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Plasma photonic crystals (PPCs) have the potential to significantly expand the capabili-

ties of current millimeter wave technologies by providing high speed (microsecond time

scale) control of energy transmission characteristics in the GHz through low THz range.

Furthermore, plasma-based devices can be used in higher power applications than their

solid-state counterparts without experiencing significant changes in function or incurring

damage. Plasmas with periodic variations in density can be created externally, or result

naturally from instabilities or self organization. Due to plasma’s diffuse nature, PPCs can-

not support rapid changes in density. Despite this fact most theoretical work in PPCs is

based on solid-state photonic crystal methods, and assumes constant material properties

with abrupt changes at material interfaces. In this work a linear model is derived for a

one-dimensional cold-plasma photonic crystal with an arbitrary density profile. The model

is validated against a discontinuous Galerkin (DG) method numerical solution of the same

device configuration. Bandgap maps are then created from derived group velocity data to

elucidate the operating regime of a theoretical PPC device. The bandgap maps are com-

pared for one-dimensional PPCs with both smooth and discontinuous density profiles. This

study finds that bandgap behavior is strongly correlated with the density profile Fourier

content, and that density profile shapes can be engineered to produce specific transmission

characteristics.
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I. INTRODUCTION

Traditional photonic crystals (PCs) are materials with designer optical properties achieved

through the spacing of periodic dielectric or metallic structures. Similar to electrons in a semicon-

ductor lattice, certain energies of photons in a dielectric lattice cannot propagate resulting in energy

stop bands, or bandgaps. While the propagation of light in one-dimensional structures has been

understood since the late 20th century1,2, engineered two- and three-dimensional, high-contrast

materials with complete (omni-directional) bandgaps were first proposed by Yablonovitch3 and

John4 in 1987. The first complete band gap device was demonstrated for microwaves in 1989 by

Yablonovitch et al.5. Unlike in traditional optics, photons strongly interact with the PC lattice at

specific wavelengths, allowing for narrowband devices with a physical size on the order of few

wavelengths. As a result, the greatest interest has been in frequency-sensitive applications where

space is at a premium, such as sensors6, optical data transmission7, and optical computing8.

Plasma photonic crystals (PPCs) combine the designer optical properties of traditional PCs with

the tunability and resistance to high powered electromagnetic radiation of plasmas. First proposed

by Hojo and Mase9 in 2004 and demonstrated by Sakai et al.10,11 in 2005, experimental devices

include plasma enhanced dielectric or metallic PCs and wave guides12–14, all-plasma PCs with

externally imposed order10,15,16, and PCs formed through self-organizing processes17–19. Regu-

lar variations in plasma density can also be induced through laser-plasma interactions20,21, and

instabilities22,23.

Due to the nature of plasmas, PPCs differ from their solid-state counterparts in several ways.

First, the plasma components of a PPC can be created at the time of use and can be tuned on

microsecond timescales. Second, once a plasma is fully ionized it will not undergo any further

phase change, making PPCs resistant to damage in high power applications. Third, the electron

density of atmospheric plasmas (1019−1025 m−3) implies a target frequency of PPC devices in the

GHz to THz range. Finally, plasmas are inherently diffuse. PPCs provide more gradual changes in

density compared to the abrupt changes in material properties that occur in solid-state PCs. Many

of the proposed PPC devices have density gradient scale lengths that are large compared to the unit

spacing. Understanding how these gradients alter transmission properties is essential to predicting

PPC behavior.

Several analytical and numerical studies have been undertaken for plasma photonic crystals

with non-piecewise constant density profiles. A scattering matrix type method (SMM) was used
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to calculate transmission for plasmas with step-function, parabolic, sinusoidal, and Gaussian den-

sities by Lontano and Lunin in 199124,25. More recently, articles have been published on us-

ing the plane wave expansion (PWEM), transmission matrix (TMM), and finite-difference time-

domain (FDTD) methods on specific 1D density profiles: sinusoidal26, Gaussian27, exponentially

graded28,29, and physically informed density profiles21.

In this paper a parametric study of 1D PPCs with smooth and discontinuous density profiles

is performed to demonstrate the impact of density gradients on the transmission characteristics.

A linear model similar to that used by Lehmann and Spatschek21 is outlined for EM waves in an

unmagnetized, collisionless, periodically density modulated plasma. A systematic comparison of

a smooth density modulated plasma and a discontinuous plasma-vacuum one-dimensional PPC

is conducted. The results are validated against discontinuous Galerkin (DG) method numerical

solutions of the same configurations. Bandgap maps are then created from derived group velocity

data for a range of average plasma frequencies and density modulation amplitudes. The effects of

smooth vs discontinuous density profiles on bandgap properties are discussed and the origins of

these differences are explored by way of reduced models. This theoretical framework is then used

to infer the bandgap characteristics of other types of density profiles. The implications for future

PPC devices are discussed.

II. PROPAGATION OF AN EM WAVE IN A COLD, UNMAGNETIZED, 1D PERIODIC

PLASMA

In the cold plasma limit, the propagation of weak EM waves through an infinite periodic plasma

can be reasonably approximated by Maxwell’s equations coupled to the Drude equation30,31,

which describes electron motion in a stationary ion lattice (or gas). Solutions to the system can be

found through the application of Bloch’s theorem32.

In this section the Maxwell-Drude system is solved in a method similar to that described by

Lehmann and Spatschek21 for a one-dimensional, unmagnetized plasma with an arbitrary periodic

density profile. The result is an inhomogeneous wave equation with a source term that depends on

the current density j. The equation is linearized in time and space resulting in an infinite set of

linear equations coupled through source terms. In order to explore the difference between smooth

and discontinuous density profiles, specific solutions are found for two cases: a sinusoidally mod-

ulated density profile, and a square wave density profile.
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A. The linearized inhomogeneous EM wave equation in an unmagnetized, periodic

density modulated plasma in 1D

The behavior of electromagnetic waves in a plasma is governed by Maxwell’s equations

∇×E =−∂B

∂ t
, ∇×B = µ0j+ ε0µ0

∂E

∂ t

∇ ·E =
ρc

ε0
, ∇ ·B = 0. (1)

where j is the current density, ρc is the charge density, and µ0 and ε0 are the vacuum perme-

ability and permittivity, respectively. Faraday’s and Ampère’s laws can be combined to form an

inhomogeneous wave equation for E,

∇×∇×E+µ0ε0
∂ 2E

∂ t2 =−µ0
∂j

∂ t
. (2)

The current density j is defined as

j = ∑
α

qαvαnα (3)

where α denotes the species. A wave equation can also be found for the magnetic field, B, but

has an inhomogeneous part that is a function of ∇× j. As plasmas used in PPCs are generally

cold (< 1 eV), and EM frequencies of interest are well above the typical ion plasma frequency,

the time evolution of the plasma current j is assumed to be dictated entirely by electron dynamics,

and well approximated by the Drude model30,31

∂j

∂ t
=−e2n(r)

me
E− e

me
j×B−νj, (4)

where e is the electron charge, me is the electron mass, ν is the collisional relaxation rate, and

n(r) is the electron density as a function of space. Written in terms of the electron plasma fre-

quency squared ω2
pe = e2ne/ε0me, and the electron cyclotron frequency ωce = eB0/me where B0

is a constant background magnetic field

∂j

∂ t
=−ε0ω

2
pe(r)E−ωcej×B/B0−νj. (5)

For the case of an unmagnetized PPC ωce = 0. To understand the impact of density profile shape

as separate from other effects, the collisional relaxation time is assumed to be large relative to

the plasma period, i.e. ωpe � ν . This is not necessarily valid in the case of cold, high density
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plasmas like those needed to achieve THz frequencies, therefore the potential consequences of a

finite electron-ion collision frequency are discussed in Sec. V.

As a result of the above assumptions, the contribution of the second and third terms in Eq. (5)

are negligible. Substituting the Drude equation, Eq. (4), into the wave equation, Eq. (2), results in

a final inhomogeneous wave equation that describes temporal and spatial variations of the electric

field E for a spatially varying electron density n(r),

∇×∇×E+µ0ε0
∂ 2E

∂ t2 = µ0ε0

(
e2n(r)
meε0

)
E. (6)

An arbitrary periodic 1D density profile n(x) is approximated by a Fourier series

n(r)≈ ñ(x) = n0 ∑
`

n̂`ei`gx, ` ∈ Z, (7)

where n0 = a−1 ∫ a/2
−a/2 n(x)dx is the average plasma density, g = 2π/a is the magnitude of the

reciprocal lattice vector, a is the lattice period, and the coefficients n̂` can be found by

n̂0 =
1
n0

(
1
a

∫ a/2

−a/2
n(x)dx

)
= 1, (8)

n̂` =
1
n0

(
1
a

∫ a/2

−a/2
n(x)ei`gxdx

)
. (9)

As the periodic plasma density is invariant under discrete translation of the primitive lattice vector

such that ñ(x+ma) = ñ(x), where m is an integer, Bloch’s theorem32 states that the solution to the

electric field E takes the form of plane waves modulated by a function with the same periodicity

as the density. Assuming the electric field is perpendicular to the direction of travel, it can be

shown that

E(r, t) = ∑
k

∑
`

Ek−`gei((k−`g)x−ωt) ẑ, k ∈R, (10)

Equations (7) and (10) are combined with the wave equation, Eq. (6), and a Fourier transform

is performed in time and space. Rearranging the order of terms for clarity results in a coupled

linear system of equations

(
c2

0k2−ω
2 +ω

2
p0
)

Ek +ω
2
p0

(
∞

∑
`=1

n̂`Ek−`g +
−∞

∑
`=−1

n̂`Ek−`g

)
= 0, (11)

where ωp0 = (e2n0/meε0)
1/2 is the electron plasma frequency of the average density, and c0 =

(µ0ε0)
1/2 is the vacuum speed of light. Equation 11 represents an infinite system of equations

for each value of k. Note that the first term is the dispersion relation for EM waves in a uniform
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plasma with plasma frequency ωp0, while the second is a series of coupling terms with plane waves

offset by integer multiples of g and magnitudes proportional to ω2
p0n̂`. Normalizing Eq. (11) by

the lattice frequency, ωa = 2πc0/a, results in the following non-dimensional expression

(
K2−Ω

2 +Ω
2
p0
)

EK +Ω
2
p0

(
∞

∑
`=1

n̂`EK−`+
−∞

∑
`=−1

n̂`EK−`

)
= 0 (12)

where K = k/g is the lattice normalized wavenumber, Ωp0 = ωp0/ωa is the lattice normalized

average plasma frequency, and Ω = ω/ωa is the lattice normalized EM wave frequency. The

solution is independent of the magnitude of EK therefore it will be considered non-dimensional

from here forward.

Sections II B and II C explore the form of the coupling terms in Eq. (12) for two density profiles:

a sine wave modulation on top of a uniform background density, and a square wave composed of

a finite Fourier series.

B. Sinusoidally modulated plasma density

A sinusoidal density modulation is chosen for the smooth PPC case,

n(x) = n0[1+χ sin(gx)], 0≤ χ ≤ 1 (13)

where χ =(nmax−n0)/n0 is the amplitude of the density modulation. Plasmas with a smooth, sinu-

soidal density profile are likely to occur through laser-plasma interactions20,21 or instabilities22,23.

This density profile is also a first order Fourier approximation of any periodic profile shape. Fourier

coefficients are found by applying Eq. (7) to n(x) in Eq. (13),

n̂0 = 1, n̂±1 =±
χ

2i
. (14)

Since n(x) is real valued, the Fourier coefficients n̂−1 and n̂1 are complex conjugates. Substituting

the coefficients into the general equation (Eq. (12)) results in the following normalized system of

equations for an EM wave in a sinusoidally modulated 1D PPC

(K2−Ω
2 +Ω

2
p0)EK +χ

Ω2
p0

2i
(EK−1−EK+1) = 0. (15)

Here a single pair of terms couple EK to modes EK−1 and EK+1. While the quantity of density

Fourier coefficients is finite this does not limit the number of coupled equations, only the number

of coupling terms. The number of EK plane waves is still infinite. In order to solve the system

numerically the system is truncated based on criteria outlined in Sec. III A.
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C. Discontinuous modulated plasma density

The square wave density profile approximates metal-vacuum photonic crystals with their abrupt

changes in material properties. It also allows for comparison with existing studies as most assume

discontinuous density profiles, despite such profiles being difficult to achieve with plasmas. The

density profile has the following form

n(x) =

n0(1+χ), a(`−1/2)≤ x < a`

n0(1−χ), a`≤ x < a(`+1/2)
(16)

where χ is defined as χ = (nmax− n0)/n0. Fourier coefficients are found by applying Eq. (7) to

n(x),

n̂` =
sinπ`

π`
+

χ

iπ`
(1− cosπ`). (17)

Written explicitly for terms |`| ≤ 5

n̂0 = 1, n̂±1 =±
2χ

iπ
, n̂±2 = 0,

n̂±3 =±
2χ

i3π
, n̂±4 = 0, n̂±5 =±

2χ

i5π
.

Note that all even Fourier ( j = ±2,±4, . . . ) terms are zero. Substituting the Fourier coefficients

into Eq. (12) results in the following system for a square density profile approximated by a trun-

cated Fourier series (in this case N = 5)

(K2−Ω
2+Ω

2
p0)EK +ω

2
p0

2χ

iπ

[
(EK−1−EK+1)+ (18)

1
3
(EK−3−EK+3)+

1
5
(EK−5−EK+5)

]
= 0.

The magnitude of the Fourier coefficients (and therefore the magnitude of the coupling terms)

falloff like 1/`. As convergence of the series is slow, even Fourier approximations with large N

have significant error. At N = 50, the l2-norm of the error is still greater than 5%, and does not fall

below 1% until N approaches 2000. The effect of Fourier series truncation on bandgap prediction

is discussed in Sec. III A.

III. METHOD OF NUMERICAL SOLUTION AND VALIDATION AGAINST

WARPXM PLASMA CODE

To solve the linear coupled system described by Eq. (12), it is reformulated as an eigenvalue

problem and solved for each wavenumber of interest K. As the number of equations is infinite,
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even when the number of density Fourier coefficients is finite, the system must be truncated to

be solved numerically. Bounds are set on the minimum convergence of the solution as a function

of system size. Band diagrams are constructed by evaluating the system for a range of values of

K. The band diagram for a discontinuous density profile case is validated against solutions found

using a cold plasma model solved with the WARPXM discontinuous Galerkin (DG)33,34 code on a

Bloch periodic domain35. In order to compare the impacts of smooth vs discontinuous profiles on

PPC transmission characteristics, group velocity bandgap maps are constructed from sets of band

diagrams where either the density modulation amplitude or lattice normalized electron plasma

frequency is varied.

A. Numerical solution of the problem

As developed in Sec. II, the linearized system for an EM wave in plasma with a periodic vari-

ation in density consists of an infinite set of coupled equations (Eq. (12)). Reformulated as an

eigenvalue problem for Ω2

K2EK +Ω
2
p0

N

∑
`=−N

n̂`EK−` = Ω
2EK (19)

or more compactly as

AE = Ω
2E,

where A is a Hermitian banded matrix, and the eigenvectors E are frequency space solutions of

the electric field for each eigenvalue Ω2. To truncate the infinite system, a system size limit M ≥N

is chosen such that A ∈R(2M+1)×(2M+1). The matrix A is then expressed in index notation as

Ai= j = (K + i)2 +Ω
2
p0, Ai= j−` = n̂`Ω2

p0, (20)

where i, j = [−M,M], [−M,M]. The Fourier coefficients n̂` can be found analytically for simple

density profiles or numerically for more complex profiles. In index notation the vector E is

E j = EK+ j. (21)

The system is solved numerically for Ω2 for a set of K = [0,1]. The square root of the eigenvalues

correspond to the frequencies of allowable modes, while the eigenvectors EK correspond to the

wavenumber-space structure of the electric field of each mode. When plotted as a function of K,

the frequency corresponding to each eigenvalue form the photonic band structure of the PPC (see
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Fig. 1). The spaces between bands where no allowable mode exists for any value of K are known

as bandgaps or forbidden regions.

To ensure that the truncated system is fully converged, a method of determining the minimum

acceptable value of M is required. The error increases with increasing band number for truncated

systems. In this work, the region of interest is confined to the first eight bands, which sets a lower

bound on M. Sufficient convergence is defined as the minimum value of M such that the l2-norm

of the normalized difference between the M and M− 1 solution for the eighth band is less than

10−6, or

||∆Ω8,M||2 =

√
∑K |Ω8,M−Ω8,M−1|2

∑K |Ω8,M|2
< 10−6. (22)

B. Validation of the analytical model with a nonlinear plasma model solved using the

WARPXM code

WARPXM, an unstructured discontinuous Galerkin multi-physics plasma code developed at the

University of Washington34, is used to evaluate the equivalent problem as a system of normalized

hyperbolic PDEs
∂pe

∂ t
=

(
L
δp

)(
1
Ae

)
pe×B, (23)

∂E

∂ t
= (ωpτ)2

[(
δp

L

)2

∇×B−
(

δp

L

)(
1
Ae

)
pe

]
, (24)

∂B

∂ t
=−∇×E, (25)

where p, E, B, and t are normalized by reference values p0 = mpn0c0, E0 = c0B0, B0 =

(µ0mpn0c2
0)

1/2, and τ = L/c0, respectively. The reference density, n0, is chosen based on typical

density values, L is the problem length scale, mp is the proton mass, and c0 is the vacuum speed of

light. The nondimentional parameters are: δp/L, the normalized proton skin depth, Ae = me/mp,

the proton normalized electron mass, and ωpτ , the normalized proton plasma frequency. Ions are

assumed stationary to be consistent with the analytical model described in Sec. II.

The WARPXM code computes the evolution of the electron momentum and electric and mag-

netic fields by solving Eqs. (23)-(25). A solution is initialized that describes a propagating TE,

TM, or TEM wave. To simulate an infinitely periodic system, Bloch boundary conditions35 are

implemented. The WARPXM code applies boundary conditions by setting the value of virtual
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nodes at the boundaries. The left and right virtual boundary nodes, qv
R and qv

L respectively, are

functions of the opposite boundary node value, qL and qR, and a phase shift, ψ ,

qv
R = qLe−iψ , (26)

qv
L = qReiψ , (27)

where ψ = ka, and i here denotes the unit imaginary number. The boundary conditions allow

for the representation of an infinite periodic plasma with period a, while permitting EM waves

with wavenumbers other than integer multiples of the inverse domain length. Simulations are

performed for each k value of interest. Note that real and imaginary components of the electric

and magnetic fields are needed for the Bloch boundary conditions, so Eqs. (23)-(25) are complex-

valued equations.

Electric and magnetic field values are sampled at regular time intervals for several points in the

domain that do not fall on any axis of symmetry. This sampling strategy mitigates inadvertently

sampling values at or near field nulls which could lead to weak detection of particular modes. A

fast Fourier transform (FFT) algorithm is then applied to the data, and the spectra are averaged

over all sampled points.

Band diagrams are assembled by running simulations with different wavenumbers k in the

range of interest. Plotting the logarithm of the spectral intensity produces the band diagram from

the nonlinear plasma simulations, as is shown in Fig. 1, using the real component of the electric

field. The band diagram using the imaginary component gives a similar result. A total of 41 simu-

lations, each with a different value of k, adequately resolve the wavenumber space. Simulations to

generate a complete band diagram take approximately five hours using a single core on a modest

workstation.

The analytical and numerical band diagrams are compared for each band and the l2-norm of

the relative difference is calculated for each band i

||∆Ω
i||2 =

√
∑k |Ωi

anal−Ωi
num|2

∑k |Ωi
anal|2

. (28)

Calculated errors for five different density profile cases are shown in Table I. In all cases there is

good agreement as the error is on the order of the frequency resolution of the simulation. Large

plasma frequencies to lattice frequency ratios Ωp0, and square density profiles generally produce

larger errors. This is also reflected in the increase in system size needed to sufficiently resolve the

problem.
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FIG. 1. Comparison of band diagrams generated by solving the nonlinear plasma system, Eqs. (23)-(25),

using WARPXM (color contours indicate magnitude of spectra) and the analytical model described in Sec. II

(dashed lines) for a square plasma density profile with Ωp0 = 1 and χ = (nmax−navg)/navg = 1.

C. Construction of velocity bandgap maps

One of the key advantages of plasma photonic crystals over solid-state PCs is their tunability.

Where parametric studies are useful for device design in dielectric or metal PCs, for PPCs they

can also be used to describe the operational regime of a single device. As the bandgap is generally

the most important characteristics of a PC, bandgap maps36 are a convenient representation of a

PC’s performance.

In solid-state PCs, the unitless design parameters most used are the dielectric contrast, εhigh :
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TABLE I. The l2-norm of the relative difference between the analytical and WARPXM results for the first

five bands, ||∆Ωi||2 (see Eq. (28)). In all cases the absolute difference is on the order of the simulation

frequency resolution, ωres/ωa = a/c0T = 0.25× 10−2, where T is the simulation total run time. System

size is chosen by the condition in Eq. (22).

Solution difference, ||∆Ωi||2×10−2

Density profile System Size Band 1 Band 2 Band 3 Band 4 Band 5

Sinea, Ωp0 = 0.5 13×13 0.30 0.31 0.13 0.10 0.06

Sine, Ωp0 = 1.0 13×13 0.39 0.25 0.16 0.08 0.07

Sine, Ωp0 = 2.0 17×17 0.87 0.36 0.05 0.12 0.09

Squareb, Ωp0 = 1.0 21×21 0.60 0.94 0.07 0.09 0.05

Square, Ωp0 = 2.0 25×25 0.76 0.77 1.18 0.20 0.41

a See Section II B for sinusoidally modulated density profile parameters.
b See Section II C for piecewise constant density profile parameters.

εlow, and the fill fraction f = dhigh/a, where dhigh is the width of high dielectric constant layer,

and a is the lattice spacing. In PPCs the plasma density is most often the easiest and fastest

tunable parameter, whereas fill fraction is either fixed or a secondary effect that is not easy to

control independently of plasma density. For the study of PPCs, the primary unitless parameters

of interest are chosen to be density modulation amplitude, χ = (nmax−navg)/navg, and the lattice

normalized electron plasma frequency of the average density, Ωp0 = ωpe0/ωa.

Photonic crystal bandgap maps are traditionally formed by plotting bandgap edges as a function

of either fill fraction or dielectric contrast. Bandgap edges can be found either through dispersion

data36 or transmission spectra37, though density of states contours have also been used38,39. In

this work, bandgap maps are created by calculating the group velocity for individual bands, which

has the added benefit of including more useful information on transmission properties around the

bandgap edges.

Bandgap maps are generated by calculating a series of band diagrams (as in Fig. 2), with

each band diagram changing the parameter of choice by some small amount. Each bandgap map

presented in Sec. IV is constructed from 200 band diagrams. Group velocity, vg = ∂Ω/∂K, is

found by calculating the slope at each value of K from 0 to 1/2 using the central difference operator

for interior K values and one-sided difference operators at the boundaries. The calculated slopes
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are binned by frequency Ω. In forbidden regions where no slope exists the bin is assigned to NaN.

Group velocities are normalized to the speed of light and plotted as color contours, and bandgaps

appear as blank spaces, as seen in Figs. 3-5.

FIG. 2. Band diagram for a sinusoidally modulated density profile with lattice averaged plasma frequency

Ωp0 = 1 and modulation amplitude varying from χ = 0−1.

IV. BANDGAP MAP COMPARISON OF SMOOTH AND DISCONTINUOUS

DENSITY PROFILES

Group velocity bandgap maps are created for the smooth and discontinuous density profiles

using the procedures described in Sec. III. The area of interest is confined to lattice normalized

13



FIG. 3. Contours of group velocity for a smooth, sinusoidally modulated density profile with modulation

amplitudes varying from 0 to 1. The plot provides a bandgap map, which facilitates interpretation of the

effects of modulation amplitude on bandgaps. Normalized average plasma frequency Ωp0 = 1 for all cases.

Vertical dashed lines indicate locations of band diagrams in Fig. 2 at K = 0.25, 0.5, and 0.75 respectively,

and orange dashed-dotted lines indicate locations of plasma frequencies at minimum and maximum densi-

ties. Bandgaps extend well beyond the maximum plasma frequency.

average density plasma frequencies between Ωp0 = 0− 3 and lattice normalized EM wave fre-

quencies of Ω = 0−4, as this region is sufficient for capturing the dominate bandgap features. In

this section, the smooth, sinusoidally modulated density profile is explored by varying both χ and

Ωp0. The smooth density profile bandgap maps are then contrasted with the bandgap maps of the

discontinuous density profile. The origins of these differences are explored in Sec. V.
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A. Smooth density profile

By plotting contours of the group velocity for a sinusoidally modulated density profile with

modulation amplitudes varying from χ = 0 to 1, and Ωp0 = 1, a bandgap map is produced in

Fig. 3 that facilitates understanding of the impact of modulation amplitude on photonic bands.

The blank contour indicates the absence of bands, or bandgaps. The left boundary of the plot,

at χ = 0, represents the dispersion of a uniform plasma. The orange dash-dot lines represent the

plasma frequency of the maximum and minimum density regions, respectively. As the modulation

amplitude increases, the first bandgap appears just above the plasma frequency at Ω ≈ 1.1. A

second and third bandgap appear by χ = 0.5, at Ω ≈ 1.4 and 1.8 respectively. At χ = 1 the

dispersion of the density modulated plasma has deviated significantly from the dispersion of a

uniform plasma (χ = 0). Note that all bandgaps begin above the plasma frequency of the maximum

density.

The gap map in Fig. 4 shows the effect of varying the plasma frequency of the average density

Ωp0, for two density profiles. Color contours indicate a sinusoidally modulated density profile with

a maximum modulation amplitude (χ = 1) and gray shading indicates a uniform plasma (χ = 0)

with the same Ωp0. The orange dashed-dotted line in Fig. 4 indicates the plasma frequency of

the maximum density for the sinusoidally modulated density profile. The minimum density and

plasma frequency are zero for all cases.

Several differences between the density modulated and uniform plasma profiles can be readily

identified. Despite having the same average plasma frequency, forbidden regions in the density

modulated case extend above not only the average plasma frequency, but also above the plasma

frequency of the maximum density (upper orange dashed-dotted line). The bandgap map provides

clues to the origin of individual bandgaps: when extrapolated to the left axis, each bandgap can

be seen to start at half lattice frequency intervals, corresponding to band diagram intersections

at K = 0 and 0.5. These bandgaps continue for EM wave frequencies many times the lattice

frequency.

B. Discontinuous density profile

The dispersion of a discontinuous and smooth density profile are compared in the bandgap map

in Fig. 5. The discontinuous density profile gap map (color contours) is overlayed on the smooth
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FIG. 4. Contours of group velocity as a function of the plasma frequency of the average density Ωp0

for a sinusoidally modulated (color contours) and uniform plasma (gray contours), or χ = 1 and χ = 0,

respectively. The color bar indicates group velocity normalized by c0. Plasma frequency of the maximum

density for the sinusoidally modulated plasma is indicated by the dashed-dotted orange line. Bandgaps for

the sinusoidally modulated plasma extend well above the maximum plasma frequency.

density profile gap map from Fig. 4 (gray shading). Both profiles have the same modulation

amplitude χ = 1 and a filling fraction of f = dplasma/a= 0.5, corresponding to equal width regions

of low and high density.

There are notable similarities between the bandgap maps for both cases. The same number of

bandgaps are present in both the discontinuous and smooth cases, and the bandgaps begin at similar

frequencies. In fact, the first bandgap, beginning at Ω = 0.5, is almost identical for Ωp0 ≤ 0.5.

Despite the bandgap maps for the discontinuous and smooth density profiles having a similar

general structure, major difference are evident. The first significant difference is the appearance
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FIG. 5. Contours of group velocity for a discontinuous and smooth density profile. The discontinuous

density profile gap map (color contours) is overlayed on the smooth density profile gap map from Fig. 4

(gray shading). Both profiles have the same modulation amplitude χ = 1 and a filling fraction of f =

dplasma/a = 0.5. The plasma frequency of the average density, Ωp0, is shown in the x-axis. Contour colors

indicate group velocity normalized by c0. The bandgap maps for discontinuous and smooth density profiles

differ significantly.

of forbidden islands in the discontinuous case at large Ω. The origin of these islands will be

explored in Sec. V. Furthermore, the forbidden islands alternate in size and extent, whereas the

bandgaps in the smooth density profile case all have a similar size and shape. The second major

difference are the widths and central frequencies of bandgaps at large Ωp0. While the bandgaps

for the smooth density profile continue to increase in Ω with increasing Ωp0, the bandgaps for the

discontinuous profile appear to asymptote. This can be explained by understanding that the narrow

bands between bandgaps at large Ωp0 correspond to stationary modes trapped in density troughs.
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Similar to an electron in a potential well, the frequency of the trapped modes is a strong function of

potential well shape. Rectangular potential wells have stationary mode frequencies independent

of potential well depth beyond a minimum. In contrast, the sides of shaped wells steepen with

increasing depth, causing trapped mode frequencies to change.

Just as the smoothly modulated plasma is not well approximated by a homogeneous plasma of

the same average density, the discontinuous density profile plasma is not well approximated by a

smoothly modulated plasma with the same minimum and maximum densities. This is especially

true at higher frequencies. In Sec. V, the origins of these differences is explored.

V. UNDERSTANDING THE ORIGINS OF BANDGAPS THROUGH REDUCED

MODELS

Many of the differences between the bandgap characteristics of the smooth and discontinuous

density profiles can be explored through studying the interaction of a subset of electromagnetic

wave modes. In this section, two types of reduced models are explored. First (see Sec. V A), a

two-mode reduced model is used to derive an analytical approximation of the width of arbitrary

bandgaps, as well as generate band diagrams and bandgap maps that are compared to the full

model. While the two-mode reduced model captures primary interactions between individual

wave modes, higher-order interactions can also be significant. In Sec. V B, three- and seven-mode

reduced models are used to generate bandgap maps in order to highlight the contribution of higher-

order coupling terms.

A. Two-mode reduced model

The two-mode reduced model is a truncation of the infinite system in Eq. (12) to only two

waves: EK and EK- j, where j ≥ 1 and indicates the number of the bandgap of interest. Note that

a value of j > 1 indicates that the two modes are nonconsecutive. All other modes are set to zero,

reducing the system to two coupled equations(
K2−Ω

2 +Ω
2
p0
)

EK + n̂ jΩ
2
p0EK- j = 0,(

(K− j)2−Ω
2 +Ω

2
p0
)

EK- j− n̂- jΩ
2
p0EK = 0. (29)

In the case of a uniform plasma, n̂ j = n̂- j = 0, the equations become decoupled (see the blue

line in Fig. 6). The first equation is the dispersion relation for EM waves traveling in a cold,
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FIG. 6. Band diagram given by the two-mode reduced model for a uniform plasma (blue) and sinusoidally

modulated plasma with modulation amplitudes of χ = 0.1 (orange), χ = 0.5 (green) and χ = 1 (red).

Lattice normalized plasma frequency of Ωp0 = 1 for all cases. Increased density modulation amplitude

leads to increased mode coupling around the band intersection at K = 0.5, generating, and then expanding

the bandgap at Ω≈ 1.1.

homogeneous plasma. The second is the same dispersion relation, shifted in K by j. The two

dispersion relations intersect at K = j/2 where the EK wave has a positive group velocity, and the

EK- j wave’s group velocity is negative. The two waves are counter propagating, but not interacting.
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For non-zero values of n̂± j, the system is coupled and the counter propagating waves begin to

interact. In Fig. 6, the orange, green, and red lines show the two-mode reduced model solution

for χ = 0.1, 0.5 and 1, respectively. Even at small modulation amplitude coupling between for-

ward and backward propagating modes leads to a bandgap in the vicinity of the band intersection.

Physically, this translates to reflection of all frequencies within the bandgap. With increasing mod-

ulation amplitude this reflection band increases dramatically, and distorts the two original bands

from the unmodulated case.

The system in Eq. (29) can be analytically solved for Ω. Using the fact that n̂- j is the complex

conjugate of n̂+ j, the positive values of Ω are

Ω± j(K) =

{
Ω

2
p0 + j2/2− jK +K2± (30)

1
2

[
j2( j−2K)2−4|n̂ j|2Ω

4
p0

]1/2
}1/2

,

where Ω+ j(K) and Ω− j(K) indicate the normalized frequency of the upper and lower positive

bands, respectively, for a system with a given j, as a function of normalized wavenumber K.

Bandgap edges can be inferred from band frequencies at symmetry points K = 0 and 1/2. The

lower and upper edges of the bandgap are the maximum value of the lower band and minimum

value of the upper band, respectively,

Ω− j,BG = max(Ω− j(0), Ω− j(1/2)),

Ω+ j,BG = min(Ω+ j(0), Ω+ j(1/2)). (31)

The bandgap edges are well approximated by the band frequencies at K = 1/2,

Ω± j,BG ≈Ω± j(1/2) =
√

Ω2
p0(1±|n̂ j|)− ( j/2)2, (32)

which indicates that each bandgap j is a function of Ωp0 and the magnitude of the jth density

Fourier coefficient, |n̂ j|. Similarly, the upper bound of the cutoff region is well approximated by

the minimum of the lower band for the j = 1 case at K = 0

ΩCO ≈Ω−1(0) =
1√
2

√
1+2Ω2

p0−
√

1−4|n̂1|2Ω4
p0. (33)

which reduces to Ωp0 as the density modulation amplitude decreases (|n̂1| → 0).

In Fig. 7, the two-mode reduced model predictions of the cutoff region (blue) and bandgaps

(orange) for the smooth density profile are compared against full model (gray). At low normalized
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plasma frequencies, Ωp0 < 0.5, the two solutions are very similar, indicating two-mode wave

coupling is dominant in this region.

As the lattice normalized plasma frequency increases, the solutions increasingly diverge. Not

only does the reduced model overpredict the width and average frequency of bandgaps at these

higher frequencies, but it fails to predict higher bandgaps entirely. This can be understood from

the dependence of Eq. (32) on |n̂ j|. The sinusoidally modulated case only has non-zero values for

n̂±1, resulting in the reduced model predicting only one bandgap. In reality, more than two modes

are present and interact through higher-order coupling. In the bandgap map, this higher-order

coupling appears as harmonics of the first bandgap repeated at integer multiples of half the lattice

frequency Ωa/2.

Figure 8 compares the two-mode reduced model to the full model for the discontinuous density

profile. In contrast to the smooth density profile case, some (but not all) of the higher bandgaps are

predicted by the reduced model. This is expected as the discontinuous density profile has non-zero

density Fourier coefficients for odd values of j; therefore, the reduced model predicts finite odd

bandgaps.

The reduced model again well approximates the full model for smaller values of Ωp0, but

diverges with increasing Ωp0. Also like the smooth density profile case, not all bandgaps are

predicted by the reduced model. These unpredicted bandgaps are all even (bandgaps 2, 4, and

6 in Fig. 8), and are distinguishable from the predicted bandgaps by beginning later, at higher

values of Ωp0. Again, these unpredicted bandgaps can be understood as harmonics that results

from higher-order coupling.

The most prominent difference between the smooth and discontinuous profile bandgap maps,

the forbidden islands, is not predicted by the two-mode reduced model. Therefore the bandgap

islands appear to be the result of interactions between first-order mode coupling and higher-order

harmonics. In Sec. V B, reduced models with additional modes are used to explore the origin of

forbidden islands.

B. Three- and seven-mode reduced models

The interaction of pairs of electromagnetic modes has been shown in Sec. V A to describe many

of the dominant features of bandgap behavior, such as the cutoff region and bandgaps associated

with non-zero density Fourier coefficients. The two-mode reduced model is not able to capture
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FIG. 7. The smooth density profile gap map (gray) is overlaid with predictions by the two-mode reduced

model for the cutoff region (blue) and first bandgap (orange). Models agree well for Ωp0 < 0.5, but depart

with increasing Ωp0. Higher bandgaps are not predicted by the reduced model as they result from higher-

order coupling effects.

bandgaps not associated with non-zero density coefficients, bandgap widths at large Ωp0, or for-

bidden islands in the discontinuous density case. In order to elucidated the origins of these other

features, reduced models with three and seven consecutive modes are used to produce bandgap

maps. In contrast to the two-mode reduced model, the systems are all Hermitian and are solved

using the method described in Sec. III A. A greater span of reduced models is explored in this work,

but the three-mode and seven-mode reduced models best elucidate the features of the smooth and

discontinuous density profiles, respectively.

In Fig. 9, bandgaps are calculated with the three-mode reduced model for the sinusoidally

modulated density case. When compared to the results for the two-mode reduced model in Fig. 7,
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FIG. 8. Discontinuous density profile gap map (gray) is overlaid with predictions by the two-mode reduced

model. This includes the cutoff region (blue), and the first (orange), third (green), fifth (red), and seventh

(purple) bandgaps. As in the smooth density profile case, models agree well only for Ωp0 < 0.5. The

formation of forbidden islands in the bandgap map is not predicted by the reduced model, and is a result of

the interaction of three or more modes. The even-numbered bandgaps are also not predicted as they result

from higher-order coupling effects not captured by the reduced model.

the cutoff (blue) and first bandgap (orange) more closely approximate the full model. Additionally,

higher-order coupling results in a second bandgap (green). As the size of the reduced model is

increased, additional bandgaps appear, one for each additional mode (not shown).

Figure 10 compares the bandgap map from the full model (gray) with bandgaps predicted by the

seven-mode reduced model. In contrast to the two-mode reduced model in Fig. 8, even bandgaps

are present, and the odd bandgaps are less prominent. Another significant difference is the appear-

ance of forbidden islands in bandgaps three (red) and four (purple). Seven modes are found to
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FIG. 9. The smooth density profile gap map (gray) is overlaid with predictions by the three-mode reduced

model for the cutoff region (blue), and bandgaps (orange and green). When compared to the two-mode

reduced model in Fig. 7, the three-mode model more closely approximates the cutoff and first bandgap in

the full model. Additionally, higher-order coupling results in a second bandgap (green).

be the minimum number needed to resolve any forbidden islands, as well as finite density Fourier

coefficients at |`|= 3, where ` is the density Fourier coefficient index (see Eq. (17)). Interestingly,

when density profiles have both even and odd non-zero density Fourier content (such as Gaussian

or saw-tooth profiles) no forbidden islands are formed. Forbidden islands are therefore sensitive

to the details of the Fourier content of the PPC’s density profile.

VI. DISCUSSION

The sinusoidally modulated and discontinuous density profiles represent useful limits of pos-

sible density profiles. Many proposed PPC devices include both gradual changes in density and
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FIG. 10. The discontinuous density profile gap map (gray) is overlaid with predictions by the seven-mode

reduced model for the cutoff region (blue), and bandgaps (orange, green, red, violet, brown, and pink). In

contrast to the two-mode reduced model in Fig. 8, even bandgaps are present, and the odd bandgaps are less

prominent. Forbidden islands appear in bandgaps three (red) and four (purple).

abrupt changes due to dielectric components or barriers. Given that the Fourier content of the

density profile is the ultimate origin of bandgap features, choices can be made in advance to

achieve desirable transmission characteristics. In cases where only the first bandgap is of interest,

sinusoidal density profiles are sufficient. Where higher bandgaps are desired in order to target

frequencies well beyond achievable lattice spacing and plasma frequencies, dielectric barriers or

low fill fraction density profiles may be necessary in order to introduce higher Fourier content.

This work also suggests that dielectric barriers can be introduced to achieve forbidden island like

behavior, for example a band pass region that closes above a specified PPC average density.

Dissipative effects have not been included in this study, though they are likely to be non-

25



negligible in THz plasmas. Prior work on dissipation in both metallic and plasma PCs40,41 have

shown that absorption of EM wave energy by a dissipative material peaks at frequencies with a

slow group velocity. The physical interpretation is that slow moving waves have more time to

interact and transfer energy than fast moving waves. As a result, increasing the electron relaxation

rate does not lead to a change in the band structure per se, but does increase absorption around

bandgap edges leading to the appearance of a wider bandgap in transmission spectra.

VII. CONCLUSIONS

PPCs have a smoothly varying density structure as compared to solid-state PCs which have dis-

continuous changes in material properties. A systematic understanding of the effect of smooth and

discontinuous density profiles on transmission properties of PPCs is important to understanding

and designing future PPC devices.

In this work, two one-dimensional density profiles are chosen that represent the limiting cases

of smooth and discontinuous PPCs. Band diagrams are constructed for each assuming an un-

magnetized, non-dissipative, cold plasma with stationary ions. Group velocity bandgap maps

are then assembled from sets of band diagrams for a range of modulation amplitudes and lattice

normalized plasma frequencies, and compared for both density profiles. The results are further

examined through reduced models to elucidate the origins of major bandgap features.

Several general trends are identified. First, two profiles with the same lattice constant and

average, maximum, and minimum densities can have different bandgap behavior. Second, the

width of higher-order bandgaps is strongly correlated with density profile Fourier content. Stated

more explicitly, the frequency and width of the j-th bandgap are a function of the lattice normalized

plasma frequency and the magnitude of the j-th Fourier component. Third, high-order interactions

of bandgaps can lead to complex effects like forbidden islands, where bandgaps open and close

with increasing plasma frequency.

These results have interesting implications for the design of future PPC devices. The density

profile shape becomes yet another parameter that can be tuned to achieve desired results. By

designing the Fourier content of a density profile, through finer control of plasma shape or inserting

solid components to create discontinuities, higher-order bandgaps can be directly controlled.

Group velocity bandgap maps prove to be a powerful technique in both PPC design and un-

derstanding the operating regime of a single device. While the system linearization technique
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used in this study to generate band diagrams is optimized for cold, un-magnetized, and non-

dissipative plasmas, the group velocity bandgap map is agnostic to calculation method. Group

velocity bandgap maps can either be generated directly for PPCs that include additional physics,

or single band diagrams can be compared to these results for a deeper understanding in cases

where computations are too costly.

This technique is also applicable to PPCs of higher dimensions. Work is already under way

to study the transmission properties of two-dimensional PPCs with a variety of density profile

shapes.
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