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The probabilistic method is a technique for proving combina-
torial existence results by means of showing that a randomly 
chosen object has the desired properties with positive proba-
bility. A particularly powerful probabilistic tool is the Lovász 
Local Lemma (the LLL for short), which was introduced by 
Erdős and Lovász in the mid-1970s. Here we develop a version 
of the LLL that can be used to prove the existence of contin-
uous colorings. We then give several applications in Borel and 
topological dynamics.
• Seward and Tucker-Drob showed that every free Borel ac-
tion Γ � X of a countable group Γ admits an equivariant 
Borel map π : X → Y to a free subshift Y ⊂ 2Γ. We give a 
new simple proof of this result.
• We show that for a countable group Γ, Free(2Γ) is weakly 
contained, in the sense of Elek, in every free continuous ac-
tion of Γ on a zero-dimensional Polish space. This fact is 
analogous to the theorem of Abért and Weiss for probability 
measure-preserving actions and has a number of consequences 
in continuous combinatorics. In particular, we deduce that a 
coloring problem admits a continuous solution on Free(2Γ) if 
and only if it can be solved on finite subgraphs of the Cayley 
graph of Γ by an efficient deterministic distributed algorithm 
(this fact was also proved independently and using different 
methods by Seward). This establishes a formal correspondence 
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between questions that have been studied independently in 
continuous combinatorics and in distributed computing.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. A continuous version of the Lovász Local Lemma

1.1.1. Constraint satisfaction problems and the LLL
Suppose we wish to prove that an object with certain combinatorial properties exists. 

A possible way to achieve this is by showing that an object chosen at random from some 
class has the desired properties with positive probability. This approach was pioneered 
by Erdős in the 1940s and has since become indispensable throughout combinatorics; 
see the book [2] by Alon and Spencer for an introduction. An important probabilistic 
tool is the so-called Lovász Local Lemma (the LLL for short). The LLL is particularly 
useful for proving the existence of colorings satisfying a given set of “local” constraints. 
Formally, we define constraint satisfaction problems as follows:

Definition 1.1. Let X be a set and let k ∈ N+. We identify k with the k-element set 
{0, 1, . . . , k − 1}.

• A k-coloring of a set S is a function f : S → k.
• For a finite set D ⊆ X, an (X, k)-constraint (or simply a constraint if X and k are 

clear from the context) with domain D is a set B ⊆ kD of k-colorings of D. We write 
dom(B) := D.

• A k-coloring f : X → k violates a constraint B with domain D if the restriction of 
f to D is in B, and satisfies B otherwise.

• A constraint satisfaction problem (a CSP for short) B on X with range k, in 
symbols B : X →? k, is a set of (X, k)-constraints.

• A solution to a CSP B : X →? k is a k-coloring f : X → k that satisfies every 
constraint B ∈ B.

In other words, each constraint B ∈ B in a CSP B : X →? k is interpreted as a set of 
finite “forbidden patterns” that are not allowed to appear in a solution f : X → k. The 
LLL provides a simple probabilistic condition that guarantees that a given CSP has a 
solution. Fix a CSP B : X →? k. For each B ∈ B, the probability of B is the quantity 
P [B] defined by

P [B] := |B| = the probability that B is violated by uniformly random f : X → k.

k|dom(B)|



A. Bernshteyn / Advances in Mathematics 415 (2023) 108895 3
The neighborhood of B is the set

N(B) := {B′ ∈ B : B′ �= B and dom(B′) ∩ dom(B) �= ∅}.

The LLL invokes the parameters p(B) := supB∈B P [B] and d(B) := supB∈B |N(B)|.

Theorem 1.2 (Lovász Local Lemma; Erdős–Lovász [17]). If B is a CSP such that

e · p(B) · (d(B) + 1) � 1, (1.3)

where e = 2.71 . . . is the base of the natural logarithm, then B has a solution.

The LLL is often stated in the case when B is finite. However, a straightforward 
compactness argument shows that Theorem 1.2 holds for infinite B as well (see, e.g., [2, 
proof of Theorem 5.2.2]).

1.1.2. Continuous colorings
In this paper we are interested in the following question:

Question 1.4 (Continuous LLL). Suppose X is a zero-dimensional Polish space. What 
LLL-style conditions guarantee that a CSP B : X →? k has a continuous solution f : X →
k?

Recall that a topological space is Polish if it is separable and completely metrizable, 
and zero-dimensional if it has a base consisting of clopen sets. The restriction to zero-
dimensional spaces X in Question 1.4 is natural since a continuous map X → k can 
be thought of as a partition of X into clopen sets indexed by 0, 1, . . . , k − 1, so if we 
hope to find a continuous solution to B, it is reasonable to assume that X has “many” 
clopen subsets. Questions in the spirit of Question 1.4 have recently attracted attention 
due to their applications in dynamical systems and descriptive set theory. For a sample 
of related results, see [6,15,7]. These questions form a part of the general area called
descriptive combinatorics, which investigates combinatorial problems under a variety of 
topological or measure-theoretic regularity requirements. For more background, see the 
surveys [25] by Kechris and Marks and [30] by Pikhurko.

In the context of Question 1.4, it is necessary to assume that the CSP B itself “re-
spects” the topology on X in an appropriate sense. To this end, we define continuous 
CSPs as follows:

Definition 1.5. Let X be a zero-dimensional Polish space. A CSP B : X →? k is contin-
uous if for every set B of functions {1, . . . , n} → k and for all clopen subsets U2, . . . , 
Un ⊆ X, the following set is clopen:

{x1 ∈ X : there are x2 ∈ U2, . . . , xn ∈ Un such that x1, . . . , xn are distinct and

B(x1, . . . , xn) ∈ B}.
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Here B(x1, . . . , xn) := {ϕ ◦ ι : ϕ ∈ B}, where ι : {x1, . . . , xn} → {1, . . . , n} is given by 
xi �→ i.

Conley, Jackson, Marks, Seward, and Tucker-Drob [14, Theorem 1.6] constructed ex-
amples showing that the standard LLL condition (1.3) is not sufficient to guarantee the 
existence of a Borel—let alone continuous—solution. In contrast to this, we prove that 
a certain strengthening of (1.3) does yield continuous solutions. In addition to p(B) and 
d(B), we consider two more parameters associated to a CSP B : X →? k. Namely, we 
define the maximum vertex-degree vdeg(B) of B as

vdeg(B) := sup
x∈X

|{B ∈ B : x ∈ dom(B)}|,

and let the order ord(B) of B be ord(B) := supB∈B |dom(B)|. Note that d(B) �
(vdeg(B) − 1)ord(B).

Theorem 1.6. Let B : X →? k be a continuous CSP on a zero-dimensional Polish space 
X. If

p(B) · vdeg(B)ord(B) < 1, (1.7)

then B has a continuous solution f : X → k.

Note that in the setting of Theorem 1.6, if p(B) > 0, then in fact p(B) � k−ord(B). 
Thus, Theorem 1.6 is only useful if k is relatively large (namely k > vdeg(B)).

We prove Theorem 1.6 in §3 using the method of conditional probabilities—a standard 
derandomization technique in computer science. This connection to computer science is 
not coincidental: results and methods in descriptive combinatorics often mirror those 
in distributed computing, i.e., the area concerned with problems that can be solved 
efficiently by a decentralized network of processors. For example, an argument similar to 
our proof of Theorem 1.6 was involved in Fischer and Ghaffari’s breakthrough work on 
distributed algorithms for the LLL [18, Theorem 3.5].

Another relevant result in distributed computing is due to Brandt, Grunau, and 
Rozhoň [9], who recently developed an efficient deterministic distributed algorithm for 
finding solutions to CSPs under the condition p2d < 1 (in the special case when vdeg � 3, 
such an algorithm was devised earlier by Brandt, Maus, and Uitto [11]). In [7], the author 
established a series of general results that allow using efficient distributed algorithms to 
obtain colorings with desirable regularity properties (such as continuity, measurability, 
etc.). In particular, [7, Theorem 2.13] implies that under suitable assumptions the con-
dition p2d < 1 is also sufficient to produce continuous solutions. While in general neither 
of the bounds p2d < 1 and p ·vdegord < 1 (that is, (1.7)) implies the other, in practice one 
often estimates d using the inequality d � (vdeg − 1)ord, which makes the latter bound 
more widely applicable, especially when ord is much smaller than vdeg.
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Remarkably, the bound p2d < 1 in the Brandt–Grunau–Rozhoň result is sharp: there 
is no such efficient distributed algorithm that finds solutions to CSPs if the bound is 
relaxed to p2d � 1. This follows from the analysis of the so-called sinkless orientation 
problem performed in the randomized setting by Brandt et al. [8] and extended to the 
deterministic setting by Chang, Kopelowitz, and Pettie [12]. This sharpness result has a 
counterpart in descriptive combinatorics. Namely, suppose d ∈ N and let G be a d-regular
graph, meaning that every vertex of G is incident to exactly d edges. An orientation of 
G is sinkless if the outdegree of every vertex is at least 1. A sinkless orientation of G can 
be naturally encoded as a solution to a CSP Bsinkless = {Bx}x∈V (G) : E(G) →? 2. Here 
the color of each edge e ∈ E(G) indicates the direction in which e is oriented, and Bx

for x ∈ V (G) is the constraint with domain dom(Bx) = {e ∈ E(G) : e is incident to x}
that requires the outdegree of x to be at least 1. It is easy to see that d(Bsinkless) = d
and p(Bsinkless) = 1/2d. However, Thornton [32, Theorem 3.5] used the determinacy 
method of Marks [29] to construct, for any given d ∈ N, a Borel d-regular graph G

that does not admit a Borel sinkless orientation. Note that since vdeg(Bsinkless) = 2 and 
ord(Bsinkless) = d, this also serves as a sharpness example for Theorem 1.6.

We shall resume the discussion of distributed algorithms in §1.3.3, where we describe 
one of the consequences derived using Theorem 1.6, namely that for certain types of 
coloring problems, a continuous solution exists if and only if the problem can be solved 
by an efficient distributed algorithm.

1.1.3. Borel colorings
Sometimes we only wish to find a Borel solution instead of a continuous one. Recall 

that a standard Borel space is a set X equipped with a σ-algebra B(X) of Borel sets
generated by a Polish topology on X. We say that a Polish topology on a standard Borel 
space X is compatible if it generates B(X). If X is a standard Borel space, then the set 
[X]<∞ of all finite subsets of X also carries a natural standard Borel structure. Since 
every (X, k)-constraint can be viewed as a finite subset of [X × k]<∞, we may speak of
Borel CSPs B : X →? k, i.e., Borel sets B ⊆ [[X × k]<∞]<∞ of (X, k)-constraints. The 
following is an immediate corollary of Theorem 1.6:

Corollary 1.8. Let B : X →? k be a Borel CSP on a standard Borel space X. If

p(B) · vdeg(B)ord(B) < 1,

then B has a Borel solution f : X → k.

Proof. For a set B of functions {1, . . . , n} → k, write x1 ∼B (x2, . . . , xn) if x1, . . . , xn

are distinct and B(x1, . . . , xn) ∈ B. Since vdeg(B) < ∞, the Luzin–Novikov theorem 
[23, Theorem 18.10] yields a finite sequence of partial Borel maps hB,i : X ⇀ Xn−1, 
1 � i � vdeg(B)(n − 1)!, such that x1 ∼B (x2, . . . , xn) if and only if (x2, . . . , xn) =
hB,i(x1) for some i. (The (n − 1)! factor arises from the fact that a constraint with 
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domain {x1, . . . , xn} could, in principle, force x1 to be ∼B-related to every permutation 
of {x2, . . . , xn}.) It follows from standard results in descriptive set theory [23, §13] that 
there is a compatible zero-dimensional Polish topology τ on X with respect to which 
all the maps hB,i are continuous and defined on clopen sets. Then B is continuous 
with respect to τ , so, by Theorem 1.6, B has a τ -continuous (hence Borel) solution. 
Alternatively, it is straightforward to check directly that the proof of Theorem 1.6 given 
in §3 goes through in the Borel setting with the words “continuous” and “clopen” replaced 
everywhere by “Borel.” �

1.2. Applications in dynamics

1.2.1. A simple proof of the Seward–Tucker-Drob theorem
Throughout the rest of this paper, Γ denotes a countably infinite discrete group with 

identity element 1. By an “action” of Γ we always mean a left action. Our first application 
of Theorem 1.6 is a simple proof of the following result of Seward and Tucker-Drob:

Theorem 1.9 (Seward–Tucker-Drob [31]). If Γ � X is a free Borel action of Γ on a 
standard Borel space X, then there is a Γ-equivariant Borel map π : X → Y , where 
Y ⊂ 2Γ is a free subshift.

Let us recall the terminology used in the statement of Theorem 1.9. A Γ-space is a 
topological space X equipped with a continuous action Γ � X. The product space kΓ

of all k-colorings Γ → k of Γ is a compact zero-dimensional Polish space, and it becomes 
a Γ-space under the action Γ � kΓ given by1

(γ · x)(δ) := x(δγ) for all x ∈ kΓ and γ, δ ∈ Γ.

The Γ-spaces of the form kΓ are called Bernoulli shifts, or simply shifts. The free part of 
a Γ-space X is the set Free(X) := {x ∈ X : StΓ(x) = {1}} equipped with the subspace 
topology and the induced action of Γ (here StΓ(x) denotes the stabilizer of x). In other 
words, Free(X) is the largest Γ-invariant subspace of X on which Γ acts freely. If X

is a Polish Γ-space, then Free(X) is a Gδ subset of X, and hence it is also Polish [23, 
Theorem 3.11]. A closed Γ-invariant subset of kΓ is called a subshift, and we say that a 
subshift X ⊆ kΓ is free if X ⊆ Free(kΓ), i.e., if Γ acts freely on X.

Even the existence of a nonempty free subshift for an arbitrary countable group Γ
is far from obvious. It was established by Gao, Jackson, and Seward [20] with a rather 
technical construction that was further explored in [21]. The proof of Theorem 1.9 due 
to Seward and Tucker-Drob develops the ideas of Gao, Jackson, and Seward further and 
is similarly quite involved. However, it turns out that questions about free subshifts are 

1 Alternatively, we could define (γ · x)(δ) to be x(γ−1δ). The two definitions yield isomorphic structures, 
but we prefer to avoid the use of inverses.
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well-suited for LLL-based approaches. This fact was first observed by Aubrun, Barbieri, 
and Thomassé [3], who gave a short and simple LLL-based alternative construction of a 
nonempty free subshift X ⊂ 2Γ. Roughly speaking, their method was to define X as the 
set of all colorings Γ → 2 satisfying certain constraints, and then to show that X �= ∅

using the LLL. This technique is quite flexible and allows constructing free subshifts 
with various additional properties. For example, in [5] the LLL is applied to construct 
free subshifts that are not just nonempty but “large” in terms of Hausdorff dimension 
and entropy.

Unfortunately, the approach of [3,5] cannot prove Theorem 1.9, since it invokes a 
version of the LLL that does not generally yield Borel solutions. (Actually, [3,5] rely on 
the so-called General LLL [2, Lemma 5.1.1], which is a strengthening of Theorem 1.2 that, 
in general, does not even yield measurable solutions [6, Theorem 7.1].) In §4, we show 
that Theorem 1.9 can nevertheless be established with a simple probabilistic argument—
namely with the help of Theorem 1.6.

1.2.2. Topological Abért–Weiss theorem
Inspired by the analogous notions for measure-preserving actions (which were in turn 

modeled after similar concepts in representation theory), Elek [16] introduced the rela-
tions of weak containment and weak equivalence on the class of zero-dimensional Polish 
Γ-spaces. (Technically, Elek only considered compact zero-dimensional Γ-spaces, but the 
same definitions can be applied verbatim to non-compact spaces as well.) Let k � 1 be 
an integer. A k-pattern is a partial map p : Γ ⇀ k whose domain is a finite subset of Γ. 
Given an action Γ � X and a k-coloring f : X → k, we say that a k-pattern p occurs
in f if there is a point x ∈ X such that f(γ · x) = p(γ) for all γ ∈ dom(p). For a finite 
subset F ⊂ Γ, we let PF (X, f) denote the set of all k-patterns p : F → k with domain 
F that occur in f .

Definition 1.10. Let X and Y be zero-dimensional Polish Γ-spaces. We say that X is
weakly contained in Y , in symbols X � Y , if given any k ∈ N+, a finite subset F ⊂ Γ, 
and a continuous k-coloring f : X → k, there is a continuous k-coloring g : Y → k such 
that PF (Y, g) = PF (X, f). If X � Y and Y � X, then we say that X and Y are weakly 
equivalent and write X � Y .

As mentioned earlier, Definition 1.10 was introduced (for compact Γ-spaces) by Elek 
in [16]. For minimal actions of the group Z, weak equivalence (under the name of weak 
approximate conjugacy) was considered previously by Lin and Matui in [27].

Among several other results, Elek proved that the pre-order of weak containment 
has a minimum element in the class of all nonempty free zero-dimensional Polish Γ-
spaces [16, Theorem 2]. In other words, Elek showed that there exists a free (compact) 
zero-dimensional Polish Γ-space M such that M � X for every nonempty free zero-
dimensional Polish Γ-space X (it is easy to check that Elek’s argument does not need X
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to be compact). We show that, except for the compactness requirement, one can actually 
take M to be the free part of the Bernoulli shift 2Γ:

Theorem 1.11. If X is a nonempty free zero-dimensional Polish Γ-space, then

Free(2Γ) � X.

Theorem 1.11 is a topological counterpart to the ergodic-theoretic result of Abért and 
Weiss [1], namely that the Bernoulli shift 2Γ is weakly contained (in the sense of Kechris 
[24]) in each almost everywhere free probability measure-preserving action of Γ. The 
proof of Theorem 1.11 is given in §4.3. It is an elaboration of our proof of Theorem 1.9, 
leveraging the fact that Theorem 1.6 yields continuous (and not just Borel) solutions.

1.3. Consequences in continuous combinatorics

The main motivation for this work comes from the area of continuous combinatorics, 
which studies the behavior of combinatorial notions—such as graph colorings, match-
ings, etc.—under additional continuity constraints. For example, suppose that G is a 
graph whose vertex set V (G) is a zero-dimensional Polish space. A typical problem in 
continuous combinatorics is to determine the continuous chromatic number χc(G) of G, 
i.e., the least k for which there exists a continuous k-coloring f : V (G) → k satisfying 
f(x) �= f(y) whenever vertices x and y are adjacent (such colorings are called proper).

In [19], Gao, Jackson, Krohne, and Seward initiated the systematic study of continuous 
combinatorics of countable group actions and performed a detailed analysis in the case 
Γ = Zd. In particular, they completely characterized combinatorial problems that can be 
solved continuously on the space Free(2Γ) for Γ ∈ {Z, Z2} by reducing them to certain 
questions about finite graphs. Here we continue this line of research and extend it to the 
case of Γ-spaces for arbitrary countably infinite groups Γ.

Some of our results in this section, specifically Theorems 1.12 and 1.15, were obtained 
independently by Seward using the techniques from [20,21,31] (personal communication).

1.3.1. Universality of the shift
We say that a coloring f : X → k is P-avoiding, where X is a Γ-space and P is a set of 

k-patterns, if no pattern p ∈ P occurs in f . As a side remark, we note that continuous P-
avoiding colorings of Γ-spaces have a natural meaning from the standpoint of topological 
dynamics. Specifically, viewing Γ itself as a discrete Γ-space under the left multiplication 
action Γ � Γ, we can consider the set Av(P) ⊆ kΓ of all P-avoiding k-colorings of Γ, 
for a given finite set P of k-patterns. The set Av(P) is closed and Γ-invariant, and it is 
called a subshift of finite type (“finite” because P is finite). If X is a Γ-space, then there 
is a natural one-to-one correspondence

{P-avoiding continuous colorings X → k}
←→ {Γ-equivariant continuous maps X → Av(P)},
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where each P-avoiding continuous coloring f : X → k gives rise to the so-called coding 
map πf : X → Av(P) given by πf (x)(γ) := f(γ · x) for all x ∈ X and γ ∈ Γ. In view 
of this correspondence, studying continuous colorings that avoid finite sets of patterns 
is equivalent to studying equivariant continuous maps to subshifts of finite type. The 
following is an immediate consequence of Theorem 1.11:

Theorem 1.12. Let P be a finite set of k-patterns. The following statements are equiva-
lent.

(1) There is a continuous P-avoiding k-coloring of Free(2Γ).
(2) Every free zero-dimensional Polish Γ-space admits a continuous P-avoiding k-

coloring.

Proof. Implication (2) =⇒ (1) is obvious, while (1) =⇒ (2) is given by Theorem 1.11. �

Informally, Theorem 1.12 says that of all the free zero-dimensional Polish Γ-spaces, it 
is the hardest to solve combinatorial problems continuously on Free(2Γ). Here is just one 
specific instance of this phenomenon. Let S ⊂ Γ be finite. The Schreier graph of a Γ-
space X corresponding to S is the (simple undirected) graph G(X, S) with vertex set X
where two distinct vertices x, y are adjacent if and only if y = σ ·x for some σ ∈ S ∪S−1. 
A consequence of Theorem 1.12 is that the Schreier graph of Free(2Γ) has the largest 
continuous chromatic number among all Schreier graphs of free zero-dimensional Polish 
Γ-spaces:

Corollary 1.13. Let S be a finite subset of Γ. If X is a free zero-dimensional Polish 
Γ-space, then

χc(G(X, S)) � χc(G(Free(2Γ), S)).

Proof. Set k := χc(G(Free(2Γ), S)) and apply Theorem 1.12 with P := {pi,σ : 0 � i <
k, σ ∈ S \ {1}}, where for each i and σ, pi,σ is the k-pattern with domain {1, σ} that 
sends both 1 and σ to i. �

1.3.2. Reduction to finite graphs
In our remaining results, we reduce problems about continuous colorings to questions 

about colorings of finite graphs. To state them, we require a few definitions. Let S ⊂ Γ
be a finite set. An S-labeled graph is a simple undirected graph G equipped with a
labeling map λ that assigns to each (ordered) pair (x, y) of adjacent vertices a group 
element λ(x, y) ∈ S ∪ S−1 so that λ(y, x) = λ(x, y)−1. Note that a vertex x may have 
multiple neighbors y with the same λ(x, y). For a subset U ⊆ V (G), we let G[U ] denote 
the subgraph of G induced by U , i.e., the S-labeled graph with vertex set U whose 
adjacency relation and labeling map are inherited from G.
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Schreier graphs of free Γ-spaces are natural examples of S-labeled graphs, with λ(x, y)
being the unique element σ ∈ S ∪ S−1 such that y = σ · x. When Γ itself is viewed as a 
discrete Γ-space under the left multiplication action Γ � Γ, the S-labeled Schreier graph 
G(Γ, S) is called the Cayley graph of Γ corresponding to S. Note that the graph G(Γ, S) is 
connected if and only if S generates Γ. For a subset F ⊆ Γ, we use G(F, S) := G(Γ, S)[F ]
to denote the subgraph of G(Γ, S) induced by F .

A homomorphism from an S-labeled graph G to an S-labeled graph H is a map 
ϕ : V (G) → V (H) such that if x, y ∈ V (G) are adjacent in G, then ϕ(x), ϕ(y) are 
adjacent in H and λ(ϕ(x), ϕ(y)) = λ(x, y). Let F ⊂ Γ be a finite set and let p : F → k be 
a k-pattern. We say that p is S-connected if the graph G(F, S) is connected. Given an 
S-labeled graph G and a coloring f : V (G) → k, we say that an S-connected k-pattern 
p : F → k occurs in f if there is a homomorphism ϕ : F → V (G) from G(F, S) to G such 
that f ◦ ϕ = p. When G is the Schreier graph G(X, S) of a free Γ-space X, this notion 
coincides with our previous definition, since the only homomorphisms from G(F, S) to 
G(X, S) are the ones of the form F → X : γ �→ γ · x for some x ∈ X (here we use that p
is S-connected). Given a finite set P of S-connected k-patterns, we say that a coloring 
f : V (G) → k of an S-labeled graph G is P-avoiding if none of the patterns in P occur 
in f .

Consider the standard generating set S := {(1, 0), (0, 1)} for the group Z2. In [19, The-
orem 5.5], Gao, Jackson, Krohne, and Seward constructed an explicit countable family 
H of finite S-labeled graphs such that the following statements are equivalent for any 
finite set P of S-connected k-patterns:

• Free(2Z2) admits a continuous P-avoiding k-coloring;
• there is a graph in H that admits a P-avoiding k-coloring;
• all but finitely many graphs in H admit P-avoiding k-colorings.

In other words, to determine whether the (infinite) Z2-space Free(2Z2) has a continu-
ous P-avoiding k-coloring, one simply needs to check if the (finite) graphs in H admit 
P-avoiding k-colorings. This can be seen as a “compactness theorem” for continuous col-
orings of Free(2Z2). Gao, Jackson, Krohne, and Seward call [19, Theorem 5.5] the “Twelve 
Tiles Theorem,” since each graph in H is obtained from twelve pieces—“tiles”—glued to 
each other according to certain rules.

We obtain an analogous result for arbitrary countable groups Γ:

Theorem 1.14. In the setting of Theorem 1.12, assume that S ⊂ Γ is a finite set such that 
the k-patterns in P are S-connected. There is an explicit countable family H of finite 
S-labeled graphs (see §5.2 for the definition) such that statements (1) and (2) are also 
equivalent to:

(3) There is a graph in H that admits a P-avoiding k-coloring.
(4) All but finitely many graphs in H admit P-avoiding k-colorings.
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We construct the family H and prove Theorem 1.14 in §5.2.

1.3.3. LOCAL algorithms
Our final result establishes a precise connection between continuous combinatorics 

and distributed computing:

Theorem 1.15. In the setting of Theorem 1.12, assume that S ⊂ Γ is a finite set such 
that the k-patterns in P are S-connected. Then statements (1)–(4) are also equivalent 
to:

(5) There is a deterministic distributed algorithm in the LOCAL model that, given an 
n-vertex S-labeled subgraph G of G(Γ, S), in O(log∗ n) rounds outputs a P-avoiding 
k-coloring of G.

Here log∗ n denotes the iterated logarithm of n, i.e., the number of times the logarithm 
function must be iteratively applied to n before the result becomes at most 1.

Statement (5) in Theorem 1.15 refers to the LOCAL model of distributed computation, 
which was introduced by Linial in [28]. For a comprehensive introduction to this model, 
see the book [4] by Barenboim and Elkin. The LOCAL model operates on an n-vertex 
graph G. Here we think of G as representing a decentralized communication network 
where each vertex plays the role of a processor and edges represent communication links. 
The computation proceeds in rounds. During each round, the vertices first perform some 
local computations and then synchronously broadcast messages to all their neighbors. 
After a number of rounds, every vertex must output a color, and the resulting coloring of 
V (G) is considered to be the output of the algorithm. The efficiency of such an algorithm 
is measured by the number of communication rounds required.

An important feature of the LOCAL model is that every vertex of G is executing the 
same algorithm. Therefore, to make this model nontrivial, the vertices must be given 
a way of breaking symmetry. In the deterministic variant of the LOCAL model, this is 
achieved by assigning a unique identifier Id(x) ∈ {1, . . . , n} to every vertex x ∈ V (G). 
The identifier assigned to a vertex x is treated as part of x’s input; that is, x “knows” 
what its own identifier is initially and can communicate this information to its neighbors. 
When we say that a deterministic LOCAL algorithm solves a coloring problem P on a 
given class G of finite graphs, we mean that the coloring it outputs on any graph from 
G is a valid solution to P, regardless of the way the identifiers are assigned. The word 
“deterministic” distinguishes this model from the randomized version, where the vertices 
are allowed to generate sequences of random bits. In this paper we will only be concerned 
with deterministic algorithms.

If x and y are two vertices whose graph distance in G is T , then no information from 
y can reach x in fewer than T communication rounds (this explains the name “LOCAL”). 
Conversely, in T rounds every vertex can collect all the data present at the vertices 
at distance at most T from it. Thus, a T -round LOCAL algorithm may be construed 
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simply as a function that, given the structure of the radius-T ball around x (including 
the assignment of the identifiers to its vertices), outputs x’s color [4, §4.1.2].

In general, the input graph G may possess some additional structure (such as an 
orientation, a fixed coloring of the vertices, etc.). For example, in Theorem 1.15 we 
consider LOCAL algorithms operating on S-labeled graphs G. This means that the labels 
on the edges of G form part of the problem’s input, and each vertex can discover the 
labels of the edges in its radius-T ball in T communication rounds.

The formal equivalence between general classes of problems in continuous combi-
natorics and in distributed computing given by Theorem 1.15 explains the parallels 
between specific results in these two areas. For example, suppose Γ = Z2 and let 
S := {(1, 0), (0, 1)}. Among numerous other results, Gao, Jackson, Krohne, and Se-
ward proved in [19] that the continuous chromatic number of G(Free(2Z2), S) is 4, and 
also that there is no algorithm for deciding, given a finite set P of k-patterns, whether 
Free(2Z2) admits a continuous P-avoiding k-coloring. In [10], Brandt et al. established 
analogous results for distributed algorithms on n × n grid graphs: proper k-colorings of 
such graphs can be computed by an O(log∗ n)-round LOCAL algorithm for k � 4 but 
not for k = 3, and there is no decision procedure that determines, for a given finite 
set P of k-patterns, whether P-avoiding k-colorings of such graphs can be found by a 
O(log∗ n)-round LOCAL algorithm. Theorem 1.15 provides a general reason underlying 
this analogy.

The connection between continuous combinatorics and distributed algorithms was 
observed recently by Elek [16] and the author [7]. In particular, implication (5) =⇒ (2) 
is a special case of [7, Theorem 2.13], which is a general result that provides a way to use 
efficient deterministic LOCAL algorithms to obtain continuous colorings. Thus, we only 
have to prove (2) =⇒ (5) here, which is done in §5.3 by utilizing the specific construction 
of the family of finite graphs H from Theorem 1.14.
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2. Preliminaries

We shall require a few basic facts about continuous graph combinatorics. These facts 
may be somewhat less well-known than their Borel counterparts, so we prove them here 
for completeness. (The proofs are standard and essentially present in [26, §4].)

Let G be a graph. For a subset S ⊆ V (G), NG(S) denotes the neighborhood of S in 
G, i.e., the set of all vertices that have a neighbor in S. For a vertex x ∈ V (G), we write 
NG(x) := NG({x}). A graph G is locally finite if NG(x) is finite for every x ∈ X. A set 
I ⊆ V (G) is independent if I ∩ NG(I) = ∅, i.e., if no two vertices in I are adjacent. 
For a subset U ⊆ V (G), we use G[U ] to denote the subgraph of G induced by U , i.e., 
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the graph with vertex set U whose adjacency relation is inherited from G, and we write 
G −U := G[V (G) \U ]. We say that G is a continuous graph if V (G) is a zero-dimensional 
Polish space and for every clopen set U ⊆ V (G) its neighborhood NG(U) is also clopen. 
(This is analogous to Definition 1.5.) Note that if G is a continuous graph and U ⊆ V (G)
is a clopen set of vertices, then the subgraph G[U ] of G induced by U is also continuous.

Lemma 2.1. Every locally finite continuous graph G admits a partition V (G) = �∞
n=0 In

into countably many clopen independent sets.

Proof. Let {Un : n ∈ N} be a countable base for the topology on V (G) consisting 
of clopen sets. For each n ∈ N, let Vn := Un \ NG(Un). By construction, each Vn is 
independent and, since G is continuous, clopen. Since G is locally finite, each x ∈ V (G)
has an open neighborhood disjoint from NG(x), and hence 

⋃∞
n=0 Vn = V (G). It remains 

to make the sets disjoint by setting In := Vn \ (V0 ∪ . . . ∪ Vn−1). �

Lemma 2.2. Every locally finite continuous graph G has a clopen maximal independent 
set I ⊆ V (G).

Proof. Let V (G) = �∞
n=0 In be a partition into countably many clopen independent 

sets given by Lemma 2.1. Define a sequence of clopen subsets I ′
n ⊆ In recursively by 

setting I ′
0 := I0 and I ′

n+1 := In+1 \ NG(I ′
0 � . . . � I ′

n) for all n ∈ N. By construction, 
the set I := �∞

n=0 I ′
n is a maximal independent set in G. Since G is continuous, the sets 

I ′
n are clopen, and hence I is open. But the sets In \ I ′

n are also clopen, so V (G) \ I =
�∞

n=0(In \ I ′
n) is open as well, and hence I is clopen, as desired. �

The maximum degree Δ(G) of a graph G is defined by Δ(G) := supx∈V (G) |NG(x)|.

Lemma 2.3. If G is a continuous graph of finite maximum degree Δ, then χc(G) � Δ +1.

Proof. We need to find a partition of V (G) into Δ + 1 clopen independent sets. To this 
end, we iteratively apply Lemma 2.2 to obtain a sequence I0, . . . , IΔ where each In

is a clopen maximal independent set in the graph G − I0 − · · · − In−1. We claim that 
V (G) = �Δ

n=0 In. Indeed, every vertex not in �Δ
n=0 In must have a neighbor in each of 

I0, . . . , IΔ, which is impossible as the maximum degree of G is Δ. �

3. Proof of Theorem 1.6

3.1. First observations

Call a CSP B bounded if vdeg(B) and ord(B) are both finite. Given a CSP B : X →? k, 
define a graph GB with vertex set X by making two distinct vertices x, y adjacent if and 
only if there is a constraint B ∈ B such that {x, y} ⊆ dom(B).
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Lemma 3.1. If B : X →? k is a bounded continuous CSP on a zero-dimensional Polish 
space X, then the graph GB is continuous.

Proof. Set G := GB and let U ⊆ X be a clopen set. A vertex x1 is in NG(U) if and only 
if there are some 2 � i � n � ord(B) and B ⊆ k{1,...,n} such that:

there are x2 ∈ X, . . . , xi ∈ U , . . . xn ∈ X such that x1, . . . , xn are distinct

and B(x1, . . . , xn) ∈ B.

This shows that NG(U) is a union of finitely many clopen sets, hence it is itself clopen. �

Let X be a set and let g : X ′ → k be a coloring with domain X ′ ⊆ X. Given an (X, k)-
constraint B with domain D, let B/g be the constraint with domain dom(B/g) := D\X ′

given by

B/g := {ϕ : D \ X ′ → k : g|D∩X′ � ϕ ∈ B}.

In other words, ϕ ∈ B/g if and only if the coloring g � ϕ violates B. Here it is possible 
that D ⊆ X ′, in which case dom(B/g) = ∅; more specifically, B/g = {∅} if g violates 
B, and B/g = ∅ otherwise. (Note that the constraint {∅} has probability 1/k0 = 1
and is violated by every coloring, while the constraint ∅ has probability 0 and is always 
satisfied.) For a CSP B : X →? k, we define

B/g := {B/g : B ∈ B}

and view B/g as a CSP on X \ X ′. By construction, h : X \ X ′ → k is a solution to B/g

if and only if g � h is a solution to B.

Lemma 3.2. Let B : X →? k be a bounded continuous CSP on a zero-dimensional Polish 
space X. If X ′ ⊆ X is a clopen set and g : X ′ → k is continuous, then the CSP B/g : X \
X ′ →? k is also continuous.

Proof. The proof is very similar to the proof of Lemma 3.1. Given a set B ⊆ k{1,...,n}

and clopen subsets U2, . . . , Un ⊆ X \ X ′, we have to argue that the following set is 
clopen:

{x1 ∈ X \ X ′ : ∃ x2 ∈ U2, . . . , xn ∈ Un such that x1, . . . , xn are distinct

and B(x1, . . . , xn) ∈ B/g}.

To this end, observe that this set can be written as a union of finitely many clopen sets 
of the form
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(X \ X ′) ∩ {x1 ∈ X : ∃ x2 ∈ U2, . . . , xn ∈ Un, xn+1 ∈ g−1(αn+1), . . . , xm ∈ g−1(αm)

such that x1, . . . , xm are distinct and B̃(x1, . . . , xm) ∈ B},

for some n � m � ord(B), colors 0 � αn+1, . . . , αm � k − 1, and an appropriate set 
B̃ ⊆ k{1,...,m}. �

3.2. Good CSPs and conditional probabilities

Call a CSP B good if it is bounded and for all B ∈ B,

P [B] · vdeg(B)|dom(B)| < 1. (3.3)

If vdeg(B) = |dom(B)| = 0, we interpret the expression 00 appearing in (3.3) as 1. Note 
that every CSP satisfying (1.7) is good. The following lemma is the main step in the 
proof of Theorem 1.6:

Lemma 3.4. Let B : X →? k be a good continuous CSP on a zero-dimensional Polish 
space X, and let I ⊆ X be a clopen independent set in GB. Then there is a continuous 
coloring g : I → k such that B/g is good.

Proof. For brevity, let G := GB and vdeg := vdeg(B). Note that vdeg(B/g) � vdeg for 
every g : I → k, so it is enough to argue that there is a continuous coloring g : I → k

such that

P [B/g] · vdeg|dom(B/g)| < 1 for all B ∈ B. (3.5)

For each x ∈ I, let Bx ⊆ B denote the set of all constraints B with x ∈ dom(B). Note 
that |Bx| � vdeg. Since I is independent in G, x is the unique element of I ∩ dom(B) for 
each B ∈ Bx; in particular, the value P [B/g] only depends on the color g(x). Specifically, 
for each B ∈ Bx and a color α, we define

P [B | x �→ α] := |{ϕ ∈ B : ϕ(x) = α}|
k|dom(B)|−1 .

Then for any coloring g : I → k, P [B/g] = P [B | x �→ g(x)]. We say that a color α is
good for x if

P [B | x �→ α] � P [B] · vdeg for all B ∈ Bx.

Claim. For each x ∈ I, there is a good color.

� Take any x ∈ I and notice that for each B ∈ Bx, P [B] = (1/k) 
∑k−1

α=0 P [B | x �→ α]. 
This implies that there are fewer than k/vdeg colors α such that P [B | x �→ α] > P [B] ·
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vdeg. Since |Bx| � vdeg, there are fewer than k colors that are not good for x, as desired. 
�

Now we define g : I → k by making g(x) be the minimum color that is good for x. Since 
B is continuous, it is straightforward to check that g is continuous. It remains to verify 
that (3.5) holds. To this end, take any B ∈ B. If I ∩ dom(B) = ∅, then B/g = B and 
(3.5) is satisfied automatically (since B is good). Otherwise, B ∈ Bx for some (unique) 
x ∈ I, and we can write

P [B/g] · vdeg|dom(B/g)| = P [B | x �→ g(x)] · vdeg|dom(B)|−1[
since g(x) is good for x

]
� P [B] · vdeg · vdeg|dom(B)|−1

= P [B] · vdeg|dom(B)|[
since B is good

]
< 1. �

We are now ready to prove the following strengthening of Theorem 1.6:

Theorem 3.6. If B : X →? k is a good continuous CSP on a zero-dimensional Polish 
space X, then B has a continuous solution f : X → k.

Proof. The graph G := GB has Δ(G) � vdeg(B)(ord(B) − 1) < ∞, so, by Lemmas 3.1
and 2.3, there is a partition X = I1 � . . . � In of X into finitely many clopen sets that 
are independent in G. Thanks to Lemma 3.2, we may iteratively apply Lemma 3.4 to 
produce a sequence of continuous colorings gi : Ii → k such that for all i � n, the CSP 
B/(g1 � . . . � gi) is good. We claim that f := g1 � . . . � gn is a solution to B, as desired. 
Indeed, suppose f violates a constraint B ∈ B. Then we have B/f = {∅}, but this 
means that P [B/f ] = 1, contradicting the fact that the CSP B/f is good. �

4. Proofs of Theorems 1.9 and 1.11

4.1. The main lemma

Recall that Γ is a countably infinite group with identity element 1. Given an action 
Γ � X and a set S ⊂ Γ, a subset A ⊆ X is S-syndetic if S−1 · A = X and S-separated
if for all distinct x, y ∈ A, y /∈ S · x. Note that a set A ⊆ X is S-separated if and only 
if it is independent in the Schreier graph G(X, S). If X is a free zero-dimensional Polish 
Γ-space, then the neighborhood of a clopen set U ⊆ X in G(X, S) is ((S ∪S−1) \{1}) ·U , 
which is also clopen. Hence, in this situation the graph G(X, S) is continuous, so we may 
apply the results of §2 to it.

Let Γ � X be an action and let f : X ⇀ k be a partial coloring. Given a subset 
S ⊆ Γ, we say that two points x, y ∈ X are S-similar in f , in symbols x ≡S

f y, if

∀σ ∈ S, {σ · x, σ · y} ⊆ dom(f) =⇒ f(σ · x) = f(σ · y).
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Lemma 4.1. For every finite set F ⊂ Γ, there is a finite set S ⊂ Γ with the following 
property: Let X be a free zero-dimensional Polish Γ-space and let X := C0 � C � U be 
a partition of X into clopen sets such that C is F -syndetic and U is S-separated. Then, 
given an element 1 �= γ ∈ Γ, every continuous 2-coloring f0 : C0 → 2 can be extended to 
a continuous 2-coloring f : C0 � C → 2 such that

∀x ∈ X, x �≡S
f γ · x. (4.2)

In the notation of Lemma 4.1, the set C0 is already colored, the set C is the one 
we need to color, and the set U will be left uncolored. Lemma 4.1 is analogous to [31, 
Lemma 3.9] and is used in much the same inductive fashion in our proof of Theorem 1.9. 
The main novelty of our approach is in the proof of Lemma 4.1, which uses Theorem 1.6.

Proof. Let F ⊂ Γ be a finite set. We may assume that F is symmetric (i.e., F −1 = F ) 
and 1 ∈ F . Let M be any finite symmetric subset of Γ with 1 ∈ M of size |M | = m|F |, 
where m > 0 is so large that

2m > (2m|F |)500. (4.3)

This inequality will only be used on the very last step of the argument, where it will 
be invoked to ensure that the numerical requirements of Theorem 1.6 are fulfilled. Let 
N := FM ∪ MF . We claim that the conclusion of Lemma 4.1 holds for S := N5F .

Let X be a free zero-dimensional Polish Γ-space and let X := C0 �C �U be a partition 
of X into clopen sets such that C is F -syndetic and U is S-separated. Fix a group element 
γ �= 1 and let Δ := N4FγFN4 \ {1}. By Lemma 2.2, there is a clopen maximal N4-
separated subset Z of C. Since N is symmetric and contains 1, the maximality of Z

means that C ⊆ N4 · Z. Since C is F -syndetic, this implies that Z is N4F -syndetic. Let 
g : C0 � (C \ (N · Z)) → 2 be an arbitrary continuous extension of f0 (for instance, we 
can set g(x) := 0 for all x ∈ C \ (N · Z)). We shall extend g to a continuous coloring 
f : C0 � C → 2 such that

∀z ∈ Z ∀δ ∈ Δ, z �≡N
f δ · z. (4.4)

Claim. If f satisfies (4.4), then it also satisfies (4.2).

� Take any x ∈ X. Since Z is N4F -syndetic, there is β ∈ N4F such that β · x ∈ Z. 
Applying (4.4) with z = β · x and δ = βγβ−1, we get β · x �≡N

f βγ · x. Since Nβ ⊆ S, this 
yields x �≡S

f γ · x, as desired. �
Extensions of g to C0 �C can be encoded by 2|N |-colorings of Z, as follows. A natural 

number less than 2|N | can be identified with a binary sequence of length |N |, so a 2|N |-
coloring h : Z → 2|N | can be viewed as an |N |-tuple of 2-colorings h1, . . . , h|N | : Z → 2. 
Let N = {ν1, . . . , ν|N |} be an enumeration of N . Since X is free and Z is N4-separated, 
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each point x ∈ N · Z can be expressed uniquely as x = νi · z for some z ∈ Z and 
1 � i � |N |. Thus, given h : Z → 2|N |, we can define fh : C0 � C → 2 by the formula

fh(x) :=
{

g(x) if x ∈ C0 � (C \ (N · Z));
hi(z) if x ∈ C and x = νi · z for z ∈ Z and 1 � i � |N |.

In other words, for each z ∈ Z, the color h(z) ∈ 2|N | encodes the restriction of fh to the 
set C ∩ (N · z). This encoding is generally not one-to-one: unless N · z ⊆ C, the sequence 
h1(z), . . . , h|N |(z) includes some redundant bits. Nevertheless, choosing h(z) uniformly 
at random does correspond to picking the restriction of fh to C ∩ (N · z) uniformly at 
random form the set of all 2-colorings C ∩(N ·z) → 2. Notice also that if h is continuous, 
then so is fh.

To apply Theorem 1.6, we now need to define a constraint satisfaction problem 
B : Z →? 2|N | such that h : Z → 2|N | is a solution to B if and only if fh satisfies 
(4.4), i.e.,

h is a solution to B ⇐⇒ ∀z ∈ Z ∀δ ∈ Δ, z �≡N
fh δ · z.

To this end, observe that the truth of the statement z �≡N
fh δ · z only depends on the 

restriction of fh to (N ·z) ∪(Nδ ·z). Thus, for each z ∈ Z and δ ∈ Δ, there is a constraint 
Bz,δ with domain

dom(Bz,δ) := {z′ ∈ Z : (N · z′) ∩ ((N · z) ∪ (Nδ · z)) �= ∅} = Z ∩
(
(N2 ∪ N2δ) · z

)
such that h satisfies Bz,δ if and only if z �≡N

fh δ · z. We then let B := {Bz,δ : z ∈
Z and δ ∈ Δ}. It is clear from the definition that the CSP B is continuous.

Claim. ord(B) � 2.

� Since Z is N4-separated, |Z ∩ (N2 · x)| � 1 for all x ∈ X. Hence, for any z ∈ Z and 
δ ∈ Δ, there are at most 2 elements in Z ∩

(
(N2 ∪ N2δ) · z

)
, i.e., |dom(Bz,δ)| � 2, as 

desired. �

Claim. vdeg(B) � 211m10|F |22.

� Take any z′ ∈ Z. We need to bound the number of pairs (z, δ) ∈ Z × Δ such that 
z′ ∈ dom(Bz,δ). Recall that N = FM∪MF , where |M | = m|F |, so |N | � 2m|F |2. Hence, 
|Δ| � |N4FγFN4| � 28m8|F |18. Once δ is fixed, z must satisfy z′ ∈ (N2 ∪ N2δ) · z, i.e., 
z ∈ (N2 ∪ δ−1N2) · z′, so there are at most 8m2|F |4 such z. Thus, the number of choices 
for (z, δ) is at most 28m8|F |18 · 8m2|F |4 = 211m10|F |22. �

Claim. p(B) � 2−m/6.
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� Take any z ∈ Z and δ ∈ Δ. For brevity, let y := δ · z. We need to show that 
P [Bz,δ] � 2−m/6, i.e., the probability that z is N -similar to y in a random extension f
of g to C0 � C is at most 2−m/6.

Call an element ν ∈ N eligible if ν · z ∈ C and ν · y ∈ C0 � C. Let E be the set of all 
eligible ν ∈ N . Note that if ν is eligible, then ν · z is uncolored in g but becomes colored 
in f , and ν · y is also colored in f (but it may or may not be already colored in g). The 
color f(ν · z) is chosen randomly, so the probability that f(ν · z) = f(ν · y) is exactly 
1/2, regardless of whether ν · y is already colored in g.

Since C is F -syndetic and N ⊇ FM , we have |C ∩ (N · z)| � |M |/|F | = m, and since 
U is S-separated and S ⊇ N2, |(N · y) ∩ U | � 1. Therefore, |E| � m − 1 � m/2. Let 
G be the graph with vertex set (N · z) ∪ (N · y) in which we put an edge between ν · z

and ν · y for each ν ∈ E. The maximum degree of G is at most 2, so we can pick a 
subset E′ ⊆ E of size |E′| � |E|/3 � m/6 such that the pairs {ν · z, ν · y}, ν ∈ E′, are 
pairwise disjoint. When f is chosen randomly, the events f(ν · z) = f(ν · y) for distinct 
ν ∈ E′ are mutually independent, so the probability that they all occur simultaneously 
is 2−|E′| � 2−m/6, which gives us the desired upper bound on the probability that z is 
N -similar to y in f . �

And now we are done: by Theorem 1.6, B has a continuous solution as long as

p(B) · vdeg(B)ord(B) � 2−m/6 · (211m10|F |22)2 = 2−m/6 · 222m20|F |44 < 1,

which holds by (4.3). �

4.2. Proof of Theorem 1.9

For the reader’s convenience, we state Theorem 1.9 again:

Theorem 1.9. If Γ � X is a free Borel action of Γ on a standard Borel space X, then 
there is a Γ-equivariant Borel map π : X → Y , where Y ⊂ 2Γ is a free subshift.

To prove Theorem 1.9, we shall first define a free subshift Y ⊂ 2Γ and then iteratively 
apply Lemma 4.1 to construct a desired Γ-equivariant Borel map π : X → Y .

We start by recursively defining a sequence of finite sets H0, F0, S0, H1, F1, S1, . . .
⊂ Γ as follows. Let H0 be an arbitrary nonempty finite subset of Γ. Once Hn is defined, 
let δn be any group element such that Hn ∩(Hnδn) = ∅ (such δn exists since Γ is infinite) 
and set Fn := Hn ∪ (Hnδn). Next, let Sn be the set S produced by Lemma 4.1 applied 
with F = Fn. Upon replacing Sn with a superset if necessary, we may additionally 
assume that Sn is symmetric and Sn ⊇ F −1

n Fn. Finally, we let Hn+1 := SnHn. The 
following claim explains why the sets Hn, Fn, and Sn are defined in this manner.

Claim 4.5. Let X be a free zero-dimensional Polish Γ-space and let W ⊆ X by an Hn-
syndetic clopen set. Then there is a partition W = C � U into two clopen sets such 
that:
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• the set C is Fn-syndetic;
• the set U is Sn-separated and Hn+1-syndetic.

Proof. By Lemma 2.2, we can let U be a clopen maximal Sn-separated subset of W and 
define C := W \ U . Since Sn is symmetric and contains 1, the maximality of U means 
that W ⊆ Sn · U , and since W is Hn-syndetic and Hn+1 = SnHn, this implies that U is 
Hn+1-syndetic, as claimed.

To see that C is Fn-syndetic, take any x ∈ X. We need to argue that Fn ·x contains a 
point in C. Recall that Fn = Hn ∪ (Hnδn). Since W is Hn-syndetic, the sets Hn · x and 
Hnδn · x each contain a point in W . Since the sets Hn and Hnδn are disjoint, we have 
|(Fn · x) ∩ W | � 2. On the other hand, |(Fn · x) ∩ U | � 1 since U is F −1

n Fn-separated. 
Therefore, |(Fn · x) ∩ C| � 1, as desired. �

Fix an arbitrary enumeration γ0, γ1, . . . of the non-identity elements of Γ. For each 
n ∈ N, let Yn ⊂ 2Γ be the set of all 2-colorings y : Γ → 2 such that

∃σ ∈ Sn with y(σ) �= y(σγn).

The set Yn is clopen, and if y ∈ Yn, then γn · y �= y. Hence, the set Y ′ :=
⋂∞

n=0 Yn is 
closed and every point y ∈ Y ′ has trivial stabilizer. Finally, we define Y :=

⋂
δ∈Γ(δ · Y ′). 

The set Y is closed, Γ-invariant, and contained in Y ′ ⊆ Free(2Γ), so Y is a free subshift 
(although we have not yet shown that Y is nonempty).

Now let Γ � X be a free Borel action of Γ on a standard Borel space X. It follows 
from standard results in descriptive set theory that there is a compatible zero-dimensional 
Polish topology τ on X with respect to which the action Γ � X is continuous [23, §13]. 
Iterative applications of Claim 4.5 yield a sequence of clopen subsets U0, C0, U1, C1, . . .
of X such that U0 = X and for all n ∈ N,

• Un = Cn � Un+1; and
• the set Cn is Fn-syndetic, while Un+1 is Sn-separated and Hn+1-syndetic.

Next we use Lemma 4.1 repeatedly to obtain an increasing sequence f0 ⊆ f1 ⊆ . . . such 
that for each n ∈ N, fn : C0 � . . . � Cn → 2 is a continuous 2-coloring satisfying

∀x ∈ X, x �≡Sn

fn
γn · x. (4.6)

Let f : X → 2 be an arbitrary Borel extension of 
⋃∞

n=0 fn (e.g., we may set f(x) := 0 for 
all x /∈ �∞

n=0 Cn). Define a Γ-equivariant Borel map πf : X → 2Γ by setting πf (x)(γ) :=
f(γ · x) for all x ∈ X and γ ∈ Γ. We claim that πf (x) ∈ Y for all x ∈ X, as desired. 
Indeed, since πf is Γ-equivariant, it suffices to argue that πf (x) ∈ Yn for all x ∈ X and 
n ∈ N, i.e., that for all x ∈ X and n ∈ N,

∃σ ∈ Sn with πf (x)(σ) �= πf (x)(σγn).
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Using the definition of πf , we can rewrite the latter statement as

∃σ ∈ Sn with f(σ · x) �= f(σγn · x),

which holds by (4.6) since f is an extension of fn.

4.3. Proof of Theorem 1.11

Let us state Theorem 1.11 again:

Theorem 1.11. If X is a nonempty free zero-dimensional Polish Γ-space, then Free(2Γ) �
X.

Explicitly, given any k ∈ N+, a finite subset F ⊂ Γ, and a continuous k-coloring 
f : Free(2Γ) → k, there is a continuous k-coloring g : X → k such that PF (X, g) =
PF (Free(2Γ), f).

Our proof of Theorem 1.11 is a modification of the proof of Theorem 1.9 presented 
in §4.2. To begin with, fix k ∈ N+, a finite subset F ⊂ Γ, and a continuous k-coloring 
f : Free(2Γ) → k. The following clopen sets from a base for the topology on 2Γ:

U(s) := {x ∈ 2Γ : x(γ) = s(γ) for all γ ∈ dom(s)},

where s is a 2-pattern (i.e., a partial mapping s : Γ ⇀ 2 whose domain is a finite subset 
of Γ). Given a finite set D ⊂ Γ and a point x ∈ Free(2Γ), we say that D f -determines x

if for all z ∈ Free(2Γ),

∀δ ∈ D, z(δ) = x(δ) =⇒ f(z) = f(x). �

The continuity of f is then equivalent to the following assertion:

Claim 4.7. For each x ∈ Free(2Γ), there is a finite set D ⊂ Γ that f -determines x. �

Claim 4.8. For each k-pattern p ∈ PF (Free(2Γ), f), there is a 2-pattern sp such that for 
all z ∈ Free(2Γ),

z ∈ U(sp) =⇒ ∀γ ∈ F, f(γ · z) = p(γ).

Proof. Since p occurs in f , there is some x ∈ Free(2Γ) such that f(γ · x) = p(γ) for all 
γ ∈ F . Claim 4.7 yields a finite set D such that for all z ∈ Free(2Γ),

∀δ ∈ D, z(δ) = x(δ) =⇒ ∀γ ∈ F, f(γ · z) = p(γ).

Thus, we may take sp be the 2-pattern with domain D given by sp(δ) := x(δ) for all 
δ ∈ D. �
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Set D :=
⋃

{dom(sp) : p ∈ PF (Free(2Γ), f)} (where sp is the 2-pattern given by 
Claim 4.8) and let H0 be an arbitrary symmetric finite subset of Γ with |H0| > |D|. 
Next we recursively build a sequence of finite sets H0, F0, S0, H1, F1, S1, . . . ⊂ Γ in the 
same way we did in §4.2. That is, once Hn is defined, we let δn be any group element 
such that Hn ∩ (Hnδn) = ∅ and set Fn := Hn ∪ (Hnδn). Then we let Sn be the set 
S produced by Lemma 4.1 applied with F = Fn. Upon replacing Sn with a superset if 
necessary, we may additionally assume that Sn is symmetric and Sn ⊇ F −1

n Fn. Finally, 
we let Hn+1 := SnHn. The following is a restatement of Claim 4.5:

Claim 4.9. Let X be a free zero-dimensional Polish Γ-space and let W ⊆ X by an Hn-
syndetic clopen set. Then there is a partition W = C � U into two clopen sets such 
that:

• the set C is Fn-syndetic;
• the set U is Sn-separated and Hn+1-syndetic.

Proof. See the proof of Claim 4.5 in §4.2. �

As in §4.2, we now fix an arbitrary enumeration γ0, γ1, . . . of the non-identity elements 
of Γ. For each n ∈ N, let Yn ⊂ 2Γ be the set of all 2-colorings y : Γ → 2 such that

∃σ ∈ Sn with y(σ) �= y(σγn).

Let Y :=
⋂∞

n=0
⋂

δ∈Γ(δ · Yn). As discussed in §4.2, Y is a free subshift (it is also shown 
there that Y is nonempty). For each N ∈ N, we also define

Y�N :=
N⋂

n=0

⋂
δ∈Γ

(δ · Yn).

Then Y�N is a subshift and Y =
⋂∞

N=0 Y�N , where the intersection is decreasing. Note 
that Y�N need not be free; in particular, f may not be defined on all of Y�N . Nevertheless, 
for large enough N , it is possible to define a continuous k-coloring f∗ : Y�N → k that, 
in some sense, approximates f :

Claim 4.10. There exist N ∈ N and a continuous k-coloring f∗ : Y�N → k such that for 
each z ∈ Y�N , there is y ∈ Y with the following properties:

• for all δ ∈ D, z(δ) = y(δ); and
• for all γ ∈ F , f∗(γ · z) = f(γ · y).

Proof. First we argue that there is a finite set L ⊂ Γ that f -determines every point 
y ∈ Y . For each finite set L ⊂ Γ, let VL be the set of all points y ∈ Y that are f -
determined by L. Each set VL is relatively open in Y . Moreover, by Claim 4.7, the union 
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of all the sets VL is Y . Since Y is compact, this implies that there is a finite collection 
L1, . . . , Lr of finite subsets of Γ such that Y = VL1 ∪ . . . ∪ VLr

. Then every point y ∈ Y

is f -determined by L := L1 ∪ . . . ∪ Lr, as desired.
Next we observe that there is N ∈ N such that for each z ∈ Y�N ,

∃y ∈ Y such that ∀δ ∈ D ∪ L ∪ LF, z(δ) = y(δ). (4.11)

Indeed, let Q be the set of all z ∈ 2Γ for which (4.11) fails. Then Q is a clopen subset 
of 2Γ and Q ∩ Y = ∅. Since 2Γ is compact and Y =

⋂∞
N=0 Y�N , there must exist some 

N ∈ N with Q ∩ Y�N = ∅, as desired.
Finally, we define a k-coloring f∗ : Y�N → k as follows:

f∗(z) = c : ⇐⇒ ∃y ∈ Y such that f(y) = c and ∀δ ∈ L, z(δ) = y(δ)

⇐⇒ ∀y ∈ Y, we have (∀δ ∈ L, z(δ) = y(δ)) =⇒ f(y) = c.

The two definitions given above are equivalent since every y ∈ Y is f -determined by L. 
By construction, L also f∗-determines every z ∈ Y�N , so f∗ is continuous. Now consider 
any z ∈ Y�N . By (4.11), there is y ∈ Y such that for all δ ∈ D ∪ L ∪ LF , z(δ) = y(δ), 
and it is clear that y has the desired properties. �

Now let X be a nonempty free zero-dimensional Polish Γ-space. Fix N ∈ N and 
f∗ : Y�N → k given by Claim 4.10. We shall construct a continuous k-coloring g : X → k

such that PF (X, g) = PF (Free(2Γ), f) by first building a continuous Γ-equivariant map 
π : X → Y�N and then setting g := f∗ ◦ π.

We start our construction by letting W ⊆ X be a clopen maximal D−1H2
0 D-separated 

subset of X (which exists by Lemma 2.2). Since X is free and nonempty, every Γ-orbit in 
X intersects W in infinitely many points, so W is infinite. Thus, we may partition W as 
W = �p Wp, where the union is over all p ∈ PF (Free(2Γ), f) and each Wp is nonempty 
and clopen. Let Bp := dom(sp) · Wp and B := �p Bp (the union is disjoint since W is 
D−1D-separated) and define a continuous 2-coloring b : B → 2 by

b(δ · w) := sp(δ) for all p ∈ PF (Free(2Γ), f), w ∈ Wp, and δ ∈ dom(sp). (4.12)

Property (4.12) will be eventually used to show that PF (X, g) ⊇ PF (Free(2Γ), f).
To continue our construction, we need to make sure that X \ B is syndetic:

Claim 4.13. The set X \ B is H0-syndetic.

Proof. Take any x ∈ X. Since W is D−1H2
0 D-separated, there is at most one w ∈ W

such that (D · w) ∩ (H0 · x) �= ∅, so |(D · W ) ∩ (H0 · x)| � |D| < |H0|. Since B ⊆ D · W , 
this implies (H0 · x) \ B �= ∅. �
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Claim 4.13 allows us to iteratively apply Claim 4.9 in order to obtain a sequence of 
clopen subsets U0, C0, U1, C1, . . . of X such that U0 = X \ B and for all n ∈ N,

• Un = Cn � Un+1; and
• the set Cn is Fn-syndetic, while Un+1 is Sn-separated and Hn+1-syndetic.

We can then use Lemma 4.1 repeatedly to obtain an increasing sequence b ⊆ h0 ⊆ h1 ⊆
. . . such that for each n ∈ N, hn : B � C0 � . . . � Cn → 2 is a continuous 2-coloring 
satisfying

∀x ∈ X, x �≡Sn

hn
γn · x. (4.14)

Recall that N ∈ N and f∗ : Y�N → k are given by Claim 4.10. Let h : X → 2 be an 
arbitrary continuous extension of hN (e.g., we may set h(x) := 0 for all x /∈ dom(hN )) 
and define a Γ-equivariant continuous map πh : X → 2Γ by setting πh(x)(γ) := h(γ · x)
for all x ∈ X and γ ∈ Γ. Condition (4.14) ensures that πh(x) ∈ Y�N for all x ∈ X, so 
we can define a continuous k-coloring g : X → k via g := f∗ ◦ πh.

Claim 4.15. PF (X, g) ⊇ PF (Free(2Γ), f).

Proof. Consider any p ∈ PF (Free(2Γ), f). Take an arbitrary point w ∈ Wp and let 
z := πh(w) ∈ Y�N . Note that for all γ ∈ Γ, g(γ · w) = f∗(γ · z). By Claim 4.10, there is 
y ∈ Y such that:

(a) for all δ ∈ D, z(δ) = y(δ); and
(b) for all γ ∈ F , f∗(γ · z) = f(γ · y).

By (4.12), since h extends b, we have z(δ) = h(δ ·w) = b(δ ·w) = sp(δ) for all δ ∈ dom(sp), 
i.e., z ∈ U(sp). By (a), y ∈ U(sp) as well, so for all γ ∈ F ,

g(γ · w) = f∗(γ · z) = f(γ · y) = p(γ),

where the second equality holds by (b), and the third by Claim 4.8 and since y ∈ U(sp). 
This shows that p appears in g, as desired. �

Claim 4.16. PF (X, g) ⊆ PF (Free(2Γ), f).

Proof. Take any p ∈ PF (X, g) and let x ∈ X be such that g(γ · x) = p(γ) for all γ ∈ F . 
Let z := πh(x) ∈ Y�N , so g(γ · x) = f∗(γ · z) for all γ ∈ Γ. By Claim 4.10, there is y ∈ Y

such that:

• for all γ ∈ F , f∗(γ · z) = f(γ · y).
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Then for all γ ∈ F , f(γ · y) = f∗(γ · z) = g(γ · x) = p(γ), which shows that p appears in 
f , as desired. �

Claims 4.15 and 4.16 yield PF (X, g) = PF (Free(2Γ), f), and the proof of Theorem 1.11
is complete.

5. Combinatorial results

5.1. Local colorings of special subshifts

In this subsection we prove a certain technical result (namely Lemma 5.1) that will 
be later used to derive Theorems 1.14 and 1.15.

Given a subshift X ⊆ nΓ, a finite subset F ⊂ Γ, and an integer k � 1, we say 
that a k-coloring f : X → k is F -local if for all x ∈ X, the value f(x) is determined 
by the restriction of x to F , i.e., if there is a mapping ρ : nF → k such that for all 
x ∈ X, f(x) = ρ ((x(σ))σ∈F ). (In the terminology of §4.3, this means that the set F
f -determines every x ∈ X.) Note that every F -local coloring is continuous. Conversely, 
if f : X → k is continuous, then, due to the compactness of X, there is a finite set F ⊂ Γ
such that f is F -local.

Let D be a finite subset of Γ and let n � 1 be an integer. Define a subshift XD,n ⊆ nΓ

as follows:

XD,n := {x ∈ nΓ : for all γ ∈ Γ and σ ∈ D \ {1}, we have x(γ) �= x(σγ)}.

In other words, the elements of XD,n are the proper n-colorings of the Cayley graph 
G(Γ, D). (Note that XD,n may be empty if n is too small.) The main result of this 
subsection allows us to build F -local colorings of XD,n with some control over the set F :

Lemma 5.1 (Local colorings of XD,n). Let P be a finite set of k-patterns such that every 
free zero-dimensional Polish Γ-space admits a continuous P-avoiding k-coloring. Then 
there is a finite set F ⊂ Γ with the following property:

Let n � 2 and let D ⊂ Γ be a finite set such that F ⊆ D. Set F ∗ := F log∗ n. Then the 
subshift XD,n admits an F ∗-local P-avoiding k-coloring.

In our proof of Lemma 5.1 we shall rely on the following fact, which follows from a 
construction due to Cole and Vishkin [13]:

Lemma 5.2 ([4, §3.4]). Let γ ∈ Γ \ {1} and let D ⊂ Γ be a finite set with γ ∈ D. Take 
n � 2 and define F ∗ := {1, γ}log∗ n+2. Then the Schreier graph G(XD,n, {γ}) admits an 
F ∗-local proper 6-coloring.

The construction in [4, §3.4] is in the language of distributed algorithms, so, for 
completeness, we provide its translation into our setting in the appendix. We remark 
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that it is possible to reduce the number of colors in Lemma 5.2 from 6 to 3 (at the cost 
of replacing log∗ n + 2 by log∗ n + C for some other constant C), but this will not be 
needed for our purposes. Since the graph G(XD,n, {γ}) has maximum degree at most 2, 
Lemma 2.3 already yields a continuous proper 3-coloring of G(XD,n, {γ}). Lemma 5.2
additionally specifies the set F ∗ such that the resulting coloring is F ∗-local.

Proof of Lemma 5.1. This argument is inspired by Elek’s proof of [16, Theorem 2]. Enu-
merate the non-identity elements of Γ as γ1, γ2, . . . and let Xi := X{γi},6. Consider 
the product space X :=

∏∞
i=1 Xi, equipped with the diagonal action of Γ. Then X is a 

compact zero-dimensional Polish Γ-space. Furthermore, X is free since γi · x �= x for all 
x ∈ Xi. Hence, by the assumptions on P, there is a continuous P-avoiding k-coloring 
f : X → k. The following sets form a base for the topology on X:

{x = (x1, x2, . . .) ∈ X : xi(δ) = si(δ) for all 1 � i � N and δ ∈ R}, (5.3)

where N is a natural number, R ⊂ Γ is a finite set, and s1 : R → 6, . . . , sN : R → 6 are 
6-patterns. Therefore, each x ∈ X has a clopen neighborhood of the form (5.3) on which 
f is constant. The compactness of X then implies that there exist N and R as above 
such that for all x = (x1, x2, . . .) ∈ X, the value f(x) is determined by the restrictions 
of x1, x2, . . . , xN to R. In other words, there is a mapping ρ : (6R)N → k such that for 
all x = (x1, x2, . . .) ∈ X,

f(x) = ρ ((xi(δ))1�i�N,δ∈R) . (5.4)

We can then use (5.4) to define a continuous P-avoiding k-coloring f ′ : X�N → k of 
X�N :=

∏N
i=1 Xi.

Now we claim that the conclusion of Lemma 5.1 holds with

F := ({1, γ1, . . . , γN } ∪ R)4
.

Take any n � 2 and a finite set D ⊇ F . For 1 � i � N , let

F ∗
i := {1, γi}log∗ n+2.

Then, by Lemma 5.2, the Schreier graph G(XD,n, {γi}) admits an F ∗
i -local proper 6-

coloring fi : XD,n → 6. Define a Γ-equivariant map πi : XD,n → Xi by πi(x)(γ) :=
fi(γ · x) for all x ∈ XD,n and γ ∈ Γ. Then

π : XD,n → X�N : x �→ (π1(x), . . . , πN (x))

is a Γ-equivariant map from XD,n to X�N . Thus, f ′ ◦ π : XD,n → k is a P-avoiding 
k-coloring of XD,n. Furthermore, to determine (f ′ ◦ π)(x), we only need to know fi(δ · x)
for all 1 � i � N and δ ∈ R, so this coloring is (F ∗

1 ∪ . . . ∪ F ∗
N )R-local. And now we are 

done since F ∗ := F log∗ n ⊇ (F ∗
1 ∪ . . . ∪ F ∗

N )R. �
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5.2. Reduction to finite graphs

For this subsection, we fix a finite subset S ⊂ Γ. For each finite set D ⊂ Γ with 
S ∪ S−1 ∪ {1} ⊆ D, we define a finite S-labeled graph HD,n as follows. For sets A and 
B, let Inj(A, B) denote the set of all injective mappings from A to B. The vertex set of 
HD,n is V (HD,n) := Inj(D, n). If q, q′ ∈ Inj(D, n), we put an edge labeled σ ∈ S ∪ S−1

going from q to q′ if and only if the following holds:

∀δ, δ′ ∈ D, (δ = δ′σ =⇒ q(δ) = q′(δ′)) . (5.5)

If (5.5) holds, we say that q and q′ are σ-compatible. If q and q′ are σ-compatible, then, 
in particular, q′(1) = q(σ). Since q is injective, this implies that q′ �= q and also that q
and q′ are not τ -compatible for any τ �= σ, so the edge from q to q′ in HD,n receives a 
unique label.

Lemma 5.6. Let D ⊂ Γ be a finite set with S ∪ S−1 ∪ {1} ⊆ D and let n � |D|2 be an 
integer. Then for every free zero-dimensional Polish Γ-space X, there is a continuous 
homomorphism G(X, S) → HD,n.

Proof. The Schreier graph G(X, D−1D) has maximum degree at most |D−1D| − 1 �
n − 1 (we are subtracting 1 since 1 ∈ D−1D does not count toward the degree), so, 
by Lemma 2.3, G(X, D−1D) has a continuous proper n-coloring f : X → n. For each 
x ∈ X, let qx : D → n be given by qx(δ) := f(δ · x) for all δ ∈ D. By the choice of f , 
qx ∈ Inj(D, n). Furthermore, it is clear that for any σ ∈ S, qx and qσ·x are σ-compatible. 
Therefore, x �→ qx is a continuous homomorphism from G(X, S) to HD,n, as desired. �

Lemma 5.7 (Colorings of HD,n). Let P be a finite set of S-connected k-patterns such that 
every free zero-dimensional Polish Γ-space admits a continuous P-avoiding k-coloring. 
Then there is a finite set F ⊂ Γ containing S ∪ S−1 ∪ {1} with the following property:

Let n � 2 and let D ⊂ Γ be a finite set. Set F ∗ := F log∗ n and suppose that D ⊇ F ∗. 
If n � 2|D|, then HD,n admits a P-avoiding k-coloring.

Proof. Without loss of generality, we may assume that 1 ∈ dom(p) for all p ∈ P. Since 
each p ∈ P is S-connected, we can define Δp to be the diameter of dom(p) in G(Γ, S), 
i.e., the maximum length of a shortest path in G(dom(p), S) between two elements of 
dom(p). Set Δ := maxp Δp. Let F ⊂ Γ be given by Lemma 5.1 applied to P and set

F := (F0 ∪ {1})
(
S ∪ S−1 ∪ {1}

)Δ
. (5.8)

Take any n � 2 and suppose that D ⊇ F ∗ := F log∗ n. Let F ∗
0 := F log∗ n

0 . Then, by 
Lemma 5.1, XD,n has an F ∗

0 -local P-avoiding k-coloring f : XD,n → k, i.e., there is a 
map ρ : nF ∗

0 → k such that for each x ∈ XD,n,
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f(x) = ρ
(
(x(δ))δ∈F ∗

0

)
. (5.9)

We can simply use formula (5.9) to define a k-coloring g of HD,n; that is, for all q ∈
Inj(D, n), we let

g(q) := ρ
(
(q(δ))δ∈F ∗

0

)
. (5.10)

(Here we are using that F ∗
0 ⊆ F ∗ ⊆ D.) We claim that g is P-avoiding, as desired.

Claim. If q ∈ Inj(D, n), then there is a point x ∈ XD,n such that x(δ) = q(δ) for all 
δ ∈ D.

� The maximum degree of the Cayley graph G(Γ, D) is at most |D∪D−1| −1 � 2|D| −1
(we are subtracting 1 since 1 ∈ D does not count toward the degree). Since n � 2|D|, 
we conclude that q : D → n can be extended to a proper n-coloring x : Γ → n of G(Γ, D)
greedily. �

Suppose that there is a pattern p ∈ P that occurs in g. This means that there is a 
homomorphism ϕ : dom(p) → Inj(D, n) from G(dom(p), S) to HD,n such that g(ϕ(γ)) =
p(γ) for all γ ∈ Γ. By the above claim, there is a point x ∈ XD,n such that x(δ) = ϕ(1)(δ)
for all δ ∈ D. Since dom(p) ⊆ (S ∪ S−1 ∪ {1})Δ, equations (5.8), (5.9), and (5.10) and 
the definition of HD,n yield f(γ ·x) = g(ϕ(γ)) for all γ ∈ dom(p), so p occurs in f , which 
is a contradiction. �

Theorem 1.14 follows immediately from Lemmas 5.6 and 5.7. Fix an arbitrary increas-
ing sequence S ∪ S−1 ∪ {1} ⊆ F0 ⊂ F1 ⊂ . . . of finite subsets of Γ such that 

⋃∞
i=0 Fi = Γ. 

Let ni � 2 be any integer with

ni � |Fi|2 log∗ ni .

Set Di := F log∗ ni

i and let H := {HDi,ni
}∞

i=0. Then Theorem 1.14 holds for this H:

Theorem 1.14. Let P be a finite set of S-connected k-patterns. The following statements 
are equivalent:

(2) Every free zero-dimensional Polish Γ-space admits a continuous P-avoiding k-
coloring.

(3) There is a graph in H that admits a P-avoiding k-coloring.
(4) All but finitely many graphs in H admit P-avoiding k-colorings.

Proof. Implication (4) =⇒ (3) is trivial, while (3) =⇒ (2) holds by Lemma 5.6 since 
ni � |Di|2 for all i. Assuming (2), let F ⊂ Γ be given by Lemma 5.7 applied to P. Then 
(4) holds since for all but finitely many i, we have Fi ⊇ F . �
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5.3. LOCAL algorithms

In this subsection we prove Theorem 1.15:

Theorem 1.15. Let S ⊂ Γ be a finite set and let P be a finite set of S-connected k-
patterns. The following statements are equivalent:

(2) Every free zero-dimensional Polish Γ-space admits a continuous P-avoiding k-
coloring.

(5) There is a deterministic distributed algorithm in the LOCAL model that, given an 
n-vertex S-labeled subgraph G of G(Γ, S), in O(log∗ n) rounds outputs a P-avoiding 
k-coloring of G.

Implication (5) =⇒ (2) is a special case of [7, Theorem 2.13], so we only need to prove 
(2) =⇒ (5). Before we proceed, let us record the following classical result, dating back 
to Goldberg, Plotkin, and Shannon [22], which can be seen as a distributed computing 
analog of Lemma 2.3:

Theorem 5.11 ([4, Corollary 3.15]). There is a deterministic LOCAL algorithm that 
computes a proper (d + 1)-coloring of an n-vertex graph G of maximum degree d in 
log∗ n + O(d2) rounds.

Assume (2) and let F ⊂ Γ be given by Lemma 5.7 applied to P. Take m so large that

m > |F |3 log∗ m. (5.12)

Set D := F log∗ m. By Lemma 5.7, the graph HD,m admits a P-avoiding k-coloring 
h : Inj(D, m) → k. Thus, to prove (5), it suffices to show that there is a deterministic 
LOCAL algorithm that, given an n-vertex S-labeled subgraph G of G(Γ, S), in O(log∗ n)
rounds outputs a homomorphism G → HD,m (since composing such a homomorphism 
with h requires no additional rounds of communication).

Our algorithm is supposed to output a homomorphism G → HD,m. In other words, 
each vertex x ∈ V (G) has to compute an injective mapping qx : D → m so that if x is 
joined to y by an edge with label σ, then qx and qy are σ-compatible. It is tempting 
to employ the same strategy as in the proof of Lemma 5.6, i.e., to first compute, using 
Theorem 5.11, a locally injective m-coloring of G and then make each vertex x collect 
the colors within some finite radius around x in G. Unfortunately, this approach does not 
quite work, because the set Dx may not be a subset of V (G). Furthermore, there may 
be some y ∈ Dx whose distance to x in G is much larger than in G(Γ, S), so x cannot 
find out the color of y within a small number of rounds. We circumvent this difficulty 
by computing a homomorphism G → HD,m directly.

Let us start by introducing some useful notation. Let λ be the edge labeling on 
G. We say that pairs (x, δ), (y, δ′) ∈ V (G) × D are one-step equivalent, in symbols 
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(x, δ) ∼1 (y, δ′), if x and y are adjacent and δ = δ′λ(x, y). Note that the relation ∼1
is symmetric. The equivalence relation on V (G) × D generated by ∼1 is denoted by ∼. 
Explicitly, we have (x, δ) ∼ (y, δ′) if and only if either (x, δ) = (y, δ′) or there exists a 
finite sequence (z1, δ1), . . . , (zt, δt) such that

(x, δ) ∼1 (z1, δ1) ∼1 · · · ∼1 (zt, δt) ∼1 (y, δ′).

When (x, δ) ∼ (y, δ′), we say that (x, δ) and (y, δ′) are equivalent. Observe that a map-
ping x �→ qx is a homomorphism from G to HD,m if and only if qx(δ) = qy(δ′) whenever 
(x, δ) ∼ (y, δ′).

Let us establish a few simple facts about the relation ∼.

Claim 5.13. The following statements are valid:

(a) For every x and δ, δ′ ∈ D, there is at most one y ∈ V (G) such that (x, δ) ∼ (y, δ′).
(b) For every x, y ∈ V (G) and δ ∈ D, there is at most one δ′ ∈ D such that (x, δ) ∼

(y, δ′).

Proof. Recall that G is a subgraph of the Cayley graph G(Γ, S). Therefore, x and y

are elements of the group Γ, and if (x, δ) ∼ (y, δ′), then we can write δx = δ′y, so 
y = (δ′)−1δx and δ′ = δxy−1. �

For x ∈ V (G), let [x] := {y ∈ V (G) : (x, δ) ∼ (y, δ′) for some δ, δ′ ∈ D}. Note that 
the relation “y ∈ [x]” is reflexive and symmetric, but not necessarily transitive.

Claim 5.14. For every x ∈ V (G) and y ∈ [x], the graph distance between x and y in G is 
at most |D|.

Proof. If y = x, then we are done. Otherwise, there is a sequence (z1, δ1), . . . , (zt, δt)
such that

(x, δ) ∼1 (z1, δ1) ∼1 · · · ∼1 (zt, δt) ∼1 (y, δ′). (5.15)

By minimizing t, we may assume that the pairs (x, δ), (z1, δ1), . . . , (zt, δt), (y, δ′) are 
pairwise distinct. By Claim 5.13(a), this implies that the elements δ, δ1, . . . , δt, δ′ are 
also pairwise distinct. Therefore, t + 2 � |D|. From (5.15), we see that the distance 
between x and y is at most t + 1 < |D|. �

Let G′ denote the graph with the same vertex set as G in which two distinct vertices x, 
y are adjacent if and only if there is z ∈ V (G) such that z ∈ [x] and y ∈ [z] (this includes 
the case when z = x and y ∈ [x]). By Claim 5.13(a), |[x]| � |D|2 for all x ∈ V (G), so 
the maximum degree of G′ is at most
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N := |D|4 = O(1).

(Here and in what follows, the asymptotic notation is with respect to n → ∞.) By 
Claim 5.14, a single communication round in the LOCAL model on G′ can be simulated 
by 2|D| = O(1) rounds on G. Hence, by Theorem 5.11, we can compute a proper (N +1)-
coloring ϕ : V (G) → (N + 1) of G′ in O(log∗ n) rounds. For 0 � i � N , let Xi := ϕ−1(i).

We shall compute the desired homomorphism from G to HD,m in N +1 stages indexed 
by 0, 1, . . . , N . At the start of stage i, each vertex x will have already computed the 
values qx(δ) for some subset of δ ∈ D, subject to the following requirement:

If (x, δ) ∼ (y, δ′), then qx(δ) = qy(δ′) whenever at least one of qx(δ) and qy(δ′) is 
defined.

During stage i, we have to compute qx(δ) for all x ∈ Xi and δ ∈ D. To this end, each 
vertex x ∈ Xi considers the elements δ ∈ D one by one and performs the following 
procedure for each of them. If qx(δ) is already defined, then there is nothing to do. 
Otherwise, by Claim 5.14, in |D| rounds x can determine the following set:

B := {qy(ε) : y ∈ [x], ε ∈ D, and qy(ε) is defined}.

Since |[x]| � |D|2, we have |B| � |D|3 < m by (5.12), so x can pick a color α < m that 
is not in B and set qx(δ) := α. Then in |D| rounds x can notify each y ∈ [x] so that 
if (x, δ) ∼ (y, δ′), then y sets qy(δ′) := α (such δ′ is unique by Claim 5.13(b)). By the 
choice of α, the mappings qy : D ⇀ m for all y ∈ [x] remain injective after this procedure. 
Notice also that since the set Xi is G′-independent, all the elements of Xi can run this 
procedure in parallel without creating any conflicts.

After (N + 1) stages, we will have computed a homomorphism G → HD,m. Note that 
each stage takes O(1) rounds, and there are O(1) stages, so the total required number 
of communication rounds is

O(log∗ n)︸ ︷︷ ︸
computing ϕ

+ O(1) = O(log∗ n),

and the proof is complete.

Appendix A. Proof of Lemma 5.2

Here we give a proof of Lemma 5.2:

Lemma 5.2. Let γ ∈ Γ \{1} and let D ⊂ Γ be a finite set with γ ∈ D. Take n � 2 and let 
F ∗ := {1, γ}log∗ n+2. Then the Schreier graph G(XD,n, {γ}) admits an F ∗-local proper 
6-coloring.
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As γ ∈ D, we have XD,n ⊆ X{γ},n, so it is enough to consider the case when D = {γ}. 
For brevity, let

Xn := X{γ},n and Gn := G(X{γ},n, {γ}).

If n � 6, then the mapping Xn → 6: x �→ x(1) is as desired (it is a {1}-local proper 
6-coloring of Gn). Thus, we may assume that n > 6. For every n � 6, we define

f(n) := 2�log2 n�

and observe that f(6) = 6 and n > f(n) � 6 for n > 6.
The heart of the construction is in the following claim:

Claim. For every n > 6, the graph Gn admits a {1, γ}-local proper f(n)-coloring.

Proof. For an integer a with 0 � a � n − 1, let a0a1 . . . a�log2 n�−1 denote the bi-
nary expansion of a. For each x ∈ Xn, let i(x) be the smallest index i such that 
x(1)i �= x(γ)i (such an index exists since x is a proper coloring of Gn) and set 
d(x) := x(1)i(x) and c(x) := 2i(x) + d(x). By construction, the function c is {1, γ}-
local and 0 � c(x) < 2�log2 n� = f(n). It remains to verify that c is a proper coloring 
of Gn. Suppose, toward a contradiction, that c(x) = c(γ · x) for some x ∈ Xn. Then 
i(x) = i(γ · x), because both these quantities are equal to �c(x)/2�. Letting i := i(x), we 
see that d(x) = x(1)i �= x(γ)i = d(γ ·x) by the definition of i(x). But then c(x) �= c(γ ·x)
(mod 2); a contradiction. �

For n > 6, let f∗(n) be the minimum k such that f (k)(n) = 6, where f (k) := f ◦ · · · ◦f

(k times). It is routine to check that f∗(n) � log∗ n + 2 for all n > 6. By iterating the 
above claim f∗(n) times, we obtain a sequence of Γ-equivariant maps

Xn
π1−−−−−→ Xf(n)

π2−−−−−→ Xf(2)(n)
π3−−−−−→ · · ·

πf∗(n)−−−−−−→ X6,

where for each i, the mapping x �→ πi(x)(1) is {1, γ}-local. It remains to set π :=
πf∗(n) ◦ · · · ◦ π1 and observe that the mapping x �→ π(x)(1) is an F ∗-local proper 6-
coloring of Gn, as desired.
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