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Abstract—Analyzing human mobility patterns is valuable
for understanding human behavior and providing location-
anticipating services. In this work, we theoretically estimate the
predictability of human movement for indoor settings, a problem
that has not yet been tackled by the community. To validate the
model, we utilize location data collected by ambient sensors in
residential settings. The data support the model and allow usto
contrast the predictability of various groups, including single-
resident homes, homes with multiple residents, and homes with
pets.

Index Terms—prediction, compression, human mobility, smart
homes

I. INTRODUCTION

Studying human movement patterns helps researchers to
understand human behavior. If human movement can be
anticipated, this information can improve intelligent services
that are provided by smart cities and smart homes [1]. One
question that has captured the attention of researchers is deter-
mining how predictable human motion is. Given the ability to
collect massive amounts of geolocation data, researchers have
formalized models of large-scale outdoor human movement,
population migration, and epidemics. These advances lead to
improvements in city planning, traffic engineering, public
health, and communication.

On the other hand, sensing indoor human mobility offers
untapped potential to model behavior patterns. Indoor activi-
ties occupy most of our daily routine. According to the Envi-
ronmental Protection Agency, Americans spend up to 89% of
their time indoors, 69% specifically inside residences [2]-[4].
Using ambient sensors, researchers can continuously monitor
the locations and activities of building occupants without re-
quiring resident effort or behavior change [5], [6]. Discovering
indoor mobility patterns facilitates providing mobility-aware
services and automatic detection of abnormal behaviors. In
buildings with multiple inhabitants, accurate prediction of each
individual’s movements is also key to tracking and responding
to each person’s needs.

In this work, we investigate the theoretical limit of the
predictability of indoor human mobility. We also assess the
performance of existing mobility prediction models. In this
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treatment, we refer to mobility prediction as the ability to
predict the location of a human at a future point in time.
Because we model human motion using smart home sensors,
predictability is framed relative to this context. We therefore
also consider the impact of smart home configurations, such as
sensor resolution and the presence of multiple smart home
residents, on mobility predictability.

We empirically validate our theoretical analysis by ana-
lyzing 140 million motion sensor readings recorded in 117
CASAS smart homes [7]. In these homes, ambient sensors
including passive infrared (PIR) motion sensors, magnetic
door sensors, and contact-based item sensors, are deployed to
track residents and their interaction with objects in the home.
The sensor map for a sample smart home site, home m3, is
shown in Figure 1.
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Fig. 1. Floor plan and sensor positions in a sample smart home (home m3).

Whenever the state of the sensor changes due to resident
activity, the sensor sends a message to the smart home
gateway, and the message is uploaded to a central database.
Each sensor message is a three-tuple containing the time of
the observation, the sensor identifier that observed the resident
movement, and the state of the sensor. Table | shows an excerpt
of sensor messages collected in one smart home testbed.



TABLE |
EXCERPT OF SENSOR EVENTS COLLECTED IN SMART HOME M3
Time Tag Sensor ID Message
2016/12/27 7:44:58 | BedroomADoor ON
2016/12/27 7:44:59 | BedroomAArea ON
2016/12/27 7:45:01 | BedroomADoor OFF
2016/12/27 7:45:05 | BedroomAArea OFF
2016/12/27 7:45:08 KitchenAArea ON
2016/12/27 7:45:09 BedroomAArea ON
2016/12/27 7:45:11 HallwayB ON
2016/12/27 7:45:13 | BedroomAArea OFF
2016/12/27 7:45:14 | BedroomAArea ON
2016/12/27 7:45:15 BedroomAArea OFF
2016/12/27 7:45:15 HallwayB OFF

Because a “deactivate” message (OFF for motion sensors,
CLOSE for magnetic door sensors, and PRESENT for item
sensors) always follows an “activate” message (ON for motion
sensor, OPEN for magnetic door sensor, and ABSENT for item
sensors), we only analyze the “activate” messages. Data are
continuously collected in these environments while residents
perform their normal daily routines.

Il. HUMAN MOBILITY

Human mobility has been the subject of investigation in
many fields, but the advent of mobile computing has opened
the door to creating statistical models based on passively-
observed movement patterns. In their seminal work, Song
et al. [8] formulated an upper bound on outdoor human
mobility predictability by entropy rate estimation. In this study,
geolocation data are obtained from cell tower logs. Here, an
individual’s location is identified by the closest mobile tower
each time they use a phone. Data are then extrapolated to
form a continuous hourly record for estimating the entropy
rate. Based on Fano’s inequality, the authors concluded that
the potential predictability of human mobility could be as
high as 93%. This early study ignited a series of follow-up
work [9]-[14] that replicate the outdoor mobility experiments
using data collected from high-resolution GPS, embedded
sensors on mobile devices, and wireless signal strengths to
understand mobility predictability at various spatial and tem-
poral resolutions. However, Smith et al. [12] noticed that, in
geolocation data, each individual only visits a small fraction
of all locations. As a result, the upper bound claimed by Song et
al. [8] is an overestimate, an observation that is echoed by Xu
et al. [15], and the actual limits could be 11-24% lower.

A limitation of earlier investigations is that the geolocation
data monitors only outdoor human movement. Understanding
outdoor movement supports analysis of viruses, city planning,
and management of resources. Unfortunately, the theoretical
bound of indoor human mobility predictability is a subject
that has not received this same level of investigation. Under-
standing indoor movement is also valuable. Researchers have
used such information to detect changes in a person’s health
[16], identify possible in-home security threats [17], design
proactive behavior interventions [18], and provide resident-
aware home automation [19]. Predicting future resident lo-
cations is a central task of smart homes; thus researchers

have proposed algorithms to model the indoor mobility of
residents [20]. For example, Gopalratham and Cook [21]
proposed an online Lempel-Ziv sequence prediction algorithm,
Active LeZi, which converges to 47% accuracy for predicting
indoor locations using one month of smart home data. Alam et
al. [22] introduced SPEED, an algorithm that predicts future
events through a partial match, and reported 88.3% accuracy in
predicting next sensor events over one month. Jayarajah and
Misra [23] used WiFi logs on an urban campus to monitor
indoor activities and observed an 87% predictability across
building sections (e.g., classroom, food outlet, meeting space).
Minor et al. [24] introduced a structured prediction algorithm
that forecasted the times of upcoming activities with a mean
absolute error (MAE) of 16 minutes, although this was not
applied to movement prediction.

To analyze movement in smart homes with multiple resi-
dents, Ghasemi and Pouyan create a Markov chain that maps
states to indoor sensors. This Markov model is used to predict
the next location of each resident [25]. Doty et al. [26]
further improve smart home state estimation by introducing
flag hidden Markov models that contain a finite-state Markov
chain as well as a structured observation process wherein
a subset of states emit flags (i.e., observations) while other
states are unmeasured. Lin and Cook [27] analyze the Markov
order that best fits behavior observed by smart home sensors.
While the focus of this paper is on deriving an upper bound on
indoor mobility predictability rather than providing a best fit of
smart home data, researchers including Begleiter et al. [28],
Dimitrakakis [29], and Bejerano [30] have contributed several
additional methods for improving prediction methods with
variable-order models.

As an alternative method to model smart home behavior,
Roy et al. [31] model the movement of smart home residents
as actions taken in a multi-agent stochastic game. Thus,
the mobility of all residents, characterized by a policy (i.e.,
the probability of a state-action pair), can be learned using a
Nash H-learning algorithm. These authors reported 90%
accurate prediction of a resident’s room location over all time
points for residents and 40% accuracy for visitors based on
smart home data recorded over three weeks. These works
are complementary to our analysis. However, they cannot be
directly compared because we focus on the theoretical bound
of indoor human movement predictability.

Ill. ENTROPY RATE AND PREDICTABILITY

The goal of this research is to investigate the theoretical
bound for the predictability of indoor human mobility in real-
world settings. Here we present the relationship between pre-
dictability and entropy rate estimated from actual smart home
empirical data, using alternative computational approaches.

As introduced in Section I, the indoor locations of smart
home residents are identified by ambient sensor messages.
A person’s indoor trajectory, T, is represented as a series
of sensor messages, {Xi}izz, where X; is the it" sensor
message in the trajectory. We define indoor mobility prediction
as prediction of the next sensor message activated by the



smart home resident(s) based on their past trajectories. The
resolution of the mobility prediction is thus impacted by the
number of sensors in the environment and sensor resolution. In
the case of multiple residents, we initially consider predicting
the next sensor message caused by any of the residents at
the site, without attempting to identify which of the residents
was responsible for the message. Using this method, multiple-
resident prediction can thus be viewed as prediction of a
single, more “complex” resident in the building. The upper
bound of the predictability of indoor mobility can be calculated
by estimating the entropy rate of the underlying stationary
stochastic process [8].

A. Entropy Rate and Predictability

We assume that ambient sensor-detected resident trajectory
inside a building can be modeled by a stationary stochastic
process X = {X1,X2,...,Xn}, where X; is a random
variable representing the it" sensor message. For smart home
data, the values of each variable X; are the identifiers of
activated sensors, representing the location of a smart home
resident at time i. The entropy rate, H (X ), measures the av-
erage conditional entropy H(Xn+1|Xn, Xn-1, ..., X1) when
n approaches infinity, as shown in Equation 1. This rate can
also be interpreted as the growth of the information contained
in the trajectory compared to the length of the trajectory.

Xn

H(X) = H(Xis1 | Xi, ..., X1) (1)

PN

The most powerful prediction model for indoor mobil-ity,
characterized by the conditional probability distribution
f(Xn+1|Tn), would predict the next sensor message (at time
n + 1) based on the complete past history of resident trajecto-
ries (for times 1 through n). Here, Xn+1 represents the next
sensor message, and T, represents the past history of resident
trajectory up to time step n. The maximum predictability
nmax  defined as the prediction accuracy of the next sensor
message averaged over the entire observed sequence, can be
formulated according to Equation 2. In this equation, P (Tj)
represents the probability at time i of having observed a
particular resident trajectory T;.

1 Xn X
lim —

n>e Niog T,

[max = sup f(Xi+1 | Ti)P(Ti) (2)

Xi+1

Given an observed trajectory Ti, a predictive estimator
g(Ti) = Xi+1 will output an estimated value of Xi+1. The
probability of the estimator’s error is then defined as the
probability that the estimate does not match the actual next
sensor message, Xi+1, or Pe(Ti) = P (Xij+1 = Xj+1). Fano’s
inequality, which relates information lost in a noisy channel to
the probability of predictive error [32], states that

Hb (Pe(Ti)) + Pe(Ti)log,(N) 2 H(Xi+a | Ti) (3)

In Equation 3, Hp (P ) is the binary entropy function shown
in Equation 4 and N represents the number of possible

messages that could be observed (number of sensors in the
home).

Ho(P) = -P log,P - (1- P)log,(1- P) (4)

Given the conditional entropy H(Xi+1 | Ti), Fano’s inequal-
ity guarantees a lower bound of the probability of error
Pe(Ti), and thus an upper bound of the predictability M(T;) = 1
- Pe(Ti). We can represent the left side of Equation 3 as a
function M(T;), expressed in Equation 5.

He (M(Ti)) = He(1 - N(Ti)) + (1 - N(Ti)) loga N (5)

Based on the concavity of He (M(T;)), we can associate
the maximum predictability M™2* with the entropy rate of the
underlying stationary stochastic process by applying Jensen’s
inequality, as shown in Equation 9.

Xn
H(X) = ILm — H(Xi+1|Xi, ..., X1) (6)
n2e Ny
XnX
= lim = H(Xi«2 | Ti)P(Ty) (7)
AEGaLLETPRE §
1 X" X
< lim = H ¢ (N(Ti))P(Ti) (8)
e N, |
XX ’
< Hf  lim = N(Ti)P(Ti) (9)
nPe Ny
= He (N™2X) (10)

According to Equation 10, given the entropy rate of the un-
derlying stochastic process, the upper bound of predictability
of the sequence can be calculated numerically.

B. Estimating Entropy Rate

Having established the association between entropy rate
and predictability, the key challenge is to reliably estimate
the entropy rate from empirical data with a universal coding
method. The entropy rate, defined in Equation 1, is the
conditional entropy of the future random variable as the length
of the random process approaches infinity. Due to the limited
sample size of our empirical data, we implement multiple
entropy rate estimators to ensure the consistency of entropy
rate estimation.

Previous work by Song et al. [8] and Smith et al. [12]
used an entropy rate estimator based on Limpel-Ziv data
compression, proposed by Kontoyiannis et al. [33]. In this
approach, let X = {X;} be a stationary ergodic process with
entropy rate H (X ) > 0. We can then state:

(11)

In Equation 11, /\ik is the length of the shortest substring
starting at position i that does not appear as a continuous
substring of the previous k symbols.



The entropy rate can also be estimated using the code
length after compressing the data. Let R(Tn) denote the
size in bits of a sequence Tn = {Xn, Xn-1,..., X1} after
performing data compression. Takahira et al. verify that the
code length per unit, r(n) = r%R(Tn), is always larger than the
entropy rate H (X ) [34]. Additionally, provided the stochastic
process is stationary and ergodic, a universal text compressor
guarantees that the encoding rate converges to the entropy
rate. Thus, we estimate the entropy rate by calculating data
compression. In our experiments, we compare several state-
of-the-art data compressors for this process. Specifically, we
select 7-zip deflate (an implementation of Lempel-Ziv 77 [35]
with Huffman coding), 7-zip LZMA (an optimized version of
LZ77), and 7-zip PPMD (a lossless data compression using
prediction by partial matching [36]).

Though all of the above approaches will converge to the
true entropy rate, the accuracies of the estimates differ and
are affected by the data sample size. To demonstrate the
differences between the estimators and contrast the estimated
values with the true entropy rate, we generated a state sequence
of 10,000,000 time steps based on a second-order Markov
chain with 20 states, where the probability of the current state is
dependent on the previous 2 states. The state transition
probabilities of the second-order Markov chain, characterized
by P (Xi+1 | Xi, Xi-1), are generated randomly. Thus, the true
entropy rate of the synthetic state sequence (i.e., the entropy of
the simulated second-order Markov chain) can be calculated
based on the entropy rate definition shown in Equation 12.

H(X)

H)sXHl | Xi, Xi-1)
P (xi, xi-1)H (Xi+1 | Xi, Xi-1)

Xi,Xi-1

(12)

In Equation 12, P (xi, Xi-1) is the stationary probability dis-
tribution of state sequence {xi, xi-1}, and H(Xj+1 | Xi, Xi-1)
is the entropy of random variable X;.+1 given the values of
the previous two states.

In Figure 2 (top), we plot the entropy rates based on
sequence size. For this plot we compare multiple estab-
lished methods including the LZ77 deflate (H'277), LZMA
(H'2MA) and PPMD (HPPMP) algorithms, as well as the
estimator defined in Equation 11 (H®t). Figure 2 (bottom)
plots the corresponding predictability of each estimator. To
put the results in perspective, we also include the random
entropy (H"2"9), temporally-uncorrelated entropy (HY"¢), and
entropy rate (HMC), of a first-order Markov chain fitted to
the synthetic sequence. The random entropy H"™"9 = log, N
represents the maximum amount of possible information con-
tent in any sequence of N states. The uncorrelated entropy
HY"¢ assumes that there is no temporal correlation between
consecutive random variables in the random process. In other
words, the sensor message at each time step is independently
drawn from a probability distribution P (X;). Thus, HY"¢ can
be calculated according to Equation 13, where P (X;) canbe
estimated by counting the occurrences of each observable
symbol.

X
HY" = - P(Xi)log, P(Xi)
Xi

(13)

The Markov chain-based entropy rate, HMC, assumes that
the state sequence can be modeled by a Markov chain,
characterized by the conditional probability of state transition
P (Xi+1 | Xi). Based on the empirical data, the transition prob-
ability can be estimated by maximizing the likelihood of the
observed sequence. Thus, the entropy rate of the constructed
Markov chain can be calculated according to Equation 14 [32].
Here, P (Xi) is the stationary state distribution of the Markov
chain, calculated by solving Equation 15.

X
HMC = - P (Xi)P (Xi+1]|Xi)log, P (Xi+1 | Xi)
Xi+v1,X; (14)
X
P(Xi) = P(Xi|X;) B (15)

X

In Figure 2, the true entropy rate (the red dashed line) is
calculated according to Equation 12. As shown, all estimators
(HY277, HLZMA - HPPMD " and Hest) converge to the true
entropy rate as the sequence length increases. Among the
estimators based on the compressed code length (HY277,
HLZMA " and HPPMD) PPMD vyields the tightest upper
bounds and fastest convergence. Due to the dictionary size,
the entropy rates reported by those estimators are higher than
the actual process entropy rate. Comparatively, H®*t provides
the most accurate estimate among all of the tested entropy
rate estimators. While the estimators based on compress code
length are guaranteed to be an upper bound to the actual
entropy rate, H®%' may undershoot when there is not enough
data, leading to an over-estimated predictability [37]. The
estimators based on compressed code length are guaranteed
to be an upper bound to the actual entropy rate.

The entropy rate of any stochastic process with an alphabet
size of 20 should lie between the random entropy H"2"9 (4.33
in this example), indicating that the process is entirely random,
and 0, indicating that the process is fully deterministic. The
second-order Markov model has an actual entropy rate of
1.35, and thus a corresponding predictability of 83.51%. The
entropy rates estimated by H®t and HP PMP gare 152 and
1.60, resulting in an error of predictability of 3.5% and
4.01%, respectively. Since the synthetic data in this example
is generated by a second-order Markov chain, a first-order
Markov chain is not sufficient to capture patterns in the data.
As a result, entropy rate HMC calculated by fitting a first-
order Markov chain to the synthetic data is 3.58, much higher
than the actual entropy rate of the second-order Markov chain
or the estimates reported by Het and HPPMD,

Additionally, the predictability estimated by HM ¢ is more
than 30% lower than estimates derived from Hest or HP PMD
Compared with HMC, the temporally-uncorrelated entropy
HY"¢ is less powerful for capturing regularities in the synthetic
data. Quantitatively, the predictability corresponding to the
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Fig. 2. Entropy rate (left) and predictability (right) estimated from synthetic data generated by a second-order Markov chain.

uncorrelated entropy is close to a fully-random sequence,
which is more than 40% lower than the first-order Markov
chain, and about 80% lower than the predictability calculated
from the actual entropy of the sequence. In this example,
the random entropy HM2"d = 4.33 sets the upper bound
of the information contained in any data sequence with 20
symbols (the number of states in this case). The random
entropy can only be achieved if, at any time step, each state is
equally probable, meaning P (X;) = 1/20. Thus, the average
predictability of such a random stochastic process equals 0.05,
as shown in Figure 2.

IV. PREDICTABILITY OF INDOOR HUMAN MOBILITY

In the previous section, we investigated a formal method to
determine the theoretical limits of indoor human mobility pre-
dictability in real-life settings. Here, we validate our theoretical
formulations based on sensor message data collected from 117
smart homes, characterized in Table Il. We collected these data
from participants using the CASAS Smart Home in a Box
technology [7], [38]. Residents in the smart homes performed
their normal daily routines while ambient sensors collected
data. Data collection in these homes ranged from 2 weeks to
over 11 years. Among these homes, 45 smart homes have > 2
residents and 14 of these include pets (e.g., cats, dogs). The
remainder of the 72 smart homes are single-resident, 10 of
which include pets. Each room (or functional area) typically
contains 2-3 sensors. The total number of sensors ranges from
14 to 70 (mean=26.61, std=8.93). Many of these datasets, as
well as the code, are available onlinel.

Since the estimated entropy rate accuracy is affected by
the data sample size, we start by establishing the relationship
between entropy rate estimators and the length of the recorded
message sequence. For all of the evaluations, the estimators
are trained separately from a random initialization for each
home. Figure 3 plots the estimated entropy rates (top) and the
corresponding predictability (bottom) against the number of
sensor messages. In this example, the sensor messages were

1Links to code and datasets are online at http://casas.wsu.edu

collected in a home with multiple residents, home m3, over 6
months. This home was chosen because it houses multiple
residents (making the data complex). Furthermore, ground
truth resident labels are provided for a subset of this home’s
data, associating each sensor message with a corresponding
resident ID. To provide a time reference in the graphs, the plots
include red vertical lines indicate the first, second, third, and
fourth weeks, as well as the second, third, and sixth months,
on a log scale. Entropy rates in Figure 3 are estimated using
the code length of the compressed data based on the LZ77
(deflate) (H'277), LZMA (H'2MA), and PPMD (HPPMD)
algorithms, as well as the entropy rate estimator H®st defined
in Equation 11. The results are compared against random
entropy H""¢, uncorrelated entropy HY"¢, and the entropy
rate HMC calculated by fitting a first-order Markov chain to
the sensor messages. The predictabilities plotted in Figure 3
are calculated according to Equation 10. Since there are 25
sensors in home m3, the size of alphabet N in Equation 10 is
25.

Among the entropy rate estimators (HY277,
HPPMD and Hest), Het provides the lowest estimates. In
the figure, H®s! oscillates when there is not enough data,
and stabilizes after consuming two months of data. Based on
such observations, we acknowledge that the entropy rate
reported by HeSt is the best approximation to the true entropy
rate of the underlying stochastic process that generates the
observed human trajectories. As shown in Figure 3, the upper
bound of indoor mobility predictions in this home converges to
79.3% according to the entropy rate estimated by Het. If a
first-order Markov model is used to predict the next sensor
message triggered by the residents living in the smart home,
the prediction accuracy, according to the entropy rate HMC,
is 67.5%, indicating that an improvement of 11.8% can
potentially be achieved.

LZMA
H ,

By repeating the above experiment for each smart home,
we calculated the predictability upper bound of each home.
Figure 4 summarizes the upper bounds of resident mobility
predictability using entropy estimator H¢st. Homes with single



TABLE 11
SUMMARY OF THE SMART HOME DATASETS USED FOR EVALUATION

’ Site ‘ Sensors | Residents | Size (sf) ‘ Messages | Weeks |[[ Site | Sensors | Residents | Size (sf) ‘ Messages ‘ Weeks ‘
ml 27 2 1400 1,178,506 54 m2 42 2 1600 6,826,679 236
m3 25 2-3 1803 1,378,574 31 m4 70 2 1106 18,944,701 614
m5 36 2-3 1106 973,349 52 mé6 19 2 1000 1,155,121 31
m7 22 2 1200 1,550,683 132 m8 17 2-3 3000 980,093 10
m9 39 2-3 1765 409,115 23 m10 47 2-3 4032 176,412 8
mll 22 2-3 3212 2,144 2 m12 37 2-3 2144 129,213 6
m13 35 2-3 1759 60,377 13 m14 60 2-3 2955 426,996 13
ml15 40 2-3 2898 236,637 8 ml6 51 2-3 3323 293,211 10
ml7 24 2 N/A 153,603 10 m18 27 2 N/A 228,634 10
m19 22 2 N/A 376,708 10 m20 30 2 N/A 840,649 16
m21 30 2 N/A 377,391 13 m22 35 2 1400 1,432,718 80
m23 36 2 N/A 70,066 3 m24 27 2 N/A 249,987 10
m25 19 2 N/A 307,187 10 m26 25 2 N/A 284,137 11
m27 36 2 N/A 220,960 14 m28 24 2 N/A 324,905 12
m29 34 3 N/A 472,826 15 m30 30 2 N/A 114,684 4
m31 30 2 N/A 249,387 14 bl 27 2 1300 328,260 9
b2 33 2 1200 437,733 23 b3 25 3 N/A 784,428 21
b4 20 2 N/A 120,469 4 b5 27 4 N/A 594,493 13
b6 19 2 N/A 423,214 14 b7 21 2 N/A 242,491 10
b8 33 2 N/A 311,322 15 b9 21 2 N/A 288,301 13
b10 30 3 N/A | 1,431,903 24 || b11 30 3 N/A 599,925 19
b12 30 2 N/A 249,289 11 b13 32 2 N/A 528,142 15
b14 35 2 N/A 63,146 6 pl 20 1 800 1,509,615 82
p2 31 1 1100 207,690 12 p3 29 1 N/A 224,022 10
p4 18 1 800 759,750 51 p5 20 1 1000 3,884,561 220
p6 26 1 N/A 611,724 18 p7 30 1 N/A 296,860 14
p8 23 1 N/A 286,749 18 p9 18 1 N/A 489,311 21
pl0 35 1 N/A 91,890 7 sl 32 1 600 327,271 26
s2 32 1 600 285,207 26 s3 32 1 600 256,301 26
s4 19 1 700 639,517 54 s5 20 1 700 56,729 7
s6 34 1 1400 2,583,713 92 s7 30 1 1500 2,399,519 146
s8 21 1 800 2,683,317 299 s9 33 1 1100 2,460,156 118
s10 30 1 800 3,154,735 276 sl11 39 1 1200 2,028,153 169
s12 33 1 900 3,395,594 269 s13 27 1 800 5,393,455 239
s14 33 1 1100 3,423,249 309 s15 20 1 700 298,254 21
s16 29 1 800 1,117,701 73 s17 26 1 600 3,778,629 273
s18 20 1 800 818,002 51 s19 19 1 800 205,246 24
s20 16 1 700 385,107 44 s21 25 1 1200 2,991,898 153
s22 27 1 700 1,528,537 223 s23 20 1 700 906,345 100
s24 28 1 1100 438,681 31 s25 16 1 700 845,371 85
26 18 1 700 12,299 22 s27 32 1 700 2,460,714 220
528 17 1 700 1,654,459 178 s29 17 1 800 1,161,989 181
s30 20 1 900 4,323,961 175 s31 20 1 600 1,715,885 98
s32 26 1 700 371,175 27 s33 14 1 800 1,379,134 211
s34 20 1 900 1,155,121 211 s35 15 1 600 1,681,679 207
s36 18 1 N/A 217,944 8 s37 25 1 N/A 116,878 14
s38 24 1 N/A 280,500 12 s39 32 1 N/A 267,881 12
s40 20 1 N/A 86,996 10 s41 22 1 N/A 364,617 9
s42 28 1 N/A 287,873 14 s43 23 1 N/A 565,153 20
s44 17 1 593 888,745 60 s45 17 1 593 2,745,749 28
s46 19 1 837 5,321,015 61 s47 19 1 834 9,768,315 90
s48 17 1 593 773,010 67 s49 19 1 665 439,836 43
s50 22 1 1551 395,083 20 s51 30 1 1816 596,031 20
s52 17 1 N/A 316,837 20 s53 21 1 N/A 185,086 19
s54 20 1 N/A 517,534 15 s55 26 1 N/A 285,168 10
s56 31 1 N/A 311,815 12 s57 29 1 N/A 254,952 10
s58 30 1 N/A 700,171 22 s59 23 1 N/A 611,557 19
s60 36 1 N/A 468,679 10 s61 36 1 N/A 134,012 11
62 19 1 N/A 117,986 12

residents are shown in red and multi-resident homes are 95%. As expected, these occur in single-resident homes with
colored blue. Homes with pets as well as human residents are no pets. On the contrary, in many multi-resident smart homes,
indicated with a star symbol. The indoor mobility of residents the predictability is much lower and, in some cases, drops
in some of these homes exhibits high orders of regularity, below 65%.

where the prediction accuracy of resident movement exceeds
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Fig. 3. Entropy rate (top) and corresponding upper bounds of predictability (bottom) estimated based on sensor messages recorded in a sample smart home

(home m3).

A. Homes with Multiple Residents

To further explore the effect of multiple residents and pets
on indoor mobility predictability, we pictorially compare pre-
dictability between a single resident smart home and a multi-
resident smart home. Figure 5 shows two resident trajectories
that are subsets of the collected sensor data. One trajectory is
recorded in a single-resident smart home (home s4) and the
other is recorded in a multi-resident smart home (home m3). In
the single-resident trajectory recorded in home s1, the resident
generally triggers sensors along the path as the individual

moves from one part of the home to another. In this case, the
next sensor message is expected to be strongly correlated to
the previous sensor message. In multi-resident home m3, the
merged (dual-resident) trajectory is indicated by red arrows.
The actual paths of each resident, identified as R1 and R2,
are shown with dotted green arrows and dotted blue arrows,
respectively. In multi-resident smart homes, given that sensor
messages are not mapped to specific residents, the combined
movement is more complex and, therefore, more difficult to
predict. As a result, we expect that the predictability of resident
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Fig. 4. Scatter plot of the entropy (top) and predictability (bottom) of resident mobility estimated in each smart home as a function of the number of sensorsin the
home. Single resident smart homes are represented as red circles, and multi-resident smart homes are represented in blue. A star marker indicates that the

household includes pets.

mobility is lower in multi-resident settings when compared to cause the creation of sensor messages. Because of their smaller
the single-resident scenario. According to the statistics shown mass, some pets do not consistently trigger passive infrared
in Figure 6, the predictability limit of resident mobility in motion sensors, causing what appears to be a “teleporting”
single-resident homes averages 81.86%, while the upper bound effect. This causes an increase in data noise and an overall
of mobility predictability in multi-resident settings is 74.40%, decrease in predictability. In the experiments, we studied the
approximately 7.46% lower on average. predictability limits of smart homes with pets in comparison

In addition to the uncertainty caused by multiple residents,
pets in the household can also trigger ambient sensors and

with the smart homes without pets. Based on these results,
we found that the decrease in the predictability of indoor
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MA1: BathroomBArea
MA2: BedroomBArea
MA3: OfficeAArea

MA4: BedroomAArea
MAS: BathroomAArea
MAB: KitchenAArea
MA7: LivingRoomAArea
MAB: DiningRoomAArea
MO01: BedroomBBed
MO02: OfficeAChair

MO03: BedroomBDoor
MO04: BedroomADoor
MO05: BedroomABed
MO6: HallwayA

MO07: KitchenAStove
M08: KitchenASink
MO9: KitchenARefrigerator
M10: HallwayB

M11: BathroomASink
M12: BathroomAToilet
M13: EntrywayB

M14: KitchenADiningChair
M15: LivingroomAChair
M16: MainEntryway
M17: MainDoor

Fig. 5. Example of resident trajectories observed in a single-resident smart home (home s4, left) and a multi-resident smart home (home m3, right).

mobility caused by pets is 3% in both single-resident and
multi-resident scenarios. Specifically, the predictability limit
for single resident homes with pets averages 79.00% and
multi-resident homes with pets averages 72.10%.

Because of the inherent difficulty in associating sensor
messages with specific individuals in multi-resident scenarios,
a simple Markov chain is commonly used to construct a
human mobility model based on recorded sensor messages
for these situations [25]. A Markov chain conditions the
probability distribution of the next sensor message only on the
previous sensor message. To model multi-resident movement,
we initially fit a first-order Markov chain to the recorded data
and calculated both entropy rates and associated predictability.
In Figure 6, we average these values across all single-resident
homes without pets, multi-resident homes without pets, single-
resident homes with pets, and multi-resident homes with pets.
We also compute and plot the theoretical upper bound on
predictability for these house categories. In single-resident
cases where there are no pets in the household, we found that
the predictability of the first-order Markov chain is 6% below
the theoretical upper bound of the estimated predictability,
while in multi-resident homes or smart homes with pets,
the predictability is closer to 8% below the theoretical limit.
We note that the multi-resident homes exhibit the greatest
variability in number of residents as well as overall movement
patterns. At any particular point in time, the number of
residents in these spaces can vary from 0 to 4+. As the number
of residents increases, so may the randomness observed in the
sequence. Based on the these results, there is certainly room
for improvement in constructing more representative mobility
models than are found in first-order Markov chains, especially
in multi-resident settings.

One possible improvement to consider is employing meth-
ods to track multiple resident movements within a smart home

and use this information to disaggregate the combined sensor
data time series into separate components. If such a method
can effectively track each resident, then we can analyze each
resident separately. We explore this idea by utilizing GAMUT,
a smart home multi-resident tracking algorithm [39]. GAMUT
associates each sensor reading with a corresponding resident.
To do this, the algorithm maps sensors onto a latent space
using a technique borrowed from word embeddings [40].
GAMUT maps sensors to a latent space such that the distance
between a pair of sensors in that space reflects how often one
sensor in the pair generates a reading soon after the other.

To track multiple residents based on observed sensor read-
ings, a Gaussian mixture probability density filter models each
resident’s likely movements. The model needs to account for
possible movements within the home as well as cases when
a resident enters or leaves, false readings due to noise, and
reading caused by more than one resident moving together.
Ultimately, a sensor reading is assigned to a resident that yields
the highest likelihood. Based on the probability hypothesis
density of the residents through time, GAMUT also estimates
the number of residents that are in the space at any given
time. From this information, one time series containing sen-
sor readings corresponding to movements for r residents is
automatically split into r time series, one per resident. This
method yielded association accuracies of 0.82 for a home with 2
residents and 0.80 for a home with 4 residents [39]. In these
homes, external staff manually annotated 12 days of sensor
readings with corresponding resident identifiers to provide
ground truth labels. The results of this analysis are included in
Figure 6 and show that neither the estimated predictability nor
the Markov-modeled predictability exhibit a large deviation
from the original approach of modeling multiple residents as a
single complex entity.
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B. Staypoints

Our analysis so far focused on all movements that a resident
makes within a home. A separate but related consideration is
the predictability of a resident’s intended location destinations.
For example, if the resident is heading from the kitchen to an
office area, sensors will generate readings along the path be-
tween the origin and destination locations. These intermediate
locations may be more geometrically constrained (e.g., sensors
in doorways and along hallways) and thus boost predictability.

To assess intended location predictability, we filter the
original data to only consider “staypoints”, or sensor-observed
regions where the resident stays for at least one minute before
moving to another location. The results for staypoint analysis
of single-resident homes is shown in Figure 6. As the graph
indicates, predictability is lower for staypoint locations than
for all locations. The drop in predictability occurs for both the
estimated predictability and the predictability of the Markov
model.

C. Sensor Resolution

In this section, we analyze the observed impact of varying
spatio-temporal sensor resolution on movement predictability.
Resolution differences are very apparent when comparing
indoor and outdoor mobility. A notable difference between
outdoor and indoor mobility tracking is the data resolution.
Outdoor analyses based their findings on hourly reports with
spatial resolutions varying from 10 meters [9] to 3 kilometers
[8]. In the case of our indoor analysis, the mobile sensors
update their state every 1.25 seconds and the spatial resolution
is 1 meter. Lin et al. [9] note that a trade-off exists between

predictability and spatial resolution, thus the observed differ-
ence in resolutions indicates that indoor predictability will
likely be higher than outdoor predictability. Another factorin
comparing these sources of information is that the smart
home sensors provide constant monitoring. In contrast, Lin et
al. and Song report up to 25% and 80% missing locations,
respectively. Such missing information introduces uncertainty
into the empirical estimates.

One consideration for indoor mobility is the size of the
environment. In our sample, this did not have a dramatic
impact. Considering only single-resident homes, the mean
predictability for the six largest (reported) homes was 0.833
(sd=0.053). This value is very close to the mean predictability
for the six smallest homes of 0.828 (sd=0.025). Because all
homes contained 2-3 sensors per functional area, the smaller
homes had a higher density of sensors in the space. Thus,
we focus our attention in this section on the impact of sensor
resolution on mobility prediction.

To provide insight on the relationship between spatial reso-
lution and predictability, we simulate a lower spatial resolution
by aggregating individual sensors and their readings into just
one “simulated” sensor for each room or region of the home.
On average, we are replacing three sensors in the original data
with one sensor in the aggregated data. The results are shown in
Figure 6. As the graph indicates, the predictability of both
single resident homes and multiple resident homes increases as
the sensor resolution decreases. In these cases, there are fewer
states to model and predict, thus simplifying the prediction
problem.



D. Sensor Reliability

We note that the empirical results discussed here are subject
to sensor error. For PIR motion sensors, error can originate
from multiple sources. In some homes, there may be gaps
in coverage. As a result, residents may move to locations that
are not reflected in the sensor message sequence. Occasionally,
motion sensors can generate false positive messages when hit
with heat from an outside source such as a laser printer or
baseboard heater. We estimated these errors occurred fewer
than 0.05% of the days that were monitored. More commonly,
sensor messages may be lost due to communication errors. In
the CASAS smart homes, these are alerted as “radio errors.”
Such errors occurred on less than 0.45% of the monitored
days.

Some of the errors due to ambient sensors could be cor-
rected by fusing multiple sensor sources [41], such as fusing
ambient sensor data with that of wearable and object sensors.
Each data source is faced with challenges including sen-sor
noise, participant non-compliance, and gaps in coverage.
However, fusing data from multiple sources can harness the
strengths of the individual sensor modalities to compensate for
the weaknesses of others.

V. CONCLUSIONS

In this study, we investigated the limits of predictability for
indoor human mobility. We examined multiple methods for
modeling this predictability and provided evidence to support
the models based on sensor messages collected from 117 smart
homes. In single-resident smart homes, we found that the
upper bound of the prediction accuracy for the next sensor
message averages 83%. With the presence of multiple people
in the smart home, the predictability lowers on average by
11%. If pets are present in smart homes, the predictability
decreases by approximately 3% for both single-resident and
multi-resident settings.

Although deriving a predictive model for a particular res-
ident is beyond the scope of this paper, the above results
provide an expectation of mobility prediction performance
in real-world deployments. For applications that rely on the
prediction of resident movement trajectories, developers can
make more educated design decisions to achieve an improved
user experience based on the statistical limits of mobility
prediction performance.

Moreover, we can use the difference between the theoretical
limits of predictability and the prediction accuracy of a par-
ticular mobility model as a quantitative absolute measurement
of the performance of the mobility model. In the experiments,
we assessed the performance of Markov chain-based mobility
model in both single-resident and multi-resident settings. In
terms of predictability, we found that the performance of
Markov chain models is approximately 6% lower than the
theoretical upper bound in single resident settings and 11%
lower in multi-resident settings. The results indicate that more
representative models could be developed for indoor human
mobility, especially in multi-resident homes. To construct a

mobility model that achieves a performance above the theo-
retical limit of predictability, information in addition to the
residents’ past trajectory, such as the time of day, the day of
the week, and the length of resident stay at specific locations,
will be needed.

A limitation of the current analysis is the dependence of
the mobility states on the characteristics of the smart home
sensors. A future analysis may consider a mobility metric
that normalizes environment model based on factors such as
home size, number of sensors, and sensor resolution, to
lessen this dependency. Alternatively, sensor resolution can be
integrated into future models, to aid in determining the number
of sensors that needed to achieve the desired trade-off between
predictability and sensor resolution.

The proposed models assume that human mobility is a
stationary ergodic process. In many settings, this assumption
will be violated. Mobility patterns may change due to seasonal
impacts and changes in daily behavior patterns, among other
contributing factors. While methods such as change point
detection [6] may be used to identify such changes and initiate a
new model, a future analysis may propose a model that does
not rely on this assumption. Finally, future work may extend
predictability to consider a larger horizon than one time point
into the future. These improved capability will support more
anticipatory support of human mobility for applications such
as home automation, security monitoring, and activity
prompting [24].
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