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Abstract

Intelligent management of power and spectrum is the most important ingredient in creating wireless sensor networks with
high reliability and longevity. The main application under study in this paper is accurate monitoring of forest ecosystems
using high spatio-temporal resolution. High cost of the current systems and their power consumption limits wide spread use
of these systems limiting the accuracy of current models. This project utilizes artificial intelligence and machine learning
to learn the changes in the wireless network and environment, producing power efficient systems that are low cost to enable
large scale monitoring. The proposed system was built at the University of Maine’s Wireless Sensor Networks (WiSe-Net)
laboratory in collaboration with University of New Hampshire and University of Vermont researchers for soil moisture
measurement with provision to include other sensor types at later stages.
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1 Introduction

Measuring forest ecosystem properties and processes has
become increasingly complex, involving a variety of data
collection systems, software, and computing environments.
Intelligent management of power and spectrum is the most
important ingredient in wireless communications and creat-
ing wireless sensor networks [1, 2]. Sensor nodes, or small
affordable devices with limited computational power and
memory [1], may enable high-resolution forest ecosystem
monitoring if they are integrated into a network that mini-
mizes power consumption. Artificial Intelligence (AI) and
Machine Learning (ML), in particular Reinforcement Learn-
ing (RL), can provide the requisite tools for this network
integration. Artificial intelligence provides the background
for information systems with a focus on increased systems
automation and better systems control. Using Artificial
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intelligence for environmental monitoring has drawn sig-
nificant attention in recent years [3—7]. In Wireless Sensor
Networks (WSN), ML techniques can be used to avoid the
need for re-programming [8]. This technique is useful in
WSN for deploying the nodes in extreme environments and
collecting the data from unreachable and dangerous loca-
tions. In addition, WSN extract a large amount of data which
may not be properly correlated, and ML techniques can be
used to extract data from different levels of abstraction.

Here we propose a WSN to monitor soil moisture, which
has been increasingly recognized as an important ecosys-
tem property in forested and agricultural systems alike [9,
10, 11, 12, 13, 14], inspiring the establishment of both soil
moisture monitoring networks [15-18] and large, freely
available soil moisture databases [18]. Despite the impor-
tance of measuring soil moisture and its distribution across
the landscape [19], the cost of commercial soil moisture
sensors remains prohibitive. We have designed a low-cost
system that includes wireless sensor nodes managed by an
Al engine for power efficiency. Although we focus here on
soil moisture measurement, the same methodology could be
extended to other types of sensors with proper power and
frequency optimization.

The rest of this paper is organized as follows. The overall
system block diagram is presented in Sect. 2. ML for wire-
less sensing is expressed in Sect. 3. Experimental results
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are presented in Sect. 4. Concluding remarks are presented
in Sect. 5.

2 System Design

A WSN is a distributed sensor network to monitor physi-
cal or environmental conditions, such as air temperature,
relative humidity, soil temperature, and soil moisture to
cooperatively pass data through the network to a centralized
processing location or act on the information in a distributed
manner [20]. Wireless soil moisture sensor network refers to
WSN with the networking of soil moisture sensors. These
networks are bidirectional and also allow control of sensor
sampling rate and transmit/sleep state. Figure 1 shows the
system block diagram of the proposed soil moisture sensing
system. Each block is explained in the following subsections.

2.1 Soil Moisture Sensor

One important factor affecting the growth rate of forests is
the available moisture in the soil [13]. In addition to the
availability of water for the plants themselves, the level water
in the soil affects the usage of nitrogen uptake by the roots
and the oxygen level at the roots [21]. There are two types of
soil moisture sensors, contact-based and contact-free.

In contact-based method, the detection area of the sen-
sor needs to be touched directly with the detection media,
i.e., the soil . Contact-based sensors have various methods
based on detection parameters such as capacitive sensors
[22], heat pulse sensors, and fiber optic sensors [23]. With
contact-free sensors, there is no need to contact the detection
media that is being detected. Contact-free sensors include
passive microwave radiometers, synthetic aperture radars,
and thermal methods [24, 25]. Contact-free sensors are more
expensive and more complicated compared to contact-based
Sensors.
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Fig. 1 System block diagram with the soil moisture sensor as a typi-
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The standard way to determine soil moisture is the ther-
mogravimetric method which is introduced in [26]. In this
method, the weight loss of soil is measured after oven drying
of soil with known mass at 105 °C. The main issues with this
method are that they are very time consuming and they can
not be repeated because they are destructive measurements.

Over the past several decades, these destructive methods
have been replaced by electronic devices such as capaci-
tance, impedance, dielectric and time domain reflectrom-
etry sensors [27]. Different soil moisture measurement tech-
niques have been proposed in the literature [28, 29, 30]. For
instance in [30], the authors proposed a way for measuring
soil moisture content by monitoring electromagnetic radia-
tion of soil, which depends on sensitivity of microwaves to
soil moisture. Impedance soil moisture sensing technology
involves inserting separate rods into the soil and changing
conductivity by altering water content [31]. This method
is based on changing the soil conductivity by changing the
water content of the soil. Frequency domain sensors has
been proposed in [32]. These kinds of soil moisture sen-
sors measure soil impedance changes because of the water
content variations. These sensors are available as single and
multi sensor probes which offer different measuring tech-
niques [33, 34]. Other methods include fiber optic sensors
[35, 36], dye doped plastic fibers [37], ceramic sensors [38],
and neutron scattering method [39].

In this project, we are using the DFRobot SKU:SEN(0193
which measures soil moisture levels by capacitive sensing
rather than resistive sensing, which is more durable, stable,
and most importantly low power. It is made of corrosion
resistant material and includes an on-board voltage regulator
with an operating voltage range of 3.3-5.5 V enabling easy
connection to a low voltage microprocessor with support
for both 3.3 V and 5 V. This was selected over the Adafruit
STEMMA 12C Capacitive Moisture Sensor capacitive soil
moisture sensor and the Grove Capacitive Soil Moisture
Sensor based on the criteria outlined above.

2.2 Analog to Digital Converter (ADC)

Since the selected sensors are analogue devices, it is neces-
sary to convert the sensor output to digital format, readable
by the microprocessor that can only accept digital inputs.
To gather sufficient information on the temporal and
spatial variations and characteristics of soil moisture, it is
highly desirable to take measurements at a sufficiently high
frequency as determined by ecological research questions.
A competing objective is to have the network function in
an automated fashion for as long as possible, since such
networks are typically deployed in forests without immedi-
ate access to power or human intervention. This requires
us to reduce the active operating times of the wireless
nodes to conserve energy, even when renewable power
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sources are used. We need to make judicious decisions
in measurement scheduling, i.e., when is the best time to
take a measurement, so as to minimize the total amount
of time the node needs to be active in actuating the mois-
ture probes and in data transmission, while still satisfying
the monitoring objective, i.e., achieving a desired level of
accuracy (as determined by the ecological models) in the
estimated soil moisture evolution using the measurement
data collected.

The output values of soil moisture sensor varies from 0
to 100 representing the lowest and highest soil moisture,
respectively. The Texas Instruments Launchpads has 12-bit
Analog to digital converter (ADC) and its sampling rate is
200 ksamples/s. It means the resolution or the number of
intervals of this ADC is equal to 4096 and the dynamic range
is 72dB. The least significant bit (LSB) can be calculated
as full scale range of the sensor output voltage divided by
number of intervals which is 4096. Since the sensor output
values vary between 0 and 100, the LSB is equal to 0.024
and the quantization error in our ADC is around 0.012.

2.3 Microprocessor

The computational logic is responsible to handle on-board
data processing and manipulation, temporary storage and
data encryption. The faster and more powerful processors
usually have a higher energy consumption and cost. Proces-
sors with high code density and different operational modes
like active, idle, nap and sleep modes to preserve energy
are required.

There are different microprocessor options such as Intel
8051, Microchip PIC, Atmel AVR and TI ARM. Among
these microprocessor options, ARM processors are widely
used in consumer electronic devices. Because of their
reduced instruction set, they need fewer transistors, which
enable a smaller die size of the integrated circuitry (IC). The
ARM processors’ smaller size and lower power requirements
makes them suitable for increasingly miniaturized devices.

In our project, we are using Texas Instruments CC1310
device which is a wireless microcontroller unit (MCU) with
an ARM Cortex-M3 microprocessor. The ARM Cortex-M3
processor is a 32-bit processor for low-cost high performance
applications. The ARM Cortex-M3 processor family was
selected because they are optimized for cost and are energy-
efficient. These processors have been used in a variety of
applications, including a variety of edge devices, industrial
control, and everyday consumer devices. The processor
family is based on the M-Profile Architecture that provides
low-latency and high reliability in embedded systems. The
Cortex-M3 processor provides a high-performance, low-cost
platform that meets the system requirements for low-power
consumption and high reliability.

2.4 Radio Module

Radio modules are required to enable sensor nodes to com-
municate with each other and to the base station. We are
using a Sub 1 GHz radio module which provides a reliable
transceiver with one built-in antenna at a reasonable cost.
Sub 1 GHz RF operates in the ISM spectrum bands below
1 GHz—typically in the 769-935 MHz , 315 MHz and the
468 MHz frequency range. They offer more range than the
2.4 GHz. Sub 1 GHz wireless transmission offers 1.5-2
times more distance coverage than the 2.4 GHz spectrum.
Also, the Sub 1 GHz wireless spectrum has a long range
mode that is well suited to this application. Wireless Sub
1 GHz RF needs a lower power signal from the transceiver
compared to the 2.4 GHz spectrum to get the same output
power signal at the receiver.

2.5 Antenna

Five antenna types were considered. Each antenna was
subjected to the same range testing. However Antenna 1,
a CR2032 PCB Antenna, had such a poor overall perfor-
mance, such that it was irrelevant to include in this report
(Tables 1 and 2).

Especially in regards to power efficiency, this provides
close, but not exact expectations of the system. Antenna 3,
a compact PCB helical antenna, and antenna 4, an orthog-
onal array of two helical antennas, performed similarly in
range testing. Antenna 5 was the worst performing, with
a range of under 100 feet before falling below a level that
was unreadable. Using a Received Signal Strength Indi-
cator (RSSI) cut off value of —75 dBm, the board antenna
achieved a working distance of 250 ft, and for now, we will
use the 250 ft. result to design our network grid. Figure 12
shows RSSI of each antenna at each distance measured.

Future designs will implement a compact PCB heli-
cal antenna, demonstrated with antenna 3, as it allows for
the possibility of increasing the current 250 ft. range and
reducing the overall size of the device.

Table 1 Antenna Metrics [40]

Antenna option Directivity (dBi) Effective radi-
ated power
(%)

2 3.92 46.61

3 4.13 63.05

4 4.39 31.33

5 4.16 46.83

On-board antenna 4.47 80.38
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2.6 Software Design

The software for the system was created using the Energia
framework for Texas Instruments microcontrollers. This was
selected to allow for the system to be easily extensible to a
variety of sensors and enable the implementation of machine
learning models on the nodes themselves via TensorFlow
lite. The system control flow is detailed in Fig. 2. This gen-
eral system control allows for maximum power conservation
by only transmitting data that is significantly different than
what was previously transmitted. Furthermore, the system
only transmits when there is sufficient power. The ML infer-
ence is also detailed in the diagram; this step constitutes
the routing and transmission decisions outlined in the next
section.

3 ML for Wireless Sensing

3.1 Introduction

We test three main approaches for controlling the network.
First, a baseline model without any Al is developed. Second,

a single Al is developed to control the entire network. Third,
a multi-agent approach is adopted.

In the initial baseline phase, a battery-agnostic round-
robin approach to network traffic scheduling is used for
scheduling network traffic. This is done in a battery-inde-
pendent manner, allocating network resources to the nodes
in equal proportion, without regards to their battery level or
the size of their transmission queue.

When using the multi-agent approach, the nodes must
cooperate to share channel resources and power. This means
that the control problem falls in the purview of multi-agent
RL—the nodes must make individual decisions about a
shared environment [41].

However, the states of the other nodes are not directly
observable by any node. This means that this is a Partially
Observable Markov Decision Process (POMDP) [42]. In
order to control the sensor network, an innovative Al algo-
rithm was developed using RL. This system placed each
autonomous sensor node under the control of a ML system
which controlled the transmission scheduling for the node.

Multi-agent RL for POMDPs is one of the least studied
and most difficult areas of RL [42]. A number of approaches
have been proposed for this type of problem [41].

A great deal of success has been achieved in this area
using game theoretic approaches [43, 44]. However, the
application of these approaches can be challenging, and
so we propose using ML to allocate these resources.

Wirel network soft architect
Main Process SensorManager(s) D MLRouter Battery model TxScheduler Channel model
Loop Start Read sensors l
Update stored
data
Np
Tx? YI
Begin
P schaduling Update battery
Set Check channel ‘
Update channel
model
Send Transmit Tx or wait 4‘
Wai
| Done

Fig.2 Software control flow for the proposed system
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Specifically, we use a RL as it is the branch of ML con-
cerned with game theoretic tasks and system control [45].

3.2 Methods
3.2.1 Environment

We began by creating an environment for the agents. This
included star network and relay network configurations,
Quadrature Phase-Shift Key (QPSK) modulation, and
fading channel simulation via [46]. This source code is
available on GitHub. The network was designed using the
OpenAI Gym API.

The environment simulated a star network architecture,
with several nodes transmitting to a central base station.
Depending on the simulation, different observations were
returned to the agent for decision making. These inputs are
discussed in each section.

Once the simulation was created, the following methods
were implemented using the PyTorch ML Framework:

Baseline Model

Q-learning

Deep Q-Network (DQN)
Multi-agent Deep Q Network

One primary motivator for using Q-value based approaches
is that it allows for caching the outputs of the system, and
may avoid deploying the entire neural network in the field.
Policy-based approaches are also being developed in future
work (for example, A2C as used in [42]).

3.2.2 Baseline Model

The baseline model used for the star network was a round-
robin architecture. The process was as follows: the center
node requests all data from each node in sequence. This
means that node one transmits one packet to the base sta-
tion, then node two transmits all its data, and so on for
each node in the network.

Algorithm 1 Baseline Network Control

for node in network do
send request to node
if request Received by node then
send packet to base station
end if
end for

3.2.3 Deep Q Network

The reward function used in training the deep Q network
is as follows:

-1 battery <0
R(a,s)=20 . no transmission (1)
1 — 2 otherwise

total

where n,,,,, is the number of times this has transmitted, and
N, 18 the total number of transmissions made across the
network as a whole. This reward function was developed to
ensure that all nodes should transmit. Preliminary experi-
ments showed that the DQN would tend to neglect packets
from all but one or two nodes. Changing to this reward func-
tion rectified the problem (Fig. 3).

The observation by the agent was the battery level and
the number of transmissions at each node. Although the
system was able to coordinate taking turns from this input,
we encountered an implementation problem as the infor-
mation is not available to individual sensor nodes. This
could potentially be address using a Q-value or a multi-
agent RL approach using only local information.

The network architecture selected was simple: seven
fully connected layers with exponential linear unit (ELU)
activation functions [47]. Architectures with Rectified
Linear Units (ReLU) activation functions often failed to
converge. Changing to from ReL.U to ELU activation func-
tions caused the models to converge while holding other
hyperparameters constant.

The convergence dynamics of the DQN are shown in
Figs. 4 and 5. The DQN is a well studied architecture, and
several enhancements could be made including the use of
Huber Loss in place of the mean squared error (L?) loss,
the use of of a target network, etc.

Distributed Deep Q-Learning

Exp. .
Buffer
DQON - Actions Network Simulation
Update weights Node 1 (Environment)

Reward, Action, observation, state, updated state

Reward, Action,
observation,
state,

Update weights DQN— DON— A Update weights | updated state
Node 2 Node 3 !
Exp. W Exp.
Buffer Reward, Action, observation, state, updated state Buffer

Fig. 3 Distributed deep Q-learning block diagram
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Fig.5 Convergence of deep Q network implementation

3.2.4 Multi-agent DQN

For the multi-agent system, each agent (node) observed
the environment based on the received waveform at the
antenna.

The neural network for this approach would have to be
run on sensor nodes with limited computing resources,
and would have to be run every transmission. This creates
a strong incentive for the network architecture to be as
small as possible. We were able to get good performance
with as little as four layers by using two one-dimensional
convolutional layers followed by two fully connected lay-
ers. However, much better results were obtained with a
deeper architecture. This can be seen in Fig. 6. All layers
used ELU activation functions.

The multi-agent system required a modified reward
function. The same reward was given to all the nodes, but
packet collisions had to be addressed.

@ Springer

-

Fig.6 General architecture of small single agent

U u gL

Table 2 Multi-agent neural network architecture (N is batch size)

Layer Description Tensor Dimensions
0 Input N, 1,10000
1 1-D Convolution N, 1,4999
2 1-D Max Pool N, 1,2501
3 Dropout (p=0.2) N, 1,2501
4 1-D Convolution N, 1,1250
5 1-D Max Pool N, 1,626
6 Dropout (p=0.2) N, 1,626
7 1-D Convolution N, 1,312
8 1-D Max Pool N, 1,157
9 Dropout (p=0.2) N, 1,157
10 Linear/fully connected N, 64
11 Linear/fully connected N, 16
12 Linear/fully connected N, 2
-1 battery = 0, collision
R(a,s) = or no transmission )

| — Zwde otherwise

total

This reward function differs from the previous one in a few
key ways. First, it penalizes packet collisions, which could
not happen in the previous architecture. Further, it also
penalizes all the nodes if none of them transmit. Without
this penalty, our research suggested that all the nodes would
choose not to transmit to avoid packet collisions. This was
clearly not the desired behavior, so the reward function was
modified to address this problem.

The input to the agents was the simulated waveform at the
receiver and the nodes battery level. This included the trans-
mitted waveform from each other node, with multi-path fad-
ing, distance-based attenuation, and Gaussian noise. These
modulated waveforms allowed the nodes to ’overhear’ other
nodes’ communications to determine when the channel is
free.

Reward and loss from the training of the system are
shown in Figs. 7 and 8, respectively. The system was trained
using an epsilon-greedy method.
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Fig.7 Episode 1 training rewards for multi-agent DQN

Episode One Training Loss

Loss (Mean Squared Error)
[==]

24 == Node 4
Node 5
0 - : - -
200 300 400 500

Step in Episode 1

Fig.8 Episode 1 losses for multi-agent DQN

Multi-agent systems come with difficulties with conver-
gence and are difficult to optimize [41]. Initial attempts to
create a multi-agent system converged, but the majority of
nodes would not speak, and the last node would transmit
as often as possible. This strategy lead us to penalize this
in the reward function, but it is worth noting that this was
detrimental to the convergence dynamics of the system; fail-
ures for the system to converge occurred during training, but
maintaining a higher e (more exploration of the state space)
improved the convergence dynamics.

Further, another method allowed the system to converge.
When choosing actions randomly, each of the k nodes chose
to transmit with probability p = % and chose not to transmit
with probability 1 — p. This meant that on average, one node
is transmitting to the base station at any time step, when
actions are chose randomly. When the nodes transmitted
and held their transmission with equal probability (that is,
P(transmit) = P(nottransmit) = 0.5) the learning dynamics
either did not converge, or converged to the situation where

no nodes transmitted. The altered probability of transmis-
sion, we hypothesize, lead to better exploration and allow the
system to learn the desired behavior by allowing the system
to find the desired behavior at random.

3.3 Results
3.3.1 Power Use

The primary goal of the system was to optimize power con-
sumption of the network system. To this end, we compared
the power usage across the three architectures; i.e. baseline
model with no Al, single Al model, and multi-agent model.

There are a number of other considerations for choosing
the best approach. The multi-agent DQN requires each node
to run it own deep neural network, and perform one forward
pass at each time step. This may not be practical for all appli-
cations, as this requires significant computational resources.

The centralized control approaches exploit the star net-
work architecture to place the base station in control of the
entire network. This means that only the base station would
need to complete the forward pass of the neural network,
allowing the nodes to conserve power.

A comparison of the power used by the three approaches
is shown in Fig. 9. The baseline model, as it was battery
agnostic, lead to nodes often exhausting their batteries.

3.3.2 Network Resource Use

As you can see in Fig. 10, the baseline network called on
the nodes to transmit far more often. This means that the the
DQN and multi-agent DQN are much better at maintaining
high battery levels than the baseline that did not include
awareness of the battery.

However, the best method for optimizing the received
reward was the Multi-Agent DQN as shown in Fig. 11. This

Number of Times Battery Exhausted

60000

50000 A

40000

Count

30000 -

20000 A

10000 -

Baseline

Centralized DQN Multi-Agent DQN

Network Control Method

Fig.9 Comparison of power usage by all three methods
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Fig. 11 Comparison of the running average received rewards

suggests that the reward function did encourage the desired
behaviour from the nodes.

4 Experimental Results

In this section experiment design and obtained results are
presented. Antenna test results are presented first, followed
by overall system verification results.

4.1 Antenna Test Results

Each antenna was tested using the same methodology.
Matching antenna were attached to the base station, and a
separate TI launchpad. This launch pad was programmed to
transmit one hundred packets of random characters at multi-
ples of fifty feet distances to a final three hundred foot range.
The base station, consisting of another TT launchpad and a

@ Springer

laptop computer, recorded each incoming packet’s RSSI at
each distance (Fig. 12).

Antenna 3, the compact helical antenna will be the
antenna used in future designs. It outperformed the current
built-in antenna, and while it was slightly under performing
as compared to the orthogonal compact PCB antennas, the
slight increase in performance did not warrant the dramatic
increase in antenna size.

4.2 Sensor Calibration with Machine Learning

The system’s sensors were calibrated using a machine learn-
ing algorithm to correct the hysteresis in the sensor response.
To do this, data was collected using a Campbell Scientific
data logger with a CS650 Campbell Scientific soil mois-
ture sensor. Calibration was done following [48, 49] using
Gaussian Process Regression, Random Forest Regression,
and Support Vector Regression.

The soil for the experiment was dried in an oven at 225 °F
(107 °C) for 1 h. The data was collected by placing the two
sensors in the same soil approximately 2 cm apart. Water
was then added to the soil in increments of 15 ml every five
minutes until 300 ml was added. Both sensors were sampled
once per second. The collected data was then divided into
training (90%) and test data (10%).

A comparison of the base sensor data and the true values
can be seen in Fig. 13. After calibration, the sensor values
closely tracked the true values, as shown in Fig. 14. All val-
ues assume the Campbell Scientific data logger values as the
ground truth values. Computations were completed using
methods described in [50, 51, 52].

4.3 System Validation Results
Based on the test data from the experiment, we see close
agreement between the sensor systems with the proposed

system explaining over 97% of the variance in the Campbell
Scientific system’s measurements.
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Fig. 12 RSSI of each antenna at each distance measured
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Sensor Reading and True Values
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Of the variety of model types considered for the system
calibration, Random Forest and Gaussian Process models
provided similar results that were an excellent match to
the target data. Both provided an 72 value of approximately
0.972, with the random forest model slightly higher. A
view of the results from the calibration are shown in
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Fig. 15. The random forest and Gaussian process mod-
els provide almost identical estimates of the target sig-
nal. The support vector regression model offers inferior
performance to the other methods. A variety of kernels
were used in the models, and radial basis function kernels
consistently outperformed the other options (Fig. 16).

A comparison of the test data true and predicted results
is shown in Fig. 17. It is worth noting that the variance in
the prediction increases with larger volumetric water con-
tent readings, likely due to hysteresis. Some variance may
also be due to slight differences in sampling frequency
as the proposed system does not have a real time clock
to maintain an exact sampling rate. Since the system will
sample every 15 minutes at deployment, we do not expect
this to be an issue.

Once the data were cleaned, results were compared
using a variety of metrics. These measures are in Table 3.
A visual comparison of the data can be seen in Fig. 17.
Based on this experiment, we see that the systems provide
a comparable set of measurements.
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Table 3 Test metrics for the calibration models

Explained variance MSE MAE
Random forest 0.9721 0.0003 0.0108
Gaussian process 0.9718 0.0003 0.0109
Support vector 0.7501 0.0024 0.0373
No calibration —1.3e6 2.7e5 502.36

5 Concluding Remarks

In this paper, a low cost and reliable wireless soil moisture
sensing system is proposed to enable high spatio-temporal
data collection for improving our understanding of forest
ecosystems. The developed methods allow for implementa-
tion of low-power sensor networks with optimized control
using artificial intelligence and machine learning. This con-
trol system is comparable to the round-robin style baseline in
terms of network control, and offers stable throughput in the
network and conserves power. Furthermore, there is scope to
extend the reinforcement learning algorithm to more nodes
and other network architectures. The multi-agent approach
offers power consumption benefits compared to the baseline
used, and makes the best use of available network resources.
In addition to these simulation results, we also compared the
proposed system with industry standard wired systems in a
field experiment. The results show reasonably similar data
at much lower cost.

Future work includes enhancing the the sensor node with
additional sensor types (soil and ambient temperature, snow
depth, and more) and scaling up the network with more sen-
sor nodes [53, 54, 55].
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