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A CUTFEM DIVERGENCE–FREE DISCRETIZATION FOR THE STOKES
PROBLEM

Haoran Liu1, Michael Neilan1,* and Maxim Olshanskii2

Abstract. We construct and analyze a CutFEM discretization for the Stokes problem based on the
Scott–Vogelius pair. The discrete piecewise polynomial spaces are defined on macro-element triangu-
lations which are not fitted to the smooth physical domain. Boundary conditions are imposed via
penalization through the help of a Nitsche-type discretization, whereas stability with respect to small
and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms.
We show stability of the scheme as well as a divergence–free property of the discrete velocity outside an
𝑂(ℎ) neighborhood of the boundary. To mitigate the error caused by the violation of the divergence–
free condition, we introduce local grad–div stabilization. The error analysis shows that the grad–div
parameter can scale like 𝑂(ℎ−1), allowing a rather heavy penalty for the violation of mass conservation,
while still ensuring optimal order error estimates.
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1. Introduction

Originating from first principles, mass conservation is a favorable property for numerical solutions to equations
governing the motion of fluids. For incompressible viscous fluids there is a recent effort in developing Galerkin
methods that conserve the mass through enforcing the discrete velocity to be divergence–free [1–6]. In many
cases however, the exactly divergence–free approximations come at a price of high-order spaces or confined to
certain triangulations. This extra complexity makes it difficult, if at all possible, to apply them for modeling of
flows with additional features such as propagating interfaces and free surfaces exhibiting large deformations. One
way to address the difficulty of computing flows with finite elements in heavily deforming volumes is to uncouple
the volume triangulation from interface/boundary tracking. For sharp interface representations (e.g. by a level-
set method [7] in contrast to diffuse-interface approach [8]) this suggests using geometrically unfitted finite
element (FE) methods, e.g. XFEM [9] or cutFEM [10]. While unfitted variants of equal order pressure-velocity,
Taylor–Hood and several other well-known finite element methods were studied recently [11–16], unfitted mass-
conserving elements for primitive-variable formulations of the Stokes or incompressible Navier–Stokes equations
are not well developed yet.
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This brings our attention to the Scott–Vogelius (SV) finite element pair [17] of continuous polynomial elements
of degree 𝑘 for velocity and discontinuous polynomial elements of degree (𝑘−1) for pressure. The SV element is
known to be inf–sup stable [18] for shape-regular triangulations of R2 and 𝑘 ≥ 4 provided the triangulation does
not contain nearly singular vertices [17,19]. For R3 the situation is more subtle and for a specific structured family
of triangulations, stability is known for 𝑘 ≥ 6 [20]. On triangulations resulting from a barycenteric (or Clough–
Tocher/Alfeld) refinement of a macro triangulation the stability, however, follows in R𝑑 for 𝑘 ≥ 𝑑 [4, 6, 21].

Since the divergence of any FE velocity field belong to the pressure FE space, a standard mixed formulation
of the Stokes problem using the SV element delivers pointwise divergence–free solutions, providing us with an
example of a stable and relatively simple mass conserving finite element method.

A geometrically unfitted variant of the SV finite element in two dimensions was considered for the first time
in [22]. In that paper, the authors constructed a boundary correction scheme, where the Stokes problem is solved
on a strict interior domain, and boundary data is transferred, within a Nitsche-type formulation, via a Taylor
expansion. Here we take a different approach: A boundary or interface condition on a surface cutting through
a background mesh is imposed with the help of the Nitsche method [23], while stability with respect to small
and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms. This
renders our approach as the cut-Scott–Vogelius finite element method. The stability of pressure for cut elements
requires an additional ghost penalty term defined on a thin strip of elements in a proximity of the boundary.
Since this additional stabilizing term alters the divergence-condition in the mixed formulation, the resulting
velocity is not divergence–free, strictly speaking. Nevertheless, we show that pointwise mass conservation holds
in the volume occupied by the fluid except in an 𝑂(ℎ) strip. Furthermore, to minimize the error caused by the
violation of the divergence–free condition, we introduce local grad–div stabilization [24]. Our analysis reveals
that the grad–div parameter can scale with ℎ−1, allowing a rather heavy penalty for the violation of div𝑢 = 0
in the strip and still ensuring an optimal order error estimate.

The remainder of paper is organized as follows. Section 2 is preparatory and collects necessary preliminaries
on meshing and FE spaces definitions. It proceeds with the formulation of finite element method and the proof
of an internal mass-conservation property. Section 3 addresses stability of the finite element formulation. In
section 4 we prove our main result about the convergence of the method. We extend our method and analysis
to two-dimensional Powell–Sabin splits in Section 5, and give results of a few numerical examples in Section 6.

2. Preliminaries and finite element method

Consider the Stokes problem on a bounded, contractible, and open domain Ω ⊂ R𝑑 with smooth boundary:

−Δ𝑢+∇𝑝 = 𝑓 in Ω, (2.1a)
div𝑢 = 0 in Ω, (2.1b)
𝑢 = 0 on Γ := 𝜕Ω. (2.1c)

To formulate an unfitted finite element method for (2.1) we embed Ω into an open, polytopal domain 𝑆, i.e.
Ω̄ ⊂ 𝑆, and let Tℎ be a simplicial shape-regular triangulation of 𝑆. For simplicity, we assume that Tℎ is quasi-
uniform. We denote by T𝑐𝑡

ℎ the resulting Clough–Tocher/Alfeld (CT) triangulation obtained by connecting the
vertices of each element in Tℎ with its barycenter [25,26]. Let

T𝑖
ℎ := {𝑇 ∈ Tℎ : 𝑇 ⊂ Ω}, Ω𝑖

ℎ = Int

⎛⎝ ⋃︁
𝑇∈T𝑖

ℎ

𝑇

⎞⎠ (2.2)

be the set of interior simplices and interior domain, respectively.
We then define the analogous set with respect to the CT refinement (cf. Fig. 1):

T
𝑐𝑡,𝑖
ℎ := {𝐾 ∈ T𝑐𝑡

ℎ : 𝐾 ⊂ 𝑇, ∃𝑇 ∈ T𝑖
ℎ}.
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Figure 1. Left: Example of an interior Clough–Tocher mesh T
𝑐𝑡,𝑖
ℎ (blue) and boundary Clough–

Tocher mesh T
𝑐𝑡,Γ
ℎ (red). Right: The same mesh, but with ̃︀T𝑐𝑡,Γ

ℎ ∖T𝑐𝑡,Γ
ℎ (green) and ̃︀T𝑐𝑡,𝑖

ℎ (blue).

Remark 2.1. Note that

Ω𝑖
ℎ = Int

⎛⎝ ⋃︁
𝐾∈T𝑐𝑡,𝑖

ℎ

𝐾̄

⎞⎠ ,

since we include in T
𝑐𝑡,𝑖
ℎ only those micro-triangles which belong to internal macro-triangles, there can be 𝐾 ∈ T𝑐𝑡

ℎ

which are strictly inside Ω but not in T
𝑐𝑡,𝑖
ℎ , i.e., the inclusion T

𝑐𝑡,𝑖
ℎ ⊂ {𝐾 ∈ T𝑐𝑡

ℎ : 𝐾 ⊂ Ω} is generally strict.

On the interior domain, we define F𝑖
ℎ to be the set of (𝑑 − 1)-dimensional interior faces of the unrefined

triangulation T𝑖
ℎ; that is, 𝐹 ∈ F𝑖

ℎ provided there exists two distinct simplices 𝑇1, 𝑇2 ∈ T𝑖
ℎ such that 𝐹 = 𝜕𝑇1∩𝜕𝑇2.

We also let

TΓ
ℎ := {𝑇 ∈ Tℎ : meas𝑑−1(𝑇 ∩ Γ) > 0}, ΩΓ

ℎ = Int

⎛⎝ ⋃︁
𝑇∈TΓ

ℎ

𝑇

⎞⎠
to be the set of simplices that cut through the interface Γ and the corresponding domain, respectively.

Define

T𝑒
ℎ := {𝑇 ∈ Tℎ : 𝑇 ∈ T𝑖

ℎ or 𝑇 ∈ TΓ
ℎ}, Ω𝑒

ℎ = Int

⎛⎝ ⋃︁
𝑇∈T𝑒

ℎ

𝑇

⎞⎠
to be the set of triangles that either are interior or cut through the interface Γ and the corresponding domain,
respectively. We refer to these quantities as the exterior triangulation and exterior domain, respectively. The
analogous sets with respect to the CT refinement are given by

T
𝑐𝑡,Γ
ℎ := {𝐾 ∈ T𝑐𝑡

ℎ : 𝐾 ⊂ 𝑇, ∃𝑇 ∈ TΓ
ℎ},

T
𝑐𝑡,𝑒
ℎ := {𝐾 ∈ T𝑐𝑡

ℎ : 𝐾 ⊂ 𝑇, ∃𝑇 ∈ T𝑒
ℎ}.

Note that now we have

ΩΓ
ℎ = Int

⎛⎝ ⋃︁
𝐾∈T𝑐𝑡,Γ

ℎ

𝐾̄

⎞⎠ , and Ω𝑒
ℎ = Int

⎛⎝ ⋃︁
𝐾∈T𝑐𝑡,𝑒

ℎ

𝐾̄

⎞⎠ .
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Remark 2.2. Note that, in general, there exists 𝐾 ∈ T
𝑐𝑡,Γ
ℎ such that 𝐾̄ ∩ Ω̄ = ∅. Consequently, in the finite

element method presented below, there exists active basis functions with support strictly outside the physical
domain Ω.

We define the sets of faces:

FΓ
ℎ := {𝐹 : 𝐹 is a face in TΓ

ℎ , 𝐹 ̸⊂ 𝜕Ω𝑒
ℎ},

F𝑒
ℎ := {𝐹 : 𝐹 is an interior face in T𝑒

ℎ},
F

𝑐𝑡,Γ
ℎ := {𝐹 : 𝐹 is a face in T

𝑐𝑡,Γ
ℎ , 𝐹 ̸⊂ 𝜕Ω𝑒

ℎ},
F

𝑐𝑡,𝑒
ℎ := {𝐹 : 𝐹 is an interior face in T

𝑐𝑡,𝑒
ℎ }.

For 𝐾 ∈ T
𝑐𝑡,Γ
ℎ , we define 𝐾Γ = 𝐾 ∩Γ, so that

∑︀
𝐾∈T𝑐𝑡,Γ

ℎ
|𝐾Γ| = |Γ|. For a simplex 𝐾, we set ℎ𝐾 = diam(ℎ𝐾).

Note that, because of the quasi-uniformity and shape-regularity assumption, there holds ℎ𝐾 ≈ ℎ := max𝑇∈Tℎ
ℎ𝑇

for all 𝐾 ∈ T
𝑐𝑡,𝑒
ℎ and ℎ𝐹 ≈ ℎ for all 𝐹 ∈ F

𝑐𝑡,𝑒
ℎ . We denote by 𝑛 an outward normal of a domain which will be

clear from its context. The constant 𝐶 (with or without subscripts) will denote a generic positive constant that
is independent of ℎ, how the boundary Γ cuts the mesh, or any method-dependent parameters.

For some triangulation Sℎ (e.g., Sℎ = T
𝑐𝑡,𝑒
ℎ ), we define the polynomial spaces:

P𝑘(Sℎ) = {𝑣 ∈ 𝐿2(𝐷ℎ) : 𝑣|𝐾 ∈ P𝑘(𝐾) ∀𝐾 ∈ Sℎ}, P̊𝑘(Sℎ) = P𝑘(Sℎ) ∩ 𝐿2
0(𝐷ℎ),

P𝑐
𝑘(Sℎ) = [P𝑘(Sℎ) ∩ 𝐻1(𝐷ℎ)]𝑑, P̊

𝑐

𝑘(Sℎ) = P𝑐
𝑘(Sℎ) ∩𝐻1

0 (𝐷ℎ),

where 𝐷ℎ = int(∪𝐾∈Sℎ
𝐾̄), and P𝑘(𝐾) is the space of scalar polynomials of degree ≤ 𝑘 with domain 𝐾. For an

integer 𝑘 ≥ 𝑑, define the finite element spaces with respect to T
𝑐𝑡,𝑒
ℎ :

𝑉ℎ = {𝑣 ∈ P𝑐
𝑘(T

𝑐𝑡,𝑒
ℎ ),

∫︁
𝜕Ω𝑖

ℎ

𝑣 · 𝑛 = 0}, 𝑄ℎ = {𝑞 ∈ P𝑘−1(T
𝑐𝑡,𝑒
ℎ ),

∫︁
Ω𝑖

ℎ

𝑞 = 0},

and the analogous spaces with respect to the interior mesh

𝑉 𝑖
ℎ = P̊

𝑐

𝑘(T
𝑐𝑡,𝑖
ℎ ), 𝑄𝑖

ℎ = P̊𝑘−1(T
𝑐𝑡,𝑖
ℎ ).

The definitions of the spaces imply that the divergence maps 𝑉ℎ into 𝑄ℎ. Likewise, the divergence maps 𝑉 𝑖
ℎ

into 𝑄𝑖
ℎ.

2.1. Finite Element Method

Here, we will define a modified version of the finite element method given in Section 3.2 from ref. [13] based
on the Scott–Vogelius pair. First we define the mesh-dependent bilinear form with grad–div stabilization:

𝑎ℎ(𝑢,𝑣) := (∇𝑢,∇𝑣) + 𝛾(div𝑢, div𝑣) + 𝑠ℎ(𝑢,𝑣) + jℎ(𝑢,𝑣) + 𝜂𝑗ℎ(𝑢,𝑣), (2.3)

where (·, ·) denotes the 𝐿2 inner product over Ω, 𝛾 ≥ 0 is the grad–div parameter, and 𝜂 > 0 is a Nitsche-type
penalty parameter,

𝑠ℎ(𝑢,𝑣) = −
∫︁
Γ

((𝑛ᵀ∇𝑢) · 𝑣 + (𝑛ᵀ∇𝑣) · 𝑢),

𝑗ℎ(𝑢,𝑣) =
∑︁

𝐾∈T𝑐𝑡,Γ
ℎ

1
ℎ𝐾

∫︁
𝐾Γ

𝑢 · 𝑣,

jℎ(𝑢,𝑣) =
∑︁

𝐹∈F𝑐𝑡,Γ
ℎ

𝑘∑︁
ℓ=1

ℎ2ℓ−1
𝐹

∫︁
𝐹

[𝜕ℓ
𝑛𝑢][𝜕

ℓ
𝑛𝑣],
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where we recall 𝐾Γ = 𝐾̄ ∩ Γ. Here, 𝜕ℓ
𝑛𝑣 denotes the derivative of order ℓ of 𝑣 in the direction 𝑣, and [𝑤]|𝐹

denotes the jump of a function 𝑤 across 𝐹 .
The continuity equations are discretized via the bilinear form

𝑏(𝑝,𝑣) := −(𝑝, div𝑣) +
∫︁
Γ

(𝑣 · 𝑛)𝑝. (2.4)

The finite element method reads: find (𝑢ℎ, 𝑝ℎ) ∈ 𝑉ℎ × 𝑄ℎ such that

{︁𝑎ℎ(𝑢ℎ,𝑣ℎ) + 𝑏(𝑝ℎ,𝑣ℎ) = (𝑓 ,𝑣ℎ),
𝑏(𝑞ℎ,𝑢ℎ)− 1

1+𝛾 𝐽ℎ(𝑝ℎ, 𝑞ℎ) = 0 (2.5)

for all 𝑣ℎ ∈ 𝑉ℎ, 𝑞ℎ ∈ 𝑄ℎ, where

𝐽ℎ(𝑞, 𝑝) =
∑︁

𝐹∈F𝑐𝑡,Γ
ℎ

𝑘−1∑︁
ℓ=0

ℎ2ℓ+1
𝐹

∫︁
𝐹

[𝜕ℓ
𝑛𝑞][𝜕ℓ

𝑛𝑝].

Remark 2.3. Compared to other CutFEM discretizations [10,12–14], we have modified the above finite element
method by modifying the terms jℎ(𝑢,𝑣), and 𝐽ℎ(𝑞, 𝑝). In particular, for jℎ(𝑢,𝑣), and 𝐽ℎ(𝑞, 𝑝), instead of summing
over all faces 𝐹 in FΓ

ℎ , we are now summing over all faces 𝐹 from F
𝑐𝑡,Γ
ℎ . Such faces may be completely outside

the physical domain Ω.
Likewise, for the term 𝑗ℎ(𝑢,𝑣), instead of summing over all triangles 𝑇 from TΓ

ℎ , we are now summing over
all triangles 𝐾 from T

𝑐𝑡,Γ
ℎ . However, since

⋃︀
𝐾∈T𝑐𝑡,Γ

ℎ
𝐾Γ =

⋃︀
𝑇∈TΓ

ℎ
𝑇Γ, 𝑗ℎ(𝑢,𝑣) is equivalent to the analogous

term in, e.g., [13]. Compared to the previous work on unfitted Stokes elements, we also introduce the grad–div
stabilization. We show later that it effectively acts only on a narrow boundary strip and allows the control of
mass-conservation loss due to ghost penalty stabilization. This mechanism may be of help to boost the accuracy
for other unfitted Stokes FE methods.

Remark 2.4. An accurate computation of integrals over cut elements and Γ as they appear in the definition
of the bilinear forms is not always feasible. One way to handle this is to introduce a polyhedral approximation
of Ω allowing for standard quadrature rules both on cut and uncut elements. Such an approximation, however,
leads to second order geometric consistency error which is suboptimal for Scott–Vogelius elements. To ensure
a geometric error of the same order or higher than the finite element approximation error, we define numerical
quadrature rules for cut elements and boundary integrals using the isoparametric approach proposed in [27].

2.2. Divergence–free property

Notice that, in contrast to the domain-fitted Scott–Vogelius FEM, the method (2.5) does not produce exactly
divergence–free solution due to the stability term 𝐽ℎ(·, ·) in the discrete continuity equations. However, we show
that the discrete velocity solution 𝑢ℎ is divergence–free on a mesh-dependent interior domain.

We define the set of all simplices in T
𝑐𝑡,Γ
ℎ together with those in T

𝑐𝑡,𝑖
ℎ that are touching these simplices

(cf. Fig. 1): ̃︀T𝑐𝑡,Γ
ℎ =

{︁
𝐾 ∈ T

𝑐𝑡,𝑒
ℎ : meas𝑑−1(𝐾̄ ∩ 𝐾̄ ′) > 0 ∃𝐾 ′ ∈ T

𝑐𝑡,Γ
ℎ

}︁
.

This set’s complement is given by an interior set of elements:̃︀T𝑐𝑡,𝑖
ℎ = T

𝑐𝑡,𝑒
ℎ ∖̃︀T𝑐𝑡,Γ

ℎ ⊂ T
𝑐𝑡,𝑖
ℎ , (2.6)

and we define the domains

̃︀Ω𝑐𝑡,Γ
ℎ = Int

⎛⎜⎝ ⋃︁
𝐾∈̃︀T𝑐𝑡,Γ

ℎ

𝐾̄

⎞⎟⎠ , ̃︀Ω𝑐𝑡,𝑖
ℎ = Int

⎛⎜⎝ ⋃︁
𝑇∈̃︀T𝑐𝑡,𝑖

ℎ

𝐾̄

⎞⎟⎠ .
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Lemma 2.5. (Divergence-free property) Suppose that 𝑢ℎ ∈ 𝑉ℎ satisfies (2.5). Then div𝑢ℎ = 0 on ̃︀Ω𝑐𝑡,𝑖
ℎ .

Proof. We show the result in four steps.

(1) Fix 𝐾* ∈ ̃︀T𝑐𝑡,𝑖
ℎ , and set

𝑞1 =

⎧⎨⎩ 1 on ̃︀Ω𝑐𝑡,Γ
ℎ ,

−(|̃︀Ω𝑐𝑡,Γ
ℎ | − |ΩΓ

ℎ|)/|𝐾*| on 𝐾*,
0 otherwise.

We then have∫︁
Ω𝑖

ℎ

𝑞1 =
∫︁
̃︀Ω𝑐𝑡,Γ

ℎ ∖ΩΓ
ℎ

𝑞1 +
∫︁

𝐾*

𝑞1 =
(︁
|̃︀Ω𝑐𝑡,Γ

ℎ | − |ΩΓ
ℎ|
)︁
+ |𝐾*|

(︁
−
(︁
|̃︀Ω𝑐𝑡,Γ

ℎ | − |ΩΓ
ℎ|
)︁

/|𝐾*|
)︁
= 0.

Thus, 𝑞1 ∈ 𝑄ℎ. We also have 𝐽(𝑝ℎ, 𝑞1) = 0 because 𝑞1 is constant on ̃︀Ω𝑐𝑡,Γ
ℎ . It then follows from (2.5) that

−
(|̃︀Ω𝑐𝑡,Γ

ℎ | − |ΩΓ
ℎ|)

|𝐾*|

∫︁
𝐾*

div𝑢ℎ +
∫︁
Ω∩̃︀Ω𝑐𝑡,Γ

ℎ

div𝑢ℎ −
∫︁
Γ

𝑢ℎ · 𝑛 = 0,

and therefore

1
|𝐾*|

∫︁
𝐾*

div𝑢ℎ =
1

|̃︀Ω𝑐𝑡,Γ
ℎ | − |ΩΓ

ℎ|

(︃∫︁
Ω∩̃︀Ω𝑐𝑡,Γ

ℎ

div𝑢ℎ −
∫︁
Ω

∇ · 𝑢ℎ

)︃
(2.7)

=
−1

|̃︀Ω𝑐𝑡,Γ
ℎ | − |ΩΓ

ℎ|

∫︁
̃︀Ω𝑐𝑡,𝑖

ℎ

div𝑢ℎ.

(2) Fix 𝐾 ∈ ̃︀T𝑐𝑡,𝑖
ℎ ∖{𝐾*}, and set

𝑞2 =

⎧⎨⎩
1 on 𝐾,

− |𝐾|
|𝐾*| on 𝐾*,

0 otherwise.

Then 𝑞2 ∈ 𝑄ℎ, and by (2.5), we conclude∫︁
𝐾

div𝑢ℎ =
|𝐾|
|𝐾*|

∫︁
𝐾*

div𝑢ℎ.

We then sum this expression over 𝐾 ∈ ̃︀T𝑐𝑡,𝑖
ℎ to conclude∫︁

̃︀Ω𝑐𝑡,𝑖
ℎ

div𝑢ℎ =
|̃︀Ω𝑐𝑡,𝑖

ℎ |
|𝐾*|

∫︁
𝐾*

div𝑢ℎ. (2.8)

(3) We combine (2.7) and (2.8) to obtain∫︁
̃︀Ω𝑐𝑡,𝑖

ℎ

div𝑢ℎ = −
|̃︀Ω𝑐𝑡,𝑖

ℎ |
|̃︀Ω𝑐𝑡,Γ

ℎ | − |ΩΓ
ℎ|

∫︁
̃︀Ω𝑐𝑡,𝑖

ℎ

div𝑢ℎ,

which implies ∫︁
̃︀Ω𝑐𝑡,𝑖

ℎ

div𝑢ℎ = 0.

Using (2.7), and noting that 𝐾* ∈ ̃︀T𝑐𝑡,𝑖
ℎ was arbitrary, we have∫︁

𝐾

div𝑢ℎ = 0 ∀𝐾 ∈ ̃︀T𝑐𝑡,𝑖
ℎ .



A CUTFEM DIVERGENCE–FREE DISCRETIZATION 149

(4) Fix 𝐾, 𝐾† ∈ ̃︀T𝑐𝑡,𝑖
ℎ , and set

𝑞3 =

⎧⎨⎩div𝑢ℎ on 𝐾†,
𝑐 on 𝐾,
0 otherwise,

where 𝑐 ∈ R is chosen such that 𝑞3 ∈ 𝑄ℎ. Then using (2.5),∫︁
𝐾†

|div𝑢ℎ|2 = −𝑐

∫︁
𝐾

div𝑢ℎ = 0.

Thus, div𝑢ℎ = 0 on ̃︀Ω𝑐𝑡,𝑖
ℎ .

�

Remark 2.6. Lemma 2.5 shows that grad–div stabilization is active only in a boundary strip, since the term
vanishes in Ω̃𝑐𝑡,𝑖

ℎ . In particular, replacing the bilinear form 𝛾(div𝑢ℎ, div𝑣ℎ) in the finite element method (2.5) with
𝛾
∫︀
Ω∖Ω̃𝑐𝑡,𝑖

ℎ
(div𝑢ℎ)(div𝑣ℎ) does not alter the numerical solution. Nevertheless, one may want to keep it defined

in Ω for more straightforward implementation and potential benefits of algebraic system preconditioning.

3. Stability

In this section, we prove inf–sup stability of the finite element method and derive a priori estimates. As a first
step, we state an inf–sup stability result with respect to the finite element spaces with support on the interior
domain Ω𝑖

ℎ.
To do so, we require two mesh-dependent norms

‖𝑢‖2𝑉0,ℎ
= |𝑢|2𝐻1(Ω) + 𝜂𝑗ℎ(𝑢,𝑢) + jℎ(𝑢,𝑢),

‖𝑢‖2𝑉ℎ
= ‖𝑢‖2𝑉0,ℎ

+ 𝛾‖div𝑢‖2𝐿2(Ω),

as well as the associated dual norm

‖𝑓‖𝑉 ′
ℎ
= sup

𝑣∈𝑉ℎ∖{0}

(𝑓 ,𝑣)
‖𝑣‖𝑉ℎ

.

Remark 3.1. By definition, there holds ‖𝑧‖𝑉ℎ
≤ (1 + 𝛾)1/2‖𝑧‖𝑉0,ℎ

for all 𝑧 ∈ 𝑉ℎ.

We first need an inf–sup stability estimate for the SV element in the interior domain Ω𝑖
ℎ. The estimate is

formulated below in Theorem 3.2. Note that Ω𝑖
ℎ is mesh dependent and (3.1) does not follow easily from an

“inf–sup-stability” of any finite element pair (see discussion in [13]). The property (3.1) was only assumed to
hold in earlier publications, e.g. [12, 14], on unfitted FEMs for the Stokes problem, and has been proved for
P2−P1 element in [15] and for several other FE pairs in [13]. The latter paper does not cover any divergence–free
elements.

Theorem 3.2. There exists a constant 𝜃 > 0 and a constant ℎ0 > 0 such that we have the following result for
ℎ ≤ ℎ0

𝜃‖𝑞‖𝐿2(Ω𝑖
ℎ)

≤ sup
𝑣∈𝑉 𝑖

ℎ∖{0}

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

∀𝑞 ∈ 𝑄𝑖
ℎ. (3.1)

The constant 𝜃 > 0 is independent of ℎ.
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The proof of this theorem in the case 𝑘 = 𝑑 = 2 can be found in Section 4.2 from ref. [22]. The general case
𝑘 ≥ 𝑑 (𝑑 ∈ {2, 3}) follows verbatim using the P𝑑 − P0 stability result in [13]: A local inf–sup stability result
for 𝑞 ∈ P𝑘−1(𝐾) with

∫︀
𝐾

𝑞 = 0 on the CT split of each 𝐾 ∈ T𝑖
ℎ (Theorem 3.1 in [4]) is applied together with

the global inf–sup stability of P𝑑 − P0 element for the macro-triangulation T𝑖
ℎ. These two results are combined

by standard arguments, see e.g. Lemma 4.7 in [22] or Proposition 6.1 in [4], to yield (3.1). We skip including
further details.

Corollary 3.3. The following stability is satisfied

𝜃*‖𝑞‖𝐿2(Ω) ≤ sup
𝑣∈𝑉ℎ∖{0}

supp(𝑣)⊂Ω𝑖
ℎ

𝑏(𝑣, 𝑞)
‖𝑣‖𝑉0,ℎ

+ 𝐽
1/2
ℎ (𝑞, 𝑞) ∀ 𝑞 ∈ 𝑄ℎ, (3.2)

where 𝜃* > 0 is independent of ℎ and the position of Γ in the mesh.

Proof. Fix some 𝑞 ∈ 𝑄ℎ. By using Lemma 5.1 from [28], for each pair of triangles 𝐾1 and 𝐾2 in T𝑐𝑡
ℎ with

𝜕𝐾1 ∩ 𝜕𝐾2 = 𝐹 ∈ F
𝑐𝑡,𝑒
ℎ we have

‖𝑞‖2𝐿2(𝐾1)
≤ 𝐶

(︃
‖𝑞‖2𝐿2(𝐾2)

+
𝑘−1∑︁
ℓ=0

ℎ2ℓ+1
𝐹

∫︁
𝐹

[𝜕ℓ
𝑛𝑞]2

)︃
.

Iterating this estimate, we conclude

‖𝑞‖2𝐿2(Ω) ≤ ‖𝑞‖2𝐿2(Ω𝑒
ℎ)

≤ 𝐶
(︁
‖𝑞‖2𝐿2(Ω𝑖

ℎ)
+ 𝐽ℎ(𝑞, 𝑞)

)︁
. (3.3)

Combining this estimate with Theorem 3.2, we conclude that there exists 𝑣 ∈ 𝑉ℎ with supp(𝑣) ⊂ Ω𝑖
ℎ such that

‖𝑞‖2𝐿2(Ω) ≤ 𝐶
(︁
‖𝑞‖2𝐿2(Ω𝑖

ℎ)
+ 𝐽ℎ(𝑞, 𝑞)

)︁
≤ 𝐶𝜃−1

(︃∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

+ 𝐽ℎ(𝑞, 𝑞)

)︃
. (3.4)

Because 𝑣 = 0 on ΩΓ
ℎ, we have 𝑗ℎ(𝑣,𝑣) = 0 and by an inverse estimate,

jℎ(𝑣,𝑣) =
∑︁

𝐹∈F𝑐𝑡,Γ
ℎ

𝐹⊂𝜕Ω𝑖
ℎ

𝑘∑︁
ℓ=1

ℎ2ℓ−1
𝐹

∫︁
𝐹

[𝜕ℓ
𝑛𝑣]

2

≤ 𝐶
∑︁

𝐾∈̃︀T𝑐𝑡,Γ
ℎ ∩T𝑐𝑡,𝑖

ℎ

‖∇𝑣‖2𝐿2(𝐾) ≤ 𝐶‖𝑣‖2𝐻1(Ω𝑖
ℎ)

.

Thus we have ‖𝑣‖𝑉0,ℎ
≤ 𝐶‖𝑣‖𝐻1(Ω𝑖

ℎ)
. Combining this with (3.4), we have (3.2). �

3.1. A priori estimates for the finite element method

In this section we derive a priori estimates of the finite element method, thus showing that the discrete
problem (2.5) is well-posed. The techniques to show these results are rather standard, but we show the proofs
here for completeness.

Lemma 3.4. There exists constants 𝐶𝑎, 𝐶0 > 0 such that

𝑎ℎ(𝑢,𝑣) ≤ 𝐶𝑎‖𝑢‖𝑉ℎ
‖𝑣‖𝑉ℎ

∀𝑢,𝑣 ∈ 𝑉ℎ +𝐻𝑘+1(Ω𝑒
ℎ),

𝐶0‖𝑣‖2𝑉ℎ
≤ 𝑎ℎ(𝑣,𝑣) ∀𝑣 ∈ 𝑉ℎ.
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Proof. The proof of this result can be found in, e.g., [13, 28,29]. �

Theorem 3.5. Suppose that (𝑢ℎ, 𝑝ℎ) ∈ 𝑉ℎ × 𝑄ℎ satisfies (2.5). Then

‖𝑝ℎ‖𝐿2(Ω) ≤ 𝐶(1 + 𝛾)
1
2 ‖𝑓‖𝑉 ′

ℎ
, ‖𝑢ℎ‖𝑉ℎ

≤ 𝐶‖𝑓‖𝑉 ′
ℎ
, (3.5)

for some 𝐶 > 0 independent of 𝛾, ℎ, and the position of Γ in the mesh. Consequently, (2.5) has a unique
solution.

Proof. We set 𝑣ℎ = 𝑢ℎ in the first equation in (2.5), and 𝑞ℎ = 𝑝ℎ in the second equation of (2.5) and subtract
the resulting expressions:

𝑎ℎ(𝑢ℎ,𝑢ℎ) +
1

1 + 𝛾
𝐽ℎ(𝑝ℎ, 𝑝ℎ) = (𝑓 ,𝑢ℎ).

By the coercivity of 𝑎ℎ(., .) stated in Lemma 3.4 and the Cauchy–Schwarz inequality, we have

𝐶0‖𝑢ℎ‖2𝑉ℎ
+

1
1 + 𝛾

𝐽ℎ(𝑝ℎ, 𝑝ℎ) ≤ (𝑓 ,𝑢ℎ) ≤ ‖𝑓‖𝑉 ′
ℎ
‖𝑢ℎ‖𝑉ℎ

,

and so

𝐶0

2
‖𝑢ℎ‖2𝑉ℎ

+
1

1 + 𝛾
𝐽ℎ(𝑝ℎ, 𝑝ℎ) ≤

1
2𝐶0

‖𝑓‖2𝑉 ′
ℎ
. (3.6)

By the inf–sup stability estimate (3.2) and Remark 3.1, there exists 𝑧 ∈ 𝑉ℎ with (1+𝛾)−
1
2 ‖𝑧‖𝑉ℎ

≤ ‖𝑧‖𝑉0,ℎ
=

‖𝑝ℎ‖𝐿2(Ω) and

𝜃*‖𝑝ℎ‖2𝐿2(Ω) ≤ 𝑏(𝑧, 𝑝ℎ) + 𝐽
1/2
ℎ (𝑝ℎ, 𝑝ℎ)‖𝑝ℎ‖𝐿2(Ω)

= (𝑓 , 𝑧)− 𝑎ℎ(𝑧,𝑢ℎ) + 𝐽
1/2
ℎ (𝑝ℎ, 𝑝ℎ)‖𝑝ℎ‖𝐿2(Ω).

By Lemma 3.4 and the Cauchy–Schwarz inequality, we have

𝜃*‖𝑝ℎ‖2𝐿2(Ω) ≤
(︁
‖𝑓‖𝑉 ′

ℎ
‖𝑧‖𝑉ℎ

+ 𝐶𝑎‖𝑧‖𝑉ℎ
‖𝑢ℎ‖𝑉ℎ

)︁
+ 𝐽

1/2
ℎ (𝑝ℎ, 𝑝ℎ)‖𝑝ℎ‖𝐿2(Ω)

≤
(︁
(1 + 𝛾)

1
2 (‖𝑓‖𝑉 ′

ℎ
+ 𝐶𝑎‖𝑢ℎ‖𝑉ℎ

) + 𝐽
1/2
ℎ (𝑝ℎ, 𝑝ℎ)

)︁
‖𝑝ℎ‖𝐿2(Ω).

Dividing by ‖𝑝ℎ‖𝐿2(Ω) and using (3.6), we conclude

𝜃2*‖𝑝ℎ‖2𝐿2(Ω) ≤ 3
(︁
(1 + 𝛾)(‖𝑓‖2𝑉 ′

ℎ
+ 𝐶2

𝑎‖𝑢ℎ‖2𝑉ℎ
) + 𝐽ℎ(𝑝ℎ, 𝑝ℎ)

)︁
≤ 3(1 + 𝛾)

(︁
1 + 𝐶2

𝑎𝐶−2
0 +

1
2𝐶0

)︁
‖𝑓‖2𝑉 ′

ℎ
.

This estimate and (3.6) yields the desired result (3.5). �

4. Convergence Analysis

In this section we assume that the solution to the Stokes problem (2.1a) is sufficiently smooth, i.e., 𝑢 ∈
𝐻𝑘+2(Ω), 𝑝 ∈ 𝐻𝑘+1(Ω), where we recall 𝑘 is the polynomial degree in the definition of finite element spaces.
Without loss of generality, we assume that dist(𝜕𝑆, 𝜕Ω) = 𝑂(1).

Because 𝜕Ω is Lipschitz there exists an extension of 𝑝, which we also denote by 𝑝, such that 𝑝 ∈ 𝐻𝑘+1(𝑆)
and (cf. [30])

‖𝑝‖𝐻ℓ(𝑆) ≤ 𝐶‖𝑝‖𝐻ℓ(Ω) for ℓ = 0, 1, . . . , 𝑘 + 1. (4.1a)
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An analogous extension of 𝑢 is done in the following manner. First, write the velocity in terms of potential
field 𝑢 = curl𝜓, where we agree to understand curl𝜓 for any space dimension 𝑑 as the exterior derivative of
(𝑑− 2)-differential form 𝜓. For 𝑢 ∈𝐻𝑘+2(Ω), the form 𝜓 satisfies 𝜓 ∈𝐻𝑘+3(Ω) and ‖𝜓‖𝐻ℓ+1(Ω) ≤ 𝐶‖𝑢‖𝐻ℓ(Ω)

for ℓ = 0, 1, . . . 𝑘+2 [18,31]. We extend 𝜓 to 𝑆 in a way such that ‖𝜓‖𝐻ℓ(𝑆) ≤ 𝐶‖𝜓‖𝐻ℓ(Ω) for ℓ = 0, 1, . . . , 𝑘+3,
and let 𝜔 be a smooth cut-off function with compact support in 𝑆 and 𝜔 ≡ 1 in Ω. We then define the velocity
extension as 𝑢 = curl(𝜔𝜓), so that 𝑢 is divergence–free, vanishes on 𝜕𝑆, and

‖𝑢‖𝐻ℓ(𝑆) ≤ 𝐶‖𝑢‖𝐻ℓ(Ω) for ℓ = 0, 1, . . . , 𝑘 + 2. (4.1b)

Remark 4.1 (Consistency). Standard arguments show that the method (2.5) is consistent. In particular, there
holds {︁𝑎ℎ(𝑢,𝑣ℎ) + 𝑏(𝑝,𝑣ℎ) = (𝑓 ,𝑣ℎ),

𝑏(𝑞ℎ,𝑢)− 1
1+𝛾 𝐽ℎ(𝑝, 𝑞ℎ) = 0 (4.2)

for all 𝑣ℎ ∈ 𝑉ℎ, 𝑞ℎ ∈ 𝑄ℎ.

The following lemma is a direct application of ([32], Lem. 4.10).

Lemma 4.2. For 𝑇 ∈ T𝑒
ℎ, define 𝜔𝑇 = ∪𝑇 ′∈T𝑒

ℎ

𝑇∩𝑇 ′ ̸=∅
𝑇 ′ to be the patch of neighboring elements of 𝑇 . We further

define the 𝑂(ℎ) strip around Γ:

𝜔Γ =
⋃︁

𝑇∈TΓ
ℎ

𝜔𝑇 .

Then there holds
‖𝑣‖𝐿2(𝜔Γ) ≤ 𝐶ℎ

1
2 ‖𝑣‖𝐻1(𝑆) ∀𝑣 ∈ 𝐻1(𝑆).

We also require a trace inequality suitable for the CutFEM discretization (see, e.g., [13, 23]).

Lemma 4.3. For every 𝐾 ∈ T
𝑐𝑡,Γ
ℎ it holds

‖𝑣‖𝐿2(𝐾Γ) ≤ 𝐶(ℎ− 1
2

𝐾 ‖𝑣‖𝐿2(𝐾) + ℎ
1
2
𝐾‖∇𝑣‖𝐿2(𝐾)) ∀𝑣 ∈ 𝐻1(𝐾), (4.3)

with a constant 𝐶 independent of 𝑣, 𝑇 , how Γ intersects 𝑇 , and ℎ < ℎ1 for some fixed ℎ1 > 0.

Consider the finite element subspace of pointwise divergence–free functions:

𝑍ℎ = {𝑤ℎ ∈ 𝑉ℎ : div𝑤ℎ = 0 in Ω𝑒
ℎ}.

This subspace enjoys full approximation properties in the sense of the following lemma.

Lemma 4.4. For 𝑢, the divergence–free extension of the solution to (2.1), it holds

inf
𝑤ℎ∈𝑍ℎ

‖𝑢−𝑤ℎ‖𝐻1(𝑇 ) ≤ 𝐶ℎ𝑘
𝑇 |𝑢|𝐻𝑘+1(𝜔𝑇 ) ∀𝑇 ∈ T𝑒

ℎ. (4.4)

Consequently, if 𝑢 ∈𝐻𝑘+2(Ω),

inf
𝑤ℎ∈𝑍ℎ

‖𝑢−𝑤ℎ‖𝑉ℎ
≤ 𝐶

(︁
ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω) + 𝜂

1
2 ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω)

)︁
.
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Proof. The proof of (4.4) is given in Appendix A.
To bound ‖𝑢 − 𝑤ℎ‖𝑉ℎ

we use the approximation results from (4.4) and note that div(𝑢 − 𝑤ℎ) = 0 in Ω𝑒
ℎ.

The penalty part of ‖𝑢−𝑤ℎ‖𝑉ℎ
is estimated using Lemma 4.3 as follows:

𝑗ℎ(𝑢−𝑤ℎ,𝑢−𝑤ℎ) =
∑︁

𝐾∈T𝑐𝑡,Γ
ℎ

ℎ−1
𝐾 ‖𝑢−𝑤ℎ‖2𝐿2(𝐾Γ)

≤ 𝐶
∑︁

𝐾∈T𝑐𝑡,Γ
ℎ

(︁
ℎ−2

𝐾 ‖𝑢−𝑤ℎ‖2𝐿2(𝐾) + ‖∇(𝑢−𝑤ℎ)‖2𝐿2(𝐾)

)︁
≤ 𝐶ℎ2𝑘‖𝑢‖2𝐻𝑘+1(𝜔Γ)

≤ 𝐶ℎ2𝑘+1‖𝑢‖2𝐻𝑘+2(Ω),

(4.5)

where for the last inequality we used (4.1) and Lemma 4.2. This yields the bound ‖𝑢 − 𝑤ℎ‖𝑉ℎ
≤

𝐶
(︁
ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω) + 𝜂

1
2 ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω)

)︁
. �

Theorem 4.5. The following error estimate holds

‖𝑢− 𝑢ℎ‖𝑉ℎ
+ (1 + 𝛾)−

1
2 ‖𝑝 − 𝑝ℎ‖𝐿2(Ω) ≤ 𝐶

(︃
ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω) + (1 + 𝛾

1
2 + 𝜂

1
2 )ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω)

+ (𝜂− 1
2 + (1 + 𝛾)−

1
2 )ℎ𝑘+ 1

2 ‖𝑝‖𝐻𝑘+1(Ω) + (1 + 𝛾)−
1
2 ℎ𝑘‖𝑝‖𝐻𝑘(Ω)

)︃
. (4.6)

Proof. To show the error bounds, we start with a standard argument. Let 𝑤ℎ ∈ 𝑍ℎ be a function in the
discrete kernel satisfying estimate (4.4). Setting 𝑒𝐼 = 𝑢ℎ −𝑤ℎ ∈ 𝑉ℎ we have, thanks to the coercivity result in
Lemma 3.4:

𝐶0‖𝑒𝐼‖2𝑉ℎ
≤ 𝑎ℎ(𝑒𝐼 , 𝑒𝐼). (4.7)

Denote by ̂︀𝑝ℎ ∈ 𝑄ℎ the 𝐿2-projection of 𝑝 onto 𝑄ℎ, and set 𝑞𝐼 = 𝑝ℎ − ̂︀𝑝ℎ. It follows from (3.2) that there
exists 𝑣 ∈ 𝑉ℎ with supp(𝑣) ⊂ Ω𝑖

ℎ such that

𝐶1‖𝑞𝐼‖2𝐿2(Ω) ≤ 𝑏(𝑣, 𝑞𝐼) + 𝐶−1
1 𝐽ℎ(𝑞𝐼 , 𝑞𝐼), with (1 + 𝛾)−

1
2 ‖𝑣‖𝑉ℎ

≤ ‖𝑣‖𝑉0,ℎ
= ‖𝑞𝐼‖𝐿2(Ω), (4.8)

where 𝐶1 = 𝜃*
2 , and 𝜃* is the inf–sup constant given in Corollary 3.3.

From (4.7), (4.8), (2.5), and the consistency identity (4.2), we conclude that for any 𝛼 ≥ 0 it holds

𝐶0‖𝑒𝐼‖2𝑉ℎ
+ 𝐶1𝛼‖𝑞𝐼‖2𝐿2(Ω) +

(︀
(1 + 𝛾)−1 − 𝛼𝐶−1

1

)︀
𝐽ℎ(𝑞𝐼 , 𝑞𝐼) (4.9)

≤ 𝑎ℎ(𝑒𝐼 , 𝑒𝐼) + 𝑏(𝛼𝑣, 𝑞𝐼) + (1 + 𝛾)−1𝐽ℎ(𝑞𝐼 , 𝑞𝐼)
= 𝑎ℎ(𝑒𝐼 , 𝑒𝐼 + 𝛼𝑣) + 𝑏(𝑒𝐼 + 𝛼𝑣, 𝑞𝐼)− 𝑏(𝑒𝐼 , 𝑞𝐼) + (1 + 𝛾)−1𝐽ℎ(𝑞𝐼 , 𝑞𝐼)− 𝑎ℎ(𝑒𝐼 , 𝛼𝑣)
= 𝑎ℎ(𝑢−𝑤ℎ, 𝑒𝐼 + 𝛼𝑣) + 𝑏(𝑒𝐼 + 𝛼𝑣, 𝑝 − ̂︀𝑝ℎ)− 𝑏(𝑢−𝑤ℎ, 𝑞𝐼)

+ (1 + 𝛾)−1𝐽ℎ(𝑝 − ̂︀𝑝ℎ, 𝑞𝐼)− 𝑎ℎ(𝑒𝐼 , 𝛼𝑣)
=: 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5.

We now estimate the right-hand side of (4.9) term-by-term.
Using the continuity result in Lemma 3.4 and the approximation results in Lemma 4.4, we bound

𝐼1 ≤ 𝐶𝑎‖𝑒𝐼 + 𝛼𝑣‖𝑉ℎ
‖𝑢−𝑤ℎ‖𝑉ℎ

(4.10)

≤ 𝐶‖𝑒𝐼 + 𝛼𝑣‖𝑉ℎ

(︁
ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω) + 𝜂

1
2 ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω)

)︁
≤ 𝐶

(︁
‖𝑒𝐼‖𝑉ℎ

+ 𝛼(1 + 𝛾)
1
2 ‖𝑞𝐼‖𝐿2(Ω)

)︁(︁
ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω) + 𝜂

1
2 ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω)

)︁
,
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where we used (4.8) in the last inequality.
We now estimate the second term in the right-hand side of (4.9) in two steps.
First, using approximation properties of the 𝐿2-projection, we get

(̂︀𝑝ℎ − 𝑝, div𝑒𝐼) ≤ (1 + 𝛾)−
1
2 ‖̂︀𝑝ℎ − 𝑝‖𝐿2(Ω)‖𝑒𝐼‖𝑉ℎ

≤ (1 + 𝛾)−
1
2 ℎ𝑘‖𝑝‖𝐻𝑘(Ω)‖𝑒𝐼‖𝑉ℎ

. (4.11)

Likewise,

(̂︀𝑝ℎ − 𝑝, 𝛼div𝑣) ≤ 𝐶𝛼ℎ𝑘‖𝑝‖𝐻𝑘(Ω)‖𝑞𝐼‖𝐿2(Ω). (4.12)

We apply the trace inequality (4.3) and standard approximation properties of the 𝐿2-projection to estimate
the boundary integral in 𝑏(𝑒𝐼 + 𝛼𝑣, 𝑝 − ̂︀𝑝ℎ), noting that 𝑣 = 0 on Γ:∫︁

Γ

(̂︀𝑝ℎ − 𝑝)(𝑒𝐼 + 𝛼𝑣) · 𝑛 ≤
∑︁

𝐾∈T𝑐𝑡,Γ
ℎ

‖̂︀𝑝ℎ − 𝑝‖𝐿2(𝐾Γ)‖𝑒𝐼‖𝐿2(𝐾Γ)

≤

⎛⎝ ∑︁
𝐾∈T𝑐𝑡,Γ

ℎ

𝜂−1ℎ𝐾‖̂︀𝑝ℎ − 𝑝‖2𝐿2(𝐾Γ)

⎞⎠1/2⎛⎝ ∑︁
𝐾∈T𝑐𝑡,Γ

ℎ

𝜂ℎ−1
𝐾 ‖𝑒𝐼‖𝐿2(𝐾Γ)

⎞⎠1/2

≤ 𝐶𝜂− 1
2 ℎ𝑘‖𝑝‖𝐻𝑘(𝜔Γ)‖𝑒𝐼‖𝑉ℎ

≤ 𝐶𝜂− 1
2 ℎ𝑘+ 1

2 ‖𝑝‖𝐻𝑘+1(Ω)‖𝑒𝐼‖𝑉ℎ
,

(4.13)

where we used Lemma 4.2 in the last inequality. Summing (4.11)–(4.13) we obtain

𝐼2 ≤ 𝐶
(︁
𝛼ℎ𝑘‖𝑝‖𝐻𝑘(Ω)‖𝑞𝐼‖𝐿2(Ω) +

(︁
(1 + 𝛾)−

1
2 ℎ𝑘‖𝑝‖𝐻𝑘(Ω) + 𝜂− 1

2 ℎ𝑘+ 1
2 ‖𝑝‖𝐻𝑘+1(Ω)

)︁
‖𝑒𝐼‖𝑉ℎ

)︁
. (4.14)

To estimate 𝐼3, we first note that, due to (4.3), finite element inverse inequalities, and (3.3), there holds∑︁
𝐾∈T𝑐𝑡,Γ

ℎ

ℎ𝐾‖𝑞𝐼‖2𝐿2(𝐾Γ)
≤ 𝐶

∑︁
𝐾∈T𝑐𝑡,Γ

ℎ

‖𝑞𝐼‖2𝐿2(𝐾) ≤ 𝐶
(︁
‖𝑞‖2𝐿2(Ω) + 𝐽ℎ(𝑞𝐼 , 𝑞𝐼)

)︁
.

Therefore, thanks to div(𝑢−𝑤ℎ) = 0 and the estimate (4.5), we have

𝐼3 ≤

⎛⎝ ∑︁
𝐾∈T𝑐𝑡,Γ

ℎ

ℎ𝐾‖𝑞𝐼‖2𝐿2(𝐾Γ)

⎞⎠1/2⎛⎝ ∑︁
𝐾∈T𝑐𝑡,Γ

ℎ

ℎ−1
𝐾 ‖𝑢−𝑤ℎ‖2𝐿2(𝐾Γ)

⎞⎠1/2

≤ 𝐶(‖𝑞𝐼‖2𝐿2(Ω) + 𝐽ℎ(𝑞𝐼 , 𝑞𝐼))
1
2 ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω).

We proceed with estimating terms in the right-hand side of (4.9). For the fourth term we get, using the trace
inequality (4.3), approximation properties of the 𝐿2-projection, and Lemma 4.2,

𝐼4 ≤ (1 + 𝛾)−1𝐽
1
2
ℎ (𝑝 − ̂︀𝑝ℎ, 𝑝 − ̂︀𝑝ℎ)𝐽

1
2
ℎ (𝑞𝐼 , 𝑞𝐼) ≤ 𝐶ℎ𝑘+ 1

2 (1 + 𝛾)−1‖𝑝‖𝐻𝑘+1(Ω)𝐽
1
2
ℎ (𝑞𝐼 , 𝑞𝐼). (4.15)

For the last term in (4.9) we have (using (4.8))

𝐼5 ≤ 𝐶0

4
‖𝑒𝐼‖2𝑉ℎ

+
𝐶2

𝑎𝛼2

𝐶0
‖𝑣‖2𝑉ℎ

≤ 𝐶0

4
‖𝑒𝐼‖2𝑉ℎ

+
𝐶2

𝑎𝛼2(1 + 𝛾)
𝐶0

‖𝑞𝐼‖2𝐿2(Ω). (4.16)



A CUTFEM DIVERGENCE–FREE DISCRETIZATION 155

We apply the estimates (4.10)–(4.16) to (4.9) getting

𝐶0‖𝑒𝐼‖2𝑉ℎ
+ 𝐶1𝛼‖𝑞𝐼‖2𝐿2(Ω) + ((1 + 𝛾)−1 − 𝛼𝐶−1

1 )𝐽ℎ(𝑞𝐼 , 𝑞𝐼)

≤ 𝐶

(︃(︁
‖𝑒𝐼‖𝑉ℎ

+ 𝛼(1 + 𝛾)
1
2 ‖𝑞𝐼‖𝐿2(Ω)

)︁(︁
ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω) + 𝜂

1
2 ℎ𝑘+ 1

2 ‖𝑢‖𝐻𝑘+2(Ω)

)︁
+ 𝛼ℎ𝑘‖𝑞𝐼‖𝐿2(Ω)‖𝑝‖𝐻𝑘(Ω) +

(︁
(1 + 𝛾)−

1
2 ℎ𝑘‖𝑝‖𝐻𝑘(Ω) + 𝜂− 1

2 ℎ𝑘+ 1
2 ‖𝑝‖𝐻𝑘+1(Ω)

)︁
‖𝑒𝐼‖𝑉ℎ

+ (‖𝑞𝐼‖𝐿2(Ω) + 𝐽
1
2
ℎ (𝑞𝐼 , 𝑞𝐼))ℎ𝑘+ 1

2 (‖𝑢‖𝐻𝑘+2(Ω) + (1 + 𝛾)−1‖𝑝‖𝐻𝑘+1(Ω))

)︃

+
𝐶0

4
‖𝑒𝐼‖2𝑉ℎ

+
𝐶2

𝑎𝛼2(1 + 𝛾)
𝐶0

‖𝑞𝐼‖2𝐿2(Ω).

We apply the Cauchy–Schwarz inequality several times and rearrange terms to obtain

𝐶0‖𝑒𝐼‖2𝑉ℎ
+
(︀
𝐶1𝛼 − 𝐶𝛼2(1 + 𝛾)

)︀
‖𝑞𝐼‖2𝐿2(Ω) + ((1 + 𝛾)−1 − 𝛼𝐶−1

1 )𝐽ℎ(𝑞𝐼 , 𝑞𝐼)

≤ 𝐶

(︃(︁
ℎ2𝑘‖𝑢‖2𝐻𝑘+1(Ω) + 𝜂ℎ2𝑘+1‖𝑢‖2𝐻𝑘+2(Ω)

)︁
+ (𝛼 + 1)(1 + 𝛾)−1ℎ2𝑘‖𝑝‖2𝐻𝑘(Ω)

+ 𝜂−1ℎ2𝑘+1‖𝑝‖2𝐻𝑘+1(Ω) + 𝛼−1ℎ2𝑘+1
(︁
‖𝑢‖2𝐻𝑘+2(Ω) + (1 + 𝛾)−2‖𝑝‖2𝐻𝑘+1(Ω)

)︁)︃
.

We now take 𝛼 = ̃︀𝐶(1 + 𝛾)−1, with ̃︀𝐶 > 0 sufficiently small to obtain

𝐶0‖𝑒𝐼‖2𝑉ℎ
+ 𝐶(1 + 𝛾)−1

(︁
‖𝑞𝐼‖2𝐿2(Ω) + 𝐽ℎ(𝑞𝐼 , 𝑞𝐼)

)︁
≤ 𝐶

(︃
ℎ2𝑘‖𝑢‖2𝐻𝑘+1(Ω) + (1 + 𝛾)−1ℎ2𝑘‖𝑝‖2𝐻𝑘(Ω) + (1 + 𝜂 + 𝛾)ℎ2𝑘+1‖𝑢‖2𝐻𝑘+2(Ω)

+ (𝜂−1 + (1 + 𝛾)−1)ℎ2𝑘+1‖𝑝‖2𝐻𝑘+1(Ω)

)︃
.

Finally, we apply the triangle inequality, the divergence–free property of 𝑢 and 𝑤ℎ, and approximation proper-
ties (4.4) to obtain the error estimate (4.6). �

Remark 4.6. The pressure dependence in velocity error (4.6) arises from the violation of mass conservation in
the boundary strip and the penalty treatment of the boundary condition. The violation of the divergence–free
constraint in a boundary strip can be partially mitigated by taking grad–div parameter 𝛾 = 𝑂(ℎ−1) and Nitsche
parameter 𝜂 = 𝑂(ℎ−1), which seem to be the optimal choice with respect to the error analysis in the energy
norm. This can be contrasted to 𝛾 = 𝑂(1) for the Taylor-Hood element.

5. Extensions to Powell–Sabin Splits

In this section, we extend the method and analysis in the previous sections to the Scott–Vogelius finite
element pair on two-dimensional Powell–Sabin splits. For brevity, we concentrate on the lowest-order pair which
has recently been shown to be inf–sup stable in a non-cutFEM setting in [33].

As in the previous sections, we let Tℎ be a simplicial mesh of 𝑆 (with Ω̄ ⊂ 𝑆), and let T𝑖
ℎ and Ω𝑖

ℎ be the set
of interior simplices and interior domain, respectively, defined by (2.2). Let TΓ

ℎ be the sets of simplicies that cut
through the interface, T𝑒

ℎ = T𝑖
ℎ ∪ TΓ

ℎ , and FΓ
ℎ to be the set of edges in TΓ

ℎ that do not lie on 𝜕Ω𝑒
ℎ.
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Figure 2. Example of an interior singular vertex in the Powell–Sabin refinement.

For each 𝑇 ∈ Tℎ, we denote by 𝑧𝑇 the incenter of 𝑇 . The Powell–Sabin refinement of T∘
ℎ (∘ ∈ {𝑖, 𝑒,Γ}),

denoted by T
𝑝𝑠,∘
ℎ , is constructed in three steps as follows: (1) similar to the Clough–Tocher refinement, we

connect the incenter 𝑧𝑇 of each 𝑇 ∈ T∘
ℎ with its vertices; (2) for each interior edge 𝑒 of T∘

ℎ, with 𝑒 = 𝜕𝑇1 ∩ 𝜕𝑇2,
we add a vertex (on 𝑒) by connecting the incenters 𝑧𝑇1 and 𝑧𝑇2 by a straight line; (3) for each boundary edge 𝑒
with 𝑒 ⊂ 𝜕𝑇 , we add a vertex by connecting the incenter 𝑧𝑇 with the edge midpoint of 𝑒.

Thus, we see that the Powell–Sabin refinement splits each triangle 𝑇 ∈ T∘
ℎ into six sub-triangles. Further,

this refinement produces many singular vertices, i.e., vertices that fall on exactly two straight lines in the mesh.
These vertices are exactly those produced in steps (2) and (3) of the above procedure. Let V

∘,𝐼
ℎ and V

∘,𝐵
ℎ be

the sets of interior and boundary singular vertices in T
𝑝𝑠,∘
ℎ , and set V∘

ℎ = V
∘,𝐼
ℎ ∪ V

∘,𝐵
ℎ the set of singular of

vertices of T
𝑝𝑠,∘
ℎ . For 𝑧 ∈ V

∘,𝐼
ℎ , we denote by T𝑧 ⊂ T

𝑝𝑠,∘
ℎ the set of four triangles that have 𝑧 as a vertex. We

write T𝑧 = {𝐾(1)
𝑧 , 𝐾

(2)
𝑧 , 𝐾

(3)
𝑧 , 𝐾

(4)
𝑧 }, labeled such that 𝐾

(𝑗)
𝑧 and 𝐾

(𝑗+1)
𝑧 have a common edge; see Figure 2. For

a boundary singular vertex 𝑧 ∈ V
∘,𝐵
ℎ we let T𝑧 = {𝐾(1)

𝑧 , 𝐾
(2)
𝑧 } ⊂ T

𝑝𝑠,∘
ℎ , the set of two triangles that have 𝑧 as a

vertex.
The following result states a weak continuity property of the divergence acting on piecewise smooth functions

at singular vertices. The proof can be found in, e.g., [17].

Proposition 5.1. For a piecewise smooth function 𝑞 with respect to T
𝑝𝑠,∘
ℎ (∘ ∈ {𝑖, 𝑒}), define

𝜃𝑧(𝑞) =
{︂
(𝑞1 − 𝑞2 + 𝑞3 − 𝑞4)(𝑧) if 𝑧 ∈ V

∘,𝐼
ℎ ,

(𝑞1 − 𝑞2)(𝑧) if 𝑧 ∈ V
∘,𝐵
ℎ ,

where 𝑞𝑗 = 𝑞|
𝐾

(𝑗)
𝑧

. Then there holds for all piecewise smooth 𝑣 ∈𝐻1
0 (Ω

∘
ℎ),

𝜃𝑧(div𝑣) = 0 ∀𝑧 ∈ V∘
ℎ.

Moreover, there holds for all piecewise smooth 𝑣 ∈𝐻1(Ω∘
ℎ),

𝜃𝑧(div𝑣) = 0 ∀𝑧 ∈ V
∘,𝐼
ℎ .

With an abuse of notation, for each 𝑇 ∈ Tℎ, we set 𝑇 𝑐𝑡 to be the set of three triangles obtained by connecting
the vertices of 𝑇 with its incenter. We also define 𝑇 𝑝𝑠 to be the local Powell–Sabin refinement of 𝑇 , i.e.,

𝑇 𝑝𝑠 = {𝐾 ∈ T
𝑝𝑠
ℎ : 𝐾 ⊂ 𝑇}.
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Figure 3. Depiction of a local Powell–Sabin triangulation 𝑇 𝑝𝑠.

For 𝑇 ∈ Tℎ, let 𝑧 ∈ Vℎ be a singular vertex with 𝑧 ∈ 𝑇 . Let {𝐾1, 𝐾2} ⊂ 𝑇 𝑝𝑠 be the set of two triangles that
have 𝑧 as a vertex, and let 𝜂𝑖 be the outward unit normal of 𝜕𝐾𝑖 orthogonal to the common edge 𝜕𝐾1 ∩ 𝜕𝐾2;
see Figure 3. We define the jump of a piecewise smooth function 𝑞 on 𝑇 at 𝑧 as

[[𝑞]](𝑧) = 𝑞|𝐾1(𝑧)𝜂1 + 𝑞|𝐾2(𝑧)𝜂2.

Thus, we see that a piecewise smooth function 𝑞 satisfies 𝜃𝑧(𝑞) = 0 if and only if [𝑞](𝑧) is single-valued.

5.1. Finite element method on Powell–Sabin splits

We define the finite element spaces

𝑉 𝑝𝑠
ℎ = {𝑣 ∈ P𝑐

1(T
𝑝𝑠,𝑒
ℎ ),

∫︁
𝜕Ω𝑖

ℎ

𝑣 · 𝑛 = 0}, 𝑄𝑝𝑠
ℎ = {𝑞 ∈ P0(T

𝑝𝑠,𝑒
ℎ ), 𝜃𝑧(𝑞) = 0 ∀𝑧 ∈ V

𝑒,𝐼
ℎ , 𝑞|Ω𝑖

ℎ
∈ 𝐿2

0(Ω
𝑖
ℎ)},

and the corresponding spaces with respect to the interior mesh:

𝑉 𝑝𝑠,𝑖
ℎ = P̊

𝑐

1(T
𝑝𝑠,𝑖
ℎ ), 𝑄𝑝𝑠,𝑖

ℎ = {𝑞 ∈ P̊0(T
𝑝𝑠,𝑖
ℎ ), 𝜃𝑧(𝑞) = 0 ∀𝑧 ∈ V𝑖

ℎ}.

Remark 5.2. There holds div𝑉 𝑝𝑠,𝑖
ℎ = 𝑄𝑝𝑠,𝑖

ℎ [33, 34].

We consider the analogous finite element method of (2.5), but defined on Powell–Sabin splits: find (𝑢ℎ, 𝑝ℎ) ∈
𝑉 𝑝𝑠

ℎ × 𝑄𝑝𝑠
ℎ such that

{︁𝑎ℎ(𝑢ℎ,𝑣ℎ) + 𝑏(𝑝ℎ,𝑣ℎ) = (𝑓 ,𝑣ℎ),
𝑏(𝑞ℎ,𝑢ℎ)− 1

1+𝛾 𝐽ℎ(𝑝ℎ, 𝑞ℎ) = 0 (5.1)

for all (𝑣ℎ, 𝑞ℎ) ∈ 𝑉 𝑝𝑠
ℎ × 𝑄𝑝𝑠

ℎ . Here, the bilinear form 𝑎ℎ(·, ·) is given by (2.3) but with

𝑗ℎ(𝑢,𝑣) =
∑︁

𝐾∈T𝑝𝑠,Γ
ℎ

1
ℎ𝐾

∫︁
𝐾Γ

𝑢 · 𝑣, jℎ(𝑢,𝑣) =
∑︁

𝐹∈F𝑝𝑠,Γ
ℎ

ℎ𝐹

∫︁
𝐹

[𝜕𝑛𝑢][𝜕𝑛𝑣],

where F
𝑝𝑠,Γ
ℎ is the set of edges in T

𝑝𝑠,Γ
ℎ that do not lie on 𝜕Ω𝑒

ℎ. The bilinear form 𝑏(·, ·) is defined in (2.4), and
the pressure ghost-stabilization term is

𝐽ℎ(𝑞, 𝑝) =
∑︁

𝐹∈F𝑝𝑠,Γ
ℎ

ℎ𝐹

∫︁
𝐹

[𝑞][𝑝].
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Lemma 5.3. With a slight abuse of notation, let T
𝑐𝑡,𝑒
ℎ be the Clough–Tocher refinement of T𝑒

ℎ obtained by
connecting the vertices of each triangle with its incenter. Likewise, let ̃︀T𝑐𝑡,𝑖

ℎ be defined as in (2.6) but with
incenter refinement, and set

̃︀Ω𝑐𝑡,𝑖
ℎ = Int

⎛⎜⎝ ⋃︁
𝑇∈̃︀T𝑐𝑡,𝑖

ℎ

𝐾̄

⎞⎟⎠ .

Then if 𝑢 ∈ 𝑉 𝑝𝑠
ℎ satisfies (5.1), there holds div𝑢ℎ = 0 in ̃︀Ω𝑐𝑡,𝑖

ℎ .

Proof. For any 𝑞 ∈ P0(T
𝑐𝑡,𝑒
ℎ ) with 𝑞|Ω𝑖

ℎ
∈ 𝐿2

0(Ω
𝑖
ℎ), there holds 𝑞 ∈ 𝑄𝑝𝑠

ℎ . Consequently, we can apply steps (1)–(3)
in the proof of Lemma 2.5 verbatim to conclude∫︁

𝐾

div𝑢ℎ = 0 ∀𝐾 ∈ ̃︀T𝑐𝑡,𝑖
ℎ . (5.2)

Next, fix a 𝐾 ∈ ̃︀T𝑐𝑡,𝑖
ℎ , and let 𝑧 ∈ V

𝑖,𝐼
ℎ be the singular vertex in T

𝑝𝑠,𝑖
ℎ such that 𝑧 ∈ 𝐾̄. Let

{𝐾(1)
𝑧 , 𝐾

(2)
𝑧 , 𝐾

(3)
𝑧 , 𝐾

(4)
𝑧 } ⊂ T

𝑝𝑠,𝑖
ℎ be the triangles in the Powell–Sabin refinement that have 𝑧 as a vertex. Let

𝐾† ∈ ̃︀T𝑐𝑡,𝑖
ℎ be an arbitrary triangle satisfying 𝐾† ∩ 𝐾

(𝑗)
𝑧 = ∅ (𝑗 = 1, 2, 3, 4), and set

𝑞 =

⎧⎨⎩div𝑢ℎ on 𝐾
(𝑗)
𝑧 𝑗 = 1, 2, 3, 4,

𝑐 on 𝐾†,
0 otherwise,

where 𝑐 ∈ R is chosen such that
∫︀
Ω𝑖

ℎ
𝑞 = 0. By Proposition 5.1, there holds 𝑞 ∈ 𝑄𝑝𝑠

ℎ . We use (5.1) and (5.2) to
obtain

4∑︁
𝑗=1

∫︁
𝐾

(𝑗)
𝑧

|div𝑢ℎ|2 = −𝑐

∫︁
𝐾†

div𝑢ℎ = 0.

Because 𝐾 ⊂ ∪4
𝑗=1𝐾

(𝑗)
𝑧 , we conclude div𝑢ℎ = 0 in 𝐾, and therefore div𝑢ℎ = 0 in ̃︀Ω𝑐𝑡,𝑖

ℎ . �

5.2. Stability analysis on Powell–Sabin splits

In this section, we derive a inf–sup condition for the finite element pair 𝑉 𝑝𝑠,𝑖
ℎ ×𝑄𝑝𝑠,𝑖

ℎ on Ω𝑖
ℎ that is uniformly

bounded with respect to the discretization parameter ℎ. As a first step, we state the degrees of freedom (DOFs)
of the finite element spaces given in [33,34].

Lemma 5.4. A function 𝑣 ∈ 𝑉 𝑝𝑠,𝑖
ℎ is uniquely determined by the values

𝑣(𝑎) for all vertices 𝑎 in T𝑖
ℎ,∫︁

𝐹

(𝑣 · 𝑛𝐹 ) for all edges 𝐹 in T𝑖
ℎ,

[[div𝑣]](𝑧) for all 𝑧 ∈ V𝑖
ℎ,∫︁

𝑇

(div𝑣)𝑝 ∀𝑝 ∈ P̊0(𝑇 𝑐𝑡) for all 𝑇 ∈ T𝑖
ℎ,

where 𝑛𝐹 is a unit normal of 𝐹 . A function 𝑞 ∈ 𝑄𝑝𝑠,𝑖
ℎ is uniquely determined by the values

[[𝑞]](𝑧) for all 𝑧 ∈ V𝑖
ℎ,∫︁

𝑇

𝑞𝑝 ∀𝑝 ∈ P0(𝑇 𝑐𝑡) for all 𝑇 ∈ T𝑖
ℎ.
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As an intermediate step in the stability analysis, we first show an inf–sup stability result, but with 𝑄𝑝𝑠,𝑖
ℎ

replaced by piecewise constants with respect to the triangulation T𝑖
ℎ.

Lemma 5.5. There exists 𝛽1 > 0 independent of ℎ such that

𝛽1‖𝑞‖𝐿2(Ω𝑖
ℎ)

≤ sup
𝑣∈𝑉 𝑝𝑠,𝑖

ℎ ∖{0}

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖∇𝑣‖𝐿2(Ω𝑖
ℎ)

∀𝑞 ∈ P̊0(T𝑖
ℎ).

Proof. Let 𝑞 ∈ P̊0(Tℎ). Using the 𝑃2 − 𝑃0 stability result in [13], there exists 𝑣 ∈ P𝑐
2(T

𝑖
ℎ) satisfying

𝛽0‖𝑞‖𝐿2(Ω𝑖
ℎ)

≤

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

, (5.3)

where 𝛽0 is uniformly bounded below with respect to ℎ.
We then use Lemma 5.4 to uniquely define 𝑣 ∈ 𝑉 𝑝𝑠,𝑖

ℎ by the conditions

𝑣(𝑎) = 𝑣(𝑎) for all vertices 𝑎 in T𝑖
ℎ,∫︁

𝐹

(𝑣 · 𝑛𝐹 ) =
∫︁

𝐹

(𝑣 · 𝑛𝐹 ) for all edges 𝐹 in T𝑖
ℎ,

[[div𝑣]](𝑧) = [[div𝑣]](𝑧) = 0 for all 𝑧 ∈ V𝑖
ℎ,∫︁

𝑇

(div𝑣)𝑝 =
∫︁

𝑇

(div𝑣)𝑝 ∀𝑝 ∈ P̊0(𝑇 𝑐𝑡) for all 𝑇 ∈ T𝑖
ℎ.

Because 𝑞 is piecewise constant on T𝑖
ℎ, the second condition implies∫︁

𝑇

(div𝑣)𝑞 =
∫︁

𝑇

(div𝑣)𝑞 ∀𝑇 ∈ T𝑖
ℎ,

and so ∫︁
Ω𝑖

ℎ

(div𝑣)𝑞 =
∫︁
Ω𝑖

ℎ

(div𝑣)𝑞. (5.4)

A standard scaling shows ‖𝑣‖𝐻1(Ω𝑖
ℎ)

≤ 𝐶0‖𝑣‖𝐻1(Ω𝑖
ℎ)

with 𝐶0 > 0 independent of ℎ. This estimate, along with
(5.3)–(5.4) implies the result with 𝛽1 = 𝛽0/𝐶0. �

Theorem 5.6. There exists 𝛽* > 0 independent of ℎ such that

𝛽*‖𝑞‖𝐿2(Ω𝑖
ℎ)

≤ sup
𝑣∈𝑉 𝑝𝑠,𝑖

ℎ ∖{0}

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

∀𝑞 ∈ 𝑄𝑝𝑠,𝑖
ℎ . (5.5)

Proof. Fix 𝑞 ∈ 𝑄𝑝𝑠,𝑖
ℎ , and let 𝑞 ∈ P̊0(T𝑖

ℎ) be the 𝐿2-projection of 𝑞 onto P̊0(T𝑖
ℎ), i.e.,

𝑞 =
1
|𝑇 |

∫︁
𝑇

𝑞 ∀𝑇 ∈ T𝑖
ℎ.

Using Lemma 5.4, we define 𝑤 ∈ 𝑉 𝑝𝑠,𝑖
ℎ by the conditions

𝑤(𝑎) = 0 for all vertices 𝑎 in T𝑖
ℎ,∫︁

𝐹

(𝑤 · 𝑛𝐹 ) = 0 for all edges 𝐹 in T𝑖
ℎ,

[[div𝑤]](𝑧) = [[(𝑞 − 𝑞)]](𝑧) = [[𝑞]](𝑧) for all 𝑧 ∈ V𝑖
ℎ,∫︁

𝑇

(div𝑤)𝑝 =
∫︁

𝑇

(𝑞 − 𝑞)𝑝 ∀𝑝 ∈ P̊0(𝑇 𝑐𝑡) for all 𝑇 ∈ T𝑖
ℎ.
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Because div𝑤 − (𝑞 − 𝑞) ∈ 𝑄𝑝𝑠,𝑖
ℎ , the last two conditions and the identity

∫︀
𝑇
(div𝑤) = 0 =

∫︀
𝑇
(𝑞 − 𝑞) imply

div𝑤 = 𝑞 − 𝑞 by Lemma 5.4. Moreover, scaling shows ‖𝑤‖𝐻1(Ω𝑖
ℎ)

≤ 𝐶1‖𝑞 − 𝑞‖𝐿2(Ω𝑖
ℎ)

with 𝐶1 > 0 independent
of ℎ. This implies

𝐶−1
1 ‖𝑞 − 𝑞‖𝐿2(Ω𝑖

ℎ)
≤

∫︀
Ω𝑖

ℎ
(𝑞 − 𝑞)(𝑞 − 𝑞)

‖𝑤‖𝐻1(Ω𝑖
ℎ)

=

∫︀
Ω𝑖

ℎ
(𝑞 − 𝑞)𝑞

‖𝑤‖𝐻1(Ω𝑖
ℎ)

=

∫︀
Ω𝑖

ℎ
(div𝑤)𝑞

‖𝑤‖𝐻1(Ω𝑖
ℎ)

≤ sup
𝑣∈𝑉 𝑝𝑠,𝑖

ℎ ∖{0}

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

·

Finally, using this estimate and Lemma 5.5 we conclude

‖𝑞‖𝐿2(Ω𝑖
ℎ)

≤ ‖𝑞 − 𝑞‖𝐿2(Ω𝑖
ℎ)

+ ‖𝑞‖𝐿2(Ω𝑖
ℎ)

≤ ‖𝑞 − 𝑞‖𝐿2(Ω𝑖
ℎ)

+ 𝛽−1
1

(︃
sup

𝑣∈𝑉 𝑝𝑠,𝑖
ℎ ∖{0}

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

+ ‖𝑞 − 𝑞‖𝐿2(Ω𝑖
ℎ)

)︃

≤
(︀
𝐶1(1 + 𝛽−1

1 ) + 𝛽−1
1

)︀
sup

𝑣∈𝑉 𝑝𝑠,𝑖
ℎ ∖{0}

∫︀
Ω𝑖

ℎ
(div𝑣)𝑞

‖𝑣‖𝐻1(Ω𝑖
ℎ)

.

Thus, (5.5) holds with 𝛽* =
(︁
𝐶1(1 + 𝛽−1

1 ) + 𝛽−1
1

)︁−1

. �

From the inf–sup stability result in Theorem 5.6, we obtain the following stability result for the finite element
method (5.1). Since its proof is essentially the same as the proof of Theorem 3.5, it is omitted.

Theorem 5.7. There exists a unique (𝑢ℎ, 𝑝ℎ) ∈ 𝑉 𝑝𝑠
ℎ × 𝑄𝑝𝑠

ℎ satisfying (5.1). Moreover,

‖𝑝ℎ‖𝐿2(Ω) ≤ 𝐶(1 + 𝛾)
1
2 ‖𝑓‖𝑉 ′

ℎ
, ‖𝑢ℎ‖𝑉ℎ

≤ 𝐶‖𝑓‖𝑉 ′
ℎ
,

for some 𝐶 > 0 independent of 𝛾, ℎ, and the position of Γ in the mesh.

5.3. Convergence analysis on Powell–Sabin splits

Here, we adopt the arguments of Section 4 to the finite element method (5.1) defined on Powell–Sabin
splits. The key result is the following lemma which establishes the approximation properties of the discrete
divergence–free subspace.

Lemma 5.8. Let
𝑍𝑝𝑠

ℎ = {𝑣 ∈ 𝑉 𝑝𝑠
ℎ : div𝑣 = 0 in Ω𝑒

ℎ},

and let 𝑢 be the divergence–free extension of the solution to (2.1). There holds

inf
𝑣∈𝑍ℎ

‖∇(𝑢− 𝑣)‖𝐻1(𝑇 ) ≤ 𝐶ℎ𝑇 |𝑢|𝐻2(𝜔𝑇 ) ∀𝑇 ∈ T𝑒
ℎ.

Proof. Let 𝐼ℎ𝑢 ∈ P𝑐
1(T

𝑒
ℎ) denote the linear Scott–Zhang interpolant of 𝑢 with respect to T𝑒

ℎ. We define define
𝑣 ∈ 𝑉 𝑝𝑠

ℎ uniquely via the conditions

𝑣(𝑎) = (𝐼ℎ𝑢)(𝑎) for all vertices 𝑎 in T𝑒
ℎ,∫︁

𝐹

(𝑣 · 𝑛𝐹 ) =
∫︁

𝐹

(𝑢 · 𝑛𝐹 ) for all edges 𝐹 in T𝑒
ℎ,

[[div𝑣]](𝑧) = 0 for all 𝑧 ∈ V𝑒
ℎ,∫︁

𝑇

(div𝑣)𝑝 = 0 ∀𝑝 ∈ P̊0(𝑇 𝑐𝑡) for all 𝑇 ∈ T𝑒
ℎ.
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Using the last three conditions and the inclusion div𝑣 ∈ 𝑄𝑝𝑠
ℎ , we conclude div𝑣 = 0 by Lemma 5.4. Furthermore,

noting (𝑣 − 𝐼ℎ𝑢) ∈ 𝑉 𝑝𝑠
ℎ , there holds by scaling and properties of the Scott–Zhang interpolant,

‖∇(𝑣 − 𝐼ℎ𝑢)‖2𝐿2(𝑇 ) ≤ 𝐶

⎛⎜⎜⎜⎝ℎ−2
𝑇

⃒⃒⃒⃒∫︁
𝜕𝑇

(𝑣 − 𝐼ℎ𝑢) · 𝑛
⃒⃒⃒⃒2

+ ℎ2
𝑇

∑︁
𝑧∈V𝑒

ℎ

𝑧∈𝑇

⃒⃒
[[div(𝑣 − 𝐼ℎ𝑢)]](𝑧)

⃒⃒2

+ sup
𝑝∈P̊0(𝑇 𝑐𝑡)

‖𝑝‖𝐿2(𝑇 )=1

⃒⃒⃒⃒∫︁
𝑇

(div(𝑣 − 𝐼ℎ𝑢))𝑝
⃒⃒⃒⃒2⎞⎟⎟⎟⎠

= 𝐶

⎛⎜⎜⎜⎝ℎ−2
𝑇

⃒⃒⃒⃒∫︁
𝜕𝑇

(𝑢− 𝐼ℎ𝑢) · 𝑛
⃒⃒⃒⃒2

+ sup
𝑝∈P̊0(𝑇 𝑐𝑡)

‖𝑝‖𝐿2(𝑇 )=1

⃒⃒⃒⃒∫︁
𝑇

div(𝑢− 𝐼ℎ𝑢)𝑝
⃒⃒⃒⃒2⎞⎟⎟⎟⎠

≤ 𝐶
(︁
ℎ−1

𝑇 ‖𝑢− 𝐼ℎ𝑢‖2𝐿2(𝜕𝑇 ) + ‖∇(𝑢− 𝐼ℎ𝑢)‖2𝐿2(𝑇 )

)︁
≤ 𝐶

(︁
‖∇(𝑢− 𝐼ℎ𝑢)‖2𝐿2(𝑇 ) + ℎ−2

𝑇 ‖𝑢− 𝐼ℎ𝑢‖2𝐿2(𝑇 )

)︁
≤ 𝐶ℎ2

𝑇 |𝑢|2𝐻2(𝜔𝑇 ).

Thus,
‖∇(𝑢− 𝑣)‖𝐿2(𝑇 ) ≤ ‖∇(𝑢− 𝐼ℎ𝑢)‖𝐿2(Ω) + ‖∇(𝑣 − 𝐼ℎ𝑢)‖𝐿2(𝑇 ) ≤ 𝐶ℎ𝑇 |𝑢|𝐻2(𝜔𝑇 ).

�

With the approximation properties of the divergence–free subspace established, we can use the same argu-
ments in the proof of Theorem 4.5 (with 𝑘 = 1) to derive a first-order error estimate.

Theorem 5.9. Let (𝑢ℎ, 𝑝ℎ) ∈ 𝑉 𝑝𝑠
ℎ × 𝑄𝑝𝑠

ℎ be the solution to (5.1). Then the estimate (4.6) holds with 𝑘 = 1.

6. Numerical Experiments

In this section, we perform some simple numerical experiments and compare the results with the theory
developed in the previous sections. In the set of experiments, we take the domain to be the circle with center
(0.5, 0.5) and radius

√
0.2:

Ω = {𝑥 ∈ R2 : (𝑥1 − 0.5)2 + (𝑥2 − 0.5)2 < 0.2}.
The data is chosen such that the exact solution is

𝑢 =
(︂

2(𝑥2
1 − 𝑥1 + 0.25 + 𝑥2

2 − 𝑥2)(2𝑥2 − 1)
−2(𝑥2

1 − 𝑥1 + 0.25 + 𝑥2
2 − 𝑥2)(2𝑥1 − 1)

)︂
, 𝑝 = 103

(︀
10(𝑥2

1 − 𝑥2
2)

2 + 𝑐
)︀
, (6.1)

with normalizing constant 𝑐 ∈ R. We take the covering domain 𝑆 = (0, 1)2, the unit square, and consider a
sequence of type I triangulations Tℎ defined on 𝑆.

We compute the finite element method (2.5) on Clough–Tocher splits with 𝑘 = 2 for a decreasing set of mesh
parameters ℎ and various grad–div parameters 𝛾. Approximate numerical integration rules on cut elements and
on the boundary Γ are defined using isoparametric mappings similar to [27].

The resulting 𝐻1 velocity errors and 𝐿2 pressure errors are given in Figure 4, and the 𝐿2 divergence error of
the computed velocities are presented in Figure 5. These error plots show asymptotic optimal order (quadratic)
convergence rates for both the discrete velocity and pressure solutions for fixed grad–div parameter 𝛾 and fixed
Nitsche parameter 𝜂. The figures also list the errors with grad–div parameter 𝛾 = 10ℎ−1 for both constant
Nitsche parameter 𝜂 = 100 and mesh-dependent Nitsche parameter 𝜂 = 10ℎ−1. The results indicate that the
method performs best, with respect to errors, if both penalty parameters scale like 𝑂(ℎ−1).
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Figure 4. Errors on a sequence of refined triangulations for the velocity (left) and pressure
(right) with different grad–div parameters.

Figure 5. Left: Divergence errors on a sequence of refined triangulations for the velocity with
different grad–div parameters. Right: Plot of |div𝑢ℎ| with ℎ = 1/40, 𝛾 = 𝜂 = 10ℎ−1.

Appendix A.

A.1. Proof of (4.4)

The approximation property (4.4) is derived by constructing a Fortin operator using the recent results in [25].
We consider the three-dimensional case; the analogous 2D arguments are similar (and simpler).

For 𝑇 ∈ T𝑒
ℎ, let 𝑇 𝑐𝑡 denote the local triangulation of four (sub)tetrahedra, obtained by performing a Clough–

Tocher (or Alfeld) split of 𝑇 . We also define the smooth space

𝑀̊𝑘+1(𝑇 𝑐𝑡) = {𝜅 ∈ P̊
𝑐

𝑘+1(𝑇
𝑐𝑡) : curl𝜅 ∈ P̊

𝑐

𝑘(𝑇
𝑐𝑡)}.
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Lemma A.1. There exists an operator Π0,𝑇 :𝐻1(𝑇 ) → P̊
𝑐

𝑘(𝑇
𝑐𝑡) uniquely determined by the conditions∫︁

𝑇

(Π0,𝑇𝑣) · curl𝜅 =
∫︁

𝑇

𝑣 · curl𝜅 ∀𝜅 ∈ 𝑀̊𝑘+1(𝑇 𝑐𝑡), (A.1a)∫︁
𝑇

(div(Π0,𝑇𝑣))𝜅 =
∫︁

𝑇

(div𝑣)𝜅 ∀𝜅 ∈ P̊𝑘−1(𝑇 𝑐𝑡). (A.1b)

Moreover,
‖∇Π0,𝑇𝑣‖𝐿2(𝑇 ) ≤ 𝐶

(︀
‖∇𝑣‖𝐿2(𝑇 ) + ℎ−1

𝑇 ‖𝑣‖𝐿2(𝑇 )

)︀
∀𝑣 ∈𝐻1(𝑇 ).

Proof. The existence of such an operator uniquely determined by (A.1) follows Lemma 4.16 from ref. [25].
It remains to show the stability estimate. This is done via a scaling argument.
To ease presentation, set 𝑣𝑇 = Π0,𝑇𝑣. Let 𝑇 = { 𝑥

ℎ𝑇
: 𝑥 ∈ 𝑇} be a dilation of 𝑇 , and define 𝑣𝑇 ∈ P̊𝑘(𝑇 𝑐𝑡) as

𝑣𝑇 (𝑥̂) = 𝑣𝑇 (𝑥) with 𝑥 = ℎ𝑇 𝑥̂, so that 𝜕𝑣𝑇 = ℎ−1
𝑇 𝜕𝑣𝑇 . In particular, div𝑣𝑇 = ℎ−1

𝑇
̂︁div𝑣𝑇 and curl𝜅 = ℎ−1

𝑇
̂︂curl 𝜅̂.

Using a change of variables and equivalence of norms, we compute

ℎ−1
𝑇 ‖∇𝑣𝑇 ‖2𝐿2(𝑇 ) = ‖∇̂𝑣𝑇 ‖2𝐿2(𝑇 )

≈ sup
𝜅̂∈𝑀̊𝑘+1(𝑇 𝑐𝑡)∖{0}

⃒⃒⃒⃒
⃒
∫︀

𝑇
𝑣𝑇 · ̂︂curl 𝜅̂

‖̂︂curl𝜅̂‖𝐿2(𝑇 )

⃒⃒⃒⃒
⃒
2

+ sup
𝜅̂∈P̊𝑘−1(𝑇 𝑐𝑡)∖{0}

⃒⃒⃒⃒
⃒
∫︀

𝑇
̂︁div𝑣𝑇 𝜅̂

‖𝜅̂‖𝐿2(𝑇 )

⃒⃒⃒⃒
⃒
2

= sup
𝜅̂∈𝑀̊𝑘+1(𝑇 𝑐𝑡)∖{0}

⃒⃒⃒⃒
⃒ℎ−3

𝑇

∫︀
𝑇
𝑣𝑇 · (ℎ𝑇 curl𝜅)

ℎ
−1/2
𝑇 ‖curl𝜅‖𝐿2(𝑇 )

⃒⃒⃒⃒
⃒
2

+ sup
𝜅∈P̊𝑘−1(𝑇 𝑐𝑡)∖{0}

⃒⃒⃒⃒
⃒ℎ−3

𝑇

∫︀
𝑇
(ℎ𝑇div𝑣𝑇 )𝜅

ℎ
−3/2
𝑇 ‖𝜅‖𝐿2(𝑇 )

⃒⃒⃒⃒
⃒
2

= ℎ−3
𝑇 sup

𝜅̂∈𝑀̊𝑘+1(𝑇 𝑐𝑡)∖{0}

⃒⃒⃒⃒ ∫︀
𝑇
𝑣 · curl𝜅

‖curl𝜅‖𝐿2(𝑇 )

⃒⃒⃒⃒2
+ ℎ−1

𝑇 sup
𝜅∈P̊𝑘−1(𝑇 𝑐𝑡)∖{0}

⃒⃒⃒⃒ ∫︀
𝑇
(div𝑣)𝜅

‖𝜅‖𝐿2(𝑇 )

⃒⃒⃒⃒2
≤ ℎ−3

𝑇 ‖𝑣‖2𝐿2(𝑇 ) + ℎ−1
𝑇 ‖div𝑣‖2𝐿2(𝑇 ).

�

Set Π0 : 𝐻1(Ω𝑒) → 𝑉ℎ such that Π0|𝑇 = Π0,𝑇 for all 𝑇 ∈ T𝑒
ℎ. Let 𝐼ℎ : 𝐻1(Ω) → P𝑐

𝑘(T
𝑒
ℎ) ⊂ 𝑉ℎ be the 𝑘th

degree Scott–Zhang interpolant which satisfies (𝑘 ≥ 3) [35]∫︁
𝐹

𝐼ℎ𝑣 =
∫︁

𝐹

𝑣 for all faces in T𝑒
ℎ ∀𝑣 ∈𝐻1(Ω𝑒

ℎ). (A.2)

Finally, we set Πℎ :𝐻1(Ω𝑒
ℎ) → 𝑉ℎ as

Πℎ = 𝐼ℎ + Π0(1 − 𝐼ℎ),

where 1 is the identity operator.

Proposition A.2. There holds, for all 𝑣 ∈𝐻1(Ω𝑒),∫︁
Ω𝑒

ℎ

(div(Πℎ𝑣))𝑞 =
∫︁
Ω𝑒

ℎ

(div𝑣)𝑞 ∀𝑞 ∈ P𝑘−1(T
𝑐𝑡,𝑒
ℎ ).

Proof. Fix 𝑞 ∈ P𝑘−1(T
𝑐𝑡,𝑒
ℎ ), and let 𝑞 ∈ P0(T𝑒

ℎ) be its 𝐿2 projection onto P0(T𝑒
ℎ). Note that (𝑞−𝑞)|𝑇 ∈ P̊𝑘−1(𝑇 𝑐𝑡)

for all 𝑇 ∈ T𝑒
ℎ. We then write, using the divergence theorem, (A.1) and (A.2),∫︁
Ω𝑒

(div(Πℎ𝑣))𝑞 =
∫︁
Ω𝑒

ℎ

(div(𝐼ℎ𝑣))(𝑞 − 𝑞) +
∫︁
Ω𝑒

ℎ

div(Π0(1 − 𝐼ℎ)𝑣)(𝑞 − 𝑞) +
∫︁
Ω𝑒

ℎ

(div(𝐼ℎ𝑣))𝑞

=
∫︁
Ω𝑒

ℎ

(div(𝐼ℎ𝑣))(𝑞 − 𝑞) +
∫︁
Ω𝑒

ℎ

div((1 − 𝐼ℎ)𝑣)(𝑞 − 𝑞) +
∫︁
Ω𝑒

ℎ

(div𝑣)𝑞

=
∫︁
Ω𝑒

ℎ

(div𝑣)𝑞.

�



164 H. LIU ET AL.

The estimate (4.4) now follows from the following theorem.

Theorem A.3. There holds for all divergence–free 𝑢 ∈𝐻1(Ω𝑒
ℎ)

inf
𝑤ℎ∈𝑍ℎ

‖∇(𝑢−𝑤ℎ)‖𝐿2(𝑇 ) ≤ 𝐶(‖∇(𝑢− 𝐼ℎ𝑢)‖𝐿2(𝑇 ) + ℎ−1
𝑇 ‖𝑢− 𝐼ℎ𝑢‖𝐿2(𝑇 )) ∀𝑇 ∈ T𝑒

ℎ.

Therefore, if in addition 𝑢 ∈𝐻𝑘+1(Ω𝑒
ℎ), then

inf
𝑤ℎ∈𝑍ℎ

‖∇(𝑢−𝑤ℎ)‖𝐿2(𝑇 ) ≤ 𝐶ℎ𝑘
𝑇 |𝑢|𝐻𝑘+1(𝜔𝑇 ).

Proof. If 𝑢 is divergence–free, then Πℎ𝑢 ∈ 𝑍ℎ. Therefore by the definition of Πℎ and the 𝐻1-stability of this
operator,

inf
𝑤ℎ∈𝑍ℎ

‖∇(𝑢−𝑤ℎ)‖𝐿2(𝑇 ) ≤ ‖∇(𝑢− Πℎ𝑢)‖𝐿2(𝑇 )

≤ ‖∇(𝑢− 𝐼ℎ𝑢)‖𝐿2(𝑇 ) + ‖∇(Π0(1 − 𝐼ℎ)𝑢)‖𝐿2(𝑇 )

≤ 𝐶(‖∇(𝑢− 𝐼ℎ𝑢)‖𝐿2(𝑇 ) + ℎ−1
𝑇 ‖𝑢− 𝐼ℎ𝑢‖𝐿2(𝑇 )).

We then use the approximation properties of the Scott–Zhang interpolant to obtain the result. �
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[9] M. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods
Eng. 46 (1999) 131–150.

[10] E. Burman, S. Claus, P. Hansbo, M.G. Larson, and A. Massing, CutFEM: discretizing geometry and partial differential
equations. Int. J. Numer. Methods Eng. 104 (2015) 472–501.

[11] L. Cattaneo, L. Formaggia, G.F. Iori, A. Scotti and P. Zunino, Stabilized extended finite elements for the approximation of
saddle point problems with unfitted interfaces. Calcolo 52 (2015) 123–152.

[12] E. Burman and P. Hansbo, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes problem,
ESAIM: M2AN 48 (2014) 859–874.

[13] J. Guzman and M. Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comp. 87 (2018)
20891–2112.

[14] P. Hansbo, M.G. Larson and S. Zahedi, A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85
(2014) 90–114.

[15] M. Kirchhart, S. Gross and A. Reusken, Analysis of an XFEM discretization for Stokes interface problems. SIAM J. Sci.
Comput. 38 (2016) A1019–A1043.
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