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Abstract

A numerical method is developed for coupling a multi-species kinetic plasma model with a 5N -
moment multi-fluid plasma model. The simulation domain is decomposed such that the local
conditions satisfy the corresponding plasma model’s region of validity. The method allows for hy-
brid simulations by formulating each model as a set of conservation laws and using a continuum
numerical method to solve each model’s governing equations in the subdomains of the decomposed
domain. The models are coupled through fluxes across subdomain interfaces. Two methods are
explored for the formulation of the fluxes that can be self-consistently represented by both plasma
models. One method allows for flux calculations consistent with the 5N -moment multi-fluid plasma
model and assumes thermodynamic equilibrium within each species of the kinetic plasma model.
The second method ensures conservation of the distribution function as well as mass, momentum,
and energy by formulating the fluxes using a composite underlying distribution function at the sub-
domain interfaces. The methods are compared in 1D1V simulations of a double rarefaction wave
and a plasma sheath using the WARPXM framework, which solves each model using the discontin-
uous Galerkin finite element method. Both methods for formulating the fluxes perform well as the
subdomain interface distribution function approaches a Maxwellian, with the consistent method
being more robust to larger deviations. A simulation of the magnetized Kelvin-Helmholtz insta-
bility in 2D2V is also performed using the consistent method, which demonstrates the potential of
the domain-decomposed hybrid method in facilitating speedup and reduction in required compu-
tational resources for high-fidelity plasma simulations, allowing for the investigation of problems
that are beyond current capabilities.

Keywords: Multi-fluid plasma models, Continuum kinetic plasma models, Hybrid plasma
modeling, Discontinuous Galerkin, Plasma sheath, Magnetized Kelvin-Helmholtz instability

1. Introduction

The need for high-fidelity computational simulation in the field of plasma physics is widespread,
with application in various areas including controlled nuclear fusion [1–4], electric propulsion [5, 6],
space physics [7, 8, 9], astrophysics research [10], and active space experiments [11]. Many math-
ematical models exist to describe the plasma dynamics, with different approximations leading to5
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representations of plasmas at different levels of fidelity. Fluid (or moment) models, which describe
plasma dynamics near local thermodynamic equilibrium, comprise one class of mathematical mod-
els for numerical simulation. In highly collisional plasmas with Maxwell-Boltzmann (or Maxwellian)
probability distribution functions in velocity space, the 5N -moment plasma model, also called the
multi-fluid plasma model [12, 13] for N species, effectively describes the plasma dynamics. In plas-10

mas with decreased collisionality, thermalization toward a Maxwellian is less pronounced and the
validity of the multi-fluid plasma model decreases. Higher-moment descriptions exist to capture the
associated non-Maxwellian dynamics of such plasmas, including the 10N -moment [14] and 13N -
moment [15] models as well as others. With further-reduced collisionalities coupled with magnetic
fields driving anisotropies in the distribution function, moment models provide insufficient physical15

fidelity and lose accuracy. In these situations, kinetic models employing the Boltzmann or Vlasov
equations describing the evolution of the distribution function in phase space are needed. In recent
years, advances in computational capabilities have made numerical simulation of the Boltzmann and
Vlasov equations more tractable [16]; in particular, efficiency has been gained by using continuum
techniques similar to those used for moment models, with various treatments under development20

[17–21]. However, simulations employing the kinetic model are more computationally expensive
than those using moment models due to the high-dimensional nature of the Boltzmann and Vlasov
equations which are solved in phase space representing physical and velocity dimensions. Physical
space can be up to three dimensions, and velocity space can be up to three dimensions, which is
denoted 3D3V. In general the kinetic model spans six dimensions in addition to time. The high25

dimensionality motivates the development of approaches that can accelerate kinetic simulations
and reduce the required computational resources without losing the fidelity required to capture the
physics of interest. One way to reduce computational cost of kinetic simulations is to decrease the
number of degrees of freedom in a phase space mesh in a way that still resolves the relevant physics,
such as by using adaptive mesh refinement techniques on the mesh itself [22] or by representing the30

distribution function spectrally [23]. Another method is to apply a hybrid approach where each
species is treated separately, using the kinetic model for one species and a fluid model for another
[24–26]. Each species can also be considered individually, such that different models can be used
on a particular species in different regions (subdomains) of a simulation domain, which can be
determined by comparing the local spatial scales of the plasma, such as the collisional mean free35

path. This subdomain approach has been studied to various degrees recently, such as by examining
a smooth transition region between the models [27, 28], coupling of particle and continuum models
[29–39], or coupling between semi-Lagrangian and Eulerian methods for kinetic and fluid models,
respectively [40]. Coupling particle and continuum models in particular can be challenging due to
statistical scatter present in particle models, which requires a large number of particles to couple40

to a continuum model at the interface between model subdomains. This issue has been addressed
by adopting the particle method to preserve information on a macroscopic scale, which improves
coupling with the continuum method while reducing the numerical expense [41].

The methodology of research presented here focuses on the subdomain approach, but uses
the same continuum representation and numerical solution method for both the kinetic and fluid45

models, which eliminates the numerical noise associated with particle models. This approach
facilitates accurate coupling between subdomains through specification of the interface conditions
between them. Specifically, a discontinuous Galerkin finite element method is used to solve both
the multi-fluid plasma model and the multi-species kinetic model on adjacent subdomains, with
interface conditions specified through fluxes between the subdomains. Specific attention is applied50
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to the implementation of these fluxes, expanding on previous work presented in Ref. [42].
This paper is structured as follows. Section 2 describes details of the multi-fluid plasma and

multi-species kinetic models. Section 3 reviews the discontinuous Galerkin finite element method for
solving the plasma models with a continuum representation. Section 4 presents two kinetic-to-fluid
coupling procedures for implementation of the interface conditions between subdomains. Section55

5 presents a comparison of the coupling procedures in 1D1V on a double rarefaction wave problem
for a single neutral fluid and a plasma sheath problem with ion and electron dynamics. Section 6
presents results using the domain-decomposed hybrid method to simulate the magnetized Kelvin-
Helmholtz instability in 2D2V and compares the results to a full kinetic solution. Conclusions are
given in Sec. 7.60

2. Plasma models

2.1. Multi-species kinetic model

The multi-species kinetic model describes the dynamics of the time-dependent probability dis-
tribution function fα(x,v, t) in phase space composed of physical space and velocity space, where α
represents a particular species of a multi-species plasma. This kinetic model represents the highest65

physical fidelity that is tractable for studying plasma dynamics. The evolution of the distribution
functions in phase space is described by the Boltzmann equation [43], written in non-dimensional
form using index notation with the Einstein summation convention as

∂fα
∂t

+ vi
∂fα
∂xi

+ (ωcτ)
Zα
Aα

(Ei + εijkvjBk)
∂fα
∂vi

=
∂fα
∂t

∣∣∣∣
C

, (1)

where the last term represents collisions between particles in the plasma. Equation (1) is coupled
to Maxwell’s equations in physical space, given by Ampere’s law70

∂Ei
∂t
− (ωpτ)2

(ωcτ)2 εijk
∂Bk
∂xj

=− (ωpτ)2

(ωcτ)

∑
α

Zα

∫
vifα (x,v, t) dv, (2)

and Faraday’s law

∂Bi
∂t

+ εijk
∂Ek
∂xj

=0. (3)

A simple representation for collisions is given by the Bhatnagar-Gross-Krook (BGK) operator [44],
written as

∂fα
∂t

∣∣∣∣
C

=− (νpτ) να (fα − fMα) , (4)

where fMα is a Maxwellian distribution function given by

fMα (v, nα,vα, Tα) =nα

(
Aα

2πTα

) d
2

exp

(
−Aα(vi − vαi)2

2Tα

)
. (5)
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Here, fMα is related to fα through velocity moments75

nα (x, t) =

∫
fα (x,v, t) dv, (6)

vαi (x, t) =

∫
vifα (x,v, t) dv

nα (x, t)
, (7)

Tα (x, t) =
Aα
d

∫
[vi − vαi (x, t)]2 fα (x,v, t) dv

nα (x, t)
, (8)

where d is the number of velocity-space dimensions. A local spatially-dependent relaxation fre-
quency can be written as shown in Ref. [15] as

να =
nα

A
1
2
αT

3
2
α

ln Λ. (9)

All equations are normalized by introducing a non-dimensional mass Aα = mα/m0 and non-

dimensional charge Zα = qα/q0. Normalized reference plasma frequency ωpτ =

√
q20n0

m0ε0
τ , cyclotron

frequency ωcτ = q0B0

m0
τ , and collision frequency νpτ ∼ n0

m
1
2
0 T

3
2
0

τ are introduced, where τ is a reference80

timescale and T0 is expressed in units of energy. The reference velocity is tied to the thermal
speed, which also specifies a reference length scale such that v0 = L/τ =

√
T0/m0. The relation

B2
0/µ0 = n0T0 connects B0 to n0 and T0, which can be used to replace ωcτ in problems without

a magnetic field with L/δp, where δp = c/ωp is a reference skin depth and c is the speed of light.
The normalizing mass is either of protons (m0 = mp) or electrons (m0 = me) and the normalizing85

charge is the elementary charge, q0 = e. Further details regarding the normalization can be found
in Ref. [42].

2.2. 5N -moment (multi-fluid) plasma model

The 5N -moment plasma model applies in the limit of high collisionality, where the distribution
function approaches a Maxwellian and is derived by taking velocity moments of Eq. (1). Multi-90

plication of Eq. (1) by Aα and integrating over velocity space yields the zeroth velocity moment,
which provides the continuity equation

∂ρα
∂t

+
∂ (ραvαi)

∂xi
=0, (10)

where ρα = Aαnα and vα can be obtained using Eqs. (6) and (7). Multiplication of Eq. (1) by Aαv
and integration over velocity space yields the first velocity moment, which provides the momentum
equation95

∂ (ραvαi)

∂t
+
∂
(
ραvαivαj + pαδij

)
∂xj

= (ωcτ)
Zα
Aα

ρα
(
Ei + εijkvαjBk

)
, (11)

where pα = nαTα can be obtained using vα and Eq. (8). Multiplication of Eq. (1) by 1
2Aα (v · v)

and integration over velocity space yields the second contracted moment, providing the energy
equation

∂eα
∂t

+
∂ [(eα + pα) vαi ]

∂xi
= (ωcτ)

Zα
Aα

ραvαiEi, (12)
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where eα = pα
γ−1 + 1

2ραv
2
α and γ is the adiabatic index which is related to the number of degrees of

freedom, Df , through the relationship γ = (Df + 2) /Df . Note that this form of the 5N -moment100

fluid model neglects collisional transport and reactions, and thus describes the dynamics of exact
Maxwellian distribution functions. Collisional and reaction terms can be included [45]; however,
the focus of this research is to test the coupling between the kinetic model and fluid model without
these complications.

3. Numerical method for the kinetic and 5N-moment models105

The Boltzmann equation as described in Eq. (1) is rewritten in conservative form

∂fα
∂t

+
∂

∂xi
(vifα) +

∂

∂vi

[
(ωcτ)

Zα
Aα

(Ei + εijkvjBk) fα

]
=
∂fα
∂t

∣∣∣∣
C

. (13)

Maxwell’s equations, Eqs. (2) and (3), can also be written in conservative form, such that the entire
governing system of the kinetic model can be expressed compactly as

∂qi
∂t

+
∂Fij
∂xj

=Si, (14)

where q is the solution vector for the equation set, F is the flux tensor, and S represents source
terms. The x coordinate is generalized to represent spatial position x and velocity v in Eq. (13).110

The 5N -moment model written in Eqs. (10), (11), and (12) with Maxwell’s equations can also be
expressed as in Eq. (14).

Expressing the governing equation system in the form of Eq. (14) facilitates solution with
the discontinuous Galerkin finite element method using the WARPXM (Washington Approximate
Riemann Plasma) framework [13]. The framework provides algorithms that solve plasma physics115

problems on unstructured grids using fluid and kinetic models. The unified framework also sim-
plifies hybridization, allowing for interfacing between different models being solved in different
subdomains of a simulation. The coupling of the Boltzmann equation in Eq. (13) as well as the
fluid equations in Eqs. (10), (11), and (12) to Maxwell’s equations in Eqs. (2) and (3) also allows
for global solutions to Maxwell’s equations over the entire domain, which can aid hybridization, as120

has been shown for coupling of codes using a global electrostatic Poisson equation solver [46].
The discontinuous Galerkin method in WARPXM involves subdividing the simulation domain

into discrete elements and projecting the conserved variables, qi in Eq. (14), onto a set of basis
functions φm of order m such that the numerical approximation is represented as

qi =qimφm. (15)

Equation (14) is then multiplied by each basis function and integrated over each element volume125

Ω, yielding the weak form integral equation for each basis function∫
Ω

∂qi
∂t
φmdV +

∮
∂Ω
FijnjφmdS −

∫
Ω
Fij

∂φm
∂xj

dV =

∫
Ω
SiφmdV , (16)

where the divergence theorem has been applied to the flux tensor term. The mesh consists of
simplex elements such as lines, triangles, or tetrahedrons in physical space and rectilinear hyper-
cubes (lines, rectangles, rectangular prisms) in velocity space. Phase-space elements for the kinetic

5



model are constructed using tensor products of the physical-space and velocity-space elements.130

The integration of the surface integral over an element surface ∂Ω in Eq. (16) is computed using a
summation of surface integrals over each element face,∮

∂Ω
FijnjφmdS =

Γ∑
γ

∫
∂Ωγ

(Fijnj)∗γ φmdS, (17)

where γ represents a particular face with normal n and Γ is the total number of faces for the
element. The asterisk on the term in the integrand denotes that the flux is single-valued at each
location along the surface ∂Ω.135

The time integration of Eq. (16) is accomplished using an explicit Runge-Kutta (ERK) time-
stepping method. The combination of spatial and temporal discretizations produces a compact,
high-order scheme with an optimal convergence rate of O(hN+1) for element size h and polyno-
mial basis order N [47]. Lagrange interpolating polynomials based on Legendre-Gauss-Lobatto
quadrature node locations are used for the basis functions, yielding a nodal scheme in which the140

coefficients in Eq. (15) correspond to solution values at the node locations.
The discontinuous Galerkin method allows discontinuous solutions at element faces, leading

to Riemann problems that must be solved in order to construct the appropriate fluxes given by
the (Fijnj)∗γ terms in the surface integrals of Eq. (17). The solutions to the Riemann problems,
whether exact or approximate [12, 48–50], are the numerical fluxes.145

Further details of the discontinuous Galerkin method used in the WARPXM framework can
be found in Refs. [51, 52]. Details of the ERK time-stepping algorithm to advance Eq. (16) are
described in Ref. [42].

The WARPXM framework has been used to simulate plasmas using the 5N -moment and ki-
netic models. Examples of simulations involving the 5N -moment model include those of Z-pinch150

dynamics [53], drift turbulence in field reversed configurations [13, 54], and magnetic reconnection
[51]. Examples of simulations involving the kinetic model include those of Landau damping and
the two-stream instability [42] as well as the Dory-Guest-Harris instability [55].

The domain-decomposed hybrid method for coupling the 5N -moment and kinetic models is
implemented through the formulation of the numerical flux at the subdomain interfaces. Thus, an155

overview of the numerical fluxes used for each model is given in Sec. 3.1, while the determination
of the numerical fluxes between the models at subdomain interfaces is detailed in Sec. 4.

3.1. Numerical fluxes at element faces for plasma models

The numerical flux is often expressed in the local frame of an element face, so it is convenient
to first rewrite the flux in terms of rotation operators, such that160

(Fijnj)∗γ = (Rγ)−1 F̃(Rγqi) ≡ (Rγ)−1 F̃(q̃γi ), (18)

where Rγ rotates from a global grid frame to a local frame along the face γ where the normal
points outward from the element in the surface integral, (Rγ)−1 rotates back from the local frame
to the global frame, and F̃(q̃γi ) is the normal flux vector in the local frame [56]. F̃(q̃γi ) can then
be calculated using a flux splitting method given by

F̃(q̃γi ) =
1

2

(
F̃(q̃γ−i ) + F̃(q̃γ+

i )
)

+
1

2

∣∣∣Ã∣∣∣
ij

(
q̃γ−j − q̃

γ+
j

)
, (19)
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where − refers to values of q̃γi on the internal element Ω and + refers to values of q̃γi on the external165

element adjacent to element Ω at the face γ for the surface integral in Eq. (17). The tensor
∣∣∣Ã∣∣∣

ij

is a diagonalized approximation of the flux Jacobian ∂F̃(q̃i)/∂q̃j using the absolute values of its
eigenvalues [57]. For Eq. (13), which behaves as a multi-dimensional advection equation, the flux
Jacobian approximation is for the scalar distribution function and does not require rotation and is
exact, such that170

(Fijnj)∗γ =F̃(fγi ) =
ã

2

(
fγ− + fγ+

)
+

1

2
|ã|
(
fγ− − fγ+

)
, (20)

where ã is either the local velocity on spatial flux faces or the acceleration on velocity flux faces
projected onto the frame of the face normal. The Maxwell system is linear and yields an exact flux
Jacobian, resulting in

F̃(Ẽγi ) =
1

2

(ωpτ)

(ωcτ)


0

(ωpτ)
(ωcτ)

(
B̃γ−
z + B̃γ+

z

)
+
(
Ẽγ−y − Ẽγ+

y

)
− (ωpτ)

(ωcτ)

(
B̃γ−
y + B̃γ+

y

)
+
(
Ẽγ−z − Ẽγ+

z

)
 , (21a)

F̃(B̃γ
i ) =

1

2


0

−
(
Ẽγ−z + Ẽγ+

z

)
+

(ωpτ)
(ωcτ)

(
B̃γ−
y − B̃γ+

y

)(
Ẽγ−y + Ẽγ+

y

)
+

(ωpτ)
(ωcτ)

(
B̃γ−
z − B̃γ+

z

)
 , (21b)

written in vector form corresponding to Eqs. (2) and (3) respectively. The fluid system is nonlinear175

and thus finding
∣∣∣Ã∣∣∣

ij
is more complicated. However, numerous approximate solutions known as

approximate Riemann solvers exist [12, 52]. A few that have been implemented for the 5N -moment
model are Rusanov [58], HLL [59], and Roe [60] methods.

4. Domain-decomposed hybrid method implementation using numerical fluxes

The domain-decomposed hybrid method applies the multi-fluid plasma model and multi-species180

kinetic model on adjacent subdomains of a simulation. At subdomain interfaces the distribution
function solutions for each model can be different, as illustrated in Fig. 1, where fF refers to the
Maxwellian distribution function constructed from fluid variable solutions to the multi-fluid plasma
model using Eq. (5) and fK refers to the distribution function solution to the multi-species kinetic
model. Interface conditions determine the interaction between the multi-fluid plasma model and185

multi-species kinetic model at the subdomain interfaces, which can be specified through the surface
numerical flux as described in Sec. 3.1. Two approaches are considered to define the numerical
fluxes at the subdomain interfaces.

The first approach defines the numerical flux in a manner that is consistent with the assumptions
associated with each model, e.g. the distribution functions used to calculate the numerical flux190

for the multi-fluid plasma model are Maxwellian. The method achieves the consistency for the
multi-fluid plasma model by extracting variables from fK that define a Maxwellian distribution
function with the same first three velocity moments as fK to enable the flux splitting given by
Eq. (19). The numerical flux for the multi-species kinetic model is calculated from fF and fK
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Figure 1: Illustrative distribution functions at a subdomain interface between the multi-fluid plasma model, fF , and
the multi-species kinetic model, fK . The fluid distribution function is a Maxwellian calculated using Eq. (5) from the
fluid variables nF , vF , and TF , which are the solutions to the multi-fluid plasma model at the subdomain interface.
Solutions for only a single species are shown for illustration, but solutions for multiple species can also exist. The
differences between fF and fK are also exaggerated for illustrative purposes. In practice, fF and fK will have only
small differences.

using Eq. (20), which does not assume any particular distribution function profile. Details of the195

consistent method, referred to as the direct variable translation method, are described in Sec. 4.1.
The second approach defines the numerical flux for the two plasma models based on an un-

derlying composite distribution function, which ensures the conservation of mass, momentum,
and energy. Details of the conservative method, referred to as the composite distribution function
method, are given in Sec. 4.2. In the limit where fK approaches a Maxwellian distribution function200

identical to fF , both approaches provide consistency and conservation.

4.1. Direct variable translation method

The direct variable translation method calculates the numerical flux for the multi-fluid plasma
model and multi-species kinetic model in a manner that is consistent with the assumptions of the
multi-fluid plasma model, which is that the distribution functions on either side of the subdomain205

interface are Maxwellians. Figure 2 illustrates the method for a particular species.
The procedure to calculate the numerical flux for the multi-fluid plasma model is to translate fK

at the subdomain interface into fluid variables nK , vK , and TK using Eqs. (6), (7), and (8). These
fluid variables are then combined with fluid variable solutions from the multi-fluid plasma model at
the subdomain interface, nF , vF , and TF , using Eq. (19) to calculate a numerical flux. The effect is210

that the numerical flux for the multi-fluid plasma model is calculated from Maxwellian distribution
functions fF and fKM as shown in Fig. 2, where fKM is a Maxwellian distribution function with
the same first three velocity moments as fK . In this manner, the numerical flux for the multi-fluid
plasma model is consistent with the assumption of Maxwellian distribution functions required for
the fluid approximation.215

The calculation of the numerical flux for the multi-species kinetic model is performed after the
translation of nF , vF , and TF to fF , allowing for application of Eq. (20) using fF and fK . No
assumptions need to be made in the numerical flux calculations for the multi-species kinetic model,
which does not impose any restriction on distribution function shape.
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Figure 2: Illustrative distribution functions at a subdomain interface between the multi-fluid plasma model, fF , and
the multi-species kinetic model, fK as in Fig. 1. Velocity moments of fK are calculated using Eqs. (6), (7), and (8)
yielding fluid variables nK , vK , and TK that describe an equivalent Maxwellian distribution function according to
Eq. (5), denoted as fKM . The direct variable translation method calculates the numerical flux for the multi-fluid
plasma model by approximating fK as fKM and applying flux splitting in Eq. (19) on the fluid variables (nF , vF ,
TF , nK , vK , TK). In this way the method consistently calculates the fluid numerical flux. The numerical flux for the
multi-species kinetic model is calculated by using fF and fK in Eq. (20). As with Fig. 1, a single species is shown,
however, the same procedure can be performed for multiple species. The differences between fF and fK are also
exaggerated for illustrative purposes. In practice, fF and fK will have only small differences.

While the direct variable translation method provides consistency in that the numerical flux for220

the multi-fluid plasma model is calculated assuming Maxwellian distribution functions, deviation
of fK from a Maxwellian causes loss in accuracy, due to inexact representation of the distribution
function using only the velocity moments that yield nK , vK , and TK . This loss in accuracy
manifests in a loss of conservation of the distribution function as well as the fluid model conserved
variables of mass, momentum, and energy due to numerical fluxes being calculated for the multi-225

fluid plasma and multi-species kinetic models based on different distribution functions (fF and
fKM for the fluid model as opposed to fF and fK for the kinetic model). Conservation is provided,
however, as fK approaches a Maxwellian identical to fF at the subdomain interface.

4.2. Composite distribution function method

While the direct variable translation method provides consistency in the specification of the230

numerical flux for the multi-fluid plasma model and becomes conservative as fK approaches fF , the
composite distribution function method provides conservation for arbitrary fK and becomes con-
sistent as fK approaches fF . This conservative approach is performed by constructing a composite
distribution function, fC , from fF and fK , from which the numerical fluxes for the multi-fluid
plasma model and multi-species kinetic model are calculated directly.235

The method for constructing fC is illustrated in Fig. 3 for the case of a subdomain interface
in a local frame of reference in which the multi-fluid plasma model is solved on the left and the
multi-species kinetic model is solved on the right. The numerical flux for the kinetic model as
given in Eq. (20) shows that for vx ≥ 0, F = vxfF and for vx < 0, F = vxfK , where the tildes are
dropped for clarity of notation. This flux can be obtained from a composite distribution function240
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defined as

fC(fK , fF ) =

{
fK if vx < 0

fF if vx ≥ 0,
(22)

as illustrated in Fig. 3. If the multi-species fluid model is solved on the right of the subdomain
interface and the kinetic model is solved on the left, the definition of fC would be reversed, given
by

fC(fF , fK) =

{
fF if vx < 0

fK if vx ≥ 0.
(23)

The numerical flux for each model can then be calculated from this composite distribution function.245

For the multi-species kinetic model, application Eq. (20) on fF and fK yields the numerical flux,
identical to the calculation for the direct variable translation method, and by inspection of Eqs. (22)
and (23), is equivalent to F = vxfC .

The numerical fluxes for the multi-fluid plasma model are calculated from the velocity moments
of fC that yield the flux tensor terms in Eqs. (10), (11), and (12). The flux tensor terms for a250

particular species, written for an element face γ at a subdomain interface between models with
normal n, are given by (

Fi(ρα)ni
)∗
γ

= (ραvαini)
∗
γ = niγ

∫
vi (AαfC,α) dv, (24)

(
Fij(ραvα)nj

)∗
γ

=
([
ραvαivαj + pαδij

]
nj
)∗
γ

= njγ

∫
vj (AαvifC,α) dv, (25)

(
Fi(eα)ni

)∗
γ

= ([(eα + pα) vαi]ni)
∗
γ = niγ

∫
vi

(
1

2
AαvjvjfC,α

)
dv, (26)

for Eqs. (10), (11), and (12), respectively.255

Deriving a flux from the same composite distribution function for each plasma model ensures
conservation of the distribution function and the conserved variables in the fluid model, mass,
momentum, and energy. However, for arbitrary fK far from fF , the fluid fluxes calculated in
Eqs. (24), (25), and (26) are not solutions based on consistent assumptions of Maxwellian distri-
bution functions, as would be the case if applying Eq. (19) using fluid variables. The composite260

distribution function method can lead to inaccurate solutions when fK is far from fF . As with
the direct variable translation method though, conservation and consistency are recovered as fK
approaches fF .

In the next section, solutions using the direct variable translation and the composite distribution
function methods are compared for some illustrative cases coupling the multi-fluid plasma model265

in 1D to the multi-species kinetic model in 1D1V. Performance is compared through observation of
the solutions as well as measurements of conservation properties. A metric measuring the deviation
from a Maxwellian distribution function in the kinetic subdomains, given by

χα =

∫
|fα − fMα | dv

nα
, (27)

where fMα is a Maxwellian distribution function related to fα through the fluid variables in Eqs. (6),
(7), and (8) [17, 19], is also used to compare the direct variable translation and composite distri-270

bution function methods.
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Figure 3: Illustration of a composite distribution function, fC constructed from fF and fK at a subdomain interface
between the multi-fluid plasma model and multi-species kinetic model, as shown in Fig. 1, for the case of the multi-
fluid plasma model solved to the left of the interface and the multi-species kinetic model solved to the right. The
composite distribution function is constructed by considering the portions of fK and fF that advect across the
subdomain interface, which by inspection of Eq. (20) yields fC defined by Eq. (22). For the composite distribution
function method, the numerical flux for the multi-species kinetic model is calculated from fK and fF using Eq. (20)
or equivalently as vfC , which is identical to the direct variable translation method. The numerical flux using the
composite distribution function method for the multi-fluid plasma model is then constructed from velocity moments
of fC , given by Fζ∗ =

∫
ζfCdv for ζ = [Aαv, Aαvv,

1
2
Aαvv

2]. This leads to a conservative method in which the
numerical fluxes for the multi-fluid plasma model and multi-species kinetic model are constructed from the same
underlying composite distribution function. The composite distribution function is shown for a single species, but
as with the direct variable translation method, the composite distribution function method can be performed for
multiple species. The differences between fF and fK are also exaggerated for illustrative purposes. In practice, fF
and fK will have only small differences.
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5. Domain-decomposed hybrid simulations using the direct variable translation method
and the composite distribution function method in 1D1V

The direct variable translation and composite distribution function methods described in Sec. 4
are used to couple the multi-fluid plasma model described in Sec. 2.2 to the multi-species kinetic275

model described in Sec. 2.1. The domain-decomposed hybrid method is applied to 1D test problems
– a neutral gas wave propagation and a two-fluid plasma sheath formation. For the rest of this
paper, the multi-fluid plasma model will be denoted as the fluid model and the multi-species kinetic
model will be denoted as the kinetic model.

5.1. Neutral gas test of the hybrid coupling approaches for a double rarefaction wave problem280

A double rarefaction wave problem [61–63] involving a single thermalized neutral fluid is used to
test the direct variable translation and composite distribution function methods in the limit where
Maxwellian distribution functions exist on either side of a subdomain interface. The problem
couples the fluid model in 1D with the kinetic model in 1D1V and was previously studied in
Ref. [42] to test the direct variable translation method.285

The initial condition consists of a uniform density and pressure, with ρ = 1.0 and p = 0.4 over
a physical space domain given by x ∈ [0, 1]. The velocity is initialized to produce rarefaction waves
propagating outward from x = xc = 0.5 by setting a positive velocity in the right portion of the
domain, vxR = 0.2, and a negative velocity in the left portion of the domain, vxL = −0.2. The
velocity smoothly transitions at x = xc using the form290

vx =
vxL
2

[
1− tanh

{
2π (x− xc)

d

}]
+
vxR
2

[
1 + tanh

{
2π (x− xc)

d

}]
, (28)

where d = 0.1 is a measure of the transition width. The smooth transition ensures adequate
resolution of the gradient, enabling accurate grid convergence studies.

Simulations are performed with the domain decomposed into left and right subdomains sepa-
rated at x = xc. For x < xc, the fluid model is solved and for x > xc, the kinetic model is solved.
Both models use a single species with mass A = 1. The species is also charge neutral with Z = 0,295

eliminating electromagnetic source terms in Eqs. (11) and (12) as well as the velocity-direction
flux in Eq. (13), which also removes the need to solve Maxwell’s equations, Eqs. (2), and (3).
Simulations are performed using the direct variable translation method for coupling of the fluid
model with the kinetic model. The simulations are then repeated using the composite distribution
function method. In the subdomain where the kinetic model is solved, the initial condition is set by300

using the initialized density and pressure and velocity according to Eq. (28) to define corresponding
Maxwellian distribution functions using Eq. (5). The initial conditions for the distribution function
and fluid variables are plotted in Fig. 4.

For consistency with the single spatial degree of freedom in a 1D1V kinetic simulation, the
adiabatic index is set to γ = 3 in the fluid subdomain. The simulations are performed to t =305

0.15 with the velocity-space domain of the kinetic model defined by vx ∈ [−10, 10]. Second-
order polynomial elements are used, comprising of 128 line elements in x, while the velocity-space
resolution is varied to yield phase-space elements for resolutions of Nx ×Nvx : 128× 20, 128× 40,
128× 80, 128× 160, 128× 320, and 128× 640. A third-order ERK method is used for timestepping
and Rusanov numerical fluxes are used in the solution for the fluid model. A simulation is also310

performed using the fluid model in both the left and right subdomains, denoted in the rest of this

12



0.0 0.2 0.4 0.6 0.8 1.0
x

3

2

1

0

1

2

3

v x

0.00

0.15

0.30

0.45

0.60

(a) Distribution function for x ∈ [0, 1] and vx ∈ [−3, 3].
The velocity space for the simulations however spans vx ∈
[−10, 10].
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(b) Fluid variables for x ∈ [0, 1].

Figure 4: Initial condition for the double rarefaction wave simulation on a grid of 128× 640 second-order polynomial
elements. Figure 4a shows the initial condition for the distribution function and Fig. 4b shows corresponding fluid
variables n, vx, and p.

section as the fluid simulation. Simulations at all velocity-space resolutions are also performed
using the kinetic model in both subdomains, denoted as the kinetic simulations.

Collisions drive the kinetic distribution function towards a Maxwellian according to Boltzmann’s
H-theorem [43], which is required for validity of the fluid model, so a collision operator of the form315

in Eq. (4) is included where the kinetic model is solved. The relaxation parameter for the collision
operator is set using νpτ = 1 and varying ν until thermalization is achieved.

Figure 5 shows fluid variables, calculated using moments of the distribution function in the
kinetic subdomains and as solutions to the fluid model in the fluid subdomains, for all simulations
with ν values of 10, 100 and 1000 for the 128×640 resolution case at t = 0.15. Agreement between320

the kinetic model using the collision operator and the fluid model is found with increasing ν.
The solutions using the direct variable translation and composite distribution function methods
also generally agree well with the fluid and kinetic simulation solutions. However, the level of
agreement reduces between the location of the initial jump in velocity at xc and the rarefaction
wave as it moves in time for low collision frequencies. This can be seen more clearly in a closeup325

of the number density as shown in Fig. 6. For lower collision frequencies, the discrepancy increases
at xc, corresponding to the initial velocity jump and the subdomain interface between the fluid
and kinetic solutions, which causes a mismatch in the solution using either hybrid method, and is
generally larger for the composite distribution function method. This mismatch is diminished for
both coupling methods with increasing collision frequency, allowing the fluid moments calculated330

from the kinetic solution to approach a Maxwellian distribution function that matches the fluid
solution.

Figure 5d visually confirms the matching distribution function at the subdomain interface for
the ν = 1000 case. As described in Sec. 4, the direct variable translation and composite distribution
function methods are conservative and consistent when this subdomain interface distribution func-335

tion is Maxwellian. Measurements of χ as defined in Eq. (27) confirm that the distribution function
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(a) Fluid variables for ν = 10
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(b) Fluid variables for ν = 100

0.0 0.2 0.4 0.6 0.8 1.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fl
ui

d 
Va

ria
bl

es

Fluid Kinetic

nF

vxF

pF

nK

vxK

pK

nDVT

vxDVT

pDVT

nCD

vxCD

pCD

(c) Fluid variables for ν = 1000
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(d) Distribution function for ν = 1000 for the kinetic sim-
ulation.

Figure 5: Comparison of domain-decomposed hybrid simulations of the double rarefaction wave problem a on grid
of 128 × 640 second-order polynomial elements at t = 0.15. Fluid variables, measured by taking moments of the
distribution function in the kinetic subdomain, and as solutions to the fluid model in the fluid subdomain, are shown
in Figs. 5a, 5b, and 5c for ν = 10, 100, and 1000. F, K, DVT, and CD denote fluid, kinetic, hybrid using the direct
variable translation method, and hybrid using the composite distribution function method simulations, respectively.
The distribution function for the ν = 1000 case is shown in Fig. 5d for the kinetic simulation. The BGK operator with
increasing ν relaxes distribution functions towards Maxwellians on subdomains where the kinetic model is solved,
allowing for coupling of the fluid and kinetic models using the direct variable translation and composite distribution
function methods at the subdomain interface at x = xc = 0.5 with minimal error.
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(b) ν = 100
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Figure 6: Closeup of n for ν = 10, 100, and 1000 for simulation of the double rarefaction wave problem on a grid of
128× 640 second-order polynomial elements at t = 0.15. With increasing ν, the fluid and kinetic solutions approach
each other, allowing for better matching of the solution in each subdomain using the direct variable translation
and composite distribution function methods. Note the DVT and CD lines closely follow each other in Fig. 6c for
ν = 1000.
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does approach a Maxwellian with increased collision frequency, as seen in Fig. 7, which plots χ for
ν = 10, 100, and 1000 for the 128×640 resolution simulations. Figure 7 shows that the subdomain
interface distribution function approaches a Maxwellian (lower values of χ) for increasing collision
frequency. Figure 7 also shows that χ measured in the hybrid simulations using the direct variable340

translation and composite distribution function methods closely matches χ measured in the kinetic
simulation for the higher collision frequencies, further indicating similar evolution of the solution
using the kinetic and fluid models when the distribution function approaches a Maxwellian.

A further check of the coupling performance of the direct variable translation and composite
distribution function methods can be made by measuring mass, momentum, and energy conser-345

vation. As described in Sec. 4, the composite distribution function method should provide better
conservation properties than the direct variable translation method in general, but both should
provide conservation when the distribution functions on either side of the subomain interface ap-
proach the same Maxwellian. A norm is defined to measure the conservation properties, given
by350

Lqi2 =

√√√√√0.15∑
t=0

 1∫
0

qi(t)dx+
[(
Fij(qi(t))

nj

)
x=0

+
(
Fij(qi(t))

nj

)
x=1

]
∆t−

1∫
0

qi(t = 0)dx

2

, (29)

where qi = [ρ, px, e] are the conserved variables in the one-dimensional fluid model in Eqs. (10),
(11), and (12), where for x-momentum, px ≡ ρvx. Equation (29) is the L2-norm of the difference in
the integral of qi over the physical-space domain at various times compared with t = 0, calculated
at intervals of ∆t = 0.0015. To account for outflow of mass, momentum, and energy at domain
boundaries, the time-integrated flux of qi is included in the Fij(qi(t))

nj terms, calculated using355

Eqs. (24), (25), and (26), where nj is the unit normal pointing out of the simulation domain.
Assuming the distribution functions are Maxwellian and constant at the domain boundaries (the
double rarefaction wave does not reach the boundaries at t = 0.15), these fluxes can be calculated
from the initial condition density, velocity, and pressure as(

F(ρ)nx
)
x=0

+
(
F(ρ)nx

)
x=1

=0.2 + 0.2 = 0.4 (30)(
F(px)nx

)
x=0

+
(
F(px)nx

)
x=1

=− 0.44 + 0.44 = 0 (31)(
F(e)nx

)
x=0

+
(
F(e)nx

)
x=1

=0.124 + 0.124 = 0.248 (32)

Equation (29) is calculated for the various velocity-space resolutions and plotted in Fig. 8 for360

ν = 1000. Values of L2 for mass, momentum, and energy converge to floors once velocity space
is adequately resolved when 1/∆vx = 4, corresponding to the 128 × 80 resolution simulation.
The converged L2 values for the simulations using the composite distribution function method
are similar to those for the kinetic simulations. This confirms the conservation property of the
composite distribution function method. The conservation of mass, momentum, and energy using365

the direct variable translation method is reduced compared to the kinetic simulations and those
using the composite distribution function method, indicated by the higher converged values reached
in Fig. 8. Similar behavior is observed at lower collision frequencies, but with higher converged
values of L2 for mass, momentum, and energy for each hybrid method. This trend can be seen
in Table 1, which shows the L2 values for ν = 10, 100, and 1000 for the simulations at the370

128×640 resolution. This indicates that even the direct variable translation method does conserve
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Figure 7: Deviation from a Maxwellian distribution function is indicated by χ, defined in Eq. (27), for the double
rarefaction simulations at t = 0.15, measured for a kinetic simulation using 128 × 640 second-order polynomial
elements in phase space for ν = 10, 100, and 1000. Values of χ are also plotted on the right subdomain for simulations
using the direct variable translation and composite distribution function methods at the same resolution. Values of
χ reduce in simulations with higher ν, indicating distribution functions that are closer to Maxwellian. Higher ν also
allows for better matching of χ for simulations employing either hybrid method to the kinetic simulation. Note the
DVT and CD lines closely follow each other in Fig. 7c for ν = 1000. Also note that χ is only plotted on the left
subdomain for the kinetic simulation, as it is 0 by definition in the fluid model.
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ν F K DVT CD

Lρ2 10 2× 10−13 1× 10−8 8× 10−4 7× 10−9

100 2× 10−13 5× 10−13 5× 10−5 3× 10−13

1000 2× 10−13 7× 10−13 1× 10−5 3× 10−13

Lpx2 10 3× 10−16 2× 10−16 1× 10−3 2× 10−8

100 3× 10−16 4× 10−15 2× 10−4 7× 10−13

1000 3× 10−16 1× 10−13 2× 10−6 5× 10−14

Le2 10 5× 10−14 8× 10−8 2× 10−3 4× 10−8

100 5× 10−14 2× 10−12 4× 10−4 8× 10−13

1000 5× 10−14 1× 10−13 9× 10−6 6× 10−14

Table 1: The norm Lq2 as defined in Eq. (29) for the double rarefaction wave problem plotted for the 128 × 640
resolution case using second-order polynomial elements for ν = 10, 100, and 1000. Mass, momentum, and energy are
conserved to a higher degree for the composite distribution function method compared with the direct variable trans-
lation method, with both exhibiting better conservation as the distribution functions are more closely approximated
as Maxwellians with increasing collision frequency.

mass, momentum, and energy to a higher degree as the subdomain interface distribution function
approaches a Maxwellian, as postulated in Sec. 4.

Overall, the double rarefaction wave test indicates good performance using the direct variable
translation and composite distribution function methods for coupling between the fluid and kinetic375

models for a single neutral fluid approaching a Maxwellian. The coupling is performed with minimal
error or instability with good conservation properties in the Maxwellian limit.

5.2. Multi-species plasma test of the hybrid coupling approaches for a plasma sheath

The performance of the coupling methods described in Sec. 4 can be further assessed through ap-
plication to a realistic problem involving multiple charged species in the presence of electromagnetic380

fields and where kinetic effects are essential to the dynamics. The 1D plasma sheath development
provides such an assessment. As with the double rarefaction wave problem, the plasma sheath was
studied in Ref. [42] using the direct variable translation method, and is expanded upon to include
the composite distribution function method for comparison.

The plasma sheath development is simulated on a one-dimensional domain bounded by grounded385

electrodes (or walls), as described in Ref. [64]. The normalization used is as described in Ref. [42],
and is restated for convenience, with reference values of density n0 = 1019 m−3, temperature

T0 = 1 eV, and Debye length scale L =
√

ε0T0
n0q20

= 2.35 µm. A normalizing proton mass m0 = mp

is set, leading to ωpτ = 1 and L/δp = v0/c = 3.265 × 10−5 using the normalization described in
Sec. 2.1. A realistic mass ratio is used such that Ai = 1 and Ae = 1/1836 while the charges are390

Zi = 1 and Ze = −1. Ions and electrons are simulated with initial conditions of ni = ne = 1,
vxi = vxe = 0, and Ti = Te = 10 on a 1D1V grid where the physical space is defined by a grid
of x ∈ [−128, 128] where for hybrid simulations, for x ∈ [−128,−96] and x ∈ [96, 128], the ki-
netic model is solved and for x ∈ [−96, 96], the fluid model is solved. The velocity space spans
vα = [−6vthα , 6vthα ] for each species α where vthα =

√
Tα/Aα. A simulation using the kinetic395

model for both ions and electrons over all subdomains is also performed, denoted the kinetic sim-
ulation for the rest of this section. Boundary conditions are outflow for the distribution functions
in phase space and conducting walls for the fields. Second-order polynomial spatial and velocity
elements are used, with ∆x = 1 and ∆vxα = vthα/4, along with third-order ERK timestepping.
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Figure 8: The norm Lq2 as defined in Eq. (29) for the double rarefaction wave problem plotted for several velocity-
space resolutions using second-order polynomial elements in the velocity direction for ν = 1000. All models use
128 second-order polynomial spatial elements. The values of Lq2 reach converged values as the velocity space is
accurately resolved when 1/∆vx = 4, corresponding to the 128 × 80 resolution case. Mass, momentum, and energy
are conserved to a higher degree for the composite distribution function method compared with the direct variable
translation method.
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The simulations are run to tωpe = 20, where ωpe =
√
Z2

ene/Ae is the non-dimensional electron400

plasma frequency. As with the 1D1V double rarefaction wave problem, the adiabatic index is set
to γ = 3 in the fluid subdomain. For the fluid model, Roe fluxes are employed for the solution to
Eq. (19) [12, 60].

Due to the mass ratio and equivalent initial ion and electron temperatures, the electron dynam-
ics are much faster than for ions. As the highest-velocity electrons leave the domain and become405

absorbed by the walls, a positive potential forms and the electron distribution function loses sym-
metry and no longer remains Maxwellian. This happens immediately adjacent to the walls and
emphasizes the utility of the domain-decomposed hybrid method, which allows for the kinetic so-
lution in the subdomains adjacent to the walls and the fluid solution away from them. A BGK
collision operator as written in Eq. (4) with locally-dependent collision frequency as given in Eq. (9)410

is thus added to the simulations in the kinetic subdomains for the electrons, with νpτ = 1 and
ln Λ = 10. This collision frequency is highest away from the walls where the fluid model becomes
valid, and decreases as the plasma enters the sheath region [64] where the distribution function is
expected to be far from Maxwellian. As discussed in Sec. 2, collisions between ions and electrons
are neglected. Also, the simulations presented in this section do not replenish the high-energy415

electrons and ions absorbed by the walls to achieve steady-state. The focus of the simulations is to
compare behavior using the kinetic model over the entire domain with the hybrid approach using
the direct variable translation and composite distribution function methods early enough in time
before significant loss of electron and ion density occur. Simulations involving steady-state sheaths
obeying the Bohm criterion by replenishing electrons and ions can be performed in future work.420

One way to do so would be to add an ionization source term for each species from a background
distribution of neutrals [64, 65].

Figure 9 shows the ion and electron distribution functions at tωpe = 20 for the kinetic simulation
as well as simulations employing the direct variable translation and composite distribution function
hybrid methods. For the hybrid simulations, Maxwellian distribution functions constructed from425

the solutions to the fluid model in the middle subdomain are shown. Figures 9d and 9f indicate
an accumulation of the electron distribution function at the subdomain interfaces for the simula-
tions using the hybrid methods, which is more pronounced for the composite distribution function
method. No such accumulation appears to occur in the ions, however.

Figures 10 and 11 show comparisons of the fluid variables n, vx, p, and T for ions and electrons,430

respectively, for each of the simulations as well as χ defined in Eq. (27). Figure 10 shows agreement
in the ion solution, which is expected due to the low value of χ at the subdomain interfaces, as
illustrated in Fig. 10e, as well as the smooth transition at the subdomain interfaces in Figs. 9c
and 9e. The jumps in electron density, pressure, and temperature seen in Figs. 11a, 11c, and 11d
however confirm the observed accumulation of the distribution functions in Figs. 9d and 9f. The435

electron density and temperature discontinuities are more pronounced, however, for the composite
distribution function method compared with the direct variable translation method. Figures 11b
and 11c also show smoother electron velocity and pressure transitions between subdomains for
the composite distribution function method compared with the direct variable translation method.
Additionally, both hybrid methods increase the amplitude of oscillations in the fluid subdomain440

for the electrons, as shown in Figs. 11a, 11b, 11c, and 11d.
Figure 11e shows a value of χe of about 0.03 at the subdomain interfaces for the kinetic sim-

ulation at tωpe = 20. The discontinuities and oscillations present in the simulations using the
direct variable translation and composite distribution function methods indicate that at this value
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Figure 9: Ion and electron distribution functions for a two-species plasma sheath at tωpe = 20. The kinetic simulation
results are shown as well as results for the hybrid simulations using the direct variable translation and composite
distribution function methods. For the hybrid simulations, the fluid model is solved on the middle subdomain for
x ∈ [−96, 96] and the kinetic model is solved on the side subdomains for x ∈ [−128,−96] and x ∈ [96, 128]. Second-
order elements are used in physical space with ∆x = 1 and second-order elements are used in velocity space for
vx ∈ [−6vthi,e , 6vthi,e ] with ∆vx,i,e = vthi,e/4. Maxwell’s equations are solved on all subdomains in physical space.
Maxwellian distribution functions computed from fluid variables are shown in the middle subdomain where the fluid
model is solved in the hybrid simulations. An accumulation of the electron distribution function at the subdomain
interfaces at xsi = ±96 is seen in the hybrid simulations, which is more pronounced for the composite distribution
function method. The ion distribution functions in the hybrid simulations are indistinguishable from those in the
kinetic simulation.
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of χe the fluid model is not valid for the electron species at the subdomain interfaces, and thus445

application of the fluid model at these locations produces inaccurate results. The further decrease
in χe towards the center of the domain, as seen in Fig. 11e, indicates an advantage in moving the
subdomain interface toward the center of the domain.

Simulations are thus performed using the direct variable translation and composite distribution
function methods with the subdomain interface at xsi = ±64, which reduces the size of the fluid450

subdomain while increasing the size of the kinetic subdomains. Plots of fluid variables and χe

for these simulations including the kinetic simulation are shown in Fig. 12. The density and
temperature jumps when using the direct variable translation and composite distribution function
methods are found to be reduced compared to when the subdomain interfaces are closer to the
walls. The hybrid simulation results more closely follow the kinetic simulation results when the455

kinetic subdomains adjacent to the walls are expanded. The lower value of χe of about 0.01 seen
in Fig. 12e at the xsi = ±64 subdomain interface, 1/3 of the value of 0.03 seen in Fig. 11e for
xsi = ±96 with better agreement between the kinetic and hybrid simulations, confirms that more
accurate solutions are found as the distribution function at subdomain interfaces approaches a
Maxwellian.460

A measure of the electron mass and energy integrated over the domain of the hybrid simulations
compared to the kinetic simulation for both cases of the subdomain interface location are shown
in Fig. 13. This compares the conservation properties for each hybrid method against the kinetic
simulation. The mass and energy are computed according to

∆M

MK
=

∣∣∣∣∫ ρ(t)dx−
∫
ρK(t)dx∫

ρK(t)dx

∣∣∣∣ , (33)

465

∆E

EK
=

∣∣∣∣∫ e(t)dx− ∫ eK(t)dx∫
eK(t)dx

∣∣∣∣ , (34)

where K refers to the kinetic simulation quantity. Integrated momentum is maintained at zero for
all hybrid and kinetic simulations. As described in Sec. 4 and seen for the double rarefaction wave
problem in Sec. 5.1, the composite distribution function method achieves mass and energy conser-
vation that is closer to the kinetic simulation than by using the direct variable translation method.
Moving the subdomain interface away from the wall where χe is reduced, however, improves mass470

and energy conservation and solution accuracy for both hybrid methods. The improvements further
support the observations in Figs. 11 and 12, which show the solutions using both hybrid methods
that are closer to the kinetic simulation when the kinetic subdomains are expanded.

To counteract the numerical oscillations and accumulation of the distribution function at a
particular subdomain interface due to either the direct variable translation or composite distribu-475

tion function method, it may also be useful to monitor and remove any charge imbalance at the
subdomain interface, calculated using Gauss’ Law,

∆ρc ≡ρc −
(L/δp)

(ωpτ)2

∂Ei
∂xi

, (35)

where ρc = Zi

(
nif + nik

)
+ Ze

(
nef + nek

)
is the local charge density from fluid and kinetic ions

and electrons at the subdomain interface. To remove the charge imbalance, enough density could
be added to one of the species, for example to the fluid electrons to zero ∆ρc in Eq. (35). However,480
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Figure 10: Ion fluid variables n, vx, p, and T and the χ metric for Maxwellian deviation for the two-species plasma
sheath at tωpe = 20. Simulations involving the kinetic model solved over all subdomains as well as the direct variable
translation and composite distribution function methods are plotted. The subdomain interfaces at xsi = ±96
are shown. No large jumps or oscillations of ion fluid variables occur at the subdomain interfaces for the hybrid
simulations.
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Figure 11: Electron fluid variables n, vx, p, and T and the χ metric for Maxwellian deviation for the two-species
plasma sheath at tωpe = 20. Simulations involving the kinetic model solved over all subdomains as well as the direct
variable translation and composite distribution function methods are plotted. The subdomain interfaces at xsi = ±96
are shown. The simulation using the composite distribution function method exhibits larger jumps in electron density
and temperature at the subdomain interfaces than the simulation using the direct variable translation method. Both
hybrid methods also produce increased amplitudes of oscillations in the fluid subdomain compared to the kinetic
simulation. 24
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Figure 12: Electron fluid variables n, vx, p, and T and the χ metric for Maxwellian deviation for the two-species
plasma sheath at tωpe = 20, as described in Fig. 11, but with larger kinetic subdomains, with the subdomain
interfaces at xsi = ±64. Compared with the case of the subdomain interface at xsi = ±96, the jumps in electron
density, pressure, and temperature are reduced for the case of the subdomain interface further from the wall at
xsi = ±64 where the electron distribution function is closer to Maxwellian. The amplitude of the oscillations in the
fluid subdomain is reduced with the expanded kinetic subdomains.
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Figure 13: Integrated mass and energy for the two-species plasma sheath problem relative to the kinetic simulation for
the hybrid simulations using the direct variable translation and composite distribution function methods. The cases
with subdomain interfaces at xsi = ±96 and xsi = ±64 are compared. The conservation properties are better for the
composite distribution function method than for the variable translation method. However, a larger improvement is
achieved by placing the subdomain interface at a location where the fluid model is valid.

this can cause a lack of global conservation in density. A Lagrange multiplier formulation could
be used to enforce the charge conservation while minimizing the amount of added mass. This
approach can be examined in future work, though as has been shown using Figs. 11, 12, and 13,
placing the subdomain interface where the fluid model is valid reduces inaccuracies and the loss of
conservation properties.485

5.3. Conclusions from one dimensional hybrid method tests

Simulations involving the double rarefaction wave in Sec. 5.1 and plasma sheath in Sec. 5.2 show
that both the direct variable translation and composite distribution function methods for model
coupling between the multi-fluid plasma model and the multi-species kinetic model are viable when
the distribution function at the subdomain interface is close to Maxwellian. The plasma sheath490

simulations show that the direct variable translation method is more robust than the composite
distribution function method, with smaller jumps in the fluid variables at the subdomain interfaces.
Conservation properties are significantly improved by placing the subdomain interfaces where χ
is small, which validates the fluid model. The improved conservation properties are observed for
both the composite distribution function method and the direct variable translation method.495

Further work in one dimension could be done to characterize the effect of either hybrid method
for model coupling as the subdomain interface is moved. One test can be performed by initializing a
distribution function with a bump-on-tail [66] on one side of the spatial domain that transitions to a
Maxwellian on the other side. The placement of the subdomain interface between the fluid model
and the kinetic model for hybrid simulations using the direct variable translation or composite500

distribution function methods could be studied for its impact on the solution. This would allow
for an understanding of the range of values of χ that permit solutions with minimal jumps in
fluid variables and loss of conservation properties. It would also allow for other possible metrics
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for non-fluid behavior to be tested as a way to determine the efficacy of the subdomain interface
placement. Such analysis could be the topic of future research.505

The next section will use the direct variable translation method to simulate the magnetized
Kelvin-Helmholtz instability problem in 2D2V, demonstrating the effectiveness of the method for
reducing computational costs while maintaining physical accuracy.

6. Domain-decomposed hybrid simulations of the magnetized Kelvin-Helmholtz in-
stability in 2D2V510

The direct variable translation hybrid method is now applied in 2D2V to the magnetized Kelvin-
Helmholtz instability. This instability is driven by velocity shear and governs the transport of col-
lisionless low-beta plasmas perpendicular to a background magnetic field. Previous work system-
atically studied the magnetized Kelvin-Helmholtz instability through derivation of linear growth
rates using the Hall MHD model as well as simulations using higher-fidelity models including the515

multi-fluid plasma model as described in Sec. 2.2 and a multi-species kinetic model using a Vlasov-
Poisson formulation for electrostatics [17]. The multi-fluid plasma model captures the physics of
charge separation and diamagnetic drift (not captured by single-fluid MHD) in the shear layer of
the magnetized Kelvin-Helmholtz instability while the kinetic model additionally resolves effects
associated with finite Larmor radii such as non-Maxwellian distribution functions and pressure520

anisotropies. The aim of this research is to demonstrate the utility of the domain-decomposed
hybrid method as described in Sec. 4 to capture the relevant physics by solving the kinetic model
as described in Sec. 2.1 in the shear layer and the fluid model as described in Sec. 2.2 where the
distribution functions are expected to remain close to Maxwellian. This allows for speedup in
simulation times and reduction in computational costs by using the higher fidelity kinetic model525

only where it is needed.
This work is restricted to the study of the magnetized Kelvin-Helmholtz instability during lin-

ear growth. The low-beta property of the plasma studied means that the electrostatic assumption
is valid and that results using the Vlasov-Maxwell and Vlasov-Poisson models should be indistin-
guishable [67]. The next sections describe the setup and results for simulations of the magnetized530

Kelvin-Helmholtz instability.

6.1. Vlasov-Maxwell equilibrium for the magnetized Kelvin-Helmholtz instability

The magnetized Kelvin-Helmholtz instability is simulated by initializing and perturbing an
equilibrium that satisfies the Vlasov-Maxwell system as described in Sec. 2.1. The determination
of the equilibrium for the Vlasov-Maxwell system closely follows the procedure outlined in Ref. [17],535

which determines an equilibrium for the Vlasov-Poisson system close to an equilibrium that satisfies
the multi-fluid plasma model for electrons and ions for a specific density and electric field profile.
The procedure outlined in Ref. [17] involves solving a nonlinear ordinary differential equation given
by the Poisson equation that closely approximates the specified fluid density and electric field
profiles, yielding solutions for the ion and electron distribution functions satisfying an equilibrium540

for the Vlasov-Poisson system. The determination of the kinetic equilibrium in this way is required
for problems such as the magnetized Kelvin-Helmholtz instability, where Larmor radii and gradient
scale lengths are comparable. In such cases, the fluid equilibrium becomes a poor approximation
of the kinetic equilibrium, and thus initializing kinetic simulations using the fluid equilibrium can
introduce spurious dynamics.545
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The following section summarizes the procedure to develop the kinetic equilibrium satisfying the
Vlasov-Poisson system from the desired density and electric field profiles as described in Ref. [17],
with a modification to satisfy the Vlasov-Maxwell system for low-beta plasmas.

6.1.1. Determining kinetic equilibria that satisfy the Vlasov-Maxwell system

The procedure for determining kinetic equilibria that satisfy the Vlasov-Poisson system begins550

by constructing auxiliary ion and electron distribution functions using constants of motion from
specified ion density and electric field profiles from a two-fluid equilibrium. These auxiliary distri-
bution functions are then used to solve a nonlinear Poisson equation to obtain exact equilibrium
distribution functions, as described in detail in Refs. [17, 68].

The procedure can be understood through consideration of the Vlasov-Poisson system, consist-555

ing of Eq. (1) written for each species, and the Poisson equation, written in normalized form for
electrostatic potential, φ,

− (ωcτ)

(ωpτ)2∇
2φ =

∑
α

Zαnα, (36)

where nα is the number density given by Eq. (6) for a species distribution function, fα. The problem
of interest involves a two-species low-beta collisionless plasma with a one-dimensional equilibrium
such that φ = φ(x) with a background magnetic field given by B = Bzẑ. The Vlasov-Poisson560

equilibrium assumes that the background magnetic field is constant, Bz ≡ Bz0 = 1. As described
in Ref. [68], in such a plasma configuration, there exists two constants of motion, which are the
energy and canonical momentum in the y-direction, written in normalized forms as

Eα =
Aα
(
v2
x + v2

y

)
2Tα

+ (ωcτ)
Zαφ(x)

Tα
, (37)

Pα,y =
Ay
Bz0

+
vy

Ωc,α
, (38)

where565

Ay =

∫
Bzdx (39)

is the y-component of the magnetic vector potential, and Ωc,α = (ωcτ) ZαBz0Aα
is a normalized

cyclotron frequency. The species distribution functions, fα, will satisfy Eq. (1) in equilibrium
where ∂fα/∂t = 0 if it can be expressed in terms of the constants of motion. Reference [68]
assumes a form of fα where the canonical momentum and energy dependencies are multiplicatively
separable, given by570

fα(Pα,y, Eα) = Nα(Pα,y)
Aα

2πTα
exp (−Eα) (40)

for some function N(Pα,y). If the distribution functions for each species can be formulated in this
way and their moments of Eq. (6) for nα additionally satisfy Eq. (36), a kinetic equilibrium for
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the Vlasov-Poisson system can be found. Investigation of the relationship between nα and Pα,y in
Ref. [68] shows that N(Pα,y) can be expressed

Nα(Pα,y) =

[
gα(X) exp

(
(ωcτ)

Zαφ
∗(X)

Tα

)]
X=Pα,y

, (41)

where gα(x) and φ∗(x) are the desired density and electrostatic potential profiles that satisfy the575

specified fluid equilibrium. The Vlasov-Poisson equilibrium is then given by the solution for φ(x) in
Eq. (37) that upon substitution along with Eq. (41) into Eq. (40), yields plasma densities according
to Eq. (6) that solve Eq. (36).

Defining auxiliary distribution functions facilitates determination of the solution to Eq. (36) by
allowing an alternative form of Eq. (40) expressed as580

fα =faux
α exp

(
(ωcτ)

Zα (φ∗ − φ)

Tα

)
. (42)

A similar relationship holds for the equilibrium number density, such that

nα =naux
α exp

(
(ωcτ)

Zα (φ∗ − φ)

Tα

)
, (43)

where naux
α is calculated from faux

α using Eq. (6). For a two-species ion-electron plasma with a
specified equilibrium fluid ion density profile, gi(x), and electrostatic potential, φ∗(x), substitution
of Eqs. (40) and (41) into Eq. (42) yields

faux
i =

[
gi(X) exp

(
(ωcτ)

Ziφ
∗(X)

Ti

)]
X=Pi,y

Ai

2πTi
exp

(
−
Ai

(
v2
x + v2

y

)
2Ti

− (ωcτ)
Ziφ
∗(x)

Ti

)
(44)

for ions, and585

faux
e =

[
− 1

Ze

(
Zin

aux, fit
i (X) +

(ωcτ)

(ωpτ)2

∂2φ∗(X)

∂X2

)
exp

(
(ωcτ)

Zeφ
∗(X)

Te

)]
X=Pe,y

× Ae

2πTe
exp

(
−
Ae

(
v2
x + v2

y

)
2Te

− (ωcτ)
Zeφ

∗(x)

Te

)
(45)

for electrons. In Eq. (45), ge is written as the solution for ne to Eq. (36) calculated from φ∗(X) and
naux

i (X), where X = Pe,y. A spline fit as described in Ref. [68] is constructed to evaluate naux
i (X),

which is evaluated numerically from faux
i using Eq. (6). After a similar evaluation of naux

e , Eq. (36)
becomes

− (ωcτ)

(ωpτ)2

∂2φ

∂x2
=Zin

aux
i exp

(
(ωcτ)

Zi (φ∗ − φ)

Ti

)
+ Zen

aux
e exp

(
(ωcτ)

Ze (φ∗ − φ)

Te

)
. (46)

Equation (46) can be solved numerically for φ by discretizing the Laplacian operator and applying590

Newton’s method. Details of entire procedure for finding the solution for φ(x) are found in Ref. [68].
The computed distribution functions along with φ(x) define the Vlasov-Poisson equilibrium using
the fluid profiles gi(x) and φ∗(x) for a constant Bz0.
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For the Vlasov-Maxwell system to satisfy equilibrium, the steady-state Ampere’s Law, Eq. (2),
should additionally be satisfied. Integration of the steady-state form of Eq. (2) yields the required595

magnetic field profile,

Bz(x) =Bz(x0)− (ωcτ)

x∫
x0

Zini(x)viy(x) + Zene(x)vey(x)dx, (47)

where Eq. (7) is used and Bz(x0) ≡ Bz,x0 is the magnetic field at a specified location. Evaluation
of Eq. (47) yields a magnetic field consistent with the solution to φ solved in Eq. (46), which, for
electrostatic low-beta plasmas, should be close to the constant Bz0. However, the Bz(x) profile
calculated in Eq. (47) can be integrated using Eq. (39) to calculate a corrected, self-consistent600

profile for Ay(x) in Eq. (38) and the process for finding the solution for φ(x) can be repeated using
the corrected Ay(x). In this way, an equilibrium is found for the Vlasov-Maxwell system for a low-
beta plasma for a self-consistent, nonuniform Bz(x) profile that approximates a uniform Bz,x0 . The
next section applies this procedure for a specific initialization of the magnetized Kelvin-Helmholtz
instability.605

6.1.2. Vlasov-Maxwell equilibrium for the magnetized Kelvin-Helmholtz instability

The magnetized Kelvin-Helmholtz instability is initialized for the case of a two-species plasma
with ions and electrons. The ion number density and electrostatic potential profiles that solve the
fluid equilibrium as described in Ref. [17] are given by

gi(x) =

[
1 + exp

(
2x

d

)] bd
2

(48)

and610

φ∗(x) =− Ex,0d

2
ln

[
1 + exp

(
2x

d

)]
, (49)

where b, d and Ex,0 are simulation parameters specifying an exponential growth factor, shear layer
half-width, and electric field strength, respectively.

The procedure outlined in Sec. 6.1.1 to determine an equilibrium consistent with the Vlasov-
Maxwell system is applied to case A1 as described in Ref. [17], where b = −10.0, d = 0.05 and
Ex,0 = 2.00 × 10−2. Additional parameters are ωpτ = ωcτ = 1, with m0 = mp and Ti = Te =615

6.25 × 10−4. The equilibrium is one-dimensional with x ∈ [−Lx/2, Lx/2] where Lx = 1.0. The
magnetic field strength at x0 = 0 is Bz,x0 = 1.00, which is the starting point for the initial condition
calculation in Sec. 6.1.1. The ion to electron mass ratio is set to Ai/Ae = 25. A comparison of φ
and Ay for the electrostatic case (calculating the equilibrium once based on Bz = Bz,x0) and the
electromagnetic case (calculating the equilibrium using Eq. (47) as an input for a second iteration)620

is shown in Fig. 14. The equilibrium is solved using 512 grid points and second-order differencing.
Since the equilibrium is for a low-beta plasma, the electrostatic and electromagnetic profiles are
similar. Plots of n, vy, T , Ex, and Bz in Fig. 15 demonstrate the similarities between these profiles.

6.2. Domain-decomposed hybrid simulations of the magnetized Kelvin-Helmholtz instability

The one-dimensional equilibrium calculated in Sec. 6.1.2 is used to initialize a simulation of625

the magnetized Kelvin-Helmholtz instability in two dimensions. The simulation parameters and
discussion of results are described in the following subsections.
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Figure 14: Profiles of the electrostatic scalar potential and the magnetic vector potential calculated for the initial
condition for the magnetized Kelvin-Helmholtz instability. Potentials φ∗ and Ay,Bz,x0 satisfy the fluid equilibrium.
Electrostatic quantities (ES) are calculated by deriving the initial condition for the Vlasov-Poisson system. Electro-
magnetic quantities (EM) are derived by additionally calculating a self-consistent, nonuniform Bz profile according to
Eq. (47), calculating the corresponding magnetic vector potential using Eq. (39), and recalculating the equilibrium.
Since the equilibrium system is for a low-beta plasma, the electrostatic and electromagnetic profiles are similar.

6.2.1. Initial conditions for the magnetized Kelvin-Helmholtz instability

Simulations of the magnetized Kelvin-Helmholtz instability evolved from the perturbed equi-
librium derived in Sec. 6.1.2 are performed on a two-dimensional physical-space domain of x ∈630

[−Lx/2, Lx/2] and y ∈ [−Ly/2, Ly/2] where Ly = 2π/ky with ky = 8. The domain is subdi-
vided into a middle subdomain with x ∈ [−Lx/4, Lx/4], an outside subdomain to the left with
x ∈ [−Lx/2,−Lx/4], and an outside subdomain to the right with x ∈ [Lx/4, Lx/2]. The physical-
space grid for the entire domain is composed of 32 × 16 second-order polynomial basis function
triangular elements, which are created from a subdivision of each element in a 32 × 8 rectangular635

grid. Dirichlet boundary conditions on the left and right walls are used, setting all variables to the
initial condition, and periodic boundary conditions are used at the top and bottom of the domain.
A simulation is performed using the Vlasov-Maxwell kinetic model described in Sec. 2.1 over the
entire domain for both ions and electrons, which in the remainder of this section is referred to
as the kinetic simulation. A simulation is also performed in which the ions are solved using the640

Vlasov-Maxwell kinetic model in the middle subdomain and the fluid model described in Sec. 2.2
in the left and right subdomains while the electrons are solved using the Vlasov-Maxwell kinetic
model in all subdomains. This is referred to as the hybrid simulation in the remainder of this
section. In the subdomains in which the kinetic model is used, the velocity space is comprised of
two velocity dimensions, such that vx, vy ∈ [−vmax,α, vmax,α] where vmax,e = 1.0 and vmax,i = 0.2.645

The velocity space is discretized using 32× 32 second-order polynomial basis function rectangular
elements. The phase-space elements are constructed from tensor products of the underlying trian-
gular elements in physical space and rectangular elements in velocity space, yielding 3-4 duoprism
elements [69]. In the left and right subdomains where the fluid model is solved for the ions, initial
values for fluid variables are calculated from velocity moments in Eqs. (6), (7), and (8) of the650

initialized equilibrium distribution functions. Values of χi in the left and right subdomains at the
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Figure 15: Profiles of n, vy, T , Ex, and Bz for the initial condition for the magnetized Kelvin-Helmholtz instability,
calculated under electrostatic and electromagnetic assumptions. Figure 15e shows the correction to the constant Bz
that satisfies Eq. (47). The electrostatic and electromagnetic profiles are similar, which is expected for the low-beta
plasma equilibrium.
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initial condition are found to be below 10−4, validating the fluid model. Rusanov fluxes are used
in the fluid subdomains and for consistency with 2 degrees of freedom in a 2D2V simulation, the
adiabatic index is set to γ = 2. To seed the instability, a perturbation is applied to the electron
distribution function as described in Ref. [17], which multiplies fe by a factor (1 + ε), where655

ε =2.0× 10−4 sin (kyy) exp

(
−x

6

d6

)
. (50)

Third-order ERK timestepping is used to advance solutions until a time of tωs = 60, for which
linear behavior is expected. The shearing rate, ωs, is related to the ion velocity jump in the shear
layer, ∆viy(t = 0) in Fig. 15b, through the relationship ωs = |∆viy(t = 0)| /(2d). Reference [17]
approximates ∆viy(t = 0) = −0.02625 for case A1, leading to ωs = 0.2625.

A hybrid simulation using the fluid model for both the electrons and ions in the left and right660

subdomains coupled to the kinetic model in the middle subdomain is also performed. However,
this simulation loses accuracy due to the electron distribution function developing large deviations
from a Maxwellian over the entire domain as evidenced by large values of χe. Therefore, results
from this simulation are not included in the investigation.

6.2.2. Simulation results of the magnetized Kelvin-Helmholtz instability665

A plot of the evolution of the ion transverse velocity in the x-direction at (x, y) = (0, 0) is shown
in Fig. 16 for the kinetic and hybrid simulations. The linear growth rate from the hybrid simulation
is calculated to be ωi/ωs = 0.1485, compared to ωi/ωs = 0.1527 for the kinetic simulation, based
on line fits of the peaks between tωs = 20 and tωs = 50 before effects of nonlinear saturation are
observed. These growth rates are within 5.3% of the growth rate of ωi/ωs = 0.145 found for the670

Vlasov-Poisson simulation in Ref. [17]. The growth rates shown in Fig. 16 approximate the kinetic
simulation results markedly better than two-fluid simulation results, which has ωi/ωs = 0.174 [17].

Figure 17 shows the ion number density for each simulation measured at tωs = 60. There
are some discontinuities at the model interfaces at x/d = ±5 in the hybrid simulation. Figure675

18 shows χi for the kinetic and hybrid simulations at tωs = 60. The kinetic simulation shows χi

to be approximately between 0.01 − 0.02 at the x/d = −5 interface and approximately between
0.02 − 0.03 at the x/d = 5 interface, indicating deviation from Maxwellian at these levels are
sufficient to cause the ion number density discontinuities. Values of χi in the hybrid simulation show
that the differences in the kinetic and Maxwellian distribution functions on the x/d = 5 interface680

where density is low further increases the Maxwellian deviation. Thus, it may be advantageous to
extend the kinetic subdomain beyond x/d = 5 where χi is lower to reduce the discontinuities, as is
performed for the plasma sheath in Sec. 5.2. An investigation of the effect of this extension of the
kinetic subdomain is a topic of future research.

Figure 19 measures mass, y-momentum, and energy for ions integrated over the physical domain685

for the hybrid simulation relative to the kinetic simulation. Similar to Eqs. (33) and (34) in Sec. 5.2,
these integrations in two dimensions are

∆M

MK
=

∣∣∣∣∫ ρ(t)dA−
∫
ρK(t)dA∫

ρK(t)dA

∣∣∣∣ , (51)

∆Py
Py,K

=

∣∣∣∣∫ py(t)dA− ∫ py,K(t)dA∫
py,K(t)dA

∣∣∣∣ , (52)
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Figure 16: Evolution of the ion transverse velocity in the x-direction, vix, at (x, y) = (0, 0), plotted as |vix|
ωsd

versus tωs
for the kinetic and hybrid simulations using 32×16×32×32 second-order polynomial phase-space elements and third-
order explicit Runge-Kutta timestepping. Growth rates of the instability are calculated by fitting a line through the
peaks between tωs = 20 and tωs = 50 before nonlinear saturation occurs. The initial conditions for both simulations
are calculated from a kinetic equilibrium consistent with the Vlasov-Maxwell system. In subdomains where the fluid
equations are solved, the equilibrium distribution functions are transformed to Maxwellians to initialize the fluid
moment variables. The evolution of vix in both simulations is similar, indicating the ability of the hybrid method to
accurately capture the relevant physical phenomena.
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(b) Hybrid

Figure 17: Contours of the ion number density, ni(x, y), for the magnetized Kelvin-Helmholtz instability at tωs = 60
compared for the kinetic and hybrid simulations. Some discontinuities do appear at the subdomain interfaces at
x/d = ±5.
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Figure 18: Contours of χi(x, y) for the magnetized Kelvin-Helmholtz instability at tωs = 60 compared for the kinetic
and hybrid simulations. The χi measurement is performed for x/d ∈ [−10, 10] in the kinetic simulation and for
x/d ∈ [−5, 5] in the hybrid simulation where the Vlasov-Maxwell equations are solved. The discontinuities in ni(x, y)
in Fig. 18b at the subdomain interfaces can be explained by the χi values at those locations. The Maxwellian
deviation is also exacerbated in the hybrid simulation especially at the x/d = 5 subdomain interface.

∆E

EK
=

∣∣∣∣∫ e(t)dA− ∫ eK(t)dA∫
eK(t)dA

∣∣∣∣ . (53)

As with the 1D1V conservation calculations in Sec. 5.2, Eqs. (51), (52), and (53) help to assess the690

performance of the hybrid simulation using the domain-decomposed hybrid method. Integrated
x-momentum is maintained at zero for both the kinetic and hybrid simulations. Figure 19 shows
that conservation in the hybrid simulation reduces as the simulation progresses and the instability
grows. This is due to increasing deviations from Maxwellian in the subdomain interface distribution
functions, observed through increasing values of χi over time. This behavior suggests the need for695

extending the kinetic subdomain if simulations are run to a longer time. The subdomains could
also be changed dynamically during the simulation, where the kinetic subdomain is expanded or
contracted based on measured values of χi, or on locally evaluated collisionality, magnetization,
charge separation, or pressure anisotropy.

Further simulations using higher order elements and higher resolution may be desirable to fur-700

ther resolve the instability and calculate convergence of the growth rate. However, the simulations
presented in this section show the viability of the domain-decomposed hybrid method, particularly
using direct variable translation, as a means to reduce the computational cost by using the fluid
model in regions where the distribution function remains close to a Maxwellian.

The hybrid simulation, which applies the fluid model for ions on half of the domain, reduces the705

simulation time by 28% with a memory saving of 25%. In both simulations, the domain is divided
into approximately equal areas in physical space on which different compute nodes communicating
using MPI advance the solution in parallel. Additional speedup can thus be realized for the hybrid
simulation with the use of load balancing measures, such as by applying more compute nodes to
the kinetic subdomain, where the more computationally expensive kinetic model is used to advance710
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Figure 19: Mass, y-momentum, and energy integrated over the physical domain for the hybrid simulation relative to
the kinetic simulation, ∆Q/QK = [∆M/MK ,∆Py/Py,K ,∆E/EK ] as described in Eqs. (51), (52), and 53, calculated
for ions for the magnetized Kelvin-Helmholtz instability. Calculations are performed at intervals of tωs = 6. As the
instability develops, the values of χi at the subdomain interfaces increase and larger differences between the hybrid
and kinetic simulation results are observed, such as the integrated mass, y-momentum, and energy.

the solution for ions.
The approach of coupling two plasma models with different physical fidelity to improve com-

putational efficiency without sacrificing physical accuracy can be extended by including plasma
models of intermediate fidelity to smooth the transitions between the multi-species kinetic and
multi-fluid models. For example, a 13N -moment model which accounts for anisotropies in the715

distribution function in a weakly collisional regime [15] could be applied where direct variable
translation or a form of the composite distribution function method could be used to couple the
kinetic model to the higher moment model at one interface of the intermediate subdomain and a
similar formulation could be used to couple the higher moment model to the 5N -moment model at
the other interface. Such an approach may help to reduce the discrepancies seen at the subdomain720

interfaces in the sheath simulations as well as those of the Kelvin-Helmholtz instability and would
make the transition from the continuum kinetic model to the 5N -moment model gradual through
fluid models of higher validity for non-Maxwellian distribution functions. Extending the domain-
decomposed hybrid method to include plasma models of intermediate fidelity is a topic of future
research.725

7. Conclusions

This research presents the domain-decomposed hybrid method for simulations coupling the
multi-fluid plasma model and the multi-species kinetic model governing plasma dynamics in the
presence electromagnetic fields, enabling faster simulations with reduced computational resources
while maintaining high physical fidelity. The method subdivides a simulation domain into separate730

subdomains in which the different models are solved. The solution for each model is calculated using
the same continuum method, the discontinuous Galerkin finite element method, which facilitates
the specification of the interface conditions between the different models on adjacent subdomains.
The specification of these interface conditions is defined through surface numerical fluxes, which
are a component of the discontinuous Galerkin method. The domain-decomposed hybrid method735
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can be applied separately for different species such as ions and electrons, which is advantageous
for many applications where the fluid approximation may be sufficient to govern the dynamics of
one species but not another.

Two particular methods are studied for specification of the numerical flux at subdomain inter-
faces. The first method, called the direct variable translation method, constructs fluid variables740

from the kinetic distribution function at a subdomain interface. The construction of the fluid
variables from the kinetic distribution function allows for determination of the numerical flux
for the multi-fluid plasma model in a manner that is consistent with the fluid approximation of
Maxwellian distribution functions. The second method, called the composite distribution function
method, calculates numerical fluxes based on the construction of a composite distribution function745

at the subdomain interface, ensuring conservation of the distribution function as well as mass,
momentum, and energy.

The direct variable translation and composite distribution function methods are tested using
simulations of a double rarefaction wave and a plasma sheath using the multi-fluid plasma model in
1D and the multi-species kinetic model in 1D1V. Results demonstrate the conservation properties750

of each method and show good coupling results for distribution functions on either side of a
subdomain interface approaching a common Maxwellian. The effectiveness of the coupling reduces
when the distribution function at the subdomain interface deviates from a Maxwellian, which can
be measured using the metric, χ. In such cases, accumulation along with increased oscillatory
behavior of the distribution function emanating from the subdomain interfaces can occur. Placing755

the subdomain interfaces at locations of lower χ improves the solution accuracy and resolves the
numerical artifacts. The direct variable translation method, despite having weaker conservation
properties, is found to be more robust than the composite distribution function method due to
reduced numerical artifacts at subdomain interfaces for a given value of χ.

The direct variable translation method is then used to couple ions simulated using the multi-760

fluid plasma model in 2D and the multi-species kinetic model in 2D2V for the magnetized Kelvin-
Helmholtz instability. An equilibrium is initialized that satisfies the steady-state electromagnetic
Vlasov-Maxwell system, modified from a method deriving the Vlasov-Poisson equilibrium for elec-
trostatics. The hybrid simulation yields a linear growth rate of the instability that agrees well
with a simulation using the kinetic model with no hybridization, but does so in less time and765

with memory savings, consistent with the reduced computational complexity of the multi-fluid
plasma model compared with the multi-species kinetic model. The ability to capture the rele-
vant physical phenomena with reduced computational resources demonstrates the viability of the
domain-decomposed hybrid method for the simulation of plasma dynamics to high physical fidelity.

Further advancement in the method presented in this work for hybridization of the fluid and770

kinetic models are suggested. The domain decomposition can be made dynamic, such that subdo-
main interface locations evolve throughout a simulation based on local plasma parameters. The χ
metric could be used to determine dynamic decomposition, so that the subdomain interfaces move
to where χ is below a specified level, applying the fluid model only in regions where it is valid.
Furthermore, the interface locations can be replaced with transition regions where the solutions to775

the fluid and kinetic models transition into each other over some finite distance, as described in
Refs. [27, 28]. This could potentially reduce the numerical artifacts that occur at some subdomain
interfaces. Additional load balancing measures such as dedication of more computational resources
to subdomains where the more computationally intensive kinetic model is solved can increase com-
putational efficiency and further reduce simulation time. Coupling the kinetic model to a higher780
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moment model in an intermediate subdomain between the kinetic and 5N -moment formulations
may also help to maintain numerical stability and capture realistic physics where the distribution
function is non-Maxwellian. This could be combined with dynamic domain decomposition, with
parameters such as local mean free path, Larmor radius, Debye length, and pressure anisotropy
serving as metrics for collisionality, magnetization, charge separation, and thermal equilibrium,785

respectively, which can be used to specify which plasma models to use in various regions of the do-
main. These improvements will help reduce the computational cost of simulating plasma dynamics
to high fidelity, allowing for numerical simulation of phenomena beyond the current capabilities.
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[8] G. Tóth, Y. Chen, Z. Huang, B. van der Holst, Challenges in Modeling the Outer Magnetosphere, in: R. Maggi-
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