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Abstract

Background: Behavior and health are inextricably linked. As a result, continuous wearable sensor
data offer the potential to predict clinical measures. However, interruptions in the data collection
occur, which create a need for strategic data imputation.

Objective: The objective of this work is to adapt a data generation algorithm to impute
multivariate time series data. This will allow us to create digital behavior markers that can predict
clinical health measures.

Methods: We created a bidirectional time series generative adversarial network to impute missing
sensor readings. Values are imputed based on relationships between multiple fields and multiple
points in time, for single time points or larger time gaps. From the complete data, digital behavior
markers are extracted and are mapped to predicted clinical measures.

Results: We validate our approach using continuous smartwatch data for n=14 participants. When
reconstructing omitted data, we observe an average normalized MAE of 0.0197. We then create
machine learning models to predict clinical measures from the reconstructed, complete data with
correlations ranging from r=0.1230 to r=0.7623. This work indicates that wearable sensor data
collected in the wild can be used to offer insights on a person’s health in natural settings.

Keywords: Time series, data imputation, activity learning, health assessment
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1. Background

Assessing and promoting health are challenging tasks even when physicians are readily
available because health care providers must make decisions based on a typical 20 minute visit
with a patient!, aided by results from often-inconclusive laboratory tests. The ability to provide
accurate assessments is particularly timely because as the population ages, older adults will
likely outnumber children for the first time in US history?, creating a discrepancy between the
number of persons needing care and those capable of providing it. Resulting from this changing
dynamic, chronic illness rates and healthcare expenditures are increasing®*. One health domain
that is particularly impacted by the aging population is cognitive health. Early detection of
cognitive health changes has been identified as a national priority>® because this supports more
effective treatment and significantly improves the quality of care while reducing health care
costs”8. However, clinic-based assessment is infeasible for many who live in remote areas or
remain in their homes due to imposed restrictions. Furthermore, controlling the symptoms of
cognitive decline relies on understanding its many influences, including physiology,
psychosocial and physical environments, and routine behavior’.

The tight interplay between health and behavior is well documented in the literature!®'?. The
maturing design of sensor platforms, pervasive computing, and machine learning techniques
offer practical, though not fully realized, methods for understanding the relationship between
health and behavior and automatically assessing and predicting health status. We hypothesize
that a person’s health can be predicted based on digital behavior markers that are collected from
continuous, longitudinal wearable sensor data. Specifically, machine learning methods can be
used to map a comprehensive set of digital behavior markers onto predicted values for clinical
assessment measures'>.

Because we can now collect data on ourselves in an ecologically valid manner, we will
harness continuously-collected sensor data to create a personalized behavior profile. Despite
recent technology advances, most research does not collect continuous data in realistic settings.
Laboratory-driven data collections do not reflect natural behavior; behavior markers should be
built based on activities sensed “in the wild”!*!3.

One practical issue that limits the ability to create an automated behavior profile from
wearable sensor data and assess a person’s health is gaps in the data collection. When data are
collected in the wild, without imposed controls that ensure collection compliance and data
quality, missing data is a common occurrence. Sensor readings will go missing when there are
failures in the sensors, device, communication, or storage mechanisms. In our experiments, we
collect data from older adult volunteers in their own homes as they perform normal routines. As
a result, there are also frequent large gaps in the data collection (i.e., an hour or more) when the
participants fail to wear or charge the devices. While there are common reasons for such missing
data, in our work we do not incorporate such domain-specific information into the approach.

2. Objective

In this paper, we describe a generative approach to imputing values for multivariate time
series data. Data imputation is a well-established problem with numerous available strategies.
What makes the imputation problem particularly unique and challenging for smartwatch-based
behavior data is that time series data are not i.i.d. and smartwatch data are multivariate, two
aspects that are under-represented in the literature. To address this problem, we consider a
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generative time series model that preserves temporal dynamics together with inter-feature
dynamics. The contributions of this paper are the following. First, we discuss adaptation of
generative models to impute multivariate time series data. Second, we illustrate the application
of this imputation method to collected smartwatch sensor data. Third, we describe how activity
labels are applied to the complete time series and used to create digital behavior markers. Fourth,
we define a joint inference method to predict clinical measures from the behavior profile. To
validate the methods, we compare the imputation accuracy of our imputation algorithm, called
Mink (Missing data Imputation Novel Kit), with baseline methods on sampled smartwatch data.
Finally, we evaluate the accuracy of our health prediction methodology when missing data are
imputed using Mink.

3. Problem Formulation

Consider the setting where multiple sensors are sampled at a constant rate (in our
experiments, this rate is 10Hz). We start by formalizing the sensor data time series and the sensor
data imputation task.

Definition 1. A time series data stream is an infinite sequence of elements X =
{x1,%3,..,Xj, ... }. The i” element of the series is xi. In the case of a multivariate time series, xi is
a d-dimensional vector observed at time stamp i'®.

Definition 2. We assume that the sensor data collection is a stationary time series. A
Stationary time series 1s a process whose statistical properties are constant over time. Thus:

e The mean value function is ; = E(x;) and does not depend on time ¢.
e The auto covariance function y(s,t) = cov(xg, x;) = E[(xg — us)(x; — p,)] depends
on time stamps s and ¢ only through their time difference, |s — t|.

Definition 3. Missing values in a finite-length subset of a time series X1.7 = {x4,.., X7} are
represented by a mask matrix M. Each element of M € RT*¢ is defined for time stamp i and
feature dimension j as:

M]l: _ {0 if ] is missing (x} = NULL) (1)
1 otherwise

Definition 4. An imputation algorithm /4 has access to an incomplete dataset consisting of a

time series X and mask matrix M. The goal of the algorithm is to replace all values

xé € X where M’l: = 0 with a non-NULL value X and a Gaussian noise vector Z. The resulting
time series is denoted as X1.7 = {®4,.., Xy} and is defined in Equation 2.
X ifM, =0

x=4" T 2)
IA(X,Z,i,j) ifM;=1
Definition 5. Algorithm /4 should minimize total normalized mean absolute error (NMAE).
NMAE is based on the standard mean absolute error (MAE) definition:
5 |} -%]]
MAE(x,%) = ¥i_ Xjrq 3)
where xi represents an imputed value (if M]l. = NULL) or the observed value (if M’i + NULL)

and Ef{represents the actual ground truth value.

The NMAE metric is useful when comparing or combining the mean absolute error of
features with different scales. Each MAE term is normalized to [0..1] based on the range of
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values for the corresponding feature. We evaluate the imputation performance of Mink and
baseline methods using NMAE.

4. Related Work
4.1. Related Methods

Imputation of missing values is a well-established area of investigation. Researchers have
proposed numerous methods to tackle this problem, including replace by constant and value
inference using regression. Multiple methods can also be employed and combined, resulting in
multiple imputation'”!®, Most of these methods assume that data are independent and identically
distributed (i.i.d.). They impute values for each feature separately and frequently do not account
for the relationships between features. In the case of time series sensor-based behavior
monitoring, the data are not i.i.d. Relationships between variables provide important context for
imputing values, values need to be imputed simultaneously for multiple features, and the
relationships between values at adjacent points in time need to be considered.

In recent years, researchers have started to investigate the problem of imputation for time
series. In addition to the methods mentioned above, other common statistical methods carry
forward an observation by copying the value from time #-/ to ¢, carry backward an observation
from ¢+ to ¢, or average the two. These approaches face limitations of the underlying processes
being highly dynamic or the existence of a longer sequence of missing values!®. Linear or
nonlinear regression and forecasting models have been adapted for time series by mapping prior
observations f-x .. t-1 (the lag) onto a predicted value for missing time 2%?!. Specialized deep
network structures are popular as well. Recurrent neural networks are well suited for this task
because they retain sequential information in their structure®?, although they are typically limited
to univariate cases. Researchers have refined this process to combine deep learning with transfer
learning for sensor data imputation®’, ensuring that the imputed information is customized for
each person.

The methods that are most similar to Mink utilize generative adversarial networks (GANs). In
this scenario, one agent attempts to impute missing values (the generator) while a second agent
attempts to differentiate observed from imputed values (the discriminator). GANs are becoming
a standard for imputing i.i.d. data, including multiple imputation?*. Yoon et al.” introduced a
GAN data imputer, called GAIN, that boosts performance by supplying a hint vector conditioned
on observed values. This approach is effective for i.i.d. data but is not designed to handle the
dynamics of time series data. For time series, such generative methods are valuable when large
gaps exist in the sequence, because these algorithms will generate long sequences of values. The
E>GAN imputer from Luo et al.?® represents recent work to design a GAN structure for time
series. This algorithm combines autoencoder-based compression with a recurrent cell to generate
time series data. This approach relies on an unsupervised adversarial loss that ensures the
discriminator becomes more adept at recognizing imputed data at a rate that parallels the
generator’s improved skills at generating imputed values. Another GAN strategy was proposed
by Guo et al.?”. MTS-GAN incorporates a multichannel convolutional neural network to extract
features of each univariate time series, then adds a fully connected network to learn relationships
between feature dimensions. In their multivariate time series imputer, MTS-GAN, In this paper,
we combine unsupervised approaches found in the earlier methods with a supervised learning
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component that uses the observed data as an external oracle. This process then utilizes available
observations to model the stepwise conditional distributions, resulting in realistic imputed
values.

4.2. Applications of Time Series Imputation

To characterize a person’s overall behavior routine, we extract digital behavior markers from
sensor data that are automatically labeled with corresponding activity categories. Performing
human activity recognition from wearable sensors has become a popular topic for researchers to
investigate’?’. Because we can collect continuous data without requiring extra steps for the
subject, wearable sensors are a natural choice for assessing health based on sensed behavior.
Approaches to activity recognition have considered numerous methods, including decision trees,
nearest neighbors, clusters, and ensembles!***3! as well as deep networks*?>. Limitations of
many of these existing methods are that they focus on basic, repetitive movement types and are
often evaluated in laboratory settings. We are interested in extracting markers that reflect a
person’s entire behavioral routine, sensed in natural settings. For our experiments in this paper,
we pre-trained activity models using techniques that we validated in prior studies’®.

Wearable sensor data offer substantial insights into a person’s behavior as well as their health.
Typically, prior works analyze a specific behavior such as activity level*’*® or sleep®®, with
markers that consist of a small set of variables such as step counts or sleep duration*’. Some
researchers targeted specific sensor-observed behavior markers as a mechanism for assessing the
relationship between lifestyle and health. Specifically, Dhana et al.*! quantify healthy behavior
as a combination of nonsmoking, physical activity, alcohol consumption, nutrition, and cognitive
activities. Individuals who scored higher on this behavior metric had a lower risk of Alzheimer’s
dementia. Other researchers have also found that sensor-based behavior patterns are predictive of
cognitive health***. Li et al.** found that physical activity was predictive of Alzheimer’s
disease, while Aramendi et al.*> predicted cognitive measures of cognitive health and mobility
from activity-labeled sensor data.

These studies provide evidence that wearable sensors afford the ability to monitor
intervention impact and assess a person’s cognitive health. Within this area of investigation, our
proposed approach is unique because we investigate a computational method to monitor and
model all a person’s behavior to predict clinical health measures. We utilize the complete set of
behavior markers based on both observed and imputed sensor readings to predict multiple
measures, then take advantage of the predictive relationship between diverse markers to improve
predictive performance. This holistic approach to sensor analysis of behavior and health relies on
a method to impute missing values in complex, multivariate time series data.

5. Methods
Figure 1 illustrates the steps of our automated sensor-based health assessment process. As the
figure shows, the process relies on the ability to accurately impute missing data.
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Figure 1. The process of assessing health from smartwatch data. Data are continuously collected
while a participant wears a smartwatch and performs their normal routine. Data are securely
stored in a relational database and a processed by imputing missing values (Mink), labeling
readings with associated activity labels (activity recognition), and extracting a set of digital
behavior markers. A machine learning then maps the behavior profile onto predicted clinical
measures.

5.1. Generative Time Series Data Imputation

Our approach to imputing multivariate time series data combines aspects of regression-based
sequence prediction, adversarial sequence generation, and time series models. Adapting a
definition by Yoon et al.* for use with multivariate time series data imputation, the goal of Mink
is to use training data D to learn a density p(X;.7) that best approximates the density of ground-
truth data, p(X;.7). The adversarial component of the imputation algorithm attempts to minimize
the Jensen-Shannon divergence* between the estimated and ground-truth densities, shown in
Equation 7.

ming JS(p(Xy.)|1p(Xy.r) ()

As Yoon et al.* and Kachuee et al.* suggest, such adversarial components can be boosted by
partnering them with a supervised learning component that learns the temporal relationship
between neighboring readings in the sequence. The objective of this component is to minimize
the Kullback-Leibler divergence*’ between the estimated and true relationship between readings
at times -/ and ¢, as shown in Equation 8.

ming KL(p(X¢|Xe- 11D (X¢|Xe-1)) (8)

Both JS divergence and KL divergence calculate scores that reflect the difference between
probability distributions p and p. They are both appropriate metrics for this task because they
quantify the distance between two data samples based on the corresponding probability
distributions. JS divergence is an extension of the KL measure that is symmetric, a property that
is needed when comparing estimated and ground-truth data.

Figure 2 illustrates the architecture of the Mink time series imputation algorithm. As the
figure shows, the architecture includes a time series generator g, a time series discriminator d, an
embedding function e, and a recovery function ». The method combines a regressive autoencoder
(the embedding and recovery elements) with a generative adversarial network (the generator and
discriminator components) to optimize the multivariate goals formalized in Equations 7 and 8.
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The autoencoder components, e and r, are trained together with the generative adversarial
network components, g and d, to yield realistic time series values that maintain global properties
of the data distribution and temporal relationships between individual readings.

embedding e recovery r
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Figure 2. The Mink time series data imputation architecture. The system processes time series X
containing a mixture of observed and missing values and outputs a complete time series Xwith
no missing values. To generate realistic data, Mink combines an autoencoder (with embedding
function e and recovery function ») and a generative adversarial network (with generator g and
discriminator d).

5.1.1. Mink Generative Adversarial Network
Mink employs a generative adversarial network (GAN) to learn realistic time series sequences
whose densities emulate those of the real data, as shown in Equation 7. Using the notation from
Goodfellow et al.*8, a traditional GAN optimizes the value function V(g,d) for generator g and
discriminator d, as summarized in Equation 9. In this original formulation, x~pg,:, draws a
sample from the real data distribution and z~p,(z) draws a sample from input Gaussian noise.
As the equation expresses, the generator attempts to generate realistic data, the discriminator
differentiates real from synthetic data, and the two strengthen each other as they learn.
mingmaxd V(dr .g) = Ex~pdata(x) [logd(x)] + IE':z~pz(z) [lOg(l - g(Z))] 9)
In the imputation algorithm, the generator creates data in a latent space rather than directly
generating time series data. The latent space is defined by the autoencoder, described in the next
section. Let Zy represent the vector space from which individual random vectors are sampled.
Generator g uses these to create latent vectors in Hy. Thus, the generator can be represented as a
function g:[[;Zx — [ Hy. The Mink generator is designed as a stacked recurrent neural
network (RNN). All Mink networks utilize a hidden layer of size 24 and a dense final layer that
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employs a sigmoid activation function. Thus, g generates a synthetic latent vector for time ¢
based on a synthetic latent vector at time ¢-1, or &, = gy (h¢_1,2¢). The goal of discriminator d is
to correctly classify the latent vectors as real data, y, or synthetic data, y. Function d is designed
as a bidirectional recurrent network with a feedforward output layer.!

The GAN is trained to optimize Equation 9. As a result, the network maximizes the log
probability of d correctly discriminating between real and fake samples while at the same time
minimizing the log probability of /—d(g(z)), where d(g(z)) represents the probability that
generated data g(z) is real. For our imputation algorithm, we adapt Equation 9 to create an
adversarial loss function that trains the GAN. The loss function is shown in Equation 10.

Ly =By [Xelogye] + Ey ;o [2elog (1= 9¢)] (10)

To link these components, the imputation architecture utilizes a third loss function that
alternately guides training for the autoencoder and the GAN. This loss function computes a
gradient based on the difference between the predicted latent vector at the next time step (the
synthetic vector) and the ground truth-derived latent vector at the next time step. This loss
function thus reflects the distance between p(H;|H;.;—1) and p(H;|H;.;—1). This stepwise loss is
computed as shown in Equation 11.

Lg = [ExlzTNp [Xelllhe — gx(he—1, 20| 12] (11)

5.1.2. Autoencoder

To map sample data onto latent features Hy, Mink incorporates an autoencoder using an
embedding e. A recovery function  then reconstructs data close to the original. To create time
series data, the autoencoder captures the temporal relationships between readings, represented as
h, = ex(h;_4,x;). The recovery function r is a recurrent network that maps the latent vector
back onto the original time series representation, X; = ry(h;). Mink employs a stacked RNN for
both networks where the output for time 7 only depends on information available at time #-/.

The goal of the architecture’s autoencoder component is to accurately reconstruct the input
data from the latent vectors. This component is thus trained using a reconstruction loss that
computes the element-wise difference between the original and reconstructed feature values, as
shown in Equation 12.

Lp = Eqpp [llxe = %l (12)

5.1.3. Data Imputation
When training the system, the generator and discriminator functions adversarially optimize
ming, (aLs +ming,L,), while the autoencoder embedding and recovery functions optimize

ming, o (BLs + Lg). Here, parameters « and S balance the loss pairs (we use a=1 and =10 for
our experiments), while parameters &, @i, €, and 6- govern the generator, discriminator,
embedding, and recovery components.

To impute data for missing values conditioned on observed data values, we blend observed
data with synthetic data. Mink generates a synthetic data vector X;., that is conditioned on the
observed data, the corresponding mask, and a Gaussian noise vector. Missing values in the
original data vector X;.; are replaced with their corresponding synthetic component, yielding a

! Mink code is available online at https://github.com/WSU-CASAS/MINK.
8
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complete time series with no missing values.

5.2. Generating a Behavior Profile

Human behavior is one of the biggest drivers of health and wellness****. An individual’s
activities affect that person, their family, society, and the environment. Health risk behavior is
linked to Type 2 diabetes, obesity, heart disease, neurological diseases including ADRDs, and
other chronic physical and mental health conditions. For this reason, our overall goal is to model
behavior and use machine learning techniques to predict health status from behavior information.

In previous work, theoretical models arose from psychology, sociology, and anthropology to
explain the complexities of behavior and the factors that drive it. Until recently, such theories of
human behavior and its influences have relied on self-report, which can suffer from retrospective
memory limitations®!, or experimenter observation, which may introduce confounds and
unintended bias>?. The maturing of pervasive computing now allows us to collect personal sensor
data unobtrusively and continuously. As a result, the field is ripe to create data mining methods
to model behavior and predict health.

In our approach, predicting clinical health measures requires five steps. First, we collect
continuous sensor data from smartwatches as people perform their normal daily routines.
Second, we utilize Mink to impute values for the missing data. Third, we label sensor data
streams with corresponding activity labels. Fourth, we extract a set of digital markers. Finally,
we use machine learning to map the digital markers onto predicted clinical measures.

5.2.1. Collecting and Labeling Activity Data

To gather behavior-driven sensor data, we designed an app for the Apple Watch to passively
and continuously collect sensor data at a constant sampling rate of 10Hz. We currently collect
data from the watch accelerometer, gyroscope, and location services. The app periodically
queries users to provide ground truth about their current activity and answer in-the-moment
questions about their current mood and functionality. During this process, there are frequent gaps
in the data collection due to participants failing to charge or wear the smartwatch. As a result,
imputation of missing data for one or multiple consecutive time periods is needed before clinical
measures can be predicted.

A first step in building a set of digital behavior markers from longitudinal sensor data is
labeling data with corresponding activities. Activities represent units of behavior that can be
labeled and integrated into the digital behavior markers. While human activity recognition is a
popular research topic and many approaches have been proposed®>3*3-3° most approaches
operate under controlled laboratory conditions with scripted, movement-based activities®*¢>.
Research has demonstrated a correlation between cognitive health and numerous activities, both
simple and complex, that include sleep, work, time out of the home, walking, and socialization®
8 Thus, automatically labeling these activities can improve the ability to assess cognitive and
functional health.

Activity recognition algorithms map sensor data onto corresponding activity names, applying
categorical descriptions to sensed behavior. The input is a sequence of sensor readings e;=<t, 71,
.., ra> collected at time t. To accommodate real-time recognition, features are extracted from a
sliding window that are statistical (e.g., min, max, standard deviation, zero crossings, skewness,
kurtosis, signal energy), relational (e.g., multi-dimensional correlation, autocorrelation),

9
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temporal (e.g., time of day, day of week), navigational (e.g., heading change rate, stop rate,
overall trajectory, distance traveled), personal (e.g., frequented locations, distance from user
center), and positional (location type, calculated via reverse geocoding using an open street
map). A random forest classifier creates a mapping, h:X:—)r, from a set of descriptors X; to the
corresponding activity, y.. This approach demonstrated a recognition fl1 score of 0.85 for 12
activities from 250 individuals in prior work: chores, eat, entertain, errands, exercise, hobby,
hygiene, relax, school, sleep, travel, and work’®. We use the pretrained model for the remainder
of the experiments described in this paper.

5.2.2. Defining and Extracting Digital Behavior Markers

As data are collected and labeled with activity categories, we extract digital descriptors, or
markers, that provide insights into a person’s behavior and predictive power for the person’s
health. Continual monitoring of daily behavior offers more and finer-resolution insights than are
currently available for physician-based or automated health assessment and intervention design.
We compute and compile the digital behavior markers that become a person’s behavior
profile’®’!. The markers are defined in Table 1 and are gathered for each sensor (existing and
new) and activity class at multiple time resolutions (e.g., hourly, daily). Our software to generate
these markers is available online’.

Table 1. Digital behavior markers.

Type | Daily features
Maximum, minimum, sum, mean, median, mean/median absolute

Statistical . . .
value, variance, standard deviation, zero/mean crossings,
summary of . ) .
interquartile range, skewness, kurtosis, SMA, power,
sensor values

autocorrelation, computed over multiple time scales
Durations Time spent on each activity, location type, favorite location
Time of day for first and last occurrence of each activity, location
type, favorite location
Daytime and nighttime sleep duration, daytime sleep location,
nighttime sleep location, number of nighttime sleep interruptions
Amount of movement inside and outside home, walking speed,
Mobility number of steps, reverse geocoded location types visited outside the
home, total distance traveled
Entropy of daily routine, number of different daily activities,
minimum and maximum inactivity times, daily variance in activity
durations, occurrence times, and locations, periodogram-derived
circadian and diurnal rhythm 87.88

Occurrences

Sleep

Routine

10
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Table 2. Participant information.

et | Aae Cognitive Education  Missing

impairment (years) data (%)
1 65 No female 18 26.17
2 66 No female 20 31.49
3 72 No female 18 22.80
4 76 No female 20 23.27
5 79 No female 18 19.92
6 62 No male 16 28.32
7 62 No male 20 24.05
8 78 No male 18 25.35
9 56 Yes female 12 21.01
10 70 Yes female 18 24.35
11 72 Yes female 14 16.79
12 73 Yes female 14 27.32
13 58 Yes male 12 48.02
14 68 Yes male 20 28.82

5.2.3. Predicting Clinical Health Measures

In the last step, a regression forest is employed to predict the clinical measures C =
{cq,¢3,..,cn}. The random forest contains 100 decision tree regressors. The trees are built to a
depth of 20 using randomly-selected features, then regressors fit a line to the data that belong to
each leaf node. We report predictive performance using Pearson correlation. To collect data, we
recruited n=14 older adult participants for this study (9 female, 5 male). The mean age was 70.2
(s.d.=7.5) and number of years of education was 16.4 (s.d.=2.5). Detailed participant information
is provided in Table 2. In this sample, 6 participants had cognitive impairment, with objective
evidence in the memory domain. This study was reviewed and approved by the Washington
State University Institutional Review Board (IRB protocol #14460, approved 05/18/2020).
Informed consent was obtained from each participant prior to data collection initiation.

We collected one month of 10Hz continuous smartwatch sensor data (accelerometer,
gyroscope, and location) for the participants. As Table 2 indicates, the collected data had many
missing entries, including entire evenings for some participants when the watch was not worn.
Additionally, we collected clinical assessment measures for each participant at baseline using
traditional neuropsychology tests and self-report. The measures and the constructs they assess
are listed in Table 3.
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Table 3. Predicted clinical measures.

Measure Assessed construct

Telephone Interview of Cognitive Status (TICS) 73 global cognitive status
Rey Auditory Verbal Learning Test (RAVLT) 74 verbal memory
Behavioral assessment of the dysexecutive syndrome executive disinhibition
(BADS) 75
Timed Up and Go (TUG) 7¢ mobility
Quality of Life scale (QOL) 77 quality of life
Short Form Survey (SF-12) 78 physical and mental health
Prospective and Retrospective Memory
Questionnaire (PRMQ) 80 memory
Geriatric Depression Scale (GDS) 8t depression
Generalized Anxiety Disorder (GAD) 82 anxiety
Dysexecutive Questionnaire (DEX) 83 executive function

Instrumental Activities of Daily Living —
Compensation Scale (IADL-C) 89

everyday function

Because this study was conducted during the COVID-19 pandemic, tests were selected that
could be administered remotely. The Telephone Interview for Cognitive Status (TICS)” is
administered remotely over a phone and consists of tasks for the participant to perform including
word list learning, counting backward, and finger tapping. Other tests, including RAVLT and
BADS, were adapted for administration using video conference software. Rey’s Auditory Verbal
Learning Test (RAVLT)" consists of an oral presentation of two lists for immediate recall to
assess verbal memory. The Behavioural Assessment of the Dysexecutive Syndrome (BADS)” is
used to evaluate problems that arise during daily activities due to executive disinhibition. This
assessment contains thirteen tasks that focus on functional abilities such as planning, problem
solving, and temporal judgment. The Timed Up and Go (TUG) test’® requires the participant to
stand up from a chair, walk forward, turn around, and return to the chair, which was administered
while being remotely monitored by an experimenter. The score reflects the time taken to
complete the task and provides an indicator of mobility as well as cognitive health.

The next set of assessments are questionnaires that were delivered and answered over video
communication. These include the Quality of Life (QOL) scale’’ that measures the domains of
material and physical well-being, relationships, social activities, personal development, and
recreation; the short form 12 (SF-12) survey’® that asks questions assessing general health,
physical well-being, vitality, social functioning, emotions, and mental health (we separate this
into two scores corresponding to the physical and mental health components)’; the Prospective
and Retrospective Memory Questionnaire (PRMQ)*’ that contains questions about prospective
(looking into the future) and retrospective (looking into the past) memory slips in everyday life;
the Geriatric Depression Scale (GDS)®' in which participants answer questions in reference to
how they felt over the past week to measure depressive symptoms; the seven-item version of the
Generalized Anxiety Disorder questionnaire (GAD-7)%? that asks participants how often during
the last two weeks they were bothered by specific anxiety symptoms; and the Dysexecutive
Functioning Questionnaire (DEX)®* that assesses multiple cognitive-behavioral problems such as
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sustaining attention, inhibiting inappropriate behaviors, or switching between multiple problem-
solving strategies.

The last questionnaire, the Instrumental Activities of Daily Living — Compensation (IADL-C)
scale®®, was recently designed to assess the functional domains of money and self-management,
home-based daily tasks, travel and event memory, and social skills. Unlike earlier assessments,
the IADL-C scale is sensitive to the use of compensatory strategies in performing daily tasks that
help to overcome memory limitations. The tests and questionnaires provide insights on different,
though overlapping, aspects of cognitive health. We hypothesize that cognitive health state is
reflected in behavior patterns and thus behavior markers can be used to predict these health
assessment scores.

6. Results

We evaluate sensor-based health assessment in two steps. First, we evaluate the performance
of our time series imputation method using complete sets of data. Second, we evaluate the
performance of our complete method in predicting clinical health measures.

6.1. Evaluation of Data Imputation

We evaluate the accuracy of time series data imputation using NMAE. The participants and
days are selected on the criterion that data are complete between 8:00am and 10:00pm on the
corresponding date, to provide ground truth for evaluation. In our study, 5 participants collected
data that meet this constraint for at least 15 days. We therefore evaluate the imputation of
accelerometer and gyroscope sensor values for 15 days of data for 5 participants. In the case of
approaches that require model training, we utilize 12 days of data for training for each
participant. For all cases, we utilize 3 days of data for testing. The results are thus averaged over
15 days of continuous sensor readings. For each day, we extract a portion of the data, impute the
missing values, and compare it with the ground truth. We vary the percentage of missing entries
(10%, 20%, or 30%) and the size of the missing data gap (1 second, 1 minute, 1 hour, 12 hours).
We randomly select the beginning of each missing data sequence and average results over three
random selections.

Table 4. NMAE of imputation methods, each averaged over 5 participants, 4 gap sizes, and 3
random trials. * = the difference in performance is statistically significant (p<.05).

Carry Carry Bidirect Neural MTS KNN Mink

forward | backward carry network | GAN (k=3)
10% |0.0184* | 0.0195* | 0.0180* 0.0251* | 0.3050* | 0.1381* | 0.0169
20% | 0.0244* | 0.0245* | 0.0235* 0.0265 | 0.2944* | 0.1907* | 0.0220
30% | 0.0225* | 0.0237* | 0.0224* 0.0290* | 0.2949* | 0.2032* | 0.0207
Average | 0.0216* | 0.0224* | 0.0211* 0.0268* | 0.2981* | 0.1773* | 0.0197
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Table 4 summarizes the results, comparing Mink with several baseline methods. The carry
forward, carry backward, bidirectional carry, and MTS-GAN baselines are described in Section
4.1. We also include a two-layer neural network with 100 hidden nodes, a rectified linear
activation function, and a learning rate of 0.001 as a baseline regressor. The results in Table 4 are
computed based using 12 days of data for training and the following 3 days of data for testing
data. Results are averaged over 5 participants, 4 alternative gap sizes, and 3 runs with different
random seeds. We employ a paired t-test to determine the statistical significance of the
difference in performance between each baseline method and Mink. As the results indicate, the
adversarial network provides realistic values, even when a large chunk of consecutive readings is
missing. Additionally, this approach outperforms the baseline methods for time series
imputation. Because the imputation results are promising for Mink, we next employ the Mink
GAN to impute values used for creating the digital behavior markers and inferring clinical
measures.

Table 5. Pearson correlation of clinical measures using baseline and Mink imputation methods.

Measure Constant Bidirectional Mink
carry
TICS 0.6185 0.6711 0.4762
RAVLT 0.0743 0.2502 0.3328
BADS 0.4818 0.4487 0.5202
TUG 0.5076 0.4138 0.6119
QOL 0.0172 0.1055 0.2436
SF-12 Physical 0.4831 0.7084 0.6133
SF-12 Mental 0.5347 0.6162 0.7623
PRMQ 0.0006 0. 5080 0.3984
GDS 0.1079 0.3927 0.1230
GAD 0.4574 0.1260 0.2125
DEX 0.1902 0.1859 0.4401
IADL-C 0.2115 0.4892 0.4095
Mean (SD) 0.3071 (0.2175) | 0.4096 (0.1972) | 0.4294 (0.1771)

6.2. Evaluation of Clinical Measure Prediction

Finally, we evaluate the predictive performance of the clinical measures for both Mink-based
imputation, imputation using constant values, and imputation using bidirectional carry (the
second highest-performing imputation method in the previous experiment). For this experiment,
we predict the precise numeric score for each assessment measure. Because each measure uses a
different score range, we employ the approach used in other studies to evaluate performance by
computing correlation between predicted and ground truth scores®®*?. The results of this
experiment are based on leave-one-subject-out testing and are summarized in Table 5. We
observe small correlation for GDS (r=0.1230), GAD (r=0.2125), and QOL (r=0.2436), moderate
correlation for RAVLT (r=0.3328), PRMQ (r=0.3984), IADL-C (r=0.4095), DEX (r=0.4401),
TICS (r=0.4762), and BADS (r=0.5292), and large correlation for TUG (r=0.6119), SF-12
Physical (r=0.6133), and SF-Mental (r=0.7623). The mean of the correlation values is 0.4294.
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The generative imputation method employed by Mink does result in an improvement in the mean
of the correlation values (0.4294, in comparison with 0.4096 for bidirectional carry and 0.3071
for replace-by-constant).

7. Discussion and Conclusions

The long-term goal of this work is to automate health assessment from sensor-observed
longitudinal behavior data. In this paper, we address a significant obstacle to this goal by
designing a method to impute missing values in the time series data. The results indicate that a
generative architecture can be employed for this process. Considering both temporal and
between-feature relationships is valuable for such multivariate sensor readings. The results
indicate that the generative imputation method outperforms straightforward baseline methods.
Additionally, the resulting behavior markers are predictively correlated with collected clinical
measures.

While Mink outperforms a baseline imputation method for clinical measure prediction, the
results are not consistent across all clinical measures. One explanation for this finding is that the
variance in the generated values can result in larger differences from true values than constant
values. While the errors do not occur as often as with the baseline methods, the magnitude of the
error may mislead the regression forest. This possibility that the GAN may generate out-of-range
values is a limitation of the current approach and can be addressed in future versions of the
algorithm.

We also observe that the predictive performance is lower overall for measures with a smaller
variance in the collected data. This is due in part to the limited sample size and need for greater
diversity in the data. This additional study limitation will be addressed in the future by recruiting
a larger population that represents diversity in age, demographics, and health conditions.

In the current work, we assume that the time and duration of missing readings are random
values. In practical settings, the missing values may be related to patient physical conditions
(e.g., an illness or trip during which the person does not wear the device) or external conditions
(e.g., a power outage that prevents the device battery from fully charging). Future enhancements
can include modeling such conditions and utilizing the information to improve the design and
evaluation of imputation.

Mink successfully outperformed baseline methods in our experiments, but there is room for
improvement. We hypothesize that obtaining observational data from a larger and more diversity
set of complete days will improve GAN performance and will test this hypothesis in future
studies. Additionally, while a generative adversarial network offers an effective way to generate
a sequence of missing sensor readings, they are known to suffer from possible mode collapse. As
a result, the trained network may generate only a small number of distinct types of readings.
While the generated values are realistic, they may lack the variability that exists in the real data.
Researchers have investigated strategies to reduce mode collapse®*°. A future step of our work
may include addressing this limitation by adapting these strategies for use in time series data.
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