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ABSTRACT

There is a growing interest in the estimation of the number of unseen features, mostly driven by biological
applications. A recent work brought out a peculiar property of the popular completely random measures
(CRMs) as prior models in Bayesian nonparametric (BNP) inference for the unseen-features problem: for
�xed prior’s parameters, they all lead to a Poisson posterior distribution for the number of unseen features,
which depends on the sampling information only through the sample size. CRMs are thus not a �exible prior
model for the unseen-features problem and, while the Poisson posterior distribution may be appealing for
analytical tractability and ease of interpretability, its independence from the sampling information makes
theBNPapproachaquestionableoversimpli�cation,withposterior inferencesbeing completelydetermined
by the estimation of unknown prior’s parameters. In this article, we introduce the stable-Beta scaled process
(SB-SP) prior, andwe show that it allows to enrich theposterior distribution of the number of unseen features
arising under CRM priors, while maintaining its analytical tractability and interpretability. That is, the SB-
SP prior leads to a negative Binomial posterior distribution, which depends on the sampling information
through the sample size and the number of distinct features, with corresponding estimates being simple,
linear in the sampling information and computationally e�cient. We apply our BNP approach to synthetic
data and to real cancer genomic data, showing that: (i) it outperforms the most popular parametric and
nonparametric competitors in terms of estimation accuracy; (ii) it provides improved coverage for the
estimation with respect to a BNP approach under CRM priors. Supplementary materials for this article are
available online.
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1. Introduction

The problem of estimating the number of unseen features gen-
eralizes the popular unseen-species problem (Orlitsky, Suresh,
and Wu 2016), and its importance has grown dramatically
in recent years, driven by applications in biological sciences
(Ionita-Laza, Lange, and Laird 2009; Gravel 2014; Zou et al.
2016; Chakraborty et al. 2019). Consider a generic population
in which each individual is endowed with a �nite collection of
W-valued features, with W possibly being an in�nite space,
and denote by pi the probability that an individual has feature
wi ∈ W for i ≥ 1. The unseen-features problem assumesN ≥ 1
observable random samples Z1:N = (Z1, . . . ,ZN) from the
population, such that Zn = (An,i)i≥1 are independent Bernoulli
random variables with unknown parameters (pi)i≥1. Then, the
goal is to estimate the number of hitherto unseen features that
would be observed ifM ≥ 1 additional samples were collected,
that is,

U =
∑

i≥1

1

(
N∑

n=1

An,i = 0

)
1

(
M∑

m=1

AN+m,i > 0

)
,
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with 1 being the indicator function. The unseen-species
problem arises under the assumption that each individual is
endowed with only one feature, that is, a species. A wide range
of approaches have been developed to estimate U, including
Bayesianmethods (Ionita-Laza, Lange, and Laird 2009;Masoero
et al. 2021), jackknife (Gravel 2014), linear programming
(Zou et al. 2016), and variations of Good-Toulmin estimators
(Orlitsky, Suresh, and Wu 2016; Chakraborty et al. 2019).

In biological sciences, we may think of individuals as organ-
isms and of features as groups to which organisms belong to,
with each group being de�ned by any di�erence in the genome
relative to a reference genome, that is, a (genetic) variant. In
human biology, the estimation of U arises in the context of
optimal allocation of resources between quantity and quality in
genetic experiments: spending resources to sequence a greater
number of genomes (quantity), which reveals more about vari-
ation across the population, or spending resources to sequence
genomes with increased accuracy (quality), which reveals more
about individual organisms’ genomes. Accurate estimates of U
are critical in the experimental pipeline toward the goal of
maximizing the usefulness of experiments under the tradeo�
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between quantity and quality (Ionita-Laza and Laird 2010; Zou
et al. 2016). While in human-biology the cost of sequencing has
decreased in recent years (Schwarze et al. 2020), the expense
remains nontrivial, and it is still critical in �elds where scien-
tists work with relatively budgets, for example, nonhuman and
nonmodel organisms (Souza et al. 2017). Other applications
arise in precision medicine (Momozawa and Mizukami 2020),
microbiome analysis (Sanders et al. 2019), single-cell sequenc-
ing (Zhang, Ntranos, and Tse 2020) and wildlife monitoring
(Johansson et al. 2020).

1.1. Our Contributions

We introduce a Bayesian nonparametric (BNP) approach to the
unseen-features problem, which relies on a novel prior distri-
bution for the unknown (pi)i≥1. Completely random measures
(CRMs) (Kingman 1992) provide a broad class of nonparametric
priors for feature sampling problems, themost popular being the
stable-Beta process prior (James 2017; Broderick, Wilson, and
Jordan 2018). In a recent work,Masoero et al. (2021) brought out
a peculiar feature of CRMpriors in the unseen-features problem:
they all lead to a Poisson posterior distribution of U, given
Z1:N and �xed prior’s parameters, which depends on Z1:N only
through the sample size N. Despite the broadness of the class of
CRM priors, such a common Poisson posterior structure makes
CRMs not a �exible prior model for the unseen-features prob-
lem. While the Poisson posterior distribution may be appealing
in principle, making posterior inferences analytically tractable
and easy to interpret, its independence from Z1:N makes the
BNP approach a questionable oversimpli�cation, with posterior
inferences being completely determined by the estimation of
the unknown prior’s parameters. A somehow similar scenario
occurs in BNP inference for the unseen-species problem under
a Dirichlet process (DP) prior (Ferguson 1973), and led to the
use of the Pitman-Yor process (PYP) prior (Pitman and Yor
1997) for enriching the posterior distribution of the number
of unseen species, while maintaining analytical tractability and
interpretability of theDP prior (Lijoi,Mena, and Prünster 2007).

We show that scaled process (SP) priors, �rst introduced in
James, Orbanz, and Teh (2015), allow to enrich the posterior
distribution of U arising under CRM priors. Under SP priors,
we characterize the posterior distribution of U as a mixture
of Poisson distributions that may include, through the mixing
distribution, the whole sampling information in terms of the
number of distinct features and their frequencies. While this
is appealing in principle, it may be at stake with analytical
tractability and interpretability, which are critical for a concrete
use of SP priors. Then, we introduce the stable-Beta SP (SB-SP)
prior, which provides a sensible tradeo� between the amount of
sampling information introduced in the posterior distribution of
U, and analytical tractability and interpretability of the posterior
inferences. In particular, we characterize the SB-SP prior as the
sole SP prior for which the posterior distribution of U, given
Z1:N and �xed prior’s parameters, depends on Z1:N through the
sample sizeN and the numberKN of distinct features; the SB-SP
may thus be considered as the natural counterpart of the PYP
for the unseen-feature problem. Under the SB-SP prior, the pos-
terior distribution ofU, as well as of a re�nement ofU that deals

with the number of unseen rare features, is a negative Binomial
posterior distributions, whose parameters depend onN,KN and
the prior’s parameters. Corresponding Bayesian estimates of U,
with respect to a squared loss function, are simple, linear in KN

and computationally e�cient.
We present an empirical validation of the e�ectiveness of

our BNP methodology, both on synthetic and real data. As for
real data, we consider cancer genomic data, where the goal is
to estimate the number of new (genomic) variants to be dis-
covered in future unobservable samples. In cancer genomics,
accurate estimates of the number of new variants is of particular
importance, as it might help practitioners understand the site
of origin of cancers, as well as the clonal origin of metastasis,
and in turn be a useful tool to develop e�ective clinical strategies
(Chakraborty et al. 2019; Huyghe et al. 2019). We make use of
data from the cancer genome atlas (TCGA), and focus on the
challenging scenario in which the sample size N is particularly
small, and also small with respect to the extrapolation size M.
Such a scenario is of interest in genomic applications, where only
few samples of rare cancer might be available. We show that our
BNP methodology outperforms the most popular parametric
and nonparametric competitors, both classical (frequentist) and
Bayesian, in terms of estimation accuracy of U and a re�ne-
ment of U for rare features. In addition, with respect to the
BNP approach under the stable-Beta process prior (Masoero
et al. 2021), our approach provides improved coverage for the
estimation. This is an empirical evidence of the e�ectiveness of
replacing the Poisson posterior distribution with the negative
Binomial posterior distribution, which allows to better exploit
the sampling information.

1.2. Organization of the Paper

In Section 2 we show how SP priors allow to enrich the posterior
distribution of U arising under CRM priors. In Section 3 we
introduce and investigate the SB-SP prior in the context of the
unseen-features problem: (i) we characterize the SB-SP prior
in the class of SP priors, providing its predictive distribution;
(ii) we apply the SB-SP prior to the unseen-features problem,
providing the posterior distribution of U and a BNP estimator.
Section 4 contains illustrations of our method. In Section 5 we
discuss our approach, a multivariate extension of it, and future
research directions. Proofs and additional experiments are in the
Appendix, supplementary materials.

2. Scaled Process Priors for Feature Sampling

Problems

For ameasurable space of featuresW, we assumeN ≥ 1 observ-
able individuals to be modeled as a random sample Z1:N from
the {0, 1}-valued stochastic processZ(w) =

∑
i≥1 Aiδwi(w),w ∈

W, where (wi)i≥1 are features inW and (Ai)i≥1 are independent
Bernoulli random variables with unknown parameters (pi)i≥1,
pi being the probability that an individual has feature wi, for
i ≥ 1. That is, Z is a Bernoulli process with parameter ζ =∑

i≥1 piδwi , denoted as BeP(ζ ). BNP inference for feature sam-
pling problems relies on the speci�cation of a prior distribution
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on the discrete measure ζ , leading to the BNP-Bernoulli model,

Zn | ζ
iid
∼ BeP(ζ ) n = 1, . . . ,N, (1)

ζ ∼ Z ,

namely ζ is a discrete randommeasure onWwhose lawZ takes
on the interpretation of a prior distribution for the unknown
feature’s composition of the population. By de Finetti’s theorem,
the random variables Zn’s in (1) are exchangeable with directing
measure Z (Aldous 1983). In this section, we show how SP
priors for ζ (James, Orbanz, and Teh 2015) allow to enrich the
posterior distribution of the number of unseen features arising
under CRM priors.

2.1. CRMPriors for Bernoulli Processes

CRMs provide a standard tool to de�ne nonparametric
prior distributions on the parameter ζ of the Bernoulli
process Z. Consider a homogeneous CRM μ0 on W, that is,
μ0 =

∑
i≥1 ρiδWi , where the ρi’s are (0, 1)-valued random

atoms such that
∑

i≥1 ρi < +∞, while the Wi’s are iid W-
valued random locations independent of the ρi’s. The law
of μ0 is characterized, through Lévy-Khintchine formula, by
the Lévy intensity measure ν0(ds, dw) = λ0(s)dsP(dw) on
(0, 1)×W, where: (i)λ0 is ameasure on (0, 1), which controls the
distribution of the ρi’s, and such that

∫
(0,1) min{s, 1}λ0(s)ds <

+∞; ii) P is a nonatomic measure on W, which controls
the distribution of the Wi’s. For short, μ0 ∼ CRM(ν0). See
Appendix S1 for an account on CRMs (Kingman 1992, chap.
8). Note that, since P is nonatomic, the random atoms Wi’s are
almost surely distinct, that is to say the di�erent features cannot
coincide almost surely. The law of μ0 provides a natural prior
distribution for the parameter ζ of the Bernoulli process. The
Beta and the stable-Beta processes are popular examples ofμ0 ∼

CRM(ν0), for suitable speci�cations of ν0. A comprehensive
posterior analysis of CRM priors is presented in James (2017).
In the next proposition, we recall the predictive distribution of
CRM priors (James 2017, Proposition 3.2).

Proposition 1. Let Z1:N be a random sample from (1) with
ζ ∼ CRM(ν0). If Z1:N displays KN = k distinct features
{W∗

1 , . . . ,W
∗
KN

}, each feature W∗
i appearing exactly MN,i = mi

times, then the conditional distribution of ZN+1, given Z1:N ,
coincides with the distribution of

ZN+1 |Z1:N
d
= Z′

N+1 +

KN∑

i=1

AN+1,iδW∗
i
, (2)

where: (i) Z′
N+1 | μ′

0 =
∑

i≥1 A
′
N+1,iδW′

i
∼ BeP(μ′

0) and

μ′
0 ∼ CRM(ν′

0), with ν′
0(ds, dw) = (1 − s)Nλ0(s)dsP(dw); (ii)

the AN+1,i’s are independent Bernoulli random variables with
parameters Ji’s, such that Ji is distributed according to the density
function fJi(s) ∝ (1 − s)N−mismiλ0(s) for i ≥ 1.

According to (2), ZN+1 displays “new” features W′
i ’s, that

is, features not appearing in the initial sample Z1:N , and “old”
featuresW∗

i ’s, that is, features appeared in the initial sampleZ1:N .
The posterior distribution of statistics of “new” features is deter-
mined by the law of Z′

N+1, which depends on Z1:N only through

the sample sizeN; the posterior distribution of statistics of “old”
features is determined by the law of

∑
1≤i≤KN

AN+1,iδW∗
i
, which

depends on Z1:N through the sample size N, the number KN

of distinct features and their frequencies (MN,1, . . . ,MN,KN ). As
a corollary of Proposition 1, the posterior distribution of the
number of “new” features in (ZN+1, . . . ,ZN+M), given Z1:N and
�xed prior’s parameters, is a Poisson distribution that depends
on Z1:N only through N (Masoero et al. 2021). Such a pos-
terior structure is peculiar to CRM priors, being inherited by
the Poisson process formulation of CRMs (Kingman 1992).
That is, despite the broadness of the class of CRM priors, all
CRM priors lead to the same Poisson posterior structure for
the number of unseen features, which thus makes them not a
�exible prior model for the unseen-features problem. While the
Poisson posterior distribution may be appealing in principle,
making the posterior inferences analytically tractable and of
easy interpretability, its independence from Z1:N makes the BNP
approach under CRM priors a questionable oversimpli�cation,
with posterior inferences being completely determined by the
estimation of unknown prior’s parameters.

Remark 1. For the sake of mathematical convenience, and in
agreement with the work of James (2017), in the sequel we
maintain the random measure formulation for both the prior
model μ0 and the Bernoulli processes Zn. However, we point
out that each Zn is equivalently characterized by means of the
Bernoulli variables (An,i)i≥1 and the random features (Wi)i≥1.
In other terms, there exits a one-to-one correspondence between
Zn and the sequence of points {(An,i,Wi)}i≥1. Finally, note that,
although the values of features’ labels Wi are immaterial, the
featuresWi’s are assumed to be random. This is in line with the
BNP literature on species sampling models, where the species’
labels are assumed to be random (Pitman 1996).

2.2. SP Priors for Bernoulli Processes

Consider a homogeneous CRM μ =
∑

i≥1 τiδWi on W,
where the τi’s are nonnegative and such that

∑
i≥1 τi <

+∞, and the Wi’s are iid and independent of the τi’s. We
denote by ν(ds, dw) = λ(s)dsP(dw) on R+ × W, with∫
R+

min{s, 1}λ(s)ds < +∞, the Lévy intensity measure of
μ. Let �1 > �2 > · · · be the decreasingly ordered τi’s, and
consider the discrete random measure

μ�1 =
∑

i≥1

�i+1

�1
δWi+1 ,

such that �i+1/�1 ∈ (0, 1), for i ≥ 1, and
∑

i≥1 �i+1/�1 <

+∞. A SP onW is de�ned from μ�1 as follows. Let F�1(da) =

exp
{
−

∫ ∞

a λ(s)ds
}
λ(a)da be the distribution of �1 (Ferguson

and Klass 1972, p. 1636), and let Ga be the conditional distribu-
tion of (�i+1/�1)i≥1 given �1 = a. Moreover, let �1,h denote
a random variable whose distribution has a density function
f�1,h(a) = h(a)f�1(a), where h is a nonnegative function and f�1

is the density function of F�1 . If (ρi)i≥1 are (0, 1)-valued random
variables with distribution G�1,h then

μ�1,h =
∑

i≥1

ρiδWi+1 . (3)
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is a SP. For short, μ�1,h ∼ SP(ν, h). The law of μ�1,h is a prior
distribution for the parameter ζ of the Bernoulli process. The
next proposition characterizes the predictive distribution of SP
priors. See also (James, Orbanz, and Teh 2015, Proposition 2.2)
for a posterior analysis of SP priors.

Proposition 2. Let Z1:N be a random sample from (1) with
ζ ∼ SP(ν, h). If Z1:N displays KN = k distinct features
{W∗

1 , . . . ,W
∗
KN

}, each feature W∗
i appearing exactly MN,i = mi

times, then the conditional distribution of �1,h, given Z1:N , has
a density function of the form

g�1,h |Z1:N (a) ∝

∏k
i=1

∫ 1
0 smi(1 − s)N−miaλ(as)ds

exp
{∑N

n=1

∫ 1
0 s(1 − s)n−1aλ(as)ds

} f�1,h(a).

(4)
Moreover, the conditional distribution of ZN+1, given
(�1,h,Z1:N), coincides with the distribution of

ZN+1 | (�1,h,Z1:N)
d
= Z′

N+1 +

KN∑

i=1

AN+1,iδW∗
i
, (5)

where as (i) Z′
N+1 | μ′

�1,h
=

∑
i≥1 A

′
N+1,iδW′

i
∼ BeP(μ′

�1,h
)

and μ′
�1,h

| �1,h ∼ CRM(ν′
�1,h

), with ν′
�1,h

(ds, dw) = (1 −

s)N�1,hλ(s�1,h)1(0,1)(s)dsP(dw); (ii) the AN+1,i’s are indepen-
dent Bernoulli random variables with parameters Ji’s, respec-
tively, such that Ji | �1,h is distributed according to the density
function fJi | �1,h(s) ∝ (1− s)N−mismi�1,hλ(�1,hs)1(0,1)(s)ds for
i ≥ 1.

See Appendix S2 for the proof of Proposition 2. The
marginalization of (5) with respect to (4) leads to the predictive
distribution of SP priors: (i) ZN+1 displays “new” featuresW′

i ’s,
and the posterior distribution of statistics of “new” features,
given Z1:N , is determined by the law of (�1,h,Z

′
N+1); (ii) ZN+1

displays “old” features W∗
i ’s, and the posterior distribution

of statistics of “old” features, given ZN+1, is determined by
the law of (�1,h,

∑
1≤i≤KN

AN+1,iδW∗
i
). Because of (4) and

(5), the law of (�1,h,Z
′
N+1) may include the whole sampling

information, depending on the speci�cation of ν and h,
and hence the posterior distribution of statistics of “new”
features, given Z1:N , also includes such an information. As
a corollary of Proposition 2, the posterior distribution of
the number of unseen features, given Z1:N and �xed prior’s
parameters, is a mixture of Poisson distributions that may
include the whole sampling information; in particular, the
amount of sampling information in the posterior distribution
is uniquely determined by the mixing distribution, namely by
the conditional distribution of �1,h, given Z1:N . SP priors thus
allow to enrich the Poisson posterior structure arising from
CRM priors, in terms of both a more �exible distribution and
the inclusion ofmore sampling information than the sole sample
size N, though they may lead to unwieldy posterior inferences
due to the marginalization with respect to (4).

The use of the sampling information in the predictive struc-
ture of SPs somehow resembles that of Poisson-Kingman (PK)
models (Pitman 2006). PK models form a broad class of non-
parametric priors for species sampling problems. The DP prior
is a PK model whose predictive distribution is such that: (i)

the conditional probability that the (N + 1)th draw is a “new”
species, givenN observable samples, depends only on the sample
size; (ii) the conditional probability that the (N + 1)th draw is
an “old” species, given N observable samples, depends on the
sample size, the number of distinct species and their frequencies.
Such a behavior resembles that of CRM priors, that is, Proposi-
tion 1. PK models allow to include more sampling information
in the probability of discovering a “new species” arising under
the DP prior, which typically determines a loss of the analytical
tractability of posterior inferences for the number of unseen
species (Bacallado et al. 2017). Such a behavior resembles that
of SP priors, that is, Proposition 2. The PYP prior is arguably
the most popular PK model. It stands out for enriching the
probability of discovering a “new” species arising under the DP
prior, by including the sampling information on the number of
distinct species, whilemaintaining the analytical tractability and
interpretability of the DP prior.

3. Stable-Beta Scaled Process (SB-SP) Priors for the

Unseen-Features Problem

In Section 2we showedhowSPpriors allow to enrich the Poisson
posterior structure of the number of unseen features arising
under CRM priors, for example the Beta and the stable-Beta
process priors.While this is an appealing property, it may lead to
a lack of analytical tractability and interpretability of posterior
inferences, thus, making SP priors not of practical interest in
applications. In this section, we introduce and investigate a
peculiar SP prior, which is referred to as the SB-SP prior, and
we show that: (i) it leads to a negative Binomial posterior distri-
bution for the number of unseen features, which generalizes the
Poisson distribution while maintaining its analytical tractability
and interpretability; (ii) it leads to a posterior distribution for
the number of unseen features, which depends on the sampling
through the sample size and the number of distinct features.
The SB-SP prior thus provides a sensible tradeo� between the
enrichment of the Poisson posterior structure of the number
of unseen features arising under CRM priors and the analyt-
ical tractability and interpretability of posterior inferences. In
particular, we characterize the SB-SP prior as the sole SP prior
for which the posterior distribution of the number of unseen
features depends on the observable sample only through the
sample size and the number of distinct features. The SB-SP may
thus be considered as a natural counterpart of the PYP for the
unseen-feature problem.

3.1. SB-SP Priors for Bernoulli Processes

Stable scaled processes (S-SP) (James, Orbanz, and Teh 2015)
form a subclass of SPs, and hence their de�nition follows from
Section 2. In particular, for any σ ∈ (0, 1), letμσ be the σ -stable
CRMonW (Kingman 1975), which is characterized by the Lévy
intensitymeasure νσ (ds, dw) = λσ (s)dsP(dw) onR+×W, with∫
R+

min{s, 1}λσ (s)ds < +∞, where λσ (s) = σ s−1−σ .We recall
that the largest atom �1 of μσ is distributed according to the
density function

f�1(a) = σa−1−σ exp
{
−a−σ

}
. (6)
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That is, �1 = E−1/σ , where E denotes a negative exponential
random variable with parameter 1. For any nonnegative func-
tion h, a S-SP onW is de�ned as the SP with law SP(νσ , h). S-SP
priors generalizes the Beta process prior, which is recovered by
setting h to be the identity function, and then letting σ → 0
(James, Orbanz, and Teh 2015). The predictive distribution of
ζ ∼ SP(νσ , h) is obtained from Proposition 2. In the next
theorem, we characterize the S-SP priors as the sole SP priors for
which the conditional distribution of �1,h, given Z1:N , depends
on Z1:N only through the sample size N and the number KN of
distinct features in Z1:N .

Theorem 1. Let Z1:N be a random sample from (1) with
ζ ∼ SP(ν, h), and let Z1:N displays KN distinct features with
corresponding frequencies (MN,1, . . . ,MN,KN ). Moreover, let
ν(ds, dw) = λ(s)dsP(dw), and let f�1,h be the density function
of �1,h. If f�1,h > 0 on R+ and the functions λ and f�1,h are
continuously di�erentiable, then the conditional distribution of
�1,h, given Z1:N , depends on Z1:N only throughN andKN if and
only if ν = νσ .

See Appendix S3 for the proof of Theorem 1. We recall
from Section 2 that the conditional distribution of �1,h, given
Z1,N , uniquely determines the amount of sampling information
included in the posterior distribution of statistics of “new” fea-
tures. Then, according to Theorem 1, S-SP priors are the sole
SP priors for which the posterior distribution of the number
of unseen features, given Z1:N and �xed prior’s parameters,
depends on Z1:N only throughN and KN . As a corollary of The-
orem 1, the Beta process prior is the sole S-SP prior for which the
posterior distribution of statistics of “new” features depends on
Z1:N only throughN. Analogous predictive characterizations are
well-known in species sampling problems, and they are typically
referred to as “su�cientness” postulates’ (Bacallado et al. 2017).
In particular, the DP prior is characterized as the sole species
sampling prior for which the conditional probability that the
(N + 1)th draw is a “new” species, given N observable samples,
depends only on the sample size (Regazzini 1978).Moreover, the
PYP prior is characterized as the sole species sampling prior for
which the conditional probability that the (N + 1)th draw is
a “new” species, given N observable samples, depends only on
the sample size and the number of distinct species in the sample
(Zabell 2005). Theorem 1 provides a “su�cientness” postulates’
in the context of feature sampling problems.

As a noteworthy example of S-SPs, we introduce the SB-SP.
The SB-SP is a S-SP obtained by a suitable speci�cation of the
nonnegative function h. In particular, for any c,β > 0 let

hc,β(a) =
βc+1

�(c + 1)
a−cσ exp

{
−(β − 1)a−σ

}
, (7)

where �(·) denotes the Gamma function. Then a SB-SP on W

is de�ned as the SP with law SP(νσ , hc,β). For short, we denote
the law of a SB-SP by SB-SP(σ , c,β). The SB-SP prior generalizes
the Beta process prior, which is recovered by setting c = 0 and
β = 1, and then letting σ → 0. According to the construction of
SPs, the distribution of�1,hc,β has a density function obtained by
combining (6) and (7); this is a polynomial-exponential tilting
of the density function (6). In particular, �−σ

1,hc,β
is distributed

as a Gamma distribution with shape (c + 1) and rate β . Such

a straightforward distribution for �1,hc,β is at the core of the
analytical tractability of posterior inferences under the SB-SP
prior; this fact will be clear in the application of the SB-SP prior
to the problem of estimating the number of unseen features. The
next proposition characterizes the predictive distribution of the
SB-SP prior.

Proposition 3. Let Z1:N be a random sample from (1) with
ζ ∼ SB-SP(σ , c,β). If Z1:N displays KN = k distinct features
{W∗

1 , . . . ,W
∗
KN

}, each feature W∗
i appearing exactly MN,i = mi

times, then the conditional distribution of �1,hc,β , given Z1:N ,
has a density function of the form

g�1,hc,β
|Z1:N (a)

= σ
(β + γ

(N)
0 )k+c+1

�(k + c + 1)
a−kσ−(c+1)σ−1e−a−σ (β+γ

(N)
0 ), (8)

where γ
(N)
0 = σ

∑
1≤i≤N B(1 − σ , i), with B(·, ·) being the

(Euler) Beta function. Moreover, the conditional distribution of
ZN+1, given (�1,hc,β ,Z1:N), coincides with the distribution of

ZN+1 | (�1,hc,β ,Z1:N)
d
= Z′

N+1 +

KN∑

i=1

AN+1,iδW∗
i
, (9)

where:

(i) Z′
N+1 | μ′

�1,hc,β
=

∑
i≥1 A

′
N+1,iδW′

i
∼ BeP(μ′

�1,hc,β
) such

that μ′
�1,hc,β

| �1,hc,β ∼ CRM(ν′
�1,hc,β

), with

ν′
�1,hc,β

(ds, dw)

= �−σ
1,�1,hc,β

(1 − s)Nσ s−1−σ
1(0,1)(s)dsP(dw);

(ii) the AN+1,i’s are independent Bernoulli random variables
with parameters Ji’s, respectively, such that each Ji | �1,hc,β
is distributed according to a density function of the form

fJi | �1,hc,β
(s)

=
1

B(mi − σ ,N − mi + 1)
smi−σ (1 − s)N−mi+1

1(0,1)(s).

See Appendix S3 for the proof of Proposition 3. According to
Equation (8), the conditional distribution of �1,hc,β , given Z1:N ,
depends onZ1:N only through the sample sizeN and the number
KN of distinct features in Z1:N . This agrees with Theorem 1,
implying that the posterior distribution of the number of unseen
features, given Z1:N and �xed prior’s parameters, depends on
Z1:N only through N and KN . Because of (8) and (9), the pos-
terior distribution of statistics of “new” features stands out for
analytical tractability, thus, being competitive with that arising
fromCRMs, for example, the Beta and the stable-Beta processes.
In particular, from Equation (9), the conditional distribution of
Z′
N+1, given (�1,hc,β ,Z1:N) is a Poisson distribution that depends

on Z1:N only through N. Then, from (8), its marginalization
with respect to the conditional distribution of �1,hc,β , given
Z1:N , leads to a negative Binomial posterior distribution. Such
an appealing property arises from the peculiar form hc,β that,
combined with νσ , leads to a conjugacy property for the condi-
tional distribution of�1,hc,β , given Z1:N . That is, the conditional



6 F. CAMERLENGHI ET AL.

distribution of �−σ
1,hc,β

, given Z1:N , is a Gamma distribution with

shape (KN + c+ 1) and rate β + γ
(N)
0 , which is the distribution

�−σ
1,hc,β

with shape and rate being updated throughZ1:N . The next

proposition establishes the distribution of a random sampleZ1:N
from a SB-SP prior. See Appendix S3 for details.

Proposition 4. Let Z1:N be a random sample from (1) with
ζ ∼ SB-SP(σ , c,β). The probability that Z1:N displays a par-
ticular feature allocation of k distinct features with frequencies
(m1, . . . ,mk) is

p
(N)

k (m1, . . . ,mk) =

σ kβc+1

(β+γ
(N)
0 )k+c+1

�(c+1)
�(k+c+1)

k∏

i=1

×
�(mi − σ)�(N − mi + 1)

�(N − σ + 1)
. (10)

3.2. BNP Inference for the Unseen-Features Problem

Now, we apply the SB-SP prior to the unseen-features problem.
For any N ≥ 1 let Z1:N be an observable sample modeled
as the BNP Bernoulli model (1), with ζ ∼ SB-SP(σ , c,β).
Moreover, under the same model of the Zn’s, for any M ≥ 1
let (ZN+1, . . . ,ZN+M) be additional unobservable sample. Then,
the unseen-feature problem calls for the estimation of

U
(M)
N =

∑

i≥1

1

(
M∑

m=1

AN+m,i > 0

)
1

(
N∑

n=1

An,i = 0

)
, (11)

namely the number of hitherto unseen features that would be
observed in (ZN+1, . . . ,ZN+M). As generalization of the unseen-
feature problem (11), for r ≥ 1 we consider the estimation of

U
(M,r)
N =

∑

i≥1

1

(
M∑

m=1

AN+m,i = r

)
1

(
N∑

n=1

An,i = 0

)
, (12)

namely the number of hitherto unseen features that would be
observed with prevalence r in (ZN+1, . . . ,ZN+M). Of special
interest is r = 1, which concerns rare (unique) features. The

next theorem characterizes the posterior distributions of U(M)
N

andU(M,r)
N , given Z1:N . We denote by NegativeBinonial(n, p) the

negative Binomial distribution with parameter n and p ∈ (0, 1).

Theorem 2. Let Z1:N be a random sample from (1) with ζ ∼

SB-SP(σ , c,β), and let Z1:N displays KN = k distinct features
with frequencies (MN,1, . . . ,MN,KN ) = (m1, . . . ,mk). Then,

the posterior distributions of U(M)
N and of U(M,r)

N , given Z1:N ,
coincide with the distributions of

U
(M)
N |Z1:N ∼ NegativeBinonial

(
KN + c + 1,

γ
(M)
N

β + γ
(N+M)
0

)
,

(13)
and

U
(M,r)
N |Z1:N ∼ NegativeBinonial

×

(
KN + c + 1,

ρ
(M,r)
N

β + γ
(N)
0 + ρ

(M,r)
N

)
, (14)

for any index of prevalence r ≥ 1, respectively, where γ
(M)
N =

σ
∑

1≤i≤M B(1−σ ,N+i) andwhereρ
(M,r)
N =

(M
r

)
σB(r−σ ,N+

M − r + 1), with B(·, ·) denoting the (Euler) Beta function.

See Appendix S4 for the proof of Theorem 2. The posterior
distributions (13) and (14) depend on Z1:N through the sample
sizeN and the numberKN of distinct features. This is in contrast
with the corresponding posterior distributions obtained under
the Beta and the stable-Beta process priors, which are Poisson
distributions that dependonZ1:N only throughN (Masoero et al.

2021, Proposition 1). BNP estimators of U(M)
N and U

(M,r)
N , with

respect to a squared loss function, are obtained as the posterior
expectations of (13) and (14), that is,

Û
(M)
N = (KN + c + 1)

γ
(M)
N

β + γ
(N+M)
0 − γ

(M)
N

(15)

and

Û
(M,r)
N = (KN + c + 1)

ρ
(M,r)
N

β + γ
(N)
0

, (16)

respectively. The estimators (15) and (16) are simple, linear in
the sampling information and computationally e�cient. In the
next theoremwe establish the largeM asymptotic behavior of the
posterior distributions (13) and (14), showing that the number
of unseen features has a power-law growth in M. The same
growth inM holds under the stable-Beta process prior (Masoero
et al. 2021, Proposition 2), though the limiting distribution is
degenerate.

Theorem 3. Let Z1:N be a random sample from (1) with ζ ∼

SB-SP(σ , c,β), and let Z1:N displays KN = k distinct features
with frequencies (MN,1, . . . ,MN,KN ) = (m1, . . . ,mk). AsM →

+∞

U
(M)
N

Mσ
| Z1:N

a.s.
−→ WN , (17)

whereWN is a Gamma random variable with shape (KN +c+1)

and rate (β + γ
(N)
0 )/�(1 − σ), and

U
(M,r)
N

Mσ
| Z1:N

a.s.
−→ WN,r , (18)

whereWN,r is aGamma randomvariable with shape (KN+c+1)

and rate �(r + 1)(β + γ
(N)
0 )/σ�(r − σ).

4. Experiments

Over the last decade, genomics has witnessed an extraordi-
nary improvement in the data availability due to the advent of
next generation sequencing technologies. Thanks to larger and
richer datasets, researchers have started uncovering the role and
impact of rare genetic variants in heritability and human disease
(Hernandez et al. 2019; Momozawa and Mizukami 2020). The
development of methods for estimating the number of new
genomic variants to be observed in future studies is an active
research area, as it can aid the design of e�ective clinical pro-
cedures in precision medicine (Ionita-Laza, Lange, and Laird
2009; Zou et al. 2016), enhance understanding of cancer biology
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(Chakraborty et al. 2019), and help to optimize sequencing
procedures (Rashkin et al. 2017; Masoero et al. 2021). Here, we
consider datasets of individual genomic sequences. Following
common practice, we assume that an underlying �xed and ide-
alized genomic sequence (the “reference”) is given. Then, each
coordinate of an individual sequence reports the presence (1)
or absence (0) of variation at a given locus with respect to the
reference. All variants are treated equally, namely, any expression
di�ering from the underlying reference at a given locus counts
as a variant. We make use of our methodology to estimate the
number of genomic loci at which variation was not observed in
the original sample, and is going to be observed in (at least one
of)M additional datapoints.

We �nd in our experiments that the estimates of the total
number of new variants to be observed produced using the SB-
SP-Bernoullimodel, herea�er referred to as SSB, tend to bemore
accurate than other available methods in the literature. This
phenomenon is particularly evident when the sample size N of
the training set is small, and when the extrapolation size M is
large with respect to N. Moreover, the SSB model is particularly
e�ective in estimating the number of new rare variants, for
example, variants appearing only once in the additional unob-
servable samples. Accurate estimation of rare variants is particu-
larly important, as these are believed to be largely responsible for
heritability of human disease (Rashkin et al. 2017; Chakraborty
et al. 2019). To benchmark the quality of the SSB, we consider a
number of competing methodologies for the feature prediction
problem available in the literature: (i) Jackknife estimators (J)
(Gravel 2014); (ii) a linear programming method (LP) (Zou
et al. 2016) and variations of Good-Toulmin estimators (GT)
(Chakraborty et al. 2019). We also compare our empirical �nd-
ings to a BNP estimator obtained under the stable-Beta process
prior (3BB), which has been introduced inMasoero et al. (2021).
We complete our analysis with a thorough investigation on
synthetic data in S6 and S7, as well as on additional real data
from the gnomAD database (Karczewski et al. 2020) in S8.

https://github.com/lorenzomasoero/ScaledProcesses contains
code and data to replicate all our analyses.

4.1. Empirics and EvaluationMetrics

For the SSBmethod to be useful, we need to estimate the under-
lying, unknown, parameters of the SB-SP prior. To learn these
prior’s parameters, we here adopt an empirical Bayes procedure,
which consists in maximizing the marginal distribution (10). In
particular, we maximize numerically Equation (10) with respect
to the parameters β > 0, c > 0 and σ ∈ (0, 1) of the SB-SP prior,
and use the resulting values to produce our estimators. That is,
we let

(β̂ , ĉ, σ̂ ) = arg max
(β ,c,σ)

{
p
(N)

k (m1, . . . ,mk)

}
,

and plug these values in the BNP estimator (13) and (14). The

resulting values provide our BNP estimates of the number U(M)
N

of new variants and the number U(M,r)
N of new variants with

prevalence r.
To assess the accuracy of our estimates, we consider the per-

cent deviation of the estimate from the truth to be the achieved

accuracy. That is, the accuracy of the estimator Û(M)
N is de�ned

as

v
(M)
N := 1 − min

{
|U

(M)
N − Û

(M)
N |

U
(M)
N

, 1

}
. (19)

In particular, the accuracy v
(M)
N equals 1 when the estimate is

perfect (no error is incurred), and decreases to 0 as the estimate
deviates from the truth. The min operator in (19) ensures that

v
(M)
N lies in [0, 1]: we let the accuracy to be equal to 0 whenever
there is a severe overestimation, and the percentage estimation

error exceeds 100%, that is, when Û
(M)
N ≥ 2 × U

(M)
N . The SSB,

3BB and LP methods also o�er an estimate for the number of
new features observed with a given prevalence r. We let v(M,r)

N be

the accuracy metric, where we replace in (19)U(M)
N withU(M,r)

N ,
the number of new features observed with prevalence r, and

Û
(M)
N with Û

(M,r)
N .

4.2. Estimating the Number of NewVariants in Cancer

Genomics

Following the empirical study of Chakraborty et al. (2019), we
make use of data from the Cancer Genome Atlas (TCGA), the
largest publicly available cancer genomics dataset, containing
somatic mutations from 10,295 patients and spanning 33 dif-
ferent cancer types. We partition the samples into 33 smaller
datasets according to cancer-type annotation of each patient. See
Chakraborty et al. (2019) and (Masoero et al. 2021, Appendix
F) for details on the data and the experimental setup. For each
cancer type, we retain a small fraction of the data for purposes
of training, and consider the task of estimating the number
of new variants that will be observed in a follow-up sample
given a pilot sample. We validate our estimates by comparing

the estimate Û(M)
N of the number of distinct variants to the true

value, obtained by extrapolating to the remaining data. To assess
the variability and error in our estimates, we repeat for every
cancer type the experiment on S = 1000 subsets of the data,
each obtained by randomly subsampling without replacement
from the full sample.

We �nd that the SSB and 3BB methods perform particularly
well when the training sample size N is small compared to
the extrapolation sample size M. This setting is relevant in the
context of cancer genomics, as scientists are interested in under-
standing the “unexploited potential” of the genetic information,
especially for rare cancer subtypes (Chakraborty et al. 2019;
Huyghe et al. 2019). To compare and quantify the performance
of the available methodologies in this setting, we report in Fig-
ure 1 the distribution of the estimation accuracy when retaining
only N = 10 samples for training and extrapolating to the
largest possible sample size M for which we can compute the
accuracy metric (Equation (19)). We report results for the 10
cancer types with the largest number of samples in the original
dataset. For each cancer type and for each method, the distri-
bution of the estimation accuracy is obtained by considering its
performance across the S = 1000 replicates. Across all cancer
types, the estimates obtained from the SSB method achieve
higher accuracy.
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Figure 1. Estimation accuracy v
(M)
N for the number of new genomic variants Û

(M)
10 . For eachmethod and each cancer type, we retainN = 10 random samples and use them

to estimate up toM total observations, where N + M is the size of the original sample.

Figure 2. Estimation of the number of new genomic variants Û
(i)
N , for i = 1, . . . ,M. For each method and cancer type, we retain N = 10 random samples and use them to

estimate up to the largest possible size. We �t each model on the full sample, as well as N = 10 additional times by iteratively leaving one datapoint out from the training
sample. The solid black line is the true number of features that would have been observed (vertical axis) for any extrapolation sizeN+M (horizontal axis), for a �xed ordering
of the data. Shaded regions report the prediction range obtained from the estimates from the leave-one-out �ts.

We show in Figure 2 the behavior of Û(i)
N for �ve di�erent

cancer types as i = 1, . . . ,M. Again, we let N = 10, and M be
the largest possible extrapolation value, as dictated by the dataset
size.We report the estimates obtained from a �xed sample of size
N = 10, as well as the variability around such estimates obtained
by re�tting each model, iteratively leaving one datapoint out
from the sample. In this setting, the SSB method outperforms
competing methods in terms of estimation accuracy. Moreover,
the variability in the estimates arising from re�tting the model
on subsets of the data provides a useful measure of uncertainty
in such estimation.

4.3. Estimating the Number of New Rare Variants in

Cancer Genomics

In recent years, the cancer genomics research community has
become increasingly interested in studying and understanding

the role of extremely rare variants, such as singletons, that is,
observed in only one patient. Evidence suggests that rare dele-
terious variants can have far stronger e�ect sizes than com-
mon variants (Rasnic, Linial, and Linial 2020) and can play an
important role in the development of cancer. For example, in
breast cancer, it is well accepted that the risk of a variant is
inversely proportional with respect to its prevalence: the rarer
the variant, the higher the risk (Wendt and Margolin 2019).
Therefore, e�ective identi�cation and discovery of rare variants
is an active, is an ongoing research area (Lawrenson et al. 2016;
Lee et al. 2019). This phenomenon is not limited to breast cancer,
but is progressively being studied across di�erent cancer types.
See, for example, the recent works on ovarian (Phelan et al.
2017), skin (Goldstein et al. 2017), prostate (Nguyen-Dumont
et al. 2020) and lung (Liu et al. 2021) cancers and references
therein. In downstream analysis, these estimates could be useful
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Figure 3. Estimation accuracy v
(M,1)
N for new variants appearing with prevalence one in future unobservable samples for di�erent cancer types. For eachmethod and each

cancer, we retain N = 10 random samples and use them to estimate up to the largest possible size.

Figure 4. Estimation accuracy v
(M,1)
N for new variants appearing with prevalence one in future samples. For each method and di�erent cancer types, we retain a random

sample of size N = 5% of the available dataset, and use it to estimate up to the largest possible size.

for planning and designing future experiments, for example,
informing scientists on the number of new samples to be col-
lected in order to observe a target number of new variants, or for
power analysis considerations in rare variants association tests
(Rashkin et al. 2017).

The BNP framework considered here allows us to esti-
mate the number of new rare variants to be discovered
(Figure 3). While Zou et al. (2016) did not consider the
problem of estimating rare variants, it is straightforward to
obtain an estimate for this quantity from their framework.
Indeed, for every prevalence x ∈ [0, 1], the LP estimates
the histogram h(x), which counts the number of variants
appearing with prevalence x in the population, and the number
of variants appearing with prevalence r follows from the

binomial sampling model assumption, namely Û
(M,r)
N =

∑
x h(x)

{(N+M
r

)
xr(1 − x)N+M−r −

(N
r

)
xr(1 − x)N−r

}
. We

show in Figure 4 that the SSB method provides better estimates
than the 3BB and LP methods.

4.4. Coverage and Calibrated Uncertainties

One of the bene�ts of the BNP approach is that it automatically
yields a notion of variability of the estimate of U via poste-

rior credible intervals. We here check whether these intervals
produce a useful notion of uncertainty, by investigating their
calibration. For α ∈ (0, 1), we say that a 100 × α% credible
interval is calibrated if it contains the true value of interest,
arising fromhypothetical repeated draws, 100×α%of the times.
We here assess the calibration of a 100 × α% credible interval
for U(M)

N conditionally given Z1:N as follows. Let S be a large
number (S = 1000 in our experiments). For each s = 1, . . . , S,
we retain a random subset of the data of size N, and estimate
the corresponding parameters β̂ , ĉ, σ̂ as discussed in Section 4.1.

Then, we let Ŵ(M)

N,s,low(α), Ŵ(M)

N,s,hi(α) be the endpoints of a 100×

α% credible interval for the distribution of the number of new
features, as given by Equation (13), centered around the poste-
rior predictive mean. We compute coverage calibration via

w
(M)
N (α) =

1

S

S∑

s=1

1

{
Ŵ

(M)

N,s,low(α) ≤ KN+M ≤ Ŵ
(M)

N,s,hi(α)

}
.

This is the fraction of the S experiments in which the true
value was contained by a 100× α% credible interval. The closer

w
(M)
N (α) to α, the better calibrated the credible intervals. We

compute the same quantity for the 3BBmethod using the results
in Masoero et al. (2021). Although still not perfect, we �nd that
the posterior predictive intervals obtained from the SSBmethod
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Figure 5. Coverage calibration of BNP estimators for number of new variants in future samples across all cancer types in TCGA. Di�erent subplots refer to di�erent ratios
of the training N with respect to the extrapolation M. For each cancer, we retain a training sample of size N ∈ {5%, 10%, 20%, 30%} of the total available dataset, and

extrapolate up to the largest availableM. Colored lines report the average coverage w
(M)
N (α) across all cancer types (y-axis) as a function of α (x-axis). Faded dots refer to

coverage for individual cancer types.

are better calibrated than the ones under the 3BB method (see
Figure 5).

5. Discussion

Masoero et al. (2021) �rst applied CRM priors to the unseen-
features problem, showing that: (i) despite the broadness of the
class of CRM priors, all CRM priors lead to the same Poisson
posterior structure for the number of unseen features, which
thus makes them not a �exible prior model for the unseen-
features problem; (ii) while the Poisson posterior distribution
may be appealing in principle, making the posterior inferences
analytically tractable and of easy interpretability, its indepen-
dence from Z1:N makes the BNP approach a questionable over-
simpli�cation, with posterior inferences being completely deter-
mined by the estimation of unknown prior’s parameters. In this
article, we introduced the SB-SP prior, and showed that: (i) it
enriches the posterior distribution of the number of unseen
features arising under CRM priors, which results in a negative
Binomial distribution whose parameters depend on the sample
size and the number of distinct features; (ii) it maintains the
same analytical tractability and interpretability as CRM priors,
which results in BNP estimators that are simple, linear in the
sampling information and computationally e�cient. The e�ec-
tiveness of the SB-SP prior is showcased through an empirical
analysis on synthetic and real data. Under the SB-SP prior,
we found that estimates of the unseen number of features are
accurate, and they outperform the most popular competitors in
the challenging scenario where the sample size N is particularly
small, and also small with respect to the extrapolation sizeM.

Our approach admits an extension to the multiple-feature
setting, which takes into account of themany forms of variation,
for example, single nucleotide changes, tandem repeats, inser-
tions and deletions, copy number variations (Zou et al. 2016).
We brie�y describe the multiple-feature setting, and defer to
Appendix S5 for details. It is assumed that a feature wi comes
with a characteristic, that is, the formof variation, chosen among
q > 1 characteristics. For N ≥ 1, the observable sample Z1:N =

(Z1, . . . ,ZN) is modeled as a {0, 1}q-valued stochastic process
Z =

∑
i≥1 Aiδwi , where Ai := (Ai,1, . . . ,Ai,q) is a Multinomial

random variable with parameter pi = (pi,1, . . . , pi,q) such that
|pi| =

∑
1≤j≤q pi,j < 1, and the Ai’s are iid. That is, for any

i ≥ 1 all the Ai,j’s are equal to 0 with probability (1 − |pi|), that
is, wi does not display variation, or only one Ai,j’s is equal to 1

with probability pi,j, that is, wi displays variation with charac-
teristic j. Z is a multivariate Bernoulli process with parameter
ζ =

∑
i≥1 piδwi . The stable-Beta-Dirichlet process prior for ζ

is a multivariate generalization of the stable-Beta process prior
(James 2017), and it leads to a Poisson posterior distribution for
the number of unseen features, given Z1:N , which depends on
Z1:N only throughN. In Appendix S5 we introduce a scaled ver-
sion of the stable-Beta-Dirichlet process, and show that it leads
to a negative Binomial posterior distribution for the number
of unseen features, which depends on Z1:N through N and the
number of distinct features in Z1:N .

SP priors have been introduced in James, Orbanz, and Teh
(2015) and, to the best of our knowledge, since then no other
works have further investigated such a class of priors. To date, the
peculiar predictive properties of SP priors appear to be unknown
in the BNP literature. Our work on the unseen-features prob-
lem is the �rst to highlight the great potential of SP priors in
BNPs, showing that they provide a critical tool for enriching
the predictive structure of the popular CRM priors (James 2017;
Broderick, Wilson, and Jordan 2018). We believe that SPs may
be of interest beyond the unseen-features problem, and more
generally beyond the broad class of feature sampling problems.
CRM priors, and in particular the Beta and stable-Beta process
priors, have been widely used in several contexts, with a broad
range of applications in topic modeling, analysis of social net-
works, binary matrix factorization for dyadic data, analysis of
choice behavior arising frompsychology andmarketing surveys,
graphical models, and analysis of similarity judgment matrices.
See Gri�ths and Ghahramani (2011) and references therein for
details. In all these contexts, SP priors may be more e�ective
than CRM priors, as they allow to better exploit the sampling
information in posterior inferences.

Among applications of SP priors beyond features sampling
problems, it is worth mentioning the use of SP priors as hier-
archical (or latent) priors in models of unsupervised learning
(Gri�ths and Ghahramani 2011, sec. 5), the most popular being
Gaussian latent featuremodeling. Di�erently from features sam-
pling problems, where the values of features’ labels Wis are
immaterial, in Gaussian latent feature modeling the values the
Wi’s become material. That is, under the Gaussian latent feature
model with a SP prior, observations are assumed to modeled as
a multivariate Gaussian distribution, whose mean depends on
latent features that are modeled with a SP prior, thus, making
the values of features’ labels Wi’s of critical importance for the
analysis. Bayesian factor analysis (Knowles and Ghahramani
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2011) provides another context where SP priors may be usefully
applied as hierarchical priors. Within the context of factor anal-
ysis, we also mention the work of Ayed and Caron (2021) with
applications to network analysis. There, the authors exploit CRM
priors to recover the latent community structure in a network
between individuals, and the features’ labels describe the level
of a�liation of a certain individual to a latent community. In
such a context, we believe that SP priors may be used in place of
CRM priors, with the advantage of introducing richer predictive
structure. In this respect, our work paves the way to promising
directions of future research, in terms of both methods and
applications.
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