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New modes of technology are offering unprecedented opportunities to unobtrusively collect data about people’s behavior. 

While there are many use cases for such information, we explore its utility for predicting multiple clinical assessment scores. 

Because clinical assessments are typically used as screening tools for impairment and disease, such as mild cognitive 

impairment (MCI), automatically mapping behavioral data to assessment scores can help detect changes in health and 

behavior across time. In this paper, we aim to extract behavior markers from two modalities, a smart home environment and 

a custom digital memory notebook app, for mapping to ten clinical assessments that are relevant for monitoring MCI onset 

and changes in cognitive health. Smart home-based behavior markers reflect hourly, daily, and weekly activity patterns, while 

app-based behavior markers reflect app usage as well as writing content and style derived from free-form journal entries. We 

describe machine learning techniques for fusing these multimodal behavior markers and utilizing joint prediction to improve 

the performance of automated assessment. Joint predicting a variable involves augmenting feature vectors with “joint 

features,” which are predictions of other, related variables to improve prediction accuracy. We evaluate our approach using 

three regression algorithms and data from 14 participants with MCI living in a smart home environment. Using these 

multimodal fusion and joint prediction techniques, we observed moderate to large correlations between predicted and ground-

truth assessment scores, ranging from r = 0.601 to r = 0.871 for each clinical assessment. 
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1 INTRODUCTION 

Individuals with amnestic mild cognitive impairment (MCI) and Alzheimer’s Disease typically experience 

symptoms such as memory loss, difficulty with language and visual-spatial abilities, decreased ability to focus, 

and issues with reasoning, planning, and complex decision making. Of these symptoms, difficulty with everyday 

memory exhibits the greatest degree of impairment and can negatively impact one’s independence and quality 

of life [1]. To assist with memory impairment in performing daily activities, compensatory devices, such as 

pagers and memory notebooks, have been successfully introduced [2]. Recently, technology has enabled 

enhanced digital versions of such compensatory devices, utilizing mobile apps and smart environments. For 

example, a digital memory notebook app can use notifications to remind users to log important events, tasks, 

and notes. Such an app can also be coupled with a smart home. The smart home continuously and 

unobtrusively collects naturalistic data, which can be automatically labeled with corresponding activity labels 

such as cook, work, and sleep. Using labeled activities to provide context, smart home algorithms can 

automatically provide in-the-moment digital memory notebook prompts to remind residents to perform common, 

day-to-day activities and encourage digital memory notebook use [2], [3].  

Beyond providing compensatory assistance, smart homes and memory notebook apps serve a dual 

purpose for MCI and Alzheimer’s Disease stakeholders. Automated algorithms can continuously analyze smart 

home sensor data to model activity and behavior patterns over time [4]. If there is a sudden or slow onset of 

behavior change detected, care providers and family members can be notified and provide early treatment. 

Recently, researchers are using behavior markers and machine learning to map smart home data onto clinical 

health scores [5]–[8]. Such mappings could then be used to regularly screen for changes in health, 

complementing more traditional clinical assessment methods and leading to proactive intervention. These 

mappings are also based on continuous data, which may provide additional insights and could further augment 

data collected in a brief visit with a physician. When combined with additional information sources, such as 

demographic information or wearable data, the accuracy of these health score predictions can be further 

improved [5]. If an intervention tool such as a memory notebook app is introduced into a daily routine, use of 

the tool itself can also provide a unique source of information that may correlate with cognitive health. This 

process of merging data from different sources (i.e., modes or modalities) to feed machine learning problems 

is called multimodal fusion [9].  

In this paper, we explore multimodal fusion to predict ten different clinical assessment scores using 

regression techniques (see Section 3.2 for clinical assessment details): 

Objective Testing Scores  

1. Repeatable Battery of Neuropsychological Status (RBANS) 

2. Wechsler Test of Adult Reading (WTAR) 

3. Delis-Kaplan Executive Function System F-A-S (FAS) test 

4. Delis-Kaplan Executive Function System Design Fluency Test (DFT) 

Self-report Measures 

5. Prospective and Retrospective Memory Questionnaire (PRMQ) 
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6. Instrumental Activities of Daily Living - Compensation Scale (IADL-C) 

7. Geriatric Depression Scale Short Form (GDS) 

8. Quality of Life Scale – Alzheimer’s Disease (QoL-AD) 

9. Coping Self Efficacy Scale (CSE) 

10. Satisfaction with Life Scale (SWLS) 

Our data modalities include behavior markers extracted from ambient sensors embedded in smart homes, a 

memory notebook tablet app called EMMA (Electronic Memory and Management Aid) [10], and participant 

demographic information. We hypothesize that smart homes and digital memory notebooks offer informative 

behavior markers, that when the markers used in combination, can predict multiple clinical health scores. We 

validate our methods and provide evidence to support our hypothesis using data collected from N = 14 

participants with amnestic MCI who participated in the EMMA/smart home partnered condition of a pilot 

randomized controlled clinical trial [10]. 

This paper offers both clinical and technical contributions. In terms of clinical contributions, we introduce 

and evaluate the ability to automatically assess health in naturalistic, unscripted settings. We further describe 

how an intervention app can provide dual use as an assessment tool as well as a compensatory device. Based 

on our participant sample, we offer insights on the relationship between cognitive health assessments and 

behavior marker sets describing activity patterns and memory notebook usage. In terms of technical 

contributions, we introduce methods for extracting digital markers that reflect patterns in behavior, writing 

content/style, and intervention adherence. We describe and compare multiple approaches to fusing these 

multimodal data. Furthermore, we consider the design of machine learning techniques to predict precise clinical 

scores. Finally, we utilize joint prediction to boost assessment performance by harnessing the predictive 

relationship between multiple assessment measures. 

2 RELATED WORK 

A growing body of research has explored mapping sensor-based features to clinical assessment scores using 

machine learning techniques. Studies utilizing smart home-based features and text-based features are the most 

relevant to the present study.  

2.1 Smart Home-based Assessment Prediction 

Data collected from ambient sensors installed in environments, such as homes, offices, and cities, can be used 

to quantify and track the activities and behaviors of people over time. Recent research has shown that features 

extracted from smart home data can be used to identify current or past activities [11] and forecast occurrences 

of future activities [12]. These methods build a foundation for modeling patterns of activities [13], detecting 

changes in activity-based behavior over time [4], and identifying behavioral differences between subject groups 

[14]. In this paper, we build on the foundation of prior activity modeling research to extract features from activity-

labeled smart home data that reflect long-term behavior patterns. 

Similarly, research has indicated that smart home sensor data can be analyzed to detect target health 

conditions. Much of the prior work focused on designing machine learning models to predict diagnostic 

categories such as MCI [7], [15] and loneliness among older adults [16]. Earlier studies have also mapped smart 

home-based features to numeric health assessment scores, including Mini-Mental State Examination, Clinical 

Dementia Rating [7], Repeatable Battery of Neuropsychological Status, and Timed Up and Go test [5], [6], [8] 
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measures. Alberdi et al. [8] further employed regression algorithms to predict Arm Curl test, Digit-Cancellation 

test, Prospective and Retrospective Memory Questionnaire, and Geriatric Depression Scale measures. Like 

these studies, in this paper we use smart home data to predict ten clinical assessments. Unlike these previous 

works, we fuse smart home data with other information sources to improve assessment accuracy. 

2.2 Text-based Assessment Prediction 

Several studies have used text-based features for clinical analysis. The text originates from a variety of sources, 

such as paper-pencil writing [17], typed text [18]–[23], and speech transcriptions [9], [19], [24]–[30]. Text 

features vary from simple to complex, including statistics like word count, mean number of words per sentence, 

and lexicon category frequencies; classic natural language processing-based features like part-of-speech 

proportions/ratios, readability scores, sentiment analysis, and term frequency-inverse document frequency (TF-

IDF) values; and more recent neural network-based features like word/document embeddings and topic models. 

These text mining methods have successfully been used to detect cases post-traumatic stress disorder [22], 

depression [18], [26], [31], MCI [9], [17], [24], [25], and Alzheimer’s Disease [17], [19], [28]–[30]; determine 

correlation with life satisfaction [23], [27], [28], and analyze language differences between patients pre- and 

post-liver transplant [20]. Text-based features are used in these applications because research has shown that 

one’s lexico-syntactic patterns not only change over time but change more drastically with onset of health 

conditions. For example, the early stages of Alzheimer’s Disease typically exhibit a decreased vocabulary, 

simplified syntax/semantics, and increased use of empty filler words [29].  

While much of the prior work in text-based clinical assessment distinguishes diagnostic categories (e.g., 

healthy vs MCI [9]), creation of the ADReSS benchmark dataset [32] created an opportunity for researchers to 

design regression methods that predict numeric Mini-Mental State Examination scores based on speech 

features for individuals with cognitive impairments [27], [28], [30]. Ostrand and Gunstad extracted 16 linguistic 

features from speech transcriptions to predict current and future Mini-Mental State Examination scores for 

participants with cognitive impairment [27]. The researchers concluded linguistic features were good predictors 

of Mini-Mental State Examination scores at the time when they were recorded and one year in the future. 

Most of these prior studies used text sourced from speech transcriptions for clinical domain mappings. 

Fewer studies have used health-related text originally sourced by study participants in a written form, like we 

are proposing in this paper. Dreisbach et al. review methods for mining patient-authored text for symptom 

extraction [33]. Other studies that analyze written text include one analyzing text messages from patients to 

care providers [20] and one analyzing self-narratives describing traumatic experiences [22]. Dickerson et al. 

[20] analyzed patient-authored messages to care providers from controls and patients with end-stage liver 

disease pre- and post-liver transplant. The researchers used 19 natural language processing features extracted 

from the messages to detect differences in language between controls and patients pre- and post-transplant. 

He et al. [22] similarly extracted natural language processing-based features from online surveys that included 

free-response questions about traumatic experiences and related symptoms. The responses were pre-

processed into unigrams, bigrams, and trigrams, then mined for keywords related to stress. Combining free-

form text features with multiple choice survey responses, the researchers trained classifiers to predict the 

presence or absence of post-traumatic stress disorder. The authors reported accuracy improvements from 0.94 

(no text-features) to 0.97 (using fusion with the text features). 
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The work we present in this paper builds on these prior studies. As with the approaches that predict Mini-

Mental State Examination scores, we introduce natural language processing-based methods to predict numeric 

clinical scores. Unlike the prior work, we mine a core set of text features that are used to predict multiple clinical 

measures and further utilize the relationship between the measures to boost predictive performance. 

Additionally, we fuse natural language processing with mining of smart home sensor data and intervention app 

usage data to offer a more comprehensive assessment of a person’s health status. 

2.3 Multimodal Fusion 

New forms of technology have enabled data collection from many different sources, or modes. Often data from 

disparate sources, such as motion sensors and audio, are combined as input to machine learning algorithms to 

solve health-related problems and/or make predictions. This fusion process can improve machine learning 

results because the different modes typically capture different (though possibly redundant) aspects of the same 

process [9], providing a more holistic view. Researchers in a variety of health-related contexts have explored 

different approaches to combine data from multiple modalities. For example, researchers have combined 

speech and text to detect MCI [34], Alzheimer’s Disease [28], and depression [26]. The most common 

approaches include early fusion, late fusion, and hybrid fusion [35]. Using early fusion, features from different 

modes are concatenated for input to a machine learning algorithm. With late fusion, features from different 

modes are input to separate machine learning algorithms; then a second algorithm learns how to combine the 

mode-specific predictions into a final target variable. While hybrid fusion approaches vary in design, one 

example is stacked generalization fusion, which is an ensemble approach to combining predictions from diverse 

modality classifiers. Recently, Alkenani et al. implemented stacked fusion to predict Alzheimer’s Disease using 

speech and writing datasets [19]. 

In the current paper, we combine data from different modes, including demographic information, smart 

home sensors, digital memory notebook usage, and patient-authored text. Gosztolya et al. utilized linguistic and 

acoustic features from speech recordings to detect MCI, finding the best results were achieved using a late 

fusion of the two feature types [34]. However, little work focuses on fusing information from more heterogeneous 

sources. In one published case, Fraser et al. explored early and late multimodal fusion (at various levels) of 

comprehension questions, eye-tracking data, and audio recordings (speech and transcription) to classify 55 

participants as MCI or healthy control [9]. Using natural language processing techniques, Fraser et al. extracted 

language features from the transcription text, including total words, mean sentence length, phrase type 

proportions (prepositional, noun, and verb groups), and part-of-speech ratios. Using logistic regression and 

support vector machines, the researchers concluded that the best classification results were achieved using a 

variation of late fusion. The work we present here represents a new direction for fusing health-related 

information sources. While fusing behavior data with app usage and free-form text requires combining 

dramatically different types of features, all of these information sources have independently been identified as 

indicators of cognitive health. We therefore conjecture that the fusion of these data will provide an enhanced 

ability to predict clinical health measures. 

2.4 Joint Prediction 

Recent machine learning research has utilized joint prediction as a strategy to improve prediction performance 

[5], [12], [36]. Typically, with joint prediction, the predictions of a target variable are combined with predictions 
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of other, related variables, to expand the feature vector that is fed to a machine learning algorithm. Minor et al. 

used joint prediction to improve forecasting of smart home activity occurrences using multi-output regression 

[12]. To do this, the researchers first performed independent prediction (called the baseline model) by utilizing 

sensor-based features to predict the time until each smart home activity would occur. Next, the authors designed 

joint prediction by adding each activity’s previous occurrence predictions to the original sensor-based features 

as joint features. Using this joint prediction technique, the researchers were able to achieve an 85.11% decrease 

in prediction error compared to the baseline model. Sprint et al. investigated patient similarity and joint prediction 

to improve Functional Independence Measure motor score prediction for 27 inpatient rehabilitation participants 

[36]. The authors utilized features extracted from wearable sensors while participants performed activities in an 

ecological rehabilitation environment. For joint prediction, the sensor-based features were augmented with 

Functional Independence Measure score predictions for similar participants in the training set as joint features. 

The best leave-one-out cross validation Functional Independence Measure regression results were achieved 

when predictions utilized the joint features (r = 0.88).  

More recently, Cook and Schmitter-Edgecombe applied joint prediction to predict seven clinical health 

assessment scores (Wechsler Test of Adult Reading, Telephone Interview of Cognitive Status, Repeatable 

Battery of Neuropsychological Status, Delis-Kaplan Executive Function System F-A-S test, Timed Up and Go, 

Dysexecutive questionnaire, and Alzheimer’s Disease Cooperative Study Activities of Daily Living Inventory) 

from smartwatch and smart home sensor data [5]. For this study, clinical assessment scores, smart home data, 

and smartwatch data were collected from 21 older adults. Using these data, a set of digital behavior markers 

were extracted from each sensor source and concatenated to form a participant’s “behaviorome.” The 

behaviorome was used as input to independent and joint prediction regression models to predict each score. 

Some regression models were trained using the smart home and smartwatch data separately, while some were 

trained using a combination of the two sensor modalities. The greatest performance was achieved for each 

assessment using joint prediction over independent prediction. One of the seven assessments exhibited the 

best performance using a fusion of features from both modalities (Telephone Interview of Cognitive Status). 

The remaining six assessments were best predicted using either smart home data alone or smartwatch data 

alone. This earlier work represents the first use of joint prediction of multiple clinical measures found in the 

literature. In this paper, we extend the technique of joint prediction to encompass an expanded set of clinical 

measures. As in the previous study, we anticipate that assessment performance will be enhanced through joint 

prediction because of the predictive relationship that is inherent between multiple clinical measures. We further 

extend the earlier work by including additional, and more varied, sources of information than sensor-based 

behavior markers. Specifically, we fuse text markers and app use with the behavior markers for the joint 

prediction models. 

3 METHODS 

Our approach to clinical assessment prediction utilizes a custom digital memory notebook app, EMMA, with 

smart home integration (Section 3.1), an EMMA/smart home-based data collection protocol (Section 3.2), 

extracted smart home-based behavior markers (Section 3.3), extracted EMMA text-based behavior markers 

(Section 3.4), and clinical assessment prediction making use of the markers (Section 3.5). The following 

sections describe these facets of the study. 
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3.1 Digital Memory Notebook Application and Smart Home Integration 

To help individuals compensate for memory difficulties, we introduce a digital memory notebook, called EMMA, 

that runs on an iPad [3], [10], [37]. EMMA’s interface was designed for older adults and individuals with MCI [2]. 

EMMA supports two text-based functions, “tasks” and “notes”. A task, highlighted in Figure 1(a), consists of a 

date, optional start and end times, and a description. Users create task descriptions that provide details about 

the task “who”, “what”, “where”, “why”, and “how”, such as: 

• “On [date], take [item] for [person] to [address]” 

• “Fill medicine box [frequency]” 

• “Schedule appliance repair for [date] at [time]” 

In these examples, the brackets are placeholders for specific information an EMMA user might include. From 

any screen, tapping on the notes tab button at the top brings the user to the notes screen where the user can 

view and edit previously created notes, as well as add a new note. Figure 1(b) shows a screenshot of the notes 

screen. An EMMA note is free-form text that allows a user to document personal lists, processes, projects, and 

long-term goals. Here are a few examples: 

• “At grocery store, be sure to pick up milk, eggs, bread, apples, …” 

• “When filling medicine box, put 2 of [prescription] in each day’s compartment…” 

 

  

(a) The “add a new task” screen with the task description 

textbox shown in a red outline. 

(b) The “add new note” screen with the note content textbox 

shown in a red outline. 

Figure 1: EMMA app screenshots of the two screens where free-form (a) task and (b) note text are entered by the user.  

Task and note content and metadata, as well as all other recorded EMMA interactions, are saved to a cloud 

database. These data include timestamps for each visited EMMA screen and each user tap. From these data, 

we extract EMMA usage features describing the time and duration of user interactions with each app screen. 

From the free-form task and note text we utilize natural language processing to mine informative features about 

an EMMA user and their behavior. We hypothesize that such EMMA usage and text features are predictive of 

clinical assessments, such as the ones described in Section 3.2. 
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A unique aspect of the EMMA notebook is its interface with the CASAS smart home technology [38]. 

Ambient sensors are installed throughout the smart homes which include passive infrared motion sensors, 

ambient light sensors, magnetic door sensors, and ambient temperature sensors. To model home-based 

behavior, time series data collected from the sensors are analyzed with activity recognition algorithms [11]. 

Activity recognition maps sensor readings (e.g., new motion near the kitchen stove, front door opens) to a pre-

defined set of activity labels. We evaluate recognition accuracy in previous studies for the activities bed-toilet 

transition, cook, eat, enter home, leave home, personal hygiene, relax, sleep, wash dishes, and work [11].  

As activities are detected, the information is sent from activity recognition through the smart home 

middleware to EMMA [3]. A RabbitMQ message broker sends a stream of messages in real time from the smart 

home to EMMA, containing recognized activity labels. These labels are sent to a Python-based event listener 

to store in the database. EMMA receives updated activity information by sending requests to a Flask web 

application. This Flask application further stores all user interactions with EMMA, which we analyze in this paper. 

We hypothesize that the collected smart home-based features can provide additional predictive indicators of 

clinical measures. 

3.2 Study Design 

The data used for analysis in the present study represents data from 14 individuals with amnestic MCI who 

participated in the EMMA/smart home partnered condition of a five-month long pilot randomized clinical trial 

[10]. The trial enrolled 32 participants with amnestic MCI and was designed to examine whether learning and 

sustained use of EMMA could be augmented through partnership with a smart home that initiated activity-aware, 

transition-based smart prompts to engage with EMMA. All participants met criteria for amnestic MCI [39]. These 

criteria included (a) self- or informant-report for 6 months or more of memory complaints, (b) objective cognitive 

impairment in the memory domain; generally, 1.5 standard deviations below appropriate norms taking into 

account premorbid abilities, (c) did not meet criteria for the Diagnostic and Statistical Manual of Mental Disorders 

Major Neurocognitive Disorder (DSM-5), and (d) no severe depression at start of intervention (GDS score < 

10). Upon enrollment, participants were randomly assigned to either the EMMA/smart home partnered condition 

(N = 15) or the EMMA only condition (N = 17). For the purposes of this paper, we exclusively use the data 

collected from the participants in the EMMA/smart home partnered condition due to the availability of smart 

home data, and therefore smart home-based behavior markers. These participants had a CASAS smart home 

in a box (SHiB) installed in their home which served as a second longitudinal data collection modality [38] in 

addition to the data collected throughout the study via the EMMA app. Because one person in the partnered 

condition did not complete training, the data in this study represent the 14 participants who completed training 

and three additional months of data collection. Table 1 provides an overview of the demographics for the 

participants in the EMMA/smart home partnered condition included in this work.  

 

Table 1. EMMA/smart home condition participant demographics. 

N Gender 
Age 

(years) 

Highest Grade of 

Education 
Marital Status 

14 
4 male; 10 

female 

74.429 ± 

5.653 
17.07 ± 2.235 

4 widowed; 6 married or domestic partner; 2 

divorced; 2 single 
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Figure 2: Study timeline. EMMA=Electronic Memory and Management Aid, T=timepoint. Note: All clinical data used in 

this study was collected at timepoint T6. 

Data collection for the EMMA study participants was divided into approximately five one-month periods. The 

periods are separated by six timepoints (T1 through T6) when four objective and six self-report clinical 

assessments were administered, and portions of an EMMA intervention were delivered (the intervention is 

described in detail below). Figure 2 shows a timeline of the timepoints that segment the total data collection 

duration into five distinct periods (T1-T2, T2-T3, T3-T4, T4-T5, and T5-T6). At T1 and T6, four objective 

laboratory assessments were administered, including RBANS [40], the Wechsler Test of Adult Reading (WTAR) 

[41], the Delis-Kaplan Executive Function System F-A-S (FAS) test, and the Delis-Kaplan Executive Function 

System Design Fluency Test (DFT) [42]. RBANS is a reliable and well-validated suite of 12 subtests that 

measure cognitive abilities related to attention, language, visuospatial/constructional abilities, and memory. 

WTAR measures verbal knowledge and intellectual skills via a reading test. Subjects are given a list of 50 words 

with irregular pronunciation and are instructed to read the words aloud. The FAS assesses executive functioning 

by having subjects state as many words as possible that start with the letters F, A, or S in a one-minute time 

window. Lastly, the DFT assesses executive function, and more specifically problem-solving and visual 

processing, by asking subjects to complete designs by connecting dots. Age-corrected standard scores were 

used in the analyses. 

In addition to these objective laboratory assessments, several self-report questionnaires were administered 

at each timepoint (T1, …, T6) throughout data collection. Raw scores were used for the questionnaire data. 

These included the Prospective and Retrospective Memory Questionnaire (PRMQ) [43], Instrumental Activities 

of Daily Living - Compensation Scale (IADL-C) [44], the Geriatric Depression Scale Short Form (GDS) [45], the 

Quality of Life Scale – Alzheimer’s Disease (QoL-AD) [46], the Coping Self-Efficacy Scale (CSE) [47], and the 

Satisfaction with Life Scale (SWLS) [48] assessments. The PRMQ is a 16-item questionnaire measuring various 

types of prospective and retrospective memory, including short-term, long-term, self-cued, and environmentally 

cued memory. The IADL-C is a 27-item scale that assesses early functional difficulties and compensatory 

strategies. It has four domain subscales, including money/self-management, daily living, travel/event memory, 

and social skills [44]. The shorter version of the GDS is a 15-item questionnaire detecting depression in the 

elderly, physically ill, and mildly demented. The QoL-AD is a 16-item scale assessing quality of life via five 



10 

different domains, including material/physical well-being, relationships, social/community/civic activities, 

personal development/fulfillment, and recreation. The CSE is a 26-item assessment that measures a subject’s 

perceived confidence and ability to cope with various life challenges. Lastly, the SWLS asks subjects five Likert-

scale questions about satisfaction with their life in its entirety (as opposed to specific domains of their life, such 

as finance). Table 2 shows the mean and coefficient of variation (CV) for each clinical measure at timepoint T6 

for the 14 participants. These ten T6 scores are predicted for each clinical assessment (RBANS, WTAR, FAS, 

DFT, PRMQ, IADL-C, GDS, QoL-AD, CSE, and SWLS) for each participant using behavior marker data 

collected throughout the study (see Sections 3.3 and 3.4 for behavior marker details; see Section 3.5 for clinical 

assessment prediction details). 

Table 2: Clinical scores and their distributions for EMMA/smart home condition participants at timepoint T6. 

 Measure Construct Assessed (Min, 

Max) 

Mean ± CV% 

Objective 

Laboratory 

Assessments 

Repeatable Battery of 

Neuropsychological Status (RBANS) 

General neurocognitive status 

 

(66, 110) 92.214 ± 

13.980% 

Wechsler Test of Adult Reading (WTAR) Verbal intellectual abilities  (84, 123) 112.857 ± 

10.292% 

Verbal Fluency on F-A-S letter fluency 

(FAS) 

Executive function (5, 19) 12.214 ± 

30.155% 

Design Fluency Test (DFT) Executive function (8, 18) 11.214 ± 

22.983% 

Self-report 

Questionnaires 

Prospective and Retrospective Memory 

Questionnaire (PRMQ) 

Memory (30, 62) 42.143 ± 

23.265% 

Instrumental Activities of Daily Living - 

Compensation (IADL-C) scale 

Everyday functioning and 

compensatory strategies 

(1.370, 

4.111) 

2.414 ± 

35.385% 

Geriatric Depression Scale (GDS) Depression (0, 11) 3.184 ± 

95.260% 

Quality of Life Scale (QoL-AD) Quality of life (26, 49) 38.500 ± 

18.889% 

Coping Self Efficacy (CSE) Coping abilities (66, 128) 95.500 ± 

19.228% 

Satisfaction with Life Scale (SWLS) Satisfaction with life as a 

whole 

(11, 33) 25.214 ± 

25.899% 

 

The duration from T1-T2 served as a baseline data collection period in which smart home data were collected 

for activity recognition training purposes. Participant use of EMMA did not begin until T2, which was the start of 

the EMMA training intervention. The intervention included 5-6 formal training sessions with a clinician on how 

to use EMMA during the T2-T3 period. Details about the intervention, which were conducted in participants’ 

homes, can be found in prior work [10], [37]. During post-intervention months T3-T6, participants were 

encouraged to continue to use EMMA to record information about past activities, to help them remember to do 

important tasks and to support day-to-day activities, including both short- and long-term goals. Furthermore, 
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during T2-T3, T3-T4 and T5-T6, smart home activity recognition-aware prompts were delivered to the study 

participants via EMMA to remind them to use EMMA. Smart home reminders to use EMMA were not delivered 

to participants during T4-T5. 

From the collected participant information and two data collection modes, the smart home and the EMMA 

app, we extract five different sets of behavior markers to model an EMMA study participant’s behavior: 

1. DEMO: T1 Demographics (age, gender, education level, and marital status; see Table 1) 

2. SHBM: T2-T6 Smart home behavior markers (see Section 3.3) 

3. USAGE: T2-T6 EMMA app usage behavior markers (see Section 3.4) 

4. NOTE: T2-T6 EMMA app note entry text-based behavior markers (see Section 3.4) 

5. TASK: T2-T6 EMMA app task description text-based behavior markers (see Section 3.4) 

As a pre-processing step, any feature with near-zero variability across the participant periods was removed and 

not used for prediction. For the demographic features, this included the ethnicity and race features which 

exhibited zero variability across features (all participants were non-Hispanic/Latino and Caucasian). 

3.3 Smart Home Behavior Markers (SHBM) 

In recent work, we created a set of digital behavior markers for a smart home resident by extracting 556 features 

from activity-labeled smart home data [5]. To do this, we computed features that describe behavior at the hour 

level, then aggregated these features at the day level. Additional features describing a person’s overall routine 

over several days were then computed by aggregating the daily features over a longitudinal period. Examples 

of each of these time period-based behavior markers are as follows: 

• Hourly: # of sensor readings, # of distinct activities performed, # of distinct locations visited, time spent 

on each activity, time spent at each location. 

• Daily: Daily totals for each of the hourly features, time of day for first occurrence of each activity, time 

of day for first visit to each home location. 

• Overall: Statistics for hourly and daily behavior markers (e.g., mean, median, standard deviation, max, 

min), regularity indices, circadian rhythm strength. 

Complete descriptions of the extracted smart home behavior markers are detailed in the literature [5]1. For the 

current study, we extract these 556 behavior markers from the smart home data collected between periods T2-

T6 to form the smart home behavior marker set. 

3.4 Digital Note Behavior Markers (USAGE, NOTE, TASK) 

To expand upon our prior work with smart-home based behavior markers, we explore new behavior markers 

computed from a different mode of data collection, the EMMA app. Table 3 summarizes these EMMA-based 

behavior markers that we extract between data collection periods T2-T61. First, from the EMMA app database, 

we extract USAGE behavior markers. These are similar to the smart home behavior markers (e.g., # of distinct 

uses, time spent in the various screens of the app, time of day for first use, regularity indexes, circadian rhythm 

strength), but based on the participant interactions with EMMA. In addition to quantifying a participant’s usage 

of the EMMA app, we are interested in utilizing information from the tasks and notes a participant enters in 

EMMA. This text contains valuable information about a person’s daily and overall behavior routine and goals, 

 
Code to extract smart home and text digital behavior markers is available at https://github.com/WSU-CASAS/DM  

https://github.com/WSU-CASAS/DM
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as well as a person’s writing style. To tap into this information, we first extract two different sets of free-form 

participant text from the EMMA database, the task description text (TASK), and the note content text (NOTE).  

Prior to computing behavior markers from these two categories of text, we perform pre-processing to clean 

the text and prepare it for different types of natural language processing. First, we tokenize the text into phrases 

and extract only the unique phrases authored by a participant during each period. We do this because notes 

can be edited and tasks can be scheduled to repeat, causing some phrases to appear multiple times within a 

period. With the unique phrase text, we extract initial features for which text artifacts like capitalization, 

punctuation, and verb tense are important. These include named entity recognition features (e.g., the number 

of specific datetimes, locations, organizations, and persons) and Linguistic Inquiry and Word Count (LIWC) 

features [49]. LIWC is a standard tool used in computational linguistics to extract features that are relevant for 

psychological analyses. LIWC is primarily comprised of a hierarchical dictionary that maps over 86% of common 

words used in writing and speech to categories. The categories include 21 linguistic dimensions (e.g., 

percentage of words that are different parts of speech), 41 psychological construct categories (e.g., percentage 

of words that are related to affect, cognition), 6 personal concerns categories (e.g., percentage of words that 

are related to work, home), and 5 informal language categories (e.g., percentage of words that are related to 

assents, fillers). In addition to these category-based features, LIWC produces additional features such as total 

word count, words > 6 letters, summary language composite scores (e.g., percentiles measuring analytical 

thinking, clout, authentic, and emotional tone measures), and punctuation use (e.g., percentage of text that are 

periods, commas).  

Next in the pre-processing pipeline, we follow standard text normalization steps to prepare for additional 

natural language processing techniques [21], [22], [50], including:  

• Converting text to lowercase 

• Replacing contractions with their expanded form 

• Removing punctuation marks (e.g., replace “&” with “and”) 

• Removing numeric characters 

• Removing stop words (using Python NLTK stop words) 

• Performing word stemming (using Python NLTK Porter Stemmer) 

We then compute natural language processing features that have exhibited predictive power in previous, 

related work [18], [28], [29], including readability scores from the Python Textatistic library (e.g., Dale-Chall 

score, SMOG score), sentiment analysis features using the Python TextBlob library (e.g., polarity, subjectivity), 

term frequency-inverse document frequency (TF-IDF) values for the 100 most frequent unigrams and bigrams 

using Python’s Sci-Kit Learn library, word embeddings using the Python Gensim library, and Latent Dirichlet 

Allocation topic modeling with 5 latent topics using Sci-Kit Learn (see Table 3 for a list of all EMMA-based 

behavior markers). To elaborate, we compute TF-IDF features by fitting a TF-IDF vectorizer on the training text 

and using this vectorizer to transform the testing text. From these TF-IDF vectors, only the values for the 100 

most frequent unigrams and bigrams in the training text are included as features. For word embeddings, we 

explored several Word2Vec models, including pre-trained models and a model trained on the available training 

set text each fold of cross validation. The best results were obtained using a Word2Vec model named glove-

wiki-gigaword-50, which is pre-trained on the Wikipedia 2014 + Gigaword 5 dataset to obtain a 50-dimensional 

vector for each word. Following Gonzalez-Atienza et al., all the word vectors in a period are averaged to produce 
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a 50-dimensional vector summarizing the dominant word embeddings for the period. From this vector two 

additional features, the mean and standard deviation, are extracted [29]. 

Two of these natural language processing feature types, TF-IDF and topic modeling, require information 

extracted over a corpus and are therefore computed right before training on the pre-processed training text from 

each fold of cross validation. We do this to prevent data leakage from the test set to the training set when using 

cross validation. As an example of how data leakage can occur, consider computing document frequencies 

over the entire corpus (all participant text) and then using these frequencies to compute TF-IDF vectors for each 

participant’s feature vector. In this manner, artifacts from feature vectors held out for testing are embedded in 

training feature vectors’ data (e.g., the document frequencies). 

Table 3: EMMA-based behavior markers. 

Behavior 

Marker Set 
Feature 

# 

Features 
Reference 

USAGE  

(21 markers) 

Mean daily # of taps in the app 1  

Mean daily # of distinct uses (5 mins of inactivity has passed between uses) 1  

Mean daily total minutes used 1  

Mean daily first use (minutes past midnight) 1  

Mean daily minutes spent on app screens (login, main, help, event, 

note/journal, milestone, reminder) 
7  

Regularity index (within weeks, within days, within each day of week) 9 [51] 

24-hour circadian rhythm (measured over the period) 1 [5] 

NOTE and 

TASK 

(265 markers 

each) 

Text structure (% unique phrases, % stop words, % unknown words, mean 

# of characters per word, mean # of syllables per word) 
5  

Readability (Dale-Chall score, SMOG score) 2 [28] 

# of named entities (datetimes, locations, organizations, persons) 4  

Sentiment analysis (mean/std sentence polarity and subjectivity) 4  

LIWC features (summary dimensions, affect, social, cognitive processes, 

perceptual processes, biological processes, drives, time orientation, 

relativity, personal concerns) 

93 [18] 

TF-IDF features* 100 [18], [28] 

Word embeddings (50-length vector, mean/std of vector) 52 [28], [29] 

Latent Dirichlet Allocation topic modeling (probabilities for 5 latent topics)* 5 [18] 

* = Computed from the training set of each fold of cross validation. 

3.5 Clinical Assessment Prediction 

We hypothesize that smart home and EMMA-based digital markers provide information about a person’s overall 

behavior routine and therefore may be predictive of various clinical measures of behavior. To investigate this 

hypothesis, we conduct several machine learning experiments to predict each of the assessments described in 

Table 2 at timepoint T6 using behavior markers from T2-T6. Our experiments explore different applications of 

recent developments in joint prediction and multimodal fusion. 
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3.5.1 Joint Prediction 

Joint prediction is a branch of machine learning research that aims to leverage predictions as “joint” features. 

What types of predictions are used as joint features are problem-specific; however, they are typically predictions 

in a similar feature space as the target variable Y. For example, recent research has explored the following 

possibilities for joint features: 

• Oracle features: ground truth Y values for similar and/or complementary training instances [12], [36].  

• Predicted features: predicted Y values (𝑌̂) for similar and/or complementary training instances [12], 

[36]. 

• Related variable prediction features: predicted values for variables similar and/or complementary to 

target variable Y for a testing instance [5]. 

In this paper, we explore utilizing related variable predictions as joint features. Using joint prediction, a 

separate model for each predicted clinical measure is trained using behavior markers. To improve prediction 

accuracy, a second set of models is then trained to predict each measure using the original features combined 

with the predicted scores of all other measures. In this manner, prediction for a new participant’s clinical 

assessment A at timepoint T6 is a set of n values for assessments A ∈ {RBANS, WTAR, FAS, DFT, PRMQ, 

IADL-C, GDS, QoL-AD, CSE, SWLS}. The predicted values are based on predictions for the n – 1 assessments 

in the set, without needing to administer the assessments. We hypothesize that predictions of measures 

assessing different clinical constructs are informative because of the predictive relationships that exist between 

the constructs themselves. We design our experiments to include two main components, independent 

predictions and joint predictions. Figure 3 provides an overview of this two-part prediction process. First, for 

each assessment A, an independent predictor utilizes an input feature matrix comprised of some subset of the 

five behavior marker sets listed in Section 3.2. Using cross validation, the independent predictor produces a 

single clinical assessment score prediction for each participant, producing a vector of predicted scores. All 

independent assessment predictions are combined into an independent prediction matrix where each column 

is an assessment vector and each row represents a participant.  

During joint prediction, this independent prediction matrix is joined with the original feature matrix to 

produce a new input feature matrix. For each assessment, the independent prediction for this assessment is 

removed from the joint feature matrix so each joint predictor only has access to independent features and 

predictions from other assessments. This step prevents data leakage and ensures the machine learning 

algorithms explore the predictive power of the independent and joint features. In the same fashion as the 

independent prediction vectors, the joint prediction vectors are combined to produce a final joint prediction 

matrix to be used for evaluation. Joint prediction can offer performance improvements when the target prediction 

variables are related, as is the case for our experiments. We hypothesize that when predicting a clinical 

assessment score at timepoint T6, including joint features (e.g., same-subject predictions for other 

complementary clinical assessments measured at timepoint T6) will improve prediction accuracy because of 

joint features capture different aspects of behavior. 
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Figure 3. Independent (white background) and joint (gray background) prediction workflows for predicting participant 

scores on a clinical assessment. Steps needed to prepare for joint prediction are shown with dashed arrows. Highlighted 

in the green circle with the dashed outline are the parts of Figure 3 that vary in implementation across Figure 4(a)-(c). 

3.5.2 Multimodal Fusion 

Recent work by Fraser et al. explored using two different variations of multimodal fusion to classify participants 

as MCI or not MCI [9]. The variations were early fusion, where features from different modes are combined 

before serving as input to a machine learning algorithm, and late fusion, where each mode’s features are input 

to their own machine learning algorithm. With late fusion, there is an additional machine learning algorithm that 

combines the predictions from the individual modality’s machine learning algorithm. Benefits to early fusion 

include the ability to model relationships between features extracted from different modes and less 

computational complexity since only one algorithm needs to be trained. A drawback of early fusion is the 

resulting high-dimensional feature space that accompanies combining features from different modes. Late 

fusion addresses this disadvantage by keeping the dimensionality of each algorithm’s input small. Another 

benefit of late fusion includes the ability to use different machine learning algorithms for each mode, allowing 

for more fine-grained tuning [52]. This flexibility is a trade-off of increased computational complexity for late 

fusion. 

In the current paper, we evaluate the predictive impact of using early and late fusion in conjunction with 

joint prediction, aiming to achieve the best possible clinical assessment prediction results. For each experiment, 

we compare different approaches to fusing behavior marker sets. This is to explore the feature space and 

determine the most predictive behavior markers for each assessment. The three main types of experiments we 

conduct are as follows: 

1. NO FUSION: independent and joint prediction for each individual behavior marker set, one at a time 

(see Figure 4(a) for a diagram) 
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2. EARLY FUSION: independent and joint prediction for all possible behavior marker set combinations 

(see Figure 4(b) for a diagram) 

3. LATE FUSION: independent and joint prediction with one predictor for each behavior marker set (see 

Figure 4(c) for a diagram) 

 

  
(a). NO FUSION experiment design. 

  
(b). EARLY FUSION experiment design. 
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(c). LATE FUSION experiment design. 

Figure 4. Multimodal (a) NO FUSION, (b) EARLY FUSION, and (c) LATE FUSION for independent prediction of 

participant scores on a clinical assessment. Additional steps needed for joint prediction are shown in gray boxes with 

dashed arrows. 

3.5.3 Feature Selection and Reduction 

Because the dimensionality of the feature space is quite high for EARLY FUSION, we explore feature selection 

and feature reduction techniques to further improve EARLY FUSION prediction results. In the case of feature 

selection, we utilize recursive feature elimination with cross validation to find the optimal size and set of features 

for prediction [53]. In the case of feature reduction techniques, we implement principal component analysis with 

the number of components set to the number of instances. We additionally explore using a neural network-

based autoencoder with various values for the number of bottleneck features (e.g., the resulting compressed 

feature vector size, m) [54]. An autoencoder is composed of an encoder and a decoder. The encoder is used 

to compress input data into a latent-space representation, which is typically a lower dimensionality (m) than the 

input dataspace. The decoder reconstructs the data from its latent-space representation back into its original 

form. Once trained and validated, the autoencoder’s encoder can be used in isolation from the decoder as a 

feature reducer. For EARLY FUSION feature reduction, each fold of cross validation we train an autoencoder 

on the fold’s training feature matrix, holding one training instance’s feature vector out to use for autoencoder 

validation. Because the autoencoder is reducing the training feature space only, the fold’s ground truth Y values 

(i.e., clinical assessment scores) and testing data are not provided to the autoencoder, ensuring data leakage 

does not occur. After validation, the encoder part of each fold’s autoencoder is then used to reduce the feature 

set before a regression algorithm is trained. 

3.5.4 Prediction Experiment Evaluation 

To evaluate our experimental design approaches with joint prediction and multimodal fusion, resulting 

independent and joint prediction matrices are evaluated separately using standard machine learning 

performance evaluation metrics. Since the predictions are numeric, the following regression evaluation metrics 

are applied: 

• Correlation coefficient r and associated p-value (𝛼 = 0.01; Bonferroni corrected 𝛼 = 0.01 / 8 clinical 

assessments = 0.00125; conservatively rounded down to 0.001) 

• Root mean squared error:  

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =  √
∑ (𝑌𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)2𝑛

𝑖=1

𝑛
 

• Min-max normalized root mean squared error:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =  
𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟

(𝑌𝑎𝑐𝑡𝑢𝑎𝑙,𝑚𝑎𝑥 − 𝑌𝑎𝑐𝑡𝑢𝑎𝑙,𝑚𝑖𝑛)
× 100% 

All experiments are conducted using leave-one-out cross validation and comparison of three machine learning 

algorithms: decision tree regressors, random forest regressors with 100 estimators, and gradient-boosted 

regressors with 100 estimators. We use decision tree-based ensemble approaches because of their 
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demonstrated success with previous studies that, like the current study, are also characterized by a large 

number of features [5], [55]. 

4 RESULTS 

We analyze unique text authored by participants in the EMMA app that totaled 46,754 words in their EMMA 

notes and 41,429 words in their EMMA task descriptions. These words are used to extract natural language 

processing-based NOTE and TASK behavior markers that we use with demographics markers (DEMO), smart 

home markers (SHBM), and EMMA usage markers (USAGE). We evaluate how our behavior markers can be 

used for clinical assessment prediction by conducting several experiments using leave-one-out cross validation. 

Table 4 summarizes the numerically highest NO FUSION correlation results for each assessment using 

independent prediction and joint prediction. 

Table 4: NO FUSION results: Numerically highest correlations shown for independent (I) and joint (J) prediction 

experiment configurations. Bold correlation denotes numerically higher correlation result between I and J rows. 

Assessment  Marker Set Algorithm r 

RBANS 
I TASK GBR 0.738* 

J TASK GBR 0.810**† 

WTAR 
I USAGE GBR 0.497 

J USAGE DTR 0.502 

FAS 
I DEMO DTR 0.393 

J TASK DTR 0.537 

DFT 
I NOTE GBR 0.407 

J NOTE DTR 0.627 

PRMQ 
I TASK GBR 0.506 

J TASK GBR 0.465 

IADL-C 
I SHBM DTR 0.264 

J NOTE DTR 0.113 

GDS 
I TASK DTR 0.683* 

J SHBM RFR 0.349 

QoL-AD 
I SHBM DTR 0.574 

J SHBM RFR 0.362 

CSE 
I TASK GBR 0.506 

J TASK GBR 0.577 

SWLS 
I SHBM GBR 0.403 

J SHBM GBR 0.508 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 

highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 
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To determine if improved prediction accuracy could be achieved using EARLY FUSION, we perform leave-one-

out cross validation with all possible feature set combinations fused prior to training. The highest performing 

EARLY FUSION correlation results for independent and joint prediction are shown in Table 5. 

Table 5: EARLY FUSION results: Numerically highest correlations shown for independent (I) and joint (J) prediction 

experiment configurations. Bold correlation denotes numerically higher correlation result between I and J rows. 

Assessment  Marker Sets Algorithm r 

RBANS 
I TASK, NOTE, USAGE GBR 0.758* 

J TASK GBR 0.810**† 

WTAR 
I DEMO, USAGE DTR 0.563 

J USAGE DTR 0.502 

FAS 
I DEMO, TASK DTR 0.401 

J TASK, USAGE DTR 0.557 

DFT 
I TASK, SHBM, USAGE DTR 0.721* 

J TASK, SHBM DTR 0.737* 

PRMQ 
I DEMO, TASK, USAGE GBR 0.588 

J DEMO, TASK, USAGE GBR 0.524 

IADL-C 
I DEMO, SHBM, USAGE DTR 0.345 

J NOTE, SHBM, USAGE DTR 0.251 

GDS 
I SHBM, USAGE DTR 0.853** 

J DEMO, SHBM, USAGE DTR 0.861**† 

QoL-AD 
I DEMO, TASK, NOTE, SHBM, USAGE DTR 0.660 

J TASK, SHBM GBR 0.582 

CSE 
I TASK, NOTE, SHBM GBR 0.738* 

J TASK, SHBM GBR 0.748*† 

SWLS 
I DEMO, NOTE, SHBM, USAGE DTR 0.755* 

J SHBM, USAGE DTR 0.857**† 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 

highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 

 

Using EARLY FUSION, we perform recursive feature elimination with cross validation, principal component 

analysis, and an autoencoder each as a pre-prediction step. Of the three approaches, only the autoencoder 

produced improved results, which are presented here. Starting at autoencoder bottleneck size of m = 25, we 

made bottleneck size increments of 50 up to and including m = 175. Using this dimensionality reduction 

technique, the results for four assessments’ EARLY FUSION results improved. The improvements and values 

of m for these assessments are shown in Table 6. 

Table 6: Autoencoder improved EARLY FUSION results: Numerically highest correlations shown for independent (I) and 

joint (J) prediction experiment configurations. 

Assessment  Marker Sets Algorithm m r 

RBANS J TASK GBR 175 0.671* 
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WTAR J TASK DTR 25 0.673*† 

FAS I TASK, NOTE, SHBM GBR 125 0.616 

DFT J TASK, NOTE, SHBM GBR 175 0.871**† 

PRMQ J NOTE, USAGE DTR 175 0.862**† 

IADL-C I TASK, USAGE DTR 175 0.575 

GDS I DEMO, NOTE DTR 175 0.588 

QoL-AD J SHBM, USAGE DTR 75 0.762*† 

CSE J DEMO, SHBM GBR 75 0.585 

SWLS I DEMO, TASK, NOTE, SHBM, USAGE DTR 75 0.576 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 

highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 

 

Following EARLY FUSION, we perform leave-one-out cross validation with LATE FUSION. Table 7 reports the 

numerically highest LATE FUSION correlation results for independent and joint prediction.  

Table 7. LATE FUSION results: Numerically highest correlations shown for independent (I) and joint (J) prediction 

experiment configurations. Bold correlation denotes numerically higher correlation result between I and J rows. 

Assessment  Algorithm r 

RBANS 
I GBR 0.208 

J GBR 0.156 

WTAR 
I RFR 0.602 

J RFR 0.607 

FAS 
I RFR 0.580 

J RFR 0.688*† 

DFT 
I DTR 0.604 

J DTR 0.590 

PRMQ 
I DTR 0.417 

J DTR 0.411 

IADL-C 
I GBR 0.484 

J RFR 0.601† 

GDS 
I DTR 0.812** 

J DTR 0.775* 

QoL-AD 
I RFR 0.249 

J RFR 0.153 

CSE 
I GBR 0.425 

J GBR 0.471 

SWLS 
I DTR 0.577 

J DTR 0.563 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 

highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 
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To summarize the results across all the experiment configurations reported in Tables 4-7, the correlation 

coefficient r (and associated p-value), root mean squared error, and normalized root mean squared error 

percentage values for each assessment’s experiment configuration with the overall numerically highest 

correlation (experiments denoted with † in Tables 4-7) are shown in Figure 5. 

 

  

(a) Correlation coefficient (r) bars with source r and associated p-value. 

 

  

(b) Normalized root mean squared error (RMSE) with source root mean squared error values. 

Figure 5. Correlation coefficient (a) and normalized root mean square error (b) bars for each assessment’s overall 

numerically highest correlation experiment configuration in Tables 4-7. DTR = decision tree regressor, GBR = gradient-

boosted regressor, RFR = random forest regressor. 

5 DISCUSSION 

In this paper, we explored multimodal fusion and joint prediction as methods for predicting ten clinical 

assessments scores (RBANS, WTAR, FAS, DFT, PRMQ, IADL-C, GDS, QoL-AD, CSE, and SWLS) for 14 

participants with MCI. From our experimental results in Tables 4-7, we observed widespread prediction 
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correlations across the assessments, ranging from weak (r < 0.3) to strong (r > 0.5). Given the relatively small 

sample size and the experimentation with several variables and configurations, such a range of correlations is 

expected. The weaker correlations occurred in cases where a clinical assessment exhibited a relatively small 

variance for the sample, such as WTAR, which had the lowest variance (coefficient of variation = 10.292%) and 

the second lowest overall prediction correlation of r = 0.673 (see Tables 2 and Figure 5). Typically, the lower 

the variance, the more difficult the distribution is to learn and predict, making it a more challenging clinical health 

measure to monitor. In the case of WTAR, since it represents an assessment of premorbid abilities, scores are 

unlikely to be significantly impacted by brain neurodegeneration until late in the process. Weaker correlations 

can also occur under different configurations (e.g., NO FUSION and independent prediction vs. LATE FUSION 

with joint prediction), where one configuration yields stronger predictive performance than others, indicating that 

these computational configurations are important for constructing more predictive, and thus usable, models. 

For example, IADL-C had the lowest prediction correlation of r = 0.113 across all the results tables (Tables 4-

7); however, when predicting IADL-C with LATE FUSION and joint prediction, a correlation of r = 0.601 was 

achieved. Overall, we identified configurations for five assessments (RBANS, DFT, PRMQ, GDS, SWLS) that 

yielded strong prediction correlations (r > 0.810; Bonferroni-corrected significant correlations p < 0.001). For 

example, our machine learning configuration for the GDS yielded r = 0.861 (p = 0.000077) using DEMO, SHBM, 

and USAGE behavior markers with a decision tree regressor and joint prediction. Given that a depressed state 

can significantly impact activity level and interests, it may not be surprising that app usage and SHBM behavior 

markers were able to predict this mood state more easily than a questionnaire that more holistic captures quality 

of life and includes questions about marriage and financial situation. We also identified the experiment 

configurations for the other five assessments (WTAR, FAS, IADL-C, QoL-AD, CSE) that produced moderate 

prediction correlations (r > 0.601).  

In general, EARLY FUSION was the most accurate experiment setup with four of the numerically highest 

overall results utilizing EARLY FUSION (RBANS, GDS, CSE, and SWLS), plus an additional four numerically 

highest results that employed autoencoders (WTAR, DFT, PRMQ, and QoL-AD). RBANS, DFT, PRMQ, GDS, 

and SWLS are the assessments that were most accurately predicted (0.810 ≤ r ≤ 0.871), while WTAR, FAS, 

IADL-C, QoL-AD, and CSE were less accurately predicted (0.601 ≤ r ≤ 0.762). These correlations are stronger 

than previous work using smart home features to predict RBANS (r = 0.40), PRMQ (r = 0.31), and GDS (r = 

0.21) [8]. They are also similar to previous work using a fusion of smart home and smartwatch behavior markers 

with a larger SHiB sample size of N = 21 (RBANS r = 0.962, WTAR r = 0.879, FAS r = 0.806) [5]. Of the different 

behavior marker sets, TASK appeared to be the marker set with greatest potential for predicting these 

assessments, with 26 result occurrences in Tables 4-7, followed by SHBM markers (23 result occurrences), 

followed by USAGE markers (20 result occurrences). NOTE and DEMO sets were the least informative behavior 

markers, with 13 and 12 result occurrences, respectively. The DEMO set is likely not as informative because 

the four objective laboratory measures are scaled using age-correction. In support of this statement, 9 of the 12 

instances in which DEMO was an informative marker are among the self-report measures. The behavior 

markers in the NOTE set are probably less prevalent in Tables 4-7 compared to TASK because the NOTE 

section was taught in the last two weeks of the intervention and was less widely used by the MCI study 

participants. 

Regarding using joint features to improve prediction results, joint prediction did not consistently improve 

every assessment result, though it did improve results over independent prediction for about half of the 
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assessments (6/10 NO FUSION, 6/10 EARLY FUSION, 6/10 auto encoded EARLY FUSION, and 4/10 LATE 

FUSION). Of the overall numerically highest correlation results for each assessment, all ten used joint prediction 

(see Tables 4-7). These improvements suggest there appears to be predictive utility in using joint features for 

mapping sensor data to clinical assessment scores, though it is dependent on the target assessment and the 

predictive assessments that are employed. As for the importance of the algorithm used (decision tree regressor, 

random forest regressor, or gradient-boosted regressor), decision tree regressor was the most frequent 

algorithm in Tables 4-7 (35 occurrences), followed by gradient-boosted regressor (26 occurrences), then 

random forest regressor (9 occurrences). Though these occurrences do not suggest a clear best algorithm for 

all experiments, decision tree regressor and gradient-boosted regressor seem well suited for EARLY FUSION 

experiments (5/8 and 3/8 of the overall numerically highest results use decision tree regressor and gradient-

boosted regressor in Tables 5 and 6, respectively) and random forest regressor seems well suited for LATE 

FUSION experiments (both the overall numerically highest FAS and IADL-C experiments use random forest 

regressor in Table 7). These findings indicate that the choice of algorithm for each configuration is also important 

and should be selected individually for each assessment. Future work will be needed to identify whether a 

standard algorithm configuration can be identified that may be best for different types of assessment (e.g., self-

report, memory testing, etc.). 

5.1 NO FUSION Experiments 

NO FUSION trains machine learning algorithms for each behavior marker set individually to determine the most 

relevant set of behavior markers for each assessment. To account for possible overfitting due to the small SHiB 

sample, we used leave-one-out cross validation to maximize the amount of training data available. When 

evaluating DEMO markers’ predictive abilities for the self-report measures that were not age-corrected and 

captured mood, behavior and everyday function, the digital memory notebook and smart home modalities 

outperformed traditional demographic features. This is because demographic markers do not capture behavior 

patterns like sensor-based behavior markers can over time. Comparing the digital memory notebook modality 

to the smart home modality, we observed that three of the ten clinical measures made use of SHBM as the 

most predictive marker set with NO FUSION (IADL-C, QoL-AD, and SLWS). Of interest, one of the measures 

best captured by the SHBM (i.e., IADL-C) assesses ability to complete complex activities of daily living (e.g., 

managing medications, cooking), which the smart home sensors would be in the best position to assess. The 

remaining self-report and clinical assessments were best predicted using EMMA markers, suggesting that the 

digital memory notebook markers may provide more predictive power than smart home markers. These 

observed results may be due to the EMMA app serving as a tool to assist with organization and completion of 

everyday task and requiring active engagement by the user, as opposed to the smart home modality which is 

more passive by design. 

5.2 EARLY FUSION and LATE FUSION Experiments 

In contrast to NO FUSION, we explored two different types of fusion approaches, EARLY FUSION (see Tables 

5 and 6 for results) and LATE FUSION (see Table 7 for results), to combine behavior markers from different 

modalities. For all assessments, fusion improved prediction accuracy; however, RBANS is a unique case 

because the most predictive EARLY FUSION marker set combination turns out to be TASK markers alone, 

yielding the same prediction accuracy as gradient-boosted joint prediction with NO FUSION (r = 0.810). This is 
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a strong correlation (p = 0.000451), implying the tasks and how they are written in EMMA by MCI participants 

are quite indicative of their current cognitive status (RBANS) as opposed to their premorbid ability (WTAR). In 

general, EARLY FUSION appeared more appropriate for predicting the assessments utilized in this study 

because the overall numerically highest correlation result was achieved with EARLY FUSION and EARLY 

FUSION with autoencoding for eight of the ten assessments (see Tables 5 and 6 and Figure 5). All assessments 

except RBANS and WTAR benefitted from a fusion of at least two marker sets. Most assessments had the best 

results utilizing a fusion of two to three marker sets, while QoL-AD and SWLS were the only assessments to 

utilize all five available marker sets. Assessments trying to capture constructs such as quality of life that 

measure behavior more holistically, may require more dimensions to accurately assess. Once again, it 

appeared that EMMA sets are providing the most predictive value, being used in all numerically highest EARLY 

fusions. SHBM markers appeared in six assessments’ numerically highest EARLY FUSION results. Consistent 

with the NO FUSION results, DEMO and NOTE markers provided the least predictive utility. This suggests that, 

for the current data with MCI participants, computational complexity can be reduced by eliminating processing 

of NOTE text.  

The application of autoencoders as a feature reduction technique improved results for four of the 

assessments. This is helpful in overcoming the discrepancy between the number of behavior markers and the 

number of participants; however, upon investigating the number of reduced features (m) that produces the 

improved results, m is still quite large. For six assessments, m was in the range of 125 to 175 (see Table 6). 

Only WTAR had a value close to the number of samples (m = 25). Since autoencoders aim to compress a large 

feature space, it seems the multimodal feature space is valuable in its many dimensions because larger values 

of m produced the strongest results for some assessments. 

For the LATE FUSION results in Table 7, FAS and IADL-C were the only assessments exhibiting slightly 

better correlations with LATE FUSION than with EARLY FUSION, with a 11.688% and 4.522% improvement, 

respectively. On the other hand, some assessments, like RBANS and QoL-AD performed particularly poor 

under LATE FUSION, perhaps because of the inconsistent accuracy a single marker set-trained algorithm 

produces. As noted earlier, quality of life assessments (i.e., QoL-AD and SLWS) were the only assessments 

using all five marker sets in their numerically highest fusion result. Coupling this with QoL-AD’s poor LATE 

FUSION performance, it appears multiple dimensions of behavior and routine from different modalities were 

necessary to accurately capture similar information contained within a holistic assessment score like QoL-AD. 

6 CONCLUSION 

In this paper, we explored multimodal fusion and joint prediction of behavior markers for predicting objective 

(RBANS, WTAR, FAS, DFT) and self-report (PRMQ, IADL-C, GDS, QoL-AD, CSE, and SWLS) clinical scores, 

for participants with mild cognitive impairment. The modalities we used included smart home environments, a 

compensatory digital memory notebook iPad app called EMMA, and traditional demographic information. Our 

smart home system continuously and unobtrusively collected data that was sent to activity recognition 

algorithms to help model a resident’s everyday routine. Furthermore, the smart home system was integrated 

with the EMMA digital memory notebook app, providing context-aware prompts to help residents navigate their 

daily routine and remember important information. From these modalities, we extracted behavior markers and 

explored different fusion techniques to map the markers into clinical assessment scores. Using decision tree, 

random forest, and gradient boosting regression algorithms, we achieved at least moderate correlations (r ≥ 
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0.601) between actual assessment scores and predicted scores. For two of the four objective measures 

(RBANS and DFT) and three of the six self-report assessments (PRMQ, GDS, and SLWS), we achieved strong 

correlations (r ≥ 0.810). Prediction results using joint prediction and multimodal fusion offered improvements 

over baseline independent predictions for all assessments. Of the behavior marker sets, EMMA task-based 

markers and smart home-based markers appeared the most informative, suggesting a fusion of multiple 

modalities, including participant-authored text, may offer the most promising prediction results. 

The small sample size (N = 14 participants with both EMMA and smart home data) and the inconsistent use 

of EMMA for some participants are two limitations of the study. For the former, we anticipate prediction 

performance would improve with more participants and longer smart home and EMMA data collection periods. 

For the latter, while participants were trained and encouraged to use the memory app multiple times per day, 

not all participants used the note and task features enough to provide a large corpus of text for analysis. Future 

work aims to collect a larger corpus of note and task text from the aging population along a continuum from 

healthy to mild dementia, explore additional feature selection and reduction techniques for each assessment’s 

overall numerically highest experiment configuration, and utilize EMMA text-based behavior markers for further 

integration with smartwatch and smart home environments. The latter offers an opportunity for health care 

providers and caregivers to automatically be notified if a behavior change occurs that may be indicative of health 

status change. 
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