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The probabilistic method is a technique for proving combina-
torial existence results by means of showing that a randomly
chosen object has the desired properties with positive proba-
bility. A particularly powerful probabilistic tool is the Lovasz
Local Lemma (the LLL for short), which was introduced by
Erdds and Lovész in the mid-1970s. Here we develop a version
of the LLL that can be used to prove the existence of contin-
uous colorings. We then give several applications in Borel and
topological dynamics.

e Seward and Tucker-Drob showed that every free Borel ac-
tion I' ~ X of a countable group I' admits an equivariant
Borel map 7: X — Y to a free subshift Y C 2. We give a
new simple proof of this result.

o We show that for a countable group I, Free(2") is weakly
contained, in the sense of Elek, in every free continuous ac-
tion of I' on a zero-dimensional Polish space. This fact is
analogous to the theorem of Abért and Weiss for probability
measure-preserving actions and has a number of consequences
in continuous combinatorics. In particular, we deduce that a
coloring problem admits a continuous solution on Free(2") if
and only if it can be solved on finite subgraphs of the Cayley
graph of I" by an efficient deterministic distributed algorithm
(this fact was also proved independently and using different
methods by Seward). This establishes a formal correspondence
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between questions that have been studied independently in
continuous combinatorics and in distributed computing.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction
1.1. A continuous version of the Lovdsz Local Lemma

1.1.1. Constraint satisfaction problems and the LLL

Suppose we wish to prove that an object with certain combinatorial properties exists.
A possible way to achieve this is by showing that an object chosen at random from some
class has the desired properties with positive probability. This approach was pioneered
by Erdés in the 1940s and has since become indispensable throughout combinatorics;
see the book [2] by Alon and Spencer for an introduction. An important probabilistic
tool is the so-called Lovasz Local Lemma (the LLL for short). The LLL is particularly
useful for proving the existence of colorings satisfying a given set of “local” constraints.
Formally, we define constraint satisfaction problems as follows:

Definition 1.1. Let X be a set and let k € N*. We identify k with the k-element set
{0,1,...,k—1}.

e A k-coloring of a set S is a function f: S — k.

 For a finite set D C X, an (X, k)-constraint (or simply a constraint if X and k are
clear from the context) with domain D is a set B C k¥ of k-colorings of D. We write
dom(B) := D.

e A k-coloring f: X — k violates a constraint B with domain D if the restriction of
f to D is in B, and satisfies B otherwise.

o A constraint satisfaction problem (a CSP for short) @ on X with range k, in
symbols B: X —" k, is a set of (X, k)-constraints.

« A solution to a CSP B: X —’ k is a k-coloring f: X — k that satisfies every
constraint B € 3.

In other words, each constraint B € B in a CSP B: X =’ k is interpreted as a set of
finite “forbidden patterns” that are not allowed to appear in a solution f: X — k. The
LLL provides a simple probabilistic condition that guarantees that a given CSP has a
solution. Fix a CSP B: X —’ k. For each B € @, the probability of B is the quantity
P[B] defined by

]P’[B]' ‘B|

= T dom(B)] the probability that B is violated by uniformly random f: X — k.
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The neighborhood of B is the set
N(B) := {B' € B : B' # B and dom(B’) Ndom(B) # &}.
The LLL invokes the parameters p(B) := suppgcg P[B] and d(B) := supgcg |N(B)|.
Theorem 1.2 (Lovdsz Local Lemma; Erdés—Lovdsz [17]). If B is a CSP such that
e-p(B)-d(B)+1) <1, (1.3)
where e = 2.71 ... is the base of the natural logarithm, then B has a solution.

The LLL is often stated in the case when @ is finite. However, a straightforward
compactness argument shows that Theorem 1.2 holds for infinite B as well (see, e.g., [2,
proof of Theorem 5.2.2]).

1.1.2. Continuous colorings
In this paper we are interested in the following question:

Question 1.4 (Continuous LLL). Suppose X is a zero-dimensional Polish space. What
LLL-style conditions guarantee that a CSP B: X —7 k has a continuous solution f: X —
k?

Recall that a topological space is Polish if it is separable and completely metrizable,
and zero-dimensional if it has a base consisting of clopen sets. The restriction to zero-
dimensional spaces X in Question 1.4 is natural since a continuous map X — k can
be thought of as a partition of X into clopen sets indexed by 0, 1, ..., kK — 1, so if we
hope to find a continuous solution to @B, it is reasonable to assume that X has “many”
clopen subsets. Questions in the spirit of Question 1.4 have recently attracted attention
due to their applications in dynamical systems and descriptive set theory. For a sample
of related results, see [6,15,7]. These questions form a part of the general area called
descriptive combinatorics, which investigates combinatorial problems under a variety of
topological or measure-theoretic regularity requirements. For more background, see the
surveys [25] by Kechris and Marks and [30] by Pikhurko.

In the context of Question 1.4, it is necessary to assume that the CSP @ itself “re-
spects” the topology on X in an appropriate sense. To this end, we define continuous
CSPs as follows:

Definition 1.5. Let X be a zero-dimensional Polish space. A CSP B: X —” k is contin-
uous if for every set B of functions {1,...,n} — k and for all clopen subsets Us, ...,
U, C X, the following set is clopen:

{x1 € X : there are x5 € Uy, ..., z,, € U, such that z1, ..., x, are distinct and

B(Z‘l,. ..,l‘n) S ,(8}
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Here B(z1,...,2,) :={pot : ¢ € B}, where ¢: {z1,...,2,} — {1,...,n} is given by

Conley, Jackson, Marks, Seward, and Tucker-Drob [14, Theorem 1.6] constructed ex-
amples showing that the standard LLL condition (1.3) is not sufficient to guarantee the
existence of a Borel—let alone continuous—solution. In contrast to this, we prove that
a certain strengthening of (1.3) does yield continuous solutions. In addition to p(8) and
d(®B), we consider two more parameters associated to a CSP B: X —’ k. Namely, we
define the maximum vertex-degree vdeg(B) of B as

vdeg(B) := sup {B € B : x € dom(B)}|,
reX

and let the order ord(B) of B be ord(B) := suppcq |dom(B)|. Note that d(B) <
(vdeg(B) — 1)ord(B).

Theorem 1.6. Let B: X —° k be a continuous CSP on a zero-dimensional Polish space
X.If

p(B) - vdeg(B)4®) < 1, (1.7)
then B has a continuous solution f: X — k.

Note that in the setting of Theorem 1.6, if p(®) > 0, then in fact p(®B) > k—°ord®),
Thus, Theorem 1.6 is only useful if k is relatively large (namely k& > vdeg(B)).

We prove Theorem 1.6 in §3 using the method of conditional probabilities—a standard
derandomization technique in computer science. This connection to computer science is
not coincidental: results and methods in descriptive combinatorics often mirror those
in distributed computing, i.e., the area concerned with problems that can be solved
efficiently by a decentralized network of processors. For example, an argument similar to
our proof of Theorem 1.6 was involved in Fischer and Ghaffari’s breakthrough work on
distributed algorithms for the LLL [18, Theorem 3.5].

Another relevant result in distributed computing is due to Brandt, Grunau, and
Rozhon [9], who recently developed an efficient deterministic distributed algorithm for
finding solutions to CSPs under the condition p2¢ < 1 (in the special case when vdeg < 3,
such an algorithm was devised earlier by Brandt, Maus, and Uitto [11]). In [7], the author
established a series of general results that allow using efficient distributed algorithms to
obtain colorings with desirable regularity properties (such as continuity, measurability,
etc.). In particular, [7, Theorem 2.13] implies that under suitable assumptions the con-
dition p2¢ < 1 is also sufficient to produce continuous solutions. While in general neither
of the bounds p2¢ < 1 and p-vdeg®™®
often estimates d using the inequality d < (vdeg — 1)ord, which makes the latter bound

< 1 (that is, (1.7)) implies the other, in practice one

more widely applicable, especially when ord is much smaller than vdeg.
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Remarkably, the bound p2¢ < 1 in the Brandt-Grunau-Rozhoii result is sharp: there
is no such efficient distributed algorithm that finds solutions to CSPs if the bound is
relaxed to p2¢ < 1. This follows from the analysis of the so-called sinkless orientation
problem performed in the randomized setting by Brandt et al. [8] and extended to the
deterministic setting by Chang, Kopelowitz, and Pettie [12]. This sharpness result has a
counterpart in descriptive combinatorics. Namely, suppose d € N and let G be a d-regular
graph, meaning that every vertex of G is incident to exactly d edges. An orientation of
G is sinkless if the outdegree of every vertex is at least 1. A sinkless orientation of G can
be naturally encoded as a solution to a CSP Bginkiess = { Bz }zev(a): F(G) —7? 9. Here
the color of each edge e € E(G) indicates the direction in which e is oriented, and B,
for x € V(QG) is the constraint with domain dom(B;) = {e € E(G) : e is incident to =}
that requires the outdegree of x to be at least 1. It is easy to see that d(Bsinkless) = d
and p(Bsinkless) = 1/29. However, Thornton [32, Theorem 3.5] used the determinacy
method of Marks [29] to construct, for any given d € N, a Borel d-regular graph G
that does not admit a Borel sinkless orientation. Note that since vdeg(Bsinkiess) = 2 and
ord(Bsinkiess) = d, this also serves as a sharpness example for Theorem 1.6.

We shall resume the discussion of distributed algorithms in §1.3.3, where we describe
one of the consequences derived using Theorem 1.6, namely that for certain types of
coloring problems, a continuous solution exists if and only if the problem can be solved
by an efficient distributed algorithm.

1.1.3. Borel colorings

Sometimes we only wish to find a Borel solution instead of a continuous one. Recall
that a standard Borel space is a set X equipped with a o-algebra B(X) of Borel sets
generated by a Polish topology on X. We say that a Polish topology on a standard Borel
space X is compatible if it generates B(X). If X is a standard Borel space, then the set
[X]<°° of all finite subsets of X also carries a natural standard Borel structure. Since
every (X, k)-constraint can be viewed as a finite subset of [X x k]<°°, we may speak of
Borel CSPs B: X —’ k, i.e., Borel sets @ C [[X x k]<>°]<* of (X, k)-constraints. The
following is an immediate corollary of Theorem 1.6:

Corollary 1.8. Let B: X =’ k be a Borel CSP on a standard Borel space X . If
p(B) - vdeg(®)™*® < 1,
then B has a Borel solution f: X — k.

Proof. For a set B of functions {1,...,n} — k, write 1 ~p (za,...,2,) if 1, ..., z,
are distinct and B(xy,...,z,) € B. Since vdeg(B) < oo, the Luzin—Novikov theorem
[23, Theorem 18.10] yields a finite sequence of partial Borel maps hp;: X — X"1
1 < ¢ < vdeg(B)(n — 1)1, such that z; ~p (z2,...,x,) if and only if (z9,...,2z,) =
hpi(x1) for some i. (The (n — 1)! factor arises from the fact that a constraint with



[ A. Bernshteyn / Advances in Mathematics 415 (2023) 108895

domain {z1,...,2,} could, in principle, force x; to be ~p-related to every permutation
of {z2,...,z,}.) It follows from standard results in descriptive set theory [23, §13] that
there is a compatible zero-dimensional Polish topology 7 on X with respect to which
all the maps hp,; are continuous and defined on clopen sets. Then B is continuous
with respect to 7, so, by Theorem 1.6, B has a 7-continuous (hence Borel) solution.
Alternatively, it is straightforward to check directly that the proof of Theorem 1.6 given
in §3 goes through in the Borel setting with the words “continuous” and “clopen” replaced
everywhere by “Borel” W

1.2. Applications in dynamics

1.2.1. A simple proof of the Seward—Tucker-Drob theorem

Throughout the rest of this paper, I' denotes a countably infinite discrete group with
identity element 1. By an “action” of I we always mean a left action. Our first application
of Theorem 1.6 is a simple proof of the following result of Seward and Tucker-Drob:

Theorem 1.9 (Seward—Tucker-Drob [31]). If T' ~ X s a free Borel action of T on a
standard Borel space X, then there is a I'-equivariant Borel map w: X — Y, where
Y c 2V is a free subshift.

Let us recall the terminology used in the statement of Theorem 1.9. A I'-space is a
topological space X equipped with a continuous action I' ~ X. The product space k'
of all k-colorings I' — k of I is a compact zero-dimensional Polish space, and it becomes
a I-space under the action I' ~ k' given by!

(y-x)(8) := x(dy) forall z € k" and v, § € T.

The I'-spaces of the form k' are called Bernoulli shifts, or simply shifts. The free part of
a I'-space X is the set Free(X) := {x € X : Str(z) = {1}} equipped with the subspace
topology and the induced action of T (here Str(z) denotes the stabilizer of ). In other
words, Free(X) is the largest I'-invariant subspace of X on which T" acts freely. If X
is a Polish I'-space, then Free(X) is a G5 subset of X, and hence it is also Polish [23,
Theorem 3.11]. A closed I'-invariant subset of k' is called a subshift, and we say that a
subshift X C kT is free if X C Free(k'), i.e., if T acts freely on X.

Even the existence of a nonempty free subshift for an arbitrary countable group I
is far from obvious. It was established by Gao, Jackson, and Seward [20] with a rather
technical construction that was further explored in [21]. The proof of Theorem 1.9 due
to Seward and Tucker-Drob develops the ideas of Gao, Jackson, and Seward further and
is similarly quite involved. However, it turns out that questions about free subshifts are

L Alternatively, we could define (v - z)(8) to be z(y~*8). The two definitions yield isomorphic structures,
but we prefer to avoid the use of inverses.
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well-suited for LLL-based approaches. This fact was first observed by Aubrun, Barbieri,
and Thomassé [3], who gave a short and simple LLL-based alternative construction of a
nonempty free subshift X C 2. Roughly speaking, their method was to define X as the
set of all colorings I' — 2 satisfying certain constraints, and then to show that X # @
using the LLL. This technique is quite flexible and allows constructing free subshifts
with various additional properties. For example, in [5] the LLL is applied to construct
free subshifts that are not just nonempty but “large” in terms of Hausdorff dimension
and entropy.

Unfortunately, the approach of [3,5] cannot prove Theorem 1.9, since it invokes a
version of the LLL that does not generally yield Borel solutions. (Actually, [3,5] rely on
the so-called General LLL [2, Lemma 5.1.1], which is a strengthening of Theorem 1.2 that,
in general, does not even yield measurable solutions [6, Theorem 7.1].) In §4, we show
that Theorem 1.9 can nevertheless be established with a simple probabilistic argument—
namely with the help of Theorem 1.6.

1.2.2. Topological Abért—Weiss theorem

Inspired by the analogous notions for measure-preserving actions (which were in turn
modeled after similar concepts in representation theory), Elek [16] introduced the rela-
tions of weak containment and weak equivalence on the class of zero-dimensional Polish
I-spaces. (Technically, Elek only considered compact zero-dimensional I'-spaces, but the
same definitions can be applied verbatim to non-compact spaces as well.) Let k > 1 be
an integer. A k-pattern is a partial map p: I' — k whose domain is a finite subset of T.
Given an action I' ~ X and a k-coloring f: X — k, we say that a k-pattern p occurs
in f if there is a point € X such that f(v-x) = p(y) for all v € dom(p). For a finite
subset F' C T', we let #r(X, f) denote the set of all k-patterns p: F — k with domain
F that occur in f.

Definition 1.10. Let X and Y be zero-dimensional Polish I'-spaces. We say that X is
weakly contained in Y, in symbols X < Y, if given any k € NT, a finite subset I C T,
and a continuous k-coloring f: X — k, there is a continuous k-coloring g: ¥ — k such
that Pp(Y,9) = Pr(X,f). f X Y and Y < X, then we say that X and Y are weakly
equivalent and write X ~ Y.

As mentioned earlier, Definition 1.10 was introduced (for compact I'-spaces) by Elek
in [16]. For minimal actions of the group Z, weak equivalence (under the name of weak
approzimate conjugacy) was considered previously by Lin and Matui in [27].

Among several other results, Elek proved that the pre-order of weak containment
has a minimum element in the class of all nonempty free zero-dimensional Polish T'-
spaces [16, Theorem 2]. In other words, Elek showed that there exists a free (compact)
zero-dimensional Polish I'-space M such that M < X for every nonempty free zero-
dimensional Polish T-space X (it is easy to check that Elek’s argument does not need X
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to be compact). We show that, except for the compactness requirement, one can actually
take M to be the free part of the Bernoulli shift 2T

Theorem 1.11. If X is a nonempty free zero-dimensional Polish T'-space, then
Free(QF) < X.

Theorem 1.11 is a topological counterpart to the ergodic-theoretic result of Abért and
Weiss [1], namely that the Bernoulli shift 2! is weakly contained (in the sense of Kechris
[24]) in each almost everywhere free probability measure-preserving action of I'. The
proof of Theorem 1.11 is given in §4.3. It is an elaboration of our proof of Theorem 1.9,
leveraging the fact that Theorem 1.6 yields continuous (and not just Borel) solutions.

1.8. Consequences in continuous combinatorics

The main motivation for this work comes from the area of continuous combinatorics,
which studies the behavior of combinatorial notions—such as graph colorings, match-
ings, etc.—under additional continuity constraints. For example, suppose that G is a
graph whose vertex set V(G) is a zero-dimensional Polish space. A typical problem in
continuous combinatorics is to determine the continuous chromatic number x.(G) of G,
i.e., the least k for which there exists a continuous k-coloring f: V(G) — k satisfying
f(x) # f(y) whenever vertices x and y are adjacent (such colorings are called proper).

In [19], Gao, Jackson, Krohne, and Seward initiated the systematic study of continuous
combinatorics of countable group actions and performed a detailed analysis in the case
I' = Z%. In particular, they completely characterized combinatorial problems that can be
solved continuously on the space Free(2l') for I' € {Z, Z?} by reducing them to certain
questions about finite graphs. Here we continue this line of research and extend it to the
case of I'-spaces for arbitrary countably infinite groups I'.

Some of our results in this section, specifically Theorems 1.12 and 1.15, were obtained
independently by Seward using the techniques from [20,21,31] (personal communication).

1.8.1. Universality of the shift

We say that a coloring f: X — k is P-avoiding, where X is a I'-space and & is a set of
k-patterns, if no pattern p € # occurs in f. As a side remark, we note that continuous -
avoiding colorings of I'-spaces have a natural meaning from the standpoint of topological
dynamics. Specifically, viewing I itself as a discrete I'-space under the left multiplication
action I' ~ ', we can consider the set Av(®) C k' of all #-avoiding k-colorings of T
for a given finite set P of k-patterns. The set Av(P) is closed and T'-invariant, and it is
called a subshift of finite type (“finite” because P is finite). If X is a I-space, then there
is a natural one-to-one correspondence

{P-avoiding continuous colorings X — k}

+— {T-equivariant continuous maps X — Av(P)},
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where each P-avoiding continuous coloring f: X — k gives rise to the so-called coding
map 7y: X — Av(P) given by m¢(z)(y) == f(y-z) for all z € X and v € I'. In view
of this correspondence, studying continuous colorings that avoid finite sets of patterns
is equivalent to studying equivariant continuous maps to subshifts of finite type. The
following is an immediate consequence of Theorem 1.11:

Theorem 1.12. Let P be a finite set of k-patterns. The following statements are equiva-
lent.

(1) There is a continuous P-avoiding k-coloring of Free(21).
(2) Every free zero-dimensional Polish T'-space admits a continuous P-avoiding k-
coloring.

Proof. Implication (2) = (1) is obvious, while (1) = (2) is given by Theorem 1.11. N

Informally, Theorem 1.12 says that of all the free zero-dimensional Polish I'-spaces, it
is the hardest to solve combinatorial problems continuously on Free(2!'). Here is just one
specific instance of this phenomenon. Let S C T" be finite. The Schreier graph of a I'-
space X corresponding to S is the (simple undirected) graph G(X, S) with vertex set X
where two distinct vertices z, y are adjacent if and only if y = ¢ -z for some 0 € SUS™!.
A consequence of Theorem 1.12 is that the Schreier graph of Free(2') has the largest
continuous chromatic number among all Schreier graphs of free zero-dimensional Polish
I'-spaces:

Corollary 1.13. Let S be a finite subset of I'. If X is a free zero-dimensional Polish
I'-space, then

Xe(G(X, 8)) < Xe(G(Free(2"),5)).

Proof. Set k := x.(G(Free(2"), S)) and apply Theorem 1.12 with # := {p; , : 0 <i <
k,o € S\ {1}}, where for each i and o, p;, is the k-pattern with domain {1,0} that
sends both 1 and o to¢. W

1.8.2. Reduction to finite graphs

In our remaining results, we reduce problems about continuous colorings to questions
about colorings of finite graphs. To state them, we require a few definitions. Let S C T’
be a finite set. An S-labeled graph is a simple undirected graph G equipped with a
labeling map A that assigns to each (ordered) pair (x,y) of adjacent vertices a group
element A\(z,y) € SUS™! so that A(y,z) = A(z,y)~!. Note that a vertex = may have
multiple neighbors y with the same A(z,y). For a subset U C V(G), we let G[U] denote
the subgraph of G induced by U, i.e., the S-labeled graph with vertex set U whose
adjacency relation and labeling map are inherited from G.
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Schreier graphs of free I'-spaces are natural examples of S-labeled graphs, with A(z,y)
being the unique element o € S U S~! such that y = o - 2. When T itself is viewed as a
discrete I'-space under the left multiplication action I' ~ I'; the S-labeled Schreier graph
G(T, S) is called the Cayley graph of I" corresponding to S. Note that the graph G(T', S) is
connected if and only if S generates I'. For a subset F' C T', we use G(F, S) := G(I', S)[F]
to denote the subgraph of G(T', S) induced by F.

A homomorphism from an S-labeled graph G to an S-labeled graph H is a map
¢: V(G) — V(H) such that if z, y € V(G) are adjacent in G, then ¢(z), ¢(y) are
adjacent in H and A(p(z), ¢(y)) = A(z,y). Let F' C I" be a finite set and let p: F' — k be
a k-pattern. We say that p is S-connected if the graph G(F,S) is connected. Given an
S-labeled graph G and a coloring f: V(G) — k, we say that an S-connected k-pattern
p: F — k occurs in f if there is a homomorphism ¢: F' — V(G) from G(F,S) to G such
that f oy = p. When G is the Schreier graph G(X,S) of a free I'-space X, this notion
coincides with our previous definition, since the only homomorphisms from G(F,S) to
G(X,S) are the ones of the form F — X : v+ - x for some x € X (here we use that p
is S-connected). Given a finite set # of S-connected k-patterns, we say that a coloring
f: V(G) — k of an S-labeled graph G is #-avoiding if none of the patterns in % occur
in f.

Consider the standard generating set S := {(1,0), (0,1)} for the group Z2. In [19, The-
orem 5.5], Gao, Jackson, Krohne, and Seward constructed an explicit countable family
# of finite S-labeled graphs such that the following statements are equivalent for any
finite set ® of S-connected k-patterns:

. Free(QZQ) admits a continuous P-avoiding k-coloring;
e there is a graph in # that admits a #-avoiding k-coloring;
e all but finitely many graphs in # admit P-avoiding k-colorings.

In other words, to determine whether the (infinite) Z2-space Free(22°) has a continu-
ous P-avoiding k-coloring, one simply needs to check if the (finite) graphs in # admit
P-avoiding k-colorings. This can be seen as a “compactness theorem” for continuous col-
orings of Free(QZQ). Gao, Jackson, Krohne, and Seward call [19, Theorem 5.5] the “Twelve
Tiles Theorem,” since each graph in # is obtained from twelve pieces—*“tiles”—glued to
each other according to certain rules.

We obtain an analogous result for arbitrary countable groups I':

Theorem 1.14. In the setting of Theorem 1.12, assume that S C I is a finite set such that
the k-patterns in P are S-connected. There is an explicit countable family # of finite
S-labeled graphs (see §5.2 for the definition) such that statements (1) and (2) are also
equivalent to:

(3) There is a graph in # that admits a P-avoiding k-coloring.
(4) All but finitely many graphs in # admit P-avoiding k-colorings.
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We construct the family # and prove Theorem 1.14 in §5.2.

1.8.8. LOCAL algorithms
Our final result establishes a precise connection between continuous combinatorics
and distributed computing:

Theorem 1.15. In the setting of Theorem 1.12, assume that S C I' is a finite set such
that the k-patterns in ® are S-connected. Then statements (1)—(4) are also equivalent
to:

(5) There is a deterministic distributed algorithm in the LOCAL model that, given an
n-vertex S-labeled subgraph G of G(T', S), in O(log™ n) rounds outputs a P-avoiding
k-coloring of G.

Here log™ n denotes the iterated logarithm of n, i.e., the number of times the logarithm
function must be iteratively applied to n before the result becomes at most 1.

Statement (5) in Theorem 1.15 refers to the LOCAL model of distributed computation,
which was introduced by Linial in [28]. For a comprehensive introduction to this model,
see the book [4] by Barenboim and Elkin. The LOCAL model operates on an n-vertex
graph G. Here we think of G as representing a decentralized communication network
where each vertex plays the role of a processor and edges represent communication links.
The computation proceeds in rounds. During each round, the vertices first perform some
local computations and then synchronously broadcast messages to all their neighbors.
After a number of rounds, every vertex must output a color, and the resulting coloring of
V(G) is considered to be the output of the algorithm. The efficiency of such an algorithm
is measured by the number of communication rounds required.

An important feature of the LOCAL model is that every vertex of G is executing the
same algorithm. Therefore, to make this model nontrivial, the vertices must be given
a way of breaking symmetry. In the deterministic variant of the LOCAL model, this is
achieved by assigning a unique identifier Id(x) € {1,...,n} to every vertex x € V(G).
The identifier assigned to a vertex x is treated as part of z’s input; that is, z “knows”
what its own identifier is initially and can communicate this information to its neighbors.
When we say that a deterministic LOCAL algorithm solves a coloring problem & on a
given class ¢ of finite graphs, we mean that the coloring it outputs on any graph from
@ is a valid solution to &, regardless of the way the identifiers are assigned. The word
“deterministic” distinguishes this model from the randomized version, where the vertices
are allowed to generate sequences of random bits. In this paper we will only be concerned
with deterministic algorithms.

If x and y are two vertices whose graph distance in G is T, then no information from
y can reach x in fewer than T' communication rounds (this explains the name “LOCAL”).
Conversely, in T" rounds every vertex can collect all the data present at the vertices
at distance at most 7' from it. Thus, a T-round LOCAL algorithm may be construed
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simply as a function that, given the structure of the radius-T ball around z (including
the assignment of the identifiers to its vertices), outputs a’s color [4, §4.1.2].

In general, the input graph G may possess some additional structure (such as an
orientation, a fixed coloring of the vertices, etc.). For example, in Theorem 1.15 we
consider LOCAL algorithms operating on S-labeled graphs G. This means that the labels
on the edges of G form part of the problem’s input, and each vertex can discover the
labels of the edges in its radius-T ball in T' communication rounds.

The formal equivalence between general classes of problems in continuous combi-
natorics and in distributed computing given by Theorem 1.15 explains the parallels
between specific results in these two areas. For example, suppose I' = Z? and let
S = {(1,0),(0,1)}. Among numerous other results, Gao, Jackson, Krohne, and Se-
ward proved in [19] that the continuous chromatic number of G(Free(ZZQ), S) is 4, and
also that there is no algorithm for deciding, given a finite set # of k-patterns, whether
Free(22%) admits a continuous P-avoiding k-coloring. In [10], Brandt et al. established
analogous results for distributed algorithms on n x n grid graphs: proper k-colorings of
such graphs can be computed by an O(log” n)-round LOCAL algorithm for & > 4 but
not for £ = 3, and there is no decision procedure that determines, for a given finite
set P of k-patterns, whether #-avoiding k-colorings of such graphs can be found by a
O(log" n)-round LOCAL algorithm. Theorem 1.15 provides a general reason underlying
this analogy.

The connection between continuous combinatorics and distributed algorithms was
observed recently by Elek [16] and the author [7]. In particular, implication (5) = (2)
is a special case of [7, Theorem 2.13], which is a general result that provides a way to use
efficient deterministic LOCAL algorithms to obtain continuous colorings. Thus, we only
have to prove (2) = (5) here, which is done in §5.3 by utilizing the specific construction
of the family of finite graphs # from Theorem 1.14.
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2. Preliminaries

We shall require a few basic facts about continuous graph combinatorics. These facts
may be somewhat less well-known than their Borel counterparts, so we prove them here
for completeness. (The proofs are standard and essentially present in [26, §4].)

Let G be a graph. For a subset S C V(G), Ng(S) denotes the neighborhood of S in
G, i.e., the set of all vertices that have a neighbor in S. For a vertex x € V(G), we write
Ng(z) := Ng({z}). A graph G is locally finite if Ng(x) is finite for every x € X. A set
I C V(G) is independent if I N Ng(I) = @, i.e., if no two vertices in I are adjacent.
For a subset U C V(G), we use G[U] to denote the subgraph of G induced by U, i.e.,
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the graph with vertex set U whose adjacency relation is inherited from G, and we write
G—-U := G[V(G)\U]. We say that G is a continuous graph if V(G) is a zero-dimensional
Polish space and for every clopen set U C V(@) its neighborhood Ng(U) is also clopen.
(This is analogous to Definition 1.5.) Note that if G is a continuous graph and U C V(QG)
is a clopen set of vertices, then the subgraph G[U] of G induced by U is also continuous.

Lemma 2.1. FEvery locally finite continuous graph G admits a partition V(G) = |02 In,
into countably many clopen independent sets.

Proof. Let {U, : n € N} be a countable base for the topology on V(G) consisting
of clopen sets. For each n € N, let V,, := U, \ Ng(U,). By construction, each V,, is
independent and, since G is continuous, clopen. Since G is locally finite, each x € V(G)
has an open neighborhood disjoint from N¢(z), and hence |-, V;, = V(G). It remains
to make the sets disjoint by setting I,, :=V, \ (VhU...UV,,_1). R

Lemma 2.2. Every locally finite continuous graph G has a clopen mazimal independent
set I CV(G).

Proof. Let V(G) = | I;2, I, be a partition into countably many clopen independent
sets given by Lemma 2.1. Define a sequence of clopen subsets I/ C I,, recursively by
setting I := Ip and I}, := I41 \ Ng([gU ... U I}) for all n € N. By construction,
the set I := | |5 I/ is a maximal independent set in G. Since G is continuous, the sets

I], are clopen, and hence I is open. But the sets I, \ I], are also clopen, so V(G)\ I =
L1 (I \ I,) is open as well, and hence I is clopen, as desired. W

The maximum degree A(G) of a graph G is defined by A(G) := sup,cy () [Na ()]
Lemma 2.3. If G is a continuous graph of finite maximum degree A, then x.(G) < A+1.

Proof. We need to find a partition of V(G) into A + 1 clopen independent sets. To this
end, we iteratively apply Lemma 2.2 to obtain a sequence Iy, ..., In where each I,
is a clopen maximal independent set in the graph G — Iy — -+ — I,,_1. We claim that
V(G) = U4, I,,. Indeed, every vertex not in | |4, I,, must have a neighbor in each of
Iy, ..., Ian, which is impossible as the maximum degree of G is A. W

3. Proof of Theorem 1.6
3.1. First observations
Call a CSP 3 bounded if vdeg(®) and ord(®) are both finite. Given a CSP B: X —7 k,

define a graph Gg with vertex set X by making two distinct vertices x, y adjacent if and
only if there is a constraint B € B such that {z,y} C dom(B).
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Lemma 3.1. If B: X —7 k is a bounded continuous CSP on a zero-dimensional Polish
space X, then the graph Gg is continuous.

Proof. Set G := Gg and let U C X be a clopen set. A vertex x; is in Ng(U) if and only
if there are some 2 < i < n < ord(B) and B C k{l--m} guch that:

there are x5 € X, ..., x; € U, ...x, € X such that x1, ..., z,, are distinct

and B(z1,...,%,) € B.
This shows that Ng(U) is a union of finitely many clopen sets, hence it is itself clopen. W

Let X be a set and let g: X’ — k be a coloring with domain X’ C X. Given an (X, k)-
constraint B with domain D, let B/g be the constraint with domain dom(B/g) := D\ X’
given by

B/g .= {¢: D\ X' =k : glpnx' Uy € B}.

In other words, ¢ € B/g if and only if the coloring g Ll ¢ violates B. Here it is possible
that D C X', in which case dom(B/g) = @; more specifically, B/g = {@} if g violates
B, and B/g = @ otherwise. (Note that the constraint {@} has probability 1/k? = 1
and is violated by every coloring, while the constraint & has probability 0 and is always
satisfied.) For a CSP B: X —" k, we define

B/g := {B/g : Be€ B}

and view B/g as a CSP on X \ X’. By construction, h: X \ X’ — k is a solution to B/g
if and only if g LI h is a solution to @B.

Lemma 3.2. Let B: X =" k be a bounded continuous CSP on a zero-dimensional Polish
space X. If X' C X is a clopen set and g: X' — k is continuous, then the CSP B/g: X'\
X' =7k is also continuous.

Proof. The proof is very similar to the proof of Lemma 3.1. Given a set B C kil-n}
and clopen subsets Us, ..., U, C X \ X’, we have to argue that the following set is
clopen:

{z1 € X\X’ :daxg €U, ..., x, €U, such that x1, ..., x, are distinct
and B(z1,...,2,) € B/g}.

To this end, observe that this set can be written as a union of finitely many clopen sets
of the form
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(X\X)N{z1€X :Fas€Us, ..., 20 €EUp, i1 €9 (ng1)s ooy Trn € g ()
such that @1, ..., x,, are distinct and B(z1, .. S Tm) € B},
for some n < m < ord(B), colors 0 < @ni1, ..., y < k — 1, and an appropriate set

BC k), m
3.2. Good CSPs and conditional probabilities
Call a CSP 3 good if it is bounded and for all B € B,
P[B] - vdeg(®)!4™B) < 1. (3.3)

If vdeg(®) = |dom(B)| = 0, we interpret the expression 0° appearing in (3.3) as 1. Note
that every CSP satisfying (1.7) is good. The following lemma is the main step in the
proof of Theorem 1.6:

Lemma 3.4. Let B: X =" k be a good continuous CSP on a zero-dimensional Polish
space X, and let I C X be a clopen independent set in Gg. Then there is a continuous
coloring g: I — k such that B/g is good.

Proof. For brevity, let G := G and vdeg := vdeg(B). Note that vdeg(B/g) < vdeg for
every g: I — k, so it is enough to argue that there is a continuous coloring g: I — k
such that

P[B/g] - vdegl®™P/9)l < 1 for all B € 3. (3.5)

For each x € I, let B, C B denote the set of all constraints B with # € dom(B). Note
that |B,| < vdeg. Since I is independent in G, x is the unique element of I Ndom(B) for
each B € B,; in particular, the value P[B/g] only depends on the color g(x). Specifically,
for each B € B, and a color «, we define

peEB: ) =q«a
P[B|z— a] := 1 dom(B) T }|

Then for any coloring g: I — k, P[B/g] = P[B |z — g(x)]. We say that a color « is
good for z if

P[B|z+ a] < P[B]-vdeg for all B € B,.
Claim. For each x € I, there is a good color.

> Take any x € I and notice that for each B € B,, P[B] = (1/k) ZZ;}J P[B|z — a].
This implies that there are fewer than k/vdeg colors « such that P[B |z — o] > P[B] -
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vdeg. Since |B,| < vdeg, there are fewer than k colors that are not good for z, as desired.
<

Now we define g: I — k by making g(z) be the minimum color that is good for x. Since
@B is continuous, it is straightforward to check that g is continuous. It remains to verify
that (3.5) holds. To this end, take any B € B. If I Ndom(B) = &, then B/g = B and
(3.5) is satisfied automatically (since B is good). Otherwise, B € B, for some (unique)
x € I, and we can write

P[B/g] - vdegl®™B/9| = P[B |z v g(z)] - vdegltom(B)I-1
[Since g(x) is good for x} < P[B] - vdeg - Vdegldom(B)lfl
= P[B] - vdegldom(B)|
[since B is good] <1. N

We are now ready to prove the following strengthening of Theorem 1.6:

Theorem 3.6. If B: X —’ k is a good continuous CSP on a zero-dimensional Polish
space X, then B has a continuous solution f: X — k.

Proof. The graph G := Gg has A(G) < vdeg(®B)(ord(B) — 1) < oo, so, by Lemmas 3.1
and 2.3, there is a partition X = I, U...U I, of X into finitely many clopen sets that
are independent in G. Thanks to Lemma 3.2, we may iteratively apply Lemma 3.4 to
produce a sequence of continuous colorings g;: I; — k such that for all ¢ < n, the CSP
B/(g1U...Ug;) is good. We claim that f:=g¢; U...U g, is a solution to B, as desired.
Indeed, suppose f violates a constraint B € B. Then we have B/f = {@}, but this
means that P[B/f] = 1, contradicting the fact that the CSP B/f is good. W

4. Proofs of Theorems 1.9 and 1.11
4.1. The main lemma

Recall that I' is a countably infinite group with identity element 1. Given an action
I' v X and aset S CT,asubset AC X is S-syndetic if S™! - A = X and S-separated
if for all distinct z, y € A, y ¢ S - z. Note that a set A C X is S-separated if and only
if it is independent in the Schreier graph G(X,5). If X is a free zero-dimensional Polish
I'-space, then the neighborhood of a clopen set U C X in G(X, S) is ((SUS™1)\{1})-U,
which is also clopen. Hence, in this situation the graph G(X,.S) is continuous, so we may
apply the results of §2 to it.

Let I' ~ X be an action and let f: X — k be a partial coloring. Given a subset
S C T, we say that two points x, y € X are S-similar in f, in symbols x E? y, if

VoeSl, {o-z,0-y} Cdom(f) = flo-z)= f(o-y).



A. Bernshteyn / Advances in Mathematics 415 (2023) 108895 17

Lemma 4.1. For every finite set F' C I, there is a finite set S C T" with the following
property: Let X be a free zero-dimensional Polish T'-space and let X := CoUC U U be
a partition of X into clopen sets such that C is F-syndetic and U is S-separated. Then,
given an element 1 # v € T, every continuous 2-coloring fo: Co — 2 can be extended to
a continuous 2-coloring f: Co U C — 2 such that

Vee X, =z §é]§ v - (4.2)

In the notation of Lemma 4.1, the set Cy is already colored, the set C' is the one
we need to color, and the set U will be left uncolored. Lemma 4.1 is analogous to [31,
Lemma 3.9] and is used in much the same inductive fashion in our proof of Theorem 1.9.
The main novelty of our approach is in the proof of Lemma 4.1, which uses Theorem 1.6.

Proof. Let F C I be a finite set. We may assume that F is symmetric (i.e., F~! = F)
and 1 € F. Let M be any finite symmetric subset of I' with 1 € M of size |M| = m|F]|,
where m > 0 is so large that

2™ > (2m]|F)|)®%. (4.3)

This inequality will only be used on the very last step of the argument, where it will
be invoked to ensure that the numerical requirements of Theorem 1.6 are fulfilled. Let
N := FM UMF. We claim that the conclusion of Lemma 4.1 holds for S := N°F.

Let X be a free zero-dimensional Polish I'-space and let X := CoUUCUU be a partition
of X into clopen sets such that C is F-syndetic and U is S-separated. Fix a group element
v # 1 and let A := N*FyFN*\ {1}. By Lemma 2.2, there is a clopen maximal N*-
separated subset Z of C. Since N is symmetric and contains 1, the maximality of Z
means that C' C N*- Z. Since C is F-syndetic, this implies that Z is N* F-syndetic. Let
g: CoU(C\ (N -Z)) — 2 be an arbitrary continuous extension of f, (for instance, we
can set g(z) := 0 for all x € C'\ (N - Z)). We shall extend g to a continuous coloring
f:CoUC — 2 such that

VaeZVSEN, z#Y 52 (4.4)
Claim. If f satisfies (4.4), then it also satisfies (4.2).

> Take any € X. Since Z is N*F-syndetic, there is 3 € N*F such that 5 -2 € Z.
Applying (4.4) with z = 8-z and § = ByB~1, we get 5z ‘fﬁc\f B7-x. Since NG C S, this
yields x 7‘éJ§ v -, as desired. <«

Extensions of g to CoLIC' can be encoded by 21V |-colorings of Z, as follows. A natural
number less than 2!V can be identified with a binary sequence of length [N, so a 2INI-
coloring h: Z — 2N can be viewed as an | N|-tuple of 2-colorings hy, .. ., hyny: Z — 2.

Let N = {v1,..., vy} be an enumeration of N. Since X is free and Z is N4-separated,
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each point © € N - Z can be expressed uniquely as x = v; - z for some z € Z and
1 < i < |N|. Thus, given h: Z — 2IN! we can define f*: Cy LI C' — 2 by the formula

fh( ) g(z) ifxeColU(C\(N-2));
z) =
hi(z) ifxeCandz=v;-zforz€ Z and 1 <i < |N]|.

In other words, for each z € Z, the color h(z) € 2IVI encodes the restriction of f” to the
set C'N (N - z). This encoding is generally not one-to-one: unless N -z C C, the sequence
hi(2), ..., hyn|(z) includes some redundant bits. Nevertheless, choosing h(z) uniformly
at random does correspond to picking the restriction of f* to C'N (N - 2z) uniformly at
random form the set of all 2-colorings C'N (N - z) — 2. Notice also that if & is continuous,
then so is f".

To apply Theorem 1.6, we now need to define a constraint satisfaction problem
B: Z —" 2Nl such that h: Z — 2Vl is a solution to B if and only if f" satisfies
(4.4), i.e.,

his a solution to B <= Vze ZVJ e A, z;‘é;v,éz

To this end, observe that the truth of the statement z ;‘é% 0 - z only depends on the
restriction of f to (N-2)U(N§-z). Thus, for each z € Z and § € A, there is a constraint
B, 5 with domain

dom(B.s) == {2 €Z : (N-Z)N((N-2)U(N§-2)) # @} = ZnN ((N*UN?$) - 2)

such that h satisfies B, s if and only if z ;7_5% 0 -z We then let B := {B,s : z €
Z and 6 € A}. It is clear from the definition that the CSP @3 is continuous.

Claim. ord(8) < 2.

> Since Z is N*-separated, |Z N (N?-x)| < 1 for all z € X. Hence, for any z € Z and
§ € A, there are at most 2 elements in Z N ((N?UN?2§) - z), i.e., |[dom(B. )| < 2, as
desired. <

Claim. vdeg(®B) < 21'm!0|F|%2.

> Take any 2z’ € Z. We need to bound the number of pairs (z,d) € Z x A such that
2" € dom(B, ). Recall that N = FMUMF, where |M| = m|F|,so |N| < 2m|F|?. Hence,
|A] < |[NTFYFNY| < 28m3|F|'8. Once 0§ is fixed, z must satisfy 2’ € (N2U N2§) - 2, i.e.,
z € (N?2UJ"IN?) .2, so there are at most 8m?|F|* such z. Thus, the number of choices
for (2,6) is at most 28m8|F|'8 - 8m?|F|* = 21m19|F|?2. <

Claim. p(®) < 27™/6.
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> Take any z € Z and § € A. For brevity, let y := § - z. We need to show that
P[B,s] < 27™/%, i.e., the probability that z is N-similar to y in a random extension f
of g to Cy U C is at most 27™/6.

Call an element v € N eligible if v- 2z € C and v -y € Cy U C. Let E be the set of all
eligible v € N. Note that if v is eligible, then v - z is uncolored in g but becomes colored
in f, and v -y is also colored in f (but it may or may not be already colored in g). The
color f(v - z) is chosen randomly, so the probability that f(v-z) = f(v-y) is exactly
1/2, regardless of whether v - y is already colored in g.

Since C is F-syndetic and N D FM, we have [CN (N - z)| = |M|/|F| = m, and since
U is S-separated and S O N2, |(N -y) NU| < 1. Therefore, |E| > m —1 > m/2. Let
G be the graph with vertex set (N - z) U (N - y) in which we put an edge between v - z
and v -y for each v € E. The maximum degree of G is at most 2, so we can pick a
subset E' C E of size |E'| > |E|/3 > m/6 such that the pairs {v - z,v -y}, v € E', are
pairwise disjoint. When f is chosen randomly, the events f(v - z) = f(v - y) for distinct
v € E' are mutually independent, so the probability that they all occur simultaneously
is 2711 < 2-m/6 which gives us the desired upper bound on the probability that z is
N-similar to y in f. <«

And now we are done: by Theorem 1.6, B has a continuous solution as long as
p(B) - vdeg(B)4®) < 27m/6 . (91110 p|22)2 = 9=m/6 . 922,20  pdd
which holds by (4.3). W
4.2. Proof of Theorem 1.9
For the reader’s convenience, we state Theorem 1.9 again:

Theorem 1.9. If I' ~ X is a free Borel action of I on a standard Borel space X, then
there is a I'-equivariant Borel map 7: X — Y, where Y C 2' is a free subshift.

To prove Theorem 1.9, we shall first define a free subshift Y C 2 and then iteratively
apply Lemma 4.1 to construct a desired I'-equivariant Borel map 7: X — Y.

We start by recursively defining a sequence of finite sets Hy, Fy, So, H1, F1, S1, ...
C I' as follows. Let Hy be an arbitrary nonempty finite subset of I'. Once H,, is defined,
let 6,, be any group element such that H,,N(H,d,) = & (such ¢, exists since I is infinite)
and set F,, := H,, U (H,0,). Next, let S,, be the set S produced by Lemma 4.1 applied
with ' = F,. Upon replacing S,, with a superset if necessary, we may additionally
assume that S, is symmetric and S,, 2 F, 'F,. Finally, we let H,y1 = S,H,. The
following claim explains why the sets H,,, F,, and S,, are defined in this manner.

Claim 4.5. Let X be a free zero-dimensional Polish I'-space and let W C X by an H,-
syndetic clopen set. Then there is a partition W = C U U into two clopen sets such
that:
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o the set C is F,-syndetic;
o the set U is Sy-separated and H,11-syndetic.

Proof. By Lemma 2.2, we can let U be a clopen maximal S,,-separated subset of W and
define C := W\ U. Since S, is symmetric and contains 1, the maximality of U means
that W C S,, - U, and since W is H,-syndetic and H, 1 = S, H,,, this implies that U is
H,, 1-syndetic, as claimed.

To see that C' is Fj,-syndetic, take any x € X. We need to argue that F;, - contains a
point in C. Recall that F,, = H,, U (H,0,). Since W is H,-syndetic, the sets H,, - z and
H,0,, - x each contain a point in W. Since the sets H, and H,J, are disjoint, we have
|(F,, - #) N W| = 2. On the other hand, |(F, - x) NU| < 1 since U is F,; 1 F,-separated.
Therefore, |(F, -xz)NC| > 1, as desired. W

Fix an arbitrary enumeration 7g, 71, ... of the non-identity elements of I'. For each
n € N, let Y, C 2" be the set of all 2-colorings y: I" — 2 such that

Jdo € S, with y(o) # y(ovyn).

The set Y, is clopen, and if y € Y, then v, - y # y. Hence, the set Y := (", Y, is
closed and every point y € Y’ has trivial stabilizer. Finally, we define Y := (5. (d-Y").
The set Y is closed, [-invariant, and contained in Y’ C Free(2''), so Y is a free subshift
(although we have not yet shown that Y is nonempty).

Now let I' ~ X be a free Borel action of I' on a standard Borel space X. It follows
from standard results in descriptive set theory that there is a compatible zero-dimensional
Polish topology 7 on X with respect to which the action I' ~ X is continuous [23, §13].
Iterative applications of Claim 4.5 yield a sequence of clopen subsets Uy, Cy, Uy, Cq, ...
of X such that Uy = X and for all n € N,

e U,=C,UUpy41; and
e the set (), is F,,-syndetic, while U, is S,-separated and H,,1-syndetic.

Next we use Lemma 4.1 repeatedly to obtain an increasing sequence fo C f; C ... such
that for each n € N, f,,: CoU...UC, — 2 is a continuous 2-coloring satisfying

VoeX, z#)" . (4.6)

Let f: X — 2 be an arbitrary Borel extension of |J)—, f, (e.g., we may set f(x) := 0 for
all z ¢ | |2°, Cy,). Define a I'-equivariant Borel map m: X — 20 by setting m;(z)(7) :=
f(y-z) for all x € X and v € I'. We claim that 7,(x) € YV for all z € X, as desired.
Indeed, since 7 is I'-equivariant, it suffices to argue that 7y(x) € Y, for all z € X and
n € N, i.e., that for all x € X and n € N,

Jdo € S, with mp(z)(0) # 7p(z) (oY)
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Using the definition of 7y, we can rewrite the latter statement as
do € S, with f(o-z) # f(ovn - ),
which holds by (4.6) since f is an extension of f,.
4.83. Proof of Theorem 1.11
Let us state Theorem 1.11 again:

Theorem 1.11. If X is a nonempty free zero-dimensional Polish I-space, then Free(2"') <
X.

Explicitly, given any k € NT, a finite subset I’ C I', and a continuous k-coloring
f: Free(2) — k, there is a continuous k-coloring g: X — k such that #p(X,g) =
Pr(Free(2D), f).

Our proof of Theorem 1.11 is a modification of the proof of Theorem 1.9 presented
in §4.2. To begin with, fix k € NT, a finite subset F* C I, and a continuous k-coloring
f: Free(2') — k. The following clopen sets from a base for the topology on 2

U(s) :={z € ol . x(y) = s(v) for all v € dom(s)},

where s is a 2-pattern (i.e., a partial mapping s: I' = 2 whose domain is a finite subset
of I'). Given a finite set D C I' and a point = € Free(2"), we say that D f-determines x
if for all z € Free(2"),

Ve D, 2(0) =x2(6) —  f(z)=fa). W
The continuity of f is then equivalent to the following assertion:
Claim 4.7. For each x € Free(2V), there is a finite set D C T that f-determines x. W

Claim 4.8. For each k-pattern p € Pr(Free(2D), f), there is a 2-pattern s, such that for
all z € Free(2V),

zeU(sy) — Vy € F, f(v-2)=p(y).

Proof. Since p occurs in f, there is some = € Free(2'') such that f(vy-z) = p(y) for all
v € F. Claim 4.7 yields a finite set D such that for all z € Free(2"),

V6 € D, z(6) = z(6) — Vy € F, f(y-2)=p(y)

Thus, we may take s, be the 2-pattern with domain D given by s,(d) := x(9) for all
oeD. W
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Set D := (J{dom(sp) : p € Pp(Free(2"), f)} (where s, is the 2-pattern given by
Claim 4.8) and let Hy be an arbitrary symmetric finite subset of I' with |Hy| > |D].
Next we recursively build a sequence of finite sets Hy, Fy, So, H1, F1, S1, ... C I'in the
same way we did in §4.2. That is, once H,, is defined, we let §,, be any group element
such that H, N (H,d,) = @ and set F,, := H, U (H,0,). Then we let S,, be the set
S produced by Lemma 4.1 applied with F' = F,,. Upon replacing .S,, with a superset if
necessary, we may additionally assume that S, is symmetric and S,, 2 F, ' F,. Finally,
we let H,, 41 := S, H,. The following is a restatement of Claim 4.5:

Claim 4.9. Let X be a free zero-dimensional Polish I'-space and let W C X by an H,-
syndetic clopen set. Then there is a partition W = C U U into two clopen sets such
that:

o the set C is F,-syndetic;
o the set U is Sy-separated and H,11-syndetic.

Proof. See the proof of Claim 4.5 in §4.2. W

Asin §4.2, we now fix an arbitrary enumeration 7, 71, . . . of the non-identity elements
of I'. For each n € N, let Y;, C 2" be the set of all 2-colorings y: I' — 2 such that

Jdo € S, with y(o) # y(oyn).

Let Y := (0" Nser(d - Yn). As discussed in §4.2, Y is a free subshift (it is also shown
there that Y is nonempty). For each N € N, we also define

YgN = ﬂ ﬂ(éYn)

n=046el’

Then Y¢ is a subshift and ¥V = ﬂ(;vozo Y<n, where the intersection is decreasing. Note
that Y¢ i need not be free; in particular, f may not be defined on all of Y¢ y. Nevertheless,
for large enough N, it is possible to define a continuous k-coloring f*: Y¢n — k that,
in some sense, approximates f:

Claim 4.10. There exist N € N and a continuous k-coloring f*: Y<n — k such that for
each z € Y¢n, there is y € Y with the following properties:

e forall§ € D, z(6) = y(5); and
o forally e F, f*(y-z)=f(v-y).

Proof. First we argue that there is a finite set L C T' that f-determines every point
y € Y. For each finite set L C I', let V, be the set of all points y € Y that are f-
determined by L. Each set V7, is relatively open in Y. Moreover, by Claim 4.7, the union
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of all the sets Vg is Y. Since Y is compact, this implies that there is a finite collection
Ly, ..., L, of finite subsets of I" such that Y =V, U... UV, . Then every point y € Y
is f-determined by L := L U...U L,, as desired.

Next we observe that there is V € N such that for each z € Y,

Jy € Y such that V6 € DU LU LF, z(§) = y(9). (4.11)

Indeed, let @ be the set of all z € 2! for which (4.11) fails. Then @ is a clopen subset
of 2I' and Q@ NY = @. Since 2 is compact and Y = y_, Y<n, there must exist some
N € N with Q NY¢<n = @, as desired.

Finally, we define a k-coloring f*: Y¢n — k as follows:

ff(z)=c :<= 3y eY suchthat f(y) =cand Vé € L, 2(5) = y(d)
< VyeY, wehave (Vo € L, z(5) =y(0)) = f(y)=c.

The two definitions given above are equivalent since every y € Y is f-determined by L.
By construction, L also f*-determines every z € Y¢n, so f* is continuous. Now consider
any z € Y¢n. By (4.11), there is y € Y such that for all § € DULULF, z(8) = y(9),
and it is clear that y has the desired properties. W

Now let X be a nonempty free zero-dimensional Polish I'-space. Fix N € N and
f*: Y<n — k given by Claim 4.10. We shall construct a continuous k-coloring g: X — k
such that #r(X,g) = Pr(Free(2"), f) by first building a continuous I'-equivariant map
m: X — Y¢<n and then setting g := f* o .

We start our construction by letting W C X be a clopen maximal D~! HZ D-separated
subset of X (which exists by Lemma 2.2). Since X is free and nonempty, every I'-orbit in
X intersects W in infinitely many points, so W is infinite. Thus, we may partition W as
W = |, W, where the union is over all p € Pp (Free(21), f) and each W, is nonempty
and clopen. Let B, := dom(s,) - W,, and B := ||, B, (the union is disjoint since W is
D~!D-separated) and define a continuous 2-coloring b: B — 2 by

b(d - w) = s,(0) for all p € Pp(Free(2"), f), w € W), and § € dom(s,). (4.12)

Property (4.12) will be eventually used to show that Pz (X, g) D Pr(Free(2l), f).
To continue our construction, we need to make sure that X \ B is syndetic:

Claim 4.13. The set X \ B is Hy-syndetic.
Proof. Take any x € X. Since W is D~ HZ D-separated, there is at most one w € W

such that (D-w)N (Hy-x) # &, s0 |(D-W)N(Hy-x)| < |D| < |Hpl|. Since BC D - W,
this implies (Ho-z)\B# <. A
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Claim 4.13 allows us to iteratively apply Claim 4.9 in order to obtain a sequence of
clopen subsets Uy, Cy, Uy, C1, ... of X such that Uy = X \ B and for all n € N,

e U,=C,UUpy41; and
e the set C), is F,,-syndetic, while U, is Sy,-separated and H,,1-syndetic.

We can then use Lemma 4.1 repeatedly to obtain an increasing sequence b C hg C hy C
. such that for each n € N, h,: BUCyU...UC, — 2 is a continuous 2-coloring
satisfying

Ve eX, x #" v, -1 (4.14)

Recall that N € N and f*: Y¢n — k are given by Claim 4.10. Let h: X — 2 be an
arbitrary continuous extension of hy (e.g., we may set h(z) := 0 for all z ¢ dom(hy))
and define a I'-equivariant continuous map 7;,: X — 2% by setting 7, (z)(y) := h(y - 7)
for all z € X and v € I'. Condition (4.14) ensures that 7 (z) € Yy for all z € X, so
we can define a continuous k-coloring g: X — k via g := f* omy,.

Claim 4.15. #r(X, g) 2 Pr(Free(2h), f).

Proof. Consider any p € Pp(Free(2'), f). Take an arbitrary point w € W, and let
z:=mp(w) € Y<n. Note that for all v € T, g(y-w) = f*(7- z). By Claim 4.10, there is
y € Y such that:

(a) for all § € D, z(6) = y(9); and
(b) for all v € F, f*(y-2) = f(v-y)-

By (4.12), since h extends b, we have z(§) = h(J-w) = b(d-w) = s,(d) for all § € dom(s,),
ie., z€ U(sp). By (a), y € U(s,) as well, so for all vy € F,

gly-w) = f*(v-2) = f(v-y) = p(v),

where the second equality holds by (b), and the third by Claim 4.8 and since y € U(s,).
This shows that p appears in g, as desired. W

Claim 4.16. #r (X, g) C Pp(Free(2"), f).
Proof. Take any p € Pr(X,g) and let z € X be such that g(v - x) = p(y) for all v € F.

Let z := m(z) € Yen, 80 g(y-x) = f*(7y-2) for all v € . By Claim 4.10, thereisy € Y’
such that:

o forally € F, f*(v-2) = f(y-y).



A. Bernshteyn / Advances in Mathematics 415 (2023) 108895 25

Then for all y € F, f(y-y) = f*(v-2) = g(v - z) = p(7), which shows that p appears in
f, as desired. W

Claims 4.15 and 4.16 yield P (X, g) = Pr(Free(2V), f), and the proof of Theorem 1.11
is complete.

5. Combinatorial results
5.1. Local colorings of special subshifts

In this subsection we prove a certain technical result (namely Lemma 5.1) that will
be later used to derive Theorems 1.14 and 1.15.

Given a subshift X C nl', a finite subset F C T, and an integer k > 1, we say
that a k-coloring f: X — k is F-local if for all z € X, the value f(x) is determined
by the restriction of = to F, i.e., if there is a mapping p: nf — k such that for all
z € X, f(x) = p((2(0))ser). (In the terminology of §4.3, this means that the set F'
f-determines every x € X.) Note that every F-local coloring is continuous. Conversely,
if f: X — k is continuous, then, due to the compactness of X, there is a finite set F C '
such that f is F-local.

Let D be a finite subset of I' and let n > 1 be an integer. Define a subshift Xp ,, C nt
as follows:

Xpn = {zen :forally €T and o € D\ {1}, we have x(v) # z(c7)}.

In other words, the elements of Xp , are the proper n-colorings of the Cayley graph
G(T, D). (Note that Xp, may be empty if n is too small.) The main result of this
subsection allows us to build F-local colorings of Xp , with some control over the set F":

Lemma 5.1 (Local colorings of Xp ). Let P be a finite set of k-patterns such that every
free zero-dimensional Polish T'-space admits a continuous P-avoiding k-coloring. Then
there is a finite set F' C T' with the following property:

Let n > 2 and let D C T be a finite set such that F' C D. Set F* := Flog™n Thep the
subshift Xp n admits an F*-local P-avoiding k-coloring.

In our proof of Lemma 5.1 we shall rely on the following fact, which follows from a
construction due to Cole and Vishkin [13]:

Lemma 5.2 ([/, §5.4]). Let v € '\ {1} and let D C T be a finite set with v € D. Take
n > 2 and define F* := {1,7}'°8" "2, Then the Schreier graph G(Xp n, {7}) admits an
F*-local proper 6-coloring.

The construction in [4, §3.4] is in the language of distributed algorithms, so, for
completeness, we provide its translation into our setting in the appendix. We remark
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that it is possible to reduce the number of colors in Lemma 5.2 from 6 to 3 (at the cost
of replacing log" n + 2 by log*n + C for some other constant C), but this will not be
needed for our purposes. Since the graph G(Xp ., {7}) has maximum degree at most 2,
Lemma 2.3 already yields a continuous proper 3-coloring of G(Xp ,,{v}). Lemma 5.2
additionally specifies the set F™* such that the resulting coloring is F™*-local.

Proof of Lemma 5.1. This argument is inspired by Elek’s proof of [16, Theorem 2]. Enu-
merate the non-identity elements of I' as 1, 72, ... and let X; := Xy, ;6. Consider
the product space X := Hf; X, equipped with the diagonal action of I". Then X is a
compact zero-dimensional Polish I'-space. Furthermore, X is free since v; - © # « for all
x € X;. Hence, by the assumptions on &, there is a continuous P-avoiding k-coloring
f: X — k. The following sets form a base for the topology on X:

{r =(z1,22,...) €X : 2;(0) = 5;(0) forall 1 <i < N and ¢ € R}, (5.3)

where N is a natural number, R C T is a finite set, and s;: R — 6, ..., sy: R — 6 are
6-patterns. Therefore, each 2 € X has a clopen neighborhood of the form (5.3) on which
f is constant. The compactness of X then implies that there exist N and R as above
such that for all z = (x1,x2,...) € X, the value f(x) is determined by the restrictions
of 1, 2o, ..., xx to R. In other words, there is a mapping p: (6%) — k such that for
all © = (z1, z9,...) € X,

flx) =p ((xi(5))1gigN,5eR) . (5.4)

We can then use (5.4) to define a continuous P-avoiding k-coloring f’': X<y — k of
N
XgN = Hi:l Xi.
Now we claim that the conclusion of Lemma 5.1 holds with

F = ({]w’ylaa,yN}UR)‘l
Take any n > 2 and a finite set D O F. For 1 <i < N, let
F.* = {1’,}/i}10g*n+2.

Then, by Lemma 5.2, the Schreier graph G(Xp n,{v}) admits an F}-local proper 6-
coloring f;: Xp, — 6. Define a I'-equivariant map m;: Xp, — X; by m(x)(y) =
fi(y-z) forall z € Xp ,, and v € T'. Then

m: Xpn = X<t = (m(z),...,wn(2))

is a I'-equivariant map from Xp, to X<y. Thus, f' o7m: Xp, — k is a P-avoiding
k-coloring of Xp ,,. Furthermore, to determine (f'ox)(x), we only need to know f;(d-z)
for all 1 <i< N and 6 € R, so this coloring is (F} U...U F%)R-local. And now we are
done since F* := F'°¢" " D (FfU...UF%)R. W
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5.2. Reduction to finite graphs

For this subsection, we fix a finite subset S C I'. For each finite set D C I'" with
SuUS~tu{1} C D, we define a finite S-labeled graph Hp ,, as follows. For sets A and
B, let Inj(A, B) denote the set of all injective mappings from A to B. The vertex set of
Hp., is V(Hp,) = Inj(D,n). If ¢, ¢’ € Inj(D,n), we put an edge labeled o € S U S~!
going from ¢ to ¢’ if and only if the following holds:

V5,8 e D, (6=00 = q(6)=q()). (5.5)

If (5.5) holds, we say that ¢ and ¢’ are o-compatible. If ¢ and ¢’ are o-compatible, then,
in particular, ¢’(1) = ¢(c). Since g is injective, this implies that ¢’ # ¢ and also that ¢
and ¢’ are not 7-compatible for any 7 # o, so the edge from ¢ to ¢ in Hp ,, receives a
unique label.

Lemma 5.6. Let D C T be a finite set with SUS~1 U {1} C D and let n > |D|* be an
integer. Then for every free zero-dimensional Polish I'-space X, there is a continuous
homomorphism G(X,S) — Hp .

Proof. The Schreier graph G(X, D~!D) has maximum degree at most [D~!D| — 1 <
n — 1 (we are subtracting 1 since 1 € D~!'D does not count toward the degree), so,
by Lemma 2.3, G(X,D~'D) has a continuous proper n-coloring f: X — n. For each
x € X, let ¢;: D — n be given by ¢.(6) := f(§ - z) for all 6 € D. By the choice of f,
¢z € Inj(D,n). Furthermore, it is clear that for any o € S, ¢, and ¢,., are o-compatible.
Therefore, z — ¢, is a continuous homomorphism from G(X, S) to Hp ,,, as desired. W

Lemma 5.7 (Colorings of Hp ). Let @ be a finite set of S-connected k-patterns such that
every free zero-dimensional Polish T'-space admits a continuous P-avoiding k-coloring.
Then there is a finite set F C T containing S U S~1 U {1} with the following property:

Letn > 2 and let D C T be a finite set. Set F* := F'°¢ ™ and suppose that D D F*.
If n > 2|D|, then Hp ,, admits a P-avoiding k-coloring.

Proof. Without loss of generality, we may assume that 1 € dom(p) for all p € P. Since
each p € # is S-connected, we can define A, to be the diameter of dom(p) in G(T', 5),
i.e., the maximum length of a shortest path in G(dom(p),S) between two elements of
dom(p). Set A :=max, A,. Let F C T be given by Lemma 5.1 applied to % and set

F = (Fu{1})(Sus—u{}?. (5.8)

Take any n > 2 and suppose that D D F* := Flo8' " Let Fj := Féog*”. Then, by
Lemma 5.1, Xp , has an F{-local #-avoiding k-coloring f: Xp, — k, i.e., there is a

map p: nfo — k such that for each x € XD,
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f(x) = p((x(6))sery) - (5.9)

We can simply use formula (5.9) to define a k-coloring g of Hp ,; that is, for all ¢ €
Inj(D,n), we let

9(@) = p((2(9)ser; ) - (5.10)
(Here we are using that Ff C F* C D.) We claim that g is P-avoiding, as desired.

Claim. If ¢ € Inj(D,n), then there is a point © € Xp., such that x(d) = q(5) for all
0 e D.

> The maximum degree of the Cayley graph G(T', D) is at most [DUD~1|-1 < 2|D|-1
(we are subtracting 1 since 1 € D does not count toward the degree). Since n > 2|D|,
we conclude that ¢: D — n can be extended to a proper n-coloring z: I' — n of G(T', D)
greedily. <«

Suppose that there is a pattern p € # that occurs in g. This means that there is a
homomorphism ¢: dom(p) — Inj(D, n) from G(dom(p), S) to Hp ,, such that g(¢(y)) =
p(7y) for all v € T'. By the above claim, there is a point z € Xp ,, such that z(6) = ¢(1)(4)
for all § € D. Since dom(p) C (SU S~ U{1})?, equations (5.8), (5.9), and (5.10) and
the definition of Hp ,, yield f(v-x) = g(¢(v)) for all v € dom(p), so p occurs in f, which
is a contradiction. W

Theorem 1.14 follows immediately from Lemmas 5.6 and 5.7. Fix an arbitrary increas-
ing sequence SUS~'U{1} C Fy C Fy C ... of finite subsets of I such that | J;-, F; = T.
Let n; > 2 be any integer with

n; > |Fi‘2log* ni
Set D; := Fz-log* " and let # := {Hp, n, }5°,. Then Theorem 1.14 holds for this #:

Theorem 1.14. Let & be a finite set of S-connected k-patterns. The following statements
are equivalent:

(2) Every free zero-dimensional Polish I'-space admits a continuous P-avoiding k-
coloring.

(3) There is a graph in # that admits a P-avoiding k-coloring.

(4) All but finitely many graphs in # admit P-avoiding k-colorings.

Proof. Implication (4) = (3) is trivial, while (3) = (2) holds by Lemma 5.6 since
n; > |D;|? for all i. Assuming (2), let F' C I be given by Lemma 5.7 applied to #. Then
(4) holds since for all but finitely many ¢, we have F; 2 F. W
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5.3. LOCAL algorithms
In this subsection we prove Theorem 1.15:

Theorem 1.15. Let S C I' be a finite set and let & be a finite set of S-connected k-
patterns. The following statements are equivalent:

(2) Every free zero-dimensional Polish I'-space admits a continuous P-avoiding k-
coloring.

(5) There is a deterministic distributed algorithm in the LOCAL model that, given an
n-vertex S-labeled subgraph G of G(T', S), in O(log™ n) rounds outputs a #-avoiding
k-coloring of G.

Implication (5) = (2) is a special case of [7, Theorem 2.13], so we only need to prove
(2) = (5). Before we proceed, let us record the following classical result, dating back
to Goldberg, Plotkin, and Shannon [22], which can be seen as a distributed computing
analog of Lemma 2.3:

Theorem 5.11 ([4, Corollary 3.15]). There is a deterministic LOCAL algorithm that
computes a proper (d + 1)-coloring of an n-vertex graph G of mazimum degree d in
log* n + O(d?) rounds.

Assume (2) and let F' C T be given by Lemma 5.7 applied to #. Take m so large that
m > |F|3lee ™, (5.12)

Set D := F@ ™ By Lemma 5.7, the graph Hp ,, admits a ®P-avoiding k-coloring
h: Inj(D,m) — k. Thus, to prove (5), it suffices to show that there is a deterministic
LOCAL algorithm that, given an n-vertex S-labeled subgraph G of G(T, S), in O(log™ n)
rounds outputs a homomorphism G — Hp ,, (since composing such a homomorphism
with h requires no additional rounds of communication).

Our algorithm is supposed to output a homomorphism G — Hp ,,. In other words,
each vertex z € V(G) has to compute an injective mapping ¢,: D — m so that if = is
joined to y by an edge with label o, then ¢, and g, are o-compatible. It is tempting
to employ the same strategy as in the proof of Lemma 5.6, i.e., to first compute, using
Theorem 5.11, a locally injective m-coloring of G and then make each vertex z collect
the colors within some finite radius around x in G. Unfortunately, this approach does not
quite work, because the set Dz may not be a subset of V(G). Furthermore, there may
be some y € Dx whose distance to x in G is much larger than in G(T,.5), so & cannot
find out the color of y within a small number of rounds. We circumvent this difficulty
by computing a homomorphism G' = Hp ,, directly.

Let us start by introducing some useful notation. Let A be the edge labeling on
G. We say that pairs (z,0), (y,8") € V(G) x D are one-step equivalent, in symbols
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(,6) ~1 (y,0"), if = and y are adjacent and § = ¢’ A(z,y). Note that the relation ~q
is symmetric. The equivalence relation on V(G) x D generated by ~1 is denoted by ~.
Explicitly, we have (z,d) ~ (y,d’) if and only if either (x,d) = (y,d’) or there exists a
finite sequence (z1,4d1), ..., (2t,d:) such that

(2,0) ~1 (21,01) ~1 - ~1 (20, 0¢) ~1 (y,0).

When (z,0) ~ (y,0"), we say that (z,d) and (y,d’) are equivalent. Observe that a map-
ping « — ¢, is a homomorphism from G to Hp , if and only if ¢,(d) = ¢, (") whenever

(x,0) ~ (y,6").

Let us establish a few simple facts about the relation ~.
Claim 5.13. The following statements are valid:

(a) For every x and 6, ' € D, there is at most one y € V(G) such that (z,9) ~ (y,d").
(b) For every x, y € V(G) and § € D, there is at most one 6’ € D such that (x,0) ~

(y,0").

Proof. Recall that G is a subgraph of the Cayley graph G(T',S). Therefore, x and y
are elements of the group I', and if (z,0) ~ (y,d’), then we can write dx = ¢y, so
y=(0)"10r and & =dxy~l. W

For z € V(G), let [z] :={y € V(G) : (z,0) ~ (y,d’) for some §, & € D}. Note that
the relation “y € [x]” is reflexive and symmetric, but not necessarily transitive.

Claim 5.14. For every x € V(G) and y € [z], the graph distance between x and y in G is
at most |D|.

Proof. If y = z, then we are done. Otherwise, there is a sequence (z1,d1), ..., (2, 0¢)
such that

(l’,6) ~1 (21,51) ~1cc ™Ml (Zt75t) ~1 (y75,) (515)
By minimizing ¢, we may assume that the pairs (x,6), (21,01), ..., (2t,06), (y,d’) are
pairwise distinct. By Claim 5.13(a), this implies that the elements 6, &y, ..., d;, 0 are

also pairwise distinct. Therefore, ¢t + 2 < |D|. From (5.15), we see that the distance
between x and y is at most t +1 < [D|. W

Let G’ denote the graph with the same vertex set as G in which two distinct vertices z,
y are adjacent if and only if there is z € V(G) such that z € [x] and y € [z] (this includes
the case when 2z = z and y € [z]). By Claim 5.13(a), |[z]| < |D|? for all z € V(G), so
the maximum degree of G’ is at most
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N = |D|* = 0(1).

(Here and in what follows, the asymptotic notation is with respect to n — oo.) By
Claim 5.14, a single communication round in the LOCAL model on G’ can be simulated
by 2|D| = O(1) rounds on G. Hence, by Theorem 5.11, we can compute a proper (N +1)-
coloring ¢: V(G) = (N +1) of G’ in O(log" n) rounds. For 0 < i < N, let X; := o~ 1(4).

We shall compute the desired homomorphism from G to Hp ,,, in N 41 stages indexed
by 0, 1, ..., N. At the start of stage i, each vertex x will have already computed the
values ¢, (0) for some subset of § € D, subject to the following requirement:

If (x,0) ~ (y,0"), then q.(8) = q,(¢8") whenever at least one of q,(8) and q,(d") is
defined.

During stage i, we have to compute ¢, (9) for all x € X; and § € D. To this end, each
vertex x € X, considers the elements 6 € D one by one and performs the following
procedure for each of them. If ¢,(d) is already defined, then there is nothing to do.
Otherwise, by Claim 5.14, in |D| rounds x can determine the following set:

B = {qy(e) : y € [z], e € D, and ¢y(¢) is defined}.

Since |[z]| < |D|?, we have |B| < |D|?> < m by (5.12), so x can pick a color a < m that
is not in B and set ¢;(d) := «. Then in |D| rounds = can notify each y € [z] so that
if (x,0) ~ (y,0"), then y sets g,(8') := « (such ¢’ is unique by Claim 5.13(b)). By the
choice of «, the mappings g, : D — m for all y € [z] remain injective after this procedure.
Notice also that since the set X; is G’-independent, all the elements of X; can run this
procedure in parallel without creating any conflicts.

After (N + 1) stages, we will have computed a homomorphism G — Hp ,,. Note that
each stage takes O(1) rounds, and there are O(1) stages, so the total required number
of communication rounds is

O(log"n) +0(1) = O(log" n),
—_——

computing ¢

and the proof is complete.
Appendix A. Proof of Lemma 5.2

Here we give a proof of Lemma 5.2:

Lemma 5.2. Let v € I'\ {1} and let D C I be a finite set with v € D. Take n > 2 and let
F* := {1,7}°" "*2_ Then the Schreier graph G(Xp ,,{7}) admits an F*-local proper
6-coloring.
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Asy € D, we have Xp ,, € X{,} », 50 it is enough to consider the case when D = {v}.
For brevity, let

X, = X{,Y}m and G, = G(X{'y},nv{’)/})

If n < 6, then the mapping X,, — 6: z — z(1) is as desired (it is a {1}-local proper
6-coloring of G,,). Thus, we may assume that n > 6. For every n > 6, we define

F(n) = 2[log, n]

and observe that f(6) =6 and n > f(n) > 6 for n > 6.
The heart of the construction is in the following claim:

Claim. For every n > 6, the graph G,, admits a {1,~}-local proper f(n)-coloring.

Proof. For an integer a with 0 < a < n — 1, let apay ...apneg,n)—1 denote the bi-
nary expansion of a. For each z € X, let i(x) be the smallest index i such that
x2(1); # z(vy); (such an index exists since x is a proper coloring of G,) and set
d(x) := (1)) and c(x) := 2i(x) + d(x). By construction, the function ¢ is {1,7}-
local and 0 < ¢(x) < 2[logyn]| = f(n). It remains to verify that ¢ is a proper coloring
of G,. Suppose, toward a contradiction, that ¢(z) = ¢(y - ) for some x € X,,. Then
i(x) = i(y- x), because both these quantities are equal to |c¢(x)/2]. Letting i := i(x), we
see that d(x) = x(1); # x(y); = d(-x) by the definition of i(x). But then c¢(z) # ¢(v-x)
(mod 2); a contradiction. W

For n > 6, let f*(n) be the minimum & such that f*)(n) = 6, where f*) := fo...of
(k times). It is routine to check that f*(n) < log*n + 2 for all n > 6. By iterating the
above claim f*(n) times, we obtain a sequence of I'-equivariant maps

T

Xn ﬂ-—1> Xf(n) ﬂ-—2> Xf(2>(n) Xe,

where for each ¢, the mapping = — m;(z)(1) is {1,v}-local. It remains to set 7 :=
Tge(n) © -++ o and observe that the mapping = ~— m(z)(1) is an F*-local proper 6-
coloring of G,,, as desired.
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