Parametric study of 1D plasma photonic crystals with smooth and discontinuous

density profiles?

W. R. Thomas® ® and U. Shumlak!:©
Aerospace and Energetics Research Program, University of Washington,

Seattle, Washington 98195, USA
(Dated: 2 June 2023)

Plasma photonic crystals (PPCs) have the potential to significantly expand the capabili-
ties of current millimeter wave technologies by providing high speed (microsecond time
scale) control of energy transmission characteristics in the GHz through low THz range.
Furthermore, plasma-based devices can be used in higher power applications than their
solid-state counterparts without experiencing significant changes in function or incurring
damage. Plasmas with periodic variations in density can be created externally, or result
naturally from instabilities or self organization. Due to plasma’s diffuse nature, PPCs can-
not support rapid changes in density. Despite this fact most theoretical work in PPCs is
based on solid-state photonic crystal methods, and assumes constant material properties
with abrupt changes at material interfaces. In this work a linear model is derived for a
one-dimensional cold-plasma photonic crystal with an arbitrary density profile. The model
is validated against a discontinuous Galerkin (DG) method numerical solution of the same
device configuration. Bandgap maps are then created from derived group velocity data to
elucidate the operating regime of a theoretical PPC device. The bandgap maps are com-
pared for one-dimensional PPCs with both smooth and discontinuous density profiles. This
study finds that bandgap behavior is strongly correlated with the density profile Fourier
content, and that density profile shapes can be engineered to produce specific transmission

characteristics.
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I. INTRODUCTION

Traditional photonic crystals (PCs) are materials with designer optical properties achieved
through the spacing of periodic dielectric or metallic structures. Similar to electrons in a semicon-
ductor lattice, certain energies of photons in a dielectric lattice cannot propagate resulting in energy
stop bands, or bandgaps. While the propagation of light in one-dimensional structures has been
understood since the late 20th century!?, engineered two- and three-dimensional, high-contrast
materials with complete (omni-directional) bandgaps were first proposed by Yablonovitch® and
John* in 1987. The first complete band gap device was demonstrated for microwaves in 1989 by
Yablonovitch et al.>. Unlike in traditional optics, photons strongly interact with the PC lattice at
specific wavelengths, allowing for narrowband devices with a physical size on the order of few
wavelengths. As a result, the greatest interest has been in frequency-sensitive applications where

space is at a premium, such as sensors®, optical data transmission’, and optical computing®.

Plasma photonic crystals (PPCs) combine the designer optical properties of traditional PCs with
the tunability and resistance to high powered electromagnetic radiation of plasmas. First proposed

by Hojo and Mase” in 2004 and demonstrated by Sakai e al.'®!! in 2005, experimental devices

include plasma enhanced dielectric or metallic PCs and wave guides!?14

10,15,16

, all-plasma PCs with

externally imposed order , and PCs formed through self-organizing processes!’"'°. Regu-

20,21
b

lar variations in plasma density can also be induced through laser-plasma interactions and

instabilities?*3.

Due to the nature of plasmas, PPCs differ from their solid-state counterparts in several ways.
First, the plasma components of a PPC can be created at the time of use and can be tuned on
microsecond timescales. Second, once a plasma is fully ionized it will not undergo any further
phase change, making PPCs resistant to damage in high power applications. Third, the electron
density of atmospheric plasmas (10'” — 10> m~3) implies a target frequency of PPC devices in the
GHz to THz range. Finally, plasmas are inherently diffuse. PPCs provide more gradual changes in
density compared to the abrupt changes in material properties that occur in solid-state PCs. Many
of the proposed PPC devices have density gradient scale lengths that are large compared to the unit

spacing. Understanding how these gradients alter transmission properties is essential to predicting

PPC behavior.

Several analytical and numerical studies have been undertaken for plasma photonic crystals

with non-piecewise constant density profiles. A scattering matrix type method (SMM) was used
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to calculate transmission for plasmas with step-function, parabolic, sinusoidal, and Gaussian den-
sities by Lontano and Lunin in 1991?23, More recently, articles have been published on us-

ing the plane wave expansion (PWEM), transmission matrix (TMM), and finite-difference time-

126 2

domain (FDTD) methods on specific 1D density profiles: sinusoidal?®, Gaussian®’, exponentially

d?82% and physically informed density profiles?'.

grade

In this paper a parametric study of 1D PPCs with smooth and discontinuous density profiles
is performed to demonstrate the impact of density gradients on the transmission characteristics.
A linear model similar to that used by Lehmann and Spatschek?! is outlined for EM waves in an
unmagnetized, collisionless, periodically density modulated plasma. A systematic comparison of
a smooth density modulated plasma and a discontinuous plasma-vacuum one-dimensional PPC
is conducted. The results are validated against discontinuous Galerkin (DG) method numerical
solutions of the same configurations. Bandgap maps are then created from derived group velocity
data for a range of average plasma frequencies and density modulation amplitudes. The effects of
smooth vs discontinuous density profiles on bandgap properties are discussed and the origins of
these differences are explored by way of reduced models. This theoretical framework is then used

to infer the bandgap characteristics of other types of density profiles. The implications for future

PPC devices are discussed.

II. PROPAGATION OF AN EM WAVE IN A COLD, UNMAGNETIZED, 1D PERIODIC
PLASMA

In the cold plasma limit, the propagation of weak EM waves through an infinite periodic plasma
can be reasonably approximated by Maxwell’s equations coupled to the Drude equation3%-3!,
which describes electron motion in a stationary ion lattice (or gas). Solutions to the system can be
found through the application of Bloch’s theorem??.

In this section the Maxwell-Drude system is solved in a method similar to that described by
Lehmann and Spatschek?! for a one-dimensional, unmagnetized plasma with an arbitrary periodic
density profile. The result is an inhomogeneous wave equation with a source term that depends on
the current density j. The equation is linearized in time and space resulting in an infinite set of
linear equations coupled through source terms. In order to explore the difference between smooth
and discontinuous density profiles, specific solutions are found for two cases: a sinusoidally mod-

ulated density profile, and a square wave density profile.
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A. The linearized inhomogeneous EM wave equation in an unmagnetized, periodic

density modulated plasma in 1D

The behavior of electromagnetic waves in a plasma is governed by Maxwell’s equations

OB OF
VxE=-22 VxB=uj i
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v.E=P v.B=o. (1)
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where j is the current density, p. is the charge density, and yy and & are the vacuum perme-
ability and permittivity, respectively. Faraday’s and Ampere’s laws can be combined to form an

inhomogeneous wave equation for E,

J*E dj
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The current density 7 is defined as
Jj= ZCIaUa”a (3)
o

where o denotes the species. A wave equation can also be found for the magnetic field, B, but
has an inhomogeneous part that is a function of V x 3. As plasmas used in PPCs are generally
cold (< 1 eV), and EM frequencies of interest are well above the typical ion plasma frequency,
the time evolution of the plasma current j is assumed to be dictated entirely by electron dynamics,
and well approximated by the Drude model*%-3!

%:—%E—m%ij—vj, (&)
where e is the electron charge, m, is the electron mass, Vv is the collisional relaxation rate, and
n(r) is the electron density as a function of space. Written in terms of the electron plasma fre-
quency squared a)ge = ezne/ gm,, and the electron cyclotron frequency @, = eBy/m, where By
is a constant background magnetic field

aj 2 . .

E:—eowpe(r)E—wceg x B/By—Vj. ()
For the case of an unmagnetized PPC ., = 0. To understand the impact of density profile shape
as separate from other effects, the collisional relaxation time is assumed to be large relative to

the plasma period, i.e. @y, > v. This is not necessarily valid in the case of cold, high density
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plasmas like those needed to achieve THz frequencies, therefore the potential consequences of a
finite electron-ion collision frequency are discussed in Sec. V.

As a result of the above assumptions, the contribution of the second and third terms in Eq. (5)
are negligible. Substituting the Drude equation, Eq. (4), into the wave equation, Eq. (2), results in
a final inhomogeneous wave equation that describes temporal and spatial variations of the electric

field E for a spatially varying electron density n(r),

aZE 2
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An arbitrary periodic 1D density profile n(x) is approximated by a Fourier series

n(r) ~ii(x) = nOZﬁgeng, Lel, 7
l

_ —1 a/2
where ng = a ffa/Z

reciprocal lattice vector, a is the lattice period, and the coefficients 7iy can be found by

1 /1 a2
g =— (—/ n(x)dx) =1, (8)
no a —a/2

a/2 .
fig 1 (l/ n(x)e’ggxdx> . 9)
no \a.J-a/2

As the periodic plasma density is invariant under discrete translation of the primitive lattice vector

n(x)dx is the average plasma density, g = 27/a is the magnitude of the

such that 7i(x +ma) = 7i(x), where m is an integer, Bloch’s theorem>? states that the solution to the
electric field E takes the form of plane waves modulated by a function with the same periodicity
as the density. Assuming the electric field is perpendicular to the direction of travel, it can be
shown that

E(r,t) =Y Y E_ge =0 2 feR, (10)
k ¢

Equations (7) and (10) are combined with the wave equation, Eq. (6), and a Fourier transform
is performed in time and space. Rearranging the order of terms for clarity results in a coupled

linear system of equations
(cgk* — 0% + 05) Ey + @y (Z AEr_rg+ Y, ﬁgEk_gg> =0, (11)
=1 =—1

where ®,0 = (e’ng/ me€y)'/? is the electron plasma frequency of the average density, and ¢y =
(/,Loeo)l/ 2 is the vacuum speed of light. Equation 11 represents an infinite system of equations

for each value of k. Note that the first term is the dispersion relation for EM waves in a uniform
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plasma with plasma frequency @), while the second is a series of coupling terms with plane waves
offset by integer multiples of g and magnitudes proportional to (x)goflg. Normalizing Eq. (11) by
the lattice frequency, @, = 27mcy/a, results in the following non-dimensional expression
(K> = Q>+ Q) Ex + Q2 (i AEx_s+ f ﬁgEK_g> =0 (12)
=1 =—1
where K = k/g is the lattice normalized wavenumber, Q,0 = @0/®, is the lattice normalized
average plasma frequency, and Q = ®/®, is the lattice normalized EM wave frequency. The
solution is independent of the magnitude of Ex therefore it will be considered non-dimensional
from here forward.
Sections II B and II C explore the form of the coupling terms in Eq. (12) for two density profiles:
a sine wave modulation on top of a uniform background density, and a square wave composed of

a finite Fourier series.

B. Sinusoidally modulated plasma density

A sinusoidal density modulation is chosen for the smooth PPC case,
n(x) =no[l1+ xsin(gx)], 0<x <1 (13)

where X = (nyuax —no) /no is the amplitude of the density modulation. Plasmas with a smooth, sinu-

2021 or instabilities?>23,

soidal density profile are likely to occur through laser-plasma interactions
This density profile is also a first order Fourier approximation of any periodic profile shape. Fourier

coefficients are found by applying Eq. (7) to n(x) in Eq. (13),

Ag=1, Ay = i%. (14)

Since n(x) is real valued, the Fourier coefficients 7i_; and 7i; are complex conjugates. Substituting
the coefficients into the general equation (Eq. (12)) results in the following normalized system of

equations for an EM wave in a sinusoidally modulated 1D PPC
2

2 2 2 QPO
(K —Q +'QpO)EK+x7(EK—1_EK+1) =0. (15)
Here a single pair of terms couple Ex to modes Ex_; and Ex. ;. While the quantity of density
Fourier coefficients is finite this does not limit the number of coupled equations, only the number
of coupling terms. The number of Ex plane waves is still infinite. In order to solve the system

numerically the system is truncated based on criteria outlined in Sec. III A.
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C. Discontinuous modulated plasma density

The square wave density profile approximates metal-vacuum photonic crystals with their abrupt
changes in material properties. It also allows for comparison with existing studies as most assume
discontinuous density profiles, despite such profiles being difficult to achieve with plasmas. The

density profile has the following form

no(l+y), all—1/2)<x<al
x) = (16)
no(l—y), al<x<a(l+1/2)

where y is defined as x = (nuqax — o) /no. Fourier coefficients are found by applying Eq. (7) to

n(x),
. singl x

= 1— l). 17
iy py +m£( cos /) (17)
Written explicitly for terms |¢| < 5
2
ng=1, Ay = i‘—.x, figr =0,
in
2x 2x
i3 =d+——, fAiq=0, fgs=+—".
N3 R =0 s pr

Note that all even Fourier (j = +2,44,...) terms are zero. Substituting the Fourier coefficients
into Eq. (12) results in the following system for a square density profile approximated by a trun-

cated Fourier series (in this case N = 5)

2
(K? — Q2+ Q30 Ex + 0 2| (Ex-1 — Exi1) + (18)

1

1
3 (Ex—3—Ek43)+ 5 (Ex—5 —Ek+s) | =0.

The magnitude of the Fourier coefficients (and therefore the magnitude of the coupling terms)
falloff like 1/¢. As convergence of the series is slow, even Fourier approximations with large N
have significant error. At N = 50, the [2-norm of the error is still greater than 5%, and does not fall
below 1% until N approaches 2000. The effect of Fourier series truncation on bandgap prediction

1s discussed in Sec. IIT A.

III. METHOD OF NUMERICAL SOLUTION AND VALIDATION AGAINST
WARPXM PLASMA CODE

To solve the linear coupled system described by Eq. (12), it is reformulated as an eigenvalue

problem and solved for each wavenumber of interest K. As the number of equations is infinite,
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even when the number of density Fourier coefficients is finite, the system must be truncated to
be solved numerically. Bounds are set on the minimum convergence of the solution as a function
of system size. Band diagrams are constructed by evaluating the system for a range of values of
K. The band diagram for a discontinuous density profile case is validated against solutions found
using a cold plasma model solved with the WARPXM discontinuous Galerkin (DG)>*3* code on a
Bloch periodic domain®. In order to compare the impacts of smooth vs discontinuous profiles on
PPC transmission characteristics, group velocity bandgap maps are constructed from sets of band
diagrams where either the density modulation amplitude or lattice normalized electron plasma

frequency is varied.

A. Numerical solution of the problem

As developed in Sec. 11, the linearized system for an EM wave in plasma with a periodic vari-
ation in density consists of an infinite set of coupled equations (Eq. (12)). Reformulated as an
eigenvalue problem for Q2

N
K°Ex+ Q3 AEx_y = Q%Ex (19)
{=—N

or more compactly as

AE = Q’E,

where A is a Hermitian banded matrix, and the eigenvectors E are frequency space solutions of
the electric field for each eigenvalue Q2. To truncate the infinite system, a system size limit M > N

is chosen such that A € RM+1)x(2M+1) The matrix A is then expressed in index notation as

Aimj= (K+i)>+Q0, Aimj_¢ =1y, (20)
where i, j = [-M,M|,|—M,M]. The Fourier coefficients /iy can be found analytically for simple

density profiles or numerically for more complex profiles. In index notation the vector F is
E;=Ex4;. (21)

The system is solved numerically for Q? for a set of K = [0, 1]. The square root of the eigenvalues
correspond to the frequencies of allowable modes, while the eigenvectors Ex correspond to the
wavenumber-space structure of the electric field of each mode. When plotted as a function of K,

the frequency corresponding to each eigenvalue form the photonic band structure of the PPC (see
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Fig. 1). The spaces between bands where no allowable mode exists for any value of K are known
as bandgaps or forbidden regions.

To ensure that the truncated system is fully converged, a method of determining the minimum
acceptable value of M is required. The error increases with increasing band number for truncated
systems. In this work, the region of interest is confined to the first eight bands, which sets a lower
bound on M. Sufficient convergence is defined as the minimum value of M such that the /2-norm
of the normalized difference between the M and M — 1 solution for the eighth band is less than

10_6, or

Y |98 — Qg p—1]? 6
AQ = : : 107°. 22
1A il \/ Yk Qs ml? = 22

B. Validation of the analytical model with a nonlinear plasma model solved using the

WARPXM code

WARPXM, an unstructured discontinuous Galerkin multi-physics plasma code developed at the

University of Washington®*, is used to evaluate the equivalent problem as a system of normalized

hyperbolic PDEs
ap. L 1
— == ]— x B 23
v (5) (5 )rxm e3)
OE > 18\ 5\ [ 1
— = (o L) vxB-(2])(— 24
at ( PT) [(L) X L Ae De |, ( )
B
— =-VxFE 25
5 ; (25)
where p, E, B, and t are normalized by reference values pg = mpnoco, Eo = coBo, By =
(uompnoc(z))l/ 2 and T = L/co, respectively. The reference density, ng, is chosen based on typical

density values, L is the problem length scale, m,, is the proton mass, and ¢y is the vacuum speed of
light. The nondimentional parameters are: 6, /L, the normalized proton skin depth, A, = m,/m,,
the proton normalized electron mass, and @, 7, the normalized proton plasma frequency. Ions are
assumed stationary to be consistent with the analytical model described in Sec. II.

The WARPXM code computes the evolution of the electron momentum and electric and mag-
netic fields by solving Egs. (23)-(25). A solution is initialized that describes a propagating TE,

5

TM, or TEM wave. To simulate an infinitely periodic system, Bloch boundary conditions®> are

implemented. The WARPXM code applies boundary conditions by setting the value of virtual
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nodes at the boundaries. The left and right virtual boundary nodes, gy and g; respectively, are

functions of the opposite boundary node value, g;, and gg, and a phase shift, y,

qr=qre "V, (26)

q; = qre'Y, 27)

where ¥ = ka, and i here denotes the unit imaginary number. The boundary conditions allow
for the representation of an infinite periodic plasma with period a, while permitting EM waves
with wavenumbers other than integer multiples of the inverse domain length. Simulations are
performed for each k value of interest. Note that real and imaginary components of the electric
and magnetic fields are needed for the Bloch boundary conditions, so Egs. (23)-(25) are complex-
valued equations.

Electric and magnetic field values are sampled at regular time intervals for several points in the
domain that do not fall on any axis of symmetry. This sampling strategy mitigates inadvertently
sampling values at or near field nulls which could lead to weak detection of particular modes. A
fast Fourier transform (FFT) algorithm is then applied to the data, and the spectra are averaged
over all sampled points.

Band diagrams are assembled by running simulations with different wavenumbers k in the
range of interest. Plotting the logarithm of the spectral intensity produces the band diagram from
the nonlinear plasma simulations, as is shown in Fig. 1, using the real component of the electric
field. The band diagram using the imaginary component gives a similar result. A total of 41 simu-
lations, each with a different value of k, adequately resolve the wavenumber space. Simulations to
generate a complete band diagram take approximately five hours using a single core on a modest
workstation.

The analytical and numerical band diagrams are compared for each band and the /2-norm of
the relative difference is calculated for each band i

e Bl o
Y9,

Calculated errors for five different density profile cases are shown in Table I. In all cases there is

good agreement as the error is on the order of the frequency resolution of the simulation. Large
plasma frequencies to lattice frequency ratios 0, and square density profiles generally produce
larger errors. This is also reflected in the increase in system size needed to sufficiently resolve the

problem.
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FIG. 1. Comparison of band diagrams generated by solving the nonlinear plasma system, Egs. (23)-(25),
using WARPXM (color contours indicate magnitude of spectra) and the analytical model described in Sec. 11

(dashed lines) for a square plasma density profile with Q,0 =1 and ¥ = (Hmax — Navg) /Navg = 1.
C. Construction of velocity bandgap maps

One of the key advantages of plasma photonic crystals over solid-state PCs is their tunability.
Where parametric studies are useful for device design in dielectric or metal PCs, for PPCs they
can also be used to describe the operational regime of a single device. As the bandgap is generally
the most important characteristics of a PC, bandgap maps®® are a convenient representation of a
PC’s performance.

In solid-state PCs, the unitless design parameters most used are the dielectric contrast, &g :
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TABLE 1. The [?-norm of the relative difference between the analytical and WARPXM results for the first
five bands, ||AQ!||> (see Eq. (28)). In all cases the absolute difference is on the order of the simulation
frequency resolution, @.s/®, = a/coT = 0.25 x 1072, where T is the simulation total run time. System

size is chosen by the condition in Eq. (22).

Solution difference, ||AQI ||, x 1072
Density profile System Size Band 1 Band 2 Band 3 Band 4 Band 5
Sine?, Q,0 = 0.5 13x 13 0.30 0.31 0.13 0.10 0.06
Sine, Q,0 = 1.0 13x 13 0.39 0.25 0.16 0.08 0.07
Sine, Q,0 = 2.0 17 x 17 0.87 0.36 0.05 0.12 0.09
Square®, Q0 = 1.0 21 x21 0.60 0.94 0.07 0.09 0.05
Square, Q0 = 2.0 25 %25 0.76 0.77 1.18 0.20 0.41

2 See Section II B for sinusoidally modulated density profile parameters.

b See Section II C for piecewise constant density profile parameters.

€low, and the fill fraction f = dpen/a, where dp;gy, is the width of high dielectric constant layer,
and a is the lattice spacing. In PPCs the plasma density is most often the easiest and fastest
tunable parameter, whereas fill fraction is either fixed or a secondary effect that is not easy to
control independently of plasma density. For the study of PPCs, the primary unitless parameters
of interest are chosen to be density modulation amplitude, ¥ = (max — Mavg) /Navg, and the lattice
normalized electron plasma frequency of the average density, Q,0 = ®pe0/ Dq.

Photonic crystal bandgap maps are traditionally formed by plotting bandgap edges as a function
of either fill fraction or dielectric contrast. Bandgap edges can be found either through dispersion
data’® or transmission spectra’’, though density of states contours have also been used>®°. In
this work, bandgap maps are created by calculating the group velocity for individual bands, which
has the added benefit of including more useful information on transmission properties around the
bandgap edges.

Bandgap maps are generated by calculating a series of band diagrams (as in Fig. 2), with
each band diagram changing the parameter of choice by some small amount. Each bandgap map
presented in Sec. IV is constructed from 200 band diagrams. Group velocity, v, = dQ /0K, is
found by calculating the slope at each value of K from O to 1/2 using the central difference operator

for interior K values and one-sided difference operators at the boundaries. The calculated slopes
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are binned by frequency Q. In forbidden regions where no slope exists the bin is assigned to NaN.
Group velocities are normalized to the speed of light and plotted as color contours, and bandgaps

appear as blank spaces, as seen in Figs. 3-5.

0.5 X=
— x= 0.25
— x= 0.5
— x= 075
— x= 1.0
0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Band diagram for a sinusoidally modulated density profile with lattice averaged plasma frequency

Q,0 = 1 and modulation amplitude varying from y =0 — 1.

IV. BANDGAP MAP COMPARISON OF SMOOTH AND DISCONTINUOUS
DENSITY PROFILES

Group velocity bandgap maps are created for the smooth and discontinuous density profiles

using the procedures described in Sec. III. The area of interest is confined to lattice normalized
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FIG. 3. Contours of group velocity for a smooth, sinusoidally modulated density profile with modulation
amplitudes varying from O to 1. The plot provides a bandgap map, which facilitates interpretation of the
effects of modulation amplitude on bandgaps. Normalized average plasma frequency Qo = 1 for all cases.
Vertical dashed lines indicate locations of band diagrams in Fig. 2 at K = 0.25, 0.5, and 0.75 respectively,
and orange dashed-dotted lines indicate locations of plasma frequencies at minimum and maximum densi-

ties. Bandgaps extend well beyond the maximum plasma frequency.

average density plasma frequencies between 2,0 = 0 — 3 and lattice normalized EM wave fre-
quencies of = 0 —4, as this region is sufficient for capturing the dominate bandgap features. In
this section, the smooth, sinusoidally modulated density profile is explored by varying both ) and
Q0. The smooth density profile bandgap maps are then contrasted with the bandgap maps of the

discontinuous density profile. The origins of these differences are explored in Sec. V.
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A. Smooth density profile

By plotting contours of the group velocity for a sinusoidally modulated density profile with
modulation amplitudes varying from ¥ =0 to 1, and Q,p = 1, a bandgap map is produced in
Fig. 3 that facilitates understanding of the impact of modulation amplitude on photonic bands.
The blank contour indicates the absence of bands, or bandgaps. The left boundary of the plot,
at x = 0, represents the dispersion of a uniform plasma. The orange dash-dot lines represent the
plasma frequency of the maximum and minimum density regions, respectively. As the modulation
amplitude increases, the first bandgap appears just above the plasma frequency at Q ~ 1.1. A
second and third bandgap appear by ¥ = 0.5, at Q ~ 1.4 and 1.8 respectively. At ¥y =1 the
dispersion of the density modulated plasma has deviated significantly from the dispersion of a
uniform plasma (¥ = 0). Note that all bandgaps begin above the plasma frequency of the maximum
density.

The gap map in Fig. 4 shows the effect of varying the plasma frequency of the average density
0, for two density profiles. Color contours indicate a sinusoidally modulated density profile with
a maximum modulation amplitude () = 1) and gray shading indicates a uniform plasma ()} = 0)
with the same €2,9. The orange dashed-dotted line in Fig. 4 indicates the plasma frequency of
the maximum density for the sinusoidally modulated density profile. The minimum density and
plasma frequency are zero for all cases.

Several differences between the density modulated and uniform plasma profiles can be readily
identified. Despite having the same average plasma frequency, forbidden regions in the density
modulated case extend above not only the average plasma frequency, but also above the plasma
frequency of the maximum density (upper orange dashed-dotted line). The bandgap map provides
clues to the origin of individual bandgaps: when extrapolated to the left axis, each bandgap can
be seen to start at half lattice frequency intervals, corresponding to band diagram intersections
at K = 0 and 0.5. These bandgaps continue for EM wave frequencies many times the lattice

frequency.

B. Discontinuous density profile

The dispersion of a discontinuous and smooth density profile are compared in the bandgap map

in Fig. 5. The discontinuous density profile gap map (color contours) is overlayed on the smooth
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FIG. 4. Contours of group velocity as a function of the plasma frequency of the average density €20
for a sinusoidally modulated (color contours) and uniform plasma (gray contours), or ¥ = 1 and y = 0,
respectively. The color bar indicates group velocity normalized by cg. Plasma frequency of the maximum
density for the sinusoidally modulated plasma is indicated by the dashed-dotted orange line. Bandgaps for

the sinusoidally modulated plasma extend well above the maximum plasma frequency.

density profile gap map from Fig. 4 (gray shading). Both profiles have the same modulation
amplitude x = 1 and a filling fraction of f = dq9ma/a = 0.5, corresponding to equal width regions

of low and high density.

There are notable similarities between the bandgap maps for both cases. The same number of
bandgaps are present in both the discontinuous and smooth cases, and the bandgaps begin at similar

frequencies. In fact, the first bandgap, beginning at Q = 0.5, is almost identical for Q,9 <0.5.

Despite the bandgap maps for the discontinuous and smooth density profiles having a similar

general structure, major difference are evident. The first significant difference is the appearance
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FIG. 5. Contours of group velocity for a discontinuous and smooth density profile. The discontinuous
density profile gap map (color contours) is overlayed on the smooth density profile gap map from Fig. 4
(gray shading). Both profiles have the same modulation amplitude ¥ = 1 and a filling fraction of f =
dplasma /a = 0.5. The plasma frequency of the average density, €0, is shown in the x-axis. Contour colors
indicate group velocity normalized by cg. The bandgap maps for discontinuous and smooth density profiles

differ significantly.

of forbidden islands in the discontinuous case at large Q. The origin of these islands will be
explored in Sec. V. Furthermore, the forbidden islands alternate in size and extent, whereas the
bandgaps in the smooth density profile case all have a similar size and shape. The second major
difference are the widths and central frequencies of bandgaps at large €2,9. While the bandgaps
for the smooth density profile continue to increase in  with increasing Q, the bandgaps for the
discontinuous profile appear to asymptote. This can be explained by understanding that the narrow

bands between bandgaps at large Q. correspond to stationary modes trapped in density troughs.
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Similar to an electron in a potential well, the frequency of the trapped modes is a strong function of
potential well shape. Rectangular potential wells have stationary mode frequencies independent
of potential well depth beyond a minimum. In contrast, the sides of shaped wells steepen with
increasing depth, causing trapped mode frequencies to change.

Just as the smoothly modulated plasma is not well approximated by a homogeneous plasma of
the same average density, the discontinuous density profile plasma is not well approximated by a
smoothly modulated plasma with the same minimum and maximum densities. This is especially

true at higher frequencies. In Sec. V, the origins of these differences is explored.

V. UNDERSTANDING THE ORIGINS OF BANDGAPS THROUGH REDUCED
MODELS

Many of the differences between the bandgap characteristics of the smooth and discontinuous
density profiles can be explored through studying the interaction of a subset of electromagnetic
wave modes. In this section, two types of reduced models are explored. First (see Sec. V A), a
two-mode reduced model is used to derive an analytical approximation of the width of arbitrary
bandgaps, as well as generate band diagrams and bandgap maps that are compared to the full
model. While the two-mode reduced model captures primary interactions between individual
wave modes, higher-order interactions can also be significant. In Sec. V B, three- and seven-mode
reduced models are used to generate bandgap maps in order to highlight the contribution of higher-

order coupling terms.

A. Two-mode reduced model

The two-mode reduced model is a truncation of the infinite system in Eq. (12) to only two
waves: Eg and Eg._;, where j > 1 and indicates the number of the bandgap of interest. Note that
a value of j > 1 indicates that the two modes are nonconsecutive. All other modes are set to zero,
reducing the system to two coupled equations

(K* = Q>+ Q%) Ex +7;Q00Ek-j =0,
((K_j)2_92+91270) EK-j—ﬁ_jQ?)OEKZO. (29)

In the case of a uniform plasma, 7i; = 7i.; = 0, the equations become decoupled (see the blue

line in Fig. 6). The first equation is the dispersion relation for EM waves traveling in a cold,
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FIG. 6. Band diagram given by the two-mode reduced model for a uniform plasma (blue) and sinusoidally
modulated plasma with modulation amplitudes of } = 0.1 (orange), ¥ = 0.5 (green) and )} = 1 (red).
Lattice normalized plasma frequency of ©,0 = 1 for all cases. Increased density modulation amplitude
leads to increased mode coupling around the band intersection at K = 0.5, generating, and then expanding

the bandgap at Q ~ 1.1.

homogeneous plasma. The second is the same dispersion relation, shifted in K by j. The two
dispersion relations intersect at K = j/2 where the Ex wave has a positive group velocity, and the

Ek_j wave’s group velocity is negative. The two waves are counter propagating, but not interacting.
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For non-zero values of 74 j, the system is coupled and the counter propagating waves begin to
interact. In Fig. 6, the orange, green, and red lines show the two-mode reduced model solution
for x = 0.1, 0.5 and 1, respectively. Even at small modulation amplitude coupling between for-
ward and backward propagating modes leads to a bandgap in the vicinity of the band intersection.
Physically, this translates to reflection of all frequencies within the bandgap. With increasing mod-
ulation amplitude this reflection band increases dramatically, and distorts the two original bands
from the unmodulated case.

The system in Eq. (29) can be analytically solved for €. Using the fact that 7i_; is the complex

conjugate of 71 j, the positive values of € are

Q1j(K) = {Q§o+12/2—jl< + K2+ (30)
1

s 2 ~ 1204 1/2 172
S [Pu-2mr-aapal]

where Q. ;(K) and Q_;(K) indicate the normalized frequency of the upper and lower positive
bands, respectively, for a system with a given j, as a function of normalized wavenumber K.
Bandgap edges can be inferred from band frequencies at symmetry points K = 0 and 1/2. The
lower and upper edges of the bandgap are the maximum value of the lower band and minimum

value of the upper band, respectively,

Q_; s =max(Q_;(0), Q_;(1/2)),

Q.56 = min(Q;(0), Q4(1/2)). 31)

The bandgap edges are well approximated by the band frequencies at K = 1/2,

Qo ~ Quj(1/2) = Q% (1 1)) - (/2)2, (32)

which indicates that each bandgap j is a function of €2, and the magnitude of the jth density
Fourier coefficient, |7;|. Similarly, the upper bound of the cutoff region is well approximated by

the minimum of the lower band for the j =1 case at K =0

1 "
Qco~Q_1(0) = ﬁ\/1+2§2[270—1/1—4‘n1’2§2;0. (33)

which reduces to Q, as the density modulation amplitude decreases (|| — 0).

In Fig. 7, the two-mode reduced model predictions of the cutoff region (blue) and bandgaps

(orange) for the smooth density profile are compared against full model (gray). At low normalized
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plasma frequencies, ,9 < 0.5, the two solutions are very similar, indicating two-mode wave
coupling is dominant in this region.

As the lattice normalized plasma frequency increases, the solutions increasingly diverge. Not
only does the reduced model overpredict the width and average frequency of bandgaps at these
higher frequencies, but it fails to predict higher bandgaps entirely. This can be understood from
the dependence of Eq. (32) on |i|. The sinusoidally modulated case only has non-zero values for
i1, resulting in the reduced model predicting only one bandgap. In reality, more than two modes
are present and interact through higher-order coupling. In the bandgap map, this higher-order
coupling appears as harmonics of the first bandgap repeated at integer multiples of half the lattice
frequency Q,/2.

Figure 8 compares the two-mode reduced model to the full model for the discontinuous density
profile. In contrast to the smooth density profile case, some (but not all) of the higher bandgaps are
predicted by the reduced model. This is expected as the discontinuous density profile has non-zero
density Fourier coefficients for odd values of j; therefore, the reduced model predicts finite odd
bandgaps.

The reduced model again well approximates the full model for smaller values of Q,, but
diverges with increasing €,0. Also like the smooth density profile case, not all bandgaps are
predicted by the reduced model. These unpredicted bandgaps are all even (bandgaps 2, 4, and
6 in Fig. 8), and are distinguishable from the predicted bandgaps by beginning later, at higher
values of Q9. Again, these unpredicted bandgaps can be understood as harmonics that results
from higher-order coupling.

The most prominent difference between the smooth and discontinuous profile bandgap maps,
the forbidden islands, is not predicted by the two-mode reduced model. Therefore the bandgap
islands appear to be the result of interactions between first-order mode coupling and higher-order
harmonics. In Sec. V B, reduced models with additional modes are used to explore the origin of

forbidden islands.

B. Three- and seven-mode reduced models

The interaction of pairs of electromagnetic modes has been shown in Sec. V A to describe many
of the dominant features of bandgap behavior, such as the cutoff region and bandgaps associated

with non-zero density Fourier coefficients. The two-mode reduced model is not able to capture
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FIG. 7. The smooth density profile gap map (gray) is overlaid with predictions by the two-mode reduced
model for the cutoff region (blue) and first bandgap (orange). Models agree well for £ ,9 < 0.5, but depart
with increasing 0. Higher bandgaps are not predicted by the reduced model as they result from higher-

order coupling effects.

bandgaps not associated with non-zero density coefficients, bandgap widths at large €0, or for-
bidden islands in the discontinuous density case. In order to elucidated the origins of these other
features, reduced models with three and seven consecutive modes are used to produce bandgap
maps. In contrast to the two-mode reduced model, the systems are all Hermitian and are solved
using the method described in Sec. III A. A greater span of reduced models is explored in this work,
but the three-mode and seven-mode reduced models best elucidate the features of the smooth and

discontinuous density profiles, respectively.

In Fig. 9, bandgaps are calculated with the three-mode reduced model for the sinusoidally

modulated density case. When compared to the results for the two-mode reduced model in Fig. 7,
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FIG. 8. Discontinuous density profile gap map (gray) is overlaid with predictions by the two-mode reduced
model. This includes the cutoff region (blue), and the first (orange), third (green), fifth (red), and seventh
(purple) bandgaps. As in the smooth density profile case, models agree well only for Q,y < 0.5. The
formation of forbidden islands in the bandgap map is not predicted by the reduced model, and is a result of
the interaction of three or more modes. The even-numbered bandgaps are also not predicted as they result

from higher-order coupling effects not captured by the reduced model.

the cutoff (blue) and first bandgap (orange) more closely approximate the full model. Additionally,
higher-order coupling results in a second bandgap (green). As the size of the reduced model is

increased, additional bandgaps appear, one for each additional mode (not shown).

Figure 10 compares the bandgap map from the full model (gray) with bandgaps predicted by the
seven-mode reduced model. In contrast to the two-mode reduced model in Fig. 8, even bandgaps
are present, and the odd bandgaps are less prominent. Another significant difference is the appear-

ance of forbidden islands in bandgaps three (red) and four (purple). Seven modes are found to

23



0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 9. The smooth density profile gap map (gray) is overlaid with predictions by the three-mode reduced
model for the cutoff region (blue), and bandgaps (orange and green). When compared to the two-mode
reduced model in Fig. 7, the three-mode model more closely approximates the cutoff and first bandgap in

the full model. Additionally, higher-order coupling results in a second bandgap (green).

be the minimum number needed to resolve any forbidden islands, as well as finite density Fourier
coefficients at || = 3, where / is the density Fourier coefficient index (see Eq. (17)). Interestingly,
when density profiles have both even and odd non-zero density Fourier content (such as Gaussian
or saw-tooth profiles) no forbidden islands are formed. Forbidden islands are therefore sensitive

to the details of the Fourier content of the PPC’s density profile.

VI. DISCUSSION

The sinusoidally modulated and discontinuous density profiles represent useful limits of pos-

sible density profiles. Many proposed PPC devices include both gradual changes in density and
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FIG. 10. The discontinuous density profile gap map (gray) is overlaid with predictions by the seven-mode
reduced model for the cutoff region (blue), and bandgaps (orange, green, red, violet, brown, and pink). In
contrast to the two-mode reduced model in Fig. 8, even bandgaps are present, and the odd bandgaps are less

prominent. Forbidden islands appear in bandgaps three (red) and four (purple).

abrupt changes due to dielectric components or barriers. Given that the Fourier content of the
density profile is the ultimate origin of bandgap features, choices can be made in advance to
achieve desirable transmission characteristics. In cases where only the first bandgap is of interest,
sinusoidal density profiles are sufficient. Where higher bandgaps are desired in order to target
frequencies well beyond achievable lattice spacing and plasma frequencies, dielectric barriers or
low fill fraction density profiles may be necessary in order to introduce higher Fourier content.
This work also suggests that dielectric barriers can be introduced to achieve forbidden island like

behavior, for example a band pass region that closes above a specified PPC average density.

Dissipative effects have not been included in this study, though they are likely to be non-
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negligible in THz plasmas. Prior work on dissipation in both metallic and plasma PCs*>*! have
shown that absorption of EM wave energy by a dissipative material peaks at frequencies with a
slow group velocity. The physical interpretation is that slow moving waves have more time to
interact and transfer energy than fast moving waves. As a result, increasing the electron relaxation
rate does not lead to a change in the band structure per se, but does increase absorption around

bandgap edges leading to the appearance of a wider bandgap in transmission spectra.

VII. CONCLUSIONS

PPCs have a smoothly varying density structure as compared to solid-state PCs which have dis-
continuous changes in material properties. A systematic understanding of the effect of smooth and
discontinuous density profiles on transmission properties of PPCs is important to understanding
and designing future PPC devices.

In this work, two one-dimensional density profiles are chosen that represent the limiting cases
of smooth and discontinuous PPCs. Band diagrams are constructed for each assuming an un-
magnetized, non-dissipative, cold plasma with stationary ions. Group velocity bandgap maps
are then assembled from sets of band diagrams for a range of modulation amplitudes and lattice
normalized plasma frequencies, and compared for both density profiles. The results are further
examined through reduced models to elucidate the origins of major bandgap features.

Several general trends are identified. First, two profiles with the same lattice constant and
average, maximum, and minimum densities can have different bandgap behavior. Second, the
width of higher-order bandgaps is strongly correlated with density profile Fourier content. Stated
more explicitly, the frequency and width of the j-th bandgap are a function of the lattice normalized
plasma frequency and the magnitude of the j-th Fourier component. Third, high-order interactions
of bandgaps can lead to complex effects like forbidden islands, where bandgaps open and close
with increasing plasma frequency.

These results have interesting implications for the design of future PPC devices. The density
profile shape becomes yet another parameter that can be tuned to achieve desired results. By
designing the Fourier content of a density profile, through finer control of plasma shape or inserting
solid components to create discontinuities, higher-order bandgaps can be directly controlled.

Group velocity bandgap maps prove to be a powerful technique in both PPC design and un-

derstanding the operating regime of a single device. While the system linearization technique
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used in this study to generate band diagrams is optimized for cold, un-magnetized, and non-
dissipative plasmas, the group velocity bandgap map is agnostic to calculation method. Group
velocity bandgap maps can either be generated directly for PPCs that include additional physics,
or single band diagrams can be compared to these results for a deeper understanding in cases
where computations are too costly.

This technique is also applicable to PPCs of higher dimensions. Work is already under way
to study the transmission properties of two-dimensional PPCs with a variety of density profile

shapes.
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