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By a theorem of Johansson, every triangle-free graph G of 
maximum degree Δ has chromatic number at most (C +
o(1))Δ/ log Δ for some universal constant C > 0. Using 
the entropy compression method, Molloy proved that one 
can in fact take C = 1. Here we show that for every q �
(1 + o(1))Δ/ log Δ, the number c(G, q) of proper q-colorings 
of G satisfies

c(G, q) �
(

1 − 1
q

)m

((1 − o(1))q)n,

where n = |V (G)| and m = |E(G)|. Except for the o(1) term, 
this lower bound is best possible as witnessed by random Δ-
regular graphs. When q = (1 +o(1))Δ/ log Δ, our result yields 
the inequality

c(G, q) � exp
(

(1 − o(1))
log Δ

2
n

)
,

which improves an earlier bound of Iliopoulos and yields 
the optimal value for the constant factor in the exponent. 
Furthermore, this result implies the optimal lower bound 
on the number of independent sets in G due to Davies, 
Jenssen, Perkins, and Roberts. An important ingredient in 
our proof is the counting method that was recently developed 

E-mail addresses: bahtoh@gatech.edu (A. Bernshteyn), tbrazelton3@gatech.edu (T. Brazelton), 
rcao62@gatech.edu (R. Cao), kangakum@gatech.edu (A. Kang).

1 Research of the first named author is partially supported by the NSF grant DMS-2045412.
https://doi.org/10.1016/j.jctb.2023.02.004
0095-8956/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jctb.2023.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jctb.2023.02.004&domain=pdf
mailto:bahtoh@gatech.edu
mailto:tbrazelton3@gatech.edu
mailto:rcao62@gatech.edu
mailto:kangakum@gatech.edu
https://doi.org/10.1016/j.jctb.2023.02.004


A. Bernshteyn et al. / Journal of Combinatorial Theory, Series B 161 (2023) 86–108 87
by Rosenfeld. As a byproduct, we obtain an alternative 
proof of Molloy’s bound χ(G) � (1 + o(1))Δ/ log Δ using 
Rosenfeld’s method in place of entropy compression (other 
proofs of Molloy’s theorem using Rosenfeld’s technique were 
given independently by Hurley and Pirot and Martinsson).

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Counting colorings

All graphs in this paper are finite, undirected, and simple. A celebrated theorem 
of Johansson [19] says that every triangle-free graph G of maximum degree Δ satisfies 
χ(G) � (C +o(1))Δ/ log Δ for some universal constant C > 0. (Here and throughout the 
paper, o(1) indicates a function of Δ that approaches 0 as Δ → ∞.) The best currently 
known value for the constant C is given by the following result of Molloy:

Theorem 1.1 (Molloy [23]). If G is a triangle-free graph of maximum degree Δ, then

χ(G) � (1 + o(1)) Δ
log Δ .

In this paper we establish a lower bound on the number c(G, q) of proper q-colorings 
of G when q � (1 + o(1))Δ/ log Δ (i.e., when G is q-colorable by Theorem 1.1). Here is 
our main result:

Theorem 1.2. For each ε > 0, there is Δ0 ∈ N such that the following holds. Let G

be a triangle-free graph of maximum degree at most Δ � Δ0. Then, for every q �
(1 + ε)Δ/ log Δ, we have

c(G, q) �
(

1 − 1
q

)m

((1 − δ)q)n, (1.1)

where n = |V (G)|, m = |E(G)|, and δ = 4 exp(Δ/q)/q.

It was shown by Csikvári and Lin [9, Corollary 1.2] that if G is bipartite, i.e., G has 
no odd cycles, then c(G, q) � (1 − 1/q)mqn for all q � 1 (this is a special case of the 
so-called Sidorenko conjecture on the number of homomorphisms from a bipartite graph 
G to a fixed graph H [29]). Our result asserts that approximately the same lower bound 
holds for triangle-free graphs G, under the assumption that q � (1 + o(1))Δ/ log Δ.

The bound in Theorem 1.2 has a natural probabilistic interpretation. Suppose G is 
a graph with n vertices and m edges. If we assign a color from [q] := {1, . . . , q} to each 
vertex of G independently and uniformly at random, what is the probability p(G, q)
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that the resulting q-coloring is proper? This problem is equivalent to computing c(G, q)
since p(G, q) = c(G, q)/qn. For each edge e ∈ E(G), let De be the random event that the 
endpoints of e get distinct colors. Then P [De] = 1 −1/q, so if the events (De : e ∈ E(G))
were mutually independent, we would have

p(G, q) =
(

1 − 1
q

)m

, or, equivalently, c(G, q) =
(

1 − 1
q

)m

qn.

Theorem 1.2 says that when G is triangle-free and q � (1 + ε)Δ/ log Δ, the actual 
value of c(G, q) is not too much smaller than this “naive” bound. Notice that, since 
q � (1 + ε)Δ/ log Δ,

δ = 4 · exp(Δ/q)
q

� 4
1 + ε

· log Δ · Δ− ε
1+ε = o(1),

which enables us to treat the factor 1 − δ in (1.1) as an error term. (On the other hand, 
below the Δ/ log Δ threshold, i.e., for q < Δ/ log Δ, the value δ tends to infinity as a 
function of Δ.)

It is natural to wonder how sharp our lower bound on c(G, q) is. We show that it is 
optimal (modulo the error term 1 − δ) for all values of Δ and q:

Theorem 1.3. Fix positive integers Δ and q. For every sufficiently large n ∈ N such that 
Δn is even, there exists a triangle-free Δ-regular graph G with

c(G, q) �
(

1 − 1
q

)m

((1 + γ)q)n, (1.2)

where n = |V (G)|, m = |E(G)| = Δn/2, and γ = 2 log n/n.

We prove Theorem 1.3 in §4 by showing that the bound (1.2) holds for the random 
Δ-regular graph with high probability.

Let us now explore some of the consequences that can be derived from Theorem 1.2
by applying it to specific values of q. Perhaps the most natural regime to consider is 
when q is close to Δ/ log Δ, i.e., when q = (1 + ε)Δ/ log Δ for a small constant ε > 0. 
Iliopoulos [18, Theorem 1.2] showed that in this case c(G, q) is exponentially large in n, 
i.e., c(G, q) � ean for some constant a > 0 that only depends on ε and Δ. Specifically, 
Iliopoulos’s calculations yield the value of order a = Θ(ε/ log Δ). Using Theorem 1.2, 
we obtain the optimal value for the constant factor in the exponent, namely a = (1 +
ε/(1 + ε) − o(1)) log Δ/2, which significantly improves Iliopoulos’s result (the optimality 
follows from Theorem 1.3):

Corollary 1.4. The following holds for each ε > 0. Let G be an n-vertex triangle-free 
graph of maximum degree at most Δ. If q � (1 + ε)Δ/ log Δ, then
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c(G, q) � exp
((

1 + ε

1 + ε
− o(1)

)
log Δ

2
n

)
.

Proof. A direct calculation using (1.1) and the bounds q � (1 + ε)Δ/ log Δ and m �
Δn/2. (We are using that log(1 + x) ∼ x for real x → 0.) �

A curious consequence of Corollary 1.4 is the optimal lower bound on the number of 
independent sets in triangle-free graphs due to Davies, Jenssen, Perkins, Roberts:

Corollary 1.5 (Davies–Jenssen–Perkins–Roberts [10, Theorem 2]). Let G be an n-vertex 
triangle-free graph of maximum degree at most Δ. Then

i(G) � exp
(

(1 − o(1)) log2 Δ
2Δ n

)
,

where i(G) denotes the number of independent sets in G.

Proof. Fix any ε > 0 and set q := (1 + ε)Δ/ log Δ. Since a proper q-coloring of G is 
a sequence of q independent sets in G that partition V (G), we have c(G, q) � i(G)q. 
Therefore, by Corollary 1.4,

i(G) � c(G, q)1/q � exp
((

1 − ε2

(1 + ε)2 − o(1)
)

log2 Δ
2Δ n

)
.

As ε can be taken arbitrarily small, the desired result follows. �
We find it intriguing that the crude way of bounding the number of colorings by 

counting independent sets employed in the above proof of Corollary 1.5 actually yields 
the optimal result (modulo the lower order term in the exponent).

Theorem 1.2 also has interesting consequences for larger values of q, e.g., for q = Δ +1:

Corollary 1.6. Let G be an n-vertex triangle-free graph of maximum degree at most Δ. 
Then

c(G, Δ + 1) �
(

Δ√
e

− O(1)
)n

.

Proof. Follows by substituting Δ + 1 for q in (1.1) and using the bound m � Δn/2. �
Even though every graph of maximum degree Δ is (Δ + 1)-colorable, the conclusion 

of Corollary 1.6 may fail for graphs that are not triangle-free. For instance, if G is a 
disjoint union of n/(Δ +1) cliques of size Δ +1, then, using Stirling’s formula, we obtain

c(G, Δ + 1) = ((Δ + 1)!)n/(Δ+1) =
(

Δ
e

+ o(Δ)
)n

,

which is less than the bound in Corollary 1.6 roughly by a factor of 
√

e
n.
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1.2. Counting DP-colorings

Molloy proved his Theorem 1.1 not just for the ordinary chromatic number χ(G), but 
also for the list-chromatic number χ�(G). In fact, as shown in [3], the same upper bound 
holds in the more general setting of DP-coloring (also known as correspondence coloring), 
introduced by Dvořák and Postle [14]. Recall that in the context of list-coloring, each 
vertex v of a graph G is given its own list L(v) of colors to choose from, and the goal 
is to find a proper L-coloring of G, i.e., a mapping f such that f(v) ∈ L(v) for all 
v ∈ V (G) and f(u) �= f(v) whenever uv ∈ E(G). (Ordinary coloring is a special case of 
this when all lists are the same.) DP-coloring further generalizes list-coloring by allowing 
the identifications between the colors in the lists to vary from edge to edge. Formally, 
DP-coloring is defined using an auxiliary graph called a DP-cover :

Definition 1.7. A DP-cover of a graph G is a pair H = (L, H), where H is a graph 
and L is an assignment of subsets L(v) ⊆ V (H) to the vertices v ∈ V (G) satisfying the 
following conditions:

• The family of sets (L(v) : v ∈ V (G)) is a partition of V (H).
• For each v ∈ V (G), L(v) is an independent set in H.
• For u, v ∈ V (G), the edges of H between L(u) and L(v) form a matching; this 

matching is empty whenever uv /∈ E(G).

We call the vertices of H colors. For α ∈ V (H), we let vα denote the underlying vertex
of α in G, i.e., the unique vertex v ∈ V (G) such that α ∈ L(v). If two colors α, β ∈ V (H)
are adjacent in H, we say that they correspond to each other and write α ∼ β.

An H-coloring is a mapping f : V (G) → V (H) such that f(v) ∈ L(v) for all v ∈ V (G). 
Similarly, a partial H-coloring is a partial map f : V (G) ��� V (H) such that f(v) ∈ L(v)
for all v ∈ dom(f). A (partial) H-coloring f is proper if the image of f is an independent 
set in H, i.e., if f(u) � f(v) for all u, v ∈ dom(f).

A DP-cover H = (L, H) is q-fold for some q ∈ N if |L(v)| = q for all v ∈ V (G). The
DP-chromatic number of G, denoted by χDP (G), is the smallest q such that G admits 
a proper H-coloring with respect to every q-fold DP-cover H.

To see that list-coloring is a special case of DP-coloring, consider the following con-
struction. Suppose that each vertex v of a graph G is given a list L(v) of colors to choose 
from. Define

L′(v) := {(v, α) : α ∈ L(v)}

(thus, the sets L′(v) for different vertices v are disjoint) and let H be the graph with 
vertex set

V (H) := {(v, α) : v ∈ V (G), α ∈ L(v)}
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in which vertices (v, α) and (u, β) are adjacent if and only if uv ∈ E(G) and α = β. 
Then H := (H, L′) is a DP-cover of G and there is a natural one-to-one correspondence 
between the proper L-colorings and the proper H-colorings of G.

We prove the following generalization of Theorem 1.2:

Theorem 1.8. For each ε > 0, there is Δ0 ∈ N such that the following holds. Let G be a 
triangle-free graph of maximum degree at most Δ � Δ0. Then, for all q � (1 +ε)Δ/ log Δ
and every q-fold DP-cover H of G, the number of proper H-colorings of G is at least

(
1 − 1

q

)m

((1 − δ)q)n,

where n = |V (G)|, m = |E(G)|, and δ = 4 exp(Δ/q)/q.

The problem of counting DP-colorings was studied by Kaul and Mudrock in [20], 
where they introduced the DP-color function PDP (G, q). By definition, PDP (G, q) is the 
minimum number of proper H-colorings of G taken over all q-fold covers H of G. Using 
this terminology, we can say that Theorem 1.8 provides a lower bound on PDP (G, q) for 
triangle-free graphs G of maximum degree Δ when q � (1 + o(1))Δ/ log Δ.

An interesting feature of the lower bound given by Theorem 1.8 is that it is sharp
(modulo the error term 1 − δ) for every graph G, as was shown by Kaul and Mudrock:

Theorem 1.9 (Kaul–Mudrock [20, Proposition 16]). For every graph G with n vertices 
and m edges and every q � 1, there is a q-fold DP-cover H of G such that the number 
of proper H-colorings of G is at most (1 − 1/q)mqn.

1.3. Overview of the proof

In this subsection we outline the key ideas that go into the proofs of our main results. 
For simplicity, we shall focus on Theorem 1.2; the more general argument needed to 
establish Theorem 1.8 in the DP-coloring setting is virtually the same, except for a few 
minor technical changes.

Let G be a triangle-free graph of maximum degree at most Δ and let q � (1 +
ε)Δ/ log Δ. Our approach is inspired by Molloy’s proof of the bound χ(G) � q (i.e., of 
Theorem 1.1). To explain Molloy’s strategy, we need to introduce some notation and 
terminology. Let f : V (G) ��� [q] be a proper partial q-coloring of G. For each vertex 
v ∈ V (G), we let Lf (v) be the set of all colors α ∈ [q] such that no neighbor of v is 
colored α. Also, for α ∈ [q], let degf (α, v) be the number of uncolored neighbors u of v
such that α ∈ Lf (u). Define the following numerical parameters:

� := q

2 exp(Δ/q) and d := q

50 exp(Δ/q) .

The partial coloring f is good if it satisfies the following two conditions:
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• for every uncolored vertex v, |Lf (v)| � �; and
• for every uncolored vertex v and α ∈ Lf (v), degf (α, v) � d.

In order to find a proper q-coloring of G, Molloy establishes two auxiliary results:

(M1) G admits a good proper partial q-coloring.
(M2) Every good partial coloring can be extended to a proper q-coloring of the entire 

graph G.

Statement (M2) is proved using the Lovász Local Lemma and is by now standard (its first 
appearance is in the paper [27] by Reed; see also [24, §4.1] for a textbook treatment). On 
the other hand, Molloy’s proof of (M1) was highly original and combined several novel 
ideas. In particular, it relied on a technique introduced by Moser and Tardos in [25] and 
called the entropy compression method (the name is due to Tao [30]). Initially designed 
as a means to establish an algorithmic version of the Lovász Local Lemma, entropy 
compression has by now become an invaluable tool in the study of graph coloring; see, 
e.g., [15,6,13] for a sample of its applications. An alternative approach—with the so-called 
Lopsided Lovász Local Lemma taking the place of entropy compression—was developed 
by the first named author in [3]. The ideas of [23] and [3] have been pursued further by 
a number of researchers in order to strengthen and extend Theorem 1.1 in various ways 
[5,11,12].

Very recently, Rosenfeld [28] discovered a remarkably simple new technique that can 
be used as a substitute for entropy compression. A number of applications of Rosenfeld’s 
method to (hyper)graph coloring appear in the paper [31] by Wanless and Wood, which 
also describes a general framework for applying Rosenfeld’s technique to coloring prob-
lems. One benefit of Rosenfeld’s approach (in addition to its simplicity) is that it not only 
proves the existence of an object with certain properties (such as a coloring), but also 
gives a lower bound on the number of such objects. This makes it particularly well-suited 
for our purposes. As a byproduct of our proof of Theorem 1.2, we obtain a new simple 
proof of (M1) (and hence of Molloy’s Theorem 1.1) using Rosenfeld’s technique in lieu 
of entropy compression or the Lopsided Lovász Local Lemma. We should remark that 
entropy compression-style arguments can also be used to obtain counting results (this 
is the approach taken by Iliopoulos in [18]), and it is quite likely that bounds similar or 
even equivalent to ours can be established by other methods. However, we found that 
Rosenfeld’s technique works especially well for this problem, and we believe that this 
application of inductive counting to graph coloring is interesting in its own right. We 
also note that a different proof of Molloy’s theorem using Rosenfeld’s method was given 
in [17] by Hurley and Pirot and simplified by Martinsson [21] (their work was carried 
out independently from ours).

Let us now describe the main steps in our argument in more detail.
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(1) Besides the use of the entropy compression method, Molloy’s proof of (M1) involved 
another novel ingredient, namely a version of the coupon-collector theorem for el-
ements drawn uniformly at random from sets of varying sizes [23, Lemma 7]. Our 
proof uses this result as well. In fact, we need a slightly stronger version of it, because 
in our setting q may be significantly larger than (1 +ε)Δ/ log Δ and because we need 
the error bounds to be more precise. We state and prove this strengthening in §3.2.

(2) Next, in §3.3, we give a lower bound on the number of proper partial colorings of 
G. This is done via an analysis of the greedy coloring algorithm. That is, we color 
the vertices of G one by one, where each next vertex is either left uncolored or 
assigned an arbitrary color that has not yet been used by any of its neighbors. Using 
the coupon-collector result from §3.2, we argue that, on average, each vertex will 
have many available colors to choose from, which yields the desired lower bound on 
the total number of proper partial colorings. The bound we obtain here is already 
sufficient to deduce the lower bound on the number of independent sets in G given 
by Corollary 1.5.

(3) In §3.4 we use a version of Rosenfeld’s method to argue that a fairly large fraction 
of all proper partial colorings of G are good (in particular, a good coloring exists). 
Combined with the result in §3.3, this yields a lower bound on the number of good 
colorings.

(4) As mentioned earlier, a simple application of the Lovász Local Lemma shows that 
every good partial coloring f can be extended to a proper coloring of G. We need 
to know not only that such an extension exists, but also how many such extensions 
there are. Thankfully, the Lovász Local Lemma can be used to derive an explicit 
lower bound on the probability that a random extension of f is proper, which can be 
translated into a lower bound on the number of such extensions. This is accomplished 
in §3.5.

(5) Finally, in §3.6, we combine all the above results to derive a lower bound on the 
number of proper colorings of G. Some care has to be taken because the same 
proper coloring of G may arise as an extension of several good partial colorings. 
Nevertheless, we are able to use a double counting argument to account for this and 
obtain the desired result. Curiously, the double counting at this stage is the main 
contributor to the error term 1 − δ in the statement of Theorems 1.2 and 1.8.

2. Probabilistic preliminaries

The following is a standard form of the Chernoff inequality:

Lemma 2.1 ([22, Theorem 2.3(b)]). Suppose that X1, . . . , Xn are independent random 
variables with 0 � Xi � 1 for each i. Let X :=

∑n
i=1 Xi. Then, for any s > 0,

P [X � (1 + s)E[X]] � exp
(

− s2E[X]
)

.
2(1 + s/3)
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We also need a version of the Chernoff bound for negatively correlated random vari-
ables, introduced by Panconesi and Srinivasan [26]. We say that {0, 1}-valued random 
variables X1, . . . , Xm are negatively correlated if for all I ⊆ {1, 2, . . . , m},

P

[⋂
i∈I

{Xi = 1}
]

�
∏
i∈I

P [Xi = 1] .

Lemma 2.2 ([26, Theorem 3.2], [23, Lemma 3]). Let X1, . . . , Xm be {0, 1}-valued random 
variables. Set Yi := 1 − Xi and X :=

∑m
i=1 Xi. If Y1, . . . , Ym are negatively correlated, 

then

P [X < E[X] − t] < exp
(

− t2

2E[X]

)
.

We shall use the Lovász Local Lemma in the following quantitative form:

Lemma 2.3 ([1, Lemma 5.1.1]). Let A be a finite set of random events. For each A ∈ A, 
let Γ(A) be a subset of A \ {A} such that A is mutually independent from the events in 
A \ (Γ(A) ∪ {A}). If there exists an assignment of reals x : A → [0, 1) to the events such 
that

∀A ∈ A : P [A] � x(A)
∏

B∈Γ(A)

(1 − x(B)),

then the probability that no event in A happens is at least 
∏

A∈A(1 − x(A)).

More specifically, we will need the following consequence of Lemma 2.3:

Corollary 2.4 (Quantitative Symmetric Lovász Local Lemma). Let A be a finite set of 
random events. For each A ∈ A, let Γ(A) be a subset of A \ {A} such that A is mutually 
independent from the events in A \ (Γ(A) ∪ {A}). Suppose that for all A ∈ A, P [A] � p

and |Γ(A)| � D, where p ∈ [0, 1) and D ∈ N. If ep(D + 1) � 1, then

P

[ ⋂
A∈A

A

]
�

(
1 − 1

D + 1

)|A|
.

Proof. Take x(A) = 1/(D + 1) in the statement of Lemma 2.3. �
3. Proof of Theorem 1.8

3.1. Standing assumptions and notation

Throughout §3, we fix the following data:
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• a real number 0 < ε < 1;
• an integer Δ, assumed to be large enough as a function of ε;
• an integer q satisfying q � (1 + ε)Δ/ log Δ;
• a triangle-free graph G of maximum degree at most Δ with n vertices and m edges;
• a q-fold DP-cover H = (L, H) of G.

As mentioned in §1.3, we also define

� := q

2 exp(Δ/q) and d := q

50 exp(Δ/q) .

The neighborhood N(v) of a vertex v ∈ V (G) is the set of all neighbors of v in G. The
closed neighborhood of v is the set N [v] := N(v) ∪ {v}, and the second neighborhood
N2[v] is the set of all vertices at distance at most 2 from v. For a subset U ⊆ V (G), we 
write NU (v) := N(v) ∩ U and degU (v) := |NU (v)|. Given α ∈ V (H), the notation N(α), 
N [α], etc. is defined analogously but with respect to the graph H instead of G. For a set 
U ⊆ V (G) and a vertex x ∈ V (G) \ U , we use U + x to denote the set U ∪ {x}.

When f is a partial function and f(x) is undefined for some element x, we write 
f(x) = blank. Given a partial H-coloring f of G and v ∈ V (G), we let

Lf (v) := {α ∈ L(v) : N(α) ∩ im(f) = ∅}.

Also, for each α ∈ V (H), we let

degf (α) := |{β ∈ N(α) : f(vβ) = blank and β ∈ Lf (vβ)}|.

(Recall that vβ ∈ V (G) here is the underlying vertex of the color β.)

3.2. A coupon-collector lemma

In this subsection, we establish a version of the coupon-collector theorem that slightly 
generalizes [23, Lemma 7] by Molloy. Our argument closely follows Molloy’s proof.

Lemma 3.1 (Coupon-collector). Let L0, L1, . . . , Lk be finite sets, where k � Δ and |L0| =
q (there are no assumptions on |Li| for i ∈ [k]). For each i ∈ [k], let Mi be a matching 
between L0 and Li. For every i ∈ [k], pick an element f(i) uniformly at random from 
Li ∪ {blank}, making the choices for different i independently. This defines a random 
partial function on the set [k]. Let

L′
0 := {α ∈ L0 : α is not matched to any f(i)},

and, for each α ∈ L0, let

deg′(α) := |{i ∈ [k] : f(i) = blank and α is matched to some β ∈ Li}|.
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Then the following statements are valid:

(a) E[|L′
0|] � q

exp(k/q) � 2�.

(b) P [|L′
0| < �] < exp

(
− 1

8qε/2)
.

(c) P
[
∃α ∈ L′

0(v) such that deg′(α) > d
]

< exp
(
− 1

300 qε/2)
.

Proof. Without loss of generality, we may assume that Li �= ∅ for all i ∈ [k]. For each 
α ∈ L0, let Nα be the set of all indices i ∈ [k] such that α is matched to some β ∈ Li. 
Define a quantity ρ(α) by

ρ(α) :=
∑

i∈Nα

1
|Li|

.

Observe that, since each Mi is a matching,

∑
α∈L0

ρ(α) �
k∑

i=1

∑
β∈Li

1
|Li|

= k. (3.1)

Notice also that, since q � (1 + ε)Δ/ log Δ, for large enough Δ we have

q

exp(Δ/q) � q Δ− 1
1+ε � qε/2. (3.2)

(a) Using the inequality 1 − 1/(x + 1) � exp(−1/x) valid for all x > 0, we obtain

E [|L′
0|] =

∑
α∈L0

∏
i∈Nα

(
1 − 1

|Li| + 1

)
�

∑
α∈L0

exp(−ρ(α)). (3.3)

Applying Jensen’s inequality to (3.3) and using (3.1), we get

E [|L′
0|] � q exp

(
−k

q

)
,

as desired. Note that, since k � Δ, we also have q/ exp(k/q) � q/ exp(Δ/q) = 2�.
(b) For α ∈ L0, let Xα be the indicator random variable of the event {α ∈ L′

0} and 
let Yα := 1 − Xα. We claim that the random variables (Yα : α ∈ L0) are negatively 
correlated:

Claim 3.1.a. For any I ⊆ L0, P
[⋂

α∈I{Yα = 1}
]
�

∏
α∈I P [Yα = 1].

Proof of Claim 3.1.a. We first notice that for any I ⊆ L0 and α′ ∈ L0 \ I,

P

[ ⋂
{Yα = 1}

∣∣∣∣∣ Xα′ = 1
]

� P

[ ⋂
{Yα = 1}

]
. (3.4)
α∈I α∈I
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To see this, for each i ∈ [k] and α ∈ L0, let Li,α be the set of all elements β ∈ Li such 
that αβ ∈ Mi (so Li,α contains at most one element). To sample f conditioned on the 
event Xα′ = 1, we pick each f(i) uniformly at random from (Li \ Li,α′) ∪ {blank}. As 
Li,α′ ∩ Li,α = ∅ for all α ∈ I and i ∈ [k], the removal of Li,α′ from Li does not decrease 
the probability that for each α ∈ I, there is i ∈ [k] with f(i) ∈ Li,α, so (3.4) holds. Now, 
expanding the left hand side of (3.4), we see that it is equivalent to

1 − P

[
Xα′ = 1

∣∣∣∣∣
⋂
α∈I

{Yα = 1}
]
� 1 − P [Xα′ = 1]

Since {Xα′ = 1} and {Yα′ = 1} are complementary events, we see that (3.4) is equivalent 
to

P

[
Yα′ = 1

∣∣∣∣∣
⋂
α∈I

{Yα = 1}
]

� P [Yα′ = 1] (3.5)

Applying (3.5) inductively establishes the claim. 


Recalling that E[|L′
0|] � 2� = q/ exp(Δ/q), using Lemma 2.2, and invoking (3.2), we 

obtain

P [|L′
0| < �] � P

[
|L′

0| <
1
2E[|L′

0|]
]

< exp
(

−E [|L′
0|]

8

)
� exp

(
−qε/2

8

)
.

(c) Consider any α ∈ L0. We will bound P [α ∈ L′
0] by considering two cases depending 

on whether ρ(α) � d/2 or ρ(α) < d/2. If ρ(α) � d/2, then, using the inequality 1 −1/(x +
1) � exp(−1/(2x)) valid for all x � 1, we can write

P [α ∈ L′
0] =

∏
i∈Nα

(
1 − 1

|Li| + 1

)
� exp

(
−ρ(α)

2

)
� exp

(
−d

4

)
� exp

(
−qε/2

200

)
.

(3.6)
If, on the other hand, ρ(α) < d/2, then

E
[
deg′(α)

]
=

∑
i∈Nα

1
|Li| + 1 � ρ(α) <

d

2 .

Since the values f(i) for distinct i are chosen independently, we may apply Lemma 2.1
to get

P
[
deg′(α) � (1 + s)E[deg′(α)]

]
� exp

(
−s2E[deg′(α)]

2(1 + s/3)

)
,

for any s > 0. We may assume E[deg′(α)] > 0 (otherwise deg′(α) = 0 with probability 
1) and plug in the value s = d/(2E[deg′(α)]), which yields
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P
[
deg′(α) > d

]
� P

[
deg′(α) � E

[
deg′(α)

]
+ d/2

]
� exp

(
−3d

16

)
� exp

(
−3qε/2

800

)
.

(3.7)
Since 3/800 < 1/200, it follows from (3.6) and (3.7) that for all α ∈ L0,

P
[
α ∈ L′

0 and deg′(α) > d
]
� min

{
P [α ∈ L′

0] , P
[
deg′(α) > d

]}

� exp
(

−3qε/2

800

)
.

Therefore, we may conclude that

P
[
∃α ∈ Lf (v) such that deg′(α) > d

]
� q exp

(
−3qε/2

800

)
< exp

(
−qε/2

300

)
,

assuming Δ is large enough. �
3.3. Counting partial colorings

Let Cp(G) denote the set of all proper partial H-colorings of G. Also, for a subset 
U ⊆ V (G), let Cp(U) be the set of all proper partial H-colorings f ∈ Cp(G) with 
dom(f) ⊆ U . In this subsection we establish a lower bound on |Cp(G)|. We start with a 
lemma:

Lemma 3.2. Suppose that U ⊆ V (G) and x ∈ V (G) \ U . Then

|Cp(U + x)| � q exp
(

−degU (x)
q

)
|Cp(U)|.

Proof. To begin with, observe that

|Cp(U + x)| =
∑

f∈Cp(U)

(|Lf (x)| + 1) �
∑

f∈Cp(U)

|Lf (x)|, (3.8)

since given a partial coloring f : U ��� V (H), we can extend it to U + x by assigning 
to x an arbitrary color from Lf (x) ∪ {blank}. To get a lower bound on the right-hand 
side of (3.8), we shall use Lemma 3.1. For a proper partial H-coloring g : U \ NU (x) ���
V (H), let ExtU (g) denote the set of all extensions of g to U , i.e., all proper partial H-
colorings f : U ��� V (H) that agree with g on U \ NU (x). Since G is triangle-free, a 
coloring f ∈ ExtU (g) is obtained by assigning to each y ∈ NU (x) an arbitrary color from 
Lg(y) ∪ {blank}. Therefore, we may apply Lemma 3.1(a) with k = degU (x) and the sets 
L(x) and (Lg(y) : y ∈ NU (x)) playing the role of L0, L1, . . . , Lk to conclude that

∑
f∈ExtU (g) |Lf (x)|

� q exp
(

−degU (x)
)

.
|ExtU (g)| q
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Now we can write

∑
f∈Cp(U)

|Lf (x)| =
∑

g∈Cp(U\NU (x))

∑
f∈ExtU (g)

|Lf (x)|

=
∑

g∈Cp(U\NU (x))

|ExtU (g)| ·
∑

f∈ExtU (g) |Lf (x)|
|ExtU (g)|

� q exp
(

−degU (x)
q

) ∑
g∈Cp(U\NU (x))

|ExtU (g)|

= q exp
(

−degU (x)
q

)
|Cp(U)|.

Combining this with (3.8) yields the desired result. �
Corollary 3.3 (Counting partial colorings). We have

|Cp(G)| �
(

1 − 1
q

)m

qn.

Proof. Let x1, . . . , xn be an arbitrary ordering of the vertices of G. Since, by definition, 
|Cp(∅)| = 1, repeated applications of Lemma 3.2 yield

|Cp(G)| � qn
n∏

k=1

exp
(

−
deg{x1,...,xk−1}(xk)

q

)

= qn exp
(

−1
q

n∑
k=1

deg{x1,...,xk−1}(xk)
)

= qn exp
(

−m

q

)
�

(
1 − 1

q

)m

qn. �
As mentioned in the introduction, Corollary 3.3 can already be used to derive the 

lower bound on the number of independent sets in G given by Corollary 1.5.

3.4. Counting good partial colorings

Let f ∈ Cp(G) be a proper partial H-coloring of G. We say that f has a flaw at a 
vertex v ∈ V (G) if f(v) = blank and at least one of the following holds:

• |Lf (v)| < �, or
• degf (α) > d for some α ∈ Lf (v).
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Let Flaw(f) be the set of all vertices v ∈ V (G) such that f has a flaw at v. If Flaw(f) = ∅, 
we say that f is good. The set of all good partial H-colorings of G is denoted by Cg(G). 
Our goal in this subsection is to establish a lower bound on |Cg(G)|.

Given a subset U ⊆ V (G), we say that a partial H-coloring f ∈ Cp(G) is good on U
if v /∈ Flaw(f) for every vertex v such that N2[v] ⊆ U . Let Cg(U) denote the set of all 
f ∈ Cp(G) that are good on U . We emphasize that a coloring f ∈ Cg(U) is not required 
to belong to Cp(U), i.e., the domain of f may not be a subset of U . However, whether 
or not f is good on U only depends on the restriction of f to U (because whether or 
not f has a flaw at v is determined by the restriction of f to N2[v]). Since every proper 
partial H-coloring is vacuously good on the empty set, we have

Cg(∅) = Cp(G).

Lemma 3.4. Suppose that U ⊆ V (G) and x ∈ V (G) \ U . Then

|Cg(U + x)| �
(

1 − exp
(

−qε/2

600

))
|Cg(U)|. (3.9)

Proof. This is an inductive argument in the style of Rosenfeld [28]. Note, however, that 
our application of Rosenfeld’s method is somewhat different from the ones in [28,31]. 
Namely, we do not show that |Cg(U +x)| grows by a certain factor compared to |Cg(U)|, 
but rather that it does not shrink too much. This difference appears crucial for our 
approach. We remark that in [17], Hurley and Pirot prove Molloy’s bound χ(G) � (1 +
o(1))Δ/ log Δ using a more “standard” version of Rosenfeld’s technique (their argument 
does not refer to good partial colorings at all). The Hurley–Pirot approach was further 
simplified by Martinsson in [21].

We proceed by induction on |U |. So, fix U ⊆ V (G) and suppose that (3.9) holds when 
U is replaced by any set of strictly smaller cardinality. Let F be the set of all f ∈ Cp(G)
such that f is good on U but not on U + x. Then

|Cg(U + x)| = |Cg(U)| − |F|.

For each u ∈ V (G), define Fu := {f ∈ F : f has a flaw at u}. If f ∈ F , then there must 
be a vertex u ∈ Flaw(f) such that N2[u] ⊆ U + x. Since N2[u] � U , this implies that 
u ∈ N2[x], and hence

|F| �
∑

u∈N2[x]

|Fu|.

We will give an upper bound for |Fu| for each u ∈ N2[x].

Claim 3.4.a. Set η := exp
(
−qε/2/600

)
and p := exp

(
−qε/2/400

)
. Then, for every u ∈

N2[x],
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|Fu| � p|Cg(U)|
(1 − η)Δ .

Proof of Claim 3.4.a. Let S be the set of all proper partial H-colorings g : V (G) \
N(u) ��� V (H) that are good on U \ N(u) such that g(u) = blank. For each g ∈ S, 
let Ext(g) be the set of all extensions of g, i.e., all proper partial H-colorings of G that 
agree with g on V (G) \ N(u). Also, let FlawedExt(g) be the set of all f ∈ Ext(g) that 
have a flaw at u. Since G is triangle-free, a coloring f ∈ Ext(g) is obtained by assigning 
to each vertex y ∈ N(u) an arbitrary color from Lg(y) ∪{blank}. Thus, we may use parts 
(b) and (c) of Lemma 3.1 with k = deg(u) and the sets L(u) and (Lg(y) : y ∈ N(u))
playing the role of L0, L1, . . . , Lk to conclude that

|FlawedExt(g)|
|Ext(g)| � exp

(
−qε/2

8

)
+ exp

(
−qε/2

300

)
� p.

Note that if g ∈ S and f ∈ Ext(g), then f is good on U \ N(u). Therefore,

|Fu| �
∑
g∈S

|FlawedExt(g)| � p
∑
g∈S

|Ext(g)| � p |Cg(U \ N(u))|. (3.10)

Repeated applications of the inductive hypothesis show that

|Cg(U)| � (1 − η)Δ |Cg(U \ N(u))|.

Together with (3.10), this yields the desired bound on |Fu|. 


Putting the above bounds together, we see that

|Cg(U + x)| � |Cg(U)| −
∑

u∈N2[x]

|Fu|

� |Cg(U)| − (Δ2 + 1) · p

(1 − η)Δ · |Cg(U)|

=
(

1 − p(Δ2 + 1)
(1 − η)Δ

)
|Cg(U)|

� (1 − η) |Cg(U)|,

where the last inequality holds for Δ large enough. �
Keeping every vertex blank provides an example of a proper partial H-coloring of G, 

so Cg(∅) = Cp(G) �= ∅. Therefore, applying Lemma 3.4 repeatedly gives

|Cg(G)| �
(

1 − exp
(

−qε/2 ))n

> 0,
600
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which means that there must exist at least one good coloring of G. As mentioned in §1.3, 
an application of the Lovász Local Lemma shows that every good partial coloring can 
be extended to a proper coloring of the entire graph G, and thus G is H-colorable. Using 
Corollary 3.3 yields a better lower bound on |Cg(G)|:

Corollary 3.5 (Counting good partial colorings). We have

|Cg(G)| �
(

1 − exp
(

−qε/2

600

))n (
1 − 1

q

)m

qn.

Proof. Use Corollary 3.3 and apply Lemma 3.4 n times. �
3.5. Completing a good coloring

For each g ∈ Cg(G), let Comp(g) be the set of all proper H-colorings f : V (G) → V (H)
that complete g, meaning that f(v) = g(v) whenever g(v) �= blank.

Lemma 3.6 (Completing a good coloring). Let g ∈ Cg(G) be a coloring with k blank 
vertices. Then

|Comp(g)| �
(

�

2

)k

.

Proof. We will apply the Quantitative Local Lemma (Corollary 2.4) to obtain a lower 
bound on |Comp(g)|. Set �′ := ���. By removing some colors from L(v) for each v ∈ V (G)
if necessary, we may arrange that |Lg(v)| = �′ for every blank vertex v. Now we assign 
to each blank vertex v a color from Lg(v) uniformly at random. Let f be the resulting 
coloring of G.

Say that an edge αβ ∈ E(H) is dangerous if g(vα) = g(vβ) = blank and α ∈ Lg(vα), 
β ∈ Lg(vβ), where vα, vβ ∈ V (G) are the underlying vertices of α and β respectively. For 
each dangerous edge αβ ∈ E(H), let Aαβ be the event that f(vα) = α and f(vβ) = β. 
By construction, f is a proper H-coloring of G if and only if none of the events Aαβ

happen.
Since g is good, for every dangerous edge αβ ∈ E(H), we have

P [Aαβ ] = 1
|Lg(Vα)| |Lg(vβ)| � 1

�2 =: p.

For every event Aαβ, let Γ(Aαβ) be the set of all events Aγδ with {vα, vβ} ∩{vγ , vδ} �= ∅. 
Then Aαβ is mutually independent from the events not in Γ(Aαβ). Since g is good, we 
have

|Γ(Aαβ)| �
∑

degg(γ) +
∑

degg (δ) � 2d�′.

γ∈Lg(vα) δ∈Lg(vβ)
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Therefore, we may apply Corollary 2.4 with D := 2d�′. We now check that

ep(D + 1) = e · 1
�2 · 2d�′ = 2e

25 + o(1) < 1.

Since there are at most kd�′ dangerous edges, Corollary 2.4 yields

P

⎡
⎣⋂

αβ

Aαβ

⎤
⎦ �

(
1 − 1

2d�′ + 1

)kd�′

� exp
(

−k

2

)
� 2−k,

where in the second inequality we use that 1 − 1/(x + 1) � exp(−1/x) for all x > 0. 
Finally, since |Lg(v)| � � for every blank vertex v, we conclude that

|Comp(g)| � 2−k · �k =
(

�

2

)k

. �

3.6. Finishing the proof of Theorem 1.8

We are finally ready to complete the proof of Theorem 1.8. Let C(G) denote the set 
of all proper H-colorings of G. Set η := exp

(
−qε/2/600

)
. By Corollary 3.5, we have

|Cg(G)| � (1 − η)n

(
1 − 1

q

)m

qn. (3.11)

Define a bipartite graph B with parts Cg(G) and C(G) by joining each g ∈ Cg(G) to 
f ∈ C(G) if and only if f ∈ Comp(g), i.e., if f(v) = g(v) for all v such that g(v) �= blank. 
By Lemma 3.6, for every g ∈ Cg(G) with k blank vertices,

degB(g) = |Comp(g)| �
(

�

2

)k

.

On the other hand, if f ∈ C(G), then f has at most 
(

n
k

)
neighbors in Cg(G) with k blank 

vertices, since every neighbor of f is obtained by uncoloring a subset of V (G). Therefore,

Cg(G) =
∑

g∈Cg(G)

∑
f∈NB(g)

1
degB(g) =

∑
f∈C(G)

∑
g∈NB(f)

1
degB(g)

�
∑

f∈C(G)

n∑
k=0

(
2
�

)k (
n

k

)
=

(
1 + 2

�

)n

|C(G)|.

(3.12)

Combining (3.11) and (3.12), we see that, for large enough Δ,
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|C(G)| �
(

1 − η

1 + 2
�

)n (
1 − 1

q

)m

qn

�
(

1 − 2
�

)n (
1 − 1

q

)m

qn = (1 − δ)n

(
1 − 1

q

)m

qn,

where δ = 4 exp(Δ/q)/q, as desired.

4. Sharpness examples

In this section we prove Theorem 1.3. Before presenting the proof, we introduce some 
necessary definitions and notation, which are similar to those used in Wormald’s survey 
paper [32]. Let Gn,Δ be the uniform probability space of Δ-regular graphs on n vertices, 
where we assume that Δn is even. The following procedure for sampling a graph G ∼
Gn,Δ, known as the pairing model, was introduced by Bollobás [4]. Fix a set W of Δn

points partitioned into n cells W1, . . . , Wn, each of size Δ. A perfect matching of the 
points in W into Δn/2 pairs is called a pairing. Let Pn,Δ be the uniform probability 
space of all pairings. To each P ∈ Pn,Δ, we associate a Δ-regular multigraph G(P ) with 
vertex set [n], where for each pair xy ∈ P with x ∈ Wi and y ∈ Wj , we add an edge 
between i and j. Note that G(P ) may have loops and multiple edges. However, for fixed 
Δ and large enough n, the probability that G(P ) is simple is separated from 0, meaning 
that

P [G(P ) is simple] � cΔ,

for all large enough n, where cΔ > 0 depends only on Δ [32, Theorem 2.2]. It is not 
hard to see that, conditioned on the event that G(P ) is simple, the distribution of G(P )
coincides with Gn,Δ.

Fix any q-coloring f : [n] → [q]. Then f defines a partition of the cells W1, . . . , WΔ
into q color classes C1, . . . , Cq. The following algorithm generates a uniformly random 
pairing P ∼ Pn,Δ:

Algorithm 1 Generator.
1: U ← W , P ← ∅;
2: for i = 1, . . . , Δn/2 do
3: choose x arbitrarily from Cmax, where |Cmax| is maximum among |C1|, . . . , |Cq|;
4: choose y uniformly at random from U \ {x};
5: P ← P ∪ {xy}, U ← U \ {x, y};
6: for j = 1, . . . , q do
7: Cj ← Cj \ {x, y};
8: end for
9: end for

At the start of the i-th iteration of the outer loop in Algorithm 1, we have |U | =
Δn − 2(i − 1). By the choice of Cmax, this implies that |Cmax| � (Δn − 2(i − 1))/q. 
Therefore,
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P [y /∈ Cmax] = 1 − |Cmax| − 1
|U | − 1

�
(

1 − 1
q

) (
1 + 1

Δn − 2i + 1

)
.

Since each step in the algorithm is independent from the previous ones, we have

P [f is a proper coloring of G(P )] �
Δn/2∏
i=1

(
1 − 1

q

) (
1 + 1

Δn − 2i + 1

)

�
(

1 − 1
q

)Δn/2

exp
(

1
Δn − 1 + 1

Δn − 3 + · · · + 1
)

.

Observe that, for n large enough as a function of Δ,

1
Δn − 1 + 1

Δn − 3 + · · · + 1 � 1
2

(
1

Δn − 1 + 1
Δn − 2

)

+ 1
2

(
1

Δn − 3 + 1
Δn − 4

)
+ . . . + 1

2(1 + 1)

= 1
2 (HΔn−1 + 1)

� 1
2

(
log(Δn) + 2

)
< log n,

where HΔn−1 := 1/(Δn − 1) + 1/(Δn − 2) + · · · + 1 is the (Δn − 1)-th harmonic number. 
Thus, we may conclude that

P [f is a proper coloring of G(P )] �
(

1 − 1
q

)Δn/2

n.

Now let X be the random variable equal to the number of proper q-colorings of G(P ). 
Then

E [X] =
∑

f

P [f is a proper coloring of G(P )] �
(

1 − 1
q

)Δn/2

nqn.

Set γ := 2(log n)/n. By Markov’s inequality, we have

P

[
X � (1 + γ)n

(
1 − 1

q

)Δn/2

qn

]
� n

(1 + γ)n
. (4.1)

The right-hand side of (4.1) approaches 0 as n → ∞. Therefore, we see that

X � (1 + γ)n

(
1 − 1

)Δn/2

qn
q
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asymptotically almost surely. On the other hand, as n → ∞, the probability that G(P )
is simple and triangle-free approaches a positive constant depending only on Δ [32, 
Theorem 2.12]. Thus, the number of proper q-colorings of a random regular graph G ∼
Gn,Δ is at most

(1 + γ)n

(
1 − 1

q

)Δn/2

qn

asymptotically almost surely, and Theorem 1.3 follows.

5. Open problems

It is not known if the constant factor in Molloy’s Theorem 1.1 is optimal. Ignoring the 
lower order terms, the best known lower bound on the chromatic number for triangle-free 
graphs G of maximum degree Δ is (1/2 + o(1))Δ/ log Δ due to Frieze and Łuczak [16], 
which holds for random Δ-regular graphs with high probability. It is therefore possible 
that the conclusion of Theorem 1.2 remains valid for q � (1/2 + o(1))Δ/ log Δ. To 
challenge the reader, we state this as a conjecture:

Conjecture 5.1. If G is a triangle-free graph of maximum degree Δ and q � (1/2 +
ε)Δ/ log Δ for some ε > 0, then

c(G, q) �
(

1 − 1
q

)m

((1 − oε(1))q)n,

where n = |V (G)|, m = |E(G)|, and oε(1) stands for a function of Δ and ε that ap-
proaches 0 as Δ tends to ∞ while ε remains fixed.

A proof of Conjecture 5.1 would be an incredibly ambitious result, since under its 
assumptions, proving the bound c(G, q) > 0 (i.e., χ(G) � q), or even α(G) � n/q, is 
already considered a very hard open problem. This makes Conjecture 5.1 a good target 
for a disproof, which may be more feasible than obtaining a new lower bound on χ(G)
or a new upper bound on α(G).

There is some evidence for Conjecture 5.1 coming from random graphs. Bapst, Coja-
Oghlan, Hetterich, Rassmann, and Vilenchik [2, Theorem 1.1] showed that the conclu-
sion of Conjecture 5.1 holds with high probability for the Erdős–Rényi random graph 
G(n, Δ/n) when Δ is large enough. This result was later extended to all Δ � 3 by 
Coja-Oghlan, Krzakala, Perkins, and Zdeborová [8, Theorem 1.2]. We are not aware of 
an analogous result for the random Δ-regular graph Gn,Δ, but it seems plausible that it 
could be derived using the methods of [7].

The value δ = 4 exp(Δ/q)/q of the error term in Theorem 1.2 “blows up” when 
q < Δ/ log Δ. This means that proving Conjecture 5.1 would likely require reducing the 
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value of the error term even for q � (1 +o(1))Δ/ log Δ. We feel that this is an interesting 
problem in its own right:

Problem 5.2. Can the error term δ in the statement of Theorem 1.2 be asymptotically 
improved?
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