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Abstract

The idea of stable, localized bundles of energy has strong appeal as a model for
particles. In the 1950s, John Wheeler envisioned such bundles as smooth configu-
rations of electromagnetic energy that he called geons, but none were found. Instead,
particle-like solutions were found in the late 1960s with the addition of a scalar field,
and these were given the name boson stars. Since then, boson stars find use in a wide
variety of models as sources of dark matter, as black hole mimickers, in simple
models of binary systems, and as a tool in finding black holes in higher dimensions
with only a single Killing vector. We discuss important varieties of boson stars, their
dynamic properties, and some of their uses, concentrating on recent efforts.
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1 Introduction

Particle-like objects have a very long and broad history in science, arising long
before Newton’s corpuscles of light, and spanning the range from fundamental to
astronomical. In the mid-1950s, John Wheeler sought to construct stable, particle-
like solutions from only the smooth, classical fields of electromagnetism coupled to
general relativity (Wheeler 1955; Power and Wheeler 1957). Such solutions would
represent something of a “gravitational atom”, but the solutions Wheeler found,
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which he called geons, were unstable. However, in the following decade, Kaup
replaced electromagnetism' with a complex scalar field (Kaup 1968), and found
Klein—Gordon geons that, in all their guises, have become well-known as today’s
boson stars (see Sect. II of Schunck and Mielke 2003 for a discussion of the naming
history of boson stars).

As compact, stationary configurations of scalar field bound by gravity, boson stars
are called upon to fill a number of different roles. Most obviously, could such
solutions actually represent astrophysical objects, either observed directly or
indirectly through its gravity? Instead, if constructed larger than a galaxy, could a
boson star serve as the dark matter halo that explains the flat rotation curve observed
for most galaxies?

The equations describing boson stars are relatively simple, and so even if they do
not exist in nature, they still serve as a simple and important model for compact
objects, ranging from particles to stars and galaxies. In all these cases, boson stars
represent a balance between the dispersive nature of the scalar field and the attraction
of gravity holding it together.

This review is organized as follows. The rest of this section describes some general
features about boson stars. The system of equations describing the evolution of the
scalar field and gravity (i.e., the Einstein—Klein—Gordon equations) are presented in
Sect. 2. These equations are restricted to the spherical symmetric case (with a harmonic
ansatz for the complex scalar field and a simple massive potential) to obtain a boson-star
family of solutions. To accommodate all their possible uses, a large variety of boson-star
types have come into existence, many of which are described in more detail in Sect. 3.
For example, one can vary the form of the scalar field potential to achieve a larger range
of masses and compactnesses than with just a mass term in the potential. Certain types
of potential admit soliton-like solutions even in the absence of gravity, leading to so-
called Q-stars. One can adopt Newtonian gravity instead of general relativity, or
construct solutions from a real scalar field instead of a complex one. It is also possible to
find solutions coupled to an electromagnetic field or a perfect fluid, leading respectively
to charged boson stars and fermion-boson stars. Rotating boson stars are found to have
an angular momentum which is not arbitrary, but instead quantized, and can even
coexist with a Kerr black hole. Multi-field boson stars with more than one complex
scalar field are also considered. Recently, stars made of a massive vector field have been
constructed which more closely match the original geon proposal because such a field
has the same unit spin as Maxwell.

We discuss the dynamics of boson stars in Sect. 4. Arguably, the most important
property of boson-star dynamics concerns their stability. Approaches to analyzing
their stability include linear perturbation analysis, catastrophe theory, and fully non-
linear, numerical evolutions. The latter option allows for the study of the final state of
perturbed stars. Possible endstates include dispersion to infinity of the scalar field,
migration from unstable to stable configurations, and collapse to a black hole. There
is also the question of formation of boson stars. Full numerical evolutions in 3D
allow for the merger of binary boson stars, which display a large range of different
behaviors as well producing distinct gravitational-wave signatures.

! But see the discussion of oscillatons with a real vector field in Sect. 3.4 and of geons in AdS in Sect. 6.3.
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Finally, we review the impact of boson stars in astronomy in Sect. 5 (as
astrophysical objects, black hole mimickers, gravitational-wave sources, and sources
of dark matter) and in mathematics in Sect. 6 (appearing in critical behavior, the
Hoop conjecture, other dimensions and anti-de Sitter spacetimes, and gravitational
analogs). We conclude with some remarks and future directions.

1.1 The nature of a boson star

Boson stars (BS) are constructed with a complex scalar field coupled to gravity (as
described in Sect. 2). A complex scalar field ¢ (¢, r) can be decomposed into two real
scalar fields ¢y and ¢; mapping every spacetime event to the complex plane

d’(t’r) E¢R(tvr)+i¢l(t»r)~ (1)

Such a field possesses energy because of its spatial gradients and time derivatives,
and this energy gravitates holding the star together. Less clear is what supports the
star against the force of gravity. Its constituent scalar field obeys a Klein—Gordon
wave equation which tends to disperse fields. This is the same dispersion which
underlies the Heisenberg uncertainty principle. Indeed, Kaup’s original work (Kaup
1968) found energy eigenstates for a semi-classical, complex scalar field, discovering
that gravitational collapse was not inevitable. Ruffini and Bonazzola (1969) followed
up on this work by quantizing a real scalar field representing some number of bosons
and they found the same field equations.

None of this guarantees that such solutions balancing dispersion against
gravitational attraction exist. In fact, a widely known theorem, Derrick’s theorem
(Derrick 1964) (see also Rosen 1966 and its extension to the case of a general non-
canonical scalar field Diez-Tejedor and Gonzalez-Morales 2013), uses a clever
scaling argument to show that no regular, static, nontopological localized scalar field
solutions are stable in three (spatial) dimensional flat space. This constraint is
avoided by adopting a harmonic ansatz for the complex scalar field

b(r,1) = do(r)e™ (2)

and by working with gravity. Although the field is no longer static, as shown in
Sect. 2 the spacetime remains static. The star itself is a stationary, soliton-like
solution as demonstrated in Fig. 1.

There are, of course, many other soliton and soliton-like solutions in three
dimensions finding a variety of ways to evade Derrick’s theorem. For example, the
field-theory monopole of ’t Hooft and Polyakov is a localized solution of a properly
gauged triplet scalar field. Such a solution is a topological soliton because the
monopole possesses false vacuum energy which is topologically trapped. The
monopole is one among a number of different topological defects that requires an
infinite amount of energy to “unwind” the potential energy trapped within (see
Vilenkin and Shellard 1994 for a general introduction to defects and the introduction
of Ryder 1996 for a discussion of relevant classical field theory concepts).

Derrick’s Theorem is technically limited to flat space, leaving open the possibility
that general relativity could allow for the formation of regular, static solutions.
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Fig. 1 Demonstration of the
solitonic nature of the (mini-
)boson star. Shown are snapshots
of the magnitude squared of the
complex scalar field for a head-
on collision of two identical
mini-boson stars. The interacting
stars display an interference
pattern as they pass through each
other, recovering their individual
identities after the collision.
However, note that the BSs have
a larger amplitude after their
interaction and so are not true
solitons. The collision can
therefore be considered inelastic.
Reproduced with permission
from Choi et al. (2009). See also
Lai (2004) (e.g., Figure 5.12)

Efforts to exclude this possibility include work by Hod with certain assumptions
about the scalar potential (including monotonically increasing) (Hod 2018, 2019). A
more general result was presented by Carloni and Rosa (2019). Further work
considered AdS (Peng 2020) and other couplings (Liu and Peng 2022).
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In Sect. 2, we present the underlying equations and mathematical solutions, but
here we are concerned with the physical nature of these boson stars. When searching
for an actual boson star, we look not for a quantized wave function or even a
semiclassical one. Instead, we look to a fundamental scalar to provide the bosonic
material of the star. Only in the last decade has a scalar particle been experimentally
found with the discovery by the Large Hadron Collider (LHC) of the standard model
Higgs boson with a mass roughly 125 GeV/c? (Aad et al. 2012; Chatrchyan et al.
2012; Khachatryan et al. 2015). Of course, other proposed bosonic candidates
remain, such as the axion particle.

Boson stars are then either a collection of stable fundamental bosonic particles
bound by gravity, or else a collection of unstable particles that, with the gravitational
binding, have an inverse process efficient enough to reach an equilibrium. They can
thus be considered a Bose—Einstein condensate (BEC), although boson stars can also
exist in an excited state as well.

Indeed, applying the uncertainty principle to a boson star by assuming it to be a
macroscopic quantum state results in an excellent estimate for the maximum mass of
a BS. One begins with the Heisenberg uncertainty principle of quantum mechanics

Ap Ax>h 3)

and assumes the BS is confined within some radius Ax = R with a maximum
momentum of Ap = mc where m is the mass of the constituent particle

mcR > h. (4)

This inequality is consistent with the star being described by a Compton wavelength
of Ac = h/(mc). We look for the maximum possible mass M, for the boson star
which will saturate the uncertainty bound and drive the radius of the star towards its
Schwarzschild radius Rs = 2 GMyax/ 2. Substituting yields

2 Gm My
c

=7, (3)

which gives an expression for the maximum mass

1 hc

Mmax = 3~ -
2Gm

(6)
Recognizing the Planck mass Mpianek = +/fic/G, we obtain the estimate of Mix =
0.5 M3, /m (see Herdeiro and Radu 2022 for a discussion of the conditions under
which a boson star is the legitimate classical limit of a quantum field). This simple
estimate indicates that the maximum mass of the BS is inversely related to the mass
of the constituent scalar field. We will see below in Sect. 2 that this inverse rela-
tionship continues to hold with the explicit solution of the differential equations for a
simple mass term in the potential, but can vary with the addition of self-interaction
terms. Indeed depending on the strength of the coupling m and the other parameters
of the self-interaction potential, the size and mass of the boson stars can vary from
atomic to astrophysical scales.
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Despite their connection to fundamental physics, one can also view boson stars in
analogy with models of neutron stars. In particular, as we discuss in the following
sections, both types of star demonstrate somewhat similar mass versus radius curves
for their solutions, with a transition in stability at the local maxima of the mass. There
is also a correspondence between (massless) scalar fields and a stiff, perfect fluid (see
Sect. 2.1 and Appendix A of Brady et al. 2002), but the correspondence does not
mean that the two are equivalent (Faraoni 2012). More than just an analogy, boson
stars can serve as a very useful model of a compact star, having certain advantages
over a fluid neutron star model: (i) the equations governing its dynamics avoid
developing discontinuities, in particular there is no sharp stellar surface, (ii) there is
no concern about resolving turbulence, and (iii) one avoids uncertainties in the
equation of state (at the cost of having to choose a potential for the bosonic field).

1.2 Other reviews

A number of other reviews of boson stars have appeared. Schunck and Mielke (2003)
concentrate on the possibility of detecting BSs, extending their previous reviews
(Mielke and Schunck 1999, 2002). In 1992, a number of reviews appeared: Jetzer
(1992) concentrates on the astrophysical relevance of BS (in particular their
relevance for explaining dark matter) while Liddle and Madsen (1992) focus on their
formation. Other reviews include Straumann (1992), Lee and Pang (1992). Mielke
(2016) reviewed rotating boson stars, while Herdeiro and Radu (2015a) reviewed
Kerr black holes with scalar hair.

Braaten and Zhang (2019) have published an extensive review focused on axion
stars, while Visinelli (2021) wrote a broad review of boson stars. Most recently, Shnir
(2022) presented a short review focusing on multipolar scalar configurations.

2 Solving for boson stars

In this section, we present the equations governing boson-star solutions, namely the
Einstein equations for the geometry description and the Klein—-Gordon equation to
represent the (complex) scalar field. We refer to this coupled system as the Einstein—
Klein—Gordon (EKG) equations.

The covariant equations describing boson stars are presented in Sect. 2.2, which is
followed by choosing particular coordinates consistent with a 341 decomposition in
Sect. 2.3. A form for the potential of the scalar field is then chosen and solutions are
presented in Sect. 2.4.

2.1 Conventions

Throughout this review, Roman letters from the beginning of the alphabet a, b, ¢, . ..
denote spacetime indices ranging from 0 to 3, while letters near the middle i/, k, . . .
range from 1 to 3, denoting spatial indices. Unless otherwise stated, we use units
—1/2

such that # = ¢ = 1 so that the Planck mass becomes Mppnek = G . We also use

the signature convention (—,+,+,+) for the metric.
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2.2 The Lagrangian, evolution equations and conserved quantities

The EKG evolution equations can be derived from the action Wald (1984)

S—/(mleJrﬁM)\/——gd“x (7)

where R is the Ricci scalar of the spacetime represented by the metric g5, and its
determinant ,/—g. The term L, describes the matter, which here is that of a
complex scalar field, ¢

L= 5 [e"V.p Vup + v (10F)], (8)
where ¢ is the complex conjugate of the field and ¥ (|¢|*) is the potential depending
only on the magnitude of the scalar field, consistent with the U(1) invariance of the
field in the complex plane.

Variation of the action in Eq. (7) with respect to the metric g leads to the well-
known Einstein equations

R
Rap — Egab = 87'CGTab (9)

T, — % (Ve Vo + Va V] — %gab gvepvap+v(10F)].  (10)

where R, is the Ricci tensor and 7 is the real stress-energy tensor. Egs. (9) form a
system of 10 non-linear partial differential equations for the spacetime metric
components g,, coupled to the scalar field via the stress-energy tensor given in
Eq. (10).

On the other hand, the variation of the action in Eq. (7) with respect to the scalar
field ¢, leads to the Klein—Gordon (KG) equation

dv
——¢.
d|o|
An equivalent equation is obtained when varying the action with respect to the

complex conjugate ¢. The simplest potential leading to boson stars is the so-called
free field case, where the potential takes the form

V(Il*) = m* |gF, (12)

with m a parameter that can be identified with the bare mass of the field theory.

According to Noether’s theorem, the invariance of the Klein—-Gordon Lagrangian
in Eq. (8) under global U(1) transformations ¢ — ¢e'® (such that d¢p = i¢h) implies
the existence of a conserved current

gabvavbd) = (11)
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0 0L\ 0L - _i bl T _ -
J _a(va¢) 5¢+a(va(z)) 5¢_2g ((]’)Vb(,b ¢vb¢)7 (13)
satisfying the conservation law
1
V J¢=——=0,(v/—gJ) =0.

The spatial integral of the time component of this current defines the conserved
Noether charge, given by

N:/JO\/—_gdx37 (15)

which can be associated with the total number of bosonic particles (Ruffini and
Bonazzola 1969). If one neglects the binding energy of the star, then the total mass
can be expressed simply in terms of the bare mass as mN.

2.3 The 3+1 decomposition of the spacetime

Although the spacetime description of general relativity is very elegant, the covariant
form of Einstein equations is not suitable to describe how an initial configuration
evolves towards the future. It is, therefore, more intuitive to instead consider a
succession of spacetime geometries, where the evolution of a given slice is given by
the Einstein equations (for more detailed treatments see Alcubierre 2008; Baumgarte
and Shapiro 2010; Bona et al. 2009; Gourgoulhon 2012). In order to convert the four-
dimensional, covariant Einstein equations to a more intuitive “space+time” or 341
decomposition, the following steps are taken:

— specify the choice of coordinates. The spacetime is foliated by a family of
spacelike hypersurfaces, which are crossed by a congruence of time lines that will
determine our observers (i.e., coordinates). This congruence is described by the
vector field # = on® + %, where « is the lapse function which measures the
proper time of the observers, 3 is the shift vector that measures the displacement
of the observers between consecutive hypersurfaces and n? is the timelike unit
vector normal to the spacelike hypersurfaces.

— decompose every 4D object into its 3+1 components. The choice of coordinates
allows for the definition of a projection tensor ¢, = d; + n“n,. Any four-
dimensional tensor can be decomposed into 341 pieces using the spatial
projector to obtain the spatial components, or contracting with n¢ for the time
components. For instance, the line element can be written in a general form as

ds* = —o’ d* + y,(dx' + B'dr) (dx + Pdr). (16)
The stress-energy tensor can then be decomposed into its various components as

=T namy, S; = T n" 9%, Si =T y“iybj. (17)
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— write down the field equations in terms of the 3+1 components. Within the
framework outlined here, the induced (or equivalently, the spatial 3D) metric y;
and the scalar field ¢ are as yet still unknown (remember that the lapse and the
shift just describe our choice of coordinates). In the original 3+1 decomposition
(ADM formulation Arnowitt et al. 1962) an additional geometrical tensor Kj; =
—(1/2)Lny; = —1/(22)(d; — L)y, is introduced to describe the change of the
induced metric along the congruence of observers. Loosely speaking, one can
view the determination of y;; and Kj; as akin to the specification of a position and
velocity for projectile motion. In terms of the extrinsic curvature and its trace,
trK = K}/, the Einstein equations can be written as

R + (tK)*—K/ K = 161G T (18)
V; (K/ —tK §/) =8nGS; (19)
(8 — Lp)Ky = =V Vo + o(R; — 2K Ky + K Kj;
Vij (20)
—8nG [S,j - ?(trS - ‘E)D

In a similar fashion, one can introduce a quantity Q = —L,¢ for the Klein—

Gordon equation which reduces it to an equation first order in time, second order
in space

i i av
0 (V7 Q) — Bi(B'V70) + i /77" 0i¢) = aﬂmdk (21)

— enforce any assumed symmetries. Although the boson star is found by a harmonic
ansatz for the time dependence, here we choose to retain the full time-
dependence. However, a considerably simplification is provided by assuming that
the spacetime is spherically symmetric. Following Lai (2004), the most general
metric in this case can be written in terms of spherical coordinates as

ds® = (—o? +d® f2)de* +2d* Bdrdr + a® dr* +1* b? dQ?, (22)

where «(t,7) is the lapse function, f§(¢,7) is the radial component of the shift
vector and a(t, r), b(t, r) represent components of the spatial metric, with dQ* the
metric of a unit two-sphere. With this metric, the extrinsic curvature only has two
independent components K; = diag (K’r,K 09, K 99). The constraint equations,
Egs. (18) and (19), can now be written as

_i{ar P(;b)} + 1 [6,(%6,(%)) —a} } + 4K, K% + 2K K% (23)

arb rb

_ 850

= 1ol Pty (1) | (24)
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2nG

M( 0y —K") = ; “—(Id+ 1), (25)

6,1(00 +
where we have defined the auxiliary scalar-field variables
a
& =09, = &(étqb — f0,¢). (26)

The evolution equations for the metric and extrinsic curvature components
reduce to

0;a =0,(af) — aaK’, (27)
ob :gér(rb) — abK’y (28)

oK", — po,K", = — —a ( p )
{—iﬁ [a( )} + trK K",

b
-8 Lo+ @viioP)) | (29)
Ky — pO,K% = (r:)z — ﬁ ’ {“:b 3, (rb)}

+a [trKK% —4n GV(\¢|2)} .

Similarly, the reduction of the Klein—Gordon equation to first order in time and
space leads to the following set of evolution equations

0p =pP + %H o0

at(p:ar(ﬁ¢+gﬂ) (31)

a,nﬁ@r{(rb)2<ﬂn+g(p)}+2[al{%ﬁ%]n 52
LU
d|¢|’

This set of equations, Eqs. (23)—(32), describes general, time-dependent,
spherically symmetric solutions of a gravitationally-coupled complex scalar field.
In the next section, we proceed to solve for the specific case of a boson star.

2.4 Mini-boson stars

The concept of a star entails a configuration of matter which remains localized. One,
therefore, looks for a localized and time-independent matter configuration such that
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the gravitational field is stationary and regular everywhere. As shown in Friedberg
et al. (1987a), such a configuration does not exist for a real scalar field. But since the
stress-energy tensor depends only on the modulus of the scalar field and its gradients,
one can relax the assumption of time-independence of the scalar field while retaining
a time-independent gravitational field. The key is to assume a harmonic ansatz for the
scalar field

b(r,1) = do(r)e"”, (33)

where ¢ is a real scalar which is the profile of the star and w is a real constant
denoting the angular frequency of the phase of the field in the complex plane.

We consider spherically symmetric, equilibrium configurations corresponding to
minimal energy solutions while requiring the spacetime to be static. In Sch-
warzschild-like coordinates, the general, spherically symmetric, static metric can be
written as

ds? = —a(r)’de® + a(r)’dr* + r?dQ?, (34)

in terms of two real metric functions, « and a. The coordinate r is an areal radius such
that spheres of constant » have surface area 477>, For this reason, these coordinates
are often called polar-areal coordinates.

The equilibrium equations are obtained by substituting the metric of Eq. (34) and
the harmonic ansatz of Eq. (33) into the spherically symmetric EKG system of
Egs. (27-32) with = 0,b =1, resulting in three first order partial differential
equations (PDEs)

o,a :_%(az — 1) +4n Gra’t (35)
0, :21 (a2 - l) + 47 Groa®S’, (36)
,

. o (0 dV
@,,(P:— [1 +a2+4nGr2a2(Sr —T):I7— (F—W>az 4)0' (37)

Notice that these equations hold for any stress-energy contributions and for a generic
type of self-potential ¥ (|$|*). In order to close the system of Eqs. (35-37), we still
have to prescribe this potential. The simplest case admitting localized solutions is the
free field case of Eq. (12) for which the potential describes a field with mass m and
for which the equations can be written as

2_ 1 2

a,a:g{_” . +4nGr[<%+m2>a2qb§+<D2H, (38)
2 _ 2

ca=i{ T hima|(Gow)es ]l )
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7)) 2
0,0 =—{1+ a* —4n Gr2a2m2¢(2)} —— (w_z - m2> by . (40)
r o

In order to obtain a physical solution of this system, we have to impose the following
boundary conditions,

$0(0) =, (41)
®(0) =0, (42)

a(0) =1, (43)

Jim ¢o(r) =0, (44)
Jim () = fim 0. 49

which guarantee regularity at the origin and asymptotic flatness. For a given central
value of the field {¢,.}, we need only to adjust the eigenvalue {®} to find a solution
which matches the asymptotic behavior of Egs. (44—45). This system can be solved
as a shooting problem by integrating from » = 0 towards the outer boundary » = 7y
(see Dias et al. 2016 for a review on numerical methods to find stationary gravita-
tional solutions). Equation (39) is linear and homogeneous in « and one is therefore
able to rescale the field consistent with Eq. (45). We can get rid of the constants in the
equations by re-scaling the variables in the following manner

b = Van G, F=mr, 1= ot o= (m/w)o. (46)

Notice that the form of the metric in Eq. (34) resembles Schwarzschild allowing the

association a®> = (1 —2M/r)”", where M is the ADM mass of the spacetime. This
allows us to define a more general mass aspect function

M(r,t) :%(1 —ﬁ), (47)

which measures the total mass contained in a coordinate sphere of radius 7 at time ¢.
In isotropic coordinates, the spherically symmetric metric can be written as

ds® = —a(R)*d? + y(R)* (dR? + R*d2?), (48)

where  is the conformal factor. A change of the radial coordinate R = R(r) can
transform the solution obtained in Schwarzschild coordinates into isotropic ones, in

particular
1+ +/a *r
(54 5] (49)

R(rmax) =
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dR R
—Q— =a —, (5 0)
dr r
where the first condition is the initial value to integrate the second equation back-
wards, obtained by imposing that far away from the boson star the spacetime

resembles the Schwarzschild solution. By comparing the angular metric coefficients,

we also find that = \/r/_R Further details can be found in Appendix D of Lai
(2004).

As above, boson stars are spherically symmetric solutions of the Eqgs. (38—40)
with asymptotic behavior given by Egs. (41-45). For a given value of the central
amplitude of the scalar field ¢,(r = 0) = ¢,, there exist configurations with some
effective radius and a given mass satisfying the previous conditions for a different set
of n discrete eigenvalues . As n increases, one obtains solutions with an
increasing number of nodes in ¢,. The configuration without nodes is the ground
state, while all those with any nodes are excited states. As the number of nodes
increases, the distribution of the mass as a function of the radius becomes more
homogeneous.

As the amplitude ¢, increases, the stable configuration has a larger mass while its
effective radius decreases. This trend indicates that the compactness of the boson star
increases. However, at some point the mass instead decreases with increasing central
amplitude. Similar to models of neutron stars (see Sect. 4 of Cook 2000), this
turnaround implies a maximum allowed mass for a boson star in the ground state,
which numerically was found to be M. = 0.633 M3, /m. The existence of a
maximum mass for boson stars is a relativistic effect, which is not present in the
Newtonian limit, while the maximum of baryonic stars is an intrinsic property.

Solutions for a few representative boson stars in the ground state are shown in
Fig. 2 in isotropic coordinates. The boson stars becomes more compact for higher

Fig. 2 Profiles characterizing
static, spherically symmetric
boson stars with a few different
values of the central scalar field
(top left).
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values of ¢, implying narrower profiles for the scalar field, larger conformal factors,
and smaller lapse functions, as the total mass increases.

3 Varieties of boson stars

Quite a number of different flavours of boson stars are present in the literature. They
can have charge, a fermionic component, or rotation. They can be constructed with
various potentials for the scalar field. The form of gravity which holds them together
can even be modified to, say, Newtonian gravity or even no gravity at all (Q-balls).
To a certain extent, such modifications are akin to varying the equation of state of a
normal, fermionic star. Here we briefly review some of these variations, most of them
represented in the diagram below, paying particular attention to recent work.

Newtonian

i mone BH-+scalar £-boson
(oscillons) (Q-balls) P
Alternative rotating
theories Proca
Gravity Spin
AdS rotgtslng
Boson Star
complex Scalar Field,
non-spinning, in GR (SfF“'ﬂ“ld
ermion-
boson)
massive
(mini-BS)
SF+VF
. . (charged
Potential Fields BS)
quartic complex
Vc'ctor multiple
Field SFs (dark,
. (Proca) real n-boson,
. cosine oD )
sn(tf.x—or(-ier (axion BS) SF/VF oson
(solitonic) (axion
stars,
oscillatons)
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3.1 Self-interaction potentials

Originally, boson stars were constructed with a free-field potential without any kind
of self-interaction, obtaining a maximum mass with a dependence M =~ M3, /m.
This mass, for typical masses of bosonic particle candidates, is much smaller than the
Chandrasekhar mass Mc, ~ MSlaan /m2 obtained for fermionic stars, and so they
were known as mini-boson stars. In order to extend this limit and reach astrophysical
masses comparable to the Chandrasekhar mass, the potential was generalized to
include a self-interaction term that provided an extra pressure against gravitational
collapse. To preserve the global U(1) invariance, and hence to retain a conserved
particle number, such a potential should be a function of |¢|.

Although the first expansion to nonlinear potentials was considered in Mielke and
Scherzer (1981) including fourth and sixth order |¢|-terms, a deeper analysis was
performed later considering a potential with only the quartic term Colpi et al. (1986)

A
v(1oF) = mlof +Z 1ol (1)

with / a dimensionless coupling constant. Written in terms of a general potential, the
EKG equations remain the same. The families of gravitational equilibrium can be
parametrized by the single dimensionless quantity A = 1/(4m Gm?). The potential of
Eq. (51) results in a maximum boson-star mass that now scales as

Munax = 0.224"*Mpigna /m = (0.1 GeV2) M, 212 /m? (52)

which is comparable to the Chandrasekhar mass for fermions with mass

Mefermion ~ M/ S/ (Colpi et al. 1986). This self-interaction, therefore, allows much
larger masses than the mini-boson stars as long as A >> 1, an inequality that may be

4|1|1|||||]!r1|||

M/(MzPlanck/m)
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Mmax/(MzP]anck/m)
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Fig. 3 Left: The mass of the boson star as a function of the central value of the scalar field in adimensional
units ¢, = v4n G¢,. Right: Maximum mass as a function of A (squares) and the asymptotic A4 — oo
relation of Eq. (52) (solid curve).

Reproduced with permission from Colpi et al. (1986), copyright by APS
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Fig. 4 The compactness of a stable boson star (black solid line) as a function of the adimensional self-
interaction parameter A = A/(4n Gm?). The compactness is shown for the most massive stable star (the
most compact BS is unstable). This compactness asymptotes for 4 — oo to the value indicated by the red,
dashed line. Also shown for comparison is the compactness of a Schwarzschild BH (green dot-dashed
line), and the maximum compactness of a non-spinning neutron star (blue dotted line).

Reproduced with permission from Amaro-Seoane et al. (2010), copyright by IOP

satisfied even when 4 < 1 for reasonable scalar boson masses. The maximum mass
as a function of the central value of the scalar field is shown in Fig. 3 for different
values of /. The compactness of the most massive stable stars was studied in Amaro-
Seoane et al. (2010), finding an upper bound M /R<0.16 for A > 1. Figure 4 dis-
plays this compactness as a function of A along with the compactness of a Sch-
warzschild BH and non-spinning neutron star for comparison. The effect of repulsive
(4 > 0) and attractive (4 <0) quartic terms in the self-interaction potential have been
studied in Eby et al. (2016).

Many subsequent papers further analyze the EKG solutions with polynomial, or
even more general non-polynomial, potentials. One work in particular (Schunck and
Torres 2000) studied the properties of the galactic dark matter halos modeled with
these boson stars. They found that a necessary condition to obtain stable, compact
solutions with an exponential decrease of the scalar field, the series expansion of
these potentials must contain the usual mass term m?2|¢|>.

More exotic ideas similarly try to include a pressure to increase the mass of BSs.
Agnihotri et al. (2009) consider a form of repulsive self-interaction mediated by
vector mesons within the mean-field approximation. However, the authors leave the
solution of the fully nonlinear system of the Klein—Gordon and Proca equations to
future work.

Other generalizations of the potential allow for the presence of nontopological
soliton solutions even in the absence of gravity, with characteristics quite different
than those of the mini-boson stars. In order to obtain these solutions the potential
must satisfy two conditions. First, it must be a function of |q§|2 to preserve the global
U(1) invariance. Second, the potential should have an attractive term, bounded from
below and positive for |¢p| — co. These conditions imply a potential of at least sixth
order, a condition that is satisfied by the typical degenerate vacuum form (Lee 1987;
Friedberg et al. 1987b)
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V(o) =m o’ (1 —%) : (53)
0

for which the potential has two degenerate minima at +¢,. The case |¢| = 0 cor-
responds to the true vacuum state, while || = ¢, represents the degenerate vacuum
state.

The resulting soliton solution can be split into three different regions. When
gravity is negligible, the interior solution satisfies ¢ ~ ¢, followed by a shell of
width 1/m over which ¢ changes from ¢, to zero, and an exterior that is essentially
vacuum. This potential leads to a different scaling of the mass and radius than that of
the ground state (Lee and Pang 1992)

Mmax ~ Mélanck/(m ¢(2))’ Rmax ~ M[%Ianck/(m ¢(2)) (54)

There is another type of non-topological soliton star, called Q-stars (Lynn 1989),
which also admits soliton solutions in the absence of gravity (i.e., Q-balls Coleman
1985; Lee and Pang 1992). The potential, besides also being a function of |¢|, must

satisfy the following conditions: it must behave like ~ |<;5|2 near ¢ = 0, it has to be

bounded <|¢|* in an intermediate region, and must be larger > |¢|* for |¢p| — .
The Q-stars also have three regions; an interior solution of radius R & Mbpjunck/ qb(z), (i
e., ¢, ~ m is the free particle inverse Compton wavelength) a very thin surface
region of thickness 1/¢,, and finally the exterior solution without matter, which
reduces to Schwarzschild in spherical symmetry. The mass of these Q-stars scales
now as M3, /¢a, and for some choices of the sixth order self-interaction potential
the compactness of the boson star (defined with the expected value of R or R?) can
approach the black-hole limit (Kleihaus et al. 2012). The stability of these Q-stars has
been studied recently using catastrophe theory, such as Tamaki and Sakai (2010);
Kleihaus et al. (2012). Rotating, axisymmetric Q-balls were constructed in Kleihaus
et al. (2005), Kleihaus et al. (2008). Related, rotating solutions in 2 + 1 with the
signum-Gordon equation instead of the KG equation are found in Arodz et al. (2009).
Other interesting works have studied the formation of Q-balls by the Affleck—Dine
mechanism (Kasuya and Kawasaki 2000), their dynamics in one, two and three
spatial dimensions (Battye and Sutcliffe 2000), and their viability as a self-interacting
dark matter candidate (Kusenko and Steinhardt 2001).

Solitonic boson stars represent solutions in the presence of gravity with the
potential given by Eq. (53). Very compact stable stars can be constructed numerically
choosing small values of ¢, < 1 (Macedo et al. 2013a). Such solutions can be very
compact with a very thin wall separating the inside from the outside (Boskovi¢ and
Barausse 2022; Collodel and Doneva 2022). Such stars are often studied within the
context of mimicking black holes and serving as models of ultra compact objects
which could be expected to produce gravitational wave echoes (Urbano and Veermée
2019; Cardoso et al. 2022c¢).

It has been shown recently that very compact boson stars can also be found by
using a V-shaped potential proportional to |¢| (Hartmann et al. 2012). The same V-
shaped potential with an additional quadratic massive term has been considered in
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Kumar et al. (2015). A recent study of ultra-compact objects (Cardoso et al. 2022c)
found a general condition on the compactness of a non-rotating boson star. In
particular, for a general self-interaction potential that has a degenerate vacuum (here,
precisely two minima), its most compact boson stars can have a radius slightly
smaller than the corresponding light ring,? but will have a maximum compactness of
C = M/R =~ 0.36 (Cardoso et al. 2022c¢).

Bose—Einstein condensates can arise also from periodic potentials. For instance,
by using the potential Eq. (67) associated with the axion field, one can construct
axion boson stars made of a light complex scalar field (Guerra et al. 2019). Similar
solutions, using the semi-relativistic approach with two different periodic potentials,
were already found almost a decade before in Barranco and Bernal (2011b). Chan
et al. (2022) study the evolution of such a star within an ambient axion gas. Further
details on axion stars are given in Sect. 3.4.

Bhatt and Sreekanth (2009) consider a chemical potential to construct BSs,
arguing that the effect of the chemical potential is to reduce the parameter space of
stable solutions. Boson stars with a thermodynamically consistent equation of state,
leading to an isotropic pressure, were considered in Chavanis and Harko (2012). The
solutions, obtained by integrating the TOV equations, reached compactnesses smaller
(but comparable) to neutron stars. The extension to boson stars with finite
temperature was considered in Latifah et al. (2014).

Related work modifies the kinetic term of the action instead of the potential. Adam
et al. (2010) study the resulting BSs for a class of K field theories, finding solutions
of two types: (i) compact balls possessing a naked singularity at their center and
(i) compact shells with a singular inner boundary which resemble black holes.
Akhoury and Gauthier (2008) consider coherent states of a scalar field instead of a
BS within k-essence in the context of explaining dark matter. Dzhunushaliev et al.
(2008) modify the kinetic term with just a minus sign to convert the scalar field to a
phantom field. Although, a regular real scalar field has no spherically symmetric,
local static solutions, they find such solutions with a real phantom scalar field.

3.2 Newtonian boson stars

The Newtonian limit of the Einstein—Klein—Gordon Egs. (9-11) can be derived by
assuming that the spacetime metric in the weak field approximation can be written as

goo = —(1+2V), gi=1+2V, g =0 for i#}j, (55)

where V'is the Newtonian gravitational potential. In this limit, the Einstein equations
reduce to the Poisson equation

V3V = 4n GT™ = 4n Gm* . (56)

Conversely, by assuming that

2 A light ring is the location outside a gravitational well at which light will orbit, separating paths that fall
inward and those that head outward. Only for very compact objects does a light ring exist outside the
object.
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¢ (x, 1) = ®(x,1)e™, (57)

in addition to the weak limit of Eq. (55), the Klein—Gordon equation reduces to
1
0,0 =——VO+mV o, (58)
2m

which is just the Schrodinger equation with /2 = 1. Therefore, the EKG system is
reduced in the Newtonian limit to the Schrédinger—Poisson (SP) system (Guenther
1995).

The initial data is obtained by solving an eigenvalue problem very similar to the
one for boson stars, with similar assumptions and boundary conditions. The solutions
also share similar features and display a similar behavior. A nice property of the
Newtonian limit is that all the solutions can be obtained by rescaling from one known
solution (Guenther 1995),

2 2
¢y = ¢, (]Nvf) ) Wy = W) (%) s r=r <%>7 (59)

where N =m [ d®¢¢ is the Newtonian number of particles.

The possibility of including self-interaction terms in the potential was considered
in Guzman and Urena-Lopez (2006), studying also the gravitational cooling (i.e., the
relaxation and virialization through the emission of scalar field bursts) of spherical
perturbations. Non-spherical perturbations were further studied in Bernal and
Guzman (2006b), showing that the final state is a spherically symmetric configu-
ration. Single Newtonian boson stars were studied in Guenther (1995), either when
they are boosted with/without an external central potential.

Rotating stars in Newtonian gravity are discussed in the beginning of Sect. 3.5.
Numerical evolutions of binary boson stars in Newtonian gravity are discussed in
Sect. 4.2.

Recent work by Chavanis with Newtonian gravity solves the Gross—Pitaevskii
equation, a variant of Eq. (58) which involves a pseudo-potential for a Bose—Einstein
condensate, to model either dark matter or compact alternatives to neutron stars
(Chavanis 2012, 2011; Chavanis and Harko 2012; Chavanis 2015; Chavanis and
Matos 2017). However, see a rebuttal to some of this work (Mukherjee et al. 2015).

Much recent work considers boson stars from a quantum perspective as a Bose—
Einstein condensate involving some number, P, of scalar fields. Michelangeli and
Schlein (2012) study the collapse of boson stars mathematically in the mean field
limit in which P — oo. Kiessling (2009) argues for the existence of bosonic atoms
instead of stars. Bao and Dong (2011) use numerical methods to study the mean field
dynamics of BSs.

3.3 Charged boson stars

Charged boson stars result from the coupling of the bosonic field to the
electromagnetic field (Jetzer and van der Bij 1989). The coupling between gravity
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and a complex scalar field with a U(1) charge arises by considering the action of
Eq. 7 with the following matter Lagrangian density

1 o - : 1 u
Lm=—3 {gab (Vahp +iedad) (Vo —iedy ) + V(|¢|2)} — g Fal ’, (60)
where e is the gauge coupling constant. The Maxwell tensor F,;, can be decomposed
in terms of the vector potential 4,

Fa» = Vady — VA, (61)

The system of equations obtained by performing the variations on the action forms
the Einstein—-Maxwell-Klein—Gordon system, which contains the evolution equa-
tions for the complex scalar field ¢, the vector potential 4,, and the spacetime metric
gap (Petryk 2000).

Because a charged BS may be relevant for a variety of scenarios, we detail the
resulting equations. For example, cosmic strings are also constructed from a charged,
complex scalar field and obeys these same equations. It is only when we choose the
harmonic time dependence of the scalar field that we distinguish from the harmonic
azimuth of the cosmic string (Vilenkin and Shellard 1994). The evolution equations
for the scalar field and for the Maxwell tensor are

av
g“bvaqu’) —2ied*V,¢p — & PAAY —iepV A% = M (62)
VF® = —J" =ie(¢Vip — Vi) + 2 ¢ pA". (63)

Notice that the vector potential is not unique; we can still add any curl-free com-
ponents without changing the Maxwell equations. The gauge freedom can be fixed
by choosing, for instance, the Lorentz gauge V,4* = 0. Within this choice, which
sets the first time derivative of the time component A, the Maxwell equations reduce
to a set of wave equations in a curved background with a non-linear current. This
gauge choice resembles the harmonic gauge condition, which casts the Einstein
equations as a system of non-linear, wave equations (Wald 1984).

Either from Noether’s theorem or by taking an additional covariant derivative of
Eq. (63), one obtains that the electric current J* follows a conservation law. The
spatial integral of the time component of this current, which can be identified with the
total charge Q, is conserved. This charge is proportional to the number of particles,
Q =eN. The mass M and the total charge Q can be calculated by associating the
asymptotic behavior of the metric with that of Reissner—Nordstrom metric,

-1
2GM
& = (1 _26 + GQZ) for r— oo, (64)

r 4ny?

which is the unique solution at large distances for a scalar field with compact support.

We look for a time independent metric by first assuming a harmonically varying
scalar field as in Eq. (33). We work in spherical coordinates and assume spherical
symmetry. With a proper gauge choice, the vector potential takes a particularly
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simple form with only a single, non-trivial component 4, = (4y(»),0,0,0). This
choice implies an everywhere vanishing magnetic field so that the electromagnetic
field is purely electric. The boundary conditions for the vector potential are obtained
by requiring that the electric field vanishes at the origin because of regularity,
0,4o(r = 0) = 0. Because the electromagnetic field depends only on derivatives of
the potential, we can use this freedom to set 4g(cc) = 0 (Jetzer and van der Bij
1989).

With these conditions, it is possible to find numerical solutions in equilibrium as
described in Jetzer and van der Bij (1989). It was shown that bound stable config-
urations exist only for values of the coupling constant less than or equal to a certain
critical value, such that solutions are found for & = &> M2, /(8 nm?)<1/2. For
& >1 /2 the repulsive Coulomb force is bigger than the gravitational attraction and
no solutions were found, although it has been shown recently that, due to the binding
energy, solutions with & = 1/2 and even slightly higher are also allowed (Pugliese
et al. 2013). This bound on the BS charge in terms of its mass ensures that one cannot
construct an overcharged BS, in analogy to the overcharged monopoles of Lue and
Weinberg (2000). An overcharged monopole is one with more charge than mass and
is therefore susceptible to gravitational collapse by accreting sufficient (neutral)
mass. However, because its charge is higher than its mass, such collapse might lead
to an extremal Reissner—Nordstrom BH, but BSs do not appear to allow for this
possibility. Interestingly Sakai and Tamaki (2012) find that if one removes gravity,
the obtained Q-balls may have no limit on their charge.

The mass and the number of particles are plotted as a function of ¢, for different
values of ¢ in Fig. 5. Trivially, for ¢ = 0 the mini-boson stars of Sect. 2.4 are
recovered. Excited solutions with nodes are qualitatively similar (Jetzer and van der
Bij 1989). The stability of these objects has been studied in Jetzer (1989b), showing
that the equilibrium configurations with a mass larger than the critical mass are
dynamically unstable, similar to uncharged BSs.

Fig. 5 The mass (solid) and the
number of particles (dashed)
versus central scalar value for
charged boson stars with four
values of ¢ as defined in

Sect. 3.3. The mostly-vertical
lines crossing the four plots
indicate the solution for each
case with the maximum mass
(solid) and maximum particle
number (dashed). Reproduced
with permission from Jetzer and
van der Bij (1989); copyright by
Elsevier
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Work with charged BSs includes the publication of Maple® routines to study
boson nebulae charge (Dariescu and Dariescu 2010; Murariu and Puscasu 2010;
Murariu et al. 2008) and charged boson stars in the presence of a cosmological
constant (Kumar et al. 2016).

Because a charged black hole is subject to a superradiant instability (see Sect. 3.9)
which extracts energy from the hole, the confinement of such a black hole to a box is
called a black hole bomb. The fate of this configuration is of interest as is the
possibility that a hairy soliton is formed. Within this context, new regular solutions of
charged scalar fields in a cavity are presented in Ponglertsakul et al. (2016), which
are stable only when the radius of the mirror is sufficiently large.

The dynamical mechanism of the black hole bomb is studied numerically by
perturbing a Reissner—Nordstrom black hole, either in Ads Bosch et al. (2016) or in a
cavity Sanchis-Gual et al. (2016) with a charged scalar field. Although these two
studies are not finding soliton stars, they do find remarkable agreement on the
dynamical development of the superradiant instability, obtaining in both cases a
stable hairy black hole as the final state. Subsequently, Dias et al. (2021) study the
features of hairy solitons inside a Minkowski box with Reissner—Nordstrom
describing the exterior. Charged boson stars (and black holes) with wavy scalar hair
are found in Brihaye and Hartmann (2022).

Other work generalizes the Q-balls and Q-shells found with a certain potential
which leads to the signum-Gordon equation for the scalar field (Kleihaus et al.
2009, 2010). In particular, shell solutions can be found with a black hole in its
interior, which has implications for black hole scalar hair (for a review of black hole
uniqueness see Chrusciel et al. 2012).

One can also consider Q-balls coupled to an electromagnetic field, a regime
appropriate for particle physics. Within such a context, Eto et al. (2011) study the
chiral magnetic effect arising from a Q-ball. Other work in Brihaye et al. (2009a)
studies charged, spinning Q-balls, and Kunz et al. (2022) compare gauged Q-balls
with a symmetry-breaking potential (the Friedberg—Lee—Sirlin model) with their
corresponding gravitating charged boson stars.

Charged BSs in anti-de Sitter spacetimes have attracted some interest as noted at
the end of Sect. 6.3.

3.4 Oscillatons and axion stars

As mentioned earlier, it is not possible to find time-independent, spacetime solutions
for a real scalar field. However, there are non-singular, time-dependent near-
equilibrium configurations of self-gravitating real scalar fields, which are known as
oscillatons (Seidel and Suen 1991). These solutions are similar to boson stars, with
the exception that the spacetime must also have a time dependence in order to avoid
singularities.

In this case, the system is still described by the EKG Eqgs. (27-32), with the the
additional simplification that the scalar field is strictly real, ¢ = ¢. In order to find

3 http://www.maplesoft.com
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equilibrium configurations, one expands both metric components {A(r,?) =
a*,C(r,t) = (a/u)*} and the scalar field ¢(r,7) as a truncated Fourier series

Jmax

Z ¢y (r) cos([2)j — 1] wi), (65)

Jmax Jmax

ZAQJ cos(2j wt), Z Cy;(r) cos(2j wt), (66)

where o is the fundamental frequency and jy.x is the mode at which the Fourier
series are truncated. As noted in Urefia-Lopez et al. (2002); Alcubierre et al. (2003),
the scalar field consists only of odd components while the metric terms consist only
of even ones. Solutions are obtained by substituting the expansions of Eq. (65) into
the spherically symmetric Egs. (27-32). By matching terms of the same frequency,
the system of equations reduces to a set of coupled ODEs. The boundary conditions
are determined by requiring regularity at the origin and that the fields become
asymptotically flat at large radius. These form an eigenvalue problem for the coef-
ficients {¢,;_;(r = 0),4(r = 0),Cyi(r = 0)} corresponding to a given central
value ¢, (r = 0). As pointed out in Urefia-Lopez et al. (2002), the frequency o is
determined by the coefficient Co(co) and is therefore called an output value.
Although the equations are non-linear, the Fourier series converges rapidly, and so a
small value of jmax usually suffices.

A careful analysis of the high frequency components of this construction reveals
difficulties in avoiding infinite total energy while maintaining the asymptotically flat
boundary condition (Page 2004). Therefore, the truncated solutions constructed
above are not exactly time periodic. Indeed, very accurate numerical work has shown
that the oscillatons radiate scalar field on extremely long time scales while their
frequency increases (Fodor et al. 2010b; Grandclément et al. 2011). This work finds a
mass loss rate of just one part in 10'? per oscillation period, much too small for most
numerical simulations to observe. The solutions are, therefore, only near-equilibrium
solutions and can be extremely long-lived. Oscillatons have also been found in the
context of dark matter for real vector fields, sharing many of the features of their
scalar-field counterparts (Brito et al. 2015a, 2016b). Because they are constructed
from a real gauge vector field (albeit massive), these oscillatons would actually
represent the closest realization to the electromagnetic geons sought by Wheeler.

Although the geometry is oscillatory in nature, oscillatons behave similarly to
BSs. In particular, they similarly transition from long-lived solutions to a
dynamically  unstable  branch  separated at the maximum  mass
Minax = 0.607 Mg,,,../m. Figure 6 displays the total mass curve, which shows the
mass as a function of central value. Compact solutions can be found in the
Newtonian framework when the weak field limit is performed appropriately, reducing
to the so-called Newtonian oscillations (Urena-Lopez et al. 2002). The dynamics
produced by perturbations are also qualitatively similar, including gravitational
cooling, migration to more dilute stars, and collapse to black holes (Alcubierre et al.
2003). More recently, these studies have been extended by considering the evolution
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Fig. 6 Top: Total mass (in units B T T T T T T — 07
of MZ,,,./m) and fundamental "
frequency of an oscillaton as a
function of the central value of
the scalar field ¢, (r = 0). The
maximum mass is

Minax = 0.607 M3,/ M.
Bottom: Plot of the total mass
versus the radius at which g,
achieves its maximum.
Reproduced with permission
from Alcubierre et al. (2003);
copyright by IOP
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in 3D of excited states (Balakrishna et al. 2008) and by including a quartic self-
interaction potential (Valdez-Alvarado et al. 2011). In Kichenassamy (2008), a
variational approach is used to construct oscillatons in a reduced system similar to
that of the sine-Gordon breather solution. Such localized solutions have also been
constructed in AdS (see Sect. 6.3), and numerical evolutions suggest that they are
stable below some critical density (Fodor et al. 2015).

Closely related, are oscillons that exist in flatspace and that were first mentioned as
“pulsons” in Bogolyubskii and Makhan’kov (1977). And so just as a Q-ball can be
thought of as a BS without gravity, an oscillon is an oscillaton in the absence of
gravity. Extensive literature studies such solutions, many of which appear in Fodor
et al. (2008). A series of papers establishes that oscillons similarly radiate on very
long time scales (Fodor et al. 2008, 2009a, b, c). Recently, it has been demonstrated
that oscillons also exist in the low-energy effective theory of an interacting massive
vector field (Zhang et al. 2022a). Interestingly, they found two types of vector
oscillons, which despite having vanishing angular momentum and approximately
spherically symmetric energy density, have a non-spherical field configuration (i.e.,
they are “directional” linearly polarized, with vanishing total intrinsic spin, and
“spinning” circularly polarized oscillons, with a macroscopic intrinsic spin).
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An interesting numerical approach to evolving oscillons adopts coordinates that
blueshift and damp outgoing radiation of the massive scalar field (Honda 2000;
Honda and Choptuik 2002). A detailed look at the long term dynamics of these
solutions suggests the existence of a fractal boundary in parameter space between
oscillatons that lead to expansion of a true-vacuum bubble and those that disperse
(Honda 2010). Dymnikova et al. (2000) examine the collision of two of these
bubbles in the context of a first order phase transition. The reheating phase of
inflationary cosmology generally feature oscillons which may produce observable
gravitational waves (Antusch et al. 2017; Antusch and Orani 2016).

The axion field is a real scalar field introduced by Peccei and Quinn as part of
quantum chromodynamics (QCD) to solve the CP problem (Peccei and Quinn 1977)
and has since become a popular model for dark matter. The invariance of the axion
Lagrangian under shift symmetry requires the axion potential to be a periodic
function of ¢. The simplest model for the axion potential, employed in most
phenomenological studies, is the instanton potential

V() = (mefa)” |1 = cos(¢/fa), (67)

where f; is the axion decay constant and m, its mass. Bose—Einstein condensates of
such a field are called axion stars. As already mentioned, an extensive review of
axion stars can be found in Braaten and Zhang (2019).

3.5 Rotating boson stars

Boson stars with rotation were not explored until the mid-1990s because of the lack
of a strong astrophysical motivation and the technical problems with the regular-
ization along the axis of symmetry. The first equilibrium solutions of rotating boson
stars were obtained within Newtonian gravity independently by two different groups
(Schupp and van der Bij 1996; Silveira and de Sousa 1995). Approximate, analytic
solutions for rotating boson stars were later found in four and five dimensions (Kan
and Shiraishi 2016). Recently, Kling et al. (2021) construct slowly rotating,
Newtonian boson stars via the Gross—Pitaevskii—Poisson equation by perturbing the
ground state boson star.

In order to generate axisymmetric time-independent solutions with angular
momentum, one is naturally lead to the ansatz

d(r,1) = ¢o(r, 0)e' o), (68)

where ¢ (r, 0) is a real scalar representing the profile of the star, w is a real constant
denoting the angular frequency of the field and £ must be an integer so that the field ¢
is not multivalued in the azimuthal coordinate ¢. This integer, k, is commonly known
as the rotational quantum number (the letter adopted in the literature varies for this
azimuthal winding number, sometimes calling it s, ¢, or m).

General relativistic rotating boson stars were found adopting the ansatz given by
Eq. (68) (Schunck and Mielke 1996; Yoshida and Eriguchi 1997). To obtain
stationary axially symmetric solutions, two symmetries were imposed on the
spacetime described by two commuting Killing vector fields £ = 0, and y = 0, in a
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system of adapted (cylindrical) coordinates {z,r,0,®}. In these coordinates, the
metric is independent of # and ¢ and can be expressed in isotropic coordinates in the
Lewis—Papapetrou form

0 \2
ds* = —fdt* —}—Jé g(dr* +r*d0*) +r* sin® 9<d<!’ - 75”) ] , (69)

where £, [, g and Q are metric functions depending only on r and 6. This means that
we have to solve five coupled PDEs, four for the metric and one for the Klein—
Gordon equation; these equations determine an elliptic quadratic eigenvalue problem
in two spatial dimensions. Near the axis, the scalar field behaves as

tim b (r, 0) = * i (0) + O(**2), (70)

so that for &k > 0 the field vanishes near the axis. Note that 4; is some arbitrary
function different for different values of k& but no sum over £ is implied in Eq. (70).
This implies that the rotating star solutions have toroidal level surfaces instead of
spheroidal ones as in the spherically symmetric case £ = 0. In this case the metric
coefficients are simplified, namely g =1, @ =0 and f = f(r), | = I(r).

The entire family of solutions for k£ = 1 and part of £ = 2 was computed using the
self-consistent field method (Yoshida and Eriguchi 1997), obtaining a maximum
mass Mipax = 1.31 M3, . /m. Both families were completely computed in Lai (2004)
using faster multigrid methods, although there were significant discrepancies in the
maximum mass, which indicates a problem with the regularity condition on the z-
axis. The mass M and angular momentum J for stationary asymptotically flat
spacetimes can be obtained from their respective Komar expressions. They can be
read off from the asymptotic expansion of the metric functions f and 2

2GM 1 2JG 1

Alternatively, using the Tolman expressions for the angular momentum and the
Noether charge relation in Eq. (15), one obtains an important quantization relation for
the angular momentum (Yoshida and Eriguchi 1997)

J=kN, (72)

for integer values of k. The quantization of angular momentum here contrasts with
the slowly-rotating Newtonian solutions in Kling et al. (2021) which, as noted above,
connect continuously with the nonrotating solutions. This remarkable quantization
condition for this classical solution also plays a role in the work of Dias et al. (2011)
discussed in Sect. 6.3. Also, Smoli¢ (2015) discusses the quantization condition of
rotating BSs in the context of symmetry. Fig. 7 shows the scalar field for two
different rotating BSs. Spinning BS solutions with a quartic self-interacting potential
have been found too, as well as their Kerr BH limit (Herdeiro et al. 2016b).

More recently, quite a variety of rotating solutions have been found. Most
recently, Ontanon and Alcubierre (2021) construct rotating boson stars up to k = 6
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¢

Fig. 7 Thescalarfield in cylindrical coordinates ¢( p, z) for two rotating boson-star solutions: (left) k = 1 and
(right) k = 2. The two solutions have roughly comparable amplitudes in scalar field. Note the toroidal shape.
Reproduced with permission from Lai (2004)

Fig. 8 Radial profiles along the Scalar Field Profile At Equator ¢(r, 6 = m/2) and w = 0.8(m/h)
equator of rotating boson stars
for fixed w = 0.8(m /%) and

k€ [0,6].

Reproduced with permission
from Ontanon and Alcubierre
(2021), copyright by IOP, which
uses / in place of & to indicate the
azimuthal quantum number
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and determine the maximum masses and minimum frequencies. Their radial profiles
are displayed in Fig. 8, showing that they form a family of solutions with tori further
away from the origin as the angular momentum increases discretely. Herdeiro and
Radu (2018) found rotating boson stars with non-minimal scalar coupling. The
structure of charged, rotating boson stars were studied, in particular the properties in
terms of an effective description with an anisotropic fluid (Collodel et al. 2019). Li
et al. (2020) construct multi-state, multi-field rotating stars (see Sect. 3.7), and
Delgado et al. (2020) construct rotating axion stars (see Sect. 3.4 for a description of
axion stars).

Vaglio et al. (2022) construct rotating boson stars in a regime in which they are
expected to be stable and compares their multipole structure to Kerr. Adam et al.
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(2022) construct rotating boson stars with various potentials to find a universal
relation for the moment of inertia, the (dimensionless) angular momentum, and the
quadrupole moment, that may help distinguish boson stars from compact neutron
stars.

Gauged rotating boson and Dirac stars are studied in Herdeiro et al. (2022).
Chains of rotating boson stars can be constructed by switching the sign of the
amplitude between adjacent stars (Gervalle 2022), generalizing the construction of
chains of non-rotating stars (Herdeiro et al. 2021a). Collodel et al. (2020) constructed
rotating stars in massive tensor multi-scalar (MTMS) theories of gravity.

Rotating boson stars have been shown to develop a strong ergoregion instability
when rapidly spinning on short characteristic timescales (i.e., 0.1 s—1 week for
objects with mass M = 1-10% M., and angular momentum J > 0.4 GM?), indicating
that very compact objects with large rotation are probably black holes Cardoso et al.
(2008). The presence of light rings around rotating boson stars is studied in
Grandclément (2017); Cunha et al. (2022), while geodesics on the spacetime of these
solutions are studied in Grandclément et al. (2014). A detailed discussion of the
stability of rotating BSs is deferred to Sect. 4.1.3.

A review by Mielke focuses on rotating boson stars (Mielke 2016). Further
discussion concerning the numerical methods and limitations of some of these
approaches can also be found in Lai (2004).

3.6 Fermion-boson stars

The possibility of compact stellar objects made with a mixture of bosonic and
fermionic matter was studied in Henriques et al. (1989, 1990). In the simplest case,
the bosonic component interacts with the fermionic component only via the
gravitational field, although different couplings were suggested in Henriques et al.
(1990) and have been further explored in de Sousa et al. (1998); Pisano and
Tomazelli (1996). Such a simple interaction is, at the very least, consistent with
models of a bosonic dark matter coupling only gravitationally with visible matter,
and the idea that such a bosonic component would become gravitationally bound
within fermionic stars is arguably a natural expectation.

One can consider a perfect fluid as the fermionic component such that the stress-
energy tensor takes the standard form

Ty =(pt + p)uta ty + p gab (73)

where u is the energy density, p is the pressure of the fluid and u, its four-velocity.
Such a fluid requires an equation of state to close the system of equations (see Font
2008 for more about fluids in relativity). In much of the early work with fermion-
boson stars, the fluid is described by a degenerate, relativistic Fermi gas, so that the
pressure is given by the parametric equation of state of Chandrasekhar

K t
u=K(sinht—¢) p =3 sinh¢ — 8 sinh(§> +3t}, (74)

where K = m? /(32 n*) and m,, the mass of the fermion. The parameter ¢ is given by

@ Springer



1 Page 30 of 102 S. L. Liebling, C. Palenzuela

o\ 1/2
((r) = 4log | 22 4 (1 + (Z—) ) : (75)

where p,, is the maximum value of the momentum in the Fermi distribution at radius
r.

The perfect fluid obeys relativistic versions of the Euler equations, which account
for the conservation of the fluid energy and momentum, plus the conservation of
baryon number (i.e., mass conservation). The complex scalar field representing the
bosonic component is once again described by the Klein—-Gordon equation. The
spacetime is computed through the Einstein equations with a stress-energy tensor,
which is a combination of the complex scalar field and the perfect fluid

Ty = T 4 T4, (76)

After imposing the harmonic time dependence of Eq. (33) on the complex scalar
field, assuming a static metric as in Eq. (34) and the static fluid u; = 0, one obtains
the equations describing equilibrium fermion-boson configurations

2
Yo slla- @ G| (Gent ) )+ 00) + 20|
do _ o {l (@®> = 1) +4n Gr{(w—z - m2>a2¢2(r) + @*(r) 4 24° } }
dr 2 1\r o2 p
dp
- = 20
do ? o]
o (m2 —?>a2¢) — [1 +d* = 4nGa*r* (m*¢* + u —p)] —
dp o
5= —utp)

These equations can be written in adimensional form by rescaling the variables and
introducing the following quantities

x=mr, o(x)=VanGe(0,r), Q=aw/m*

77
i=@AnG/mHu, p=@dnG/m)p. 77)

By varying the central value of the fermion energy density u(r = 0) and the scalar
field ¢(r = 0), one finds stars dominated by either bosons or fermions, with a
continuous spectrum in between. It was shown that the stability arguments made with
boson stars can be generalized to these mixed objects (Jetzer 1990).

More recently, neutron stars with a bosonic component, sourced by dark matter
accretion, have also been considered (Valdez-Alvarado et al. 2013; Brito et al.
2016b). The fermionic matter for a cold star can be described easily by using
simultaneously the polytropic and the ideal gas equation of state
P =Kp" = (I' — 1)pe, where p is the rest-mass density, ¢ its internal energy, K
the polytropic constant, and I' the adiabatic index (i.e., the energy density can be

@ Springer



Dynamical boson stars Page 31 of 102 1

155 4 0.2
S { 0.16
151 . .
v/ 1 012
= 145} =
{ 0.08
il | 008
R |
135 L : : : 0
0.001 0.002 0.003 0.004 0.005 0.006

Pc

Fig. 9 Initial data of a mixed fermion-boson star with fixed total mass My = 1.4. The numbers of
fermions, N, and bosons, N (denoted Np in the figure, but just N in this text), in terms of the central
density, p,, are plotted. The position of the maximum of N (and correspondingly the minimum of Nf)
represents the critical point, with a maximum value N/Np = 12%, which separates the stable and the
unstable solutions. The two configurations marked, one on each side of the maximum/minimum,
correspond to N/Ng =~ 10%.

Reproduced with permission from Valdez-Alvarado et al. (2013), copyright by APS

written then as u = p(1 + €)). For standard masses of the neutron star, stable con-
figurations allow only about N =~ 12%Ng, where Ny is the number of fermions.
Fig. 9 displays both N and Ny for a fixed total mass but with different central
densities, p.. Similar studies have been performed by coupling fermion matter to
oscillatons instead of boson stars (Brito et al. 2016b).

Fermion-boson stars with a charged scalar field were studied in Kain (2021b). The
existence of slowly rotating fermion-boson stars was shown in de Sousa et al. (2001),
although no solutions were found in previous attempts (Kobayashi et al. 1994). Also
see Dzhunushaliev et al. (2011) for unstable solutions consisting of a real scalar field
coupled to a perfect fluid with a polytropic equation of state.

A very different approach was taken by Giangrandi et al. (2022) deriving an
equation of state for a particular bosonic dark matter field. With this equation of state,
they used a two-fluid formalism to construct fermion-boson configurations of
asymmetric bosonic dark matter with self-repulsion. Considering either DM fully
condensed in the core or distributed in a dilute halo around a neutron star, they found
that while the former induces an effective softening of the equation of state, the latter
mimics an apparent stiffening of strongly interacting matter.

3.7 Multi-state, multi-field boson stars

Just as one can construct fermion-boson stars as a combination of a neutron star with
a boson star, one can similarly combine multiple boson stars together. In this section,
we first consider boson stars constructed from multiple states of the same field, which
we call multi-state BSs. Similarly, one can consider multiple fields, each possibly the
superposition of multiple states, which we call multi-field BSs.
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Motivated by the mode analysis conducted in the study of scalar collapse in AdS
space (Bizon and Rostworowski 2011), Choptuik et al. (2019) construct multi-
oscillator boson stars by explicitly promoting stable linear modes to auxiliary states.
A full, nonlinear solve for such a solution produces a multi-state boson star
oscillating at two frequencies, and this process can be applied to an arbitrary number
of modes.

Herdeiro et al. (2021b) construct non-spherically symmetric, stationary BS
solutions as the sum of (N, /, m) states similar to hydrogen orbitals using the
Einstein—De Turck method, a powerful approach in which an initial configuration is
“flowed” to the stationary one as in numerical approaches to Ricci flow (Adam et al.
2012; Garfinkle and Isenberg 2003).

It turns out that excited BSs, as dark matter halo candidates (see Sect. 5.4), provide
for flatter, and hence more realistic, galactic rotation curves than ground state BSs.
The problem is that they are generally unstable to decay to their ground state.
Combining excited states with the ground state is one way around this.

Although bosons in the same state are indistinguishable, it is possible to construct
non-trivial configurations with bosons in different excited states. A system of bosons
in P different states that only interact with each other gravitationally can be described
by the following Lagrangian density

2
b

1 S 1 a \n n n
L=1ooR- ;5 [g 28, " 0y + V<‘¢< )
where (;5(") is the particular complex scalar field representing the bosons in the n-state
with n — 1 nodes. Although originally called multi-state, the notation used here
would refer to them as n-boson stars, a subset of multi-field BSs in different n-states.
The equations of motion are very similar to the standard ones described in Sect. 2.2,
with two peculiarities: (i) there are n independent KG equations (i.e., one for each
state) and (ii) the stress-energy tensor is now the sum of contributions from each
mode. Equilibrium configurations for this system were found in Bernal et al. (2010).

In the simplest case of a multi-field boson, one has the ground state and the first
excited state. Such configurations are stable if the number of particles in the ground
state is larger than the number of particles in the excited state (Bernal et al. 2010;
Alic 2009)

N >N, (79)

This result can be understood as the ground state deepening the gravitational
potential of the excited state, thereby stabilizing it. Unstable configurations migrate
to a stable one via a flip-flop of the modes; the excited state decays, while the ground
state jumps to the first exited state, so that the condition (79) is satisfied. An example
of this behavior can be observed in Fig. 10.

Similar results were found in the Newtonian limit (Urefia-Lopez and Bernal 2010),
however, with a slightly higher stability limit N(!) >1.13 N>}, This work stresses
that combining several excited states makes it possible to obtain flatter rotation
curves than only with ground state, producing better models for galactic dark matter
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Fig. 10 Left: The maximum of the central value of each of the two scalar fields constituting the multi-state
BS for the fraction # = 3, where 7 = N®) /N(1) defines the relative “amount” of each state. Right: The
frequencies associated with each of the two states of the multi-state BS. At ¢ = 2000, there is a flip in
which the excited state (black solid) decays and the scalar field in the ground state (red dashed) becomes
excited. Discussed in Sect. 3.7.

Reproduced with permission from Bernal et al. (2010), copyright by APS

halos (see also discussion of boson stars as an explanation of dark matter in
Sect. 5.4).

Hawley and Choptuik (2003) first introduced multi-field boson stars by
considering two scalar fields each describing boson stars which are phase shifted
in time with respect to each other, studying the dynamics numerically. In particular,
one can consider multiple scalar fields with an explicit interaction (beyond just

gravity) between them, say V(|¢)<])\ |¢>(2)|). Brihaye et al. (2009b); Brihaye and

Hartmann (2009) construct such solutions, considering the individual particle-like
configurations for each complex field as interacting with each other. Li et al. (2021)
construct rotating boson stars from two, self-interacting, scalar fields. The merger of
two boson stars described by different scalar fields (so that their interaction was
solely via the gravitational field) was found numerically by Bezares and Palenzuela
(2018) (binaries are further discussed in Sect. 4.2).

Alcubierre et al. (2018) extends such solutions, following Olabarrieta et al. (2007)
which constructed spherically symmetric configurations of scalar field from specific
superpositions of states with angular momentum for their studies of critical
collapse (see Sect. 6.1). In particular, for a given value of /, their field configuration is
a sum of fields representing the appropriate spherical harmonics (¢, m)

me(r r) = P(t,r)Y"(0,9) (80)

resulting in a spherical solution that they call ¢-boson stars. These solutions can be
more compact than corresponding regular boson (i.e. £ = 0 solutions). In Fig. 11 the
equilibrium configurations up to k = 4 are shown, displaying the total mass as a
function of the effective radius (left panel) and frequency (right panel), respectively.
Indeed, follow-up work finds that for large ¢ the compactness of stable solutions
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Fig. 11 /-boson stars: (Left) Total mass as a function of the effective radius for equilibrium configurations
of different angular momentum number, denoted here as /. Note that the mass increases more quickly with
k than the radius, and hence the compactness increases. (Right) Total mass as a function of the frequency of
oscillation for the same configurations as in the left panel.

Reproduced with permission from Alcubierre et al. (2018), copyright by IOP

approaches roughly half the Buchdahl limit* as the solutions become increasingly
anisotropic (Alcubierre et al. 2022).

Sanchis-Gual et al. (2021) extends ¢-boson stars to what they call sybrid-¢-boson
stars as the combination of non-spherically symmetric BSs composed of multiple
fields with multiple states (some with rotation). They further evolve these states to
understand which are stable and which unstable. The different solutions of the £ = 1
family are displayed in Fig. 12.

3.8 Proca stars

Boson stars can be understood as condensates of massive spin 0 bosonic particles
modeled by a scalar field. Recently, analogous self-gravitating solutions, made of
massive spin 1 particles, have been found in the novel work of Brito et al. (2016a).
These configurations, modeled by a massive complex vector field 4,, are described
by the Proca action for the matter sector

L ——l Fab—lmzA A" (81)

M = 4 ab 2 a‘l

where m is the mass of the Proca field and F,, the field strength satisfying
Fup = V4, — VA, The system of equations obtained by performing the variations
on the action forms the Einstein—Proca system. The evolution equations for the Proca
field are

Vo F? =m4°, (82)

which implies that the Lorentz condition V,4% = 0 is not a gauge choice like in
Maxwell equations, but instead a dynamical requirement. The Einstein equations
include now the stress-energy tensor

4 The Buchdahl limit constrains spherically symmetric “stars” of ordinary matter to a compactness
M /R < 4c%/(9G), where the maximum value corresponds to stars of constant density (Buchdahl 1959).
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Fig. 12 The energy density
distribution of the different £ =
1 hybrid-¢-boson stars. In this
case, we see: dipole BSs (DBSy),
spinning BSs, (SBS. ), spinning
dipolar BSs (DBS, + SBS.)),
toroidal static BSs

(SBS_; + SBS.), and finally ¢-
BSs (SBS_; + DBS + SBS,)).
Reproduced with permission
from Sanchis-Gual et al. (2021),
copyright by APS
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Like in the scalar case, there is a global U(1) invariance of the action under trans-
formations A, — e'’4,, implying the existence of a conserved 4-current due to
Noether’s theorem

Jé = % [F“bAb —Fg,). (84)

In addition to carrying a conserved Noether charge, Proca stars share many other
features with boson stars. Both have a harmonic time dependence but solutions exist
only for a limited range of frequencies. Both achieve a maximum ADM mass, which
for Proca stars is Ma, = 1.058M3,,, . /m, larger, but of the same order, than those
for (mini-)boson stars. Fig. 13 displays the masses of both BSs and Proca stars versus
their (internal) oscillation frequencies. The maximum mass solution separates
stable from unstable configurations. Different types of Proca stars are also possible,
such as those with rotation (Brito et al. 2016a), charge (Landea and Garcia 2016), or
in anti-de Sitter spacetime (Duarte and Brito 2016). Numerical evolutions of these
configurations have been performed for instance in Sanchis-Gual et al. (2017a).

Rotating Proca stars have different stability properties than rotating boson stars
which were discussed earlier in Sect. 3.5. Binaries composed of Proca stars are
discussed in Sect. 4.2. Gorghetto et al. (2022) study Proca stars with a dark, real,
vector potential, A,, arising from vacuum fluctuations in the early universe and
serving as a cosmological source of dark matter, discussed in Sect. 5.4.

3.9 Kerr black holes with scalar hair & superradiance

Closely related to a BS, one can instead construct stable configurations of a complex
scalar field around a rotating black hole (Hod 2012). Such solutions are akin to a BS
with a black hole embedded at its center. As such, the scalar field serves as scalar
hair (see the review about no-scalar-hair theorems by Herdeiro and Radu 2015b).
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Fig. 13 Comparison of Proca
solutions with boson stars. The
ADM mass of spherical Proca
solutions (solid) and scalar BS 1
solutions (dashed) are shown
versus oscillation frequency.
Here, the mass is expressed in
terms of the field mass, p.
Although the profiles are
qualitatively similar, notice that
the maximum mass of the Proca
solutions is almost twice that of
BSs.

Reproduced with permission
from Sanchis-Gual et al. 0
(2017b), copyright by APS
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To find such solutions, one proceeds in much the same fashion as the construction
of rotating solutions (Sect. 3.5). In particular, because rotation is required to achieve
a stable configuration, one works in axisymmetry and assumes a harmonic ansatz for
both the internal and azimuthal rotations

B(r,1) = e ™Y (r, 0). (85)

Here w is the (complex) angular frequency and m must be an integer
(m = £1,+2,...) for continuity in the azimuthal direction.

Instead of solving the full system of equations, a first approximation can be
obtained by solving the linearized scalar field equations on a fixed spacetime
(Herdeiro and Radu 2015a). Within such a linear approximation, one finds that non-
rotating (Schwarzschild) BHs do not allow for bound states with strictly real w
(Herdeiro and Radu 2014b). However, quasi-bound states can exist with S(w) <0 in
which the scalar field decays, infalling into the BH.

For a Kerr black hole with angular momentum J, mass M, and horizon radius in
the equatorial plane ry, one can identify the angular velocity of the horizon as
Qy =J/(2M?ry). For such rotating BHs, there is a critical frequency . = mQy
separating disparate behavior. For ® = w,, the frequency is strictly real allowing for
regular bound states known as scalar clouds.

As o increases above ., its imaginary part becomes negative, allowing again
only for quasi-bound states with a time-decaying scalar field. In contrast, as w
decreases below ., its imaginary part becomes positive, indicating growth of the
scalar field in Eq. (85). This growth of the massive field is called the superradiant
instability (for a recent review of superradiance see Brito et al. 2015b) and results in
the extraction of energy, charge, and angular momentum from the black hole. For a
rigorous treatment of this instability and a proof of boundedness see the work of
Dafermos et al. (2014).

In Kiihnel and Rampf (2014), an analog of a boson star (see Sect. 6.4 for physical
analogs of BSs) is used to study superradiance. BSs have also been found as the zero
radius limit of hairy black holes in AdS, (see Sect. 6.3 for BSs in AdS), and these
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hairy BHs are proposed as the end state of the superradiant instability (Dias and
Masachs 2017).

These solutions persist when solving the fully nonlinear system in which the
harmonic ansatz of Eq. (85) implies that the stress-energy tensor is independent of
{t, ¢}, and are generically known as Kerr BHs with scalar hair (Herdeiro and Radu
2014b). As reviewed by Herdeiro and Radu (2015a), solutions can be parametrized
in such a way that connects pure Kerr BHs with pure BSs. In particular, defining
q = kN /J where N is the number of bosonic particles as in Eq. (15) and where £ is
the integer “quantum” number associated with the angular momentum as in Eq. (72),
Kerr BHs are described by the vanishing of the scalar field, ¢ = 0, and BSs are
described by the vanishing of the horizon, ¢ = 1. Fig. 14 shows the space of
solutions interpolating between these two limits.

More recent work has extended these solutions. For example, a self-interacting
potential with a quartic term was considered in Herdeiro et al. (2015b, 2016b),
producing a larger amplitude scalar field but not a more massive black hole than with
the non-self-interacting potential. Coupling the scalar field to the electromagnetic
field allows for charged clouds (Delgado et al. 2016). Kerr black holes with Proca
hair (see Sect. 3.8 for a description of Proca stars) were constructed in Herdeiro et al.
(2016a). Evolutions by East and Pretorius (2017) of black holes with a Proca field in
axisymmetry find that superradiance saturates as expected when the frequency of the
field matches the horizon frequency and find the resulting stationary states
“plausibly” the same as those constructed in Herdeiro et al. (2016a).

Superradiant instabilities are likely to be weaker for hairy black holes than for
Kerr black holes with the same global charge (Herdeiro and Radu 2014a). A recent
review on the physical properties of Kerr black holes with scalar hair can be found in
Herdeiro and Radu (2015a), and prospects for testing whether BHs have hair is
reviewed in Cardoso and Gualtieri (2016).

Chodosh and Shlapentokh-Rothman (2015) study the scalar cloud solutions
analytically and demonstrate existence. They also consider certain uniqueness and

T T T T

Boson Stars (g=1)
extremal KBHsSH

Fig. 14 Domain of existence for
hairy black holes. The ADM m=1
mass of the solutions versus the
oscillation frequency of the
scalar field frequency. Solutions
for a range of values of ¢
interpolating between Kerr

(¢ = 0) and BSs (¢ = 1) all with
azimuthal quantum number

m = 1. For 0 <g <1, solutions
describe rotating BHs
surrounded by a scalar cloud,
constituting scalar hair for the
BH.

Reproduced with permission
from Herdeiro and Radu
(2015a), copyright by IOP
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stability properties of solutions close to Kerr and review past analytic work in this
area.

3.10 Alternative theories of gravity

Instead of modifying the scalar field potential, one can consider alternative theories
of gravity. Constraints on such theories are already significant given the great success
of general relativity (Will 2014), and more strict bounds might be set with present
and future astrophysical observations (Berti et al. 2015). However, the fast advance
of electromagnetic observations and the rise of gravitational wave astronomy
promise much more in this area, in particular in the context of compact objects that
probe strong-field gravity.

An ambitious effort is begun in Pani et al. (2011), which studies a very general
gravitational Lagrangian (“extended scalar-tensor theories) with both fluid stars and
boson stars. The goal is for observations of compact stars to constrain such theories
of gravity. General theoretical bounds on the mass to radius ratio of stable compact
objects (i.e., both neutron and boson stars) can be set for extended gravity theories, in
particular for scalar tensor theories (Burikham et al. 2016).

Scalar tensor theories allow for spontaneous scalarization in which the scalar
component of the gravity theory transitions to a non-trivial configuration analogously
to ferromagnetism with neutron stars (Damour and Esposito-Farése 1996). Studies
have found the existence of scalarized boson stars (Brihaye and Hartmann 2019) and
hairy black holes (Kleihaus et al. 2015). Spontaneous scalarization has also been
found in the evolution of single boson stars including only the massive term in the
potential (Alcubierre et al. 2010).

A special class of tensor-multi-scalar theories has been considered, which admits a
new type of compact object solution; the tensor-multi-scalar solitons formed by a
condensate of the gravitational scalars, which can be understood as a generalization
of the standard boson star (Yazadjiev and Doneva 2019). Soon after, the same authors
also found mixed configurations of tensor-multi-scalar solitons and relativistic
neutron stars (Doneva and Yazadjiev 2020). Boson and neutron stars have also been
studied in a scalar-tensor theory with an explicitly time-dependent real scalar field
(Brihaye et al. 2020).

One motivation for alternative theories is to explain the apparent existence of dark
matter without resorting to some unknown dark matter component. Perhaps the most
well known of these is MOND (modified Newtonian dynamics) in which gravity is
modified only at large distances (Milgrom 1983, 2011) (for a review see Famaey and
McGaugh 2012). A nonminimal coupling of the scalar field to the Ricci curvature
scalar results in configurations that better resemble dark energy stars than ordinary
boson stars (Horvat and Marunovi¢ 2013; Marunovi¢ 2015). Boson stars are studied
within TeVeS (Tensor-Vector-Scalar), a relativistic generalization of MOND
(Contaldi et al. 2008). In particular, their evolutions of boson stars develop caustic
singularities, and the authors propose modifications of the theory to avoid such
problems.

Bosons star solutions also exist in bi-scalar extensions of Horndeski gravity
(Brihaye et al. 2016), and the properties and stability of fermion-boson stars in
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Horndeski theories were studied in Roque and Urefia Lopez (2022). In addition,
solutions have been found in the framework of teleparallel gravity (Horvat et al.
2015) and within conformal gravity and its scalar-tensor extensions (Brihaye and
Verbin 2009, 2010). Charged boson stars with a torsion-coupled field have been
considered in Horvat et al. (2015) followed with a further study of solutions in an
f(7T) theory of gravity (Iliji¢ and Sossich 2020). Families of boson stars were
constructed in quadratic Palatini f(R) gravity finding significant degeneracy with
respect to those in standard GR (Maso-Ferrando et al. 2021).

Recently there has been renewed interest in Einstein—Gauss—Bonnet theory, which
appears naturally in the low energy effective action of quantum gravity models. This
theory only differs from General Relativity for dimensions D > 4, and so the easiest
non-trivial case is to consider D = 5. Boson star have been found in (441)-
dimensional Gauss—Bonnet gravity (Hartmann et al. 2013b). Rotating configurations
were constructed in Brihaye and Riedel (2014), and its classical instability and
existence of ergoregions studied in Brihaye and Hartmann (2016). Rotating boson
stars in odd-dimensional asymptotically anti-de Sitter spacetimes in Einstein—Gauss—
Bonnet gravity are studied in Henderson et al. (2015). A non-minimal coupling
between a complex scalar field and the Gauss—Bonnet term was studied in Baibhav
and Maity (2017). Coupling Einstein gravity to a complex self-interacting boson field
as well as a phantom field allows for new type of configurations, namely boson stars
harboring a wormhole at their core (Dzhunushaliev et al. 2014).

3.11 Gauged boson stars

In 1988, Bartnik and McKinnon published quite unexpected results showing the
existence of particle-like solutions within SU(2) Yang-Mills coupled to gravity
(Bartnik and McKinnon 1988). These solutions, although unstable, were unexpected
because no particle-like solutions are found in either the Yang—Mills or gravity
sectors in isolation. Recall also that no particle-like solutions were found with gravity
coupled to electromagnetism in early efforts to find Wheeler’s geon (however, see
Sect. 6.3 for discussion of Dias et al. (2012), which finds geons within AdS).

Bartnik and McKinnon generalize from the Abelian U(1) gauge group to the non-
Abelian SU(2) group and thereby find these unexpected particle-like solutions. One
can consider, as does Schunck and Mielke (2003) (see Sect. IIp), these globally
regular solutions (and their generalizations to SU(n) for n > 2) as gauged boson stars
even though these contain no scalar field. One can instead explicitly include a scalar
field doublet coupled to the Yang—Mills gauge field (Brihaye et al. 2005) as perhaps a
more direct generalization of the (U(1)) charged boson stars discussed in Sect. 3.3.

Dzhunushaliev et al. (2007) studies BSs formed from a gauge condensate of an SU
(3) gauge field, and Brihaye and Verbin (2010) extends the Bartnik—McKinnon
solutions to conformal gravity with a Higgs field.
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4 Dynamics of boson stars

In this section, the formation, stability and dynamical evolution of boson stars are
discussed. One approach to the question of stability considers small perturbations
around an equilibrium configuration, so that the system remains in the linearized
regime. Growing modes indicate instability. However, a solution can be linearly
stable and yet have a nonlinear instability. One example is Minkowski space, which,
under small perturbations, relaxes back to flat, but, for sufficiently large perturba-
tions, leads to black-hole formation, decidedly not Minkowski. To study nonlinear
stability, other methods are needed. In particular, full numerical evolutions of the
Einstein—Klein—Gordon (EKG) equations are quite useful for understanding the
dynamics of boson stars.

4.1 Gravitational stability

A linear stability analysis consists of studying the time evolution of infinitesimal
perturbations about an equilibrium configuration, usually with the additional
constraint that the total number of particles must be conserved. In the case of
spherically symmetric, fermionic stars described by a perfect fluid, it is possible to
find an eigenvalue equation for the perturbations that determines the normal modes
and frequencies of the radial oscillations (see, e.g., Font et al. 2002). Stability
theorems also allow for a direct characterization of the stability branches of the
equilibrium solutions (Friedman et al. 1988; Cook et al. 1994). Analogously, one can
write a similar eigenvalue equation for boson stars and show the validity of similar
stability theorems. In addition to these methods, the stability of boson stars has also
been studied using mainly two other, independent methods: by applying catastrophe
theory and by solving numerically the time dependent Einstein—Klein—Gordon
equations. Recently, a method utilizing information theory shows promise in
analyzing the stability of equilibrium configurations. All these methods agree with
the results obtained in the linear stability analysis.

4.1.1 Linear stability analysis

Assume that a spherically symmetric boson star in an equilibrium configuration is
perturbed only in the radial direction. The equations governing these small radial
perturbations are obtained by linearizing the system of equations in the standard way;
expand the metric and the scalar field functions to first order in the perturbation and
neglect higher order terms in the equations (Gleiser 1988; Jetzer 1989a). Considering
the collection of fields for the system f;, one expands them in terms of the
background solution °f and perturbation as

filr,0) = %) + fi(r)e™, (86)

which assumes harmonic time dependence for the perturbation. Substitution of this
expansion into the system of equations then provides a linearized system, which
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reduces to a set of coupled equations that determines the spectrum of modes !f; and
ecigenvalues o2

Lljlﬁ = 0-2 M] lﬁa (87)

where L; is a differential operator containing partial derivatives and M;; is a matrix
depending on the background equilibrium fields °f;. Solving this system, known as
the pulsation equation, produces the spectrum of eigenmodes and their eigenvalues o.
Recently, several powerful techniques have been introduced to compute the quasi-
normal modes of compact objects in complicated configurations, such as in the
presence of interacting fields (Macedo et al. 2016).

The stability of the star depends crucially on the sign of the smallest eigenvalue.
Because of time reversal symmetry, only ¢ enters the equations (Lee and Pang
1989), and we label the smallest eigenvalue o3. If it is negative, the eigenmode grows
exponentially with time and the star is unstable. On the other hand, for positive
eigenvalues the configuration has no unstable modes and is therefore stable. The
critical point at which the stability transitions from stable to unstable therefore occurs
when the smallest eigenvalue vanishes, oy = 0.

Equilibrium solutions of nonrotating BSs can be parametrized with a single
variable, such as the central value of the scalar field ¢,. We can therefore write the
mass and particle number as M = M(¢,.) and N = N(¢,), and stability theorems
indicate that transitions between stable and unstable configurations occur only at the
critical points in the parameter space such that

v dy
dp. dp.

These transitions in stability are completely analogous to those for neutron stars
(Cook et al. 1994; Friedman et al. 1988; Harrison et al. 1965; Straumann 1984).

A linear analysis of f~mode frequencies of massive boson stars in the context of
dark matter is undertaken with a goal of establishing a connection between boson star
oscillations and the underlying scalar potential (Vasquez Flores et al. 2019). Other
work analyzed perturbations of boson stars constructed with an ultralight, repulsive
dark matter field (Lopes and Panotopoulos 2020).

One can generalize this result for fermion-boson stars which contain a number of
fermions, N, in addition to some number of bosons, N (see Sect. 3.6 for a discussion
of fermion-boson stars). In particular, one looks for critical points in a higher
dimensional parameter space by considering a vector of perturbations, n in a space
spanned by the total mass at infinity, M, and the two particle numbers, N and Np.
Following Henriques et al. (1990), the critical points are such that the directional
derivatives vanish

(88)

aur
dn

_av
b_ dn

dNg
==Fl -0 8
= (89)

b

where the subscript b means the value of the quantities at the critical point. The
direction n at the stability boundary is tangential to the level curves of constant M

@ Springer



1 Page 42 of 102 S. L. Liebling, C. Palenzuela

and N; formally speaking, the direction n is orthogonal to the gradient of the func-
tions at the boundary, n L V(M,N, Ng)|,.

The condition expressed by Eq. 89 reduces to the stability condition of Eq. 88
when applied to single parameter solutions, but it allows for multi-parameter critical
curves. Following the analysis of the fermion-boson star, the condition 89 implies
that the equilibrium critical configurations manifest themselves at the extreme values
of the number of particles when surveyed along a level curve of constant total mass
(Valdez-Alvarado et al. 2013; Brito et al. 2016b), namely

7 N -4

- = =0, (90)
apc M =constant apc M =constant 6¢)C M =constant ad)c

M =constant

where p, is the central density of the fermionic component.

Linear perturbation analysis provides a more detailed picture such as the growth
rates and the eigenmodes of the perturbations. For instance, Macedo et al. (2013a)
studies the free oscillation spectra of different types of boson stars via perturbation
theory.

Gleiser and Watkins (1989) carries out such an analysis for perturbations that
conserve mass and charge. They find the first three perturbative modes and their
growth rates, and they identify at which precise values of ¢, these modes become
unstable. Starting from small values, they find that ground state BSs are stable up to
the critical point of maximum mass. Further increases in the central value
subsequently encounter additional unstable modes. This same type of analysis
applied to excited state BSs showed that the same stability criterion applies for
perturbations that conserve the total particle number (Jetzer 1989c). For more general
perturbations that do not conserve particle number, excited states are generally
unstable to decaying to the ground state.

A more involved analysis by Lee and Pang (1989) uses a Hamiltonian formalism
to study BS stability. Considering first order perturbations that conserve mass and
charge (0N = 0), their results agree with those of Gleiser and Watkins (1989); Jetzer
(1989c¢). However, they extend their approach to consider more general perturbations
which do not conserve the total number of particles (i.e., 6N # 0). To do so, they
must work with the second order quantities. They found complex eigenvalues for the
excited states that indicate that excited state boson stars are unstable. More detail
and discussion on the different stability analysis can be found in Jetzer (1992).

Catastrophe theory is part of the study of dynamical systems that began in the
1960s and studies large changes in systems resulting from small changes to certain
important parameters (for a physics-oriented review see Stewart 1982). Its use in the
context of boson stars is to evaluate stability, and to do so one constructs a series of
solutions in terms of a limited and appropriate set of parameters. Under certain
conditions, such a series generates a curve smooth everywhere except for certain
points. Within a given smooth expanse between such singular points, the solutions
share the same stability properties. In other words, bifurcations occur at the singular
points so that solutions after the singularity gain an additional, unstable mode. Much
of the recent work in this area confirms the previous conclusions from linear
perturbation analysis (Tamaki and Sakai 2010, 2011a, b, c) and from earlier work
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with catastrophe theory (Kusmartsev et al. 1991). Another recent work using
catastrophe theory finds that rotating stars share a similar stability picture as
nonrotating solutions (Kleihaus et al. 2012). However, only fast spinning stars are
subject to an ergoregion instability (Cardoso et al. 2008).

A recent and promising alternative method to determine the stability bounds of
self-gravitating astrophysical objects, and in particular of boson stars, makes use of a
new measure of shape complexity known as configurational entropy (Gleiser and
Jiang 2015). Their results for the critical stability region agree with those of
traditional perturbation methods with an accuracy of a few percent or better.

4.1.2 Non-linear stability of boson stars without angular momentum

The dynamical evolution of spherically symmetric perturbations of boson stars has
also been studied by solving numerically the Einstein—Klein—Gordon equations
(Sect. 2.3), or its Newtonian limit (Sect. 3.2), the Schrodinger—Poisson system. The
first such work was Seidel and Suen (1990) in which the stability of the ground state
was studied by considering finite perturbations, which may change the total mass and
the particle number (i.e., 0N # 0 and M # 0). The results corroborated the linear
stability analysis in the sense that they found a stable and an unstable branch with a
transition between them at a critical value, ¢, of the central scalar field
corresponding to the maximal BS mass My = 0.633 M3, /m.

The perturbed configurations of the stable branch may oscillate and emit scalar
radiation maintaining a characteristic frequency v, eventually settling into some other
stable state with less mass than the original. This characteristic frequency can be
approximated in the non-relativistic limit as (Seidel and Suen 1990)

T mGM
V= ———
4mR?  27R’

where R is the effective radius of the star and M its total mass. Scalar radiation is the
only damping mechanism available because spherical symmetry does not allow for
gravitational radiation and because the Klein—Gordon equation has no viscous or
dissipative terms. This process was named gravitational cooling, and it is extremely
important in the context of formation of compact bosonic objects Seidel and Suen
1994 (see below). The behavior of perturbed solutions can be represented on a plot of
frequency versus effective mass as in Fig. 15. Perturbed stars will oscillate with a
frequency below its corresponding solid line and they radiate scalar field to infinity.
As they do so, they lose mass by oscillating at constant frequency, moving leftward
on the plot until they settle on the stable branch of (unperturbed) solutions.

The perturbed unstable configurations will either collapse to a black hole or
migrate to a stable configuration, depending on the nature of the initial perturbation.
If the density of the star is increased, it will collapse to a black hole. On the other
hand, if it is decreased, the star explodes, expanding quickly as it approaches the
stable branch. Along with the expansion, energy in the form of scalar field is radiated
away, leaving a very perturbed stable star, less massive than the original
unstable one.

o1
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Frequency vs Effective Mass
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Fig. 15 Oscillation frequencies of various boson stars are plotted against their mass. Also shown are the
oscillation frequencies of unstable BSs obtained from the fully nonlinear evolution of the dynamical
system. Unstable BSs are observed maintaining a constant frequency as they approach a stable star
configuration.

Reproduced with permission from Seidel and Suen (1990), copyright by APS

This analysis was extended to boson stars with self-interaction and to excited BSs
in Balakrishna et al. (1998), showing that both branches of the excited states were
intrinsically unstable under generic perturbations that do not preserve M and N. The
low density excited stars, with masses close to the ground state configurations, will
evolve to ground state boson stars when perturbed. The more massive configurations
form a black hole if the binding energy Eg = M — Nm is negative, through a cascade
of intermediate states. The kinetic energy of the stars increases as the configuration
gets closer to £z = 0, so that for positive binding energies there is an excess of
kinetic energy that tends to disperse the bosons to infinity. These results are
summarized in Fig. 16, which shows the time scale of the excited star to decay to one
of these states.

More recently, the stability of the ground state was revisited with 3D simulations
using a Cartesian grid (Guzman 2004). The Einstein equations were written in terms
of the BSSN formulation (Shibata and Nakamura 1995; Baumgarte and Shapiro
1999), which is one of the most commonly used formulations in numerical relativity.
Intrinsic numerical error from discretization served to perturb the ground state for
both stable and unstable stars. It was found that unstable stars with negative binding
energy would collapse and form a black hole, while ones with positive binding
energy would suffer an excess of kinetic energy and disperse to infinity.
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Fig. 16 The instability time Instability Time Scale of a 1-node Star
scale of an excited boson star Dimensionless Time t vs. (0)
(the first excitation) to one of 5000 T T T T T T T
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That these unstable stars would disperse, instead of simply expanding into some
less compact stable solution, disagrees with the previous results of Seidel and Suen
(1990), and was subsequently further analyzed in Guzméan (2009) in spherical
symmetry with an explicit perturbation (i.e., a Gaussian shell of particles, which
increases the mass of the star around 0.1%). The spherically symmetric results
corroborated the previous 3D calculations, suggesting that the slightly perturbed
configurations of the unstable branch have three possible endstates: (i) collapse to
BH, (ii) migration to a less dense stable solution, or (iii) dispersal to infinity,
dependent on the sign of the binding energy.

Recently, Kain (2021a) numerically evolves boson stars and finds the results agree
with a linear perturbation results. Although excited boson stars are generally
unstable, evolutions in Sanchis-Gual et al. (2022) show that self-interactions can
stabilize excited boson stars. The stabilizing effect of interactions was previously
found for certain rotating solutions (Siemonsen and East 2021).

Closely related is the work of Lai and Choptuik (2007) studying BS critical
behavior (discussed in Sect. 6.1). They tune perturbations of boson stars so that
dynamically the solution approaches some particular unstable solution for some finite
time. They then study evolutions that ultimately do not collapse to BH, so-called sub-
critical solutions, and find that they do not disperse to infinity, instead oscillating
about some less compact, stable star. They show results with increasingly distant
outer boundary that suggest that this behavior is not a finite-boundary-related effect
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Fig. 17 Very long evolutions of
a perturbed, slightly sub-critical,
boson star with differing outer
boundaries. The central
magnitude of the scalar field is
shown. At early times (1 <250
and the middle frame), the boson
star demonstrates near-critical
behavior with small-amplitude
oscillations about an

unstable solution. For late times
(t > 250), the solution appears
converged for the largest two
outer boundaries and suggests
that sub-critical boson stars are
not dispersing. Instead, they
execute large amplitude
oscillations about low-density
boson stars.

Reproduced with permission
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(reproduced in Fig. 17). They use a different form of perturbation than Guzman
(2009), and, being only slightly subcritical, may be working in a regime with non-
positive binding energy. However, it is interesting to consider that if indeed there are
three distinct end-states, then one might expect critical behavior in the transition
among the different pairings. Non-spherical perturbations of boson stars have been
studied numerically in Balakrishna et al. (2006) with a 3D code to analyze the
emitted gravitational waves.

The dynamics of non-standard boson stars have also been studied through
numerical simulations in different scenarios. Boson stars in scalar-tensor theories of
gravity were considered in Ruiz et al. (2012), focusing on the study of spontaneous
and induced scalarization. Evolutions of fermion-boson stars have confirmed their
stability properties and have found the normal modes of oscillations of neutron stars
with a dark matter component (Valdez-Alvarado et al. 2013). These studies have
been extended by including more realistic equations of state to model the neutron star
matter (Nyhan and Kain 2022), or more complicated self-interaction potentials for
the scalar field (Valdez-Alvarado et al. 2020).

The stability of excited fermion-boson stars, characterized by the presence of at
least one node in the radial profile of the scalar field, is studied numerically in
Di Giovanni et al. (2021). Similar examples of this stabilization mechanism have
been found in multi-field boson stars (Sect. 3.7), suggesting that the mechanism is a
purely gravitational effect and does not depend on the type of matter of the
companion star. In Di Giovanni et al. (2022b) the authors also explored the effect of
bosonic fields (i.e., either scalar or vector) on unstable, differentially rotating neutron
stars subject to the bar-mode instability. They found for a region of the parameter
space that the presence of dark-matter accretion in neutron stars could change the
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frequency of the expected gravitational wave emission associated with the bar-mode
instability.

More recently, spherical Proca stars (see Sect. 3.8 for a discussion of such stars)
have also been studied numerically (Sanchis-Gual et al. 2017a), confirming that the
evolutions of unstable solutions lead to outcomes analogous to those of boson stars
(i.e., migration to the stable branch, total dispersion of the scalar field, or collapse to a
black hole).

The issue of formation of boson stars has been addressed in Seidel and Suen
(1994) by performing numerical evolutions of the EKG system with different initial
Gaussian distributions describing unbound states (i.e., the kinetic energy is larger
than the potential energy). Quite independent of the initial condition, the scalar field
collapses and settles down to a bound state by ejecting some of the scalar energy
during each bounce. The ejected scalar field carries away excess and ever-decreasing
amounts of kinetic energy, as the system becomes bounded. After a few free-fall
times of the initial configuration, the scalar field has settled into a perturbed boson
star on the stable branch. This process is the already mentioned gravitational cooling,
and allows for the formation of compact soliton stars (boson stars for complex scalar
fields and oscillatons for real scalar fields). Although these evolutions assumed
spherical symmetry, which does not include important processes such as fragmen-
tation or the formation of pancakes, they demonstrate the feasibility of the formation
mechanism; clouds of scalar field will collapse under their own self-gravity while
shedding excess kinetic energy. The results also confirm the importance of the mass
term in the potential. By removing the massive term in the simulations, the field
collapses, rebounds and completely disperses to infinity, and no compact object
forms. The evolution of the scalar field with and without the massive term is
displayed in Fig. 18.

400 -

Time

Time

250 500 200 400
Radius Radius

Fig. 18 The evolution of /2p (where p is the energy density of the complex scalar field) with massive
field (left) and massless (right). In the massive case, much of the scalar field collapses and a perturbed
boson star is formed at the center, settling down by gravitational cooling. In the massless case, the scalar
field bounces through the origin and then disperses without forming any compact object.

Reproduced with permission from Seidel and Suen (1994), copyright by APS
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An analogous gravitational cooling process has been found in simulations
modeling the dynamical formation of other types of boson stars, such as Proca-stars
(Di Giovanni et al. 2018), or even in mixed configurations, as fermion-boson stars
(Di Giovanni et al. 2020), where the scalar field condenses around an already existing
neutron star.

We also discuss a few recent papers (Gorghetto et al. 2022; Arvanitaki et al. 2020;
Levkov et al. 2018) on star formation in various dark matter models at the end of
Sect. 5.4.

As we discuss in the next section the stability of rotating boson stars, it is
important to note that, even at the linear level, studies of slowly rotating neutron stars
suggest that rotation induces a coupling of axial and polar modes, making a linear
stability analysis extremely complicated (Stavridis and Kokkotas 2005).

4.1.3 Non-linear stability of boson stars with angular momentum

Much less is known about rotating BSs, which are more difficult to construct and to
evolve because they are usually not spherically symmetric (except in some specific
cases, like the /-boson stars). The stability of rotating boson stars was previously
thought to be similar to nonrotating stars by using catastrophe theory (Kleihaus et al.
2012). However, a number of dynamical studies of the merger of two boson stars
failed to produce a rotating boson star as the remnant of the merger despite the initial
data having angular momentum greater than what would be required for the remnant
to spin at the first level (k = 1). These results suggested that perhaps rotating boson
stars were unstable (or else that the formation of a rotating star dynamically may be
difficult). See, for instance, Palenzuela et al. (2008); Mundim (2010); Bezares et al.
(2017); Palenzuela et al. (2017); Bezares et al. (2022) as discussed in Sect. 4.2.

Even at the linear level, there is not expected to be a clean decoupling of the scalar
and the gravitational modes, making a linear stability analysis extremely compli-
cated. Due to these difficulties, it seems more plausible to perform dynamical
simulations of (possibly perturbed) rotating boson stars to get a better understanding
of their stability properties.

The first of these evolved spinning scalar and vector (i.e., Proca) stars finding that
the boson stars are unstable to a non-axisymmetric instability (NAI) whereas some
Proca stars are stable (Sanchis-Gual et al. 2019a). They also studied the formation of
such stars via gravitational cooling in the presence of angular momentum. Further
work by many of the same authors continued the study of stability of rotating stars,
finding that doubly wound k& = 2 Proca stars always decay to £ = 1 stars and that a
quartic self-interaction delays the instability of rotating (scalar) boson stars (Di
Giovanni et al. 2020).

Siemonsen and East (2021) clarified these issues by constructing and evolving a
number of cases, finding that the non-axisymmetric instability of £k = 1 is always
present for mini-boson stars (see Sect. 2.4). Since all nonlinear scalar self-interactions
reduce to the mass term for sufficiently small field values, this holds also for all scalar
BS in the Newtonian limit. Interestingly, nonlinear interactions added to the scalar
potential can quench the non-axisymmetric instability for compact solutions (relative
to each specific potential). The real and imaginary components of the frequencies of
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this m =2 mode, displayed in Fig. 19 for a few representative self-interaction
potentials, demonstrate that there exists a critical frequency at which the imaginary
frequency changes sign, indicating a change in stability (i.e., the NAI shuts off for
frequencies below the critical).

Also relevant is the work of Dmitriev et al. (2021), which studies analytically the
stability of rotating boson stars in the Newtonian limit. In particular, they find
instability if self-interactions are either attractive or negligibly small, but they find
stability of the &k =1 solution with sufficiently strong repulsive self-interaction.
These results are consistent with the work of Siemonsen and East (2021).

Finally, the NAI in rotating boson stars leads to a diverse range of dynamics,
represented in Fig. 20, including fragmentation into multiple unbound non-rotating
stars, and formation of binary black holes.

The ¢-boson stars have been evolved in spherical symmetry to study their stability
(Alcubierre et al. 2019). They find results similar to standard £ = 0 boson stars with a
change in stability occurring for solutions with maximum mass. A subsequent linear
perturbation analysis of radial modes confirms the existence of both a stable and
unstable branch (Alcubierre et al. 2021). Evolving ¢-boson stars beyond spherical
symmetry with a full 3D code confirms this stability picture, but evidence for zero
modes suggests that these solutions are part of a wider class of less symmetric
solutions (Jaramillo et al. 2020).

The formation, stability and final state of scalar clouds around black holes have
been investigated through nonlinear numerical simulations in Okawa (2015) .

4.2 Dynamics of binary boson stars

The dynamics of binary boson stars is sufficiently complicated that it generally
requires numerical solutions. The necessary lack of symmetry and the resolution
requirement dictated by the harmonic time dependence of the scalar field combine so
that significant computational resources must be expended for such a study.
However, boson stars serve as simple proxies for compact objects without the
difficulties (shocks and surfaces) associated with perfect fluid stars, and, as such,

Fig. 19 Mode analysis of 10714 e ° e oo
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(a)
t/M =0 t/M = 341 t/M = 332 /M = 410
¢ L J
(b)
t/M =0 t/M = 3056 t/M = 8324 t/M = 9306
o ' > . .
(©)
t/M =0 t/M = 1142 t/M = 2000 t/M = 3631
(d)
t/M =0 t/M = 2681 t/M = 2806 t/M = 2931

Fig. 20 Series of snapshots showing the evolution of |¢|2 in four scenarios where an unstable rotating BS
with £ = 1 undergoes the NAI reaching different end states. From top to bottom: a a mini-BS that collapses
to a binary BH (the regions inside the apparent horizons are indicated in black), b a rotating mini-BS
resulting in a non-rotating with non-negligible linear momentum, ¢ a BS with strong self-interaction
yielding a non-rotating BS with large linear momentum, and d an axion BS where the NAI results in the
fragmentation of the star into two equal-mass non-rotating BSs.

Reproduced with permission from Siemonsen and East (2021), copyright by APS

binary BS systems have been studied in the two-body problem of general relativity.
When sufficiently distant from each other, the precise structure of the star should be
irrelevant as suggested by Damour’s “effacement theorem” (Damour 1987).
According to this theorem, one could construct approximate initial data for a binary
boson star system as a superposition of boosted single boson star solutions (Bezares
et al. 2017). This simple recipe can be further improved by following the procedure
described in Helfer et al. (2022).

First attempts at binary boson-star simulations assumed the Newtonian limit, since
the SP system is simpler than the EKG one. Numerical evolutions of Newtonian

@ Springer



Dynamical boson stars Page 51 of 102 1

Fig. 21 Collision of identical 2
boson stars with large kinetic =0 =i =2
energy in the Newtonian limit.

The total energy (i.e., the sum of
kinetic, gravitational and self- ) . ) ‘ 41
interaction) is positive and the , i f i i
collision displays solitonic
behavior. Contrast this with the I [ I {1 I |\

gravity-dominated collision AR JAR f A R R 0
displayed in Fig. 22. T 2

Reproduced with permission =3 =4 ’ =5
from Bernal and Guzman
(2006a), copyright by APS ‘H

=6 t=7 =8

binaries showed that in head-on collisions with small velocities, the stars merge
forming a perturbed star (Choi 1998). With larger velocities, they demonstrate
solitonic behavior by passing through each other, producing an interference pattern
during the interaction but roughly retaining their original shapes afterwards (Choi
2002). Choi (1998) simulated coalescing binaries, although the lack of resolution in
these 3D simulations did not allow for strong conclusions.

The head-on case was revisited in Bernal and Guzman (2006a) with a 2D
axisymmetric code. In particular, these evolutions show that the final state will
depend on the total energy of the system (e.g. the sum of kinetic, gravitational and
self-interaction energies). If the total energy is positive, the stars exhibit solitonic
behavior both for identical stars (see Fig. 21) and non-identical stars. When the total
energy is negative, the gravitational force is the main driver of the dynamics of the
system. This case produces a true collision, forming a single object with large
perturbations, which slowly decays by gravitational cooling, as displayed in Fig. 22.
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Fig. 22 Collision of identical 2
boson stars with small kinetic =0 =5 =10
energy in the Newtonian limit.

The total energy is dominated by
the gravitational energy and is . . 41
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The first simulations of boson stars with full general relativity were reported in
Balakrishna (1999), where the gravitational waves were computed for a head-on
collision. The general behavior is similar to the one displayed for the Newtonian
limit; the stars attract each other through their gravitational interaction and then
merge to produce a largely perturbed boson star. However, in this case the merger of
the binary was promptly followed by collapse to a black hole, an outcome not
possible when working within Newtonian gravity instead of general relativity.
Unfortunately, very little detail was given on the dynamics.

Much more elucidating was work in axisymmetry (Lai 2004), in which head-on
collisions of identical boson stars were studied in the context of critical collapse
(discussed in Sect. 6.1) with general relativity. Stars with identical masses of M =
0.47 =~ 0.75 Max were chosen, and so it is not surprising that for small initial
momenta the stars merged together to form an unstable single star (i.e., its mass was
larger than the maximum allowed mass, Mp,). The unstable hypermassive star
subsequently collapsed to a black hole. However, for large initial momentum the
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stars passed through each other, displaying a form of solitonic behavior since the
individual identities were recovered after the interaction. The stars showed a
particular interference pattern during the overlap, much like that displayed in Figs. 1
and 21.

Another study considered the very high speed, head-on collision of BSs (Choptuik
and Pretorius 2010). Beginning with two identical boson stars boosted with Lorentz
factors ranging as high as 4, the stars generally demonstrate solitonic behavior upon
collision, as shown in the insets of Fig. 35. This work is further discussed in
Sect. 6.2.

The interaction of non-identical boson stars was studied in Palenzuela et al. (2007)
using a 3D Cartesian code to simulate head-on collisions of stars initially at rest. It
was found that, for a given separation, the merger of two stars would produce an
unstable star that collapses to a black hole if the initial individual mass were
M >0.26 =~ 0.4 M. For smaller masses, the resulting star would avoid gravita-
tional collapse and its features would strongly depend on the initial configuration.
The parameterization of the initial data was written as a superposition of the single
boson-star solution ¢(r), located at different positions r; and r,

¢ =V po(ri)e™ + Oy () 0. ®2)

Many different initial configurations are possible with this parameterization. The
precise solution ¢, is unaffected by changing the direction of rotation (within the
complex plane) via e = 1 or by a phase shift 0.

When € = —1, the Noether charge changes sign and the compact object is then
known as an anti-boson star. Three particular binary cases were studied in detail:
(i) identical boson stars (e = 1, 6 = 0), (ii) the pair in phase opposition (¢ = 1,
0 = m), and (iii) a boson—anti-boson pair (¢ = —1, § = 0). The trajectories of the
centers of the stars are displayed in Fig. 23, together with a simple estimate of the
expected trajectory assuming Newtonian gravity. The figure makes clear that the

Fig. 23 The position of the
center of one BS in a head-on <5
binary as a function of time for

(i) [B-B] identical BSs, (ii) [B-

poB] opposite phase pair, and 20
(iii) [B-aB] a boson—anti-boson
pair. A simple argument is made
which qualitatively matches
these numerical results, as
discussed in Sect. 4.2. Also
shown is the expected trajectory
from a simple Newtonian two-
body estimate.

Reproduced with permission 5
from Palenzuela et al. (2007),
copyright by APS
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merger depends strongly on the kind of pair considered, that is, on the interaction
between the scalar fields.

A simple energy argument is made in Palenzuela et al. (2007) to understand the
differing behavior. In the weak gravity limit when the stars are well separated, one
can consider the local energy density between the two stars. In addition to the
contribution due to each star separately, a remaining term 4 results from the
interaction of the two stars and it is precisely this term that will depend on the
parameters € and 6. This term takes the simple form

A=Ay cos[(1 —e)wt — 0], (93)

where A is a positive definite quantity. One then observes that the identical pair will
have an increased energy density 4 = 44 resulting in a deeper (and more attractive)
gravitational well between the stars. In contrast, the pair with opposite phases has a
decreased energy density 4 = —A( between them, resulting in a gravitational well
less attractive than the area surrounding it. This less attractive well results in an
effective repulsion relative to the identical pairing. The boson—anti-boson pair has an
interaction that is harmonic in time A4 = A cos(2w¢) and therefore sometimes pos-
itive and sometimes negative. However, if the time scale of interaction is not par-
ticularly fast, then the interaction averages to zero. Note that the boson—anti-boson
pair trajectory is the closest to the simple Newtonian estimate. The qualitative
behavior agrees very well with the numerical results.

The orbital case was later studied in Palenzuela et al. (2008). This case is much
more involved both from the computational point of view (i.e., there is less symmetry
in the problem) and from the theoretical point of view, since for the final object to
settle into a stationary, rotating boson star it must satisfy the additional quantization
condition for the angular momentum of Eq. (72).

One simulation consisted of an identical pair each with individual mass M = 0.5,
with small orbital angular momentum such that J < N. In this case, the binary merges
forming a rotating bar that oscillates for some time before ultimately splitting apart.
This can be considered as a scattered interaction, which could not settle down to a
stable boson star unless all the angular momentum was radiated.

In the case of boson—anti-boson pair, the total Noether charge is already trivial,
and the final object resembles the structure of a rotating dipole. The pair in opposition
of phase was not considered because of the repulsive effect from the interaction. The
cases with very small angular momentum J < N or with J <N collapsed to a black
hole soon after the merger. The trajectories for this latter case are displayed in
Fig. 24, indicating that the internal structure of the star is irrelevant (as per the
effacement theorem Damour 1987) until the scalar fields overlap.

Other simulations of orbiting, identical binaries have been performed within the
conformally flat approximation instead of full GR, which neglects gravitational
waves (GW) (Mundim 2010). Three different qualitative behaviours were found. For
high angular momentum, the stars orbit for comparatively long times around each
other. For intermediate values, the stars merged and formed a pulsating and rotating
boson star. For low angular momentum, the merger produces a black hole. No
evidence was found of the stars splitting apart after the merger.
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Three dimensional simulations of solitonic core mergers colliding two or more
boson stars in the Newtonian limit (Schrodinger—Poisson) are studied in the context
of dark matter with different mass ratios, phases and orbital angular momentum
(Schwabe et al. 2016). The final core mass does not depend strongly on the phase
difference nor on the angular momentum. Cotner (2016) also studies collisions
within the Schrodinger—Poisson system and discusses implications for dark matter.
However, this work focuses on the head-on case and includes effects of different
mass ratios, relative phases, self-couplings, and separation distances. Interestingly,
analytic estimates are compared to the numerical simulations (Cotner 2016).

The dynamics of particularly compact boson stars are interesting to contrast with
the dynamics of black holes because, at least in part, we now have observations of
the gravitational waves from binary BH mergers (discussed more in Sect. 5.3). To
this end, the study of the head-on collision of solitonic boson stars (which can be
quite compact) (Cardoso et al. 2016) found the dynamics to be qualitatively similar to
those observed previously with mini-boson stars (Palenzuela et al. 2007). However,
the gravitational waves emitted displayed significant differences and, in some cases,
closely resembled the signal from a binary black hole merger.

These studies have been extended to the orbital case in Bezares et al. (2017).
Surprisingly, for stars not so massive as to collapse promptly, the merger does not
lead to a rotating boson star but instead to a non-rotating perturbed BS (snapshots of
some of these simulations are shown in Fig. 25). As apparent in Fig. 26, the system
radiates most of its angular momentum via scalar radiation and gravitational waves
soon after the merger.

Similar results were found in Palenzuela et al. (2017), revealing that the remnant
settles down to a non-rotating boson star, emitting significant gravitational radiation
during this post-merger state (see Fig. 27). The unequal mass case, with mass ratios
up to ¢ = M, /M, = 23, was considered in Bezares et al. (2022), and snapshots of
these evolutions are shown Fig. 28. Similar to the equal-mass case, the merger

20 " T " T " T

10

y/M
(=]
T

-10+

" 1 " 1 " 1 "
205 710 0 10 20

Fig. 24 The position of the center of one BS within an orbiting binary as a function of time for the two
cases: (i) [B-B] identical BSs and (ii) [B-poB] opposite phase pair. Notice that the orbits are essentially
identical at early times (and large separations), but that they start to deviate from each other on closer
approach. This is consistent with the internal structure of each member of the binary being irrelevant at
large separations.

Reproduced with permission from Palenzuela et al. (2008), copyright by APS
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<«Fig. 25 Snapshots in time of the Noether charge density in the z = 0 plane for head-on binary collisions of

compact solitonic boson stars. Each row corresponds to a different boson-boson and boson-anti-boson case
studied with a phase shift 6 as described by Eq. (92). The collision of the stars occurs approximately at
t = 28. The result of the boson—boson merger is a single boson star except in the case with 0 = 7. The stars
in the boson—anti-boson case annihilate each other during the merger.

Reproduced with permission from Bezares et al. (2017), copyright by APS
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produces either a non-spinning boson star or a spinning black hole, depending on the
initial masses and on the binary angular momentum. Interestingly, in contrast to the
equal-mass case, one of the mechanisms to dissipate angular momentum is now
asymmetric (i.e., the ejection of a scalar field blob), and leads to large kick velocities
which could produce wandering remnant boson stars (Bezares et al. 2022).

Similar head-on and orbital simulations have been performed for equal mass
Proca-stars, showing behavior analogous to boson stars (Sanchis-Gual et al. 2019b).
In the head-on case, the collisions of Proca stars with sufficiently small compactness
form a stable Proca star remnant, whereas the merger of more compact Proca stars
eventually forms a black hole. For binaries with orbital angular momentum, the
merger of highly compact stars forms a Kerr black hole surrounded by a transient
Proca field remnant. For low compactness, the binary forms a massive remnant with
angular momentum which decays to a non-rotating Proca star. Interestingly, some of
the mergers of orbiting boson stars lead to the formation of so-called synchronized
gravitational atoms (Sanchis-Gual et al. 2020), rotating black holes surrounded by
stationary bosonic clouds which were not found in previous works. After the
formation of a horizon, the BH spins up by accreting the bosonic field until the
remnant reaches a stationary state. However, in order to spin up to synchronization,
fine tuning of the initial data is required: the synchronized gravitational atom will not
be formed if either there is not enough angular momentum available for the black
hole to spin as fast as the scalar field cloud, or there is too much, overshooting the
angular velocity of the cloud (Sanchis-Gual et al. 2020). Snapshots of two particular
mergers, one with Proca stars and the other with scalar BSs, are shown in Fig. 29 in
which the azimuthal structure of the cloud is apparent.
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Fig. 27 Snapshots from the mergers of four different, equal mass, solitonic BS binaries with increasing
compactnesses (from top row to bottom, each BS of the binary has compactness 0.06, 0.12, 0.18, and
0.22). Shown is the Noether charge density on the orbital plane before and after the time at which the stars
first make contact, #.. The most compact case collapses to a BH while the C = 0.12 case ejects two blobs
of scalar field.

Reproduced with permission from Palenzuela et al. (2017), copyright by the authors

All the previous simulations assumed the scalar field to be in a coherent state,
meaning that both stars are represented with the same scalar field. The incoherent
case, where a different scalar field constitutes each star such that they interact with
each other only through gravity, was considered in Bezares and Palenzuela (2018).

Besides collisions of boson and Proca-stars, other types of boson star mergers
have been considered. For instance, the head-on collision of /-boson stars was
studied in Jaramillo et al. (2022). Despite being spherically symmetric, ¢-boson stars
have a (hidden) frame of reference, used in defining their individual multipolar fields.
In addition to explorations with different angles between the axes of the two colliding
stars, the authors also considered the coherent and incoherent cases, when both stars
are made of either the same or different scalar fields. The simulations reproduce the
generic features of boson star mergers: (i) the collision of two sufficiently massive
stars leads to black hole formation, and (ii) below a certain mass threshold the
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Fig. 28 Snapshots from the mergers of four different, unequal mass, solitonic BS binaries (similar to
Fig. 27 which shows only equal mass binaries). Displayed is the Noether charge density on the orbital
plane before and after the contact time, .. The top two rows consist of a star with compactness 0.03 paired
with one with compactness 0.22, but the top row begins with the compact star having the opposite charge
from its stellar pair. For this case, the small star is annihilated, leaving a less massive remnant. Continuing
downward, the next row has stars with compactnesses 0.06 and 0.12, followed by 0.12 paired with 0.22
and with 0.18. Note that this final case ejects a single scalar blob in contrast to the pair of blobs ejected in
the second row of Fig. 27.

Reproduced with permission from Bezares et al. (2022), copyright by APS

remnant is a quasi-stationary bound state. However, this remnant generically deviates
from spherical symmetry, and it seems to belong to the previously reported larger
family of equilibrium multi-field boson stars of which ¢-boson stars are a symmetry
enhanced point (Sanchis-Gual et al. 2021).

In addition to mergers of two boson stars, there have been attempts to study mixed
binaries consisting of a boson star with another compact object. In Dietrich et al.
(2019) they studied the merger of boson stars with a neutron star. They found that,
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Fig. 29 Mergers of orbiting, non-spinning: Proca stars (left two columns) and scalar boson stars (right two
columns). Snapshots along the equator show: (leftmost) the real part of the scalar Proca potential, X,
(middle left) Proca energy density, (middle right) the real part of the scalar field, ¢, (rightmost) the scalar
energy density. These evolutions suggest that mergers result in a BH synchronized with an m = 6 Proca
cloud or an m = 4 scalar cloud, respectively.

Reproduced with permission from Sanchis-Gual et al. (2020), copyright by APS
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depending on the mass of the boson star, the merger remnant can either be a black
hole or a neutron star surrounded by a bosonic cloud.

Closely related are the investigations of the internal structure of neutron stars
through the gravitational waves produced during their coalescence. The LIGO-Virgo-
KAGRA facilities could potentially observe the effects of dark matter particles
trapped within their interior (i.e., dark matter cores) that, on long timescales, can
condense to a boson star. Simulations of such binaries, modeled as two fermion-
boson stars, might help constrain the amount of dark matter trapped in the interior of
neutron stars (Bezares et al. 2019).

If dark matter is composed of a scalar field (see Sect. 5.4), then the interaction of a
black hole with a large boson star is interesting for its astrophysical implications. The
piercing of a large and heavy boson star by a black hole with one-tenth its mass was
considered in Cardoso et al. (2022b). The simulations show that the black hole is
slowed down by accretion and dynamical friction with the boson star, with a large
fraction (i.e., usually more than 95%) of the boson star material accreting onto it
instead of dispersing to infinity, even when the black hole collides with a large
velocity. These studies have been extended by the same authors in Cardoso et al.
(2022a), considering the accretion of a boson star onto a central black hole,
representing a dark matter halo which hosts a parasitic supermassive black hole.
Numerical simulations allowed them to provide a general expression for the lifetime
of the boson star. Such lifetimes can be large enough to allow the dark matter halos to
survive until the present time.

5 Boson stars in astronomy

Scalar fields are often employed by astronomers and cosmologists in their efforts to
model the Universe. Most models of inflation adopt a scalar field as the inflaton field,
the vacuum energy of which drives the exponential inflation of the Universe. Dark
energy also motivates many scalar field models, such as k-essence and phantom
energy models. It is therefore not surprising that boson stars, as compact
configurations of scalar field, are called upon to provide consequences similar to
those observed.

5.1 As astrophysical stellar objects

We have already discussed a number of similarities between boson stars and models
of neutron stars. Just as one can parameterize models of neutron stars by their central
densities, one can consider a 1-parameter family of boson stars according to the
central magnitude of the scalar field. The mass is then a function of this parameter,
and one finds the existence of a local maximum across which solutions transition
from stable to unstable, just as is the case for neutron stars. Similarly, models of
neutron stars can be constructed with different equations of state, whereas boson stars
are constructed with differing scalar field potentials.

One difference of consequence concerns the stellar surface. Neutron stars of
course have a surface at which the fluid density is discontinuous, as discussed for
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example in Gundlach and Leveque (2011); Gundlach and Please (2009). In contrast,
the scalar field that constitutes the boson star is smooth everywhere and lacks a
particular surface. In its place, one generally defines a radius that encompasses some
percentage (e.g. 99%) of the stellar mass. Such a difference could have observational
consequences when matter accretes onto either type of star.

It is still an open question whether some of the stars already observed and
interpreted as neutron stars could instead be astrophysical boson stars. In a similar
fashion, it is not known whether many, if not all, of the stars we observe already have
a bosonic component that has settled into the gravitational well of the star (see
Sect. 3.6 for a discussion of fermion-boson stars). The bosonic contribution may arise
from exotic matter which could appear at high densities inside the neutron star or
from some sort of dark matter accretion (Giiver et al. 2014). This possibility has
gained popularity recently and there have been several attempts to constrain the
properties of weakly interacting dark matter particles (WIMPs) by examining
signatures related to their accretion and/or annihilation inside stars (for instance, see
Kouvaris and Tinyakov 2010 and works cited in the introduction).

In addition to the number of bosons, fermion-boson stars are also characterized by
the number of fermions present. Di Giovanni et al. (2022a) argue that this additional
freedom over standard boson stars can mitigate disagreement between expected and
observed masses and radii of neutron stars reported in recent multi-messenger
observations and nuclear-physics experiments. For instance, the LVK merger event
GW190814 reported a secondary mass of M = 2.50-2.67 M, which would either be
the most massive neutron star or lightest black hole yet observed. Such a high mass
could be explained if the neutron star contains a Bose—Einstein condensate in
addition to the regular neutron star material (Di Giovanni et al. 2022a).

Recently, it was suggested that, due to the stronger gravitational field of neutron
stars compared to other stars such as white dwarfs and main sequence stars, WIMPs
will accrete more efficiently, leading to two different possibilities. If the dark matter
is its own antiparticle, it will self-annihilate and heat the neutron star. This
temperature increase could be observable in old stars, especially if they are close to
the galactic center (Kouvaris and Tinyakov 2010; de Lavallaz and Fairbairn 2010). If
WIMPs do not self-annihilate, they will settle in the center of the star forming a
fermion-boson star (as discussed in Sect. 3.6). The accretion of dark matter would
then increase the star’s compactness until the star collapses (de Lavallaz and
Fairbairn 2010) (see discussion of BSs as a source of dark matter in Sect. 5.4). Nufiez
et al. (2011) follow such work by considering the result of a collision between a BH
and a boson star. In particular, they consider the problem as a perturbation of a black
hole via scalar accretion and analyze the resulting gravitational-wave output.

Because of the similarities between boson stars and neutron stars, one finds that
boson stars are often used in place of the other. This is especially so within numerical
work because boson stars are easier to evolve than neutron star models. One can, for
example compare the gravitational-wave signature of a boson-star merger with that of
more conventional compact object binaries consisting of BHs and/or NSs.
Differentiating BSs from other compact objects with gravitational-wave observations
is discussed further in Sect. 5.3.
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With the continued advancement in observation, both in the electromagnetic and
gravitational spectra, perhaps soon we will have evidence for these questions. At the
same time, further study of boson stars can help identify possible distinguishing
observational effects in these bands. One example where knowledge is lacking is the
interaction between boson stars with a magnetic field. Whereas a neutron star can
source its own magnetic field and a neutral star can obtain an induced charge when
moving with respect to a magnetic field, we are aware of no studies of the interaction
of boson stars with a magnetic field.

5.2 Compact alternatives to black holes

As a localized scalar field configuration, a boson star can be constructed as a non-
interacting compact object, as long as one does not include any explicit coupling to
electromagnetic or other fields. In that respect, it resembles a BH, although it lacks a
horizon. Can observations of purported BHs be fully explained by massive boson
stars? See Psaltis (2008) for a review of such observations.

Neutron stars also lack horizons, but, in contrast to a boson star, have a hard
surface. A hard surface is important because one would expect accretion onto such a
surface to have observable consequences. Can a boson star avoid such conse-
quences? Yuan et al. (2004) consider the viability of 10 M, boson stars as BH
candidates in X-ray binaries. They find that accreting gas collects not at the surface
(which the star lacks), but instead at the center, which ultimately should lead to
Type 1 X-ray bursts. Because these bursts are not observed, the case against boson
stars as black hole mimickers is weakened (at least for BH candidates in X-ray
binaries).

Guzman and Rueda-Becerril (2009) consider a simplified model of accretion and
searches for boson-star configurations that would mimic an accreting black hole.
Although they find matches, they argue that light deflection about a boson star will
differ from the BH they mimic because of the lack of a photon sphere. Further work
studies the scalar field tails about boson stars and compares them to those of BHs
(Lora-Clavijo et al. 2010). If indeed a boson star collapses to a BH, then one could
hope to observe the QNM of the massive scalar field, as described in Hod (2011).
Differences between accretion structures surrounding boson stars and black holes are
analyzed in Meliani et al. (2015), showing that the accretion tori around boson stars
have different characteristics than in the vicinity of a black hole. Similar differences
have been reported regarding tidal disruption clouds orbiting either a spherically
symmetric compact boson star or a Schwarzschild black hole (Teodoro et al. 2021).
The simulations showed the formation of a ring-like structure around the boson star
which is not present in the black hole scenario. Further studies on the subject include
disk (Meliani et al. 2016) and supersonic winds (Gracia-Linares and Guzman 2016)
accreting onto boson stars.

Some of the strongest evidence for the existence of BHs is found at the center of
most galaxies. Observational evidence strongly suggests supermassive objects (of the
order of millions of solar mass) occupying a small region (of order an astronomical
unit) which is easily explained by a supermassive BH (Boehle et al. 2012). However,
some argue for the viability of supermassive boson stars at galactic centers (Torres
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et al. 2000). There could potentially be differences in the (electromagnetic) spectrum
between a black hole and a boson star, but there is considerable freedom in adjusting
the boson star potential to tweak the expected spectrum (Guzman 2007). However,
there are stringent constraints on BH alternatives to Sgr A* by the low luminosity in
the near infrared (Broderick and Narayan 2006). In particular, the low luminosity
implies a bound on the accretion rate assuming a hard surface radiating thermally
and, therefore, the observational evidence favors a black hole because it lacks such a
surface. In particular, although a BS lacks a surface, any material it accretes would
accumulate and that material would have a surface that would radiate thermally.

We discuss here three methods to test the nature of astrophysical black hole
candidates: X-ray observations, gravitational wave observations, and very long
baseline interferometry (VLBI).

The analysis of X-ray reflection spectroscopy with data provided by the current
X-ray missions can only provide weak constraints on boson stars (Cao et al. 2016),
Proca stars (Shen et al. 2017), and hairy Kerr BHs (Ni et al. 2016). The quasi-
periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting compact
objects also provide a powerful tool both to constrain deviations from Kerr and to
search for exotic compact objects. Therefore, a future eXTP mission or LOFT-like
mission could set very stringent constraints on black holes with bosonic hair and on
(scalar or Proca) boson stars (Franchini et al. 2017).

Exotic objects, such as boson stars and gravastars (Mazur and Mottola 2001), can
be massive and compact enough to be easily confused with black holes.
Nevertheless, these objects differ from black holes in having nonzero tidal
deformabilities, which can allow one to distinguish binaries containing such objects
from binary black holes using GW observations. It was found that such constraints
can be used to rule out some simple models of boson stars (Johnson-Mcdaniel et al.
2020). Gravitational waves produced by extreme-mass-ratio inspirals into the
supermassive compact object at the center of a galaxy, could also clarify whether it is
a black hole or a rotating boson star that lacks a horizon (Zhang et al. 2021). Also, a
stellar-mass object inspiralling around a supermassive boson star generically excites
resonant-modes (Macedo et al. 2013a), producing a characteristic imprint on the
gravitational-wave emission which may discriminate between black holes and other
horizonless compact objects.

VLBI, on the other hand, may be able to resolve Sgr A*, our closest supermassive
black hole, located at the center of our galaxy. The Event Horizon Telescope (EHT)
uses a large collection of telescopes to create an Earth-scale interferometer to resolve
supermassive black holes. So far, they have produced images both for Sgr A*
(Akiyama et al. 2022) and for M87 (Akiyama et al. 2019), which is much further
away but also much larger. These images allow the study of so-called BH shadows,
that is, the gravitational lensing and redshift effect due to the BH on the radiation
from background sources Gralla et al. (2019).

Images of an accretion torus around Sgr A*, assuming this compact object is a
boson star, are computed in Vincent et al. (2016b). However, their results
demonstrate that very relativistic rotating boson stars produce images extremely
similar to Kerr black holes, making them difficult to distinguish from a black hole.
Figure 30 displays images predicted from this work for both a BH and a BS which
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appear quite similar. The conclusion of Vincent et al. (2016b) expresses a number of
interesting caveats, and this study is also discussed as part of a more wide ranging
paper about efforts to firmly establish Sgr A* as a BH (Eckart et al. 2017). More
recent and accurate simulations of the accretion flow onto Sgr A*, assuming it is
either a black hole or a non-rotating boson star, found that under realistic
astronomical observing conditions the differences in the appearance are large enough
to be detectable (Olivares et al. 2020). These differences arise from dynamical effects
directly related to the absence of an event horizon: the accumulation of matter in the
form of either a small torus or a spheroidal cloud in the interior of the boson star, and
the absence of an evacuated high-magnetization funnel in the polar regions. The
mechanism behind these effects is general enough to apply to other horizonless and
surfaceless black hole mimickers, strengthening confidence in the ability of the EHT
to identify such objects. Examples of the resulting images are displayed in Fig. 31.

However, some of these differences might disappear, or at least diminish, by
considering a Proca star instead of a boson star. Even without a light ring, the Proca
star can potentially mimic the shadow of a near-equilibrium Schwarzschild BH with
the same mass under at least some observational conditions (Herdeiro et al. 2021c).
Similar results are obtained when considering the shadows of boson and Proca stars
with thin accretion disks (Rosa and Rubiera-Garcia 2022).

It has also been shown in Cunha et al. (2015) that hairy Kerr BHs can exhibit very
distinct shadows from those of their vacuum counterparts when the light source is
sufficiently far away from the BH. These differences remain, albeit less dramatically,
when the BH is surrounded by an emitting torus of matter (Vincent et al. 2016a).

Other studies have also studied the difference in appearance of a BS with that of
the presumed BH in the center of our galaxy. Bin-Nun (2013) argue that, because
BSs have an extended mass distribution that is transparent to electromagnetic
radiation, the resulting strong gravitational lensing images of the S stars in the
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Fig. 30 Computed images as might be expected from the EHT for: (left) a Kerr black hole and (right) a fast
spinning boson star with accretion according to certain assumptions. The similarity in images indicates that
ruling out a BS candidate in images of Sgr A* may prove difficult.

Reproduced with permission from Vincent et al. (2016b), copyright by IOP
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Fig. 31 Synthetic images of various compact objects (Schwarzschild and Kerr black holes and two
different boson stars). Note that the central dark area of the BSs is smaller than the black hole cases and
that the BS images are more symmetric.

Reproduced with permission from Olivares et al. (2020), copyright by the authors
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galactic center would yield much brighter images than a BH of similar mass. Horvat
et al. (2013) study BSs with a nonminimally coupled scalar field and makes a similar
argument about bright images.

One can also consider differences between the motion of celestial bodies about
BSs versus BHs. In particular, finding general geodesic motion of test particles in the
space-time of boson stars generally requires numerical integration. Geodesics around
non-compact boson star were studied in Diemer et al. (2013), finding additional
bound orbits of massive test particles close to the center of the star that are not
present in the Schwarzschild case and that could be used to make predictions about
extreme-mass-ratio inspirals (EMRIs), such as the stars orbiting Sagittarius A*. One
can also compute the mass parameters of compact objects from redshifts and
blueshifts emitted by geodesic particles around them (Becerril et al. 2016). The
motion of charged, massive test particles in the spacetime of charged boson stars was
considered in Brihaye et al. (2014a), and the trajectories of a spinning test particles in
rotating boson star in Zhang et al. (2022b, c).

There are other possible BH mimickers, and a popular recent one is the gravastar
(Mazur and Mottola 2001). Common among all these alternatives is the lack of an
event horizon. Both gravastars and BSs undergo an ergoregion instability for high
spin J/(GM?*) > 0.4 (Cardoso et al. 2008). As mentioned above for BSs,
gravitational waves may similarly be able to distinguish gravastars from BHs (Pani
et al. 2009).

In order to reach the high compactnesses needed to mimic a BH, one can adopt
specialized potentials (Cardoso et al. 2016), but an alternative is to embed the BS
within a global monopole as studied in Reid and Choptuik (2016) and Marunovi¢
and Murkovié¢ (2014).

5.3 As source of gravitational waves

The era of gravitational-wave astronomy began in 2015, precisely one hundred years
after Einstein’s development of GR. In particular, during the first observational run
Ol, LIGO directly detected the gravitational waves from the inspiral, merger, and
ringdown of a BH binary (Abbott et al. 2016a). This observation has since been
followed by many others during O2, which included VIRGO, and during O3, also
with KAGRA, with a total of 90 events detected by mid-2022 (Abbott et al. 2021).
All the gravitational-wave observations so far are consistent with merging binaries of
black holes and neutron stars. These detections are helping to ensure the
development and completion during the next decade of space-based gravitational
wave observatories such as LISA (Armano et al. 2017), as well as the Einstein
Telescope, the third generation of ground-based detectors (Abbott et al. 2017).
Now that we have actual GW observations in hand, it behooves us to extract as
much science as possible from this new window on the Universe. Much work has
already appeared examining the implications of these initial detections (Yunes et al.
2016; Yagi and Stein 2016; Abbott et al. 2016b). In this paper, of course, we are
concerned with the implications for BSs: (i) could these extent observations actually
represent the signal from a pair of boson stars instead of BHs? (ii) might we observe
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a signal from boson stars, and, if so, what templates will we need? or (iii) can we
place tight bounds excluding the existence of boson stars?

In terms of boson stars, a binary is the most natural GW source. However, at early
times, the precise structure of the stars is irrelevant and the signatures are largely the
same whether the binary is composed of NSs, BHs, or BSs (Bezares and Palenzuela
2018). However, during the late inspiral and merger, internal structure becomes
important. In particular for boson stars, the relative phase determines the GW
signature (Palenzuela et al. 2007, 2008; Cardoso et al. 2016).

Gravitational-waves produced during the coalescence of boson stars can be used
to constrain the fundamental coupling constants of a scalar field theory (i.e., the self-
interaction potential), in much the same way that GWs from binary neutron star
coalescences help constrain the microscopic interaction of matter at ultrahigh density.
Waveform models for the inspiral of boson stars with quartic interactions, including
spin-induced quadrupolar and tidal-deformability contributions, were constructed in
Pacilio et al. (2020). Further analysis showed that future instruments such as the
Einstein Telescope and the Laser Interferometer Space Antenna can provide strong
complementary bounds on bosonic self-interactions. The gravitational radiation
background generated from boson star binaries formed in locally dense clusters, with
a formation rate tracked by the regular star formation rate, has been estimated in
Croon et al. (2018), as well as the dependence of the frequency window on the
parameters of the model (i.e., the boson field mass and repulsive self-coupling). With
these estimates of the GW background, future observations from detectors such as
LISA and the International Pulsar Timing Array (Hobbs et al. 2010) may be able to
set constraints on scalar field theories.

GW observations of binaries involving either two neutron stars (GW170817 and
GW190425) or one neutron star and a black hole (GW190814, GW200105, and
GW200115) offer the potential of testing certain models of dark matter admixed
neutron stars. A study of the mixed binary (BH-NS) observations found that the dark
matter particle mass is mostly unconstrained by these observations (Wystub et al.
2021). Other work (Lee et al. 2021) considers the ensuing constraints if one assumes
that the 2.6 M, secondary in the GW190814 observation is a compact object other
than a black hole. In particular, if the object is a QCD axion admixed neutron star,
then they constrain the axion mass to an already excluded range. Karkevandi et al.
(2022) study the impact of self-interacting bosonic asymmetric dark matter on
various observable properties of fermion-boson stars with either a dense dark matter
core or an extended dark halo. Their combined analysis of the mass-radius relation
and the tidal deformability constraints set by the LIGO/Virgo Collaboration, sets a
stringent constraint on the dark matter fraction below 5% (Karkevandi et al. 2022).

Gravitational waves may be an ideal messenger for revealing dark matter
(discussed in Sect. 5.4). If new dark sector particles can form exotic compact objects
(ECOs) of astronomical size, then the first evidence for such objects—and their
underlying microphysical description—may arise in gravitational-wave observations.
The relationship between the macroscopic properties of ECOs, such as their GW
signatures, with their microscopic properties, and hence new particles, was studied in
Giudice et al. (2016). The GW efficiency of compact binaries generally is examined
in Hanna et al. (2017). More recently, a systematic search for exotic compact mergers
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in Advanced LIGO and Virgo events has been performed, focusing on head-on
mergers of Proca stars (Bustillo et al. 2021; Calderon Bustillo et al. 2022). Although
their Proca star merger hypothesis is statistically rejected in favor of a black hole
merger for some events, remarkably for others the mergers are somewhat better fit by
a Proca star merger. Figure 32 shows such a comparison for the specific case of the
GW190521 observation.

The first all-sky search for long-duration, quasimonochromatic gravitational-wave
signals emitted by ultralight scalar boson clouds around spinning black holes was
performed by the LVK collaboration using O3 data (Abbott and et al. 2022). This
kind of search, which presumably will become routine during upcoming LVK runs
and when 3G detectors come online, have the potential not only to unveil the
existence of (fuzzy) dark matter haloes but also to constrain the mass of the bosonic
particle from which boson stars are made of. In this search no evidence for such
signals was found, setting an exclusion region in the boson mass/black hole mass
plane and the maximum detectable distance for a given boson mass.

Along the same lines, the tidal Love numbers for different ECOs, including
different families of boson stars, are calculated in Cardoso et al. (2017). The tidal
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Fig. 33 Gravitational waves, represented by the / = m = 2 mode of the Newman-Penrose scalar, ¥4,
emitted during the head-on collision of two solitonic BSs. For all configurations, the final object is massive
enough to promptly collapse to a BH. However, for the boson—boson and boson—anti-boson configurations
the late inspiral signatures differ significantly from the corresponding binary black-hole signal.
Reproduced with permission from Cardoso et al. (2016), copyright by the authors

Love number, which encodes the deformability of a self-gravitating object within an
external tidal field, depends significantly both on the object’s internal structure and
on the dynamics of the gravitational field. Present and future gravitational-wave
detectors can potentially measure this quantity in a binary inspiral of compact objects
and impose constraints on boson stars. Direct numerical simulations in head-on
collision already have shown similarities in the gravitational waves emitted by black
holes and boson stars in some cases (Cardoso et al. 2016). Figure 33 compares the
expected GW signal of a BH binary with various BS binaries.

One can also examine supermassive BHs and ask whether they could instead be
some form of BS. In particular, the observation of gravitational waves from such
objects may be able to distinguish BHs from BSs (Berti and Cardoso 2006). Such a
test would occur in the bandwidth for a space-based observatory such as the LISA
mission (Danzmann 2017). Because BSs allow for orbits within what would
otherwise be a black hole event horizon, geodesics will exhibit extreme pericenter
precession resulting in potentially distinguishable gravitational radiation (Kesden
et al. 2005). In any case, observations of supermassive objects at the centers of
galaxies can be used to constrain the scalar field parameters of possible mimickers
(Barranco and Bernal 2011a). In Macedo et al. (2013a) the authors construct mini-
boson, boson and solitonic boson stars and analyze the gravitational and scalar
response of boson star spacetimes to an inspiralling stellar-mass object.

5.4 As origin of dark matter
Studies of stellar orbits within various galaxies produce rotation curves which

indicate galactic mass within the radius of the particular orbit. The discovery that
these curves remain flat at large radius suggests the existence of a large halo of
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massive, yet dark, matter that holds the galaxy together despite its large rotation (see
Feng (2010) for a review). However, the precise form of matter that could fulfill the
observational constraints is still very much unclear. Scalar fields are an often used
tool in the cosmologist’s toolkit, but one cannot have a regular, static configuration of
scalar field to serve as the halo (Pena and Sudarsky 1997) (see Dias et al. 2011 as
discussed in Sect. 6.3 for a discussion of rotating boson stars with embedded,
rotating BH solutions). Instead, some form of boson star represents a possible
candidate for providing the necessary dark mass.

Compact binaries are the primary target of LIGO, but instead of neutron stars or
black holes, Soni and Zhang (2017) study the expected signal from binaries
consisting of SU(N) glueball objects, one of the simplest models of dark matter.
More discussion of the merger of two BSs and the production of GW can be found in
Sect. 4.2. At the lower frequencies targeted by LISA, if galaxies generally possess
some extended, supermassive configuration, then the inspiral of small compact body
into this field will result in both dynamical friction and dark matter accretion, in
addition to radiation-reaction (Macedo et al. 2013b). These dynamical effects may
potentially be encoded on observable gravitational waves from the inspiral.

Boson stars can be matched onto the observational constraints for galactic dark
matter halos (Lee 2010; Sharma et al. 2008). For instance, astrometric and
spectroscopic observations of the orbital motion of S2 around Sgr A* might narrow
the allowed range for the mass of an ultralight boson forming a solitonic dark matter
core in the innermost part of the halo (Della Monica and de Martino 2023). However,
multi-field boson stars that superpose various boson-star solutions (e.g., an unexcited
solution with an excited solution) can perhaps find better fits to the constraints
(Urena-Lopez and Bernal 2010). Boson stars at the galactic scale may not exhibit
general relativistic effects and can be effectively considered as Bose—Einstein
condensates (BEC) with angular momentum (Rindler-Daller and Shapiro 2012).

Boson stars can be a good descriptions of dark matter haloes if the fields are very
light. In Annulli et al. (2020) the authors studied the dynamical response of
Newtonian boson stars when excited by external matter (stars, planets or black holes)
in their vicinities, including the first self-consistent calculation of dynamical friction
acting on moving bodies in these backgrounds.

Laha (2020) proposes using fast radio bursts to look for gravitational lensing by
boson stars. Choi et al. (2019) argue that by combining such lensing with
gravitational wave observations, one can probe the dynamics of boson stars.

Representing dark matter as BSs also offers certain computational benefits,
avoiding some of the costs of modeling the particles themselves with an N-body
scheme. For example, Davidson and Schwetz (2016) study structure formation of an
axion dark matter model with ground state solutions of the appropriate Schrodinger-
Poisson system along with quantum pressure term (see Eq. 58). Even if dark matter
consists of clumps of weakly interacting massive particles (WIMPs) instead of BSs,
Mendes and Yang map clumps of such particles to perturbed boson stars and study
their tidal deformability, bypassing the large computational cost of studying the
dynamics of these WIMPs with an N-body code (Mendes and Yang 2017). Tidal
deformability of BSs was also studied recently in the context of testing strong-field
general relativity (Cardoso et al. 2017).

@ Springer



1 Page 72 of 102 S. L. Liebling, C. Palenzuela

One can also consider a more general framework in which the dark matter halo is
produced by an N-body system of boson stars. For instance, Amin et al. (2022)
investigate the differences in the small-scale structure resulting from either vector
dark matter (VDM) or scalar dark matter (SDM) using 341 dimensional simulations
of the Schrodinger—Poisson system. Starting with a collection of idealized halos (self-
gravitating solitons) as an initial condition, the system dynamically evolves to an
approximately spherically symmetric configuration that has a core surrounded by a
halo of interference patterns in the mass density. Their results point towards the
possibility of distinguishing VDM from SDM using astrophysical and terrestrial
observations.

Instead of galactic scale BSs, one could instead argue for the accumulation of
bosonic field in neutron stars. Such solutions contain the “normal” fermionic matter
as well as a bosonic component (discussed above in Sect. 3.6). However, the
accumulation of additional mass in a neutron star, already the expected last stage
before complete collapse to black hole, might conceivably lead to the star’s collapse.
The observations of black holes with masses ~ 1 M., which cannot be produced via
stellar evolution, could be explained by the accumulation of dark matter triggering
gravitational collapse in the star centers (Garani et al. 2022). If indeed collapse can be
expected, then the existence of old neutron stars would place constraints on such a
form of dark matter (Fan et al. 2012; Jamison 2013; Bramante et al. 2013). In the face
of such arguments, Kouvaris and Tinyakov (2013), Bell et al. (2013) instead argue
that a broad range of realistic models survive such constraints. Most recently, Brito
et al. (2015a) argue with perturbation and numerical methods that old stars are in fact
stable to the accretion of light bosons by an efficient gravitational cooling mechanism
(see also Brito 2016).

Another dark matter model arising from a scalar field is wave dark matter (Bray
and Goetz 2014; Bray and Parry 2013; Goetz 2015a, b). In particular, they examine
Tully—Fisher relationships predicted by this wave dark matter model (Bray and Goetz
2014; Goetz 2015b). High-resolution simulations of a non-relativistic Bose—Einstein
condensate within this model reproduce the large scale structure of standard cold
dark matter while differing inside galaxies (Schive et al. 2014).

Other studies solve the Gross—Pitaevskii equation for a Bose—Einstein condensate
as a model of dark matter stars and study its stability properties (Li et al. 2012;
Madarassy and Toth 2015; Marsh and Pop 2015).

The solitonic nature of boson stars (see Fig. 1) lends itself naturally to the
wonderful observation of dark matter in the Bullet Cluster (Lee et al. 2008). Lee and
Lim (2010) attempt to determine a minimum galactic mass from such a match.

Interestingly, Barranco et al. (2011) foregoe boson stars and instead look for
quasi-stationary scalar solutions about a Schwarzschild black hole that could
conceivably survive for cosmological times. Another approach is to use scalar fields
for both the dark matter halo and the supermassive, central object. Amaro-Seoane
et al. (2010) look for such a match, but find no suitable solutions. Quite a number of
more exotic models viably fit within current constraints, including those using Q-
balls (Doddato and McDonald 2012).

Instead of beginning with boson stars as dark matter, recent work considers the
formation of soliton stars from the existence of a bosonic field. Gorghetto et al.
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(2022) consider a dark vector boson and argue that such a field will be produced
during inflation in the early universe from vacuum fluctuations. Such fluctuations
would then condense into gravitationally bound solitons, Proca stars, and survive as a
significant component of dark matter. Arvanitaki et al. (2020) posit a cosmological
large-misalignment mechanism that can lead to the formation of axion stars and
study its observational consequences. Levkov et al. (2018) provide another well
motivated formation channel in which virialized dark matter bosons (dark QCD
axions or Fuzzy Dark Matter) condense into stars in the kinetic regime.

Section 4.2 discusses the dynamics of boson stars including some references
commenting on the implications of the dynamics for dark matter.

6 Boson stars in mathematical relativity

Although the experimental foundation for the existence of boson stars is completely
lacking, on the theoretical and mathematical front, boson stars are well studied.
Recent work includes a mathematical approach in terms of large and small data
(Frank and Lenzmann 2009a), followed up by studying singularity formation
(Lenzmann and Lewin 2011) and uniqueness (Frank and Lenzmann 2009b;
Lenzmann 2009) for a certain boson star equation. In Cho et al. (2009), they study
radial solutions of the semi-relativistic Hartree type equations in terms of global well-
posedness. Bicak et al. (2010) demonstrate stationarity of time periodic scalar field
solutions.

Already discussed in Sect. 3.9 has been the no hair conjecture in the context of
BSs holding a central BH within. Beyond just existence, however, boson stars are
often employed mathematically to study dynamics. Here, we concentrate on a few of
these topics that have attracted recent interest.

6.1 Black-hole critical behavior

If one considers some initial distribution of energy and watches it evolve, generally
one arrives at one of three states. If the energy is sufficiently weak in terms of its
gravity, the energy might end up dispersing to larger and large distances. However, if
the energy is instead quite large, then perhaps it will concentrate until a black hole is
formed. Or, if the form of the energy supports it, some of the energy will condense
into a stationary state.

In his seminal work, Choptuik (1993) considers a real, massless scalar field and
numerically evolves various initial configurations, finding either dispersion or black-
hole formation. By parameterizing these initial configurations, say by the amplitude
of an initial pulse p, and by tuning this parameter, he was able to study the threshold
for black-hole formation at which he found fascinating black-hole critical behavior.
In particular, his numerical work suggested that continued tuning could produce as
small a black hole as one wished. This behavior is analogous to a phase transition in
which the black-hole mass serves as an order parameter. Similar to phase transitions,
one can categorize two types of transition that distinguish between whether the
black-hole mass varies continuously (Type II) or discontinuously (Type I). For
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Choptuik’s work with a massless field, the transition is therefore of Type II because
the black-hole mass varies from zero continuously to infinitesimal values.

Subsequent work has since established that this critical behavior can be considered
as occurring in the neighborhood of a separatrix between the basins of attraction of
the two end states. For p = p*, the system is precisely critical and remains on the
(unstable) separatrix. Similarly other models find such threshold behavior occurring
between a stationary state and black-hole formation. Critical behavior about
stationary solutions necessarily involve black-hole formation “turning-on” at finite
mass, and is therefore categorized as Type I critical behavior.

The critical surface, therefore, appears as a co-dimension [ surface, which
evolutions increasingly approach as one tunes the parameter p. The distance from
criticality |p — p*| serves as a measure of the extent to which a particular initial
configuration has excited the unstable mode that drives solutions away from this
surface. For Type II critical behavior, the mass of the resulting black-hole mass scales
as a power law in this distance, whereas for Type I critical behavior, it is the survival
time of the critical solution that scales as a power law. See Gundlach and Martin-
Garcia (2007) for a recent review.

We have seen that boson stars represent stationary solutions of Einstein’s
equations and, thus, one would correctly guess that they may occur within Type I
black-hole critical behavior. To look for such behavior, Hawley and Choptuik (2000)
begin their evolutions with boson-star solutions and then perturb them both
dynamically and gravitationally. They, therefore, included in their evolutionary
system a distinct, free, massless, real scalar field which couples to the boson star
purely through its gravity.

The initial data, therefore, consisted of a boson star surrounded by a distant,
surrounding shell of real scalar field parametrized by the amplitude of the shell. For

Fig. 34 Evolution of a boson
star (solid line) perturbed by a t=0 t=225 t=45.0
shell of scalar field (dashed line).
Shown is the mass density

OM /0r for each contribution. By
t ~ 100 the real scalar field pulse N N
has departed the central region VAR
and perturbed the boson star into

an unstable, compact /;? t=67.5 t=97.5 t=330
configuration. Contrast the = 0 =

frame with that of = 97.5 and =

note the increase in compaction. |

This unstable BS survives until FAVAR Ay
t =~ 500 only because the initial T T T
perturbation has been tuned to

one part in 10" and indicates 0.2 t=510 = t=062.5 t=622.5
Type 1 critical behavior. 1
Reproduced with permission 0.1 —
from Lai and Choptuik (2007) 1
O | HH\MHHHHMMT
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small perturbations, the boson star oscillated about an unstable boson star before
settling into a low mass, stable solution (see Fig. 34). For large perturbations, the real
scalar field serves to compress the initial star and, after a period of oscillation about
an unstable boson star, the complex field collapses to a black hole. By tuning the
initial perturbation, they find a longer and longer lived unstable boson star, which
serves as the critical solution (see Fig. 17). The survival time 7 obeys a power law in
terms of the distance from criticality |p — p*|

Tx ylnlp —p', (94)

where 7 is a real constant that depends on the characteristic instability rate of the
particular unstable boson star approached in the critical regime.

Jimenez-Vazquez and Alcubierre (2022) subsequently studied the same system
with different initial data. In particular, they adopted a Gaussian pulse as initial data,
finding, as expected, that increasing the initial width of the pulse sent the system
from Type II to Type I critical behavior (for another system in which the initial pulse
width determines the fate of the system see Buchel et al. (2013) mentioned in
Sect. 6.3). In the large width, Type I regime, they found unstable boson stars acting
as the critical solutions in agreement with Hawley and Choptuik (2000).

One can also consider these BSs in axisymmetry in which non-spherically
symmetric modes could potentially become important. A first step in this direction
studied spherically symmetric BSs within conformally flat gravity (which does not
allow for gravitational waves) in axisymmetry (Rousseau 2003). Later, better
resolution using adaptive mesh refinement within full general relativity was achieved
by Lai (2004); Lai and Choptuik (2007), which upheld the results found within
spherical symmetry. This work thus suggests that there are either no additional,
unstable, axisymmetric modes or that such unstable modes are extremely slowly
growing.

A very different type of critical behavior was also investigated by Lai (2004). By
boosting identical boson stars toward each other and adjusting their initial momenta,
he was able to tune to the threshold for black-hole formation. At the threshold, he
found that the time till black-hole formation scaled consistent with Type I critical
behavior and conjectured that the critical solution was itself an unstable boson star.
This is one of the few fully nonlinear critical searches in less symmetry than spherical
symmetry, and the first of Type I behavior in less symmetry. A related study colliding
neutron stars instead of boson stars similarly finds Type I critical behavior (Jin and
Suen 2007) and subsequently confirmed by Kellermann et al. (2010).

The gauged stars discussed in Sect. 3.11 also serve as critical solutions in spherical
symmetry (Choptuik et al. 1996, 1999; Millward and Hirschmann 2003).

6.2 Hoop conjecture

An interesting use of boson stars was made by Choptuik and Pretorius (2010). They
sought to answer classically whether the ultra-relativistic collision of two particles
results in black-hole formation. Such a question clearly has relevance to hopes of
producing black holes at the LHC (see, e.g., Landsberg 2006; Park 2012; CMS
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Fig. 35 Evolutions of the head-on collisions of identical boson stars boosted toward each other with initial
Lorentz factors y as indicated. Time flows downward within each column and the top edge displays the axis
of symmetry. The color-scale indicates the value of |¢|. In the middle frames one sees the interference
pattern characteristic of high kinetic energy BS collisions (as mentioned in Fig. 1). In the last column on
the right, the collision produces a BH with apparent horizon indicated by the black oval in the third frame.
Reproduced with permission from Choptuik and Pretorius (2010), copyright by APS

Collaboration 2017). Guidance on this question is provided by Thorne’s Hoop
Conjecture (Thorne 1972) which suggests that, if one squeezes energy into some
spherical space of dimension less than the Schwarzschild radius for that energy, then
a black hole is formed.

They, therefore, numerically collide boson stars head-on at relativistic energies to
study black-hole formation from just such dynamical “squeezing”. Here, the nature
of boson stars is largely irrelevant as they serve as simple bundles of energy that can
be accelerated (see Fig. 35). However, unlike using boosted black-hole solutions, the
choice of boson stars avoids any type of bias or predisposition to formation of a black
hole. In addition, a number of previous studies of boson star head-on collisions
showed interesting interference effects at energies below the threshold for black-hole
formation (Choi et al. 2009; Choi 2002; Lai 2004; Mundim 2010). Indeed, it has
been proposed that such an interference pattern could be evidence for the bosonic
nature of dark matter because of evidence that an ideal fluid fails to produce such a
pattern (Gonzalez and Guzméan 2011).

Choptuik and Pretorius (2010) find that indeed black-hole formation occurs at
energies below that estimated by the Hoop Conjecture. This result is only a classical
result consistent with the conjecture, but if it had not held, then there would have
been no reason to expect a quantum theory to be consistent with it.

6.3 Other dimensions and anti-de Sitter spacetime
Much work has been invested recently in considering physics in other dimensions.
Motivation comes from various ideas including string theory (more dimensions) such

as the AdS/CFT correspondence and holography (one fewer dimensions) (Maldacena
1998; McGreevy 2010; Polchinski 2010). Another source of motivation comes from
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the fact that higher dimensional black holes can have different properties than those
in three spatial dimensions (Emparan and Reall 2008). Perhaps BSs will similarly
display novel properties in other dimensions.

In lower dimensional AdS (241) spacetimes, early work in 1998 studied exact
solutions of boson stars (Sakamoto and Shiraishi 1998a; Degura et al. 2001;
Sakamoto and Shiraishi 1998b). Higher dimensional scenarios were apparently first
considered qualitatively a few years later in the context of brane world models
(Stojkovic 2003). This discussion was followed with a detailed analysis of the 3, 4,
and 5 dimensional AdS solutions (Astefanesei and Radu 2003).

Fodor et al. (2010c) consider oscillatons in higher dimensions and measures the
scalar mass loss rate for dimensions 3, 4, and 5. They extend this work considering
inflationary spacetimes (Fodor et al. 2010a). Brihaye et al. (2014b) and Herdeiro
et al. (2015a) construct higher dimensional black hole solutions (Myers—Perry BHs)
with scalar hair, and, in so doing, they find higher dimensional, rotating BS solutions.
More recently, Blazquez-Salcedo et al. (2019) construct boson and Dirac stars in
various dimensions and finds a mass gap in higher dimensions in which the family of
solutions does not connect to Minkowski space.

The axisymmetric rotating BSs discussed in Sect. 3.5 satisfy a coupled set of
nonlinear, elliptic PDEs in two dimensions. One might therefore suspect that adding
other dimensions will only make things more difficult. As it turns out, however,
moving to four spatial dimensions provides for another angular momentum,
independent of the one along the z-direction (for example). Each of these angular
momenta are associated with their own orthogonal plane of rotation. And so if one
chooses solutions with equal magnitudes for each of these momenta, the solutions
depend on only a single radial coordinate. This choice results in the remarkable
simplification that one need only solve ODEs to find rotating solutions (Kunz et al.
2006).

In Hartmann et al. (2010), they extend this idea by assuming an ansatz for two
complex scalar fields with equal magnitudes of angular momentum in the two
independent directions. Letting the complex doublet be denoted by @, the ansatz
takes the form

sin 0’1 > (95)

cos 0e'?2

b = ¢(r)eiwt (

in terms of the two angular coordinates ¢, and ¢@,. One observes that the BS
(i) retains a profile ¢(r), (ii) possesses harmonic time dependence, and (iii) maintains
single-valuedness in the two angles (the ansatz assumes a rotational quantum number
of one). They find solutions that are both globally regular and asymptotically flat but
these solutions appear only stable with weak gravitational coupling (Hartmann et al.
2010). Solutions have since been constructed in AdS; (Stotyn and Mann 2012;
Stotyn et al. 2014a), in higher odd-dimensional AdS spacetimes (Stotyn et al.
2014b), and in Gauss—Bonnet gravity (Henderson et al. 2015) (see Sect. 3.10 for BS
in alternative theories of gravity).

The work of Dias et al. (2011) makes ingenious use of this 5D ansatz to construct
rotating black holes with only a single Killing vector. They set the potential of
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Hartmann et al. (2010) to zero so that the scalar fields are massless and they add a
(negative) cosmological constant to work in anti-de Sitter (AdS). Some of their
solutions represent a black hole embedded inside a rotating BS. They find solutions
for rotating black holes in 5D AdS that correspond to a bar mode for rotating neutron
stars in 3D (see also Shibata and Yoshino 2010 for a numerical evolution of a black
hole in higher dimensions which demonstrates such bar formation; see Emparan and
Reall 2008 for a review of black holes in higher dimensions).

One might expect such a non-symmetric black hole to settle into a more
symmetric state via the emission of gravitational waves. However, AdS provides for
an essentially reflecting boundary in which the black hole can be in equilibrium. The
distortion of the higher dimensional black hole also has a correspondence with the
discrete values of the angular momentum of the corresponding boson star. For higher
values of the rotational quantum number, the black hole develops multiple “lobes”
about its center. Very compact BSs constructed with this single Killing vector posses
an ergoregion (Brihaye et al. 2015).

This construction can be extended to arbitrary odd-dimensional AdS spacetimes
(Stotyn et al. 2012). Finding the solutions perturbatively, they explicitly show that
these solutions approach (i) the boson star and (ii) the Myers—Perry black-hole
solutions in AdS (Myers and Perry 1986) in different limits. Boson stars, along with
neutron stars and black holes, in five dimensions are discussed in Brihaye and
Delsate (2016), and see Emparan and Reall (2008) for a review of black holes in
higher dimensions.

In AdS, this ansatz cannot be used, and the construction of spinning boson stars
requires the solution of the appropriate multidimensional PDEs as is done in Radu
and Subagyo (2012).

Interest in the dynamics of AdS spacetimes increased significantly with the work
of Bizon and Rostworowski (2011) who studied the collapse of a scalar field in
spherically symmetric, global AdS,. They argued that a non-zero initial amplitude for
the scalar field would generically result in gravitational collapse to black hole via
turbulent instability. In particular, fully nonlinear numerical evolutions of small
amplitude configurations of scalar field generically resulted in a continued
sharpening of the initial pulse as it reflected off the AdS boundary. This instability
in the bulk is considered the mechanism that achieves thermal equilibration in the
conformal theory on the boundary.

Many studies followed trying to answer the many questions arising from this
work. Did this instability extend to any initial amplitude? Was the instability tied to
the precise structure of AdS or instead simply to the fact that the spacetime was
bounded?

One question in particular concerned the implications of this instability for
localized solutions which might naturally be expected to extend their stability in
asymptotically flat spacetimes. To that end, Buchel et al. (2013) studied boson stars
in AdS, and found that indeed they are stable. In the course of understanding how the
boson stars were stable, this work found a whole class of initial data that appear
immune to the instability. Later work added to this class, namely breather solutions in
AdS (Fodor et al. 2015). Linear perturbation analysis of spherically symmetric Proca
stars in AdS suggests that these too will be stable (Duarte and Brito 2016).
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The authors of Dias et al. (2011) also report on the existence of geons in 341 AdS
“which can be viewed as gravitational analogs of boson stars” (Dias et al. 2012)
(recall that boson stars themselves arose from Wheeler’s desire to construct local
electrovacuum solutions). These bundles of gravitational energy are stable to first
order due to the confining boundary condition adopted with AdS. The instability of
these geons, black holes, and boson stars were studied in Dias et al. (2011) in the
context of the turbulent instability reported in Bizon and Rostworowski (2011), but
later these authors argued for their nonlinear stability (Dias et al. 2012).

Basu et al. (2010) also study black-hole solutions in 5D AdS. They find solutions
for black holes with scalar hair that resemble a boson star with a BH in its center. The
stability of charged boson stars with a massive scalar field in five-dimensional AdS
was studied in Brihaye et al. (2013). Also in AdSs, Buchel studies boson stars in a
type IIB supergravity approximation to string theory in which the U(1) symmetry of
the complex field is gauged instead of global (Buchel 2015; Buchel and Buchel
2015). A range of solutions, including Q-balls and shell solutions, for different values
of the cosmological constant have similarly been constructed (Hartmann et al. 2013a;
Hartmann and Riedel 2012, 2013).

Basu et al. (2010) also study black hole solutions in 5D AdS. They find solutions
for black holes with scalar hair that resemble a boson star with a BH in its center.

Earlier work with BSs in lower dimensional AdS was reported in Astefanesei and
Radu (2003).

Boson stars in AdS with charge are constructed in Hu et al. (2012) and in the large
charge limit by Guo et al. (2021). They are also used as the background for a study of
entanglement entropy (Nogueira 2013) (for a review of holographic entanglement
entropy see Rangamani and Takayanagi 2017). Charged boson stars with spin in AdS
have also been studied (Kichakova et al. 2014). See Gentle et al. (2012) for a review
of charged scalar solitons in AdS.

6.4 Analog gravity and physical systems

The study of the correspondence between gravitating systems and analogous physical
systems goes by the name of analog gravity (Barceld et al. 2011). One example of
such an analog is the acoustic or dumb hole, analogous to a black hole, that requires
information to flow in a particular direction. For such a system the analog of
Hawking radiation is expected, and, remarkably, such radiation may have already
been measured (Unruh 2014).

Analogs exist for BS as well. Recent work of Roger et al. (2016) finds an
interesting optical analog of Newtonian BSs. So far this analog appears to be mostly
associated with corresponding equations of motion as opposed to some deep physical
correspondence that might reveal critical insight.

A more concrete analog is the formation of a Bose—FEinstein condensate such as
studied in Kiihnel and Rampf (2014) in the context of superradiance (see Sect. 3.9).
However, note that as mentioned in Sect. 1.1, ground state BSs can be considered as
condensed states of bosons without invoking any analogy (Chavanis 2015; Chavanis
and Matos 2017).
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7 Open software

A number of codes and data sets are publicly available, and we collect some of them
here in the hopes of making their availability more widely known:

— Mathematica notebook and data file describing multipolar BSs from Vaglio et al.
(2022).°

— Mathematica notebook to integrate the differential equations to solve for scalar,
vector, and charged boson stars.®

— Tidal Love numbers for exotic compact objects (boson stars, gravastars,
wormholes, mirrors).’

— A general solver in Python for boson stars.®

—  Various files associated with boson stars in AdS.’

— AMR code evolving the Einstein—Klein—Gordon system in 3D without symme-
tries (setup to run a single BS).'”

— The C++ code used to construct rotating boson stars, as described in Ontanon
and Alcubierre (2021)."!

— Canuda, a public library built with the Einstein Toolkit that evolves scalar and
proca fields.'?

8 Final remarks

Boson stars have a long history as candidates for all manner of phenomena, from
fundamental particle, to galactic dark matter. A huge variety of solutions have been
found and their dynamics studied. Mathematically, BS are fascinating soliton-like
solutions. Astrophysically, they represent possible explanations of black hole
candidates and dark matter, with observations constraining BS properties.
Remarkably, in the five years between the first version (2012) of this review and
its first revision (2017), two incredibly significant experimental results have
appeared. The Higgs particle has been found by the LHC, the first scalar particle,
although its instability makes it less than promising as the fundamental constituent of
boson stars. Far from the quantum particle regime of the LHC, the LIGO-Virgo
collaboration directly detected gravitational waves in 2015, which were completely
consistent with the merger of a binary black hole system as predicted by general
relativity. Not only does this put an end to the nagging questions about whether
LIGO-Virgo can really detect such extremely weak signals, but, as said often in the

> https://bitbucket.org/paolopani_uniromal/repository gmunu/src/master/Boson_Star Multipoles

® https://centra.tecnico.ulisboa.pt/network/grit/files/boson-stars/

7 https://centra.tecnico.ulisboa.pt/network/grit/files/tidal-love-numbers/

& https://github.com/ThomasHelfer/BosonStar/blob/master/bosonstar/ComplexBosonStar.py

® https://github.com/hansbantilan/bstar
19 http://mhduet.liu.edu
" https://github.com/sontanon/ROTBOSON

12 https://doi.org/10.5281/zenodo.3565474
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wake of these detections, it opens a new window into some of the most energetic
events in the Universe.

At the time of this second revision (2022), the LIGO-Virgo-KAGRA collaboration
has directly detected almost a hundred mergers, consistent with the merger of
classical compact binaries (i.e., black holes and neutron stars). Although it is
impossible to predict what new phenomena will be observed, one can hope that
gravitational waves will further illuminate the nature of compact objects.

In the electromagnetic spectrum, the EHT has produced images of Sgr A* (2022)
and MS87 (2019), both consistent with their being supermassive black holes
surrounded by an accretion disk. Despite the tremendous achievement and beautiful
work by the EHT collaboration, the higher resolution needed to firmly establish the
existence of a horizon and definitively exclude a boson star awaits future work.

With all of this experimental and observational data, physicists need to provide
unambiguous tests and explicit predictions. Much work on that front is ongoing,
trying to tease out observational differences from alternative models of gravity or
alternatives to the standard compact objects (BHs and NSs) (Berti et al. 2016, 2015;
Choptuik et al. 2015). Black holes were once exotic and disbelieved, but now BHs
are the commonly accepted standard while BSs are proposed as just one of many
exotic compact objects.

Perhaps future work on boson stars will be experimental, if fundamental scalar
fields are observed, or if evidence arises indicating the boson stars uniquely fit
galactic dark matter. But regardless of any experimental results found by these
remarkable experiments, there will always be regimes unexplored by experiments
where boson stars will find a natural home.
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