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Abstract  23 

 24 

Background: Telehealth and home-based care options significantly 25 

expanded during the SARS-CoV2 pandemic. Sophisticated, remote 26 

monitoring technologies now exist that support at-home care. Advances in the 27 

research of smart homes for health monitoring have shown these 28 

technologies are capable of recognizing and predicting health changes in 29 

near-real time. However, few nurses are familiar enough with this technology 30 

to use smart homes for optimizing patient care or expanding their reach into 31 

the home between healthcare touch points. 32 

 33 

Objective: The objective of this work is to explore a partnership between 34 

nurses and smart homes for automated remote monitoring and assessing of 35 

patient health. A series of health event cases is presented to demonstrate 36 

how this partnership may be harnessed to effectively detect and report on 37 

clinically relevant health events that can be automatically detected by smart 38 

homes. 39 

 40 

Participants: 25 participants with multiple chronic health conditions 41 

 42 

Methods: Ambient sensors were installed in the homes of 25 participants with 43 

multiple chronic health conditions. Motion, light, temperature, and door usage 44 

data were continuously collected from participants’ homes. Descriptions of 45 

health events and participants’ associated behaviors were captured via 46 

weekly nursing telehealth visits with study participants and used to analyze 47 

sensor data representing health events. Two cases of participants with 48 

congestive heart failure exacerbations, one case of urinary tract infection, two 49 

cases of bowel inflammation flares, and four cases of participants with sleep 50 

interruption were explored. 51 
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 52 

Results: For each case, clinically relevant health events aligned with changes 53 

from baseline in behavior data patterns derived from sensors installed in the 54 

participant’s home. In some cases, the detected event was precipitated by 55 

additional behavior patterns that could be used to predict the event. 56 

 57 

Conclusions: This case series provides evidence that continuous sensor-58 

based monitoring of patient behavior in home settings may be used to provide 59 

automated detection of health events. Nursing insights into smart home 60 

sensor data could be used to initiate preventive strategies and provide timely 61 

intervention. 62 
 63 
Tweetable abstract: Smart home partnered with nurses could detect 64 

exacerbations of health conditions at home leading to early intervention 65 

Keywords 66 

 67 
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 70 

What is already known 71 

• Timely interventions supporting self-management of chronic conditions 72 

can reduce burden. 73 

• Ambient sensors can unobtrusively collect continuous data in home 74 

settings reflecting behavior patterns associated with health states. 75 

• Knowledge gaps remain about how to interpret sensor data for 76 

accurate recognition of clinically relevant changes in health states. 77 

What this paper adds  78 

• We provide examples of how nurses could interpret and use sensor 79 

data in the clinical setting. 80 

• With the cases, we demonstrate how nurses could utilize continuous 81 

ambient sensor data from smart homes for helping individuals self-82 

manage their chronic conditions. 83 

• Machine learning and computing techniques could aid nurses in 84 

understanding health changes before an individual presents to a 85 

healthcare facility. 86 

 87 

1. Background  88 

 89 

There is increasing interest in remote monitoring of the 70% of older adults 90 

diagnosed with two or more chronic conditions1. The World Health 91 

Organization and several national governments have called for bold 92 

technology-based solutions to enhance management of chronic conditions1–3. 93 

One innovative health technology under development is the health-assistive 94 

smart home (hereafter referred to as “smart home”).  95 
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Smart homes offer features that are being employed by assisted living 96 

facilities, such as monitoring access to medication dispensers and supporting 97 

voice-activated calls for assistance4. Technologies that can distinguish normal 98 

behavior from a health crisis remain in the research phase. However, nurses 99 

should know about such forthcoming technologies so they can envision their 100 

use with various populations and participate in technology development to 101 

optimize clinical application. 102 

The purpose of this paper is to introduce nurses to the idea of a smart 103 

home and demonstrate how this technology could assist with timely 104 

management of chronic conditions. We address the smart home’s potential to 105 

assess changes in health states and facilitate “clinical triage.” To show the 106 

smart home’s potential for health monitoring, we describe findings derived 107 

from data retrieved as part of multiple smart home studies conducted over the 108 

last decade (2012-2022). The studies focused on developing machine 109 

learning algorithms for automated assessment and prediction of health events 110 

in adults age 60+. Smart home sensor data collected from these studies were 111 

used to present this health events case series. 112 

 113 

 114 

 115 

 116 

1.1 Smart Home Terminology 117 

 118 

 119 

Table 1 lists terms and definitions that may aid with understanding 120 

equipment, data, and methods used in this study. 121 

 122 

Table 1. Terms that are used throughout this article with definitions. 123 

 124 

Activity labels An activity name (e.g., sleep, eat) that is assigned to a 
set of sensor readings. 

Algorithm A set of instructions followed by a computer. 

Ambient sensor A sensor integrated into a home that detects and 
reports readings related to human movement. 

Artificial intelligence Computer systems capable of performing tasks 
normally requiring human intelligence. 

Behavior markers Statistical measures that are extracted from sensor 
readings and reflect human behavior.  

Behavior patterns Sensed recurring human movement sequences. 

Features Digital descriptors that are extracted from sensor 
reading sequences. 

Ground Truth Data collected from real-world scenarios that are used 
to train machine learning algorithms on related, 
contextual information. 

Health event A sudden change in a person’s health state. 

Pervasive computing Computers embedded in everyday devices and 
environments. 

Machine learning A computer program that improves its own 
performance at a task such as detecting health events 
or labeling activities. 
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Models The output of a computer algorithm after it analyzes 
data to find predictive patterns. 

Sensor reading A timestamped, reported value of a sensed entity. 

Shannon entropy The amount of information in a variable. For this case 
series, it represents the proportion of each type of 
sensor in the sequence of 30 consecutive sensor 
readings. 

Smart home A home that can sense and reason about the state of 
the environment and residents. 

 125 

 126 

 127 

 128 

Figure 1. (left) Smart home monitoring kit, (middle) sensor locations in a typical 129 
home, and (right callout) examples of sensor readings generated by the smart home 130 
as a participant moves around the home. 131 
 132 

 133 

 134 

1.2 Remote Detection of Health Events  135 

Currently, to address a chronic condition exacerbation, providers and 136 

nurses rely on sporadic and unclear client self-report or in-person 137 

assessment, making managing chronic conditions challenging5. Thus, some 138 

providers are prescribing the use of wearable sensors. Although wearable 139 

sensors (e.g., Fitbit or Apple watch) are now routinely used to monitor an 140 

individual’s vital signs6,7, analyze motor function8, and assess cognition9,10, 141 

the need to consistently wear and charge these devices limits their usability 142 

for longitudinal monitoring and assessment. In contrast to wearables, ambient 143 

smart home sensors can be embedded into everyday settings and 144 

unobtrusively collect data, telling a robust story about a client’s health without 145 

requiring any direct interaction. 146 

Researchers have used smart home sensors combined with computing and 147 

machine learning algorithms to detect changes in individuals’ behaviors that 148 
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are indicative of changes in health11–17. In one study, researchers monitored 149 

residents’ socialization patterns using ambient sensors and found that 150 

decreased socialization was predictive of depression18. In other studies, 151 

machine learning techniques identifying behavior markers such as sleep/wake 152 

behaviors and activity level were used to predict pain19, clinical scores20, and 153 

mobility, cognition, and depression symptoms in older adults21. These 154 

behavior markers have also been used to predict fall risk, cognitive diagnosis, 155 

and dyskinesia22,23. Additionally, behavior changes resulting from treatment 156 

regimens for chronic conditions have been detected using smart homes24, 157 

thus affording the possibility that smart homes could determine prescribed 158 

treatment regimen adherence and impact.  159 

The analysis of smart home sensor data combined with clinical 160 

assessments for the purpose of detecting and anticipating clinically relevant 161 

health events remains underexplored25, limiting the translation of smart home 162 

technologies into real-world settings where a growing number of persons are 163 

diagnosed with chronic conditions. A further knowledge gap is that studies to 164 

date have not focused on monitoring individuals with a diverse set of chronic 165 

health conditions in natural settings. Instead, they are limited to controlled 166 

settings or are focused on a single health condition. 167 

 168 

2. Methods 169 

 170 

2.1. Study Design 171 

Case Series (Current Study). This health event case series used existing 172 

sensor-based data collected from two parent studies; one ongoing smart 173 

home research study [BLINDED NIH STUDY; sample of N=30] and one 174 

completed study [BLINDED NIH STUDY; sample of N=20]. See Section 2.2 175 

for parent study sensor data collection methods. The studies were approved 176 

by the BLINDED Institutional Review Board.  177 

This retrospective secondary analysis used existing data to determine if 178 

smart home sensor data could provide clinically relevant behavior information 179 

to support automated monitoring and timely interventions for older adults with 180 

chronic conditions. We analyzed nine health events that may provide insight 181 

for a variety of common conditions and their related exacerbations in an older 182 

adult population. We defined a health event as any sudden change in health 183 

state reported by the participants that resulted in a change in behavior routine. 184 

Cases were chosen by three nurses and one engineer who were familiar with 185 

participants’ sensor data and associated health data. Secondary data analysis 186 

was conducted on the subset of data pertaining to the nine health event cases 187 

presented here. To preserve anonymity, we assigned participants’ codes S1 188 

through S8. Two health events (Case 5 and 8) use data from Participant S5. 189 

All participants were living in retirement communities either in the United 190 

States (U.S.) or Australia. 191 

 192 

 193 

2.2 Data Acquisition (Parent Studies) 194 

To be included in either the ongoing (participants with chronic health 195 

conditions) [BLINDED] or completed (healthy older adult participants) 196 
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[BLINDED] parent study, participants needed to understand English and sign 197 

an informed consent; live alone in a community home; be Internet-connected; 198 

not own pets that roam the house; and agree to have smart home sensors 199 

installed for at least 12 months.  200 

For the ongoing parent study (sample N=30), smart home sensors were 201 

installed in the homes of adults age 65+ in the U.S. and Australia between 202 

October 2016 and August 2020 as part of an ongoing research collaboration. 203 

No comparisons between the countries’ participants were made. Of the 30 204 

participants whose participation was completed by the time of this paper, 25 205 

had one or more chronic conditions that required ongoing medical 206 

management, including but not limited to congestive heart failure, chronic 207 

obstructive pulmonary disorder, irritable bowel syndrome, cancer, diabetes, 208 

diverticulitis, atrial fibrillation, arthritis, epilepsy, ulcerative colitis, Parkinson’s, 209 

Sjogren’s, or restless leg syndrome. 210 

For the completed parent study (sample of N=20), smart home sensors 211 

were installed in the homes of 20 adults age 65+ without a chronic condition in 212 

the U.S. between 2011 and 2017. The same smart home and sensor 213 

installation strategies were used for all participants in both studies. 214 

 215 

Ambient Sensors. Data were collected by ambient sensors, including 216 

passive infrared (PIR) motion detectors, light, magnetic door use, and 217 

temperature sensors. Selected sensors tracked motion of the whole-home, 218 

ambient light by day and night, opening and closing of doors, and temperature 219 

changes near the kitchen stove and in the bathroom. Sensor placement was 220 

determined based on the floor plan and room size and adjusted to monitor the 221 

participant’s normal utilization of the space (Figure 1). The goal for sensor 222 

placement locations was to sense movement in all areas of the home. Each 223 

room contained at least three sensors attached using removable adhesive 224 

strips; approximately 15-20 sensors were installed in a typical 2-bedroom, 2-225 

bathroom home. An area motion sensor (360-degree sensing area) was 226 

placed on the ceiling in each room to capture motion anywhere in the room. At 227 

least two additional motion sensors were placed with narrower (1-meter) fields 228 

of view to capture motion in smaller, regularly utilized spaces (e.g., recliner 229 

chair, bathroom sink). In all homes, motion sensors were installed above the 230 

kitchen sink, stove, beds, seating areas, bathroom sinks, toilets, and shower. 231 

The opening and closing of the home’s main entrance was captured by 232 

magnet-driven switches placed on the doors and door jams. Refrigerator use 233 

was captured by placing a motion sensor inside the refrigerator.  234 

  Each sensor sampled its environment at 1.25Hz and reported its state 235 

(ON/OFF, OPEN/CLOSED, temperature/light levels) in response to sensed 236 

environmental changes like new heat-based motion in its field of view, door 237 

use, change in light level, or change in temperature. The generated binary 238 

(“ON” or “OFF”) or numeric (temperature in Fahrenheit) readings were 239 

transmitted to a computer, labeled with timestamps and sensor identifiers 240 

(Figure 1), and securely encrypted and transmitted to an off-site server. 241 

Homes generated 1,500-2,000 sensor readings each day per participant. 242 

 243 

 Vital sign devices. For each of the cases presented here, digital blood 244 

pressure monitors, pulse oximeters, and weight scales were used by 245 
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participants. These data supported nurses’ understanding of the relationship 246 

between sensor data and participant well-being. 247 

 248 

Nursing Assessments. The research team included five nurses that met 249 

weekly with each participant. During initial home visits, nurses collected health 250 

histories, conducted physical assessments, and wrote summaries of 251 

participants’ daily routines. Summaries were updated quarterly.  252 

Weekly telehealth visits consisted of semi-structured interviews seeking 253 

information about participants’ health conditions and any health events 254 

occurring in the week prior. Recorded participant information included vital 255 

signs (heart rate, oxygen saturation, blood pressure, weight); pain ratings; 256 

overall or specific changes in their health; medication changes; visits to 257 

providers or emergent care; health of each body system 258 

(eyes/ears/nose/throat, neuro, cardio, respiratory, genitourinary, 259 

gastrointestinal, musculoskeletal, endocrine, integumentary, psychosocial); 260 

health concerns; health-related events; and social activities such as visitors or 261 

attending an exercise class. Nurse telehealth visits lasted approximately 10-262 

25 minutes, depending on the complexity of health changes. 263 

Nurses asked, “Tell me how your health has been this last week. Any 264 

changes?” Participants were primarily asked about known health conditions or 265 

situations previously shared with the nursing team. For example, if the 266 

participant was diagnosed with a movement disorder and prone to falls, the 267 

nurse asked, “How have you been moving this last week? Any falls?” They 268 

also asked, “How have you been sleeping? Any particular nights that weren’t 269 

good?” Nurses collected information about the date, time, location, and 270 

duration of health events, and how the health events impacted participant 271 

routines (e.g., sleep, leaving home). If participants could not recall details, this 272 

was noted. Generally, participants could recall the days, times, and locations 273 

of their health events (i.e., what happened, when, and where). All participant 274 

health events were added to a master list, from which a convenience sample 275 

was selected for this case series.  276 

 277 

2.3 Data Analysis and Preparation 278 

2.3.1 Nursing Analytics (Current Study) 279 

 280 

Health Data. The nursing record provided context for the sensor-based 281 

data collected during an identified health event. We focused on symptom 282 

manifestations related to bathroom use, sleep disturbances, time out of the 283 

home, and navigation patterns, because these behaviors can be defined by 284 

temporal and locational context, captured by timestamped sensor readings. 285 

We also focused on symptom manifestations related to these behaviors 286 

because they are common across a diverse range of conditions and acute 287 

exacerbations, thus positioning these sensor-derived “symptoms” to play an 288 

essential role in evidence-based nursing and symptom science26,27 regarding 289 

community-based care of older adults. 290 

Health events representing a participant’s chronic condition were chosen 291 

for this case series. Not all health events reported by participants and 292 

recorded by nurses were analyzed. Some were excluded due to insufficient 293 

nursing descriptions, or because the event occurred in conjunction with other 294 

confounding events requiring analysis beyond the scope of this paper. 295 
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 296 

Sensor Data. We analyzed the raw sensor readings to describe participant 297 

behavior at baseline and during health events. For each case event, one 298 

nurse-researcher (NurseA) re-reviewed the weekly health assessment record 299 

to verify the time of the health event and associated participant-reported 300 

behavior change. NurseA also selected one week of baseline data for the 301 

individual; the first complete week of data identified by the assigned parent 302 

study nurse and confirmed by the participant as “normal” (no health events, 303 

extra visitors, travel, holiday activities, or behavior variations). In some cases, 304 

to better illuminate the health event, the baseline week was compared to the 305 

week in which the health event occurred. Nursing data were shared with the 306 

engineer who used the context and sensor-based date and time event 307 

parameters to compute quantifiable routine changes. 308 

   309 

2.3.2 Machine Learning (Parent Studies) 310 

 311 

As part of the aims of the parent studies, an increasingly expansive and 312 

accurate set of activity labels were automatically assigned to smart home 313 

sensor readings. These labels provided a vocabulary for expressing and 314 

tracking participant behavior patterns. Activity models were created by a 315 

machine learning algorithm based on two months of labeled data provided for 316 

68 homes (from the two parent studies and one other smart home study). 317 

These homes were chosen for activity modeling because the same sensor 318 

deployment strategies were used. Additionally, at least one month of data 319 

were manually labeled for each home by a research team member who 320 

assigned an activity category (e.g., sleeping, bathing) to each sensor reading. 321 

These labels provide ground truth activity categories for training the machine 322 

learning algorithm. 323 

Data used to train the machine learning algorithm consisted of features that 324 

were extracted from rolling sequences of 30 consecutive sensor readings 325 

(similar to the process of rolling averages). Features extracted from each 326 

sequence were time of day (seconds past midnight), day of the week, time 327 

duration, elapsed time for each sensor since its latest reading, most recent 328 

participant location, most dominant sensor (sensor generating the most 329 

readings), Shannon entropy calculated as the sum of pilog(pi), where pi 330 

represents the proportion of each type of sensor in the sequence of 30 331 

consecutive sensor readings, number of location changes, and the number of 332 

readings generated by each sensor28. Using leave-one-home-out cross 333 

validation, modeling the 11 activities bed-toilet transition, cook, eat, enter 334 

home, leave home, personal hygiene, relax, sleep, wash dishes, work, and 335 

other resulted in a 92% accuracy for the 68 homes. The leave-one-home-out 336 

validation method reflects the expected accuracy of the model should it be 337 

used in a new home where labeled training data are not available.  338 

Table 2 lists behavior markers used for the cases presented in this paper, 339 

the learned activity labels that defined each marker, and the statistical 340 

measures used to quantify the marker. Sample data and activity recognition 341 

software are available at [BLINDED]. 342 

 343 

 344 

 345 
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 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

Table 2. Behavior markers used in this case series. 357 

 358 
Behavior 
Marker 

Definition and Activity Label(s) Descriptive Statistics 

Bathroom 
usage 

Count of sensor readings labeled with bathroom-related 
activity labels.* 

Count per day, mean 
count over multiday time 
period (e.g., baseline). 

Bathroom use 
occurrence  

A distinct “trip” to the bathroom as a sequence of 
consecutive readings labeled with bathroom-related 
activity labels.* Time between each reading is <5 
minutes. 

Count per day, mean 
daily count over multiday 
time period. 

Bathroom use 
duration 

Duration in seconds of a single bathroom use occurrence. Mean duration of 
occurrences within given 
time period. 

Sleep 
movements 

Count of sensor readings with activity label “sleep.”  Mean daily count over 
multiday time period. 

Sleep 
interruption 

Two occurrences of sleep activity (i.e., consecutive 
readings labeled “sleep”) during the same night which 
were separated by a sequence of sensor readings in a 
different location than the sleep activity. Each 
interruption lasted at least two minutes and typically 
involved the “bed-toilet transition” activity label but may 
have also involved any activity label that was not “sleep.” 

Mean daily count over 
multiday time period. 

Sleep 
interruption 
duration 

Duration in minutes of an instance of sleep interruption. Mean duration of 
interruptions within 
given time period. 

Bed-toilet 
activities 

A sleep interruption specifically involving sensor readings 
labeled “bed-toilet transition” 

Mean daily count over 
multiday time period  

Time out of 
home 

Time elapsed in seconds between a sensor reading with 
activity label “leave home” and a sensor reading with 
activity label “enter home” 

Total time per day, mean 
daily total time over 
multiday time period. 

*The activity recognition algorithm used in this study combines all bathroom-related activity under the 
single label “personal hygiene.” This activity label is not exclusive to just hygiene activities as 
understood by nurses but encompasses any activity associated with the bathroom location. 

 359 

 360 

 361 

2.3.3 Machine Learning (Current Study) 362 

 363 
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Behavior markers associated with health events were calculated using 364 

sensor readings that were automatically labeled with an activity category by 365 

the activity recognition algorithm described in Section 2.3.2. Table 2 provides 366 

definitions of the behavior markers and the automated activity labels used for 367 

each. For example, bathroom usage was measured as the number of sensor 368 

readings labeled daily as a bathroom-related activity (personal hygiene or 369 

bed-toilet transition), and sleep movements were based on the number of 370 

sensor readings labeled “sleep.” For some cases, we also reported the 371 

number of distinct occurrences of a labeled activity. This relied on segmenting 372 

the data into non-overlapping instances of an activity category. Data were 373 

segmented based on time and location. If the elapsed time between two 374 

consecutive readings and the same activity label was less than five minutes, 375 

they were grouped into the same activity occurrence; otherwise, they were 376 

considered two distinct occurrences.  377 

We also reported sleep interruptions and per-day time spent out of the 378 

home. Sleep interruptions were defined as broken-up “sleep” activity during 379 

the same night, where the sequence of readings was broken across two 380 

different locations. Interruptions were included only if they were at least two 381 

minutes in duration. Time out of home was calculated as the elapsed time 382 

between “leave home” and subsequent “enter home” activities. 383 

For the case events below, we report descriptive statistics, including means 384 

and standard deviations for daily activities at baseline and percent changes in 385 

activity associated with the case events. Z-scores highlight activity outliers 386 

compared to baseline or a healthy population. For some events, to better 387 

exhibit the behavior patterns related to a chronic health condition, we 388 

compared the individual’s activity to that of a healthy older adult population 389 

(referred to as the healthy sample). For some case events spanning multiple 390 

days, a z-score was calculated for the average daily activity over the event 391 

days. For other cases with multiple multi-day events, a z-score was calculated 392 

for the activity on the first day of each event to indicate the significance of the 393 

departure from baseline. For some cases, qualitative descriptions of 394 

movement trajectory in the home were also presented.  395 

 396 

3. Health Event Reports 397 

 398 

3.1. Smart Home Detection of Bathroom Use Cases 399 

 400 

Case 1, cardiac. Participant S1, a female age 75-80 (age range to protect 401 

privacy), was monitored for 24 months with smart home sensors in her one-402 

bedroom, one-bath apartment. S1 was diagnosed with congestive heart 403 

failure, atrial fibrillation, dysphagia, and hyperglycemia. She was prescribed a 404 

diuretic, and on five occasions of varying duration (M=3.6 days, SD=2.2), her 405 

daily diuretic dose was temporarily increased to treat excess fluid retention. 406 

These episodes were characterized by urinary frequency and an increase in 407 

bathroom usage activity during the increased diuretic dose.  408 

Based on this measure, bathroom usage increased by 27.8% over the 409 

mean during the baseline week for this participant (baseline M=1789.6 sensor 410 

readings, SD=258.5). Similarly, daily bathroom use increased in number 411 

(10.9% increase) over baseline (M=21.6, SD=3.1) and duration (16.7% 412 
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increase) over baseline (M=466.7 seconds, SD=521.6). Examination of 413 

bathroom usage during the first day of each episode revealed z-scores 414 

ranging from 1.05 to 5.21 with respect to the baseline week. The z-scores for 415 

three of the days (60% of the cases) were >2.0, suggesting that these health 416 

events were statistically significant departures from the participant’s baseline 417 

and might indicate that the participant experienced expected results after 418 

taking the diuretic.  419 

Clinical Application. In the context of a prescribed diuretic for congestive 420 

heart failure, nurses using inductive reasoning can infer increased bathroom 421 

use in sensor data is an indicator of probable fluid retention leading to taking 422 

the prescribed diuretic. Understanding the frequency and duration of such 423 

events is valuable when planning care.  424 

 425 

Case 2, cardiac. Participant S2, a female age 70-75, was diagnosed with 426 

atrial fibrillation with congestive heart failure. She was monitored for 22 427 

months with smart home sensors in her one-bedroom, one-bath apartment. 428 

She weighed daily in the mornings and was prescribed a diuretic as needed 429 

for any >2lb weight gain. This as-needed prescription was later converted to a 430 

daily dose to treat ongoing issues with fluid retention. Throughout observation, 431 

the participant reported a total of 54 days of diuretic use, with participant-432 

reported urinary frequency decreasing over time. On days that the participant 433 

took the diuretic, bathroom usage increased 15.7% over baseline (M=782.6 434 

readings, SD=155.6). Bathroom use duration also increased by 16.7% 435 

(baseline M=268.4 seconds, SD=355.4). Bathroom usage z-scores for the first 436 

day of the events ranged from 0.08 to 2.63 and 10 of the days yielded a z-437 

score >2.0, which indicated a moderate change in behavior during treatment 438 

periods. The low frequency of significant z-scores was possibly due to the 439 

highly variable diuretic used as well as decreased effectiveness of the 440 

treatment over time, which would support the participant’s own report of 441 

waning urinary frequency. The number of days she was on the treatment plan 442 

(54 days, or 10% of the monitored time period) may also have impacted the 443 

lack of significance of the behavior change.  444 

Clinical Application. This case highlights why including a nurse in the loop 445 

is important when utilizing sensor data. A nurse using smart-home data might 446 

notice a lack of significant change in bathroom behavior in an individual with 447 

known diuretic use as evidence to help troubleshoot issues with diuretic 448 

efficacy. Sensor-derived activity measures could provide helpful prompting for 449 

nurses to conduct focused follow-up to support an individual’s self-450 

management of their chronic condition.  451 
 452 

Case 3, urinary tract infection. Participant S3, a female age 80-85, was 453 

diagnosed with multiple conditions, including atrial flutter with an implanted 454 

defibrillator, hypertension, anemia, osteoporosis, and asthma, with a history of 455 

stroke. She was monitored for 14 months in her two-bedroom, one-bath 456 

apartment. S3 reported a case of urinary tract infection during this time, 457 

resulting in a fall and hospitalization. For this case, we focused on data 458 

related to the urinary tract infection rather than fall detection. The amount of 459 

bathroom activity on the event date (the first day of symptoms, one day before 460 

a fall) represented a 101.3% increase over baseline (baseline M=1308.8 461 

readings, SD=549.9). The z-score for bathroom activity on this date was 2.4, 462 
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representing a statistically significant outlier for this participant. Accompanying 463 

the increase in bathroom activity was a corresponding 44.6% increase in 464 

duration of bathroom use occurrences (baseline M=460.0 seconds, 465 

SD=601.1), although the number of occurrences of this activity subsequently 466 

decreased by 3.0% from the baseline (M=20.6, SD=3.5).  467 

Clinical Application. Urinary tract infections often include symptoms of 468 

urgency, frequency, difficulty initiating voiding, and pain. Any combination of 469 

symptoms would increase variability in bathroom use, especially frequency 470 

and duration of time in the bathroom. In this case, an initial increase in 471 

bathroom occurrences followed by decreased occurrences with longer 472 

duration tracked a common symptom trajectory for urinary tract infections; 473 

onset of initial urgency followed by flow difficulties. 474 
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 475 
Figure 2. Amount of toileting activity for cardiac and gastrointestinal cases (top) 1, 476 
(middle) 3, and (bottom) 4. The x axis represents individual days, where e indicates 477 
the first day of the reported event. The y axis represents the number of bathroom use 478 
sensor readings. For S3, the solid line is the number of daily bathroom use sensor 479 
readings of the event. For S1 and S4, the lines represent the number of bathroom 480 
use readings on the corresponding day of the reported health events. 481 
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 482 
 483 

Case 4, ulcerative colitis. Participant S4, a female age 80-85, was 484 

diagnosed with colitis and anemia. She was monitored for 16 months in her 485 

one-bedroom, one-bath apartment. During this time, the participant reported 486 

fourteen colitis health events with associated diarrhea. The mean event 487 

duration was 4.3 days (SD=5.1). As with Cases 1-3, colitis events were also 488 

characterized by changes in bathroom activity. The first day of the reported 489 

events represented a 168.4% increase in bathroom activity over the baseline 490 

week (M=427.4 readings, SD=266.2). The first-day values correspond to z-491 

scores ranging from 0.66 to 6.14. Ten of the z-scores are >2.0 (71% of the 492 

values), indicating that these events occurred as outliers with respect to the 493 

participant’s baseline.  494 

Clinical Application. This information could support early detection of a 495 

colitis attack and promote quick, effective treatment. For these cases, we 496 

compared daily statistics against a “normal” one-week baseline to discover 497 

health event anomalies. However, as Figure 2 illustrates, nurses could also 498 

use smart home-reported information to detect the onset of these health 499 

events by comparing with the recent past. Figure 2 plots the number of 500 

“personal hygiene” sensor readings averaged over the event first days (day e 501 

in the graph) together with the previous three days and the following day. As 502 

the graphs indicate, a noticeable increase in bathroom activity occurred when 503 

the health event began. For participant S4, the increase continued into the 504 

subsequent day due to the multi-day duration of diarrhea and the many 505 

bathroom activities throughout the night. 506 

 507 

Case 5, diet and antibiotic side effects. Participant S5, a female age 85-508 

90, was diagnosed with atrial fibrillation, hypertension, asthma, and 509 

diverticulosis. She was monitored for 18 months in her three-bedroom, two-510 

bath duplex cottage. She reported two diarrhea events occurring at home 511 

during this time due to a high-fiber diet and side effects from antibiotic use. 512 

Activity-labeled smart home sensor data reflected a corresponding 20.1% 513 

increase in bathroom activity over baseline during these events (M=463.0, 514 

SD=121.7). However, the z-scores for these days were 1.9 and 0.9, indicating 515 

these events are not a significant departure from baseline. The number of 516 

bathroom use occurrences decreased by 2.7% from baseline during the 517 

events, and the durations reflected a slight increase of 15.1% (occurrence 518 

z=0.3, duration z=0.1). In this case, the most notable change was in the time 519 

spent out of the home, per the sensors. During these health events, the 520 

participant spent 93.9% less time out of the home compared to baseline 521 

(M=195.8 seconds, SD=81.0). The time-out-of-home z-scores were -1.97 and 522 

-2.27, reflecting that these were outlier behaviors. 523 

Clinical Application. Using these data, nurses could deduce that the 524 

individual does not need an immediate intervention for acute colitis. However, 525 

should social isolation from increased bathroom use continue, it may be a 526 

sign of an acute exacerbation requiring intervention. Regardless of the 527 

underlying cause, the pattern of social isolation accompanying bowel 528 

symptoms indicates an opportunity for timely bowel symptom identification 529 

and management. 530 

 531 
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 532 
3.2. Smart Home Detection of Disrupted Sleep  533 

 534 

Case 6, restless legs. Participant S6, a female age 70-75, was diagnosed 535 

with Type 2 diabetes mellitus, hypertension, arthritis, and restless leg 536 

syndrome. She was monitored for 17 months in a two-bedroom, one-bath 537 

apartment. During the monitoring period, the participant reported restless leg 538 

syndrome events that occurred during the late evening or early morning 539 

hours. A mean of 1.1 sleep interruptions was observed during the baseline 540 

period (SD=0.4).  541 

For this participant, the sleep interruptions at baseline were lengthy and 542 

complex, with a mean duration of 16.3 minutes (SD=3.6). They typically 543 

consisted of a bed-toilet transition, followed by the participant spending time in 544 

the kitchen and outside the apartment before returning to the kitchen and 545 

eventually back to bed. Figure 3 illustrates the typical trajectory for sleep 546 

interruptions. On three evenings when restless leg syndrome was reported, 547 

the number of interruptions averaged 2.7 times per night, a 133.3% increase 548 

over baseline (z=4.4), with an average duration of 33.5 minutes, a 106.1% 549 

increase over baseline (z=4.8), representing a statistically significant 550 

departure from baseline behavior. Additionally, S6’s overall amount of sleep 551 

movement was high and did not differ significantly between baseline and 552 

periods with restless legs.  553 

 554 

 555 

 556 

 557 
Figure 3. Night-time movement pattern for S5 (red), S6 (blue), and S7 (green). 558 
Graphs are based on a typical home floorplan and shape sizes (left) indicate the 559 
relative amount of time spent in each location during sleep interruptions (larger icon 560 
indicates more time). In the graph participants S5 and S7 experienced more frequent 561 
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and prolonged sleep interruptions than the healthy sample (right) and visited more 562 
rooms each night (left). 563 

 564 

Clinical Application. Comparing smart home sensor data for similar 565 

behaviors between persons can help nurses better understand the chronic 566 

conditions that individuals are managing. Many participants managing chronic 567 

conditions experience frequent sleep interruptions; thus, we compared S6 568 

sleep patterns with a healthy older adult sample (N=20). The mean number of 569 

daily sleep movements for S6 was 396.0. This number represents a 141.8% 570 

increase over the mean number of 163.7 for the healthy sample (SD=133.2, 571 

z=1.7). This could be an important finding in an older adult because frequent 572 

sleep interruptions and restless sleep could increase fatigue and confusion, 573 

leading to a greater potential for falls and affecting the ability to manage their 574 

health. 575 

 576 

Case 7, restless legs. Participant S7 was a female age 80-85. She was 577 

diagnosed with osteoarthritis with thoracic collapse and chronic obstructive 578 

pulmonary disorder as well as restless leg syndrome. She was monitored for 579 

14 months with smart home sensors in her one-bedroom, one-bath 580 

apartment. This participant reported frequent episodes of restless leg 581 

syndrome and insomnia. On nine days of reported restless leg syndrome, the 582 

participant had a mean of 1.2 sleep interruptions (SD=0.4), a 14.5% decrease 583 

from baseline (M=1.4, SD=0.5, z=-0.4). On the other hand, the length of the 584 

sleep interruptions averaged 10.2 minutes, a 107.6% increase from baseline 585 

(M=4.9, SD=1.4, z=3.6). As with Case 6, sleep patterns during restless leg 586 

events exhibited a significant change from baseline. Comparing S7 with the 587 

healthy sample, this participant generated an average of 323.3 motion sensor 588 

readings while sleeping, an increase of 97.4% over the healthy sample 589 

(z=1.2). As Figure 3 illustrates, sleep was distributed between the bedroom 590 

and the living room during restless leg events.  591 

Clinical Application. Understanding and detecting restless leg through 592 

these sensor-observed behavior patterns is important because restless leg 593 

syndrome is treatable. Automated recognition could afford early intervention 594 

opportunities so participants can experience improved sleep, which improves 595 

quality of life29, lessens chronic condition severity30,31, and reduces night-time 596 

falls. 597 
 598 

 599 

Case 8, nocturia and restless leg syndrome. Participant S5, a female 600 

age 80-85, was diagnosed with atrial fibrillation, hypertension, asthma, and 601 

diverticulosis. She was monitored for 18 months in her three-bedroom, two-602 

bath duplex. The participant reported nocturia and restless legs through the 603 

monitoring period. This person’s night-time events were characterized by 604 

sleep interruption patterns. Compared to baseline, the number of sleep 605 

interruptions, all bed-toilet activities, increased by 85.3% (baseline M=2.4, 606 

SD=0.7, z=2.9). Similarly, the duration of the sleep interruptions increased by 607 

69.6% (baseline M=5.9 minutes, SD=5.2, z=0.8). 608 

Next, we analyzed the overall night-time behavior patterns for participant 609 

S5. Unlike S6 and S7, this participant slept in the bedroom each night, and 610 

the overall mean number of motions during sleep was 40.0, a 75.6% decrease 611 
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from the healthy sample (z=-0.9). However, the number of overall bed-toilet 612 

activities averaged 2.5, which was higher than participants S6 and S7. This 613 

number also represents a 162.5% increase over the mean for the healthy 614 

sample (z=2.0). The participant reported no cardiac symptoms during this time 615 

and showed signs of sleeping well. However, signs of having an overactive 616 

bladder at night was noted and confirmed by the nurse during the weekly 617 

telehealth visit.  618 

Clinical Application. Falls are commonly associated with night-time 619 

urination frequency and urgency. Nocturia is treatable if the provider knows it 620 

is happening. As indicated in this case, smart homes may automate reporting 621 

of nocturia. 622 
 623 

 624 
Figure 4. Typical night-time movement patterns for participant S8. The red circle 625 
above the stove sensor indicates the location of a night-time fall.  626 

 627 

 628 

Case 9, midnight fall. Participant S8 was a male age 85-90. He was 629 

diagnosed with Parkinson’s disease, Sjogren’s disorder, and torticollis. He 630 

was monitored for 24 months with smart home sensors in his one-bedroom, 631 

one-bath apartment. The participant experienced recurring falls in the home, 632 

commonly after getting up from a nap or in the middle of the night when going 633 

to the kitchen for a drink. This smart home resident experienced a mean 2.7 634 

sleep interruptions each night during the baseline period with no reported 635 

health events. This value represents a 171.4% increase over the mean for the 636 

healthy sample (z=2.2). The baseline mean interruption duration was 23.3 637 

minutes (SD=21.2). Sleep locations were distributed between the living room 638 

and bedroom, sometimes sleeping in both these locations in a single evening. 639 

A typical night-time trajectory is illustrated in Figure 4. 640 

Three recorded night-time fall events occurred around 1:00am. The falls 641 

were detected as statistical anomalies because duration of the sleep 642 

interruptions averaged 103.7 minutes (z=3.8). In one case, a second piece of 643 

evidence was provided by the fact that the participant spent 15 minutes in 644 

front of the kitchen stove, as indicated by the corresponding motion sensor. 645 

Because this participant did not cook, the longest continuous period spent in 646 

this region of the kitchen on baseline days was 3 minutes. 647 

Additionally, multiple falls were noted as occurring between 9:00pm and 648 

10:00pm. During this time, the participant got up from a nap and moved to the 649 
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kitchen to take medicine. Like the night-time falls, one of these events was 650 

detected as an anomaly because the participant, who did not cook, lingered in 651 

front of the kitchen stove for 14 minutes. However, other events were 652 

characterized by the opening of the external door after 10:00pm when medical 653 

personnel came to provide treatment. Immediate detection of falls is key to 654 

recovery for older adults.  655 

Clinical Application. Predicting falls based on unexpected activities could 656 

facilitate interventions to mitigate these falls. 657 

 658 

 659 

 660 

 661 

4. Discussion  662 

 663 

Remote health monitoring using smart homes may afford new 664 

opportunities for clinical insight into symptoms experienced by older adults 665 

between office visits. These technologies offer the possibility of extending the 666 

reach of nurses into the home where individuals are often managing chronic 667 

conditions without assistance. In this health event case series, we 668 

demonstrated a ways nurses might use smart home data as evidence to 669 

recognize clinically relevant changes in an individuals’ health and treatment.  670 

With respect to diuretic management, the number of bathroom-related 671 

sensor readings and the number and mean duration of distinct bathroom visits 672 

may provide insights regarding the use and efficacy of diuretic treatment. In 673 

our cases, S1 demonstrated a more prominent departure from baseline than 674 

S2 during treatment. This corroborates the reported experiences of 675 

participants where S1 reported successful resolution of her fluid retention 676 

symptoms after each diuretic event, whereas S2 reported lesser response or 677 

resolution of fluid retention with her diuretic use over time. Using sensor-678 

based monitoring of bathroom use for older adults with congestive heart 679 

failure can provide nurses near real-time information about the use of 680 

prescribed diuretics at home, between office visits. Although weight scale data 681 

provides data about exacerbations in congestive heart failure, it is common for 682 

individuals to forget to weigh themselves and report changes to their provider. 683 

Smart home sensor monitoring does not require diuretic use reporting. A 684 

nurse managing individuals with diuretic treatment could monitor sensor-685 

derived bathroom use measures to detect large departures from baseline.  686 

Secondary issues such as dizziness and dehydration32 are associated with 687 

changes in bladder and bowel habits33. These changes can lead to falls34, as 688 

occurred in Case 3. A smart home could detect changes such as the number 689 

of bathroom sensor readings on the first day of urinary tract infection 690 

symptoms and trigger a nurse to evaluate clients for other signs/symptoms of 691 

acute exacerbation and initiate treatment before a fall occurred. Post-fall care 692 

costs impact individuals, families, communities, and country-level 693 

resources35,36, emphasizing the need to automatically monitor behavior 694 

patterns and changes with a goal of decreasing exacerbations leading to 695 

costly, life-changing situations. 696 

Additionally, the number and duration of sleep interruptions, time out of 697 

home, and night-time movement patterns may indicate chronic condition 698 

exacerbations. Sleep patterns change with age37; changes can be detected 699 
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through movement patterns at night and interruption monitoring. As older 700 

adults manage insomnia and other sleep issues37, changes can lead to falls, 701 

and the need for higher levels of care environments. 702 

While sensor-derived measures can identify abnormal behavior patterns 703 

compared to healthy population norms, Cases 7 and 8 highlight the potential 704 

of sensor-based monitoring as a tool for precision health. Both cases illustrate 705 

a significant departure from the individual’s baseline sleep interruption pattern 706 

or duration during restless leg events despite not showing any significant 707 

deviation from healthy nightly sleep movement norms.  708 

Despite their potential, smart homes have not been widely adopted by 709 

healthcare systems or countries where much of the research has been 710 

conducted38. Older adults prefer that smart homes address specific health 711 

needs rather than offering generalized monitoring39. This article highlights 712 

specific uses for a health-focused smart home. The connection between 713 

sensor-derived biobehavioral metrics and clinical guidelines used by providers 714 

is lacking. These cases demonstrate that smart-home data could inform 715 

clinical guidelines for chronic conditions by providing real-time evidence of an 716 

individual’s response to their condition and to pre-post treatment regimens. 717 

Clinical guideline organizations such as the Institute for Clinical Systems 718 

Improvement40 or the European Observatory on Health Systems and 719 

Policies41 may benefit from sensor-derived information. Our research 720 

demonstrates that smart health technology used by nurses improves the 721 

interpretation and use of sensor data. Nurses are well-positioned to become 722 

the “data-brokers” of information derived from ambient sensors. Applying 723 

nurse insights about human illness response to smart home data can inform 724 

new methods for remote care and provide a new approach to evidence-based 725 

practice. 726 

This case series indicates that ambient sensors placed in one’s home can 727 

remotely detect clinically relevant health events. Smart homes could aid in 728 

monitoring individuals with chronic health conditions and support remote 729 

management of a larger number of clients effectively. While the detected 730 

health events were characterized by patterns and anomalies in an individual’s 731 

movement patterns, these sensors would not be effective at monitoring events 732 

not accompanied by behavior changes. Additional analytical methods are 733 

needed to distinguish health-related behavior changes from changes due to 734 

other internal or external influences. While events such as changes in glucose 735 

or a stroke will eventually have a behavioral impact, ambient sensing alone 736 

would not allow timely interventions for some acute events. Smart home 737 

sensors can be accompanied by wearable physiological sensors to broaden 738 

their effectiveness. 739 

5. Limitations  740 

 741 

The current “personal hygiene” activity does not distinguish between toilet 742 

use and other bathroom activities such as grooming. When translating to 743 

practice, an additional activity label should specifically categorize toilet use. 744 

The cases presented here were chosen for two reasons: (1) nursing field 745 

notes contextualizing events were detailed and deemed reliable; and (2) they 746 

provided a variety of exemplars for clinically considering sensor data. Activity 747 

measures presented here are a subset of the possible measures that could 748 



Smart Home Detection of Health Events 

Page | 20  

 

track health events and further research is necessary to determine which 749 

measures are best in terms of reliability, change sensitivity, and association 750 

with chronic condition exacerbations. Additionally, we did not conduct an in-751 

depth within-subject analysis of the correlation between activity trends and 752 

event trends. Case 2 shows the limitation of calculating statistics for an 753 

aggregate of events across a long-time span. A more in-depth analysis would 754 

likely reveal deeper insight regarding her waning diuretic response in 755 

association with other heart failure symptoms. In addition, there may be 756 

differences in activity patterns between Australian and U.S. participants with 757 

chronic conditions. 758 

This case series does not provide guarantees that smart home sensors 759 

combined with machine learning will consistently detect health events, nor 760 

does it comprehensively define the categories of events that can be sensed 761 

and detected. Further research is needed to investigate additional types of 762 

health events and quantify the predictive performance of these technologies. 763 

 764 

 765 

6. Conclusion  766 

 767 

Smart homes using ambient sensors with machine learning capabilities 768 

may afford nurses the opportunity to better support older adults who are 769 

managing chronic conditions at home. In this paper, we presented nine cases 770 

where sensor-based data tells a compelling “symptom-story” of the human 771 

response to a change in a chronic condition. We observed that ambient 772 

sensor data showing bathroom use could illuminate the onset of (a) 773 

exacerbations in congestive heart failure and one’s use of diuretics; (b) 774 

urinary tract infections; and (c) bowel issues associated with colitis and bowel-775 

related side effects of medications like antibiotics. We observed that ambient 776 

sensor data showed disrupted sleep and illuminated experiences with restless 777 

leg syndrome, insomnia, and nocturia. We also found ambient sensor data 778 

could aid in recognizing falls by showing changes in motion trajectory 779 

patterns. Combining clinical insights and sensor-based data offers new 780 

understandings of how, and when, individuals are experiencing health events 781 

at home requiring nursing interventions for optimal health outcomes.  782 
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