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A CUTFEM DIVERGENCE-FREE DISCRETIZATION FOR THE STOKES
PROBLEM

HAORAN L1U!, MICHAEL NEILANY* AND MAXIM OLSHANSKII?

Abstract. We construct and analyze a CutFEM discretization for the Stokes problem based on the
Scott—Vogelius pair. The discrete piecewise polynomial spaces are defined on macro-element triangu-
lations which are not fitted to the smooth physical domain. Boundary conditions are imposed wvia
penalization through the help of a Nitsche-type discretization, whereas stability with respect to small
and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms.
We show stability of the scheme as well as a divergence—free property of the discrete velocity outside an
O(h) neighborhood of the boundary. To mitigate the error caused by the violation of the divergence—
free condition, we introduce local grad—div stabilization. The error analysis shows that the grad-div
parameter can scale like O(hfl), allowing a rather heavy penalty for the violation of mass conservation,
while still ensuring optimal order error estimates.
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1. INTRODUCTION

Originating from first principles, mass conservation is a favorable property for numerical solutions to equations
governing the motion of fluids. For incompressible viscous fluids there is a recent effort in developing Galerkin
methods that conserve the mass through enforcing the discrete velocity to be divergence—free [1-6]. In many
cases however, the exactly divergence—free approximations come at a price of high-order spaces or confined to
certain triangulations. This extra complexity makes it difficult, if at all possible, to apply them for modeling of
flows with additional features such as propagating interfaces and free surfaces exhibiting large deformations. One
way to address the difficulty of computing flows with finite elements in heavily deforming volumes is to uncouple
the volume triangulation from interface/boundary tracking. For sharp interface representations (e.g. by a level-
set method [7] in contrast to diffuse-interface approach [8]) this suggests using geometrically unfitted finite
element (FE) methods, e.g. XFEM [9] or cutFEM [10]. While unfitted variants of equal order pressure-velocity,
Taylor-Hood and several other well-known finite element methods were studied recently [11-16], unfitted mass-
conserving elements for primitive-variable formulations of the Stokes or incompressible Navier—Stokes equations
are not well developed yet.
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This brings our attention to the Scott—Vogelius (SV) finite element pair [17] of continuous polynomial elements
of degree k for velocity and discontinuous polynomial elements of degree (k — 1) for pressure. The SV element is
known to be inf-sup stable [18] for shape-regular triangulations of R? and k > 4 provided the triangulation does
not contain nearly singular vertices [17,19]. For R? the situation is more subtle and for a specific structured family
of triangulations, stability is known for & > 6 [20]. On triangulations resulting from a barycenteric (or Clough—
Tocher/Alfeld) refinement of a macro triangulation the stability, however, follows in R? for k > d [4,6,21].

Since the divergence of any FE velocity field belong to the pressure FE space, a standard mixed formulation
of the Stokes problem using the SV element delivers pointwise divergence—free solutions, providing us with an
example of a stable and relatively simple mass conserving finite element method.

A geometrically unfitted variant of the SV finite element in two dimensions was considered for the first time
in [22]. In that paper, the authors constructed a boundary correction scheme, where the Stokes problem is solved
on a strict interior domain, and boundary data is transferred, within a Nitsche-type formulation, via a Taylor
expansion. Here we take a different approach: A boundary or interface condition on a surface cutting through
a background mesh is imposed with the help of the Nitsche method [23], while stability with respect to small
and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms. This
renders our approach as the cut-Scott—Vogelius finite element method. The stability of pressure for cut elements
requires an additional ghost penalty term defined on a thin strip of elements in a proximity of the boundary.
Since this additional stabilizing term alters the divergence-condition in the mixed formulation, the resulting
velocity is not divergence—free, strictly speaking. Nevertheless, we show that pointwise mass conservation holds
in the volume occupied by the fluid except in an O(h) strip. Furthermore, to minimize the error caused by the
violation of the divergence—free condition, we introduce local grad—div stabilization [24]. Our analysis reveals
that the grad—div parameter can scale with h~!, allowing a rather heavy penalty for the violation of diva = 0
in the strip and still ensuring an optimal order error estimate.

The remainder of paper is organized as follows. Section 2 is preparatory and collects necessary preliminaries
on meshing and FE spaces definitions. It proceeds with the formulation of finite element method and the proof
of an internal mass-conservation property. Section 3 addresses stability of the finite element formulation. In
section 4 we prove our main result about the convergence of the method. We extend our method and analysis
to two-dimensional Powell-Sabin splits in Section 5, and give results of a few numerical examples in Section 6.

2. PRELIMINARIES AND FINITE ELEMENT METHOD

Consider the Stokes problem on a bounded, contractible, and open domain Q C R? with smooth boundary:

—Au+Vp=7Ff in €, (2.1a)
divu =0 in Q, (2.1b)
u=0 on I' := 90Q. (2.1¢)

To formulate an unfitted finite element method for (2.1) we embed € into an open, polytopal domain S, i.e.
Q C S, and let T}, be a simplicial shape-regular triangulation of S. For simplicity, we assume that T7, is quasi-
uniform. We denote by T¢" the resulting Clough-Tocher/Alfeld (CT) triangulation obtained by connecting the
vertices of each element in T}, with its barycenter [25,26]. Let

T ={TeT),:TcCQ}, h=mt| | J T (2.2)
TeT;

be the set of interior simplices and interior domain, respectively.
We then define the analogous set with respect to the CT refinement (cf. Fig. 1):

T ={KeT: KCT, 3T €T}
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FIGURE 1. Left: Example of an interior Clough—Tocher mesh ‘J'Zt7i (blue) and boundary Clough—
Tocher mesh T¢""" (red). Right: The same mesh, but with T\ T" (green) and T (blue).

Remark 2.1. Note that
¢ =1Int U K|,
KeTt?
since we include in ‘J’Zt’i only those micro-triangles which belong to internal macro-triangles, there can be K € T¢!
which are strictly inside Q but not in T, i.e., the inclusion T¢"* € {K € T§t : K C Q} is generally strict.

On the interior domain, we define ¥}, to be the set of (d — 1)-dimensional interior faces of the unrefined
triangulation T} ; that is, F € ¢ provided there exists two distinct simplices 71, T> € T}, such that F = 11N T5.
We also let

T :={T € T), : measq_, (T NT) > 0}, Q) =Int U T
TeT)

to be the set of simplices that cut through the interface I' and the corresponding domain, respectively.
Define

f;::{TE‘Th:TG‘TfLorTGU'}:}, 7 = Int UT
TeTs

to be the set of triangles that either are interior or cut through the interface I' and the corresponding domain,
respectively. We refer to these quantities as the exterior triangulation and exterior domain, respectively. The
analogous sets with respect to the CT refinement are given by

Tl = {KeTgt: KCT, 3T € Th},
T ={KeT: KcT, 3T € T}
Note that now we have

Qg:Int U K|, and Qf =Int U K
KeTehh KeTihe
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Remark 2.2. Note that, in general, there exists K & ‘J';t’r such that K N Q = (. Consequently, in the finite
element method presented below, there exists active basis functions with support strictly outside the physical
domain 2.

We define the sets of faces:
g} :={F: Fisafacein T}, F ¢ 0Q5},
Fp :={F: F is an interior face in T} },
F' = {F: Fisafacein T;"", F ¢ 905},
3"}?’6 :={F: Fis an interior face in ‘Tff’e}.
For K € ‘J’Zt’r, we define Kp = KNI, so that Y ;- ee.r |Kp| = |I|. For a simplex K, we set hi = diam(hg).
h
Note that, because of the quasi-uniformity and shape-regularity assumption, there holds hx ~ h := maxrcg, hr
for all K € T7°° and hp = h for all F € F3°. We denote by n an outward normal of a domain which will be
clear from its context. The constant C' (with or without subscripts) will denote a generic positive constant that

is independent of h, how the boundary I' cuts the mesh, or any method-dependent parameters.
For some triangulation 8 (e.g., 8, = ‘Tff’e), we define the polynomial spaces:

Pe(8h) = {v € L3(Dy) : v|lk € Pr(K) VK €81}, Pr(Sn) = Pr(Sn) N L2(Dy),
Pi(Sn) = [Pe(Sn) N H' (Dy)]?, P(8n) = P5(S) N H (Dy),

where D, = int(Uges, K), and Py (K) is the space of scalar polynomials of degree < k with domain K. For an
integer k > d, define the finite element spaces with respect to ‘J’ff’e:

Vi = {v € PL(TIH), / v-n =0}, Qn =1{q € Pr_1(T;"°), / q =0},
o, 2,

and the analogous spaces with respect to the interior mesh

Vi = PUTED, Q=P (T,
The definitions of the spaces imply that the divergence maps V;, into @j. Likewise, the divergence maps fo
into Q.
2.1. Finite Element Method

Here, we will define a modified version of the finite element method given in Section 3.2 from ref. [13] based
on the Scott—Vogelius pair. First we define the mesh-dependent bilinear form with grad—div stabilization:

ap(u,v) ;= (Vu, Vo) + v(divy, dive) + si(u, v) + j;, (w, v) + njn(u, v), (2.3)

where (-, -) denotes the L? inner product over €2, v > 0 is the grad—div parameter, and 1 > 0 is a Nitsche-type
penalty parameter,

sp(u,v) = — /F((nTVu) ‘v 4+ (nTVo) - u),

. 1
Jn(u,v) = Z E/K u-v,
r

KeTohh

k
o) = 3 S hH /F 040k,

Fegohl (=1
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where we recall Kr = K NT. Here, 0%v denotes the derivative of order £ of v in the direction v, and [w]|r
denotes the jump of a function w across F.
The continuity equations are discretized via the bilinear form

b(p,v) := —(p,divv) + /F(v “m)p. (2.4)

The finite element method reads: find (up,pr) € Vi X Q) such that

{ah(uh,’vh) +0(pn,vn) = (f,vn),
b(an, un) = 135 In(Pn, an) =0

for all v, € Vi, qn € Qp, where

han= Y Zhﬂ’“ / 0Lq][0p]

Feght =0

Remark 2.3. Compared to other CwtFEM discretizations [10,12—-14], we have modified the above finite element
method by modifying the terms j; (u, v), and Jy (g, p). In particular, for JIh( v), and Jp (g, p), instead of summing
over all faces F in F1, we are now summing over all faces F from 3 Such faces may be completely outside
the physical domain €.

Likewise, for the term jj(u,v), instead of summing over all triangles T from T, we are now summing over
all triangles K from ‘Tff"r. However, since UKefJ-ft,F Kr = UTe‘TE Tr, jn(u,v) is equivalent to the analogous
term in, e.g., [13]. Compared to the previous work on unfitted Stokes elements, we also introduce the grad—div
stabilization. We show later that it effectively acts only on a narrow boundary strip and allows the control of
mass-conservation loss due to ghost penalty stabilization. This mechanism may be of help to boost the accuracy
for other unfitted Stokes FE methods.

Remark 2.4. An accurate computation of integrals over cut elements and I" as they appear in the definition
of the bilinear forms is not always feasible. One way to handle this is to introduce a polyhedral approximation
of Q) allowing for standard quadrature rules both on cut and uncut elements. Such an approximation, however,
leads to second order geometric consistency error which is suboptimal for Scott—Vogelius elements. To ensure
a geometric error of the same order or higher than the finite element approximation error, we define numerical
quadrature rules for cut elements and boundary integrals using the isoparametric approach proposed in [27].

2.2. Divergence—free property

Notice that, in contrast to the domain-fitted Scott—Vogelius FEM, the method (2.5) does not produce exactly
divergence—free solution due to the stability term Jp(,-) in the discrete continuity equations. However, we show
that the discrete velocity solution wuy, is divergence—free on a mesh-dependent interior domain.

We define the set of all simplices in ‘J’,cf’r together with those in ‘T,Cf’l that are touching these simplices

(¢f. Fig. 1):
‘J'Ctr {K c ‘J'Ct : measg_1(KNK')>03K ¢ ‘J'Zt’r}.

This set’s complement is given by an interior set of elements:
(j'-}clt,i _ rJ-}th,e\(}}th,F - rJ~;:Lt,7,'7 (26)

and we define the domains

S~2,Cf’r = Int U K1, ?22“ = Int U K

KeTehrh TeTH!
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Lemma 2.5. (Divergence-free property) Suppose that w, € Vj, satisfies (2.5). Then divuy, =0 on ?22“

Proof. We show the result in four steps.
(1) Fix K, € T and set

1 on QCt’F
a1 =4~ | - 18]/ |K.| on K.,
0 otherwise.

‘We then have

/ @ =/~ @ +/ ¢ = (Iﬁff’r
ag-rar K.

Thus, ¢1 € Qp,. We also have J(pp, ¢1) = 0 because ¢; is constant on QCt T It then follows from (2.5) that
(|Qct,F

—|Qr
—h|h|)/ divuh+/ B divuh—/uh~n:0,
| K| K, anQght r
1 di v 2.7
1oV \ Janagsr e Q e @7
h

01) + 15| (= (192571 = 1951) /15.1) = 0

and therefore

\K|/ divuy, = chl"

-1 )
= M - divuy,.
h
(2) Fix K € T¢""\{K,}, and set
1 on K,
q2 = ‘lK l‘ on K,,
0 otherwise.

Then ¢ € Qp, and by (2.5), we conclude

. | K| .
divuy, = divuy,.
/K K| JK,

We then sum this expression over K &€ ‘}ff’i to conclude

ct z|
/ divuy, = —-L divuy,. (2.8)
Qi K| k.
(3) We combine (2.7) and (2.8) to obtain

. 25| ,
 divup = ——= 5 = [ divug,
Q;:Lt,t |Qh7 | _ ‘Qh| Q(;Lt,‘l,

ﬁ ) divuh = 0.
Q;t,z

Using (2.7), and noting that K, € ‘}}CL“ was arbitrary, we have

which implies

/ divup, =0 VK € T
K
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(4) Fix K,K; € ﬁff’i, and set

divu,  on Kj,
g3 =1+ ¢ on K,
0 otherwise,

where ¢ € R is chosen such that g3 € @p,. Then using (2.5),

/ |divu,|? = —c/ divuy, = 0.
K; K

Thus, divuy, = 0 on (22“
O
Remark 2.6. Lemma 2.5 shows that grad—div stabilization is active only in a boundary strip, since the term

vanishes in fo’i. In particular, replacing the bilinear form ~y(divuy, divey,) in the finite element method (2.5) with
vy fsz\ﬁct,i(divuh)(divvh) does not alter the numerical solution. Nevertheless, one may want to keep it defined
h

in Q for more straightforward implementation and potential benefits of algebraic system preconditioning.

3. STABILITY

In this section, we prove inf—sup stability of the finite element method and derive a priori estimates. As a first
step, we state an inf-sup stability result with respect to the finite element spaces with support on the interior
domain Q.

To do so, we require two mesh-dependent norms

2 2 . .
lullvy,, = [ula ) + nin(w,w) +j,(u,u),

[l = llull¥,, +lldivallZsq),

as well as the associated dual norm

1l = sup

vevinjo} vllv,

Remark 3.1. By definition, there holds [|z[|v; < (14 7)"?|z|v,, for all z € V},.

We first need an inf-sup stability estimate for the SV element in the interior domain Q. The estimate is
formulated below in Theorem 3.2. Note that 2} is mesh dependent and (3.1) does not follow easily from an
“inf-sup-stability” of any finite element pair (see discussion in [13]). The property (3.1) was only assumed to
hold in earlier publications, e.g. [12,14], on unfitted FEMs for the Stokes problem, and has been proved for
P, —P; element in [15] and for several other FE pairs in [13]. The latter paper does not cover any divergence—free
elements.

Theorem 3.2. There exists a constant § > 0 and a constant hg > 0 such that we have the following result for
h < ho

fQ}i (divw)q

: Vg € Q. (3.1)
()

OllgllL2iy < sup
(i) veV;\{0} v

The constant 6 > 0 is independent of h.
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The proof of this theorem in the case k = d = 2 can be found in Section 4.2 from ref. [22]. The general case
k > d (d € {2,3}) follows verbatim using the Py — Py stability result in [13]: A local inf-sup stability result
for ¢ € Pr_1(K) with [ ¢ = 0 on the CT split of each K € T}, (Theorem 3.1 in [4]) is applied together with
the global inf-sup stability of P4 — Py element for the macro-triangulation T} . These two results are combined
by standard arguments, see e.g. Lemma 4.7 in [22] or Proposition 6.1 in [4], to yield (3.1). We skip including
further details.

Corollary 3.3. The following stability is satisfied

b(v,q
Ol < sp 2D L J20 00 vaeq, (3.2)
veVp\{0} HUHVO,h

supp(v) CQ}L

where 0, > 0 is independent of h and the position of I' in the mesh.

Proof. Fix some ¢ € Q. By using Lemma 5.1 from [28], for each pair of triangles K; and K, in T§" with
0K\ NOKy=F € Srit’e we have

k—1
lglli2x,) < € (II(JIIQL2<K2> +y bt / [aﬁfJP) :

£=0 F

Iterating this estimate, we conclude
a2z < lal3zag) < C (a2, + Jnla, ) (33)

Combining this estimate with Theorem 3.2, we conclude that there exists v € V}, with supp(v) C 2} such that

fQZ (divw)q

lgll72) < C (HQH%Z(Q;L) + Jh((LQ)) <cot ( | + Jh(Q;Q)) - (3.4)

|v||H1(Q§L)

Because v = 0 on QZ, we have jj(v,v) = 0 and by an inverse estimate,

k
)= Y Yot [ P
Fegphl =1 F
FcoQ;,

<C Z ”va%?(K) < C”U”?{l(sz;)'
KeTgr nTght
Thus we have |[v|lv,,, < C||v||g1 (o). Combining this with (3.4), we have (3.2). O

3.1. A priori estimates for the finite element method

In this section we derive a priori estimates of the finite element method, thus showing that the discrete
problem (2.5) is well-posed. The techniques to show these results are rather standard, but we show the proofs
here for completeness.

Lemma 3.4. There exists constants Cy,Cy > 0 such that

ap(u,v) < Collullv [v]lv, Vv € Vi + HH (),
Collvll3;, < an(v,v) Yo € Vi,
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Proof. The proof of this result can be found in, e.g., [13,28,29]. O

Theorem 3.5. Suppose that (upn,pn) € Vi, X Qp, satisfies (2.5). Then

1
Ipnlle) < CA+2Fllvys  Nunllvi, < Cllfllv;, (3.5)

for some C > 0 independent of v, h, and the position of T' in the mesh. Consequently, (2.5) has a unique
solution.

Proof. We set vj, = uy, in the first equation in (2.5), and ¢, = pp, in the second equation of (2.5) and subtract
the resulting expressions:

ap(wp, up) + In(Prspn) = (F, un).

1+~

By the coercivity of ay(.,.) stated in Lemma 3.4 and the Cauchy—Schwarz inequality, we have

1
Collunll3, + th(ph,ph) < (f,un) < (Ifllvy llwnllvis
and so
CO 2 1 1 2
— —_— < — ‘. 3.6
Sl + o o) < 51 F1 (36)

By the inf-sup stability estimate (3.2) and Remark 3.1, there exists z € V}, with (14+7)"2|z|y, < zllvi., =
[Pl 2 (@) and

Oullpnll320) < 0(2,n) + I (pns pn) Ipn | 20y
= (f.z) —an(z,up) + J;/Q(Ph,ph)||Ph||L2(Q)-

By Lemma 3.4 and the Cauchy—Schwarz inequality, we have

wnllvi ) + 73 (o on) w2

< (U +DEF vy + Callunlive) + T @non) ) a2 o).

Oullpnllzz ) < (Ifllv;Izllvi + Callzllv,
)

Dividing by ||pn||z2() and using (3.6), we conclude

O lpnl3z(q) < 3 ((L+FIE, + CPlunl,) + uon. 1))

_ 1
<3049 (140G + 55 ) IFIy

This estimate and (3.6) yields the desired result (3.5). O

4. CONVERGENCE ANALYSIS

In this section we assume that the solution to the Stokes problem (2.1a) is sufficiently smooth, i.e., u €
H"2(Q), p € H*1(Q), where we recall k is the polynomial degree in the definition of finite element spaces.
Without loss of generality, we assume that dist(95,0Q) = O(1).

Because 0f) is Lipschitz there exists an extension of p, which we also denote by p, such that p € H**1(S)
and (cf. [30])

Hp”H[(S) < CHPHH"’(Q) for{=0,1,...,k+1. (4.1&)
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An analogous extension of w is done in the following manner. First, write the velocity in terms of potential
field u = curly), where we agree to understand curliy for any space dimension d as the exterior derivative of
(d — 2)-differential form . For u € H**2(Q), the form v satisfies ¢ € H**3(Q) and ||¢)|| gre+1(0) < Cllul ge(a)
for £ =0,1,...k+2 [18,31]. We extend 1 to S in a way such that ||[9| ge(g) < Cllp| ge(q) for £=10,1,...,k+3,
and let w be a smooth cut-off function with compact support in S and w = 1 in 2. We then define the velocity
extension as u = curl(w)), so that w is divergence—{ree, vanishes on 95, and

||’u,||H((S) < CHUHHZ(Q) for £ =0,1,...,k+2. (4.1b)

Remark 4.1 (Consistency). Standard arguments show that the method (2.5) is consistent. In particular, there
holds

{ah(u7vh)+1b(pavh) = (f?vh), (4 2)
b(gn, u) — th(I% qn) =0 '
for all v, € Vi, qn € Q4.

The following lemma is a direct application of ([32], Lem. 4.10).

Lemma 4.2. For T' € T}, define wr = Urregs T' to be the patch of neighboring elements of T. We further
TNT'#0

wr = U wT.

TeT)

define the O(h) strip around I':

Then there holds
HUHL?(wp) SCh§||’UHH1(S) VUGHl(S).

We also require a trace inequality suitable for the CittFEM discretization (see, e.g., [13,23]).
Lemma 4.3. For every K € U';‘;t’r it holds
ollzeaer) < Ol Iollzaceo + Al Vollzae) Vo € HY(K), (43)
with a constant C independent of v, T, how I intersects T, and h < hy for some fized hy1 > 0.
Consider the finite element subspace of pointwise divergence—free functions:
Zp ={wy €V, : divw, =01in Qf }.
This subspace enjoys full approximation properties in the sense of the following lemma.
Lemma 4.4. For u, the divergence—free extension of the solution to (2.1), it holds

inf |ju— ’UJh”Hl(T) < Ch’%|u|Hk+1(wT) vT € T}. (4.4)
wprEZ

Consequently, if u € H*2(Q),

. 1 1
il —wnllv, < C (Bl o) + 0t ul )
wrEZY,
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Proof. The proof of (4.4) is given in Appendix A.
To bound ||u — wy||y;, we use the approximation results from (4.4) and note that div(uw — wy) = 0 in QF.
The penalty part of ||u — wp||v;, is estimated using Lemma 4.3 as follows:

Jn(u — wp,u —wp) = Z hict = wa[ 22 ()
KeTgeht
<C > (hall = wnlFe + IV = w0n)l3a ) (45)
KeTehh

< ChzkH'uH%[kﬂ(wF) < CthJrlH“H?{’H?(Q)?

where for the last inequality we used (4.1) and Lemma 4.2. This yields the bound |[u — wy|v, <
C (W¥llull s oy + m A5l rragey ) u

Theorem 4.5. The following error estimate holds
1 1 1 1
lw = wnllv;, + (1 +7)"2[lp = prllrze) < C<hk||u||H’€+1(Q) + (1472 +02)R5 2l greaq)

_1 _1 1 _1
+ (7 + A +9) 2R pll i) + (1 +7) Zh’“pllm(m) (4.6)

Proof. To show the error bounds, we start with a standard argument. Let w;, € Zj be a function in the
discrete kernel satisfying estimate (4.4). Setting e; = u;, — wy, € Vj, we have, thanks to the coercivity result in
Lemma 3.4:
Collerl[y;, < an(er,er). (4.7)
Denote by pn € Qp, the L2-projection of p onto Qj, and set gr = pj, — Pp. It follows from (3.2) that there
exists v € V}, with supp(v) C Qf such that
_ . 1
Cillarl|2z(ay < b(v,q1) + O Wnlarsar),  with (1+7)72 o]y, < [[vllvg, = llarllz2 ), (4.8)
0

where C1 = %, and 0, is the inf-sup constant given in Corollary 3.3.
From (4.7), (4.8), (2.5), and the consistency identity (4.2), we conclude that for any « > 0 it holds

Coller|ly, + Credlar|zzy + (L +7) " = aCr ) Jnlar, ar) (4.9)
< apler,er) +blav,qr) + (1L +v) " Jn(ar, ar)
= ap(er,er + aw) + ble; + aw, qr) — bler, qr) + (1 + )" Jn(ar, ar) — an(er, av)
= ap(u — wy, €7 + av) + bler + av,p — pr) — b(u — wp, qr)
+ (1 +9) " Inlp — Pu, ar) — anler, aw)
=L+ I+1I3+ 14+ I5.

We now estimate the right-hand side of (4.9) term-by-term.
Using the continuity result in Lemma 3.4 and the approximation results in Lemma 4.4, we bound

Iy < Caller + av|lv, [lu — whv, (4.10)

< Clles + avlly, (A llullm o) +nth5 4 ful s o))

< C (llerllvi, +a(t + 1) larlla ) (Bl oy + 0 e )
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where we used (4.8) in the last inequality.
We now estimate the second term in the right-hand side of (4.9) in two steps.
First, using approximation properties of the L2-projection, we get
~ . - _1
(Pr — p,diver) < (1+9)7%|[n — pllrzllerllve < (1+7) 7208 pllux o) llerllv,. (4.11)
Likewise,

(pr — p, adive) < OathpHHk(Q)||q[||L2(Q). (4.12)

We apply the trace inequality (4.3) and standard approximation properties of the L2-projection to estimate
the boundary integral in b(e; + av, p — pp,), noting that v =0 on T*:

[@n-per+av)n< Y 15— pluollerlac
r

KeTht
1/2 1/2
o , B (4.13)
< > n'hkliBr = plie ke > b el
KeTiht KeTiht
1.k _1 1
< Cn 2 hF|pll g lerllv, < Cn 2 52 |p]| i ) lles v
where we used Lemma 4.2 in the last inequality. Summing (4.11)—(4.13) we obtain
_1 _1 1
I < C(ah*lpll ey llar iz + ((1+ D) E R Dpllign oy + 0 0 E Il oy ) lerllvs ). (414)

To estimate I3, we first note that, due to (4.3), finite element inverse inequalities, and (3.3), there holds

S hkllaliewe <C Y. Narlliam <C <||QHQL2(Q) + Jh(QIaQI)) :
KeTohh KeTohh

Therefore, thanks to div(u — wp,) = 0 and the estimate (4.5), we have

1/2 1/2

I3 < Z hKHqIH%Q(KF) Z hf_(lHu_wh||%2(Kp)
KE‘J’Z"’F KG‘T;t‘F

< Olarl2aqy + Jnlar, ar) FhE % | gese o)

We proceed with estimating terms in the right-hand side of (4.9). For the fourth term we get, using the trace
inequality (4.3), approximation properties of the L2-projection, and Lemma 4.2,

1 N 1 . _ 1
I < (L) "2 (0= Buop — )7 (ar, ar) < CRM 3 (1 9) " pll e T (ar ) (4.15)
For the last term in (4.9) we have (using (4.8))

Cia® o Co 2 Cia*(1+7) 2
Co vy, < ZHeI”Vh + THQIHLZ(Q)' (4.16)

Co
I5 S ZHeI”%/h +
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We apply the estimates (4.10)—(4.16) to (4.9) getting

Collex |3, + Crallarlfa) + (L+2) ™" = aCr)alar. )
< C< (lerllvs +a(t+2) 3 larllz@) ) (Bl +n2h 2 ull e )
_1 _1 1
+ ah¥ sl Iplmee + (49758 bl ey + 0720 2 bl sy ) el

1 1 _
+ (larll 2y + I (ar, @) P2 (lul| grea o) + (1 47) 1||I?|Hk+1(9))>

Co 2 Caa®(1+7) 2
+ Z”eI”Vh, + Tl|ql||L2(Q)'

We apply the Cauchy—-Schwarz inequality several times and rearrange terms to obtain

Collerly, + (Cra = Ca®(1+ 7)) llar |7y + (L +9) 7" = aCr ") Jn(ar, ar)

< c((h%nun%{kﬂ(m I ullesa ey ) + (@ + D +9) B bl )

0 R p | F o + a7 TR (”u”§—1k+2(ﬂ) +(1+ 7)*2||p||§1k+1(9)) ) :

We now take a = C(1 + 7)1, with C > 0 sufficiently small to obtain

Collerllys, +CQ+3)7" (larlEa) + nlar,ar)

<C <h2k||U||§1k+1(Q) + 1+ )T R Py + (141 + ) B2 e q)

+ '+ 1+ 7)‘1)h2k+1llp|?{k+1<m>-

Finally, we apply the triangle inequality, the divergence—free property of w and w;,, and approximation proper-
ties (4.4) to obtain the error estimate (4.6). O

Remark 4.6. The pressure dependence in velocity error (4.6) arises from the violation of mass conservation in
the boundary strip and the penalty treatment of the boundary condition. The violation of the divergence—free
constraint in a boundary strip can be partially mitigated by taking grad—div parameter v = O(h~!) and Nitsche
parameter n = O(h~1), which seem to be the optimal choice with respect to the error analysis in the energy
norm. This can be contrasted to v = O(1) for the Taylor-Hood element.

5. EXTENSIONS TO POWELL—-SABIN SPLITS

In this section, we extend the method and analysis in the previous sections to the Scott—Vogelius finite
element pair on two-dimensional Powell-Sabin splits. For brevity, we concentrate on the lowest-order pair which
has recently been shown to be inf-sup stable in a non-cttFEM setting in [33].

As in the previous sections, we let Tj, be a simplicial mesh of S (with Q C S), and let T¢ and Q% be the set
of interior simplices and interior domain, respectively, defined by (2.2). Let ‘T,l: be the sets of simplicies that cut
through the interface, 7¢ = T¢ U T}, and F. to be the set of edges in T that do not lie on 9QF.
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K

K

F1cUrE 2. Example of an interior singular vertex in the Powell-Sabin refinement.

For each T' € T}, we denote by zr the incenter of T'. The Powell-Sabin refinement of T3 (o € {i,e,T'}),
denoted by T7%°, is constructed in three steps as follows: (1) similar to the Clough-Tocher refinement, we
connect the incenter zp of each T' € T, with its vertices; (2) for each interior edge e of Ty, with e = 0T} N 015,
we add a vertex (on e) by connecting the incenters zp, and zp, by a straight line; (3) for each boundary edge e
with e C 9T, we add a vertex by connecting the incenter zz with the edge midpoint of e.

Thus, we see that the Powell-Sabin refinement splits each triangle 7' € T} into six sub-triangles. Further,
this refinement produces many singular vertices, i.e., vertices that fall on exactly two straight lines in the mesh.
These vertices are exactly those produced in steps (2) and (3) of the above procedure. Let \72’1 and VZ’B be
the sets of interior and boundary singular vertices in T9%° and set V; = VZ’I U VZ’B the set of singular of
vertices of J7”°. For z € VZ’I, we denote by T, C T9™° the set of four triangles that have z as a vertex. We
write T, = {Kgl), K,§2), KZ(?’), KZ(«4)}, labeled such that K and K" have a common edge; see Figure 2. For
a boundary singular vertex z € VZ’B we let T, = {Kz(l), Kf)} C T7%°, the set of two triangles that have z as a
vertex.

The following result states a weak continuity property of the divergence acting on piecewise smooth functions
at singular vertices. The proof can be found in, e.g., [17].

Proposition 5.1. For a piecewise smooth function q with respect to T7*° (o € {i,e}), define

0 (q) — {(ql — g2 +q3 - Q4)(Z) ZfZ S ’\727]7
- (1 —q2)(2) if z € VZ’B’

where q; = q|K§j). Then there holds for all piecewise smooth v € H} (€5),
0, (dive) =0 Vz e Vi.
Moreover, there holds for all piecewise smooth v € H*(£25),
0.(divo) =0  Vze V'

With an abuse of notation, for each T € T7,, we set T to be the set of three triangles obtained by connecting
the vertices of T with its incenter. We also define TP° to be the local Powell-Sabin refinement of T, i.e.,

T ={KeT”: KCT}.
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K1 no K>

F1GURE 3. Depiction of a local Powell-Sabin triangulation T%°.

For T € Ty, let z € V}, be a singular vertex with z € T. Let {K;, Ko} C T?* be the set of two triangles that
have z as a vertex, and let 7; be the outward unit normal of JK; orthogonal to the common edge 0K N 0Ko;
see Figure 3. We define the jump of a piecewise smooth function ¢ on T at z as

lal(2) = qlx, (2)m + qlx, (2)n2-

Thus, we see that a piecewise smooth function ¢ satisfies 6,(¢) = 0 if and only if [¢](z) is single-valued.

5.1. Finite element method on Powell-Sabin splits

We define the finite element spaces

VPP ={v e PUT), / v =0}, QF ={gePy (TP, 0.(q) =0z € V', ¢
OQ}L

9
i € Lo(S%)},
and the corresponding spaces with respect to the interior mesh:

Vhps’i = jj)i (‘Jﬁsyi)v Q;sti = {q € j))O(‘TfLS’i), az(Q) =0Vze V;L}

Remark 5.2. There holds divV;"*" = QP*" [33,34].

We consider the analogous finite element method of (2.5), but defined on Powell-Sabin splits: find (wup, pp) €
VP x @QF° such that

{ah(uh»'vh) +b(ph, vn) = (f,vn),

1
b(an, un) — 155 Jn(Phsan) = 0 (5.1)

for all (v, qn) € VIP? x QF°. Here, the bilinear form a(-,-) is given by (2.3) but with
. 1 .
o) = Y oo [ wee gwe)= X he [ Dol
Kegrsl K JKr Fegper £

where 325" is the set of edges in T°*' that do not lie on dQ. The bilinear form b(-, -) is defined in (2.4), and
the pressure ghost-stabilization term is

Tn(ep) = Y hF/F[q][pl

Feg?sT
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Lemma 5.3. With a slight abuse of notation, let ‘J'ff’e be the Clough—Tocher refinement of T; obtained by
connecting the vertices of each triangle with its incenter. Likewise, let ‘J'}Cf’z be defined as in (2.6) but with
incenter refinement, and set

(NZ,Cf’i = Int U K
TeTh
Then if w € Vi** satisfies (5.1), there holds divuy, = 0 in Q5.

Proof. For any g € Po(T;"¢) with ¢ i € L§(€Y,), there holds ¢ € @}°. Consequently, we can apply steps (1)-(3)
in the proof of Lemma 2.5 verbatim to conclude

/ divup, =0 VK € T (5.2)
K

Next, fix a K ¢ ‘}Zt’i, and let 2z ¢ \72’1 be the singular vertex in J7** such that » € K. Let
{Kﬁl),K Z(2),K 23),K ,§4)} C ‘Iﬁs’i be the triangles in the Powell-Sabin refinement that have z as a vertex. Let
K; e ‘J',Cf’i be an arbitrary triangle satisfying K N K9 =g (j =1,2,3,4), and set
divuy, on K j=1,2,3,4,
q=49 c on Kj,

0 otherwise,

where ¢ € R is chosen such that fQZ ¢ = 0. By Proposition 5.1, there holds ¢ € Q7. We use (5.1) and (5.2) to

obtain
4
Z/ |divug|? = —¢ [ divay, = 0.
j=1 KY K
Because K C U;*:lng), we conclude divuy, = 0 in K, and therefore divuy, = 0 in (NZZ“ (Il

5.2. Stability analysis on Powell-Sabin splits

In this section, we derive a inf-sup condition for the finite element pair V,” Y st’i on Q¢ that is uniformly
bounded with respect to the discretization parameter h. As a first step, we state the degrees of freedom (DOF's)
of the finite element spaces given in [33,34].

Lemma 5.4. A function v € V}fs’i is uniquely determined by the values

v(a) for all vertices a in T},

/ (v-np) for all edges F in T},
F

[divo](2) for all z €V,

/(divv)p Vp € Po(T)  for all T € T},
T

where ng is a unit normal of F. A function q € st,i is uniquely determined by the values
[al(2) for all z € Vi,

/ qp Vp € Po(T) for all T € T},
T



A CUTFEM DIVERGENCE-FREE DISCRETIZATION 159

As an intermediate step in the stability analysis, we first show an inf-sup stability result, but with Qis’i
replaced by piecewise constants with respect to the triangulation T .
Lemma 5.5. There exists §1 > 0 independent of h such that

_ fle (dive)g e

Billdllrzoiy < sup ol s Vg € Po(T}).

veV,P "\ {0} I ”||L2<Q;;)

Proof. Let ¢ € Po(Ty). Using the Py — Py stability result in [13], there exists o € P (T1) satisfying
Joi (divo)g

Bolldll 20y < 25—, (5.3)
) H’UHHl(Q}'L)

where 3y is uniformly bounded below with respect to h.
We then use Lemma 5.4 to uniquely define v € V}’*" by the conditions
v(a) = v(a) for all vertices a in T},
/(v ‘np) = / (v-np) for all edges F in T,
[[dlimvv]](z) = [[di:@ﬂ (2)=0 for all z €V},
/T(divv)p = /T(divt_;)p Vp € Po(T) for all T € T,

Because ¢ is piecewise constant on T}, the second condition implies

/ (dive)g = / (dive)g VT €T},
T T

J

A standard scaling shows |[v||g1(qi) < Col[0| g1 (qi) with Co > 0 independent of h. This estimate, along with
(5.3)—(5.4) implies the result with 3; = 8y/Co. O

Theorem 5.6. There exists 8. > 0 independent of h such that

fQ? (divw)q
Billallziy < sup HL||7
vevrifoy IVIEY Q)

and so

(divo)g = /Q (dive)g. (5.4)

h h

Vg € QY. (5.5)

Proof. Fix ¢ € QY*", and let g € 530(72) be the L2-projection of ¢ onto i’o(ﬂ'};), i.e.,

1 .

Using Lemma 5.4, we define w € V" by the conditions

(S]]

w(a) =0 for all vertices a in T7,

/ (w-np)=0 for all edges F in T},
F

[divw](z) = [(¢ — D](2) = [4d](2) for all z € V},

/ (divw)p = / (g—q)p Vp € Po(T) for all T € T,
T T
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Because divw — (¢ — q) € st’i, the last two conditions and the identity [.(divw) = 0 = [.(¢ — ¢) imply
divw = g — g by Lemma 5.4. Moreover, scaling shows ||w||g1(q;) < Cillg — @l| 2o ) With C1 > 0 independent
of h. This implies

1 _ le q— q)(q - Q) fQi (q - Q)q fQi (le'w)q fQi (le'U)q
Crllg = allpz(aiy < == =" < sup
" Hw”Hl(Q ) ||w|\H1(Q;) ||w|\H1(Q;) veEVP I\ {0} ||U||H1(Qg)

Finally, using this estimate and Lemma 5.5 we conclude

lallzz2cey) < g = @llzzoy) + ldllz2(oy)

fQ (dive)q

< Hq_Cj”LQ(Q}l) +61_1 < sup H h| ) + Hq_Lj”LQ(Q}'l)
vevPi\ o}y VIl (9))
f% (dive)q

< (GO+B+BY)  sup
veVPo '\ {0} H(Q3)

-1
Thus, (5.5) holds with 3, = (Cl(l +870 + 51_1) : =

From the inf-sup stability result in Theorem 5.6, we obtain the following stability result for the finite element
method (5.1). Since its proof is essentially the same as the proof of Theorem 3.5, it is omitted.

Theorem 5.7. There exists a unique (un,pp) € Vi'* x Q1 satisfying (5.1). Moreover,

1
IPnllrz) < CA+7)2F vy, Nunllvi, < Clifllvy,
for some C > 0 independent of v, h, and the position of I in the mesh.

5.3. Convergence analysis on Powell-Sabin splits

Here, we adopt the arguments of Section 4 to the finite element method (5.1) defined on Powell-Sabin
splits. The key result is the following lemma which establishes the approximation properties of the discrete
divergence—free subspace.

Lemma 5.8. Let
Zy ={veV: divv=0inQp},

and let uw be the divergence—free extension of the solution to (2.1). There holds

vieanh ||V(u - 'U)HHl(T) < ChT‘u|H2(wT) VT € TZ

Proof. Let Inu € Pi(T%) denote the linear Scott—Zhang interpolant of w with respect to T%. We define define
v € VP uniquely via the conditions

v(a) = (Inu)(a) for all vertices a in J7,

/ v-np) / U-ng) for all edges F' in T7,
F

[divo](z) = for all z € V7,

/ (divo)p =0 Vp € Po(T) for all T € T5.
T
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Using the last three conditions and the inclusion dive € Q7°, we conclude divv = 0 by Lemma 5.4. Furthermore,
noting (v — Ipu) € V)P®, there holds by scaling and properties of the Scott—Zhang interpolant,

/BT(U—IhU) n

2
+h3 Y |[div(v — Thw)](2)|”
z€V§
z€T

IV (v — Tyw) |72y < C | hz?

2

+ sup
pEPo(Tet)
ol L2 (y=1

/ (div(v — Iyu))p
T

2

+ sup

/ (u—TIpu) - -n
oT pEPo(T)
”p”L2(T):1

< O (hz'lle = Inwla o) + 1V (w = Inw) |2
<C

(IV (= B3y + hz?llw = Inulfar) ) < Chfulfye

2
=C | hy?

/ div(w — Ipu)p
T

(wr)*

Thus,
[V(u —v)|rzr) < [[V(u = Thu)|[r2) + V(v — Thu)|[L2(r) < Chrlulmz(wr).-
O

With the approximation properties of the divergence—free subspace established, we can use the same argu-
ments in the proof of Theorem 4.5 (with k£ = 1) to derive a first-order error estimate.

Theorem 5.9. Let (up,prn) € VP° x Q) be the solution to (5.1). Then the estimate (4.6) holds with k = 1.

6. NUMERICAL EXPERIMENTS

In this section, we perform some simple numerical experiments and compare the results with the theory
developed in the previous sections. In the set of experiments, we take the domain to be the circle with center
(0.5,0.5) and radius v/0.2:

Q={zeR?*: (z; —0.5)% + (z2 — 0.5)> < 0.2}.
The data is chosen such that the exact solution is
o 2(22 — 21 +0.25 + 23 — x9) (222 — 1) 03 9 9.9
u= (2(:1:% 14025+ 92 —aa) 20 1)) P= 100 (0@ —23)" + ), (6.1)

with normalizing constant ¢ € R. We take the covering domain S = (0,1)2, the unit square, and consider a
sequence of type I triangulations 7, defined on S.

We compute the finite element method (2.5) on Clough—Tocher splits with k& = 2 for a decreasing set of mesh
parameters h and various grad—div parameters . Approximate numerical integration rules on cut elements and
on the boundary I' are defined using isoparametric mappings similar to [27].

The resulting H! velocity errors and L? pressure errors are given in Figure 4, and the L? divergence error of
the computed velocities are presented in Figure 5. These error plots show asymptotic optimal order (quadratic)
convergence rates for both the discrete velocity and pressure solutions for fixed grad—div parameter v and fixed
Nitsche parameter 1. The figures also list the errors with grad-div parameter v = 10h~! for both constant
Nitsche parameter n = 100 and mesh-dependent Nitsche parameter n = 10h~'. The results indicate that the
method performs best, with respect to errors, if both penalty parameters scale like O(h™1).
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FIGURE 4. Errors on a sequence of refined triangulations for the velocity (left) and pressure
(right) with different grad—-div parameters.
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FIGURE 5. Left: Divergence errors on a sequence of refined triangulations for the velocity with
different grad-div parameters. Right: Plot of |divuy| with h = 1/40, v = n = 10h~ 1.

APPENDIX A.

A.1. Proof of (4.4)

The approximation property (4.4) is derived by constructing a Fortin operator using the recent results in [25].
We consider the three-dimensional case; the analogous 2D arguments are similar (and simpler).

For T € T7, let T denote the local triangulation of four (sub)tetrahedra, obtained by performing a Clough—
Tocher (or Alfeld) split of T'. We also define the smooth space

M1 (T) = {k € Py, (T : curl k € Py (T)}.
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Lemma A.1l. There exists an operator Iy 1 : H(T) — fPZ (T uniquely determined by the conditions

/(HO,TU) -curlk = / v-curlk Vk € M1 (T, (A.1a)

T T

/(diV(HQ,T’U))/Q = /(diV’U)fi Vi € P 1 (T). (A.1Db)
T T

Moreover,
IV, 20| 21y < C (V0|2 (ry + br' vlle2y) Yo € HY(T).

Proof. The existence of such an operator uniquely determined by (A.1) follows Lemma 4.16 from ref. [25].

It remains to show the stability estimate. This is done via a scaling argument. )

To ease presentation, set vy = Ilprv. Let T'= {;= : « € T'} be a dilation of T', and define o7 € Pr(T) as
or(2) = vp(z) with = hpi, so that vy = h;léﬁT. In particular, divor = h;l(fi;'f;T and curlk = h;lc/u?l K.
Using a change of variables and equivalence of norms, we compute

Jpor - curlil|’ [ divora|”

+ sup
REP)_1(Tet)\{0}

hy? [ (hrdivor)s |

ht |Vor|fa ey = ||VﬁT||i2(T) ~

AREM i1 (Tt)\{0} ||curll%||L2(T) ”/%”Lz(jw)

hz? [ vr - (hreurlk) ?

= suw —1/2 . Sup —3/2
REM 1 (Te\{0} | Py / [curlk| 2 (1) kE€Px_1(TetN\{0} | DIy / &l L2 (1)
2 . 2
) v-curlk divo)k
= h,;‘s sup fTi + h%l sup ‘/‘T(iv)
REM.11(T")\{0} leurlk| Lz (x) KEP_1(Tt)\{0} 5]l L2 (7)

< hpP vl 32ry + byt divel|Za .-
0

Set IIy : H'(Q°) — V}, such that Ilo|r = Il for all T € T¢. Let I, : HY(Q) — Py (T¢) C Vj, be the kth
degree Scott—Zhang interpolant which satisfies (k > 3) [35]

/ Inv = / v for all faces in T3 Yo € HY(Qf). (A.2)
P P

Finally, we set IT;, : H*(Q§) — V, as
I, = I + (1 — Ip,),

where 1 is the identity operator.
Proposition A.2. There holds, for all v € H(Q°),

/ (div(IT,v))g :/ (divo)g Vg € Pr_1(T7°).
25

Q
Proof. Fix q € Pj,_1(T;"°), and let ¢ € Py(T%) be its L? projection onto Po(Tf). Note that (¢—q)|r € Po_1(T)
for all T' € T5. We then write, using the divergence theorem, (A.1) and (A.2),

| wivmae = [ @ivona-a+ |
- / (@B -0+ [ dv((1-Lyo)a-0)+ | (divo)g

e e e
h Qh Qh

= / (divv)g.
Qs

e
h

(I (1 - L)) - ) + / (div(I)g
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The estimate (4.4) now follows from the following theorem.

Theorem A.3. There holds for all divergence-free u € H* ()

Wit IV —wn) L2y < CUIV(w = Tnw)lp2r) + hptllu = Iyu|2r) VT €75,

Therefore, if in addition w € H**1(Q5), then

. K
ot IV (w —wh)|[L2(r)y < Chplul g ).

Proof. If u is divergence—free, then IT,u € Zj,. Therefore by the definition of IT;, and the H!-stability of this

operator,
inf ||V(u — ’wh)”Lz(T) § ||V(’LL — Hhu)HLz(T)
whrEZp
< |IV(u = Ihu)|| g2y + V(I (1 — In)w)|| 27
< C(IV(u — Tyu) || 22y + hy'llw — Ty L2 (r)).
We then use the approximation properties of the Scott—Zhang interpolant to obtain the result. (Il
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