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1 INTRODUCTION

The connection between behavior and health is undeniable. Unhealthy behaviors and habits are implicated in
as much as 40% of premature deaths, in addition to their unfavorable effects on health disparities, quality of
life, and economics [1]. Advances in sensor-driven technologies for behavior monitoring suggest that these
technologies can monitor intervention adherence and impact in the wild [2]-[4]. However, our current
understanding of intervention on a person’s entire lifestyle is limited because studies have been based on static
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“snapshots” or assessment of a specific set of behavior parameters (e.g. sleep quality, activity level), rather
than data-driven analysis of overall behavior change. Given this limitation, there is a need to introduce
algorithmic methods for quantifying behavior change that is characterized by a person’s entire pattern of
behavior.

In this work, we introduce an automated method to perform continuous monitoring and change detection of
daily activities, in naturalistic settings, using sensor-based observation and machine learning-based data
analysis. To do this, we perform the steps shown in Figure 1. We collect wearable sensor data for two months,
while subjects perform their daily routines. We process the collected sensor data by merging data from multiple
watches, imputing missing values, and automatically associating data sequences with corresponding activity
labels. Next, we extract digital behavior markers from activity-labeled data that summarize the key features of
each person’s behavior on an hourly and daily basis. Finally, we apply a behavior change detection to the digital
behavior markers. This algorithm quantifies and describes behavior differences between time points.
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Figure 1: Process of detecting behavior change with smartwatches. Data are continuously collected, merged, completed, and

labeled with inferred activities. From these data, digital markers are extracted for each hour and day. We quantify the amount
of change from begin to end of data collection for the experiment and non-intervention groups using behavior change detection

and compare amount of change between the two groups.

To validate our approach, we analyze data from the active condition of a pilot multi-domain Brain Health
Intervention (BHI) for midlife and older adults. We also compare the data with an age-matched control group
that did not receive an intervention. The seven-week pilot intervention, called B-Fit, was designed to improve
engagement in aging brain health behaviors by providing brain health psychoeducation combined with individual
behavior goal setting, group problem solving, and social support [5]. Participants wore smartwatches during the
intervention that tracked behaviors. Control participants similarly wore smartwatches. Seven risk factors were
targeted by the intervention: nutrition, stress, social engagement, cognitive engagement, cardiovascular risk
factors, physical activity, and sleep. To promote new patterns of engagement in healthy brain aging behaviors
and better sustain behavior change, participants set individualized, intrinsically motivating, and manageable



new goals (5-10 minute) each week (e.g., take stairs rather than elevator). Results from the primary analysis
revealed that self-reported engagement in healthy brain aging behaviors was higher for the B-Fit condition and
an education-only condition at post-intervention, while there was no difference for the waitlist condition.
Furthermore, after adjusting for baseline brain health behaviors, compared to the waitlist condition, participants
in the B-Fit condition self-reported greater engagement in healthy brain aging behaviors post-intervention [5].

Because BHI is a multi-domain intervention where participants set their own diverse goals, computational
methods are needed to compliment self-report data by providing a method to objectively detect and quantify
change in overall behavior patterns, rather than analyzing a small set of target markers. We initially apply our
proposed computational approach to synthetic data to validate their ability to detect known embedded changes
in behavior data. We then apply our methods to smartwatch data collected from BHI and control subjects. We
hypothesize that behavior change over time will be exhibited among BHI subjects. Because change can be
attributed to natural behavior variability, we further postulate that behavior change will be larger for BHI subjects
than for control subjects. In addition to quantifying change over time for the participants, we also employ
supervised learning to automatically classify each subject as belonging to the intervention or control group,
based solely on changes in the extracted digital markers between baseline and the end of the data collection
period.

This article makes the following contributions: (1) We offer a novel method to extract digital markers from
time series sensor data that characterize a person’s activity routine. (2) We introduce a way to analyze behavior
across time based on a permutation detection algorithm. (3) We computationally analyze the impact of a multi-
domain brain intervention study, contrasting behavior change of intervention participants with an age-matched
control group.

2 RELATED WORK

2.1 Activity Learning

To characterize a person’s overall behavior routine, we extract digital behavior markers from sensor data that
are automatically labeled with corresponding activity categories. Performing human activity recognition from
wearable sensors has become a popular topic for researchers to investigate [6], [7]. Because we can collect
uninterrupted data in all locations each person visits, wearable sensors are a natural choice for this investigation.
Earlier approaches to activity recognition consider many diverse learning models, including decision trees,
nearest neighbors, clusters, and classifier ensembles [8]-[10]. With the rising popularity of deep learning, these
methods have also been explored for their ability to learn deep features that are useful in expressing sensed
activities [11]-[14]. The field has matured to the point that numerous public datasets are now available for
comparative analysis of recognition methods [11].

Limitations with many of these existing methods is that they focus on basic, repetitive movement types and
are typically evaluated in laboratory settings. Recognizing postures and ambulatory motions such as sitting,
standing, climbing, lying down, and running are useful for monitoring gait characteristics and activity levels.
However, we are interested in determining change to a person’s entire behavioral routine. This is frequently
characterized by more complex patterns, such as basic and instrumental activities of daily living (iIADLs) [15],
[16]. A few researchers consider activity categories that combine ambulation with context (e.g., standing indoors
versus outdoors) [8], [17], [18]. They accomplish this by adding location information. This location information



is provided by ambient motion sensors inside a specific physical environment [17] or a grid location within a
specific physical region [8]. A challenge with analyzing specific locations is that the insights do not generalize
well to new individuals. Lin and Hsu [19] introduced generalizable location features that we employ in our
method, including heading change rate, distance covered, and velocity change rate. We further integrate ideas
from Boukhechba et al. [20], who cluster location readings to detect person-specific frequented spots. While we
extend these previous methods to perform real-time activity labeling of smartwatch sensor data in naturalistic
settings, the success these researchers have documented in recognizing a wide assortment of activities
suggests the general applicability of activity learning and labeling for smartwatch data.

2.2 Digital Behavior Markers

Sensor data offer substantial insights on a person’s behavior as well as their health. Now that wearable sensors
are decreasing in cost and are deployable in real-world settings, researchers have discovered that they can link
behavior interventions with specific, sensor-observed target behavior outcomes. As wearable sensor systems
also become more ubiquitous, researchers have increasingly used these platforms to impact and measure
change in human behavior. Typically, these prior works target a specific behavior. Popular target behaviors
include activity levels [21], [22] and sleep [23]. In these cases, change can be quantified by a single variable
such as step counts, sleep duration, or a clinical score [24]. Jain et al. designed a method to analyze the
univariate change in the state of a person or place, such as the amount of activity in a region of the home [25].
Wang et al. calculated the variability of a single variable, then joined the variability of multiple features into a
single vector to predict personality traits [26]. In a method that utilizes mobile platforms for intervention delivery
as well as evaluation, Costa et al. [27] delivered haptic feedback to participants intended to slow their heart
beats while completing math tests. They observed impacts based on self-reported anxiety, sensor-measured
heart rate variability, and test performance. In a study conducted by Stanley et al. [28], individuals with dementia
received coaching in behavior techniques designed to reduce anxiety. Here, outcomes were measured through
clinician-rated and collateral report clinical scores targeted at assessing anxiety. Additional studies monitor
single wearable markers to assess intervention impact for target conditions such as substance use disorder
[29] and diabetes management [30].

In other work, researchers targeted specific sensor-observed behavior markers as a mechanism for
assessing the relationship between lifestyle and health. Specifically, Dhana et al. [31] quantify healthy behavior
as a combination of nonsmoking, physical activity, alcohol consumption, nutrition, and cognitive activities.
Individuals who scored higher on this behavior metric had lower risk of Alzheimer dementia. Other researchers
have also found that sensor-based behavior patterns are predictive of cognitive health [32],[33]. Li et al. [33]
found that physical activity was predictive of Alzheimer’s disease, while Aramendi et al. [32] were able to predict
cognitive health and mobility from activity-labeled sensor data.

These studies provide evidence that wearable sensors afford the ability to monitor intervention impact and
to assess a person’s cognitive health. Within this area of investigation, our proposed approach is unique
because we investigate a computational method to analyze intervention impact on the pattern of a person’s
activity-based routine. This holistic approach to sensor analysis of behavior is motivated by the design of a
holistic, customized, sustainable healthy behavior intervention.



2.3 Time Series Change Detection

A critical component of this work is automatically detecting and quantifying change in behavior data observed
longitudinally. Multiple options are available for computing change between two windows of multivariate time
series data [34]. Supervised methods can classify a pair of time windows as “no change” or “change”. Such
methods can also identify changes of a specific nature (e.g., a change from sedentary to active behavior), but
these algorithms must be supplied with a sufficient amount of labeled training data [35]. Unsupervised
approaches have been introduced as well. While some methods rely on pre-designed parametric models [36],
[37], others introduce more flexible non-parametric variations by directly estimating the ratio of probability
densities for the two samples. In these cases, a larger ratio implies a greater likelihood that a change occurred
between the two samples. Methods that fit in this category are KLIEP which employs Kullback-Leibler (KL)
divergence as a ratio estimator [38], uLSIF which employs Pearson divergence [38], and Relative uLSIF
(RULSIF) [38]. In this work, we utilize a permutation-based change detection method. This method is not only
suited to comparing larger windows of sensor data but also incorporates a novel permutation mechanism to
determine the significance of change over time.

2.4 Brain Health Intervention

An accumulating body of research suggests that adopting preventative health behaviors may promote healthy
brain aging and slow cognitive decline [39]. Given that the etiology of dementia is heterogeneous and influenced
by multiple risk factors, several recent large scale prevention trials have focused on evaluation of multi-domain
interventions [40], [41]. However, these interventions are currently limited by expensive treatment regiments
and highly prescriptive goals that are difficult to sustain post-intervention. Furthermore, research has found that
intervention success is promoted by healthy behavior education as well as designing interventions that are
transferable out of the lab and into daily lives [42], [43]. In contrast with prior methods, the pilot group brain
health intervention involved creating individualized behavior change goals across multiple risk factor domains
that could be integrated into the everyday lifestyles of participants and more easily sustained over time.

3 BRAIN HEALTH INTERVENTION STUDY

The objective of the pilot brain health intervention study was to develop and evaluate an intervention designed
to promote changes in healthy brain-behavior for midlife and older adults that is practical and easily replicated.
The rationale is that a preventative brain health intervention designed to reduce disability in older age will be
most successful if it meets individuals where they are and promotes healthy behavior change goals that can be
more easily sustained. Furthermore, the approach is motivated by findings that multiple risk factors influence
the development of dementia. Researchers estimate that almost half of dementia cases are attributable to
modifiable risk factors including physical inactivity and depression [44]. Studies [45] indicate that engaging in
healthy lifestyles behaviors across multiple domains including physical activity, cognitive engagement, and
stress management can slow cognitive decline [46]-[51] and promote brain neuroplasticity [52], [53]. There
currently exists a gap in the design of methods to assist midlife and older adults in learning to incorporate such
healthy behaviors into their everyday lives in a way that leads to sustained, holistic behavior change.



3.1 Intervention Design

Our brain health intervention, called B-Fit, is a seven-week intervention focused on providing brain health
psychoeducation combined with individual behavior goal setting, group problem solving, and social support.
The primary pilot clinical intervention study included 3 conditions: B-Fit, education-only, and waitlist [5]. Of the
68 participants allocated to the B-fit intervention in the primary study, 28 of the participants wore a smart watch
during the intervention. These individuals were members of three separate B-fit groups. The B-fit intervention
was delivered by two clinicians with groups of 8-13 participants. One learning topic was introduced to the group
each week. During didactics, information about each topic was discussed with an emphasis on empirical
research describing mechanisms by which lifestyles changes can improve brain health (e.g., reduce blood
pressure and oxidative stress, increase cerebral blood flow) and contribute to a healthy aging phenotype. This
approach is based on literature indicating the importance of linking healthy lifestyle behaviors with brain health
and prevention research [54], [55]. The goal of this paper is to introduce and validate a mechanism for assessing
broad-spectrum lifestyle changes associated with this individualized, multi-domain intervention.

Table 1 lists the primary health topics covered during the weekly sessions. Each week, following the
educational material presentation, participants developed a plan to integrate a personalized, realistic,
sustainable, and positive lifestyle change into their everyday life (e.g., take a 10-minute walk daily after lunch).
Health goals were built across multiple lifestyle domains consistent with the education topics (e.g., diet,
socialization, sleep). Because a new goal was introduced each week, participants were assisted with developing
goals for each topic that could be completed in about 5-10 minutes. At the beginning of each session, for each
defined goal, participants indicate whether they made no change (0), partly met (1), completely met (2), or
exceeded (3) their goal(s). 26 of the 28 participants that wore a smartwatch regularly reported these values.
The average self-reported adherence over the 8-week intervention was 1.7 (range [0.5, 2.3], standard deviation
0.44).

Table 1: Didactic topics discussed in group sessions

Session Education Materials Discussed

Session 1 Overview of the brain, cognitive aging, MCI, and dementia
Session 2 Cognitive engagement

Session 3 Physical activity and cardiovascular risk factors

Session 4 Nutrition and diet

Session 5 Social engagement

Session 6 Sleep and stress reduction

Session 7 Compensatory strategies and assistive technology

3.2 Data Collection

In addition to evaluating self-reported outcomes, determining the impact of interventions such as B-Fit on the
pattern of behaviors can be implemented by passively and continuously monitoring behavior across time.
Automated approaches to such ecologically-valid monitoring and assessment pave the way for designing more
effective treatment and quantitatively measuring the outcome of pharmaceutical and behavioral interventions.
This ability will be particularly valuable in rural locations where access to the clinic or lab is limited [56].
Ecologically-valid monitoring implies that a person’s routine behavior is observed in naturalistic settings, rather



than asking individuals to perform scripted activities in controlled settings. This is particularly important for the
B-Fit intervention because we want to assess the impact of the intervention on a person’s entire set of activities,
not on a few selected markers. Currently, holistically assessing change in overall behavior patterns in such a
manner is difficult outside of manually observing a person’s daily routine. We determine whether behavior
change exists using a computational behavior change detection method. We further evaluate the pattern of
behavior change over the course of the intervention.

To provide objective behavior routine and change measures, we gave 28 of the B-Fit participants two Apple
Watches to wear continuously, one during the day and one at night (one watch was charged while the other
was worn). We collected timestamped readings at 10Hz for the following sensors: 3d acceleration, 3d rotation
and rotation rate, course, speed, and 3d location. Participants received two motivational quotes through the
smartwatch at random times during the day to support their lifestyle changes. Data were continuously collected
at baseline (before intervention) and each week of the intervention. All data were collected before quarantine
restrictions due to COVID-19.

3.3 Participants

All study participants are community-dwelling adults. We recruited participants from eastern Washington and
northern Idaho. Exclusion criteria included a clinical diagnosis of dementia, inability to provide own consent,
unstable or severely disabling disease (e.g., organ failure), and inability to complete assessment and
intervention protocols due to communication, vision, hearing, or other medical difficulties. Prior to participation,
participants were screened by phone with a medical/health interview and the Telephone Interview of Cognitive
Status (TICS, [57]). Participants were excluded if they fell in the Impaired range on the TICS (score < 26) or
met study exclusion criteria. The study was approved by the Washington State University Institutional Review
Board.

We analyze data for 28 study participants who received the active brain health education and goal-setting
intervention (B-Fit) described in Section 2.1 and continuously wore smartwatches. This group is labeled brain
health intervention, or ‘BHI’. To provide a comparison (non-intervention) group for behavior change detection,
we analyze continuous smartwatch sensor data collected for 17 additional community-dwelling older adults who
did not differ in age, #(43) = 1,08 p = 28, education, #43) = ,17 p = .87, or sex, X? (1, N =45) = 33, p = .57,
from the BHI group. This group is labeled ‘NI'. These participants were older adults who transformed their homes
into smart homes and participated in a non-intervention, monitoring study designed to help validate smart home
health algorithms. Table 2 summarizes the demographics for these participants.

Table 2: Participant demographics

Age Years of Education . .
Group (Mean / SD) (Mean / SD) Male  Female Caucasian Other Ethnicity
BHI (n=28) 63.18/9.19 16.00/ 1.86 5 25 26 4
NI (n=17) 67.22/15.89 15.89/2.49 4 13 16 1




4 PROCESSING COLLECTED DATA

We collected multiple weeks of smartwatch sensor data for each of the subjects, totaling 28,615,680 sets of
readings for BHI participants and 18,464,560 sets of readings for the non-intervention group. We examine the
first nine weeks of data collection for each subject. This length of time corresponds to the one week of baseline,
seven weeks of intervention and one post intervention week for the BHI participants. Our goal is to examine
change in behavior that occurs over the course of the intervention. Before analyzing the data, we first merge
data from multiple watches, impute missing data, and label collected data with activity labels.

4.1 Data Preparation

Participants were given a white watch to wear during the day and a black watch to wear at night, affording time
to charge the devices. The smartwatches indicate when they are on and off the charging station, allowing us to
determine when data should be analyzed from one device or the other. However, participants were not
consistent in wearing the designed watches during the specified times. To ensure we analyze the appropriate
data, we examine the acceleration and rotation-based movement throughout each day. We merge day and
night data collections into one by identifying “swapping” periods, or time points at which the subject swapped
one watch for another. This was defined as a change point in the time series when one watch was at rest (total
movement below a threshold amount) and the other was active. We create one merged set of sensor readings
for each day by incorporating data at each time unit from the active watch.

Additionally, gaps occurred during data collection. Data for participants were 94.24% complete. Gaps in the
data collection occurred during times when subjects forgot to charge and wear the watch. In these cases, we
impute missing feature values based on the median value for the particular sensor given the day of the week,
time of day, and neighboring context (readings before and after the gap).

4.2 Activity Labeling

We automatically label each set of sensor readings with a corresponding activity name. Activity labeling offers
several benefits for our analysis. First, activities provide a vocabulary for expressing human behavior. From
activity-labeled sensor data we can see how a person spends their day and observe changes in these activity
routines over time. Second, given activity-labeled data we can target specific activity categories, such as work,
exercise, and sleep, to ascertain whether the amount of time that is spent on these specific activities is changing,
if the location where they occur changes, and if they occur at regular times.
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Figure 2: Activity labeling. A feature vector is extracted from five seconds of sensor data. A random forest maps the feature
vector onto one of the activity choices, based on training data provided in real time by smartwatch users.

We label sensor data using an activity recognition algorithm. Activity recognition maps a sequence of sensor
readings onto an activity label. A time series data stream is an infinite sequence of elements S={xs,..,x;,_..}, where
xi is a d-dimensional data vector arriving at time stamp i. Given a set of predefined activity categories, A, an
activity recognition algorithm maps a sequence of time series data points {Xm,..,Xk,..,Xn}, Observed as part of time
series S, onto an activity label ajeA. We map a fixed-length sequence of elements onto the activity label using
the process illustrated in Figure 2.

To ensure that we label and monitor complex activities as well as basic movement-based activities, we also
incorporate location information. Because we want to ensure that the model generalizes to multiple persons,
we do not utilize specific location values. Instead, we construct person-invariant location features. This approach
supports generalization without needing to employ techniques such as domain adaptation, that requires a large
number of labeled training instances for the initial group of subjects [58]-[60]. One such person-invariant
location feature is the location type, obtained through reverse geocoding using an OpenStreetMap. We group
these location categories into residence, workplace, road, and other. Other location features are calculated for
each sensor sequence and include the number of changes in orientation in the sequence, number of
stops/starts, the sequence overall trajectory, and the distance traversed.

Attempting to perform real-time human activity recognition “in the wild” in naturalistic settings raises
numerous challenges. One such challenge is collecting ground-truth labeled data. Users can be queried for
their activities. However, these queries need to be answered in-the-moment to avoid retrospective error. While
active learning and semi-supervised learning can reduce the number of queries [61], [62], the resulting
interactions will interrupt many of the activities we wish to monitor for our brain health study. To make the
intervention as naturalistic as possible, we do not ask the subjects to provide labels for their daily activities.
Instead, we train an activity recognition algorithm using past data collected from 388 different smartwatch
wearers. These earlier volunteers provided labels for their current activity when prompted at random times.
These prompts resulted in 59,610 labeled instances for 12 activity categories. These activity categories are
reflective of routine behavior and include: chores, eat, entertainment, errands, exercise, hobby, hygiene, relax,
school, sleep, travel, and work.

Each five-second sequence of sensor data is considered as a separate instance. While shorter sequences
have been used with success for ambulation recognition [63], we found that slightly longer durations are needed
to capture context for recognizing complex activities in naturalistic settings. A feature vector is extracted from



each five-second sensor sequence. The feature vector consists of standard statistical operations applied to
each of the sensor types [64]. The vector also contains person-invariant location features. We experimented
with multiple types of supervised learning algorithms and found random forest to perform the best for these
data. The random forest also generates a prediction for one sequence before the next sensor reading arrives,
allowing the activity recognition to occur in real time. The random forest employs bootstrapping and is configured
to contain 100 trees with a depth limit of 10. Because the training data are not uniformly distributed across the
activity classes, we weight instances inversely proportionate to the relative size of the corresponding activity
class. Applying 3-fold cross validation to our labeled data, activity recognition yielded an accuracy of 0.86 for
the 12 activity classes. For the remainder of this paper, we analyze sensor data that is labeled using a random
forest model trained on all the labeled instances.

4.3 Extracting Digital Behavior Markers

Once continuous wearable sensor data are collected and labeled with activity classes, we extract digital markers
that describe the person’s behavior patterns. Extracting features from longitudinal sensor data is popular for
analyzing specific behavior parameters. As mentioned in Section 2, researchers typically extract indicators that
are specific to a behavior of interest. Depending on the goal of the study they may include amount of screen
time, activity level, steps, incoming/outgoing phone calls and texts, number of steps, amount of screen time,
and sleep. We are interested in characterizing a person’s behavior routine. This is expressed as a set of digital
markers that express how a person’s time is spent on different activities, the locations a person frequents and
the amount of time they spend there, and the traditional measures of overall movement types and durations.
Obtaining digital behavior markers that express activity routines as well as direct sensor measurements of
location and behavior are possible because we automatically label sensor sequences with activity labels, as
described in Section 4.2. Thus, in addition to generating statistical summaries of raw sensor readings as listed
in Figure 2 [65]-[68] we also extract markers that indicate how each subject divides their time among the activity
categories and where they spend their time on a routine basis.

Table 3 summarizes all of these digital behavior markers that we extract and analyze. Our activity recognition
algorithm applies statistical operators (listed in Figure 2) to raw sensor readings, yielding a feature vector that
is mapped to an activity label. When assembling digital behavior markers, we apply these same statistical
operators to aggregated daily and hourly sensor values, activity information, and location information.
Additionally, we compute a regularity index to each variable as defined by Wang et al. [26]. The regularity index
determines how repetitive a person’s behavior routine is. This is computed as the difference between hourly
statistics occurring during the same hours across two different days. To calculate this index, data are first scaled
to the range [-0.5, 0.5]. The regularity index comparing days a and b is then defined as shown in Equation 1.
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For our analysis, T is 24 hours and xZrepresents the value of a behavior marker for hour ¢t of day a. We
average the regularity index over all pairs of days occurring within the same week, all pairs of weekdays
occurring within the same week, and between different weeks for the same day-of-the-week value. Finally, we
compute the diurnal and circadian rhythms for each of the hourly values. We follow guidelines by Depner et al.
[69] to define circadian phase as constancy in the behavior routine. We quantify this definition by generating a

periodogram for the marker values and calculating the normalized periodogram values for a 24-hour cycle

10



(circadian) and for the 12 hours following the end of nighttime sleep (diurnal). Based on Fourier analysis, the
spectral energy of each cycle frequency can be calculated as shown in Equation 2.

2 2mjt; 2 . 2T jt;
R = (XL, xicos (F9)% + (C Xiy xsin ()2 )

In Equation 2, N represents the number of samples in the time series, x; represents the value of the
measured variable at time /, and the spectral energy is computed for a particular frequency, j. We calculate the
spectral energy for a range of possible frequencies. The resulting periodogram generates values for a set of
possible cycle lengths. The corresponding circadian rhythm parameter is then represented by the normalized
periodogram-derived value for a 24-hour cycle, while the 12-hour post-sleep cycle is computed for the diurnal
parameter. At the completion of the feature extraction process, our system has constructed a vector containing
102 behavior features for each observed day, 40 features for each observed hour, and 863 overall features for
each person.

Table 3: Behavioral markers

Type Features
Daily Amount of time (in minutes) spent on each activity
Time of day (hours and minutes past midnight) of first and last
occurrence for each activity
Amount of time spent at each location type
Step count, activity level, distance traveled
Number of missing values (minutes with no sensor readings)

Hourly Amount of time spent on each activity type and each location type
Total rotation, acceleration, distance traveled
Overall Regularity index (within week, within weekdays, between weeks)

Diurnal and Circadian rhythm

5 DETECTING CHANGES IN ACTIVITY PATTERNS

We next consider the challenge of detecting and quantifying change in behavioral routine patterns. To address
this problem, we introduce a method called Permutation-based Change Detection, or PCD, that determines if a
change exists between two windows of activity-labeled multivariate time series data. PCD quantifies the amount
of change and determines the significance of the change. Algorithm 1 outlines the process. Let X denote a
sample of multivariate time series data segmented into days. Each day, D, is further segmented into equal-
sized time intervals, D={x1,x2,..,xm}. We let W denote a window of n days such that WcX.

We compare windows of data within time series X. Let Wi refer to a window that starts at day i. Then W, =
X[i : i+n-1] = {Di, Di+1, .., Di+n-1}. The compared windows may represent consecutive time periods (e.g., days,
weeks, months), or overlapping windows. In our case, we compare a single baseline window with each
subsequent time period. Specifically, we compare the first week of observed behavior data, W4, with each
following week Wi, i={2..9}. In our analysis, W7 data were collected before the intervention began, and Wo..Ws
were collected during the intervention, and W2 data were collected one week post-intervention. We compute
the change that occurs between week 1 and weeks 2 through 9.
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ALGORITHM 1: Permutation-based Change Detection(X)

Input: X= time series data

Output: Vector I of (distance, significance) pairs
Initialize: n="7 # window length in number of days
Initialize: i=1; j=i+n

for each pair of windows, W, W;c Xdo

Wi=X[i: i+n]
Wy=X[Jj: j+ 1]
k=0; N=1000

C=KL_Divergence( W, W)
V*= vector of length &
while k< Ndo
wy, W]-*= Shuffle time intervals of W;and W}
C*= KL _Divergence(W;", W)
I*= append(V* C*
k=k+1
end while
sig = BoxplotOutlierDetection(( V*)
V= append(V, ( sig))
j=j+n
end for
return I

We propose a small-window Permutation-based Change Detection approach to quantifying the amount of
change, C, between two windows of time series sensor data. This algorithm is uniquely suited for analyzing
activity-labeled sensor data. PCD is based on the notion of an activity curve [70], a compilation of m=24
probability distributions Rt = {d1,dt2,..,da} Over A possible activities per time interval tina day (t=1, 2, .., m).
Distribution d:/ represents the probability of activity A occurring during time interval t. Windows spanning
multiple days (in our analysis, spanning one week) are averaged into an aggregate activity curve A. To compute
a distance between two activity curves A; and 4;, the two curves are first aligned by dynamic time warping.
Second, a symmetric version of KL divergence computes the distance between each pair of distributions at time

interval {, as shown in Equation 3.
d; dj,

KLsymmetric = Zg=1 di,k -log ?l; + Zz=1 dj,k “log ﬁ (3)
We adapt a test introduced by Ojala and Garriga [71] to determine whether the distance results are
statistically significant. Statistical significance calculation is not easily available for prior methods such as uLSIF
and RuLSIF. Our adaptation allows a permutation test to determine the significance of change scores calculated
for a small number (n=7) of days. As shown in Algorithm 1, change score C is computed between windows W,
and W,. Next, Wi and W, are joined to form a new longer window. All time intervals within W are shuffled, then
W is re-split into new windows, W;" and W;". A change score C* is computed between the new windows and
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added to a permutation-result vector V*. The process is repeated N times. Finally, PCD compares C to the
permutation vector V* using boxplot outlier detection. Here, an outlier is defined as a value that is outside the
interquartile range (75" percentile — 25™ percentile) of V*. The p-value estimated by computing the distance
between C is an outlier, then the score is considered statistically significant. We employ boxplot outlier detection
for this task because many alternative methods such as Grubb’s test require that the data follow a normal
distribution, an assumption which frequently does not apply to human behavior data. The output of the PCD
algorithm is a vector V of change scores and associated significance vectors, each of which compares one
week of observed human behavior data to the first baseline week.

6 EXPERIMENTAL RESULTS

We are interested in analyzing the impact of the B-Fit brain health intervention on the pattern of behaviors for
the study participants. We start by analyzing one specific targeted behavior, then look at overall behavior. We
hypothesize that study participants changed their behavior in response to the brain health intervention. We
further postulate that these changes will be detected by PCD applied to activity-labeled smartwatch sensor data.
Additionally, we want to determine whether overall behavior change in the intervention group will reflect a
steadier increase over the nine weeks than for the non-intervention control group, consistent with the integration
of new goals and maintenance of the earlier defined goals.

6.1 Validating PCD on Synthetic Data

First, we verify the reliability of our computational methods that apply PCD-based change detection to digital
behavior markers as a method of quantifying change in overall behavior routine. To verify that PCD computes
change scores as expected for digital marker data, we examine scores that are generated for synthetic data.
We use real digital markers from one randomly-selected intervention subject. We then add white Gaussian
noise with monotonically-increasing values for the Gaussian distribution standard deviation. Table 4 verifies
that the PCD-based change score increases monotonically with the amount of noise, or change, that is added
to the real collected data.

Table 4: PCD values for digital markers with white additive Gaussian noise.

c
0.0 0.1 0.2 0.3
0.0005 0.8243 0.8510 0.8908

6.2 Assessing Change in Target Activity

Next, we analyze the collected sensor data to determine how much change occurs for one of the targeted
activities. Our primary goal for this paper is to determine whether our computational method can be used to
detect and quantify change in overall behavior activity patterns as promoted by the intervention. However, we
also posit that the same method can be used to detect change in a specific activity. The set of activities that are
automatically recognized are listed in Section 2. The digital markers reflect these specific activities as well as
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parameters such as visited locations and movement statistics. Here, we pick a representative activity to
demonstrate that the computational method can be used to analyze individual activities as needed.

We select exercise as the individual activity to analyze. One rationale for this choice is because the week
discussing physical activity occurs early in the intervention. If behavior change is sustained per the intervention
goal, change should be sustained throughout the data collection period in comparison with the week 0, pre-
intervention baseline. A second motivation is that exercise represents a small set of possibilities for the
participants (primarily walking and swimming). In contrast, the intervention topic that occurs the week before,
cognitive engagement, is manifest through a large variety of individualized healthy behavior choices (e.g., play
guitar, read a book, learn a new language), not all of which can be easily detected by smartwatch sensors. We
include a subset of the digital markers for this analysis, namely, the amount of time spent per day on the
automatically-labeled exercise activity, time of day that exercise occurs, the regularity of these activity on a daily
basis, and statistical operations applied to these markers.

Table 5: Change in Exercise activity from baseline to end of intervention. The table summarizes the average PCD value for
the intervention group and the control group together with the number of persons that experienced a statistically significant
change. The table also summarizes the average linear regression coefficient and R value for each of the groups.

PCD-intervention (%sig) PCD-control (%sig) Coefficient-intervention (R)  Coefficient-control (R)
0.3500 (53.57%) 0.1478 (29.41%) 0.1016 (0.25) 0.0008 (0.40)

Table 5 summarizes the results of this analysis. The Permutation-based Chance Detection values indicate
that there is a greater change in Exercise habits for the intervention group than for the control group. These
changes are statistically significant for more than half of the group. Because PCD provides change amounts
without indicating the nature of the change, we also compute linear regression for exercise time and note that
the slope for the intervention group is slightly higher than for the non-intervention group. In fact, the coefficient
for the non-intervention group is close to zero, indicating that the PCD-detected changes may be due in some
cases to natural variation in exercise regimens rather than intentional increase in exercise amount.

6.3 Assessing Overall Change in Behavior Routine

The analysis of change in exercise markers confirms that some behavior changes can be detected by wearable
sensors and that our PCD algorithm can quantify these changes. These findings align with prior work that
detects changes in exercise patterns [72]. On the other hand, we are particularly interested in observing the
impact of a behavioral intervention on a person’s entire pattern of behavior. Researchers have discovered
interplay between many behaviors, including but not limited to exercise and work [73], work, travel time, and
social life [74], and diet and sleep [75]. Therefore, we hypothesize that engagement in the brain health
intervention will impact overall behavior patterns. We analyze the complete set of digital markers collected for
study participants and for the non-intervention group and compute PCD scores that compare the baseline week
with the end-of-collection week.
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Table 6: Change in overall activity routine from baseline to end of intervention. The table summarizes the average PCD
value for the intervention group and the control group together with the number of persons that experienced a statistically
significant change. The table also summarizes the average linear regression coefficient and R value for each of the groups.

PCD-intervention (%sig) PCD-control (%sig) Coefficient-intervention (R)  Coefficient-control (R)
0.7460 (50.00%) 0.4428 (17.64%) 0.1598 (0.76) 0.0230 (0.37)

The results of this analysis appear in Table 6. As anticipated, the changes are greater for the intervention
group than for the control group. However, weekly changes were still fairly high for the non-intervention group.
When we plot weekly change scores for individuals within the two groups, we gain new insights on the nature
of the change. Almost all of the individuals in the intervention group exhibited consistently increasing change
from baseline, as shown in Figure 3 (left). In contrast, the trends were highly varied for the non-intervention
group. Figure 3 (right) provides one such example illustrating a common theme among non-intervention
participants. To quantify these trends, we compute the linear regression coefficient for the change scores.

1.00E+00 1.00E+00
9.00E-01 . o o e 9.00E-01
8.00E-01 ) - 8.00E-01
7.00E-01 e . 7.00E-01 ®
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Figure 3: PCD score trends. (left) A plot of the PCD scores for a subject in the intervention group. (right) A plot of PCD scores

for a subject in the non-intervention group.

6.4 Assessing Change in Location

Next, we examine the widespread impact of a brain health intervention on a person’s entire daily routine by
assessing change in the types of locations where a person spends their time. To visualize the impact that
intentional change can have on location patterns, we plotted the normalized, aggregated time spent in the home,
outside the home (work, socializing, hobbies, or exercising) the week before intervention initiation and the last
week of the intervention. Figure 4 shows this visualization for a 24-hour timeframe. As the graph shows, end-
of-intervention routines include more time spent at home in the late-night and early-morning hours. One possible
explanation for this is a change in behavior to incorporate more regular sleep hours and patterns. Furthermore,
the midday hours reveal less time spent in travel (driving or riding other public transportation) and more time
spent in other locations out of the home. This could potentially be attributed to incorporating more exercise,
social times, and hobbies into the person’s daily routine. Change in location markers between 0 and 9 were
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much greater for the intervention group, averaging 0.8469, while change for the non-intervention group

averaged 0.3279.

home
Figure 4: Visualization of time spent at location types for the intervention group. The x axis shows a 24-hour time period
starting at midnight. Bar sizes indicate the aggregated, normalized duration spent at the corresponding location type.

outside
home

travel

6.5 Predicting Subject Group based on Delta Markers

In our final analysis, we employ a supervised learning algorithm to classify each subject into their corresponding
group (intervention or control) based on digital behavior markers. Because we are focused on behavior changes
related to the brain health intervention, we compute delta features to perform the classification. Specifically, we
calculate the numeric change in each marker from week 0 to week 9. The set of delta features is mapped to the
predicted subject group using a range of alternative supervised learning algorithms. To quantify the impact of
the intervention on a person’s overall activity routine, we compare the results using all delta features with those
derived from using a subset of the available features. Specifically, we compute predictive accuracy using only
delta features derived from movement-based sensors, labeled activity features, or location type features.

Table 7: Accuracy of predicting whether a subject is in the intervention group or control group using a random forest.
Results for are reported for leave-one-subject-out classification and for alternative sets of features.

movement activity location all
0.76 0.73 0.80 0.87

Receiver operating characteristic curve

08 .-

True Positive Rate
N

02 -

- LOOCY ROC (AUC = 0.35)
0.0 i —= Chance level

00 02 04 06 08 10
False Positive Rate

Figure 5: ROC curve for random forest-based prediction of subject group, using pre- and post-intervention changes in
digital markers as predictive features. The corresponding AUC is 0.95.
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The results of this analysis are summarized in Table 7. We utilize a random forest with 100 trees and a
varied number of features. Results are computed using leave-one-subject-out validation. As the table reflects,
the delta values (calculated between the first and last weeks of data collection) were predictive of the subject
group with an accuracy of 0.87 when all the features were included in the learned model. The ROC curve for
this problem is shown in Figure 5. As the figure indicates, the corresponding AUC (area under the receive
operating characteristic curve) is 0.95.

Using subsets of features still resulted in an accuracy that was better than random chance. However,
considering changes in only movement features, activity features, or location features did not produce as strong
results as considering changes in the entire set of features, corresponding the person’s larger behavior routine
context.

7 DISCUSSION AND CONCLUSION

In this study, we investigate methods to detect targeted and secondary behavior changes in response to a multi-
modal brain health behavior intervention. By collecting continuous wearable sensor data, we can now monitor
intervention impact in an objective, ecologically-valid manner. Through application of Permutation-Based
Change Detection, we can quantify change in a subset of target behavior markers or in a person’s overall
pattern of behavior. For the brain health intervention, we did observe that targeted and secondary behaviors
changed throughout the data collection process. While change was also observed for the non-intervention
group, linear regression revealed that the amount of change steadily increased more for the intervention group
than the non-intervention group. This may be an indication of intentional introduction of new, healthy behaviors
into the subjects’ daily routines.

The system we describe for detecting and quantifying behavior change relies on numerous interacting
components. A limitation of this study is the error that can be introduced by each component in the system. The
average self-reported compliance with the intervention was 1.7, falling between “partly met” and “completely
met” participant-defined goals. As a result, not all intended healthy behaviors were regularly incorporated into
the subjects’ lives. Furthermore, weekly self-report may introduce error due to poor recall and objective
assessment of behavior adherence. In future work, we will compare the reliability of smartwatch-detected
behavior adherence, weekly paper-based self-reporting, and daily self-reporting using ecological momentary
assessment techniques delivered through the watch interface.

While the smartwatches are designed to continuously collect data, there are gaps in the data collection when
the participant did not charge and/or wear the watch. This may introduce error as a function of collecting data
when a person is not wearing the watch or imputing missing data. The sensors themselves can occasionally
report erroneous location or movement values [76], affecting the quality of the activity labels and digital markers.
Similarly, the activity recognition model is based on a large sample of participant-labeled data. Because
recognition accuracy was not perfect even on this sample, activity label error may be introduced into the final
set of markers, as may error in labeling location categories.

The findings from this work have important health care implications. By observing behavior patterns before,
during, and after a clinical intervention, we can better understand mechanisms and person-characteristics that
lead to short-term and long-term change after an intervention. With continued development, this introduced
architecture will provide a more continuous, objective measurement of the impact of behavioral interventions
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on changes in behavior patterns, something that has been difficult to capture clinically but is an important part
of interventions. These insights can help design more adaptive, efficacious, community-based preventive
interventions for midlife and older adults at risk of developing dementia.
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