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Abstract
Intelligent management of power and spectrum is the most important ingredient in creating wireless sensor networks with 
high reliability and longevity. The main application under study in this paper is accurate monitoring of forest ecosystems 
using high spatio-temporal resolution. High cost of the current systems and their power consumption limits wide spread use 
of these systems limiting the accuracy of current models. This project utilizes artificial intelligence and machine learning 
to learn the changes in the wireless network and environment, producing power efficient systems that are low cost to enable 
large scale monitoring. The proposed system was built at the University of Maine’s Wireless Sensor Networks (WiSe-Net) 
laboratory in collaboration with University of New Hampshire and University of Vermont researchers for soil moisture 
measurement with provision to include other sensor types at later stages.
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1  Introduction

Measuring forest ecosystem properties and processes has 
become increasingly complex, involving a variety of data 
collection systems, software, and computing environments. 
Intelligent management of power and spectrum is the most 
important ingredient in wireless communications and creat-
ing wireless sensor networks [1, 2]. Sensor nodes, or small 
affordable devices with limited computational power and 
memory [1], may enable high-resolution forest ecosystem 
monitoring if they are integrated into a network that mini-
mizes power consumption. Artificial Intelligence (AI) and 
Machine Learning (ML), in particular Reinforcement Learn-
ing (RL), can provide the requisite tools for this network 
integration. Artificial intelligence provides the background 
for information systems with a focus on increased systems 
automation and better systems control. Using Artificial 

intelligence for environmental monitoring has drawn sig-
nificant attention in recent years [3–7]. In Wireless Sensor 
Networks (WSN), ML techniques can be used to avoid the 
need for re-programming [8]. This technique is useful in 
WSN for deploying the nodes in extreme environments and 
collecting the data from unreachable and dangerous loca-
tions. In addition, WSN extract a large amount of data which 
may not be properly correlated, and ML techniques can be 
used to extract data from different levels of abstraction.

Here we propose a WSN to monitor soil moisture, which 
has been increasingly recognized as an important ecosys-
tem property in forested and agricultural systems alike [9, 
10, 11, 12, 13, 14], inspiring the establishment of both soil 
moisture monitoring networks [15–18] and large, freely 
available soil moisture databases [18]. Despite the impor-
tance of measuring soil moisture and its distribution across 
the landscape [19], the cost of commercial soil moisture 
sensors remains prohibitive. We have designed a low-cost 
system that includes wireless sensor nodes managed by an 
AI engine for power efficiency. Although we focus here on 
soil moisture measurement, the same methodology could be 
extended to other types of sensors with proper power and 
frequency optimization.

The rest of this paper is organized as follows. The overall 
system block diagram is presented in Sect. 2. ML for wire-
less sensing is expressed in Sect. 3. Experimental results 

 *	 Ali Abedi 
	 ali.abedi@maine.edu

1	 Electrical and Computer Engineering Department, 
University of Maine, Orono, ME, USA

2	 Center for Research on Sustainable Forest, University 
of Maine, Orono, ME, USA

3	 University of New Hampshire, Durham, NH, USA

http://orcid.org/0000-0001-7879-9375
http://crossmark.crossref.org/dialog/?doi=10.1007/s10776-022-00572-9&domain=pdf


258	 International Journal of Wireless Information Networks (2022) 29:257–268

1 3

are presented in Sect. 4. Concluding remarks are presented 
in Sect. 5.

2 � System Design

A WSN is a distributed sensor network to monitor physi-
cal or environmental conditions, such as air temperature, 
relative humidity, soil temperature, and soil moisture to 
cooperatively pass data through the network to a centralized 
processing location or act on the information in a distributed 
manner [20]. Wireless soil moisture sensor network refers to 
WSN with the networking of soil moisture sensors. These 
networks are bidirectional and also allow control of sensor 
sampling rate and transmit/sleep state. Figure 1 shows the 
system block diagram of the proposed soil moisture sensing 
system. Each block is explained in the following subsections.

2.1 � Soil Moisture Sensor

One important factor affecting the growth rate of forests is 
the available moisture in the soil [13]. In addition to the 
availability of water for the plants themselves, the level water 
in the soil affects the usage of nitrogen uptake by the roots 
and the oxygen level at the roots [21]. There are two types of 
soil moisture sensors, contact-based and contact-free.

In contact-based method, the detection area of the sen-
sor needs to be touched directly with the detection media, 
i.e., the soil . Contact-based sensors have various methods 
based on detection parameters such as capacitive sensors 
[22], heat pulse sensors, and fiber optic sensors [23]. With 
contact-free sensors, there is no need to contact the detection 
media that is being detected. Contact-free sensors include 
passive microwave radiometers, synthetic aperture radars, 
and thermal methods [24, 25]. Contact-free sensors are more 
expensive and more complicated compared to contact-based 
sensors.

The standard way to determine soil moisture is the ther-
mogravimetric method which is introduced in [26]. In this 
method, the weight loss of soil is measured after oven drying 
of soil with known mass at 105 °C. The main issues with this 
method are that they are very time consuming and they can 
not be repeated because they are destructive measurements.

Over the past several decades, these destructive methods 
have been replaced by electronic devices such as capaci-
tance, impedance, dielectric and time domain reflectrom-
etry sensors [27]. Different soil moisture measurement tech-
niques have been proposed in the literature [28, 29, 30]. For 
instance in [30], the authors proposed a way for measuring 
soil moisture content by monitoring electromagnetic radia-
tion of soil, which depends on sensitivity of microwaves to 
soil moisture. Impedance soil moisture sensing technology 
involves inserting separate rods into the soil and changing 
conductivity by altering water content [31]. This method 
is based on changing the soil conductivity by changing the 
water content of the soil. Frequency domain sensors has 
been proposed in [32]. These kinds of soil moisture sen-
sors measure soil impedance changes because of the water 
content variations. These sensors are available as single and 
multi sensor probes which offer different measuring tech-
niques [33, 34]. Other methods include fiber optic sensors 
[35, 36], dye doped plastic fibers [37], ceramic sensors [38], 
and neutron scattering method [39].

In this project, we are using the DFRobot SKU:SEN0193 
which measures soil moisture levels by capacitive sensing 
rather than resistive sensing, which is more durable, stable, 
and most importantly low power. It is made of corrosion 
resistant material and includes an on-board voltage regulator 
with an operating voltage range of 3.3–5.5 V enabling easy 
connection to a low voltage microprocessor with support 
for both 3.3 V and 5 V. This was selected over the Adafruit 
STEMMA I2C Capacitive Moisture Sensor capacitive soil 
moisture sensor and the Grove Capacitive Soil Moisture 
Sensor based on the criteria outlined above.

2.2 � Analog to Digital Converter (ADC)

Since the selected sensors are analogue devices, it is neces-
sary to convert the sensor output to digital format, readable 
by the microprocessor that can only accept digital inputs.

To gather sufficient information on the temporal and 
spatial variations and characteristics of soil moisture, it is 
highly desirable to take measurements at a sufficiently high 
frequency as determined by ecological research questions. 
A competing objective is to have the network function in 
an automated fashion for as long as possible, since such 
networks are typically deployed in forests without immedi-
ate access to power or human intervention. This requires 
us to reduce the active operating times of the wireless 
nodes to conserve energy, even when renewable power 

Fig. 1   System block diagram with the soil moisture sensor as a typi-
cal example
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sources are used. We need to make judicious decisions 
in measurement scheduling, i.e., when is the best time to 
take a measurement, so as to minimize the total amount 
of time the node needs to be active in actuating the mois-
ture probes and in data transmission, while still satisfying 
the monitoring objective, i.e., achieving a desired level of 
accuracy (as determined by the ecological models) in the 
estimated soil moisture evolution using the measurement 
data collected.

The output values of soil moisture sensor varies from 0 
to 100 representing the lowest and highest soil moisture, 
respectively. The Texas Instruments Launchpads has 12-bit 
Analog to digital converter (ADC) and its sampling rate is 
200 ksamples/s. It means the resolution or the number of 
intervals of this ADC is equal to 4096 and the dynamic range 
is 72dB. The least significant bit (LSB) can be calculated 
as full scale range of the sensor output voltage divided by 
number of intervals which is 4096. Since the sensor output 
values vary between 0 and 100, the LSB is equal to 0.024 
and the quantization error in our ADC is around 0.012.

2.3 � Microprocessor

The computational logic is responsible to handle on-board 
data processing and manipulation, temporary storage and 
data encryption. The faster and more powerful processors 
usually have a higher energy consumption and cost. Proces-
sors with high code density and different operational modes 
like active, idle, nap and sleep modes to preserve energy 
are required.

There are different microprocessor options such as Intel 
8051, Microchip PIC, Atmel AVR and TI ARM. Among 
these microprocessor options, ARM processors are widely 
used in consumer electronic devices. Because of their 
reduced instruction set, they need fewer transistors, which 
enable a smaller die size of the integrated circuitry (IC). The 
ARM processors’ smaller size and lower power requirements 
makes them suitable for increasingly miniaturized devices.

In our project, we are using Texas Instruments CC1310 
device which is a wireless microcontroller unit (MCU) with 
an ARM Cortex-M3 microprocessor. The ARM Cortex-M3 
processor is a 32-bit processor for low-cost high performance 
applications. The ARM Cortex-M3 processor family was 
selected because they are optimized for cost and are energy-
efficient. These processors have been used in a variety of 
applications, including a variety of edge devices, industrial 
control, and everyday consumer devices. The processor 
family is based on the M-Profile Architecture that provides 
low-latency and high reliability in embedded systems. The 
Cortex-M3 processor provides a high-performance, low-cost 
platform that meets the system requirements for low-power 
consumption and high reliability.

2.4 � Radio Module

Radio modules are required to enable sensor nodes to com-
municate with each other and to the base station. We are 
using a Sub 1 GHz radio module which provides a reliable 
transceiver with one built-in antenna at a reasonable cost. 
Sub 1 GHz RF operates in the ISM spectrum bands below 
1 GHz—typically in the 769–935 MHz , 315 MHz and the 
468 MHz frequency range. They offer more range than the 
2.4 GHz. Sub 1 GHz wireless transmission offers 1.5-2 
times more distance coverage than the 2.4 GHz spectrum. 
Also, the Sub 1 GHz wireless spectrum has a long range 
mode that is well suited to this application. Wireless Sub 
1 GHz RF needs a lower power signal from the transceiver 
compared to the 2.4 GHz spectrum to get the same output 
power signal at the receiver.

2.5 � Antenna

Five antenna types were considered. Each antenna was 
subjected to the same range testing. However Antenna 1, 
a CR2032 PCB Antenna, had such a poor overall perfor-
mance, such that it was irrelevant to include in this report 
(Tables 1 and 2).

Especially in regards to power efficiency, this provides 
close, but not exact expectations of the system. Antenna 3, 
a compact PCB helical antenna, and antenna 4, an orthog-
onal array of two helical antennas, performed similarly in 
range testing. Antenna 5 was the worst performing, with 
a range of under 100 feet before falling below a level that 
was unreadable. Using a Received Signal Strength Indi-
cator (RSSI) cut off value of −75 dBm, the board antenna 
achieved a working distance of 250 ft, and for now, we will 
use the 250 ft. result to design our network grid. Figure 12 
shows RSSI of each antenna at each distance measured.

Future designs will implement a compact PCB heli-
cal antenna, demonstrated with antenna 3, as it allows for 
the possibility of increasing the current 250 ft. range and 
reducing the overall size of the device.

Table 1   Antenna Metrics [40]

Antenna option Directivity (dBi) Effective radi-
ated power 
(%)

2 3.92 46.61
3 4.13 63.05
4 4.39 31.33
5 4.16 46.83
On-board antenna 4.47 80.38
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2.6 � Software Design

The software for the system was created using the Energia 
framework for Texas Instruments microcontrollers. This was 
selected to allow for the system to be easily extensible to a 
variety of sensors and enable the implementation of machine 
learning models on the nodes themselves via TensorFlow 
lite. The system control flow is detailed in Fig. 2. This gen-
eral system control allows for maximum power conservation 
by only transmitting data that is significantly different than 
what was previously transmitted. Furthermore, the system 
only transmits when there is sufficient power. The ML infer-
ence is also detailed in the diagram; this step constitutes 
the routing and transmission decisions outlined in the next 
section.

3 � ML for Wireless Sensing

3.1 � Introduction

We test three main approaches for controlling the network. 
First, a baseline model without any AI is developed. Second, 
a single AI is developed to control the entire network. Third, 
a multi-agent approach is adopted.

In the initial baseline phase, a battery-agnostic round-
robin approach to network traffic scheduling is used for 
scheduling network traffic. This is done in a battery-inde-
pendent manner, allocating network resources to the nodes 
in equal proportion, without regards to their battery level or 
the size of their transmission queue.

When using the multi-agent approach, the nodes must 
cooperate to share channel resources and power. This means 
that the control problem falls in the purview of multi-agent 
RL—the nodes must make individual decisions about a 
shared environment [41].

However, the states of the other nodes are not directly 
observable by any node. This means that this is a Partially 
Observable Markov Decision Process (POMDP) [42]. In 
order to control the sensor network, an innovative AI algo-
rithm was developed using RL. This system placed each 
autonomous sensor node under the control of a ML system 
which controlled the transmission scheduling for the node.

Multi-agent RL for POMDPs is one of the least studied 
and most difficult areas of RL [42]. A number of approaches 
have been proposed for this type of problem [41].

A great deal of success has been achieved in this area 
using game theoretic approaches [43, 44]. However, the 
application of these approaches can be challenging, and 
so we propose using ML to allocate these resources. 

Fig. 2   Software control flow for the proposed system
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Specifically, we use a RL as it is the branch of ML con-
cerned with game theoretic tasks and system control [45].

3.2 � Methods

3.2.1 � Environment

We began by creating an environment for the agents. This 
included star network and relay network configurations, 
Quadrature Phase-Shift Key (QPSK) modulation, and 
fading channel simulation via [46]. This source code is 
available on GitHub. The network was designed using the 
OpenAI Gym API.

The environment simulated a star network architecture, 
with several nodes transmitting to a central base station. 
Depending on the simulation, different observations were 
returned to the agent for decision making. These inputs are 
discussed in each section.

Once the simulation was created, the following methods 
were implemented using the PyTorch ML Framework:

•	 Baseline Model
•	 Q-learning
•	 Deep Q-Network (DQN)
•	 Multi-agent Deep Q Network

One primary motivator for using Q-value based approaches 
is that it allows for caching the outputs of the system, and 
may avoid deploying the entire neural network in the field. 
Policy-based approaches are also being developed in future 
work (for example, A2C as used in [42]).

3.2.2 � Baseline Model

The baseline model used for the star network was a round-
robin architecture. The process was as follows: the center 
node requests all data from each node in sequence. This 
means that node one transmits one packet to the base sta-
tion, then node two transmits all its data, and so on for 
each node in the network.

Algorithm 1 Baseline Network Control
for node in network do
send request to node
if request Received by node then
send packet to base station

end if
end for

3.2.3 � Deep Q Network

The reward function used in training the deep Q network 
is as follows:

where nnode is the number of times this has transmitted, and 
Ntotal is the total number of transmissions made across the 
network as a whole. This reward function was developed to 
ensure that all nodes should transmit. Preliminary experi-
ments showed that the DQN would tend to neglect packets 
from all but one or two nodes. Changing to this reward func-
tion rectified the problem (Fig. 3).

The observation by the agent was the battery level and 
the number of transmissions at each node. Although the 
system was able to coordinate taking turns from this input, 
we encountered an implementation problem as the infor-
mation is not available to individual sensor nodes. This 
could potentially be address using a Q-value or a multi-
agent RL approach using only local information.

The network architecture selected was simple: seven 
fully connected layers with exponential linear unit (ELU) 
activation functions [47]. Architectures with Rectified 
Linear Units (ReLU) activation functions often failed to 
converge. Changing to from ReLU to ELU activation func-
tions caused the models to converge while holding other 
hyperparameters constant.

The convergence dynamics of the DQN are shown in 
Figs. 4 and 5. The DQN is a well studied architecture, and 
several enhancements could be made including the use of 
Huber Loss in place of the mean squared error ( L2 ) loss, 
the use of of a target network, etc.

(1)R(a, s) =

⎧
⎪
⎨
⎪
⎩

−1 battery ≤ 0

0 no transmission

1 −
nnode

Ntotal

otherwise

Fig. 3   Distributed deep Q-learning block diagram
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3.2.4 � Multi‑agent DQN

For the multi-agent system, each agent (node) observed 
the environment based on the received waveform at the 
antenna.

The neural network for this approach would have to be 
run on sensor nodes with limited computing resources, 
and would have to be run every transmission. This creates 
a strong incentive for the network architecture to be as 
small as possible. We were able to get good performance 
with as little as four layers by using two one-dimensional 
convolutional layers followed by two fully connected lay-
ers. However, much better results were obtained with a 
deeper architecture. This can be seen in Fig. 6. All layers 
used ELU activation functions.

The multi-agent system required a modified reward 
function. The same reward was given to all the nodes, but 
packet collisions had to be addressed.

This reward function differs from the previous one in a few 
key ways. First, it penalizes packet collisions, which could 
not happen in the previous architecture. Further, it also 
penalizes all the nodes if none of them transmit. Without 
this penalty, our research suggested that all the nodes would 
choose not to transmit to avoid packet collisions. This was 
clearly not the desired behavior, so the reward function was 
modified to address this problem.

The input to the agents was the simulated waveform at the 
receiver and the nodes battery level. This included the trans-
mitted waveform from each other node, with multi-path fad-
ing, distance-based attenuation, and Gaussian noise. These 
modulated waveforms allowed the nodes to ’overhear’ other 
nodes’ communications to determine when the channel is 
free.

Reward and loss from the training of the system are 
shown in Figs. 7 and 8, respectively. The system was trained 
using an epsilon-greedy method.

(2)R(a, s) =

⎧
⎪
⎨
⎪
⎩

−1 battery = 0, collision

or no transmission

1 −
nnode

Ntotal

otherwise

Fig. 4   Convergence of deep Q network implementation

Fig. 5   Convergence of deep Q network implementation

Fig. 6   General architecture of small single agent

Table 2   Multi-agent neural network architecture (N is batch size)

Layer Description Tensor Dimensions

0 Input N, 1,10000
1 1-D Convolution N, 1,4999
2 1-D Max Pool N, 1,2501
3 Dropout (p=0.2) N, 1,2501
4 1-D Convolution N, 1,1250
5 1-D Max Pool N, 1,626
6 Dropout (p=0.2) N, 1,626
7 1-D Convolution N, 1,312
8 1-D Max Pool N, 1,157
9 Dropout (p=0.2) N, 1,157
10 Linear/fully connected N, 64
11 Linear/fully connected N, 16
12 Linear/fully connected N, 2
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Multi-agent systems come with difficulties with conver-
gence and are difficult to optimize [41]. Initial attempts to 
create a multi-agent system converged, but the majority of 
nodes would not speak, and the last node would transmit 
as often as possible. This strategy lead us to penalize this 
in the reward function, but it is worth noting that this was 
detrimental to the convergence dynamics of the system; fail-
ures for the system to converge occurred during training, but 
maintaining a higher � (more exploration of the state space) 
improved the convergence dynamics.

Further, another method allowed the system to converge. 
When choosing actions randomly, each of the k nodes chose 
to transmit with probability p =

1

k
 and chose not to transmit 

with probability 1 − p . This meant that on average, one node 
is transmitting to the base station at any time step, when 
actions are chose randomly. When the nodes transmitted 
and held their transmission with equal probability (that is, 
P(transmit) = P(nottransmit) = 0.5 ) the learning dynamics 
either did not converge, or converged to the situation where 

no nodes transmitted. The altered probability of transmis-
sion, we hypothesize, lead to better exploration and allow the 
system to learn the desired behavior by allowing the system 
to find the desired behavior at random.

3.3 � Results

3.3.1 � Power Use

The primary goal of the system was to optimize power con-
sumption of the network system. To this end, we compared 
the power usage across the three architectures; i.e. baseline 
model with no AI, single AI model, and multi-agent model.

There are a number of other considerations for choosing 
the best approach. The multi-agent DQN requires each node 
to run it own deep neural network, and perform one forward 
pass at each time step. This may not be practical for all appli-
cations, as this requires significant computational resources.

The centralized control approaches exploit the star net-
work architecture to place the base station in control of the 
entire network. This means that only the base station would 
need to complete the forward pass of the neural network, 
allowing the nodes to conserve power.

A comparison of the power used by the three approaches 
is shown in Fig. 9. The baseline model, as it was battery 
agnostic, lead to nodes often exhausting their batteries.

3.3.2 � Network Resource Use

As you can see in Fig. 10, the baseline network called on 
the nodes to transmit far more often. This means that the the 
DQN and multi-agent DQN are much better at maintaining 
high battery levels than the baseline that did not include 
awareness of the battery.

However, the best method for optimizing the received 
reward was the Multi-Agent DQN as shown in Fig. 11. This 

Fig. 7   Episode 1 training rewards for multi-agent DQN

Fig. 8   Episode 1 losses for multi-agent DQN

Fig. 9   Comparison of power usage by all three methods
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suggests that the reward function did encourage the desired 
behaviour from the nodes.

4 � Experimental Results

In this section experiment design and obtained results are 
presented. Antenna test results are presented first, followed 
by overall system verification results.

4.1 � Antenna Test Results

Each antenna was tested using the same methodology. 
Matching antenna were attached to the base station, and a 
separate TI launchpad. This launch pad was programmed to 
transmit one hundred packets of random characters at multi-
ples of fifty feet distances to a final three hundred foot range. 
The base station, consisting of another TI launchpad and a 

laptop computer, recorded each incoming packet’s RSSI at 
each distance (Fig. 12).

Antenna 3, the compact helical antenna will be the 
antenna used in future designs. It outperformed the current 
built-in antenna, and while it was slightly under performing 
as compared to the orthogonal compact PCB antennas, the 
slight increase in performance did not warrant the dramatic 
increase in antenna size.

4.2 � Sensor Calibration with Machine Learning

The system’s sensors were calibrated using a machine learn-
ing algorithm to correct the hysteresis in the sensor response. 
To do this, data was collected using a Campbell Scientific 
data logger with a CS650 Campbell Scientific soil mois-
ture sensor. Calibration was done following [48, 49] using 
Gaussian Process Regression, Random Forest Regression, 
and Support Vector Regression.

The soil for the experiment was dried in an oven at 225 °F 
(107 °C) for 1 h. The data was collected by placing the two 
sensors in the same soil approximately 2 cm apart. Water 
was then added to the soil in increments of 15 ml every five 
minutes until 300 ml was added. Both sensors were sampled 
once per second. The collected data was then divided into 
training (90%) and test data (10%).

A comparison of the base sensor data and the true values 
can be seen in Fig. 13. After calibration, the sensor values 
closely tracked the true values, as shown in Fig. 14. All val-
ues assume the Campbell Scientific data logger values as the 
ground truth values. Computations were completed using 
methods described in [50, 51, 52].

4.3 � System Validation Results

Based on the test data from the experiment, we see close 
agreement between the sensor systems with the proposed 
system explaining over 97% of the variance in the Campbell 
Scientific system’s measurements.

Fig. 10   Comparison of network utilization

Fig. 11   Comparison of the running average received rewards

Fig. 12   RSSI of each antenna at each distance measured
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Of the variety of model types considered for the system 
calibration, Random Forest and Gaussian Process models 
provided similar results that were an excellent match to 
the target data. Both provided an r2 value of approximately 
0.972, with the random forest model slightly higher. A 
view of the results from the calibration are shown in 

Fig. 15. The random forest and Gaussian process mod-
els provide almost identical estimates of the target sig-
nal. The support vector regression model offers inferior 
performance to the other methods. A variety of kernels 
were used in the models, and radial basis function kernels 
consistently outperformed the other options (Fig. 16).

A comparison of the test data true and predicted results 
is shown in Fig. 17. It is worth noting that the variance in 
the prediction increases with larger volumetric water con-
tent readings, likely due to hysteresis. Some variance may 
also be due to slight differences in sampling frequency 
as the proposed system does not have a real time clock 
to maintain an exact sampling rate. Since the system will 
sample every 15 minutes at deployment, we do not expect 
this to be an issue.

Once the data were cleaned, results were compared 
using a variety of metrics. These measures are in Table 3. 
A visual comparison of the data can be seen in Fig. 17. 
Based on this experiment, we see that the systems provide 
a comparable set of measurements.

Fig. 13   Target and observed soil moisture values before processing

Fig. 14   Training targets and training data predicted values

Fig. 15   A comparison of machine learning models used to calibrate 
the system

Fig. 16   Calibration results on combined test and training data

Fig. 17   Test targets and test data predicted values for the Gaussian 
Process Regression model
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5 � Concluding Remarks

In this paper, a low cost and reliable wireless soil moisture 
sensing system is proposed to enable high spatio-temporal 
data collection for improving our understanding of forest 
ecosystems. The developed methods allow for implementa-
tion of low-power sensor networks with optimized control 
using artificial intelligence and machine learning. This con-
trol system is comparable to the round-robin style baseline in 
terms of network control, and offers stable throughput in the 
network and conserves power. Furthermore, there is scope to 
extend the reinforcement learning algorithm to more nodes 
and other network architectures. The multi-agent approach 
offers power consumption benefits compared to the baseline 
used, and makes the best use of available network resources. 
In addition to these simulation results, we also compared the 
proposed system with industry standard wired systems in a 
field experiment. The results show reasonably similar data 
at much lower cost.

Future work includes enhancing the the sensor node with 
additional sensor types (soil and ambient temperature, snow 
depth, and more) and scaling up the network with more sen-
sor nodes [53, 54, 55].
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