent-
solute interactions have been shown to influence nucleation and
crystal growth in other organic molecules,”>™®" although
solvent-fluorine interactions have not been previously impli-
cated in polymorph selection.

B CONCLUSIONS

In this paper, we explored how fluorine substitution affects the
electronic states and crystal packing in a family of CM
derivatives. First, the addition of fluorines can shift the S, — S;
energy gap by up to 0.4 eV. Second, depending on the
substitution pattern, either the HH (unreactive) or HT
(reactive) crystal forms could be obtained. For some derivatives,
both polymorphs could be grown depending on the solvent. The
polymorphism and solvent control were surprising to us at first,
given our previous experience with the anthracene carboxylic
family where the F atoms appeared to be innocent bystanders
from the perspective of molecular energy gaps and crystal
packing. In the case of the CMs, however, the simple exchange of
an aromatic H atom for an F atom can cause a complete loss of
photomechanical activity due to changes in crystal packing.
Computational work confirms that the fluorinated CMs can give
rise to a rich polymorph landscape where HH and HT structures
can coexist within a few kJ /mol of each other. It is probable that
both thermodynamic and kinetic factors play significant roles in
determining which polymorphs are observed for this class of
compounds. The experimental and computational results
highlight the difficulty of trying to anticipate how even minor
modifications to the molecular structure will alter the resulting
crystal structures, especially in the absence of strong directing
groups/synthons like COOH. Future efforts to create more
powerful organic photomechanical crystals will rely on progress
in molecular design combined with an improved understanding
of crystal engineering and crystal growth.
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