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Abstract 7 

 8 

Background: Behavior and health are inextricably linked. As a result, continuous wearable sensor 9 

data offer the potential to predict clinical measures. However, interruptions in the data collection 10 

occur, which create a need for strategic data imputation. 11 

Objective: The objective of this work is to adapt a data generation algorithm to impute 12 

multivariate time series data. This will allow us to create digital behavior markers that can predict 13 

clinical health measures. 14 

Methods: We created a bidirectional time series generative adversarial network to impute missing 15 

sensor readings. Values are imputed based on relationships between multiple fields and multiple 16 

points in time, for single time points or larger time gaps. From the complete data, digital behavior 17 

markers are extracted and are mapped to predicted clinical measures. 18 

Results: We validate our approach using continuous smartwatch data for n=14 participants. When 19 

reconstructing omitted data, we observe an average normalized MAE of 0.0197. We then create 20 

machine learning models to predict clinical measures from the reconstructed, complete data with 21 

correlations ranging from r=0.1230 to r=0.7623. This work indicates that wearable sensor data 22 

collected in the wild can be used to offer insights on a person’s health in natural settings. 23 

 24 
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1. Background 26 

Assessing and promoting health are challenging tasks even when physicians are readily 27 

available because health care providers must make decisions based on a typical 20 minute visit 28 

with a patient1, aided by results from often-inconclusive laboratory tests. The ability to provide 29 

accurate assessments is particularly timely because as the population ages, older adults will 30 

likely outnumber children for the first time in US history2, creating a discrepancy between the 31 

number of persons needing care and those capable of providing it. Resulting from this changing 32 

dynamic, chronic illness rates and healthcare expenditures are increasing3,4. One health domain 33 

that is particularly impacted by the aging population is cognitive health. Early detection of 34 

cognitive health changes has been identified as a national priority5,6 because this supports more 35 

effective treatment and significantly improves the quality of care while reducing health care 36 

costs7,8. However, clinic-based assessment is infeasible for many who live in remote areas or 37 

remain in their homes due to imposed restrictions. Furthermore, controlling the symptoms of 38 

cognitive decline relies on understanding its many influences, including physiology, 39 

psychosocial and physical environments, and routine behavior9. 40 

The tight interplay between health and behavior is well documented in the literature10–12. The 41 

maturing design of sensor platforms, pervasive computing, and machine learning techniques 42 

offer practical, though not fully realized, methods for understanding the relationship between 43 

health and behavior and automatically assessing and predicting health status. We hypothesize 44 

that a person’s health can be predicted based on digital behavior markers that are collected from 45 

continuous, longitudinal wearable sensor data. Specifically, machine learning methods can be 46 

used to map a comprehensive set of digital behavior markers onto predicted values for clinical 47 

assessment measures13. 48 

Because we can now collect data on ourselves in an ecologically valid manner, we will 49 

harness continuously-collected sensor data to create a personalized behavior profile. Despite 50 

recent technology advances, most research does not collect continuous data in realistic settings. 51 

Laboratory-driven data collections do not reflect natural behavior; behavior markers should be 52 

built based on activities sensed “in the wild”14,15. 53 

One practical issue that limits the ability to create an automated behavior profile from 54 

wearable sensor data and assess a person’s health is gaps in the data collection. When data are 55 

collected in the wild, without imposed controls that ensure collection compliance and data 56 

quality, missing data is a common occurrence. Sensor readings will go missing when there are 57 

failures in the sensors, device, communication, or storage mechanisms. In our experiments, we 58 

collect data from older adult volunteers in their own homes as they perform normal routines. As 59 

a result, there are also frequent large gaps in the data collection (i.e., an hour or more) when the 60 

participants fail to wear or charge the devices. While there are common reasons for such missing 61 

data, in our work we do not incorporate such domain-specific information into the approach. 62 

 63 

2. Objective 64 

In this paper, we describe a generative approach to imputing values for multivariate time 65 

series data. Data imputation is a well-established problem with numerous available strategies. 66 

What makes the imputation problem particularly unique and challenging for smartwatch-based 67 

behavior data is that time series data are not i.i.d. and smartwatch data are multivariate, two 68 

aspects that are under-represented in the literature. To address this problem, we consider a 69 
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generative time series model that preserves temporal dynamics together with inter-feature 70 

dynamics. The contributions of this paper are the following. First, we discuss adaptation of 71 

generative models to impute multivariate time series data. Second, we illustrate the application 72 

of this imputation method to collected smartwatch sensor data. Third, we describe how activity 73 

labels are applied to the complete time series and used to create digital behavior markers. Fourth, 74 

we define a joint inference method to predict clinical measures from the behavior profile. To 75 

validate the methods, we compare the imputation accuracy of our imputation algorithm, called 76 

Mink (Missing data Imputation Novel Kit), with baseline methods on sampled smartwatch data. 77 

Finally, we evaluate the accuracy of our health prediction methodology when missing data are 78 

imputed using Mink. 79 

 80 

3. Problem Formulation 81 

Consider the setting where multiple sensors are sampled at a constant rate (in our 82 

experiments, this rate is 10Hz). We start by formalizing the sensor data time series and the sensor 83 

data imputation task. 84 

Definition 1. A time series data stream is an infinite sequence of elements 𝑿 =85 

{𝒙𝟏, 𝒙𝟐, . . , 𝒙𝒊, … }. The ith element of the series is xi. In the case of a multivariate time series, xi is 86 

a d-dimensional vector observed at time stamp i16.  87 

Definition 2. We assume that the sensor data collection is a stationary time series. A 88 

stationary time series is a process whose statistical properties are constant over time. Thus: 89 

• The mean value function is 𝝁𝒕 = 𝑬(𝒙𝒕) and does not depend on time t. 90 

• The auto covariance function 𝜸(𝒔, 𝒕) = 𝒄𝒐𝒗(𝒙𝒔, 𝒙𝒕) = 𝑬[(𝒙𝒔 − 𝝁𝒔)(𝒙𝒕 − 𝝁𝒕)] depends 91 

on time stamps s and t only through their time difference, |𝒔 − 𝒕|. 92 

Definition 3. Missing values in a finite-length subset of a time series 𝑿𝟏:𝑻 = {𝒙𝟏, . . , 𝒙𝑻}  are 93 

represented by a mask matrix M. Each element of 𝑴 ∈ ℝ𝑻×𝒅 is defined for time stamp i and 94 

feature dimension j as: 95 

𝑴𝒊
𝒋

= {𝟎   𝐢𝐟 𝒙𝒊
𝒋
 𝐢𝐬 𝐦𝐢𝐬𝐬𝐢𝐧𝐠 (𝒙𝒊

𝒋
= 𝑵𝑼𝑳𝑳) 

𝟏   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞                                   
    (1) 96 

Definition 4. An imputation algorithm IA has access to an incomplete dataset consisting of a 97 

time series X and mask matrix M. The goal of the algorithm is to replace all values 98 

𝒙𝒊
𝒋
  𝐗 𝐰𝐡𝐞𝐫𝐞 𝑴𝒊

𝒋
= 𝟎 with a non-NULL value X and a Gaussian noise vector Z. The resulting 99 

time series is denoted as 𝑿̂𝟏:𝑻 = {𝒙̂𝟏, . . , 𝒙̂𝑻} and is defined in Equation 2. 100 

𝒙̂𝒊
𝒋

= {
𝒙𝒊

𝒋
                     𝐢𝐟 𝑴𝒊

𝒋
= 𝟎                                 

𝑰𝑨(𝑿, 𝒁, 𝒊, 𝒋)    𝐢𝐟 𝑴𝒊
𝒋

= 𝟏                                
   (2) 101 

Definition 5. Algorithm IA should minimize total normalized mean absolute error (NMAE). 102 

NMAE is based on the standard mean absolute error (MAE) definition: 103 

𝑴𝑨𝑬(𝒙, 𝒙̂) = ∑ ∑
|𝒙𝒊

𝒋
−𝒙̂𝒊

𝒋
|

𝑻×𝒅

𝒅
𝒋=𝟏

𝑻
𝒊=𝒕      (3) 104 

where 𝒙𝒊
𝒋
 represents an imputed value (if 𝑴𝒊

𝒋
= 𝑵𝑼𝑳𝑳) or the observed value (if 𝑴𝒊

𝒋
≠ 𝑵𝑼𝑳𝑳) 105 

and 𝒙̂𝒊
𝒋
represents the actual ground truth value. 106 

The NMAE metric is useful when comparing or combining the mean absolute error of 107 

features with different scales. Each MAE term is normalized to [0..1] based on the range of 108 
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values for the corresponding feature. We evaluate the imputation performance of Mink and 109 

baseline methods using NMAE. 110 

 111 

 112 

4. Related Work 113 

4.1. Related Methods 114 

Imputation of missing values is a well-established area of investigation. Researchers have 115 

proposed numerous methods to tackle this problem, including replace by constant and value 116 

inference using regression. Multiple methods can also be employed and combined, resulting in 117 

multiple imputation17,18. Most of these methods assume that data are independent and identically 118 

distributed (i.i.d.). They impute values for each feature separately and frequently do not account 119 

for the relationships between features. In the case of time series sensor-based behavior 120 

monitoring, the data are not i.i.d. Relationships between variables provide important context for 121 

imputing values, values need to be imputed simultaneously for multiple features, and the 122 

relationships between values at adjacent points in time need to be considered. 123 

In recent years, researchers have started to investigate the problem of imputation for time 124 

series. In addition to the methods mentioned above, other common statistical methods carry 125 

forward an observation by copying the value from time t-1 to t, carry backward an observation 126 

from t+1 to t, or average the two. These approaches face limitations of the underlying processes 127 

being highly dynamic or the existence of a longer sequence of missing values19. Linear or 128 

nonlinear regression and forecasting models have been adapted for time series by mapping prior 129 

observations t-x .. t-1 (the lag) onto a predicted value for missing time t20,21. Specialized deep 130 

network structures are popular as well. Recurrent neural networks are well suited for this task 131 

because they retain sequential information in their structure22, although they are typically limited 132 

to univariate cases. Researchers have refined this process to combine deep learning with transfer 133 

learning for sensor data imputation23, ensuring that the imputed information is customized for 134 

each person. 135 

The methods that are most similar to Mink utilize generative adversarial networks (GANs). In 136 

this scenario, one agent attempts to impute missing values (the generator) while a second agent 137 

attempts to differentiate observed from imputed values (the discriminator). GANs are becoming 138 

a standard for imputing i.i.d. data, including multiple imputation24. Yoon et al.25 introduced a 139 

GAN data imputer, called GAIN, that boosts performance by supplying a hint vector conditioned 140 

on observed values. This approach is effective for i.i.d. data but is not designed to handle the 141 

dynamics of time series data. For time series, such generative methods are valuable when large 142 

gaps exist in the sequence, because these algorithms will generate long sequences of values. The 143 

E2GAN imputer from Luo et al.26 represents recent work to design a GAN structure for time 144 

series. This algorithm combines autoencoder-based compression with a recurrent cell to generate 145 

time series data. This approach relies on an unsupervised adversarial loss that ensures the 146 

discriminator becomes more adept at recognizing imputed data at a rate that parallels the 147 

generator’s improved skills at generating imputed values. Another GAN strategy was proposed 148 

by Guo et al.27. MTS-GAN incorporates a multichannel convolutional neural network to extract 149 

features of each univariate time series, then adds a fully connected network to learn relationships 150 

between feature dimensions. In their multivariate time series imputer, MTS-GAN, In this paper, 151 

we combine unsupervised approaches found in the earlier methods with a supervised learning 152 
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component that uses the observed data as an external oracle. This process then utilizes available 153 

observations to model the stepwise conditional distributions, resulting in realistic imputed 154 

values. 155 

 156 

4.2. Applications of Time Series Imputation 157 

To characterize a person’s overall behavior routine, we extract digital behavior markers from 158 

sensor data that are automatically labeled with corresponding activity categories. Performing 159 

human activity recognition from wearable sensors has become a popular topic for researchers to 160 

investigate28,29. Because we can collect continuous data without requiring extra steps for the 161 

subject, wearable sensors are a natural choice for assessing health based on sensed behavior. 162 

Approaches to activity recognition have considered numerous methods, including decision trees, 163 

nearest neighbors, clusters, and ensembles14,30,31, as well as deep networks32–35. Limitations of 164 

many of these existing methods are that they focus on basic, repetitive movement types and are 165 

often evaluated in laboratory settings. We are interested in extracting markers that reflect a 166 

person’s entire behavioral routine, sensed in natural settings. For our experiments in this paper, 167 

we pre-trained activity models using techniques that we validated in prior studies36. 168 

Wearable sensor data offer substantial insights into a person’s behavior as well as their health. 169 

Typically, prior works analyze a specific behavior such as activity level37,38 or sleep39, with 170 

markers that consist of a small set of variables such as step counts or sleep duration40. Some 171 

researchers targeted specific sensor-observed behavior markers as a mechanism for assessing the 172 

relationship between lifestyle and health. Specifically, Dhana et al.41 quantify healthy behavior 173 

as a combination of nonsmoking, physical activity, alcohol consumption, nutrition, and cognitive 174 

activities. Individuals who scored higher on this behavior metric had a lower risk of Alzheimer’s 175 

dementia. Other researchers have also found that sensor-based behavior patterns are predictive of 176 

cognitive health42,43. Li et al.43 found that physical activity was predictive of Alzheimer’s 177 

disease, while Aramendi et al.42 predicted cognitive measures of cognitive health and mobility 178 

from activity-labeled sensor data. 179 

These studies provide evidence that wearable sensors afford the ability to monitor 180 

intervention impact and assess a person’s cognitive health. Within this area of investigation, our 181 

proposed approach is unique because we investigate a computational method to monitor and 182 

model all a person’s behavior to predict clinical health measures. We utilize the complete set of 183 

behavior markers based on both observed and imputed sensor readings to predict multiple 184 

measures, then take advantage of the predictive relationship between diverse markers to improve 185 

predictive performance. This holistic approach to sensor analysis of behavior and health relies on 186 

a method to impute missing values in complex, multivariate time series data.  187 

 188 

5. Methods 189 

Figure 1 illustrates the steps of our automated sensor-based health assessment process. As the 190 

figure shows, the process relies on the ability to accurately impute missing data. 191 

 192 

 193 

 194 

 195 

 196 
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 197 

 198 

Figure 1. The process of assessing health from smartwatch data. Data are continuously collected 199 

while a participant wears a smartwatch and performs their normal routine. Data are securely 200 

stored in a relational database and a processed by imputing missing values (Mink), labeling 201 

readings with associated activity labels (activity recognition), and extracting a set of digital 202 

behavior markers. A machine learning then maps the behavior profile onto predicted clinical 203 

measures. 204 

 205 

 206 

 207 

5.1. Generative Time Series Data Imputation 208 

Our approach to imputing multivariate time series data combines aspects of regression-based 209 

sequence prediction, adversarial sequence generation, and time series models. Adapting a 210 

definition by Yoon et al.44 for use with multivariate time series data imputation, the goal of Mink 211 

is to use training data D to learn a density 𝑝̂(𝑋1:𝑇) that best approximates the density of ground-212 

truth data, 𝑝(𝑋1:𝑇). The adversarial component of the imputation algorithm attempts to minimize 213 

the Jensen-Shannon divergence45 between the estimated and ground-truth densities, shown in 214 

Equation 7. 215 

𝑚𝑖𝑛𝑝̂ 𝐽𝑆(𝑝(𝑋1:𝑇)||𝑝̂(𝑋1:𝑇))     (7) 216 

As Yoon et al.44 and Kachuee et al.46 suggest, such adversarial components can be boosted by 217 

partnering them with a supervised learning component that learns the temporal relationship 218 

between neighboring readings in the sequence. The objective of this component is to minimize 219 

the Kullback-Leibler divergence47 between the estimated and true relationship between readings 220 

at times t-1 and t, as shown in Equation 8. 221 

𝑚𝑖𝑛𝑝̂ 𝐾𝐿(𝑝(𝑋𝑡|𝑋𝑡−1)||𝑝̂(𝑋𝑡|𝑋𝑡−1))    (8) 222 

Both JS divergence and KL divergence calculate scores that reflect the difference between 223 

probability distributions 𝑝 and 𝑝̂. They are both appropriate metrics for this task because they 224 

quantify the distance between two data samples based on the corresponding probability 225 

distributions. JS divergence is an extension of the KL measure that is symmetric, a property that 226 

is needed when comparing estimated and ground-truth data. 227 

Figure 2 illustrates the architecture of the Mink time series imputation algorithm. As the 228 

figure shows, the architecture includes a time series generator g, a time series discriminator d, an 229 

embedding function e, and a recovery function r. The method combines a regressive autoencoder 230 

(the embedding and recovery elements) with a generative adversarial network (the generator and 231 

discriminator components) to optimize the multivariate goals formalized in Equations 7 and 8. 232 
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The autoencoder components, e and r, are trained together with the generative adversarial 233 

network components, g and d, to yield realistic time series values that maintain global properties 234 

of the data distribution and temporal relationships between individual readings. 235 

 236 

 237 

Figure 2. The Mink time series data imputation architecture. The system processes time series X 238 

containing a mixture of observed and missing values and outputs a complete time series 𝑋̂with 239 

no missing values. To generate realistic data, Mink combines an autoencoder (with embedding 240 

function e and recovery function r) and a generative adversarial network (with generator g and 241 

discriminator d). 242 

 243 

 244 

 245 

5.1.1.  Mink Generative Adversarial Network  246 

Mink employs a generative adversarial network (GAN) to learn realistic time series sequences 247 

whose densities emulate those of the real data, as shown in Equation 7. Using the notation from 248 

Goodfellow et al.48, a traditional GAN optimizes the value function V(g,d) for generator g and 249 

discriminator d, as summarized in Equation 9. In this original formulation, 𝑥~𝑝𝑑𝑎𝑡𝑎 draws a 250 

sample from the real data distribution and 𝑧~𝑝𝑧(𝑧) draws a sample from input Gaussian noise. 251 

As the equation expresses, the generator attempts to generate realistic data, the discriminator 252 

differentiates real from synthetic data, and the two strengthen each other as they learn. 253 

𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑  𝑉(𝑑, 𝑔) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝑑(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧)[log(1 −  𝑔(𝑧))]   (9) 254 

In the imputation algorithm, the generator creates data in a latent space rather than directly 255 

generating time series data. The latent space is defined by the autoencoder, described in the next 256 

section. Let 𝑍𝑋 represent the vector space from which individual random vectors are sampled. 257 

Generator g uses these to create latent vectors in 𝐻𝑋. Thus, the generator can be represented as a 258 

function 𝑔: ∏ 𝑍𝑋 → ∏ 𝐻𝑋𝑡𝑡 . The Mink generator is designed as a stacked recurrent neural 259 

network (RNN). All Mink networks utilize a hidden layer of size 24 and a dense final layer that 260 
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employs a sigmoid activation function. Thus, g generates a synthetic latent vector for time t 261 

based on a synthetic latent vector at time t-1, or ℎ̂𝑡 = 𝑔𝑋(ℎ̂𝑡−1, 𝑧𝑡). The goal of discriminator d is 262 

to correctly classify the latent vectors as real data, y, or synthetic data, 𝑦̂. Function d is designed 263 

as a bidirectional recurrent network with a feedforward output layer.1 264 

The GAN is trained to optimize Equation 9. As a result, the network maximizes the log 265 

probability of d correctly discriminating between real and fake samples while at the same time 266 

minimizing the log probability of 1–d(g(z)), where d(g(z)) represents the probability that 267 

generated data g(z) is real. For our imputation algorithm, we adapt Equation 9 to create an 268 

adversarial loss function that trains the GAN. The loss function is shown in Equation 10. 269 

ℒ𝐴 = 𝔼𝑥1:𝑇~𝑝
[∑ log 𝑦𝑡] + 𝔼𝑥1:𝑇~𝑝̂

[∑ log (1 − 𝑦̂𝑡)]𝑡𝑡     (10) 270 

To link these components, the imputation architecture utilizes a third loss function that 271 

alternately guides training for the autoencoder and the GAN. This loss function computes a 272 

gradient based on the difference between the predicted latent vector at the next time step (the 273 

synthetic vector) and the ground truth-derived latent vector at the next time step. This loss 274 

function thus reflects the distance between 𝑝(𝐻𝑡|𝐻1:𝑡−1) and 𝑝̂(𝐻𝑡|𝐻1:𝑡−1). This stepwise loss is 275 

computed as shown in Equation 11. 276 

ℒ𝑆 = 𝔼𝑥1:𝑇~𝑝
[∑ [||ℎ𝑡 − 𝑔𝑋(ℎ𝑡−1, 𝑧𝑡)||2]𝑡     (11) 277 

 278 

5.1.2.  Autoencoder 279 

To map sample data onto latent features 𝐻𝑋, Mink incorporates an autoencoder using an 280 

embedding e. A recovery function r then reconstructs data close to the original. To create time 281 

series data, the autoencoder captures the temporal relationships between readings, represented as 282 

ℎ𝑡 = 𝑒𝑋(ℎ𝑡−1, 𝑥𝑡). The recovery function r is a recurrent network that maps the latent vector 283 

back onto the original time series representation, 𝑥̃𝑡 = 𝑟𝑋(ℎ𝑡). Mink employs a stacked RNN for 284 

both networks where the output for time t only depends on information available at time t-1. 285 

The goal of the architecture’s autoencoder component is to accurately reconstruct the input 286 

data from the latent vectors. This component is thus trained using a reconstruction loss that 287 

computes the element-wise difference between the original and reconstructed feature values, as 288 

shown in Equation 12. 289 

ℒ𝑅 = 𝔼𝑥1:𝑇~𝑝
[||𝑥𝑡 − 𝑥̌𝑡||2     (12) 290 

 291 

5.1.3.  Data Imputation 292 

When training the system, the generator and discriminator functions adversarially optimize 293 

𝑚𝑖𝑛𝜃𝑔
(𝛼ℒ𝑆 + 𝑚𝑖𝑛𝜃𝑑

ℒ𝐴), while the autoencoder embedding and recovery functions optimize 294 

𝑚𝑖𝑛𝜃𝑒,𝜃𝑟
(𝛽ℒ𝑆 + ℒ𝑅). Here, parameters  and  balance the loss pairs (we use =1 and =10 for 295 

our experiments), while parameters g, d, e, and r govern the generator, discriminator, 296 

embedding, and recovery components. 297 

To impute data for missing values conditioned on observed data values, we blend observed 298 

data with synthetic data. Mink generates a synthetic data vector 𝑋̂1:𝑡 that is conditioned on the 299 

observed data, the corresponding mask, and a Gaussian noise vector. Missing values in the 300 

original data vector 𝑋1:𝑇 are replaced with their corresponding synthetic component, yielding a 301 

 
1 Mink code is available online at https://github.com/WSU-CASAS/MINK. 
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complete time series with no missing values. 302 

 303 

5.2. Generating a Behavior Profile 304 

Human behavior is one of the biggest drivers of health and wellness49,50. An individual’s 305 

activities affect that person, their family, society, and the environment. Health risk behavior is 306 

linked to Type 2 diabetes, obesity, heart disease, neurological diseases including ADRDs, and 307 

other chronic physical and mental health conditions. For this reason, our overall goal is to model 308 

behavior and use machine learning techniques to predict health status from behavior information. 309 

In previous work, theoretical models arose from psychology, sociology, and anthropology to 310 

explain the complexities of behavior and the factors that drive it. Until recently, such theories of 311 

human behavior and its influences have relied on self-report, which can suffer from retrospective 312 

memory limitations51, or experimenter observation, which may introduce confounds and 313 

unintended bias52. The maturing of pervasive computing now allows us to collect personal sensor 314 

data unobtrusively and continuously. As a result, the field is ripe to create data mining methods 315 

to model behavior and predict health. 316 

In our approach, predicting clinical health measures requires five steps. First, we collect 317 

continuous sensor data from smartwatches as people perform their normal daily routines. 318 

Second, we utilize Mink to impute values for the missing data. Third, we label sensor data 319 

streams with corresponding activity labels. Fourth, we extract a set of digital markers. Finally, 320 

we use machine learning to map the digital markers onto predicted clinical measures. 321 

 322 

5.2.1. Collecting and Labeling Activity Data 323 

To gather behavior-driven sensor data, we designed an app for the Apple Watch to passively 324 

and continuously collect sensor data at a constant sampling rate of 10Hz. We currently collect 325 

data from the watch accelerometer, gyroscope, and location services. The app periodically 326 

queries users to provide ground truth about their current activity and answer in-the-moment 327 

questions about their current mood and functionality. During this process, there are frequent gaps 328 

in the data collection due to participants failing to charge or wear the smartwatch. As a result, 329 

imputation of missing data for one or multiple consecutive time periods is needed before clinical 330 

measures can be predicted. 331 

A first step in building a set of digital behavior markers from longitudinal sensor data is 332 

labeling data with corresponding activities. Activities represent units of behavior that can be 333 

labeled and integrated into the digital behavior markers. While human activity recognition is a 334 

popular research topic and many approaches have been proposed32,34,53–59, most approaches 335 

operate under controlled laboratory conditions with scripted, movement-based activities60–63. 336 

Research has demonstrated a correlation between cognitive health and numerous activities, both 337 

simple and complex, that include sleep, work, time out of the home, walking, and socialization64–338 
69. Thus, automatically labeling these activities can improve the ability to assess cognitive and 339 

functional health. 340 

Activity recognition algorithms map sensor data onto corresponding activity names, applying 341 

categorical descriptions to sensed behavior. The input is a sequence of sensor readings et=<t, r1, 342 

.., rd> collected at time t. To accommodate real-time recognition, features are extracted from a 343 

sliding window that are statistical (e.g., min, max, standard deviation, zero crossings, skewness, 344 

kurtosis, signal energy), relational (e.g., multi-dimensional correlation, autocorrelation), 345 
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temporal (e.g., time of day, day of week), navigational (e.g., heading change rate, stop rate, 346 

overall trajectory, distance traveled), personal (e.g., frequented locations, distance from user 347 

center), and positional (location type, calculated via reverse geocoding using an open street 348 

map). A random forest classifier creates a mapping, h:Xt→yt, from a set of descriptors Xt to the 349 

corresponding activity, yt. This approach demonstrated a recognition f1 score of 0.85 for 12 350 

activities from 250 individuals in prior work: chores, eat, entertain, errands, exercise, hobby, 351 

hygiene, relax, school, sleep, travel, and work70. We use the pretrained model for the remainder 352 

of the experiments described in this paper. 353 

 354 

5.2.2. Defining and Extracting Digital Behavior Markers 355 

As data are collected and labeled with activity categories, we extract digital descriptors, or 356 

markers, that provide insights into a person’s behavior and predictive power for the person’s 357 

health. Continual monitoring of daily behavior offers more and finer-resolution insights than are 358 

currently available for physician-based or automated health assessment and intervention design. 359 

We compute and compile the digital behavior markers that become a person’s behavior 360 

profile70,71. The markers are defined in Table 1 and are gathered for each sensor (existing and 361 

new) and activity class at multiple time resolutions (e.g., hourly, daily). Our software to generate 362 

these markers is available online72. 363 

 364 

Table 1. Digital behavior markers. 365 

Type Daily features 

Statistical 
summary of 

sensor values 

Maximum, minimum, sum, mean, median, mean/median absolute 
value, variance, standard deviation, zero/mean crossings, 

interquartile range, skewness, kurtosis, SMA, power, 
autocorrelation, computed over multiple time scales 

Durations Time spent on each activity, location type, favorite location 

Occurrences 
Time of day for first and last occurrence of each activity, location 

type, favorite location 

Sleep 
Daytime and nighttime sleep duration, daytime sleep location, 

nighttime sleep location, number of nighttime sleep interruptions 

Mobility 
Amount of movement inside and outside home, walking speed, 

number of steps, reverse geocoded location types visited outside the 
home, total distance traveled 

Routine 

Entropy of daily routine, number of different daily activities, 
minimum and maximum inactivity times, daily variance in activity 
durations, occurrence times, and locations, periodogram-derived 

circadian and diurnal rhythm 87,88 
 366 

 367 

 368 

 369 

 370 

 371 

 372 
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Table 2. Participant information. 373 

Participant Age 
Cognitive 

impairment 
Gender 

Education 
(years) 

Missing 
data (%) 

 1 65 No female 18 26.17 
 2 66 No female 20 31.49 
 3 72 No female 18 22.80 
 4 76 No female 20 23.27 
 5 79 No female 18 19.92 
 6 62 No male 16 28.32 
 7 62 No male 20 24.05 
 8 78 No male 18 25.35 
 9 56 Yes female 12 21.01 
10 70 Yes female 18 24.35 
11 72 Yes female 14 16.79 
12 73 Yes female 14 27.32 
13 58 Yes male 12 48.02 
14 68 Yes male 20 28.82 

 374 

 375 

 376 

5.2.3. Predicting Clinical Health Measures 377 

In the last step, a regression forest is employed to predict the clinical measures 𝐶 =378 

{𝑐1, 𝑐2, . . , 𝑐𝑛}. The random forest contains 100 decision tree regressors. The trees are built to a 379 

depth of 20 using randomly-selected features, then regressors fit a line to the data that belong to 380 

each leaf node. We report predictive performance using Pearson correlation. To collect data, we 381 

recruited n=14 older adult participants for this study (9 female, 5 male). The mean age was 70.2 382 

(s.d.=7.5) and number of years of education was 16.4 (s.d.=2.5). Detailed participant information 383 

is provided in Table 2. In this sample, 6 participants had cognitive impairment, with objective 384 

evidence in the memory domain. This study was reviewed and approved by the Washington 385 

State University Institutional Review Board (IRB protocol #14460, approved 05/18/2020). 386 

Informed consent was obtained from each participant prior to data collection initiation. 387 

We collected one month of 10Hz continuous smartwatch sensor data (accelerometer, 388 

gyroscope, and location) for the participants. As Table 2 indicates, the collected data had many 389 

missing entries, including entire evenings for some participants when the watch was not worn. 390 

Additionally, we collected clinical assessment measures for each participant at baseline using 391 

traditional neuropsychology tests and self-report. The measures and the constructs they assess 392 

are listed in Table 3. 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 
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Table 3. Predicted clinical measures. 401 

Measure Assessed construct 
Telephone Interview of Cognitive Status (TICS) 73 global cognitive status 

Rey Auditory Verbal Learning Test (RAVLT) 74 verbal memory 
Behavioral assessment of the dysexecutive syndrome 

(BADS) 75 
executive disinhibition 

Timed Up and Go (TUG) 76 mobility 
Quality of Life scale (QOL) 77 quality of life 
Short Form Survey (SF-12) 78 physical and mental health 

Prospective and Retrospective Memory 
Questionnaire (PRMQ) 80 

memory 

Geriatric Depression Scale (GDS) 81 depression 
Generalized Anxiety Disorder (GAD) 82 anxiety 
Dysexecutive Questionnaire (DEX) 83 executive function 

Instrumental Activities of Daily Living – 
Compensation Scale (IADL-C) 89 

everyday function 

 402 

 403 

Because this study was conducted during the COVID-19 pandemic, tests were selected that 404 

could be administered remotely. The Telephone Interview for Cognitive Status (TICS)73 is 405 

administered remotely over a phone and consists of tasks for the participant to perform including 406 

word list learning, counting backward, and finger tapping. Other tests, including RAVLT and 407 

BADS, were adapted for administration using video conference software. Rey’s Auditory Verbal 408 

Learning Test (RAVLT)74 consists of an oral presentation of two lists for immediate recall to 409 

assess verbal memory. The Behavioural Assessment of the Dysexecutive Syndrome (BADS)75 is 410 

used to evaluate problems that arise during daily activities due to executive disinhibition. This 411 

assessment contains thirteen tasks that focus on functional abilities such as planning, problem 412 

solving, and temporal judgment. The Timed Up and Go (TUG) test76 requires the participant to 413 

stand up from a chair, walk forward, turn around, and return to the chair, which was administered 414 

while being remotely monitored by an experimenter. The score reflects the time taken to 415 

complete the task and provides an indicator of mobility as well as cognitive health. 416 

The next set of assessments are questionnaires that were delivered and answered over video 417 

communication. These include the Quality of Life (QOL) scale77 that measures the domains of 418 

material and physical well-being, relationships, social activities, personal development, and 419 

recreation; the short form 12 (SF-12) survey78 that asks questions assessing general health, 420 

physical well-being, vitality, social functioning, emotions, and mental health (we separate this 421 

into two scores corresponding to the physical and mental health components)79; the Prospective 422 

and Retrospective Memory Questionnaire (PRMQ)80 that contains questions about prospective 423 

(looking into the future) and retrospective (looking into the past) memory slips in everyday life; 424 

the Geriatric Depression Scale (GDS)81 in which participants answer questions in reference to 425 

how they felt over the past week to measure depressive symptoms; the seven-item version of the 426 

Generalized Anxiety Disorder questionnaire (GAD-7)82 that asks participants how often during 427 

the last two weeks they were bothered by specific anxiety symptoms; and the Dysexecutive 428 

Functioning Questionnaire (DEX)83 that assesses multiple cognitive-behavioral problems such as 429 
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sustaining attention, inhibiting inappropriate behaviors, or switching between multiple problem-430 

solving strategies. 431 

The last questionnaire, the Instrumental Activities of Daily Living – Compensation (IADL-C) 432 

scale84, was recently designed to assess the functional domains of money and self-management, 433 

home-based daily tasks, travel and event memory, and social skills. Unlike earlier assessments, 434 

the IADL-C scale is sensitive to the use of compensatory strategies in performing daily tasks that 435 

help to overcome memory limitations. The tests and questionnaires provide insights on different, 436 

though overlapping, aspects of cognitive health. We hypothesize that cognitive health state is 437 

reflected in behavior patterns and thus behavior markers can be used to predict these health 438 

assessment scores. 439 

 440 

6. Results 441 

We evaluate sensor-based health assessment in two steps. First, we evaluate the performance 442 

of our time series imputation method using complete sets of data. Second, we evaluate the 443 

performance of our complete method in predicting clinical health measures. 444 

 445 

6.1. Evaluation of Data Imputation 446 

We evaluate the accuracy of time series data imputation using NMAE. The participants and 447 

days are selected on the criterion that data are complete between 8:00am and 10:00pm on the 448 

corresponding date, to provide ground truth for evaluation. In our study, 5 participants collected 449 

data that meet this constraint for at least 15 days. We therefore evaluate the imputation of 450 

accelerometer and gyroscope sensor values for 15 days of data for 5 participants. In the case of 451 

approaches that require model training, we utilize 12 days of data for training for each 452 

participant. For all cases, we utilize 3 days of data for testing. The results are thus averaged over 453 

15 days of continuous sensor readings. For each day, we extract a portion of the data, impute the 454 

missing values, and compare it with the ground truth. We vary the percentage of missing entries 455 

(10%, 20%, or 30%) and the size of the missing data gap (1 second, 1 minute, 1 hour, 12 hours). 456 

We randomly select the beginning of each missing data sequence and average results over three 457 

random selections. 458 

 459 

 460 

Table 4. NMAE of imputation methods, each averaged over 5 participants, 4 gap sizes, and 3 461 

random trials.  * = the difference in performance is statistically significant (p<.05). 462 

 Carry 

forward 

Carry 

backward 

Bidirect 

carry 

Neural 

network 

MTS   

GAN 

KNN 

(k=3) 
Mink 

10% 0.0184* 0.0195* 0.0180* 0.0251* 0.3050* 0.1381* 0.0169 

20% 0.0244* 0.0245* 0.0235* 0.0265 0.2944* 0.1907* 0.0220 

30% 0.0225* 0.0237* 0.0224* 0.0290* 0.2949* 0.2032* 0.0207 

Average 0.0216* 0.0224* 0.0211* 0.0268* 0.2981* 0.1773* 0.0197 

 463 

 464 

 465 

 466 

 467 
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Table 4 summarizes the results, comparing Mink with several baseline methods. The carry 468 

forward, carry backward, bidirectional carry, and MTS-GAN baselines are described in Section 469 

4.1. We also include a two-layer neural network with 100 hidden nodes, a rectified linear 470 

activation function, and a learning rate of 0.001 as a baseline regressor. The results in Table 4 are 471 

computed based using 12 days of data for training and the following 3 days of data for testing 472 

data. Results are averaged over 5 participants, 4 alternative gap sizes, and 3 runs with different 473 

random seeds. We employ a paired t-test to determine the statistical significance of the 474 

difference in performance between each baseline method and Mink. As the results indicate, the 475 

adversarial network provides realistic values, even when a large chunk of consecutive readings is 476 

missing. Additionally, this approach outperforms the baseline methods for time series 477 

imputation. Because the imputation results are promising for Mink, we next employ the Mink 478 

GAN to impute values used for creating the digital behavior markers and inferring clinical 479 

measures. 480 

 481 

Table 5. Pearson correlation of clinical measures using baseline and Mink imputation methods. 482 

Measure Constant 
Bidirectional 

carry 
Mink 

TICS 0.6185 0.6711 0.4762 
RAVLT 0.0743 0.2502 0.3328 
BADS 0.4818 0.4487 0.5292 
TUG 0.5076 0.4138 0.6119 
QOL 0.0172 0.1055 0.2436 

SF-12 Physical 0.4831 0.7084 0.6133 
SF-12 Mental 0.5347 0.6162 0.7623 

PRMQ 0.0006 0. 5080 0.3984 
GDS 0.1079 0.3927 0.1230 
GAD 0.4574 0.1260 0.2125 
DEX 0.1902 0.1859 0.4401 

IADL-C 0.2115 0.4892 0.4095 
Mean (SD) 0.3071 (0.2175) 0.4096 (0.1972) 0.4294 (0.1771) 

 483 

 484 

6.2. Evaluation of Clinical Measure Prediction 485 

Finally, we evaluate the predictive performance of the clinical measures for both Mink-based 486 

imputation, imputation using constant values, and imputation using bidirectional carry (the 487 

second highest-performing imputation method in the previous experiment). For this experiment, 488 

we predict the precise numeric score for each assessment measure. Because each measure uses a 489 

different score range, we employ the approach used in other studies to evaluate performance by 490 

computing correlation between predicted and ground truth scores38,42. The results of this 491 

experiment are based on leave-one-subject-out testing and are summarized in Table 5. We 492 

observe small correlation for GDS (r=0.1230), GAD (r=0.2125), and QOL (r=0.2436), moderate 493 

correlation for RAVLT (r=0.3328), PRMQ (r=0.3984), IADL-C (r=0.4095), DEX (r=0.4401), 494 

TICS (r=0.4762), and BADS (r=0.5292), and large correlation for TUG (r=0.6119), SF-12 495 

Physical (r=0.6133), and SF-Mental (r=0.7623). The mean of the correlation values is 0.4294. 496 
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The generative imputation method employed by Mink does result in an improvement in the mean 497 

of the correlation values (0.4294, in comparison with 0.4096 for bidirectional carry and 0.3071 498 

for replace-by-constant). 499 

 500 

7. Discussion and Conclusions 501 

The long-term goal of this work is to automate health assessment from sensor-observed 502 

longitudinal behavior data. In this paper, we address a significant obstacle to this goal by 503 

designing a method to impute missing values in the time series data. The results indicate that a 504 

generative architecture can be employed for this process. Considering both temporal and 505 

between-feature relationships is valuable for such multivariate sensor readings. The results 506 

indicate that the generative imputation method outperforms straightforward baseline methods. 507 

Additionally, the resulting behavior markers are predictively correlated with collected clinical 508 

measures. 509 

While Mink outperforms a baseline imputation method for clinical measure prediction, the 510 

results are not consistent across all clinical measures. One explanation for this finding is that the 511 

variance in the generated values can result in larger differences from true values than constant 512 

values. While the errors do not occur as often as with the baseline methods, the magnitude of the 513 

error may mislead the regression forest. This possibility that the GAN may generate out-of-range 514 

values is a limitation of the current approach and can be addressed in future versions of the 515 

algorithm. 516 

We also observe that the predictive performance is lower overall for measures with a smaller 517 

variance in the collected data. This is due in part to the limited sample size and need for greater 518 

diversity in the data. This additional study limitation will be addressed in the future by recruiting 519 

a larger population that represents diversity in age, demographics, and health conditions. 520 

In the current work, we assume that the time and duration of missing readings are random 521 

values. In practical settings, the missing values may be related to patient physical conditions 522 

(e.g., an illness or trip during which the person does not wear the device) or external conditions 523 

(e.g., a power outage that prevents the device battery from fully charging). Future enhancements 524 

can include modeling such conditions and utilizing the information to improve the design and 525 

evaluation of imputation. 526 

Mink successfully outperformed baseline methods in our experiments, but there is room for 527 

improvement. We hypothesize that obtaining observational data from a larger and more diversity 528 

set of complete days will improve GAN performance and will test this hypothesis in future 529 

studies. Additionally, while a generative adversarial network offers an effective way to generate 530 

a sequence of missing sensor readings, they are known to suffer from possible mode collapse. As 531 

a result, the trained network may generate only a small number of distinct types of readings. 532 

While the generated values are realistic, they may lack the variability that exists in the real data. 533 

Researchers have investigated strategies to reduce mode collapse85,86. A future step of our work 534 

may include addressing this limitation by adapting these strategies for use in time series data. 535 

 536 

Acknowledgements 537 

The authors would like to thank Maureen Schmitter-Edgecombe and Justin Frow for their 538 

help with data collection. This work is supported in part by National Institutes of Health grant 539 

R41EB029774. 540 



16  

 541 

 542 

References 543 

1.  Elflein J. Amount of time U.S. primary care physicians spent with each patient as of 2018. 544 

Statista. Published 2019. Accessed June 13, 2020. 545 

https://www.statista.com/statistics/250219/us-physicians-opinion-about-their-546 

compensation/ 547 

2.  Iriondo J, Jordan J. Older People Projected to Outnumber Children for First Time in U.S. 548 

History.; 2018. https://www.census.gov/newsroom/press-releases/2018/cb18-41-549 

population-projections.html 550 

3.  Center for Medicare and Medicaid Services. NHE Fact Sheet. Center for Medicare and 551 

Medicaid Services. Published online 2018. https://www.cms.gov/Research-Statistics-Data-552 

and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet 553 

4.  Administration On Aging. Aging statistics. ACL. Published online 2018. 554 

https://acl.gov/aging-and-disability-in-america/data-and-research/profile-older-americans 555 

5.  Office of The Assistant Secretary for Planning and Evaluation. National Plan to Address 556 

Alzheimer’s Disease: 2018. ASPE. Published 2019. https://aspe.hhs.gov/national-plans-557 

address-alzheimers-disease 558 

6.  Fowler NR, Head KJ, Perkins AJ, et al. Examining the benefits and harms of Alzheimer’s 559 

disease screening for family members of older adults: study protocol for a randomized 560 

controlled trial. Trials. 2020;21. 561 

7.  Herman WH, Ye W, Griffin SJ, Simmons RK, Davies MJ, Khunti K. Early detection and 562 

treatment of Type 2 diabetes reduce cardiovascular morbidity and mortality: A simulation 563 

of the results of the Anglo-Danish-Dutch study of intensive treatment in people with 564 

screen-detected diabetes in primary care. Diabetes Care. Published online 2015. 565 

8.  Akl A, Snoek J, Mihailidis A. Unobtrusive detection of mild cognitive impairment in 566 

older adults through home monitoring. IEEE Journal of Biomedical and Health 567 

Informatics. 2017;21(2):339-348. 568 

9.  Spruijt-Metz D. Etiology, treatment and prevention of obesity in childhood and 569 

adolescence: A decade in review. Journal of Research in Adolescence. 2011;21(1):129-570 

152. 571 

10.  Lee MK, Oh J. Health-related quality of life in older adults: Its association with health 572 

literacy, self-efficacy, social support, and health-promoting behavior. Healthcare. 573 

2020;8(4):407. 574 

11.  Nelson BW, Pettitt A, Flannery JE, Allen NB. Rapid assessment of psychological and 575 

epidemiological correlates of COVID-19 concern, financial strain, and health-related 576 

behavior change in a large online sample. PLoS ONE. 2020;15(11):e0241990. 577 

12.  Betsinger TK, DeWitte SN. Toward a bioarchaeology of urbanization: Demography, 578 

health, and behavior in cities in the past. American Journal of Physical Anthropology. 579 

2021;175(S72):79-118. 580 

13.  Gorman J. “Ome,” the sound of the scientific universe expanding. The New York Times. 581 

https://www.nytimes.com/2012/05/04/science/it-started-with-genome-omes-proliferate-in-582 

science.html?_r=1. Published 2012. 583 

14.  Asim Y, Azam MA. Context-aware human activity recognition (CAHAR) in-the-wild 584 



17  

using smartphone accelerometer. IEEE Sensors. 2020;8:4361-4371. 585 

15.  Vaizman Y, Ellis K, Lanckriet G. Recognizing detailed human context in the wild from 586 

smartphones and smartwatches. IEEE Pervasive Computing. 2017;16(4):62-74. 587 

16.  Tran DH. Automated change detection and reactive clustering in multivariate streaming 588 

data. In: IEEE-RIVF International Conference on Computing and Communication 589 

Technologies. ; 2019:1-6. 590 

17.  Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in 591 

epidemiological and clinical research: Potential and pitfalls. BMJ. 2009;338:b2393. 592 

18.  Austin PC, White IR, Lee DS, van Buuren S. Missing data in clinical research: A tutorial 593 

on multiple imputation. Canadian Journal of Cardiology. 2021;37(9):1322-1331. 594 

19.  Lachin JM. Fallacies of last observation carried forward analyses. Clinical Trials. 595 

2016;13(2):161-168. 596 

20.  Bokde N, Alvarez FM, Beck MW, Kulat K. A novel imputation methodology for time 597 

series based on pattern sequence forecasting. Pattern Recognition Letters. 2018;116:88-598 

96. 599 

21.  Fang C, Wang C. Time series data imputation: A survey on deep learning approaches. 600 

arXiv. 2020;2011.11347. 601 

22.  Cao W, Wang D, Li J, Zhou H, Li L, Li Y. BRITS: Bidirectional recurrent imputation for 602 

time series. In: Neural Information Processing Systems. ; 2018:6776-6786. 603 

23.  Wu X, Mattingly S, Mirjafari S, Huang C, Chawla N V. Personalized imputation on 604 

wearable sensory time series via knowledge transfer. In: ACM International Conference 605 

on Information and Knowledge Management. ; 2020:1625-1634. 606 

24.  Yoon S, Sull S. GAMIN: Generative adversarial multiple imputation network for highly 607 

missing data. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. ; 608 

2020:8456-8464. 609 

25.  Yoon J, Jordon J, van der Schaar M. GAIN: Missing data imputation using generative 610 

adversarial networks. In: International Conference on Machine Learning. ; 2018. 611 

26.  Luo Y, Zhang Y, Cai X, Yuan X. E2gan: end-to-end generative adversarial network for 612 

multivariate time series imputation. In: International Joint Conference on Artificial 613 

Intelligence. ; 2019:3094-3100. 614 

27.  Guo Z, Wan Y, Ye H. A data imputation method for multivariate time series based on 615 

generative adversarial network. Neurocomputing. 2019;360(185-197). 616 

28.  Chen K, Zhang D, Yao L, Guo B, Yu Z, Liu Y. Deep learning for sensor-based human 617 

activity recognition: Overview, challenges and opportunities. Journal of the ACM. 618 

2020;37(4):111. 619 

29.  Bulling A, Blanke U, Schiele B. A tutorial on human activity recognition using body-worn 620 

inertial sensors. ACM Computing Surveys. 2014;46(3):107-140. 621 

30.  Tian Y, Zhang J, Chen L, Geng Y, Wang X. Selective ensemble based on extreme 622 

learning machine for sensor-based human activity recognition. Sensors. 623 

2019;19(16):3468. 624 

31.  Nazabal A, Garcia-Moreno P, Artes-Rodriguez A, Ghahramani Z. Human activity 625 

recognition by combining a small number of classifiers. IEEE Journal of Biomedical and 626 

Health Informatics. 2016;20(5):1342-1351. 627 

32.  Wang J, Chen Y, Hao S, Peng X, Hu L. Deep learning for sensor-based activity 628 



18  

recognition: A survey. Pattern Recognition Letters. 2019;119:3-11. 629 

33.  Hammerla NY, Halloran S, Ploetz T. Deep, convolutional, and recurrent models for 630 

human activity recognition using wearables. In: International Joint Conference on 631 

Artificial Intelligence. ; 2016. 632 

34.  Ploetz T, Guan Y. Deep learning for human activity recognition in mobile computing. 633 

Computer. 2018;51(5):50-59. 634 

35.  Guan Y, Ploetz T. Ensembles of deep LSTM leaners for activity recognition using 635 

wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous 636 

Technologies. Published online 2017:11. 637 

36.  Culman C, Aminikhanghahi S, Cook DJ. Easing power consumption of wearable activity 638 

monitoring with change point detection. IEEE Transactions on Mobile Computing. 639 

Published online 2019. 640 

37.  Kankanhalli A, Saxena M, Wadhwa B. Combined interventions for physical activity, 641 

sleep, and diet using smartphone apps: A scoping literature review. International Journal 642 

of Medical Informatics. 2019;123:54-67. 643 

38.  Sprint G, Cook DJ. Unsupervised detection and analysis of changes in everyday physical 644 

activity data. Journal of Biomedical Informatics. Published online 2016. 645 

39.  de Zambotti M, Cellini N, Goldstone A, Colrain IM, Baker FC. Wearable sleep 646 

technology in clinical and research settings. Medicine and Science in Sports and Exercise. 647 

2019;51(7):1538-1557. 648 

40.  Wang R, Wang W, DaSilva A, et al. Tracking depression dynamics in college students 649 

using mobile phone and wearable sensing. Proceedings of the ACM on Interactive, 650 

Mobile, Wearable and Ubiquitous Technologies. 2018;2(1):1-26. 651 

41.  Dhana K, Evans DA, Rajan KB, Bennett DA, Morris MC. Healthy lifestyle and the risk of 652 

Alzheimer dementia: Findings from 2 longitudinal studies. Neurology. 2020;95(4):e374-653 

e383. 654 

42.  Alberdi Aramendi A, Weakley A, Schmitter-Edgecombe M, et al. Smart home-based 655 

prediction of multi-domain symptoms related to Alzheimer’s Disease. IEEE Journal of 656 

Biomedical and Health Informatics. 2018;22(5):1720-1731. 657 

doi:10.1109/JBHI.2018.2798062 658 

43.  Li J, Rong Y, Meng H, Lu Z, Kwok T, Cheng H. TATC: Predicting Alzheimer’s disease 659 

with actigraphy data. In: ACM SIGKDD International Conference on Knowledge 660 

Discovery and Data Mining. ; 2018:509-518. 661 

44.  Yoon J, Jarrett, Daniel, van der Schaar M. Time-series generative adversarial networks. 662 

In: Conference on Neural Information Processing Systems. ; 2019. 663 

45.  Menendez ML, Pardo JA, Pardo L, Pardo MC. The Jensen-Shannon divergence. Journal 664 

of the Franklin Institute. 1997;334(2):307-318. 665 

46.  Kachuee M, Karkkainen K, Goldstein O, Darabi S, Sarrafzadeh M. Generative imputation 666 

and stochastic prediction. IEEE Transactions on Pattern Analysis and Machine 667 

Intelligence. Published online 2021. 668 

47.  van Erven T, Harremos P. Renyi divergence and Kullback-Leibler divergence. IEEE 669 

Transactions on Information Theory. 2014;60(7):3797-3820. 670 

48.  Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. 671 

Advances in Neural Information Processing Systems. 2014;27:1-9. 672 



19  

49.  Marteau TM, Hollands GJ, Fletcher PC. Changing human behavior to prevent disease: 673 

The importance of targeting automatic processes. Science. 2012;337:1492-1495. 674 

50.  U.S. Department of Health and Human Services. Healthy People 2020.; 2015. 675 

51.  Tourangeau R, Rips LJ, Rasinski K. The Psychology of Survey Response. Cambridge 676 

University Press; 2000. 677 

52.  Palmer MG, Johnson CM. Experimenter presence in human behavior analytic laboratory 678 

studies: Confound it? Behavior Analysis: Research and Practice. 2019;19(4):303-314. 679 

53.  Li H, Abowd GD, Ploetz T. On specialized window lengths and detector based human 680 

activity recognition. In: ACM International Symposium on Wearable Computers. ; 681 

2018:67-71. 682 

54.  Aminikhanghahi S, Cook DJ. Enhancing activity recognition using CPD-based activity 683 

segmentation. Pervasive and Mobile Computing. 2019;53(75-89). 684 

55.  Wan J, Li M, O’Grady M, Gu X, Alawlaqi M, O’Hare G. Time-bounded activity 685 

recognition for ambient assisted living. IEEE Transactions on Emerging Topics in 686 

Computing. Published online 2018. 687 

56.  Du Y, Lim Y, Tan Y. A novel human activity recognition and prediction in smart home 688 

based on interaction. Sensors. 2019;19:4474. 689 

57.  Bharti P, De D, Chellappan S, Das SK. HuMAn: Complex activity recognition with multi-690 

modal multi-positional body sensing. IEEE Transactions on Mobile Computing. 691 

2019;18(4):857-870. 692 

58.  Kwon M-C, You H, Kim J, Choi S. Classification of various daily activities using 693 

convolution neural network and smartwatch. In: IEEE International Conference on Big 694 

Data. ; 2018. 695 

59.  Nweke HF, Teh YW, Al-Garadi MA, Alo UR. Deep learning algorithms for human 696 

activity recognition using mobile and wearable sensor networks: State of the art and 697 

research challenges. Expert Systems with Applications. 2018;105:233-261. 698 

60.  Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL. A public domain dataset for human 699 

activity recognition using smartphones. In: European Symposium on Artificial Neural 700 

Networks, Computational Intelligence and Machine Learning. ; 2013. 701 

61.  Stisen A, Blunck H, Bhattacharya S, et al. Smart devices are different: Assessing and 702 

mitigating mobile sensing heterogeneities for activity recognition. In: ACM Conference on 703 

Embedded Networked Sensor Systems. ; 2015:127-140. 704 

62.  Kwapisz JR, Weiss GM, Moore SA. Activity recognition using cell phone accelerometers. 705 

In: International Workshop on Knowledge Discovery from Sensor Data. ; 2010. 706 

63.  Lockhart JW, Weiss GM, Xue JC, Gallagher ST, Grosner AB, Pulickal TT. Design 707 

considerations for the Wisdm smart phone-based sensor mining architecture. In: 708 

International Workshop on Knowledge Discovery from Sensor Data. ; 2011:25-33. 709 

64.  Cook DJ, Schmitter-Edgecombe M, Jonsson L, Morant A V. Technology-enabled 710 

assessment of functional health. IEEE Reviews in Biomedical Engineering. 2018;12:319-711 

332. 712 

65.  Dodge HH, Mattek NC, Austin D, Hayes TL, Kaye JA. In-home walking speeds and 713 

variability trajectories associated with mild cognitive impairment. Neurology. 714 

2012;78(24):1946-1952. 715 

66.  Kaye J, Mattek N, Dodge HH, et al. Unobtrusive measurement of daily computer use to 716 



20  

detect mild cognitive impairment. Alzheimer’s and Dementia. 2014;10(1):10-17. 717 

67.  Petersen J, Austin D, Mattek N, Kaye J. Time out-of-home and cognitive, physical, and 718 

emotional wellbeing of older adults: A longitudinal mixed effects model. PLoS ONE. 719 

Published online 2015. 720 

68.  Petersen J, Larimer N, Kaye JA, Pavel M, Hayes TL. SVM to detect the presence of 721 

visitors in a smart home environment. In: International Conference of the IEEE 722 

Engineering in Medicine and Biology Society. ; 2012:5850-5853. 723 

69.  Cook DJ. Sensors in support of aging-in-place: The good, the bad, and the opportunities. 724 

In: National Academies Workshop on Mobile Technology for Adaptive Aging. ; 2019. 725 

70.  Cook D, Schmitter-Edgecombe M. Fusing ambient and mobile sensor features into a 726 

behaviorome for predicting clinical health scores. IEEE Access. 2021;2:65033-65043. 727 

71.  Schmitter-Edgecombe M, Sumida CA, Cook DJ. Bridging the gap between performance-728 

based assessment and self-reported everyday functioning: An ecological momentary 729 

assessment approach. The Clinical Neuropsychologist. 2020;34(4):678-699. 730 

72.  WSU CASAS. Tools. Published 2021. http://casas.wsu.edu/tools/ 731 

73.  Fong TG, Fearing MA, Jons RN, et al. The Telephone Interview for Cognitive Status: 732 

Creating a crosswalk with the Mini-Mental State Exam. Alzheimer’s and Dementia. 733 

2009;5(6):492-497. 734 

74.  Peaker A, Stewart LE. Rey’s auditory verbal learning test – A review. In: Crawford JR, 735 

Parker DM, eds. Developments in Clinical and Experimental Neuropsychology. Plenum 736 

Press; 1989. 737 

75.  Wilson BA, Alderman N, Burgess PW, Emslie H, Evans JJ. Behavioural Assessment of 738 

the Dysexecutive Syndrome. Thames Valley Test Company; 1996. 739 

76.  Sprint G, Cook D, Weeks D. Towards automating clinical assessments: A survey of the 740 

Timed Up and Go (TUG). Biomedical Engineering, IEEE Reviews in. 2015;8:64-77. 741 

doi:10.1109/RBME.2015.2390646 742 

77.  Burckhardt CS, Answerson KL. The Quality of Life Scale (QOLS): Reliability, validity, 743 

and utilization. Health Quality of Life Outcomes. 2003;1:60. 744 

78.  Huo T, Guo Y, Shenkman E, Muller K. Assessing the reliability of the short form 12 (SF-745 

12) health survey in adults with mental health conditions: a report from the wellness 746 

incentive and navigation (WIN) study. Health Quality of Life Outcomes. 2018;16:34. 747 

79.  Ware JE, Koskinski M, Keller SD. SF-12: How to Score the SF-12 Physical and Mental 748 

Health Summary Scores.; 1995. 749 

80.  Smith G, Della Sala S, Logie RH, Maylor EA. Prospective and retrospective memory in 750 

normal aging and dementia: A questionnaire study. Memory. 2000;8:311-321. 751 

81.  Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS): Recent evidence and 752 

development of a shorter version. Clinical Gerontologist. 1986;5:165-173. 753 

82.  Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized 754 

anxiety disorder: the GAD-7. Archives of Internal Medicine. 2006;166(10):1092-1097. 755 

83.  Gerstorf D, Siedlecki KL, Tucker-Drob EM, Salthouse TA. Executive dysfunctions across 756 

adulthood: Measurement properties and correlates of the DEX self-report questionnaire. 757 

Neuropsychology, Development, and Cognition Section B, Aging, Neuropsychology and 758 

Cognition. 2008;15(4):424-445. 759 

84.  Schmitter-Edgecombe M, Parsey C, Lamb R. Development and Psychometric Properties 760 



21  

of the Instrumental Activities of Daily Living: Compensation Scale. Archives of Clinical 761 

Neuropsychology. 2014;29(8):776-792. doi:10.1093/arclin/acu053 762 

85.  Yu S, Zhang K, Xiao C, Huang JZ, Li MJ, Onizuka M. HSGAN: Reducing mode collapse 763 

in GANs by the latent code distance of homogeneous samples. Computer Vision and 764 

Image Understanding. 2022;214:103314. 765 

86.  Zuo Z, Zhao L, Li A, et al. Dual distribution matching GAN. Neurocomputing. 766 

2022;478:37-48. 767 

87.  Williams JA, Cook DJ. Forecasting behavior in smart homes based on sleep and wake 768 

patterns. Technology and Health Care. 2017;25(1). doi:10.3233/THC-161255 769 

88.  Wang W, Harari GM, Wang R, et al. Sensing behavioral change over time: Using within-770 

person variability features from mobile sensing to predict personality traits. Proceedings 771 

of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 772 

2018;2(3):141. 773 

89.  Schmitter-Edgecombe M, Parsey CM, Lamb R. Development and psychometric properties 774 

of the instrumental activities of daily living – compensation scale (IADL-C). 775 

Neuropsychology. Published online 2014. 776 

 777 


