

1 **Automated Cognitive Health Assessment Using Partially-Complete Time Series Sensor Data**

2 Brian L. Thomas, PhD, Lawrence B. Holder, PhD, and Diane J. Cook, PhD

3 School of Electrical Engineering and Computer Science

4 Washington State University

5

6

7 **Abstract**

8

9 **Background:** Behavior and health are inextricably linked. As a result, continuous wearable sensor
10 data offer the potential to predict clinical measures. However, interruptions in the data collection
11 occur, which create a need for strategic data imputation.

12 **Objective:** The objective of this work is to adapt a data generation algorithm to impute
13 multivariate time series data. This will allow us to create digital behavior markers that can predict
14 clinical health measures.

15 **Methods:** We created a bidirectional time series generative adversarial network to impute missing
16 sensor readings. Values are imputed based on relationships between multiple fields and multiple
17 points in time, for single time points or larger time gaps. From the complete data, digital behavior
18 markers are extracted and are mapped to predicted clinical measures.

19 **Results:** We validate our approach using continuous smartwatch data for n=14 participants. When
20 reconstructing omitted data, we observe an average normalized MAE of 0.0197. We then create
21 machine learning models to predict clinical measures from the reconstructed, complete data with
22 correlations ranging from $r=0.1230$ to $r=0.7623$. This work indicates that wearable sensor data
23 collected in the wild can be used to offer insights on a person's health in natural settings.

24

25 **Keywords:** Time series, data imputation, activity learning, health assessment

26 **1. Background**

27 Assessing and promoting health are challenging tasks even when physicians are readily
28 available because health care providers must make decisions based on a typical 20 minute visit
29 with a patient¹, aided by results from often-inconclusive laboratory tests. The ability to provide
30 accurate assessments is particularly timely because as the population ages, older adults will
31 likely outnumber children for the first time in US history², creating a discrepancy between the
32 number of persons needing care and those capable of providing it. Resulting from this changing
33 dynamic, chronic illness rates and healthcare expenditures are increasing^{3,4}. One health domain
34 that is particularly impacted by the aging population is cognitive health. Early detection of
35 cognitive health changes has been identified as a national priority^{5,6} because this supports more
36 effective treatment and significantly improves the quality of care while reducing health care
37 costs^{7,8}. However, clinic-based assessment is infeasible for many who live in remote areas or
38 remain in their homes due to imposed restrictions. Furthermore, controlling the symptoms of
39 cognitive decline relies on understanding its many influences, including physiology,
40 psychosocial and physical environments, and routine behavior⁹.

41 The tight interplay between health and behavior is well documented in the literature¹⁰⁻¹². The
42 maturing design of sensor platforms, pervasive computing, and machine learning techniques
43 offer practical, though not fully realized, methods for understanding the relationship between
44 health and behavior and automatically assessing and predicting health status. We hypothesize
45 that a person's health can be predicted based on digital behavior markers that are collected from
46 continuous, longitudinal wearable sensor data. Specifically, machine learning methods can be
47 used to map a comprehensive set of digital behavior markers onto predicted values for clinical
48 assessment measures¹³.

49 Because we can now collect data on ourselves in an ecologically valid manner, we will
50 harness continuously-collected sensor data to create a personalized behavior profile. Despite
51 recent technology advances, most research does not collect continuous data in realistic settings.
52 Laboratory-driven data collections do not reflect natural behavior; behavior markers should be
53 built based on activities sensed "in the wild"^{14,15}.

54 One practical issue that limits the ability to create an automated behavior profile from
55 wearable sensor data and assess a person's health is gaps in the data collection. When data are
56 collected in the wild, without imposed controls that ensure collection compliance and data
57 quality, missing data is a common occurrence. Sensor readings will go missing when there are
58 failures in the sensors, device, communication, or storage mechanisms. In our experiments, we
59 collect data from older adult volunteers in their own homes as they perform normal routines. As
60 a result, there are also frequent large gaps in the data collection (i.e., an hour or more) when the
61 participants fail to wear or charge the devices. While there are common reasons for such missing
62 data, in our work we do not incorporate such domain-specific information into the approach.

63 **2. Objective**

64 In this paper, we describe a generative approach to imputing values for multivariate time
65 series data. Data imputation is a well-established problem with numerous available strategies.
66 What makes the imputation problem particularly unique and challenging for smartwatch-based
67 behavior data is that time series data are not i.i.d. and smartwatch data are multivariate, two
68 aspects that are under-represented in the literature. To address this problem, we consider a

70 generative time series model that preserves temporal dynamics together with inter-feature
 71 dynamics. The contributions of this paper are the following. First, we discuss adaptation of
 72 generative models to impute multivariate time series data. Second, we illustrate the application
 73 of this imputation method to collected smartwatch sensor data. Third, we describe how activity
 74 labels are applied to the complete time series and used to create digital behavior markers. Fourth,
 75 we define a joint inference method to predict clinical measures from the behavior profile. To
 76 validate the methods, we compare the imputation accuracy of our imputation algorithm, called
 77 Mink (Missing data Imputation Novel Kit), with baseline methods on sampled smartwatch data.
 78 Finally, we evaluate the accuracy of our health prediction methodology when missing data are
 79 imputed using Mink.

80

81 3. Problem Formulation

82 Consider the setting where multiple sensors are sampled at a constant rate (in our
 83 experiments, this rate is 10Hz). We start by formalizing the sensor data time series and the sensor
 84 data imputation task.

85 Definition 1. A *time series* data stream is an infinite sequence of elements $\mathbf{X} =$
 86 $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i, \dots\}$. The i^{th} element of the series is \mathbf{x}_i . In the case of a *multivariate time series*, \mathbf{x}_i is
 87 a d -dimensional vector observed at time stamp i^{16} .

88 Definition 2. We assume that the sensor data collection is a stationary time series. A
 89 *stationary time series* is a process whose statistical properties are constant over time. Thus:

- 90 • The mean value function is $\boldsymbol{\mu}_t = \mathbf{E}(\mathbf{x}_t)$ and does not depend on time t .
- 91 • The auto covariance function $\gamma(s, t) = \mathbf{cov}(\mathbf{x}_s, \mathbf{x}_t) = \mathbf{E}[(\mathbf{x}_s - \boldsymbol{\mu}_s)(\mathbf{x}_t - \boldsymbol{\mu}_t)]$ depends
 92 on time stamps s and t only through their time difference, $|s - t|$.

93 Definition 3. Missing values in a finite-length subset of a time series $\mathbf{X}_{1:T} = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ are
 94 represented by a *mask matrix* M . Each element of $M \in \mathbb{R}^{T \times d}$ is defined for time stamp i and
 95 feature dimension j as:

$$96 \quad M_i^j = \begin{cases} 0 & \text{if } \mathbf{x}_i^j \text{ is missing } (\mathbf{x}_i^j = \text{NULL}) \\ 1 & \text{otherwise} \end{cases} \quad (1)$$

97 Definition 4. An imputation algorithm IA has access to an incomplete dataset consisting of a
 98 time series X and mask matrix M . The goal of the algorithm is to replace all values
 99 $\mathbf{x}_i^j \in \mathbf{X}$ where $M_i^j = 0$ with a non-NULL value X and a Gaussian noise vector Z . The resulting
 100 time series is denoted as $\hat{\mathbf{X}}_{1:T} = \{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_T\}$ and is defined in Equation 2.

$$101 \quad \hat{\mathbf{x}}_i^j = \begin{cases} \mathbf{x}_i^j & \text{if } M_i^j = 0 \\ IA(X, Z, i, j) & \text{if } M_i^j = 1 \end{cases} \quad (2)$$

102 Definition 5. Algorithm IA should minimize total *normalized mean absolute error* (NMAE).
 103 NMAE is based on the standard mean absolute error (MAE) definition:

$$104 \quad MAE(\mathbf{x}, \hat{\mathbf{x}}) = \sum_{i=1}^T \sum_{j=1}^d \frac{|\mathbf{x}_i^j - \hat{\mathbf{x}}_i^j|}{T \times d} \quad (3)$$

105 where \mathbf{x}_i^j represents an imputed value (if $M_i^j = \text{NULL}$) or the observed value (if $M_i^j \neq \text{NULL}$)
 106 and $\hat{\mathbf{x}}_i^j$ represents the actual ground truth value.

107 The NMAE metric is useful when comparing or combining the mean absolute error of
 108 features with different scales. Each MAE term is normalized to $[0..1]$ based on the range of

109 values for the corresponding feature. We evaluate the imputation performance of Mink and
110 baseline methods using NMAE.

113 **4. Related Work**

114 **4.1. Related Methods**

115 Imputation of missing values is a well-established area of investigation. Researchers have
116 proposed numerous methods to tackle this problem, including replace by constant and value
117 inference using regression. Multiple methods can also be employed and combined, resulting in
118 multiple imputation^{17,18}. Most of these methods assume that data are independent and identically
119 distributed (i.i.d.). They impute values for each feature separately and frequently do not account
120 for the relationships between features. In the case of time series sensor-based behavior
121 monitoring, the data are not i.i.d. Relationships between variables provide important context for
122 imputing values, values need to be imputed simultaneously for multiple features, and the
123 relationships between values at adjacent points in time need to be considered.

124 In recent years, researchers have started to investigate the problem of imputation for time
125 series. In addition to the methods mentioned above, other common statistical methods carry
126 forward an observation by copying the value from time $t-1$ to t , carry backward an observation
127 from $t+1$ to t , or average the two. These approaches face limitations of the underlying processes
128 being highly dynamic or the existence of a longer sequence of missing values¹⁹. Linear or
129 nonlinear regression and forecasting models have been adapted for time series by mapping prior
130 observations $t-x \dots t-1$ (the lag) onto a predicted value for missing time t ^{20,21}. Specialized deep
131 network structures are popular as well. Recurrent neural networks are well suited for this task
132 because they retain sequential information in their structure²², although they are typically limited
133 to univariate cases. Researchers have refined this process to combine deep learning with transfer
134 learning for sensor data imputation²³, ensuring that the imputed information is customized for
135 each person.

136 The methods that are most similar to Mink utilize generative adversarial networks (GANs). In
137 this scenario, one agent attempts to impute missing values (the generator) while a second agent
138 attempts to differentiate observed from imputed values (the discriminator). GANs are becoming
139 a standard for imputing i.i.d. data, including multiple imputation²⁴. Yoon et al.²⁵ introduced a
140 GAN data imputer, called GAIN, that boosts performance by supplying a hint vector conditioned
141 on observed values. This approach is effective for i.i.d. data but is not designed to handle the
142 dynamics of time series data. For time series, such generative methods are valuable when large
143 gaps exist in the sequence, because these algorithms will generate long sequences of values. The
144 E²GAN imputer from Luo et al.²⁶ represents recent work to design a GAN structure for time
145 series. This algorithm combines autoencoder-based compression with a recurrent cell to generate
146 time series data. This approach relies on an unsupervised adversarial loss that ensures the
147 discriminator becomes more adept at recognizing imputed data at a rate that parallels the
148 generator's improved skills at generating imputed values. Another GAN strategy was proposed
149 by Guo et al.²⁷. MTS-GAN incorporates a multichannel convolutional neural network to extract
150 features of each univariate time series, then adds a fully connected network to learn relationships
151 between feature dimensions. In their multivariate time series imputer, MTS-GAN, In this paper,
152 we combine unsupervised approaches found in the earlier methods with a supervised learning

153 component that uses the observed data as an external oracle. This process then utilizes available
154 observations to model the stepwise conditional distributions, resulting in realistic imputed
155 values.

157 **4.2. Applications of Time Series Imputation**

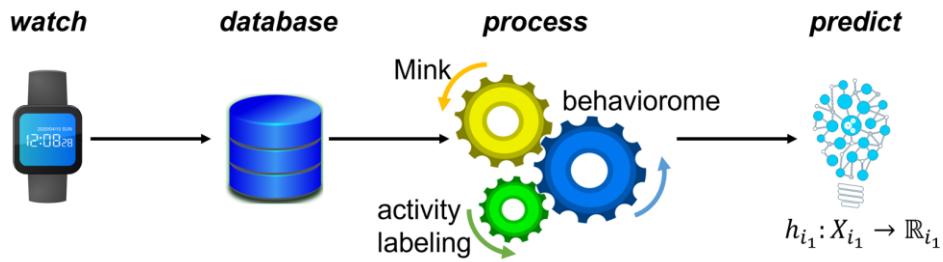
158 To characterize a person's overall behavior routine, we extract digital behavior markers from
159 sensor data that are automatically labeled with corresponding activity categories. Performing
160 human activity recognition from wearable sensors has become a popular topic for researchers to
161 investigate^{28,29}. Because we can collect continuous data without requiring extra steps for the
162 subject, wearable sensors are a natural choice for assessing health based on sensed behavior.
163 Approaches to activity recognition have considered numerous methods, including decision trees,
164 nearest neighbors, clusters, and ensembles^{14,30,31}, as well as deep networks³²⁻³⁵. Limitations of
165 many of these existing methods are that they focus on basic, repetitive movement types and are
166 often evaluated in laboratory settings. We are interested in extracting markers that reflect a
167 person's entire behavioral routine, sensed in natural settings. For our experiments in this paper,
168 we pre-trained activity models using techniques that we validated in prior studies³⁶.

169 Wearable sensor data offer substantial insights into a person's behavior as well as their health.
170 Typically, prior works analyze a specific behavior such as activity level^{37,38} or sleep³⁹, with
171 markers that consist of a small set of variables such as step counts or sleep duration⁴⁰. Some
172 researchers targeted specific sensor-observed behavior markers as a mechanism for assessing the
173 relationship between lifestyle and health. Specifically, Dhana et al.⁴¹ quantify healthy behavior
174 as a combination of nonsmoking, physical activity, alcohol consumption, nutrition, and cognitive
175 activities. Individuals who scored higher on this behavior metric had a lower risk of Alzheimer's
176 dementia. Other researchers have also found that sensor-based behavior patterns are predictive of
177 cognitive health^{42,43}. Li et al.⁴³ found that physical activity was predictive of Alzheimer's
178 disease, while Aramendi et al.⁴² predicted cognitive measures of cognitive health and mobility
179 from activity-labeled sensor data.

180 These studies provide evidence that wearable sensors afford the ability to monitor
181 intervention impact and assess a person's cognitive health. Within this area of investigation, our
182 proposed approach is unique because we investigate a computational method to monitor and
183 model all a person's behavior to predict clinical health measures. We utilize the complete set of
184 behavior markers based on both observed and imputed sensor readings to predict multiple
185 measures, then take advantage of the predictive relationship between diverse markers to improve
186 predictive performance. This holistic approach to sensor analysis of behavior and health relies on
187 a method to impute missing values in complex, multivariate time series data.

188 **5. Methods**

189 Figure 1 illustrates the steps of our automated sensor-based health assessment process. As the
190 figure shows, the process relies on the ability to accurately impute missing data.



199 Figure 1. The process of assessing health from smartwatch data. Data are continuously collected
 200 while a participant wears a smartwatch and performs their normal routine. Data are securely
 201 stored in a relational database and a processed by imputing missing values (Mink), labeling
 202 readings with associated activity labels (activity recognition), and extracting a set of digital
 203 behavior markers. A machine learning then maps the behavior profile onto predicted clinical
 204 measures.

208 5.1. Generative Time Series Data Imputation

209 Our approach to imputing multivariate time series data combines aspects of regression-based
 210 sequence prediction, adversarial sequence generation, and time series models. Adapting a
 211 definition by Yoon et al.⁴⁴ for use with multivariate time series data imputation, the goal of Mink
 212 is to use training data D to learn a density $\hat{p}(X_{1:T})$ that best approximates the density of ground-
 213 truth data, $p(X_{1:T})$. The adversarial component of the imputation algorithm attempts to minimize
 214 the Jensen-Shannon divergence⁴⁵ between the estimated and ground-truth densities, shown in
 215 Equation 7.

$$216 \min_{\hat{p}} JS(p(X_{1:T}) || \hat{p}(X_{1:T})) \quad (7)$$

217 As Yoon et al.⁴⁴ and Kachuee et al.⁴⁶ suggest, such adversarial components can be boosted by
 218 partnering them with a supervised learning component that learns the temporal relationship
 219 between neighboring readings in the sequence. The objective of this component is to minimize
 220 the Kullback-Leibler divergence⁴⁷ between the estimated and true relationship between readings
 221 at times $t-1$ and t , as shown in Equation 8.

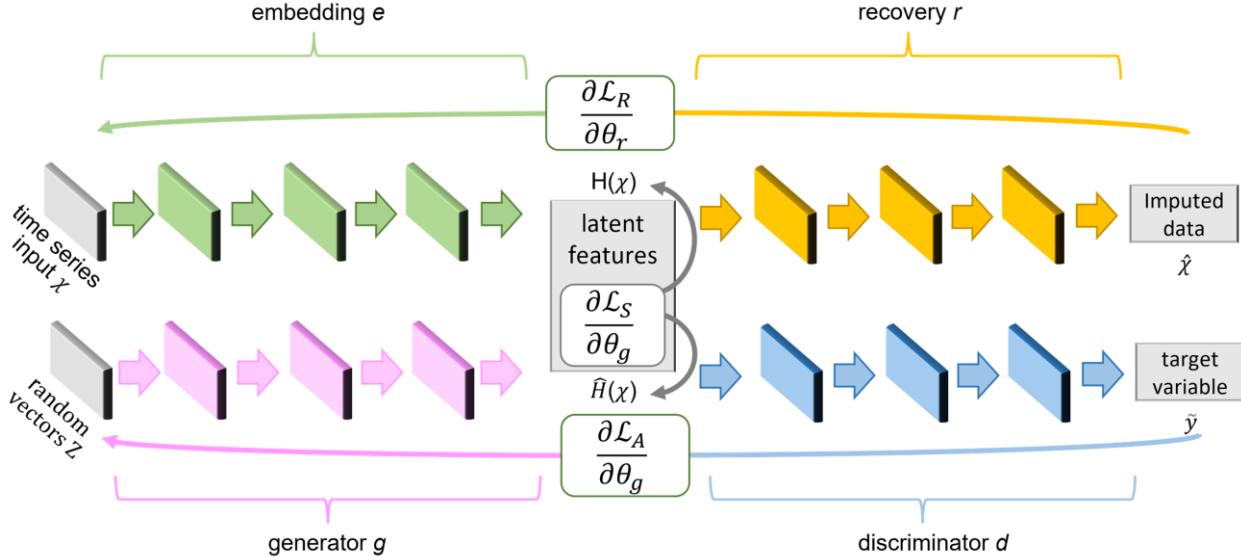
$$222 \min_{\hat{p}} KL(p(X_t | X_{t-1}) || \hat{p}(X_t | X_{t-1})) \quad (8)$$

223 Both JS divergence and KL divergence calculate scores that reflect the difference between
 224 probability distributions p and \hat{p} . They are both appropriate metrics for this task because they
 225 quantify the distance between two data samples based on the corresponding probability
 226 distributions. JS divergence is an extension of the KL measure that is symmetric, a property that
 227 is needed when comparing estimated and ground-truth data.

228 Figure 2 illustrates the architecture of the Mink time series imputation algorithm. As the
 229 figure shows, the architecture includes a time series generator g , a time series discriminator d , an
 230 embedding function e , and a recovery function r . The method combines a regressive autoencoder
 231 (the embedding and recovery elements) with a generative adversarial network (the generator and
 232 discriminator components) to optimize the multivariate goals formalized in Equations 7 and 8.

233 The autoencoder components, e and r , are trained together with the generative adversarial
 234 network components, g and d , to yield realistic time series values that maintain global properties
 235 of the data distribution and temporal relationships between individual readings.

236



237
 238 Figure 2. The Mink time series data imputation architecture. The system processes time series X
 239 containing a mixture of observed and missing values and outputs a complete time series \hat{X} with
 240 no missing values. To generate realistic data, Mink combines an autoencoder (with embedding
 241 function e and recovery function r) and a generative adversarial network (with generator g and
 242 discriminator d).

243

244

245

246 5.1.1. Mink Generative Adversarial Network

247 Mink employs a generative adversarial network (GAN) to learn realistic time series sequences
 248 whose densities emulate those of the real data, as shown in Equation 7. Using the notation from
 249 Goodfellow et al.⁴⁸, a traditional GAN optimizes the value function $V(g, d)$ for generator g and
 250 discriminator d , as summarized in Equation 9. In this original formulation, $x \sim p_{data}$ draws a
 251 sample from the real data distribution and $z \sim p_z(z)$ draws a sample from input Gaussian noise.
 252 As the equation expresses, the generator attempts to generate realistic data, the discriminator
 253 differentiates real from synthetic data, and the two strengthen each other as they learn.

$$254 \min_g \max_d V(d, g) = \mathbb{E}_{x \sim p_{data}(x)} [\log d(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - g(z))] \quad (9)$$

255 In the imputation algorithm, the generator creates data in a latent space rather than directly
 256 generating time series data. The latent space is defined by the autoencoder, described in the next
 257 section. Let Z_X represent the vector space from which individual random vectors are sampled.
 258 Generator g uses these to create latent vectors in H_X . Thus, the generator can be represented as a
 259 function $g: \prod_t Z_X \rightarrow \prod_t H_X$. The Mink generator is designed as a stacked recurrent neural
 260 network (RNN). All Mink networks utilize a hidden layer of size 24 and a dense final layer that

261 employs a sigmoid activation function. Thus, g generates a synthetic latent vector for time t
 262 based on a synthetic latent vector at time $t-1$, or $\hat{h}_t = g_X(\hat{h}_{t-1}, z_t)$. The goal of discriminator d is
 263 to correctly classify the latent vectors as real data, y , or synthetic data, \hat{y} . Function d is designed
 264 as a bidirectional recurrent network with a feedforward output layer.¹

265 The GAN is trained to optimize Equation 9. As a result, the network maximizes the log
 266 probability of d correctly discriminating between real and fake samples while at the same time
 267 minimizing the log probability of $1-d(g(z))$, where $d(g(z))$ represents the probability that
 268 generated data $g(z)$ is real. For our imputation algorithm, we adapt Equation 9 to create an
 269 adversarial loss function that trains the GAN. The loss function is shown in Equation 10.

$$270 \quad \mathcal{L}_A = \mathbb{E}_{x_{1:T} \sim p} [\sum_t \log y_t] + \mathbb{E}_{x_{1:T} \sim \hat{p}} [\sum_t \log (1 - \hat{y}_t)] \quad (10)$$

271 To link these components, the imputation architecture utilizes a third loss function that
 272 alternately guides training for the autoencoder and the GAN. This loss function computes a
 273 gradient based on the difference between the predicted latent vector at the next time step (the
 274 synthetic vector) and the ground truth-derived latent vector at the next time step. This loss
 275 function thus reflects the distance between $p(H_t | H_{1:t-1})$ and $\hat{p}(H_t | H_{1:t-1})$. This stepwise loss is
 276 computed as shown in Equation 11.

$$277 \quad \mathcal{L}_S = \mathbb{E}_{x_{1:T} \sim p} [\sum_t [||h_t - g_X(h_{t-1}, z_t)||_2]] \quad (11)$$

279 5.1.2. Autoencoder

280 To map sample data onto latent features H_X , Mink incorporates an autoencoder using an
 281 embedding e . A recovery function r then reconstructs data close to the original. To create time
 282 series data, the autoencoder captures the temporal relationships between readings, represented as
 283 $h_t = e_X(h_{t-1}, x_t)$. The recovery function r is a recurrent network that maps the latent vector
 284 back onto the original time series representation, $\tilde{x}_t = r_X(h_t)$. Mink employs a stacked RNN for
 285 both networks where the output for time t only depends on information available at time $t-1$.

286 The goal of the architecture's autoencoder component is to accurately reconstruct the input
 287 data from the latent vectors. This component is thus trained using a reconstruction loss that
 288 computes the element-wise difference between the original and reconstructed feature values, as
 289 shown in Equation 12.

$$290 \quad \mathcal{L}_R = \mathbb{E}_{x_{1:T} \sim p} [||x_t - \tilde{x}_t||_2] \quad (12)$$

292 5.1.3. Data Imputation

293 When training the system, the generator and discriminator functions adversarially optimize
 294 $\min_{\theta_g} (\alpha \mathcal{L}_S + \min_{\theta_d} \mathcal{L}_A)$, while the autoencoder embedding and recovery functions optimize
 295 $\min_{\theta_e, \theta_r} (\beta \mathcal{L}_S + \mathcal{L}_R)$. Here, parameters α and β balance the loss pairs (we use $\alpha=1$ and $\beta=10$ for
 296 our experiments), while parameters θ_g , θ_d , θ_e , and θ_r govern the generator, discriminator,
 297 embedding, and recovery components.

298 To impute data for missing values conditioned on observed data values, we blend observed
 299 data with synthetic data. Mink generates a synthetic data vector $\hat{X}_{1:t}$ that is conditioned on the
 300 observed data, the corresponding mask, and a Gaussian noise vector. Missing values in the
 301 original data vector $X_{1:T}$ are replaced with their corresponding synthetic component, yielding a

¹ Mink code is available online at <https://github.com/WSU-CASAS/MINK>.

302 complete time series with no missing values.
303

304 **5.2. Generating a Behavior Profile**

305 Human behavior is one of the biggest drivers of health and wellness^{49,50}. An individual's
306 activities affect that person, their family, society, and the environment. Health risk behavior is
307 linked to Type 2 diabetes, obesity, heart disease, neurological diseases including ADRDs, and
308 other chronic physical and mental health conditions. For this reason, our overall goal is to model
309 behavior and use machine learning techniques to predict health status from behavior information.

310 In previous work, theoretical models arose from psychology, sociology, and anthropology to
311 explain the complexities of behavior and the factors that drive it. Until recently, such theories of
312 human behavior and its influences have relied on self-report, which can suffer from retrospective
313 memory limitations⁵¹, or experimenter observation, which may introduce confounds and
314 unintended bias⁵². The maturing of pervasive computing now allows us to collect personal sensor
315 data unobtrusively and continuously. As a result, the field is ripe to create data mining methods
316 to model behavior and predict health.

317 In our approach, predicting clinical health measures requires five steps. First, we collect
318 continuous sensor data from smartwatches as people perform their normal daily routines.
319 Second, we utilize Mink to impute values for the missing data. Third, we label sensor data
320 streams with corresponding activity labels. Fourth, we extract a set of digital markers. Finally,
321 we use machine learning to map the digital markers onto predicted clinical measures.
322

323 **5.2.1. Collecting and Labeling Activity Data**

324 To gather behavior-driven sensor data, we designed an app for the Apple Watch to passively
325 and continuously collect sensor data at a constant sampling rate of 10Hz. We currently collect
326 data from the watch accelerometer, gyroscope, and location services. The app periodically
327 queries users to provide ground truth about their current activity and answer in-the-moment
328 questions about their current mood and functionality. During this process, there are frequent gaps
329 in the data collection due to participants failing to charge or wear the smartwatch. As a result,
330 imputation of missing data for one or multiple consecutive time periods is needed before clinical
331 measures can be predicted.

332 A first step in building a set of digital behavior markers from longitudinal sensor data is
333 labeling data with corresponding activities. Activities represent units of behavior that can be
334 labeled and integrated into the digital behavior markers. While human activity recognition is a
335 popular research topic and many approaches have been proposed^{32,34,53-59}, most approaches
336 operate under controlled laboratory conditions with scripted, movement-based activities⁶⁰⁻⁶³.
337 Research has demonstrated a correlation between cognitive health and numerous activities, both
338 simple and complex, that include sleep, work, time out of the home, walking, and socialization⁶⁴⁻⁶⁹.
339 Thus, automatically labeling these activities can improve the ability to assess cognitive and
340 functional health.

341 Activity recognition algorithms map sensor data onto corresponding activity names, applying
342 categorical descriptions to sensed behavior. The input is a sequence of sensor readings $e_t = \langle t, r_1, \dots, r_d \rangle$ collected at time t . To accommodate real-time recognition, features are extracted from a
343 sliding window that are statistical (e.g., min, max, standard deviation, zero crossings, skewness,
344 kurtosis, signal energy), relational (e.g., multi-dimensional correlation, autocorrelation),
345

346 temporal (e.g., time of day, day of week), navigational (e.g., heading change rate, stop rate,
 347 overall trajectory, distance traveled), personal (e.g., frequented locations, distance from user
 348 center), and positional (location type, calculated via reverse geocoding using an open street
 349 map). A random forest classifier creates a mapping, $h:X_t \rightarrow y_t$, from a set of descriptors X_t to the
 350 corresponding activity, y_t . This approach demonstrated a recognition f1 score of 0.85 for 12
 351 activities from 250 individuals in prior work: chores, eat, entertain, errands, exercise, hobby,
 352 hygiene, relax, school, sleep, travel, and work⁷⁰. We use the pretrained model for the remainder
 353 of the experiments described in this paper.

354

355 5.2.2. Defining and Extracting Digital Behavior Markers

356 As data are collected and labeled with activity categories, we extract digital descriptors, or
 357 markers, that provide insights into a person's behavior and predictive power for the person's
 358 health. Continual monitoring of daily behavior offers more and finer-resolution insights than are
 359 currently available for physician-based or automated health assessment and intervention design.
 360 We compute and compile the digital behavior markers that become a person's behavior
 361 profile^{70,71}. The markers are defined in Table 1 and are gathered for each sensor (existing and
 362 new) and activity class at multiple time resolutions (e.g., hourly, daily). Our software to generate
 363 these markers is available online⁷².

364

365

Table 1. Digital behavior markers.

Type	Daily features
Statistical summary of sensor values	Maximum, minimum, sum, mean, median, mean/median absolute value, variance, standard deviation, zero/mean crossings, interquartile range, skewness, kurtosis, SMA, power, autocorrelation, computed over multiple time scales
Durations	Time spent on each activity, location type, favorite location
Occurrences	Time of day for first and last occurrence of each activity, location type, favorite location
Sleep	Daytime and nighttime sleep duration, daytime sleep location, nighttime sleep location, number of nighttime sleep interruptions
Mobility	Amount of movement inside and outside home, walking speed, number of steps, reverse geocoded location types visited outside the home, total distance traveled
Routine	Entropy of daily routine, number of different daily activities, minimum and maximum inactivity times, daily variance in activity durations, occurrence times, and locations, periodogram-derived circadian and diurnal rhythm ^{87,88}

366

367

368

369

370

371

372

Table 2. Participant information.

Participant	Age	Cognitive impairment	Gender	Education (years)	Missing data (%)
1	65	No	female	18	26.17
2	66	No	female	20	31.49
3	72	No	female	18	22.80
4	76	No	female	20	23.27
5	79	No	female	18	19.92
6	62	No	male	16	28.32
7	62	No	male	20	24.05
8	78	No	male	18	25.35
9	56	Yes	female	12	21.01
10	70	Yes	female	18	24.35
11	72	Yes	female	14	16.79
12	73	Yes	female	14	27.32
13	58	Yes	male	12	48.02
14	68	Yes	male	20	28.82

5.2.3. Predicting Clinical Health Measures

378 In the last step, a regression forest is employed to predict the clinical measures $C =$
 379 $\{c_1, c_2, \dots, c_n\}$. The random forest contains 100 decision tree regressors. The trees are built to a
 380 depth of 20 using randomly-selected features, then regressors fit a line to the data that belong to
 381 each leaf node. We report predictive performance using Pearson correlation. To collect data, we
 382 recruited $n=14$ older adult participants for this study (9 female, 5 male). The mean age was 70.2
 383 (s.d.=7.5) and number of years of education was 16.4 (s.d.=2.5). Detailed participant information
 384 is provided in Table 2. In this sample, 6 participants had cognitive impairment, with objective
 385 evidence in the memory domain. This study was reviewed and approved by the Washington
 386 State University Institutional Review Board (IRB protocol #14460, approved 05/18/2020).
 387 Informed consent was obtained from each participant prior to data collection initiation.

388 We collected one month of 10Hz continuous smartwatch sensor data (accelerometer,
 389 gyroscope, and location) for the participants. As Table 2 indicates, the collected data had many
 390 missing entries, including entire evenings for some participants when the watch was not worn.
 391 Additionally, we collected clinical assessment measures for each participant at baseline using
 392 traditional neuropsychology tests and self-report. The measures and the constructs they assess
 393 are listed in Table 3.

Table 3. Predicted clinical measures.

Measure	Assessed construct
Telephone Interview of Cognitive Status (TICS) ⁷³	global cognitive status
Rey Auditory Verbal Learning Test (RAVLT) ⁷⁴	verbal memory
Behavioral assessment of the dysexecutive syndrome (BADS) ⁷⁵	executive disinhibition
Timed Up and Go (TUG) ⁷⁶	mobility
Quality of Life scale (QOL) ⁷⁷	quality of life
Short Form Survey (SF-12) ⁷⁸	physical and mental health
Prospective and Retrospective Memory Questionnaire (PRMQ) ⁸⁰	memory
Geriatric Depression Scale (GDS) ⁸¹	depression
Generalized Anxiety Disorder (GAD) ⁸²	anxiety
Dysexecutive Questionnaire (DEX) ⁸³	executive function
Instrumental Activities of Daily Living – Compensation Scale (IADL-C) ⁸⁹	everyday function

404 Because this study was conducted during the COVID-19 pandemic, tests were selected that
405 could be administered remotely. The Telephone Interview for Cognitive Status (TICS)⁷³ is
406 administered remotely over a phone and consists of tasks for the participant to perform including
407 word list learning, counting backward, and finger tapping. Other tests, including RAVLT and
408 BADS, were adapted for administration using video conference software. Rey's Auditory Verbal
409 Learning Test (RAVLT)⁷⁴ consists of an oral presentation of two lists for immediate recall to
410 assess verbal memory. The Behavioural Assessment of the Dysexecutive Syndrome (BADS)⁷⁵ is
411 used to evaluate problems that arise during daily activities due to executive disinhibition. This
412 assessment contains thirteen tasks that focus on functional abilities such as planning, problem
413 solving, and temporal judgment. The Timed Up and Go (TUG) test⁷⁶ requires the participant to
414 stand up from a chair, walk forward, turn around, and return to the chair, which was administered
415 while being remotely monitored by an experimenter. The score reflects the time taken to
416 complete the task and provides an indicator of mobility as well as cognitive health.

417 The next set of assessments are questionnaires that were delivered and answered over video
418 communication. These include the Quality of Life (QOL) scale⁷⁷ that measures the domains of
419 material and physical well-being, relationships, social activities, personal development, and
420 recreation; the short form 12 (SF-12) survey⁷⁸ that asks questions assessing general health,
421 physical well-being, vitality, social functioning, emotions, and mental health (we separate this
422 into two scores corresponding to the physical and mental health components)⁷⁹; the Prospective
423 and Retrospective Memory Questionnaire (PRMQ)⁸⁰ that contains questions about prospective
424 (looking into the future) and retrospective (looking into the past) memory slips in everyday life;
425 the Geriatric Depression Scale (GDS)⁸¹ in which participants answer questions in reference to
426 how they felt over the past week to measure depressive symptoms; the seven-item version of the
427 Generalized Anxiety Disorder questionnaire (GAD-7)⁸² that asks participants how often during
428 the last two weeks they were bothered by specific anxiety symptoms; and the Dysexecutive
429 Functioning Questionnaire (DEX)⁸³ that assesses multiple cognitive-behavioral problems such as

430 sustaining attention, inhibiting inappropriate behaviors, or switching between multiple problem-
431 solving strategies.

432 The last questionnaire, the Instrumental Activities of Daily Living – Compensation (IADL-C)
433 scale⁸⁴, was recently designed to assess the functional domains of money and self-management,
434 home-based daily tasks, travel and event memory, and social skills. Unlike earlier assessments,
435 the IADL-C scale is sensitive to the use of compensatory strategies in performing daily tasks that
436 help to overcome memory limitations. The tests and questionnaires provide insights on different,
437 though overlapping, aspects of cognitive health. We hypothesize that cognitive health state is
438 reflected in behavior patterns and thus behavior markers can be used to predict these health
439 assessment scores.

440 6. Results

441 We evaluate sensor-based health assessment in two steps. First, we evaluate the performance
442 of our time series imputation method using complete sets of data. Second, we evaluate the
443 performance of our complete method in predicting clinical health measures.

444 6.1. Evaluation of Data Imputation

445 We evaluate the accuracy of time series data imputation using NMAE. The participants and
446 days are selected on the criterion that data are complete between 8:00am and 10:00pm on the
447 corresponding date, to provide ground truth for evaluation. In our study, 5 participants collected
448 data that meet this constraint for at least 15 days. We therefore evaluate the imputation of
449 accelerometer and gyroscope sensor values for 15 days of data for 5 participants. In the case of
450 approaches that require model training, we utilize 12 days of data for training for each
451 participant. For all cases, we utilize 3 days of data for testing. The results are thus averaged over
452 15 days of continuous sensor readings. For each day, we extract a portion of the data, impute the
453 missing values, and compare it with the ground truth. We vary the percentage of missing entries
454 (10%, 20%, or 30%) and the size of the missing data gap (1 second, 1 minute, 1 hour, 12 hours).
455 We randomly select the beginning of each missing data sequence and average results over three
456 random selections.

457
458
459
460
461 Table 4. NMAE of imputation methods, each averaged over 5 participants, 4 gap sizes, and 3
462 random trials. * = the difference in performance is statistically significant (p<.05).

	<i>Carry forward</i>	<i>Carry backward</i>	<i>Bidirect carry</i>	<i>Neural network</i>	<i>MTS GAN</i>	<i>KNN (k=3)</i>	<i>Mink</i>
10%	0.0184*	0.0195*	0.0180*	0.0251*	0.3050*	0.1381*	0.0169
20%	0.0244*	0.0245*	0.0235*	0.0265	0.2944*	0.1907*	0.0220
30%	0.0225*	0.0237*	0.0224*	0.0290*	0.2949*	0.2032*	0.0207
Average	0.0216*	0.0224*	0.0211*	0.0268*	0.2981*	0.1773*	0.0197

468 Table 4 summarizes the results, comparing Mink with several baseline methods. The carry
 469 forward, carry backward, bidirectional carry, and MTS-GAN baselines are described in Section
 470 4.1. We also include a two-layer neural network with 100 hidden nodes, a rectified linear
 471 activation function, and a learning rate of 0.001 as a baseline regressor. The results in Table 4 are
 472 computed based using 12 days of data for training and the following 3 days of data for testing
 473 data. Results are averaged over 5 participants, 4 alternative gap sizes, and 3 runs with different
 474 random seeds. We employ a paired t-test to determine the statistical significance of the
 475 difference in performance between each baseline method and Mink. As the results indicate, the
 476 adversarial network provides realistic values, even when a large chunk of consecutive readings is
 477 missing. Additionally, this approach outperforms the baseline methods for time series
 478 imputation. Because the imputation results are promising for Mink, we next employ the Mink
 479 GAN to impute values used for creating the digital behavior markers and inferring clinical
 480 measures.

481
 482

Table 5. Pearson correlation of clinical measures using baseline and Mink imputation methods.

Measure	Constant	Bidirectional carry	Mink
TICS	0.6185	0.6711	0.4762
RAVLT	0.0743	0.2502	0.3328
BADS	0.4818	0.4487	0.5292
TUG	0.5076	0.4138	0.6119
QOL	0.0172	0.1055	0.2436
SF-12 Physical	0.4831	0.7084	0.6133
SF-12 Mental	0.5347	0.6162	0.7623
PRMQ	0.0006	0.5080	0.3984
GDS	0.1079	0.3927	0.1230
GAD	0.4574	0.1260	0.2125
DEX	0.1902	0.1859	0.4401
IADL-C	0.2115	0.4892	0.4095
Mean (SD)	0.3071 (0.2175)	0.4096 (0.1972)	0.4294 (0.1771)

483
 484

485 6.2. Evaluation of Clinical Measure Prediction

486 Finally, we evaluate the predictive performance of the clinical measures for both Mink-based
 487 imputation, imputation using constant values, and imputation using bidirectional carry (the
 488 second highest-performing imputation method in the previous experiment). For this experiment,
 489 we predict the precise numeric score for each assessment measure. Because each measure uses a
 490 different score range, we employ the approach used in other studies to evaluate performance by
 491 computing correlation between predicted and ground truth scores^{38,42}. The results of this
 492 experiment are based on leave-one-subject-out testing and are summarized in Table 5. We
 493 observe small correlation for GDS ($r=0.1230$), GAD ($r=0.2125$), and QOL ($r=0.2436$), moderate
 494 correlation for RAVLT ($r=0.3328$), PRMQ ($r=0.3984$), IADL-C ($r=0.4095$), DEX ($r=0.4401$),
 495 TICS ($r=0.4762$), and BADS ($r=0.5292$), and large correlation for TUG ($r=0.6119$), SF-12
 496 Physical ($r=0.6133$), and SF-Mental ($r=0.7623$). The mean of the correlation values is 0.4294.

497 The generative imputation method employed by Mink does result in an improvement in the mean
498 of the correlation values (0.4294, in comparison with 0.4096 for bidirectional carry and 0.3071
499 for replace-by-constant).

500

501 **7. Discussion and Conclusions**

502 The long-term goal of this work is to automate health assessment from sensor-observed
503 longitudinal behavior data. In this paper, we address a significant obstacle to this goal by
504 designing a method to impute missing values in the time series data. The results indicate that a
505 generative architecture can be employed for this process. Considering both temporal and
506 between-feature relationships is valuable for such multivariate sensor readings. The results
507 indicate that the generative imputation method outperforms straightforward baseline methods.
508 Additionally, the resulting behavior markers are predictively correlated with collected clinical
509 measures.

510 While Mink outperforms a baseline imputation method for clinical measure prediction, the
511 results are not consistent across all clinical measures. One explanation for this finding is that the
512 variance in the generated values can result in larger differences from true values than constant
513 values. While the errors do not occur as often as with the baseline methods, the magnitude of the
514 error may mislead the regression forest. This possibility that the GAN may generate out-of-range
515 values is a limitation of the current approach and can be addressed in future versions of the
516 algorithm.

517 We also observe that the predictive performance is lower overall for measures with a smaller
518 variance in the collected data. This is due in part to the limited sample size and need for greater
519 diversity in the data. This additional study limitation will be addressed in the future by recruiting
520 a larger population that represents diversity in age, demographics, and health conditions.

521 In the current work, we assume that the time and duration of missing readings are random
522 values. In practical settings, the missing values may be related to patient physical conditions
523 (e.g., an illness or trip during which the person does not wear the device) or external conditions
524 (e.g., a power outage that prevents the device battery from fully charging). Future enhancements
525 can include modeling such conditions and utilizing the information to improve the design and
526 evaluation of imputation.

527 Mink successfully outperformed baseline methods in our experiments, but there is room for
528 improvement. We hypothesize that obtaining observational data from a larger and more diversity
529 set of complete days will improve GAN performance and will test this hypothesis in future
530 studies. Additionally, while a generative adversarial network offers an effective way to generate
531 a sequence of missing sensor readings, they are known to suffer from possible mode collapse. As
532 a result, the trained network may generate only a small number of distinct types of readings.
533 While the generated values are realistic, they may lack the variability that exists in the real data.
534 Researchers have investigated strategies to reduce mode collapse^{85,86}. A future step of our work
535 may include addressing this limitation by adapting these strategies for use in time series data.

536

537 **Acknowledgements**

538 The authors would like to thank Maureen Schmitter-Edgecombe and Justin Frow for their
539 help with data collection. This work is supported in part by National Institutes of Health grant
540 R41EB029774.

- 541
- 542
- 543 **References**
- 544 1. Elflein J. Amount of time U.S. primary care physicians spent with each patient as of 2018.
545 Statista. Published 2019. Accessed June 13, 2020.
<https://www.statista.com/statistics/250219/us-physicians-opinion-about-their-compensation/>
- 546 2. Iriondo J, Jordan J. *Older People Projected to Outnumber Children for First Time in U.S.*
547 *History.*; 2018. <https://www.census.gov/newsroom/press-releases/2018/cb18-41-population-projections.html>
- 548 3. Center for Medicare and Medicaid Services. NHE Fact Sheet. *Center for Medicare and*
549 *Medicaid Services*. Published online 2018. <https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet>
- 550 4. Administration On Aging. Aging statistics. *ACL*. Published online 2018.
<https://acl.gov/aging-and-disability-in-america/data-and-research/profile-older-americans>
- 551 5. Office of The Assistant Secretary for Planning and Evaluation. National Plan to Address
552 Alzheimer's Disease: 2018. ASPE. Published 2019. <https://aspe.hhs.gov/national-plans-address-alzheimers-disease>
- 553 6. Fowler NR, Head KJ, Perkins AJ, et al. Examining the benefits and harms of Alzheimer's
554 disease screening for family members of older adults: study protocol for a randomized
555 controlled trial. *Trials*. 2020;21.
- 556 7. Herman WH, Ye W, Griffin SJ, Simmons RK, Davies MJ, Khunti K. Early detection and
557 treatment of Type 2 diabetes reduce cardiovascular morbidity and mortality: A simulation
558 of the results of the Anglo-Danish-Dutch study of intensive treatment in people with
559 screen-detected diabetes in primary care. *Diabetes Care*. Published online 2015.
- 560 8. Akl A, Snoek J, Mihailidis A. Unobtrusive detection of mild cognitive impairment in
561 older adults through home monitoring. *IEEE Journal of Biomedical and Health*
562 *Informatics*. 2017;21(2):339-348.
- 563 9. Spruijt-Metz D. Etiology, treatment and prevention of obesity in childhood and
564 adolescence: A decade in review. *Journal of Research in Adolescence*. 2011;21(1):129-
565 152.
- 566 10. Lee MK, Oh J. Health-related quality of life in older adults: Its association with health
567 literacy, self-efficacy, social support, and health-promoting behavior. *Healthcare*.
568 2020;8(4):407.
- 569 11. Nelson BW, Pettitt A, Flannery JE, Allen NB. Rapid assessment of psychological and
570 epidemiological correlates of COVID-19 concern, financial strain, and health-related
571 behavior change in a large online sample. *PLoS ONE*. 2020;15(11):e0241990.
- 572 12. Betsinger TK, DeWitte SN. Toward a bioarchaeology of urbanization: Demography,
573 health, and behavior in cities in the past. *American Journal of Physical Anthropology*.
574 2021;175(S72):79-118.
- 575 13. Gorman J. "Ome," the sound of the scientific universe expanding. *The New York Times*.
576 https://www.nytimes.com/2012/05/04/science/it-started-with-genome-omes-proliferate-in-science.html?_r=1. Published 2012.
- 577 14. Asim Y, Azam MA. Context-aware human activity recognition (CAHAR) in-the-wild

- 585 using smartphone accelerometer. *IEEE Sensors*. 2020;8:4361-4371.
- 586 15. Vaizman Y, Ellis K, Lanckriet G. Recognizing detailed human context in the wild from
587 smartphones and smartwatches. *IEEE Pervasive Computing*. 2017;16(4):62-74.
- 588 16. Tran DH. Automated change detection and reactive clustering in multivariate streaming
589 data. In: *IEEE-RIVF International Conference on Computing and Communication
590 Technologies*. ; 2019:1-6.
- 591 17. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in
592 epidemiological and clinical research: Potential and pitfalls. *BMJ*. 2009;338:b2393.
- 593 18. Austin PC, White IR, Lee DS, van Buuren S. Missing data in clinical research: A tutorial
594 on multiple imputation. *Canadian Journal of Cardiology*. 2021;37(9):1322-1331.
- 595 19. Lachin JM. Fallacies of last observation carried forward analyses. *Clinical Trials*.
596 2016;13(2):161-168.
- 597 20. Bokde N, Alvarez FM, Beck MW, Kulat K. A novel imputation methodology for time
598 series based on pattern sequence forecasting. *Pattern Recognition Letters*. 2018;116:88-
599 96.
- 600 21. Fang C, Wang C. Time series data imputation: A survey on deep learning approaches.
601 *arXiv*. 2020;2011.11347.
- 602 22. Cao W, Wang D, Li J, Zhou H, Li L, Li Y. BRITS: Bidirectional recurrent imputation for
603 time series. In: *Neural Information Processing Systems*. ; 2018:6776-6786.
- 604 23. Wu X, Mattingly S, Mirjafari S, Huang C, Chawla N V. Personalized imputation on
605 wearable sensory time series via knowledge transfer. In: *ACM International Conference
606 on Information and Knowledge Management*. ; 2020:1625-1634.
- 607 24. Yoon S, Sull S. GAMIN: Generative adversarial multiple imputation network for highly
608 missing data. In: *IEEE/CVF Conference on Computer Vision and Pattern Recognition*. ;
609 2020:8456-8464.
- 610 25. Yoon J, Jordon J, van der Schaar M. GAIN: Missing data imputation using generative
611 adversarial networks. In: *International Conference on Machine Learning*. ; 2018.
- 612 26. Luo Y, Zhang Y, Cai X, Yuan X. E2gan: end-to-end generative adversarial network for
613 multivariate time series imputation. In: *International Joint Conference on Artificial
614 Intelligence*. ; 2019:3094-3100.
- 615 27. Guo Z, Wan Y, Ye H. A data imputation method for multivariate time series based on
616 generative adversarial network. *Neurocomputing*. 2019;360(185-197).
- 617 28. Chen K, Zhang D, Yao L, Guo B, Yu Z, Liu Y. Deep learning for sensor-based human
618 activity recognition: Overview, challenges and opportunities. *Journal of the ACM*.
619 2020;37(4):111.
- 620 29. Bulling A, Blanke U, Schiele B. A tutorial on human activity recognition using body-worn
621 inertial sensors. *ACM Computing Surveys*. 2014;46(3):107-140.
- 622 30. Tian Y, Zhang J, Chen L, Geng Y, Wang X. Selective ensemble based on extreme
623 learning machine for sensor-based human activity recognition. *Sensors*.
624 2019;19(16):3468.
- 625 31. Nazabal A, Garcia-Moreno P, Artes-Rodriguez A, Ghahramani Z. Human activity
626 recognition by combining a small number of classifiers. *IEEE Journal of Biomedical and
627 Health Informatics*. 2016;20(5):1342-1351.
- 628 32. Wang J, Chen Y, Hao S, Peng X, Hu L. Deep learning for sensor-based activity

- 629 33. recognition: A survey. *Pattern Recognition Letters*. 2019;119:3-11.

630 33. Hammerla NY, Halloran S, Ploetz T. Deep, convolutional, and recurrent models for
631 human activity recognition using wearables. In: *International Joint Conference on*
632 *Artificial Intelligence*. ; 2016.

633 34. Ploetz T, Guan Y. Deep learning for human activity recognition in mobile computing.
634 *Computer*. 2018;51(5):50-59.

635 35. Guan Y, Ploetz T. Ensembles of deep LSTM leaners for activity recognition using
636 wearables. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous*
637 *Technologies*. Published online 2017:11.

638 36. Culman C, Aminikhahhah S, Cook DJ. Easing power consumption of wearable activity
639 monitoring with change point detection. *IEEE Transactions on Mobile Computing*.
640 Published online 2019.

641 37. Kankanhalli A, Saxena M, Wadhwa B. Combined interventions for physical activity,
642 sleep, and diet using smartphone apps: A scoping literature review. *International Journal*
643 *of Medical Informatics*. 2019;123:54-67.

644 38. Sprint G, Cook DJ. Unsupervised detection and analysis of changes in everyday physical
645 activity data. *Journal of Biomedical Informatics*. Published online 2016.

646 39. de Zambotti M, Cellini N, Goldstone A, Colrain IM, Baker FC. Wearable sleep
647 technology in clinical and research settings. *Medicine and Science in Sports and Exercise*.
648 2019;51(7):1538-1557.

649 40. Wang R, Wang W, DaSilva A, et al. Tracking depression dynamics in college students
650 using mobile phone and wearable sensing. *Proceedings of the ACM on Interactive,*
651 *Mobile, Wearable and Ubiquitous Technologies*. 2018;2(1):1-26.

652 41. Dhana K, Evans DA, Rajan KB, Bennett DA, Morris MC. Healthy lifestyle and the risk of
653 Alzheimer dementia: Findings from 2 longitudinal studies. *Neurology*. 2020;95(4):e374-
654 e383.

655 42. Alberdi Aramendi A, Weakley A, Schmitter-Edgecombe M, et al. Smart home-based
656 prediction of multi-domain symptoms related to Alzheimer's Disease. *IEEE Journal of*
657 *Biomedical and Health Informatics*. 2018;22(5):1720-1731.
658 doi:10.1109/JBHI.2018.2798062

659 43. Li J, Rong Y, Meng H, Lu Z, Kwok T, Cheng H. TATC: Predicting Alzheimer's disease
660 with actigraphy data. In: *ACM SIGKDD International Conference on Knowledge*
661 *Discovery and Data Mining*. ; 2018:509-518.

662 44. Yoon J, Jarrett, Daniel, van der Schaar M. Time-series generative adversarial networks.
663 In: *Conference on Neural Information Processing Systems*. ; 2019.

664 45. Menendez ML, Pardo JA, Pardo L, Pardo MC. The Jensen-Shannon divergence. *Journal*
665 *of the Franklin Institute*. 1997;334(2):307-318.

666 46. Kachuee M, Karkkainen K, Goldstein O, Darabi S, Sarrafzadeh M. Generative imputation
667 and stochastic prediction. *IEEE Transactions on Pattern Analysis and Machine*
668 *Intelligence*. Published online 2021.

669 47. van Erven T, Harremos P. Renyi divergence and Kullback-Leibler divergence. *IEEE*
670 *Transactions on Information Theory*. 2014;60(7):3797-3820.

671 48. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks.
672 *Advances in Neural Information Processing Systems*. 2014;27:1-9.

- 673 49. Marteau TM, Hollands GJ, Fletcher PC. Changing human behavior to prevent disease:
674 The importance of targeting automatic processes. *Science*. 2012;337:1492-1495.
- 675 50. U.S. Department of Health and Human Services. *Healthy People 2020*.; 2015.
- 676 51. Tourangeau R, Rips LJ, Rasinski K. *The Psychology of Survey Response*. Cambridge
677 University Press; 2000.
- 678 52. Palmer MG, Johnson CM. Experimenter presence in human behavior analytic laboratory
679 studies: Confound it? *Behavior Analysis: Research and Practice*. 2019;19(4):303-314.
- 680 53. Li H, Abowd GD, Ploetz T. On specialized window lengths and detector based human
681 activity recognition. In: *ACM International Symposium on Wearable Computers*. ;
682 2018:67-71.
- 683 54. Aminikhahgahi S, Cook DJ. Enhancing activity recognition using CPD-based activity
684 segmentation. *Pervasive and Mobile Computing*. 2019;53(75-89).
- 685 55. Wan J, Li M, O'Grady M, Gu X, Alawlaqi M, O'Hare G. Time-bounded activity
686 recognition for ambient assisted living. *IEEE Transactions on Emerging Topics in
687 Computing*. Published online 2018.
- 688 56. Du Y, Lim Y, Tan Y. A novel human activity recognition and prediction in smart home
689 based on interaction. *Sensors*. 2019;19:4474.
- 690 57. Bharti P, De D, Chellappan S, Das SK. HuMAN: Complex activity recognition with multi-
691 modal multi-positional body sensing. *IEEE Transactions on Mobile Computing*.
692 2019;18(4):857-870.
- 693 58. Kwon M-C, You H, Kim J, Choi S. Classification of various daily activities using
694 convolution neural network and smartwatch. In: *IEEE International Conference on Big
695 Data*. ; 2018.
- 696 59. Nweke HF, Teh YW, Al-Garadi MA, Alo UR. Deep learning algorithms for human
697 activity recognition using mobile and wearable sensor networks: State of the art and
698 research challenges. *Expert Systems with Applications*. 2018;105:233-261.
- 699 60. Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL. A public domain dataset for human
700 activity recognition using smartphones. In: *European Symposium on Artificial Neural
701 Networks, Computational Intelligence and Machine Learning*. ; 2013.
- 702 61. Stisen A, Blunck H, Bhattacharya S, et al. Smart devices are different: Assessing and
703 mitigating mobile sensing heterogeneities for activity recognition. In: *ACM Conference on
704 Embedded Networked Sensor Systems*. ; 2015:127-140.
- 705 62. Kwapisz JR, Weiss GM, Moore SA. Activity recognition using cell phone accelerometers.
706 In: *International Workshop on Knowledge Discovery from Sensor Data*. ; 2010.
- 707 63. Lockhart JW, Weiss GM, Xue JC, Gallagher ST, Grosner AB, Pulickal TT. Design
708 considerations for the Wisdm smart phone-based sensor mining architecture. In:
709 *International Workshop on Knowledge Discovery from Sensor Data*. ; 2011:25-33.
- 710 64. Cook DJ, Schmitter-Edgecombe M, Jonsson L, Morant A V. Technology-enabled
711 assessment of functional health. *IEEE Reviews in Biomedical Engineering*. 2018;12:319-
712 332.
- 713 65. Dodge HH, Mattek NC, Austin D, Hayes TL, Kaye JA. In-home walking speeds and
714 variability trajectories associated with mild cognitive impairment. *Neurology*.
715 2012;78(24):1946-1952.
- 716 66. Kaye J, Mattek N, Dodge HH, et al. Unobtrusive measurement of daily computer use to

- 717 detect mild cognitive impairment. *Alzheimer's and Dementia*. 2014;10(1):10-17.
- 718 67. Petersen J, Austin D, Mattek N, Kaye J. Time out-of-home and cognitive, physical, and
719 emotional wellbeing of older adults: A longitudinal mixed effects model. *PLoS ONE*.
720 Published online 2015.
- 721 68. Petersen J, Larimer N, Kaye JA, Pavel M, Hayes TL. SVM to detect the presence of
722 visitors in a smart home environment. In: *International Conference of the IEEE*
723 *Engineering in Medicine and Biology Society*. ; 2012:5850-5853.
- 724 69. Cook DJ. Sensors in support of aging-in-place: The good, the bad, and the opportunities.
725 In: *National Academies Workshop on Mobile Technology for Adaptive Aging*. ; 2019.
- 726 70. Cook D, Schmitter-Edgecombe M. Fusing ambient and mobile sensor features into a
727 behaviorome for predicting clinical health scores. *IEEE Access*. 2021;2:65033-65043.
- 728 71. Schmitter-Edgecombe M, Sumida CA, Cook DJ. Bridging the gap between performance-
729 based assessment and self-reported everyday functioning: An ecological momentary
730 assessment approach. *The Clinical Neuropsychologist*. 2020;34(4):678-699.
- 731 72. WSU CASAS. Tools. Published 2021. <http://casas.wsu.edu/tools/>
- 732 73. Fong TG, Fearing MA, Jons RN, et al. The Telephone Interview for Cognitive Status:
733 Creating a crosswalk with the Mini-Mental State Exam. *Alzheimer's and Dementia*.
734 2009;5(6):492-497.
- 735 74. Peaker A, Stewart LE. Rey's auditory verbal learning test – A review. In: Crawford JR,
736 Parker DM, eds. *Developments in Clinical and Experimental Neuropsychology*. Plenum
737 Press; 1989.
- 738 75. Wilson BA, Alderman N, Burgess PW, Emslie H, Evans JJ. *Behavioural Assessment of*
739 *the Dysexecutive Syndrome*. Thames Valley Test Company; 1996.
- 740 76. Sprint G, Cook D, Weeks D. Towards automating clinical assessments: A survey of the
741 Timed Up and Go (TUG). *Biomedical Engineering, IEEE Reviews in*. 2015;8:64-77.
742 doi:10.1109/RBME.2015.2390646
- 743 77. Burckhardt CS, Answeron KL. The Quality of Life Scale (QOLS): Reliability, validity,
744 and utilization. *Health Quality of Life Outcomes*. 2003;1:60.
- 745 78. Huo T, Guo Y, Shenkman E, Muller K. Assessing the reliability of the short form 12 (SF-
746 12) health survey in adults with mental health conditions: a report from the wellness
747 incentive and navigation (WIN) study. *Health Quality of Life Outcomes*. 2018;16:34.
- 748 79. Ware JE, Koskinski M, Keller SD. *SF-12: How to Score the SF-12 Physical and Mental*
749 *Health Summary Scores*.; 1995.
- 750 80. Smith G, Della Sala S, Logie RH, Maylor EA. Prospective and retrospective memory in
751 normal aging and dementia: A questionnaire study. *Memory*. 2000;8:311-321.
- 752 81. Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS): Recent evidence and
753 development of a shorter version. *Clinical Gerontologist*. 1986;5:165-173.
- 754 82. Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized
755 anxiety disorder: the GAD-7. *Archives of Internal Medicine*. 2006;166(10):1092-1097.
- 756 83. Gerstorf D, Siedlecki KL, Tucker-Drob EM, Salthouse TA. Executive dysfunctions across
757 adulthood: Measurement properties and correlates of the DEX self-report questionnaire.
758 *Neuropsychology, Development, and Cognition Section B, Aging, Neuropsychology and*
759 *Cognition*. 2008;15(4):424-445.
- 760 84. Schmitter-Edgecombe M, Parsey C, Lamb R. Development and Psychometric Properties

- 761 of the Instrumental Activities of Daily Living: Compensation Scale. *Archives of Clinical*
762 *Neuropsychology*. 2014;29(8):776-792. doi:10.1093/arclin/acu053
- 763 85. Yu S, Zhang K, Xiao C, Huang JZ, Li MJ, Onizuka M. HSGAN: Reducing mode collapse
764 in GANs by the latent code distance of homogeneous samples. *Computer Vision and*
765 *Image Understanding*. 2022;214:103314.
- 766 86. Zuo Z, Zhao L, Li A, et al. Dual distribution matching GAN. *Neurocomputing*.
767 2022;478:37-48.
- 768 87. Williams JA, Cook DJ. Forecasting behavior in smart homes based on sleep and wake
769 patterns. *Technology and Health Care*. 2017;25(1). doi:10.3233/THC-161255
- 770 88. Wang W, Harari GM, Wang R, et al. Sensing behavioral change over time: Using within-
771 person variability features from mobile sensing to predict personality traits. *Proceedings*
772 *of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*.
773 2018;2(3):141.
- 774 89. Schmitter-Edgecombe M, Parsey CM, Lamb R. Development and psychometric properties
775 of the instrumental activities of daily living – compensation scale (IADL-C).
776 *Neuropsychology*. Published online 2014.
- 777