
Searching for an intruder on graphs

and their subdivisions

Anton Bernshteyn∗

School of Mathematics
Georgia Institute of Technology

Atlanta, GA, USA

bahtoh@gatech.edu

Eugene Lee
Department of Mathematical Sciences

Carnegie Mellon University
Pittsburgh, PA, USA

eleehuaj@andrew.cmu.edu

Submitted: Jul 15, 2021; Accepted: May 15, 2022; Published: Jul 1, 2022

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper we analyze a variant of the pursuit-evasion game on a graph G
where the intruder occupies a vertex, is allowed to move to adjacent vertices or
remain in place, and is ‘invisible’ to the searcher, meaning that the searcher operates
with no knowledge of the position of the intruder. On each stage, the searcher is
allowed to inspect an arbitrary set of k vertices. The minimum k for which the
searcher can guarantee the capture of the intruder is called the inspection number
of G. We also introduce and study the topological inspection number, a quantity
that captures the limiting behavior of the inspection number under subdivisions
of G. Our central theorem provides a full classification of graphs with topological
inspection number up to 3.

Mathematics Subject Classifications: 05C57, 05C75

1 Introduction

All graphs in this paper are finite, undirected, and simple. A class of graph-theoretic
problems that has been the topic of much interest is that of pursuit-evasion games, where
the object is to capture an intruder who is allowed to move within a graph in some manner.
The general nature of this problem lends itself to many variants; whether the intruder
occupies vertices or edges of the graph, the amount of information revealed to the searchers
as well as the constraints on their movement are all facets of the problem that can be
modified to ask different questions. The version we analyze in this paper is the following:
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Definition 1 (Zero-Visibility Search Game). For a positive integer k, the zero-visibility
k-search game is a two-player game played on a graph G, where one player serves as the
searcher, while the other plays as the intruder. Both players have full knowledge of the
graph.

The intruder starts the game by occupying a vertex of their choice. At all times,
the location of the intruder is unknown to the searcher (in other words, the intruder is
‘invisible’). The players alternate turns, beginning with the searcher. On each turn, the
searcher ‘inspects’ an arbitrary k-element set of vertices, and if the intruder is presently at
any of those vertices, the game ends and the searcher wins. Otherwise, on the intruder’s
turn, they can choose to move to an adjacent vertex or remain at the same vertex. We
emphasize that the searcher does not know if and where the intruder moves.

A winning strategy for the searcher is a finite sequence of moves which guarantees
that the intruder will always be caught, regardless of the intruder’s starting location and
moves. The inspection number of the graph, denoted in(G), is the minimum k such that
a winning strategy for the searcher exists.

This problem has a natural equivalent formulation in terms of curbing the spread of
an infection on the vertices of G. Suppose that each vertex can be in one of two states:
cleared or contaminated. Initially, all vertices are contaminated. On every move, we may
clear any k vertices. After this, every cleared vertex that has a contaminated neighbor
becomes contaminated again. The inspection number of G is then equal to the smallest k
for which all vertices of G can be cleared in finitely many moves (see Proposition 10).

Very similar pursuit-evasion games have been considered previously. Tošić [16] intro-
duced the zero-visibility Cops & Robber game, which differs from ours in that instead of
examining arbitrary sets of k vertices, the searcher controls k tokens that occupy vertices
of G and can only be moved along edges. This model was also studied by Berger, Gilbers,
Grüne, and Klein [4] and Dereniowski, Dyer, Tifenbach, and Yang [9]. Another related
model was studied in [3] by Aydinian, Cicalese, Deppe, and Lebedev. In their model, the
searcher can only learn whether the intruder is located at one of the examined vertices
(but not at which vertex specifically). The game investigated in [14] by Haslegrave, in [7]
by Britnell and Wildon, and in [1] by Abramovskaya, Fomin, Golovach, and Pilipczuk,
called in the latter the Hunters & Rabbit game, is almost the same as ours except that the
intruder is required to move to an adjacent vertex on every move. For further references,
see the surveys [2] by Alspach, [13] by Fomin and Thilikos, and [6] by Bonato and Yang.

It is easy to see that the complete graph Kn has inspection number n, paths have
inspection number 2, and cycles have inspection number 3. We also compute the inspection
number of rectangular grid graphs:

Theorem 2 (See Theorem 14). For each n,m ⩾ 2, the inspection number of the n×m
grid graph is min{n,m}+ 1.

Trees can have arbitrarily high inspection numbers:

Theorem 3 (See Theorem 15). For every k, there is a tree T of maximum degree 3 with
in(T ) > k.
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Figure 1: This graph (a subdivision of K4) has pathwidth 3 and hence monotonic
inspection number 4, but its ordinary inspection number is 3 (see Example 22).

Our proof of Theorem 3 is surprisingly intricate. In general, proving lower bounds on
the inspection number appears challenging.

An interesting aspect of pursuit-evasion games is whether or not they admit mono-
tonic optimal strategies. Here a strategy is monotonic if cleared vertices never become
contaminated again. Some pursuit-evasion games admit optimal monotonic strategies
[5, 15], while some do not [17]. In their investigation of the zero-visibility Cops & Robber
game, Dereniowski et al. [9] established sharp bounds on the number of cops needed for a
monotonic winning strategy in terms of the pathwidth of the underlying graph. We prove
the following result in the same vein:

Theorem 4 (See Theorem 20). For every connected graph G, the minimum k such that the
searcher has a monotonic winning strategy in the zero-visibility k-search game on G (the
monotonic inspection number) is equal to pw(G) + 1, where pw(G) denotes the pathwidth
of G.

Theorem 20 implies that in(G) ⩽ pw(G) + 1 for all connected graphs G. The n×m
grid graph meets this bound with equality, since it has pathwidth min{n,m} [12] (note
that the proof in the cited paper is via considering another pursuit-evasion game) and
inspection number min{n,m}+ 1 by Theorem 2. On the other hand, there are graphs G
with in(G) < pw(G) + 1 (and hence without a monotonic optimal search strategy). One
such example is shown in Fig. 1. Our further results imply that there are graphs with
inspection number 3 and arbitrarily high pathwidth (see Theorem 6).

Another interesting direction is to study pursuit-evasion games on subdivisions of
graphs, see, e.g., [8]. Edge subdivisions can both increase and decrease the inspection
number. For example, the complete graph K4 has inspection number 4 (see Example 11).
The subdivision of K4 shown in Fig. 1 has inspection number 3, but it also has a further
subdivision with inspection number 4 (see Theorem 32). We hence wish to investigate the
“limiting” behavior of the inspection number under edge subdivisions, captured precisely in
the following notion:

Definition 5. The topological inspection number of a graph G, denoted int(G), is the
minimum k such that for every subdivision H of G, there is a further subdivision H ′ of H
with in(H ′) ⩽ k.

Equivalently, int(G) is the minimum k such that for all ℓ, G has a subdivision H with
in(H) ⩽ k in which every edge of G is subdivided at least ℓ times.

the electronic journal of combinatorics 29(3) (2022), #P3.9 3



F1 F2 F3

Figure 2: A representative example of each class of forbidden subgraphs. The family F1

comprises the subdivisions of K4, while the other two families are more complicated (see
Definition 26).

The topological inspection number can deviate significantly from the inspection number.
For instance, by Theorem 15, trees can have arbitrarily high inspection numbers, but we
shall prove the following:

Theorem 6. The topological inspection number of every tree is at most 3.

Theorem 6 also implies that there are graphs with inspection number 3 and arbitrarily
high pathwidth, since the pathwidth does not decrease under edge subdivisions and there
are trees of arbitrarily high pathwidth.

Theorem 6 is a corollary of our main result, which provides a complete characterization
of graph with topological inspection number at most 3. It is not hard to see that the
only connected graphs with topological inspection number at most 2 are paths (see
Proposition 24). The case of graphs with topological inspection number at most 3 turns
out to be significantly more involved:

Theorem 7 (See Theorem 30). Let G be a connected graph with |V (G)| ⩾ 2. The following
are equivalent:

(1) G has topological inspection number at most 3.

(2) G does not contain as a subgraph any element of F1,F2, or F3 (see Definition 26).

(3) G has a simple generalized series-parallel decomposition (see Definitions 27–29).

This equivalence gives two different ways of detecting if a graph has topological
inspection number at most 3. Item (2) describes such graphs by means of an explicit
list of forbidden subgraphs. The forbidden subgraphs form three infinite families. The
first family, F1, comprises the subdivisions of K4. The other two families, F2 and F3, are
described in Definition 26. Representative examples of each family of forbidden subgraphs
are depicted in Fig. 2. All the graphs in these families contain cycles, so the equivalence
(1) ⇐⇒ (2) yields Theorem 6.
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Figure 3: Pictorial representations of the four permissible operations defining the class of
generalized series-parallel graphs. A decomposition is simple if each of the ◦p operations
in it has one of the subgraphs involved containing an edge separating its terminals, the
two distinguished vertices.

Item (3) gives a constructive characterization of graphs with topological inspection
number at most 3. Roughly speaking, it says that a graph with topological inspection
number at most 3 can be inductively built up from individual edges via certain permissible
operations. The four permissible operations are the series operation ◦s, the parallel
operation ◦p, and the two branch operations ◦b and ◦b′ . These operations are illustrated in
Fig. 3. Graphs that can be constructed from individual edges using these operations are
called generalized series-parallel (GSP for short); see Definition 27 for details.

It is well-known that 2-connected K4-subdivision-free graphs are series-parallel, i.e.,
they can be built from individual edges using only the operations ◦s and ◦p [11, Theorem 2].
In general, connected K4-subdivision-free graphs are GSP (see §8.1). Since subdivisions of
K4 belong to the forbidden family F1, item (2) of Theorem 7 implies that every connected
graph G with int(G) ⩽ 3 must be GSP. However, as the graphs in F2 and F3 demonstrate,
not all GSP graphs have topological inspection number at most 3. The main point of
(3) is that a graph G with int(G) ⩽ 3 must admit a GSP decomposition that is simple,
which means that every time the parallel operation is used, at least one of the graphs it is
applied to has to contain an edge separating the two distinguished vertices. The details
are given in Definition 29.

Our proof of the equivalence (1) ⇐⇒ (3) is constructive; that is, given a graph G with
int(G) ⩽ 3, it explicitly describes a subdivision of G with a successful search strategy.

Our characterization of graphs with topological inspection number at most 3 via
forbidden subgraphs shows that every such graph must be planar, since every non-planar
graph contains a subdivision of K4. Furthermore, some forbidden graphs in F1 ∪ F2 ∪ F3

are planar. On the other hand, none of the forbidden subgraphs are outerplanar, so
every outerplanar graph has topological inspection number at most 3. Also, there exist
graphs which are not outerplanar but have topological inspection number 3 (K2,3 is such
an example). Thus, graphs with topological inspection number at most 3 form a natural
class strictly between outerplanar and planar graphs.

The rest of the paper is organized as follows.

• Section 2 introduces the notation to be used in the rest of the paper.
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• Section 3 computes bounds on the inspection number for several special classes of
graphs. In particular, it contains the proofs of Theorems 2 and 15.

• Section 4 investigates monotonic search strategies and proves Theorem 20.

• Section 5 introduces the topological inspection number and classifies graphs with
topological inspection number at most 2.

• Section 6 introduces the necessary definitions for the statement of Theorem 7.

• Section 7 proves that each graph in F1 ∪ F2 ∪ F3 has topological inspection number
at least 4 (this is implication (1) =⇒ (2) of Theorem 7).

• Section 8 proves that every graph without any forbidden subgraph has a simple gen-
eralized series-parallel decomposition (this is implication (2) =⇒ (3) of Theorem 7).

• Section 9 proves that every graph with a simple generalized series-parallel decompo-
sition has topological inspection number at most 3 (this is implication (3) =⇒ (1) of
Theorem 7).

• Section 10 discusses several future directions of study, as well as some open problems.

Acknowledgments
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2 Preliminaries

2.1 Graph-theoretic notation

Given a graph G, we denote by V (G) and E(G) its vertex and edge sets, respectively. If
S ⊆ V (G), NG(S) denotes the set of neighbors of S in G. We use G[S] to denote the
subgraph of G induced by S, and G− S is the subgraph induced by V (G) \ S. We call
a set S of vertices G-connected if G[S] is connected. For v ∈ V (G) and r ∈ N, BG(v, r)
denotes the ball of radius r around v in G, i.e., the set of all the vertices of G at distance
at most r from v. The boundary of S, denoted ∂G(S), is the set of all the vertices in S
that have a neighbor in V (G) \ S. Note that if H is a subgraph of G and S ⊆ V (H), then
∂H(S) ⊆ ∂G(S).

We say a set S ⊆ V (G) separates a collection of nonempty sets of vertices F ⊆
P(V (G) \ S) if every connected component of G − S has nonempty intersection with
at most one member of F . We naturally extend this notion to separating vertices by
identifying vertices with singleton sets.

Lemma 8. If G is k-connected and S ⊆ V (G) satisfies |S| ⩾ k, then |∂G(S)| ⩾ k or
S = V (G).
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Proof. Note that ∂G(S) separates S \∂G(S) from V (G) \S. If |∂G(S)| < |S| < V (G), then
these two sets are nonempty, and hence |∂G(S)| ⩾ k. Otherwise, we have S = V (G) or
|∂G(S)| = |S| ⩾ k. ■

2.2 Searches

Let us now introduce some notation useful for describing search strategies.

Definition 9 (Searches). A k-search of length ℓ on a graph G is a sequence S = {St ⊆
V (G)}ℓt=1 for some ℓ ∈ N where |St| ⩽ k for each t. Note the convention of denoting
searches by calligraphic letters and the individual sets by the same non-calligraphic letter
with a subscript. We refer to St (in the context of a search S) as the set of vertices
searched at turn t. We write |S| = ℓ to denote the length of S. We sometimes refer to k
as the search size. We will occasionally refer to k-searches as searches when the specific
search size is not important.

Given an initial set of cleared vertices A ⊆ V (G) (which is usually taken to be ∅),
each k-search S of length ℓ has two associated sequences of sets of vertices {PCt(S, A)}ℓt=1

and {FCt(S, A)}ℓt=0, the pre-cleared and fully cleared vertices respectively after each turn.
These are defined recursively by:

FC0(S, A) = A;

PCt+1(S, A) = FCt(S, A) ∪ St+1;

FCt+1(S, A) = PCt+1(S, A) \ ∂G(PCt+1(S, A)).

When A = ∅, we will typically omit it from the notation, thus writing PCt(S) and FCt(S)
for PCt(S,∅) and FCt(S,∅) respectively. We use FC∗(S, A) (resp. PC∗(S, A)) to denote
the set FCℓ(S, A) (resp. PCℓ(S, A)) of fully cleared (resp. pre-cleared) vertices after the
final turn.

We say a k-search S is successful if FC∗(S) = V (G).

Proposition 10. The inspection number of a graph G (as given by Definition 1) is equal
to the minimum k such that there exists a successful k-search on G.

Proof. We can consider the natural correspondence between strategies for the searcher
and k-searches by identifying the sets of vertices inspected at turn i with the ith term
of the k-search. A simple inductive argument shows that given this correspondence, the
set of all the possible locations of the intruder after the searcher’s ith turn is precisely
V (G) \ PCi(S) and the set of all the possible locations of the intruder after the intruder’s
ith turn is precisely V (G) \ FCi(S). The searcher’s strategy is winning if and only if the
set of possible locations is reduced to ∅ by a finite sequence of moves, which is equivalent
to the search being successful. ■

It is clear that for any subgraph H of G, we have in(H) ⩽ in(G), as any successful
search on G, with the vertex sets appropriately restricted, is also a successful search on H.

Example 11. in(Kn) = n.
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Proof. Suppose S is a k-search on Kn for some k < n. Note that if FCi(S) = ∅, then
PCi+1(S) ̸= V (Kn), so FCi+1(S) = ∅ as well. Hence S cannot be successful. On the other
hand, checking all the vertices on the first move gives a successful n-search, and hence
in(Kn) = n. ■

3 Some computations

3.1 Sets with small boundary

Our primary tool for proving lower bounds on the inspection number is the following
proposition:

Proposition 12. Let G be a connected graph. If in(G) ⩽ k, then for each 1 ⩽ i ⩽ |V (G)|,
there exists some C ⊆ V (G) such that |∂G(C)| < k and i− k < |C| < i.

Proof. Let S be a successful k-search on G. For each 1 ⩽ i ⩽ |V (G)|, consider the minimal
t such that |PCt(S)| ⩾ i. We claim that C = PCt−1(S) works. Indeed, |PCt−1(S)| < i, so
we can write

|PCt−1(S)| < i ⩽ |PCt(S)| ⩽ |FCt−1(S)|+ k = |PCt−1(S)| − |∂G(PCt−1(S))|+ k.

Thus, we have |∂G(PCt−1(S))| < k. Furthermore,

i− k ⩽ |PCt−1(S)| − |∂G(PCt−1(S))| < |PCt−1(S)| < i,

where we use that ∂G(PCt−1(S)) is nonempty. ■

3.2 Grid graphs

Here we compute the inspection number of rectangular grid graphs.

Definition 13 (Grid Graphs). An n×m grid graph, denoted Γn,m, comprises the vertices

{(i, j) ∈ Z2 | 0 ⩽ i < n, 0 ⩽ j < m},

with vertices (a, b) and (c, d) adjacent if and only if |a− c|+ |b− d| = 1.
Visually the first coordinate indexes the row of a vertex, and the second one the column.

Rows increase in index from bottom to top, and columns increase in index from left to
right.

Theorem 14. For each n,m ⩾ 2, in(Γn,m) = min{n,m}+ 1.

Proof. Let G = Γn,m. Suppose, without loss of generality, that n ⩾ m, so our goal is thus
to show that in(G) = m+ 1. For convenience, we relabel the vertices of G, writing (a, b)
as vam+b (see Fig. 4).

To prove that in(G) ⩽ m+ 1, consider the (m+ 1)-search S defined via

St := {vt+ℓ | 0 ⩽ ℓ ⩽ m} for all 1 ⩽ t ⩽ m(n− 1).
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v0 v1 v2 v3 v4 vm−1
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v2m

vnm−1

Figure 4: The graph Γn,m.

Note that for each vi, its neighbors vj satisfy j ⩽ i+m. If for some t, {vi | i ⩽ t} ⊆ FCt(S),
then we have {vi | i ⩽ t + m + 1} ⊆ PCt+1(S), and hence {vi | i ⩽ t + 1} ⊆ FCt+1(S).
Induction thus shows that the search is successful, so in(G) ⩽ m+ 1, as desired.

We now wish to show that no successful m-search exists. We shall analyze the sets
with boundaries of size less than m and then use Proposition 12 to conclude the argument.

Claim 14.a. Any set S ⊆ V (G) with |∂G(S)| ⩽ m− 1 satisfies

|S| ⩽ m(m− 1)

2
or |S| ⩾ mn− (m− 2)(m− 1)

2
.

▷ Denote the ith column and jth row of G by ci and rj respectively. For brevity, let a
row or column be empty/full if it is disjoint from/contained in S respectively. Note that
each row or column is either empty, full, or contains a boundary vertex of S.

If there exist both an empty column and a full column, then every row is neither empty
nor full and hence there are at least n boundary vertices of S, a contradiction. Similarly, if
there is neither an empty column nor a full column, then every column contains a boundary
vertex of S and so there are at least m boundary vertices of S, a contradiction.

Now suppose there exists an empty column ck but no full columns. Take some other
arbitrary column ci and consider the segments of each row between ci and ck. For |ci ∩ S| of
them, they contain a vertex in ci, and none of them contain a vertex in ck, so they contain at
least |ci ∩ S| boundary vertices of S. Furthermore, every column not contained between ci
and ck inclusive is disjoint from each of these segments. If m(i) is the number of nonempty
columns not contained between ci and ck inclusive, then |∂G(S)| ⩾ |ci ∩ S|+m(i), as such
columns are neither empty nor full and hence contain at least one boundary vertex of S
each. Thus,

m− 1−m(i) ⩾ |ci ∩ S| . (∗)

Now let I = {i | ci is nonempty}. Then∑
i∈I

m(i) ⩾

(
|I|
2

)
,
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as for each pair of distinct columns ci, cj, either ci is not between cj and ck or cj is not
between ci and ck. Summing (∗) over I gives

|S| =
∑
i∈I

|ci ∩ S| ⩽
∑
i∈I

(m− 1−m(i))

⩽ |I| (m− 1)−
(
|I|
2

)
=

|I| (2m− |I| − 1)

2
⩽

(m− 1)m

2
.

The remaining case where there exists a full column ck is analogous, except we get the
boundary vertices on the segments for which ci does not contain a vertex of S, and thus
the boundary vertex in ci is distinct from the boundary vertices of each segment. The
analog of (∗) is hence

|∂G(S)| ⩾ |ci \ S|+ 1 +m′(i) =⇒ m− 2−m′(i) ⩾ |ci \ S| ,

where m′(i) is the number of non-full columns not contained between ci and ck. Via the
same bound for the sum of m′(i), we get

|V (G) \ S| ⩽
∑
i∈J

(m− 2−m′(i)) ⩽
|J |(2m− |J | − 3)

2
⩽

(m− 2)(m− 1)

2
,

where J = {i | ci is not full}. Therefore, |S| ⩾ mn− (m−2)(m−1)
2

, as desired. ◀

Claim 14.a implies that there does not exist a set S with |∂G(S)| < m and

m(m− 1)

2
< |S| < m(m− 1)

2
+m = m2 − (m− 2)(m− 1)

2
⩽ mn− (m− 2)(m− 1)

2
,

contradicting Proposition 12 and completing the proof. ■

3.3 Trees

In this subsection we show that trees can have arbitrarily large inspection number.

Theorem 15. For every k, there is a tree T of maximum degree 3 with in(T ) > k.

Proof. Take any N > log2(k)+2 and consider the perfect binary tree T of depth L = 20kN ,
i.e., a rooted tree in which every non-leaf vertex has exactly two children and the distance
from the root to every leaf is equal to L. We wish to compute the possible sizes of subsets
of V (T ) with fewer than k boundary vertices and then apply Proposition 12 to conclude
that in(T ) > k.

Consider an arbitrary subset S ⊆ V (T ) with |∂T (S)| < k. For each 0 ⩽ i ⩽ L, let Si

be the set of the vertices of S at depth L− i (so S0 comprises the leaf vertices in S, while
SL will be the root if it is in S). We define two subsets Ai, Bi ⊆ Si ∩ ∂T (S) by

Ai = {x ∈ Si ∩ ∂T (S) | the parent of x is not in S};
Bi = {x ∈ Si ∩ ∂T (S) | not every child of x is in S}.
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This gives us a recursive bound on the size of Si for i < L:

2 |Si+1|+ |Ai| − 2 |Bi+1| ⩽ |Si| ⩽ 2 |Si+1|+ |Ai| − |Bi+1| ,

noting that every vertex in Bi+1 has either 0 or 1 child in S. Iterating this bound gives
the following relation between the sizes of any two Sis:

2ℓ |Si+ℓ|+
ℓ−1∑
j=0

2j (|Ai+j| − 2 |Bi+j+1|) ⩽ |Si| ⩽ 2ℓ |Si+ℓ|+
ℓ−1∑
j=0

2j (|Ai+j| − |Bi+j+1|) . (♠)

We denote by R(i; ℓ) the ‘slice’
⋃ℓ

j=0 Si+j. Summing (♠) gives:

(
2ℓ+1 − 1

)
|Sℓ|+

ℓ−1∑
j=0

(
2j+1 − 1

)
(|Aj| − 2 |Bj+1|) ⩽ |R(0; ℓ)|

⩽
(
2ℓ+1 − 1

)
|Sℓ|+

ℓ−1∑
j=0

(
2j+1 − 1

)
(|Aj| − |Bj+1|) . (♡)

By Proposition 12, if in(T ) ⩽ k, then there exists a set S ⊆ V (T ) with |∂T (S)| < k
such that ∣∣∣∣∣|S| −

4k+1∑
j=1

2L−jN

∣∣∣∣∣ < k. (♢)

For the remainder of the proof, we fix any such set S.

Claim 15.a. For each 1 ⩽ a ⩽ 2k, there is 1 ⩽ j ⩽ 2N such that |AL−2aN−j| or |BL−2aN−j|
is nonzero.

▷ Note that |S| = |R(0;L− 2aN − 1)|+ |R(L− 2aN ; 2aN)|. Since R(L− 2aN ; 2aN)
is a subset of a perfect binary tree of depth 2aN ,

|R(L− 2aN ; 2aN)| ⩽ 22aN+1 − 1 ⩽ 25kN .

Suppose for the sake of contradiction that

|AL−2aN−j| = |BL−2aN−j| = 0 for all 1 ⩽ j ⩽ 2N. (♣)

Let K =
(
2L−2aN − 1

)
|SL−2aN−1|. Then, by (♡), we have

|R(0;L− 2aN − 1)| ⩾ K +
L−2aN−2∑

j=0

(
2j+1 − 1

)
(|Aj| − 2 |Bj+1|)

[by (♣)] ⩾ K −
L−2(a+1)N−2∑

j=0

(
2j+1 − 1

)
2 |Bj+1|

[since
∑

|Bi| ⩽ |∂T (S)| < k] ⩾ K − 2L−2(a+1)Nk.
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Similarly,

|R(0;L− 2aN − 1)| ⩽ K +
L−2aN−2∑

j=0

(
2j+1 − 1

)
(|Aj| − |Bj+1|)

[by (♣)] ⩽ K +

L−2(a+1)N−1∑
j=0

(
2j+1 − 1

)
|Aj|

[since
∑

|Ai| ⩽ |∂T (S)| < k] ⩽ K + 2L−2(a+1)Nk.

Since |SL−2aN−1| ⩽ 22aN+1 ⩽ 25kN , K is within 25kN of a multiple of 2L−2aN . The maximum
difference that |S| could attain from a multiple of 2L−2aN is therefore

|R(L− 2aN ; 2aN)|+ |SL−2aN−1|+ 2L−2(a+1)Nk ⩽ 25kN + 25kN + 2L−2(a+1)Nk

< 2L−2(a+1)N+log2(k)+1.

On the other hand, by (♢), |S| differs from a multiple of 2L−2aN at least by

2L−(2a+1)N − k > 2L−(2a+1)N−1,

which is a contradiction since N > log2(k) + 2. ◀

Applying Claim 15.a to each 1 ⩽ a ⩽ 2k yields 2k distinct values i such that |Ai| or
|Bi| is nonzero, and therefore

∑
|Ai|+

∑
|Bi| ⩾ 2k. This is a contradiction since

∑
|Ai|,∑

|Bi| ⩽ |∂T (S)| < k. ■

4 Monotonic searches

Definition 16 (Monotonic Searches). A search S is called monotonic if FCi(S) ⊆ FCj(S)
for every i ⩽ j. Let inm(G) be the minimum k for which there exists a successful monotonic
k-search on G.

Let us also recall the standard definition of the pathwidth of a graph.

Definition 17 (Pathwidth). A path decomposition of a graph G is a sequence of subsets
{Xi ⊆ V (G)}ℓi=1 fulfilling the following two criteria:

• For each edge {a, b} ∈ E(G), there exists some i such that {a, b} ⊆ Xi.

• For each 1 ⩽ i < j < k ⩽ ℓ and v ∈ V (G), if v ∈ Xi and v ∈ Xk, then v ∈ Xj.

The width of such a path decomposition is max1⩽i⩽ℓ |Xi|−1 (if the decomposition is empty
we set the width to be 0). The pathwidth of a graph, denoted pw(G), is the minimum
width among all its path decompositions.

Proposition 18. For any connected graph G, inm(G) ⩽ pw(G) + 1.
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Proof. The statement is trivial if G has only one vertex, so we may assume that G does
not have isolated vertices, and thus every vertex must be included in at least one set in
each path decomposition of G.

Let S = {Si ⊆ V (G)}ki=1 be a path-decomposition of G of width pw(G), i.e., |Si| ⩽
pw(G) + 1 for each i, for each edge of G there exists i such that Si contains both its
endpoints, and for all i ⩽ j ⩽ k, Si ∩ Sk ⊆ Sj. Note that for each v ∈ V (G), the set of
indices i for which v ∈ Si forms a consecutive sequence of integers. We claim that S is a
successful monotonic (pw(G) + 1)-search of G.

First, we show by induction that for each t, if v ̸∈ Si for all i > t, then v ∈ FCt(S).
Suppose the claim holds for all t < t0, and suppose v ̸∈ Si for every i > t0. Consider
any u ∈ NG(v), and let tu be maximal such that u ∈ Stu . If tu ⩾ t0, then u ∈ St0 as
{u, v} ⊆ Si for some i ⩽ t0, and so u ∈ PCt0(S). Otherwise, u ̸∈ Si for each i > t0 − 1,
so by the induction hypothesis u ∈ FCt0−1(S) ⊆ PCt0(S). A similar argument gives that
v ∈ PCt0(S). Hence v and each of its neighbors are in PCt0(S), so v ∈ FCt0(S), completing
the induction. This shows that the search is successful.

Now we show that the search is monotonic. Suppose that v ∈ FCt(S) \ FCt+1(S). Then
there exists some u ∈ NG(v) such that u ∈ PCt(S) \ PCt+1(S). Since u ∈ PCt(S), there is
some t0 ⩽ t such that u ∈ St0 . On the other hand, since u ̸∈ PCt+1(S), we have u ̸∈ St+1.
This implies that u ̸∈ St1 for all t1 ⩾ t+ 1, and hence u ̸∈ FC∗(S), contradicting the fact
that the search S is successful. ■

Proposition 19. For any connected graph G, inm(G) ⩾ pw(G) + 1.

Proof. Let S ′ be a successful monotonic search. We can modify each S ′
i to Si by removing

the vertices which are not in FCi(S ′) ∪NG(FCi(S ′)), as well as removing the vertices in
FCi−1(S ′). Note that FCi(S) = FCi(S ′) for each i, so S is still successful and monotonic.

For each pair of adjacent vertices {v, w}, consider the minimal t for which after turn
t, either v or w is in FCt(S). Since v, w ̸∈ FCt−1(S) but {v, w} ⊆ PCt(S), we must have
{v, w} ⊆ St. Hence for each such pair there exists some St containing both. Now suppose
v ∈ Si, Sj for some i < j. By the modification we performed, v ̸∈ FCj−1(S), and so by
monotonicity v ̸∈ FCt(S) for any t < j. In particular, v ̸∈ FCi(S), yet v ∈ Si. Hence,
again by our modification, v has a neighbor in FCi(S). This neighbor must remain fully
cleared, so v ∈ PCt(S) for each t ⩾ i. Hence v ∈ St for each i < t < j, and so S is a
path-decomposition of G of width max |Si| − 1, proving the claim. ■

These two propositions combined yield the following result:

Theorem 20. For every connected graph G, inm(G) = pw(G) + 1.

Note that this implies that in(G) ⩽ pw(G) + 1. However, this inequality can be strict;
in fact, we will see that the difference inm(G)− in(G) can be arbitrarily large.

5 The topological inspection number

Definition 21 (Subdivisions). Given a graph G, an edge subdivision on an edge {v, w} ∈
E(G) is the operation where we add a new vertex u, and replace the edge with a pair of
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edges {v, u} and {u,w}. A subdivision of G is a graph which can be obtained from G by
a (possibly empty) finite sequence of edge subdivisions.

Example 22. There exist a graph G and a subdivision H of G such that in(H) ̸= in(G).

Proof. Consider the subdivision of K4 shown in Fig. 5.

D

B C

A

I4

I3

I1

I2

Figure 5: A subdivision of K4 with inspection number 3.

The following table lists a successful 3-search S of this graph:

i Si PCi(S) FCi(S)
1 {A, I1, I2} {A, I1, I2} {I1}
2 {A, I2, I3} {A, I1, I2, I3} {I1, I2}
3 {A, I3, I4} {A, I1, I2, I3, I4} {I1, I2, I3}
4 {A, I4, D} {A, I1, I2, I3, I4, D} {I1, I2, I3, I4}
5 {A,B,C} {A, I1, I2, I3, I4, D,B,C} {A, I1, I2, I3}
6 {B,C,D} {A, I1, I2, I3, D,B,C} {A, I1, I2, B, C}
7 {D, I3, I4} V (G) V (G)

However, in(K4) = 4 by Example 11, proving the claim. ■

As explained in the introduction, we wish to investigate the “limiting” behavior of the
inspection number under edge subdivisions, captured precisely in the following notion:

Definition 5 (Topological inspection number). The topological inspection number of a
graph G, denoted int(G), is the minimum k such that for every subdivision H of G, there
is a further subdivision H ′ of H with in(H ′) ⩽ k.

Equivalently, int(G) is the minimum k such that for all ℓ, G has a subdivision H with
in(H) ⩽ k in which every edge of G is subdivided at least ℓ times.

It is clear that int(H) = int(G) for every subdivision H of G. We observe that int(G) is
finite:

Proposition 23. int(G) ⩽ |V (G)|+ 2.

Proof. Let H be a subdivision of G. Enumerate the vertices of V (G) as v1, . . . , vk, and
the edges in E(G) as e1, . . . , eℓ. Then each vertex in V (H) is either in V (G), or is the
result of some series of subdivisions on an edge ei. We may order these latter vertices in
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order of the index of the subdivided edge they lie on, and break ties by distance to the
lower-indexed endpoint of the subdivided edge (i.e., if a, b ∈ V (H) lie on subdivided edge
ei with endpoints vc, vd with c < d, then whichever of a or b lies closer to vc will come
first in the order). Using this order we can enumerate the vertices in V (H) \ V (G) as w1,
. . . , wm. Note that each wi’s neighbors are contained in V (G) ∪ {wi−1, wi+1}.

Now consider the sequence of sets given by St = V (G)∪{wt, wt+1}. Each wi appears in
either a single set or two consecutive sets while each vi appears in every set. Furthermore,
note that every pair of vertices with at least one vertex in V (G) appears at least once,
and every pair of vertices of the form {wi, wi+1} appears once as well. Since every pair of
neighbors must have one of these forms, every pair of neighbors appears together in a set of
this sequence. This sequence thus witnesses pw(H) ⩽ |V (G)|+1, and hence, by Theorem 20,
in(H) ⩽ |V (G)|+ 2. Since H is a subdivision of itself, we have int(G) ⩽ |V (G)|+ 2. ■

Evidently, the only connected graph G with int(G) = 1 is the one-vertex graph K1.
Next we characterize the graphs G with int(G) = 2:

Proposition 24. If G is a connected graph with int(G) ⩽ 2, then G is a path.

Proof. Suppose G contains as a subgraph a cycle C. We wish to show that in(G) ⩾ 3.
Suppose otherwise and take a successful 2-search S of G. Let v ∈ V (C) be such that
the first index i with v ∈ FCi(S) is minimal among all v ∈ V (C). This implies that v
and its two neighbors (which are distinct) in C are all contained in PCi(S). However, by
minimality of i, none of these vertices are contained in FCi−1(S), and so all three must
be contained in Si, a contradiction. Since subdivisions of cyclic graphs remain cyclic, we
must have G acyclic.

Now suppose, toward a contradiction, that G contains a vertex v0 with deg(v0) ⩾ 3.
Let G′ be an arbitrary subdivision of G where each edge incident to v0 is subdivided at
least once. Let v1, v2, v3 ∈ NG′(v0) be distinct. Each of v1, v2, v3 has a unique neighbor
apart from v0, and these neighbors are pairwise distinct. Let these neighbors be w1, w2,
w3 respectively. Let H be the subgraph of G′ induced on {v0, v1, v2, v3, w1, w2, w3}. It is
straightforward to check that every subset S ⊆ V (H) of size |S| = 4 has |∂H(S)| ⩾ 2.
Hence, by Proposition 12 applied with i = 5, in(G′) ⩾ in(H) ⩾ 3. Therefore, int(G) ⩾ 3,
which is a contradiction.

Hence, G must be an acyclic graph of maximum degree at most 2, i.e., a path. ■

Since the inspection number of any path is at most 2 and subdivisions of paths are
themselves paths, Proposition 24 implies that paths are precisely the connected graphs
with topological inspection number at most 2. In the remainder of this paper we establish
a characterization of the connected graphs G with int(G) = 3, which turns out to be
significantly more complicated.

6 Statement of the classification theorem

Definition 25 (Bipaths). Let a bipath be the union of a pair of edge-disjoint paths P1, P2

which share at least three vertices, two of which are their endpoints, such that the shared
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vertices appear on P1 and P2 in the same order. (See Fig. 6.)
We call the shared vertices the primary vertices of the bipath and the number of

primary vertices the order of the bipath. The shared endpoints of P1 and P2 will be
referred to as the endpoints of the bipath.

Note that each pair of consecutive primary vertices has a pair of internally vertex-disjoint
paths between them contained in the bipath. These will be called primary paths.

a b c d

Figure 6: A bipath of order 4, with primary vertices a, b, c, d.

From here, we construct three families of graphs to be used in our theorem:

Definition 26 (Families F1, F2, F3). Let F1 comprise all subdivisions of K4.
Let F2 comprise the graphs consisting of 3 bipaths which share their endpoints but are

otherwise pairwise vertex-disjoint.
Let F3 comprise the graphs consisting of 4 bipaths Ba, Bb, Bc, Bd and two paths P1,

P2, such that Ba, Bb share endpoints v1 and v2, Bc, Bd share endpoints v3 and v4, but
the bipaths are otherwise pairwise vertex-disjoint. Furthermore, P1 has endpoints v1, v3,
and P2 has endpoints v2, v4, but these paths have no other vertices in common with the
bipaths (however, P1 and P2 may intersect each other).

Examples of graphs from the families F1, F2, F3 are shown in Fig. 7.

F1 F2 F3

Figure 7: Representative members of the families F1, F2, F3. Each curved segment
represents a path which may be subdivided arbitrarily many times.

Definition 27 (Generalized Series-Parallel Graphs). A graph with terminals G is an
ordered triple of the form (G, u, v) where G is a graph and u, v are distinct vertices in
V (G), called the terminals of G. Note the convention of denoting graphs with terminals
by the boldface version of the letter used to denote the underlying graph. The generalized
series-parallel graphs, or GSP graphs for short, are the minimal collection of graphs with
terminals that contains all single-edge graphs with their two vertices as terminals, and is
closed under the following operations:
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• The series operation ◦s can be performed on two GSP graphs G = (G, u, v) and
H = (H, v, w) such that V (G) ∩ V (H) = {v}. The result of this operation is the new
GSP graph G ◦s H = (G ∪H, u, w).

• The parallel operation ◦p can be performed on two GSP graphs G = (G, u, v) and
H = (H, u, v) such that V (G) ∩ V (H) = {u, v}. The result of this operation is the new
GSP graph G ◦p H = (G ∪H, u, v).

• The first branch operation ◦b can be performed on two GSP graphs G = (G, u, v),
H = (H, u,w) such that V (G) ∩ V (H) = {u}. The result of this operation is the new
GSP graph G ◦b H = (G ∪H, u, v).

• The second branch operation ◦b′ can be performed on two GSP graphs G = (G, u, v),
H = (H, v, w) such that V (G) ∩ V (H) = {v}. The result of this operation is the new
GSP graph G ◦b′ H = (G ∪H, u, v).

A graph G is GSP if there is some choice of terminals u, v ∈ V (G) such that (G, u, v) is a
GSP graph.

The way a GSP graph is built up from individual edges is encoded in its GSP decom-
position:

Definition 28 (GSP Decompositions). Given a GSP graph G = (G, u, v), a GSP de-
composition of G is a rooted binary tree T whose vertices are GSP graphs satisfying the
following recursive conditions:

• The root node of T is G.

• If G comprises a single edge, then T comprises a single node.

• Otherwise, there exist two GSP graphs H and K such that G = H ◦K for some
operation ◦ ∈ {◦s, ◦p, ◦b, ◦b′}, and T comprises GSP decompositions TH , TK of H and K,
joined to the root node.

It is clear that every GSP graph G admits a GSP decomposition (not necessarily
unique). Fig. 8 shows an example of a GSP decomposition.

Given a GSP decomposition T of G and H ∈ V (T ), the induced decomposition of H
is the subtree of T rooted at H . If H is not a leaf of T , then ◦T,H (or simply ◦T,H , where
H is the underlying graph of H) denotes the operation in {◦s, ◦p, ◦b, ◦b′} by which H is
obtained from its children.

We call T a series-parallel decomposition if ◦T,H ∈ {◦s, ◦p} for all H ∈ V (T ).

Next we define the subclass of simple GSP decompositions.

Definition 29 (Simple GSP Decompositions). A graph with terminals is bridged if it
contains an edge such that every path between its terminals includes that edge (i.e. a
bridge separating its terminals).

We define the complexity c(T ) of a GSP decomposition T of G recursively as follows:
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◦p

◦p

◦b
◦b

◦s

◦s◦s

◦s

Figure 8: A GSP decomposition T . The starred vertices are terminals of their respective
graphs. Each node H is labelled with ◦T,H .

• If ◦T,G = ◦p, c(T ) is the sum of the complexities of the two subtrees rooted at the
children of G.

• If ◦T,G ∈ {◦b, ◦b′}, c(T ) is the complexity of the child of G that shares its terminals
with G.

• Otherwise, the complexity of the decomposition is 0 if G is bridged and 1 otherwise.

A GSP decomposition T is simple if the complexity of every subtree of T is at most 1.
Otherwise, it is complex.

Finally, we have all the terminology needed to state our result:

Theorem 30. Let G be a connected graph with |V (G)| ⩾ 2. The following are equivalent:

(1) int(G) ⩽ 3.

(2) G does not contain as a subgraph any element of F1,F2, or F3.

(3) G admits a simple GSP decomposition.

The remainder of the paper is devoted to proving Theorem 30.

7 The topological inspection number of the forbidden graphs

7.1 A technical lemma

We begin by establishing a slightly technical result that will allow us to control sets of
vertices with boundary of size at most 2 in our subsequent analysis.
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Lemma 31. Suppose G is a graph and P1, . . . , Pk ⊆ V (G) are G-connected. For each i,
let Qi = Pi ∪NG(Pi), and let P =

⋃
i Pi. Assume the following hypotheses:

(H1)
⋃k

i=0 Qi = V (G).

(H2) For each i ̸= j, Pi ∩Qj = ∅.

(H3) For each i, G− Pi is connected and G− Pi − v is connected for every v ∈ V (G) \ P .

(H4) For each cut-set {a, b} ⊆ P of G, there exists some i such that {a, b} ⊆ Pi.

Then if S ⊆ V (G) is such that |∂G(S)| ⩽ 2, at least one of the following conclusions holds:

(C1) |S| ⩽ 2;

(C2) S ⊆ Pi ∪ {v} for some i and v ∈ V (G) \ P ;

(C3) S ⊇ V (G) \ (Pi ∪ A) for some i and A ⊆ V (G) \ P with |A| ⩽ 1;

(C4) S =
⋃

i∈I Pi ∪ A for some I ⊆ {1, . . . , k} and A ⊆ V (G) \ P .

Proof. Suppose S ⊆ V (G) is a set with |∂G(S)| ⩽ 2. If |S| ⩽ 2, then (C1) holds. Thus,
we may assume |S| > 2. Let H = G− ∂G(S). Then each connected component of H is
either contained in S or is disjoint from S. Note that V (H) ∩ S ̸= ∅ since |S| > |∂G(S)|.

If H is connected then S = V (G) and (C4) holds with I = {1, . . . , k} and A = V (G)\P .
Thus, we may assume H is disconnected.

Suppose ∂G(S) ⊆ V (G) \ P . For every i, ∂G(S) is disjoint from Pi and hence Pi is
either contained in S or disjoint from S. Letting I = {i | Pi ⊆ S} and A = S \ P gives us
S =

⋃
i∈I Pi ∪ A, so (C4) holds.

Otherwise, |∂G(S) \ P | ⩽ 1. Note that we can find some i such that ∂G(S) ∩ P ⊆ Pi,
as ∂G(S) ∩ P either comprises a single vertex or ∂G(S) ⊆ P and we can use (H4). By
(H3), the graph G− Pi − ∂G(S) = G− Pi − (∂G(S) \ P ) is connected and is thus either
contained in S or disjoint from S. In the former case (C3) holds, and in the latter case S
is contained in Pi ∪ (∂G(S) \ P ), fulling (C2). ■

7.2 The family F1

Here we show that the topological inspection number of K4 is 4:

Theorem 32. int(K4) ⩾ 4.

The remainder of this subsection contains the proof of Theorem 32. Note that The-
orem 32 implies that every graph in F1 (i.e., every subdivision of K4) has topological
inspection number at least 4.

Let G be some subdivison of K4 such that each edge is subdivided at least 212 times
(we did not make an attempt to optimize the value 212). We will show that in(G) ⩾ 4. Let
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T = {a, b, c, d} be the original vertices of the K4 in this subdivision. Assume, towards a
contradiction, that in(G) ⩽ 3.

We begin by applying Lemma 31 in the context of G. Let Pab, Pac, . . . , Pcd be the sets
of internal vertices of the paths replacing the corresponding edges of K4. In the notation
of Lemma 31, each set Qxy would then be of the form Qxy = Pxy ∪ {x, y}.

Claim 33. The sets Pab, Pac, . . . , Pcd satisfy the assumptions of Lemma 31.

Proof. It is easy to see that the sets Pxy are G-connected and that statements (H1) and
(H2) hold. For each pair (x, y), G − Pxy is a subdivision of a diamond graph, which is
2-connected, so (H3) is satisfied. It thus remains to verify (H4).

If {v, w} is a cut-set such that {v, w} ⊆ P—i.e., {v, w} ∩ T = ∅—then there exists a
path through all 4 vertices of T which passes through neither v nor w. Any vertex not
on this path lies on a subdivided edge between two vertices of T . For such a vertex to
be separated from T by {v, w}, both v and w must be on this subdivided edge, and thus
they both belong to some Pxy, as desired. ■

Now consider the possible sizes of subsets of V (G) with boundary of size at most 2.
Let M = max |Pxy|. Suppose S ⊆ V (G) is a set with |∂(S)| ⩽ 2 and M + 1 < |S| <
|V (G)| −M − 1. Then, by Lemma 31,

S =
⋃
xy∈I

Pxy ∪ T ′ for some I ⊆ {ab, ac, . . . , cd} and T ′ ⊆ T.

There are at most 210 such sets S (as we have 24 options for T ′ and 26 options for I). On
the other hand, by Proposition 12, for every i ∈ (M + 1, |V (G)| −M − 2), we must have
such a set S with |S| = i or |S| = i+ 1. Hence, |V (G)| − 2M − 4 ⩽ 2 · 210, which yields

|V (G)| ⩽ 2M + 211 + 4. (§)

Now suppose without loss of generality that |Pab| = M . Let

R1 = {a} ∪ Pac ∪ Pad, R2 = {b} ∪ Pbc ∪ Pbd, and R3 = Pcd.

Without loss of generality, suppose |R1| ⩽ |R2|. Let N = maxi=1,2,3 |Ri|. Note that
N ⩽ |V (G)| − M . Since every edge of K4 is subdivided at least 212 times, we have
|R1| ⩾ 212, so, by (§),

N − |R1| ⩽ |V (G)| −M − 212 ⩽ M − 211 + 4 < M.

Let D be the induced subgraph of G on the union of R1 ∪R2 ∪R3 ∪ {c, d}. Let R4 be the
set of the N − |R1| vertices in Pab that are closest to a, and let H = G[V (D) ∪ R4] (see
Fig. 9).

Claim 34. The sets R1, R2, R3 satisfy the assumptions of Lemma 31 as subsets of D.
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a b

d

c

R1 R2

R4

Figure 9: Construction of the subgraph H.

Proof. It is easy to see that the set Ri are connected and that statements (H1) and (H2)
hold. For each i, D −Ri is a cycle, which is 2-connected, so (H3) holds. It thus remains
to show (H4).

Note that no set {x, y} ⊆ R1 ∪R2 ∪R3 may separate c from d, as there are 3 internally
disjoint paths between them. Hence for {x, y} to be a cut-set of D, it must separate some
vertex v from both c and d. Whichever Ri contains v gives two internally disjoint paths
from v to each of c, d, so one of x, y must lie on each of these paths. Hence, x and y are
both contained in Ri, as desired. ■

Claim 35. Suppose a set S ⊆ V (H) satisfies |∂H(S)| ⩽ 2. Then |S| ⩽ N + 2 or
|S| ⩾ |V (H)| −N − 2.

Proof. Let S ′ = S ∩ V (D). Note that |∂D(S ′)| ⩽ 2 as any vertex in ∂D(S
′) is in ∂H(S) as

well.
Since D is 2-connected, either |S ′| < 2, or V (D) ⊆ S, or |∂D(S ′)| ⩾ 2 (by Lemma 8).
In the first case, |S| ⩽ N − |R1|+ 1 < N + 2. In the second case,

|S| ⩾ |V (D)| = |V (H)| −N + |R1| > |V (H)| −N − 2.

The remaining case is where |∂D(S ′)| = 2. This implies that ∂H(S) = ∂D(S
′). In particular,

R4 does not contain a boundary vertex of S. Since R4 is connected, it is either entirely
contained in S or is disjoint from it. Note that if R4 ⊆ S, then a ∈ S as otherwise the
neighbor of a in R4 will be a boundary vertex, a contradiction. Also, if S ∩R4 = ∅, then
either a ̸∈ S or a ∈ ∂D(S

′).
By Lemma 31, one of the following four cases must hold.

Case 1: |S ′| ⩽ 2. Then |S| ⩽ N − |R1|+ 2 < N + 2.

Case 2: S ′ is a subset of Ri ∪ {c, d} for some 1 ⩽ i ⩽ 3. If i = 1, this implies
|S| ⩽ N − |R1| + |R1| + 2 = N + 2. Otherwise, a ̸∈ S so S is disjoint from R4. Then
|S| ⩽ max{|R2| , |R3|}+ 2 ⩽ N + 2.

Case 3: S ′ contains V (D) \ (Ri ∪ {c, d}) for some 1 ⩽ i ⩽ 3. If i ̸= 1, then R1 ⊆ S,
which implies that a is in S but not in ∂D(S

′). Therefore, R4 ⊆ S, so |S| ⩾ |V (H)| −
max{|R2| , |R3|} − 2 ⩾ |V (H)| − N − 2. Otherwise, |S| ⩾ |V (H)| − (|R1| + |R4| + 2) =
|V (H)| −N − 2.
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Case 4: S ′ is the union of some subset of {R1, R2, R3, {c}, {d}}. If R2 ∪R3 ⊆ S, then
|S| ⩾ |V (H)|−N−2. On the other hand, if both R2, R3 ̸⊆ S, then |S| ⩽ |R1|+ |R4|+2 =
N + 2. The only remaining possibility is that exactly one of R2, R3 is a subset of S. Note
that the cycle formed by R2 ∪ R3 ∪ {c, d} contains two boundary vertices of S. Thus
R1 ⊆ S if and only if R4 ⊆ S, as otherwise one of a or its neighbor in R4 would be a third
boundary vertex. If R1 ̸⊆ S, then |S| ⩽ max{|R2| , |R3|} + 2 = N + 2. If R1 ⊆ S, then
|S| ⩾ |R1|+min{|R2| , |R3|}+ |R4| ⩾ |V (H)| −N − 2. ■

Note that
|V (H)| ⩾ 2N +min{|R2| , |R3|}+ 2 ⩾ 2N + 212 + 2,

so |V (H)|−N−2 ⩾ N +212. Hence there does not exist a set S ⊆ V (H) with |∂H(S)| ⩽ 2
and N + 2 < |S| < N + 212, and so by Proposition 12, in(G) ⩾ in(H) ⩾ 4, a contradiction.

Therefore, each subdivision of K4 where every edge is subdivided at least 212 times
has inspection number at least 4, which implies int(K4) ⩾ 4.

7.3 The families F2 and F3

To show the bound int ⩾ 4 for graphs in F2 and F3, we first consider a configuration
common to both families. Suppose G is a graph comprising two vertices, a, b, two internally
disjoint bipaths between them (the union of which we call D), and a path with a as an
endpoint which is otherwise disjoint from D (see Fig. 10). We let R be the set of the
vertices on this path distinct from a. Let I be the set of all pairs {x, y} of consecutive
primary vertices on the bipaths forming D. For each {x, y} ∈ I, let Pxy,0 and Pxy,1 be the
sets of internal vertices on the two primary paths joining x and y. We assume that all the
sets Pxy,i are nonempty.

a

b

R

D

Figure 10: The special configuration H.

Claim 36. The sets Pxy,i satisfy the hypotheses of Lemma 31 applied to the graph D.

Proof. Evidently, the sets Pxy,i are connected and both (H1), (H2) hold. Removing any
set Pxy,i from D keeps the remaining graph 2-connected, showing (H3). Finally, if v and w
are two non-primary vertices that do not lie on the same primary path, then D − {v, w}
is connected, proving (H4). ■
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Now we are going to make a few additional assumptions about the graph H. First, let
T be the sum of the orders of the bipaths comprising D (recall that the order of a bipath
is the number of its primary vertices). We shall assume that:

• |Pxy,i| ⩾ 24T for all {x, y} ∈ I and i ∈ {0, 1}.

Next, let N be the maximum of |Pxy,i| taken over all sets Pxy,i with a ̸∈ {x, y}. Similarly,
let M be the maximum of |Pxy,i| taken over all sets Pxy,i with a ∈ {x, y}. We assume that:

• N ⩾ M and |R| = N −M .

With these assumptions, we can show that the inspection number of H is at least 4:

Proposition 37. in(H) ⩾ 4.

Proof. Suppose S ⊆ V (H) is a subset such that |∂G(H)| ⩽ 2 and

N + 2 ⩽ |S| ⩽ |V (H)| −N − 2.

Let S ′ = S ∩ V (D). Note that ∂D(S
′) ⊆ ∂H(S). Since D is 2-connected, we have |S ′| < 2,

or V (D) ⊆ S, or |∂D(S ′)| = 2 (by Lemma 8). In the first case, |S| ⩽ |R|+1 = N−M+1 <
N + 2, a contradiction. In the second case,

|S| ⩾ |V (D)| = |V (H)| − |R| = |V (H)| −N +M > |V (H)| −N − 2,

which is again a contradiction. Therefore, |∂D(S ′)| = 2, which implies that ∂H(S) = ∂D(S
′).

In particular, R does not contain any boundary vertices of S. Since R is H-connected,
it is either entirely contained in S or is disjoint from it. Note that if R ⊆ S, then a ∈ S
as otherwise the neighbor of a in R will be a boundary vertex, a contradiction. Also, if
S ∩R = ∅, then either a ̸∈ S or a ∈ ∂D(S

′).
Since |∂D(S ′)| ⩽ 2, by Lemma 31, one of the following four cases must hold.

Case 1: |S ′| ⩽ 2. Then |S| ⩽ |R|+ 2 = N −M + 2 < N + 2, a contradiction.

Case 2: S ′ is contained in Pxy,i ∪ {z} for some Pxy,i and a primary vertex z. If
a ∈ {x, y}, then |Pxy,i| ⩽ M , so |S| ⩽ |R| + M + 1 = N + 1, a contradiction. Thus,
a ̸∈ {x, y}. Furthermore, z = a, as otherwise R ∩ S = ∅, which again implies |S| ⩽ N + 1.
Therefore, a ∈ ∂H(S). Consider the cycle C in H with V (C) = Pxy,0 ∪ Pxy,1 ∪ {x, y}. It is
2-connected, not contained in S, and, since a ̸∈ V (C), it contains at most one boundary
vertex of S. Thus, |S ∩ V (C)| ⩽ 1, so |S| ⩽ |R|+ 2 < N + 2, a contradiction.

Case 3: S ′ contains V (D) \ (Pxy,i ∪ {z}) for some Pxy,i and a primary vertex z.
Then S contains at least 3 sets Puv,j with a ∈ {u, v}. If a ̸∈ S, each of these sets
includes a boundary vertex of S, a contradiction. Hence a ∈ S. If a ∈ {x, y}, then
|S| ⩾ |V (H)| −M − |R| − 1 = |V (H)| −N − 1. Otherwise, considering the cycle C in H
with vertex set Pxy,0 ∪ Pxy,1 ∪ {x, y} as we did in Case 2 yields that a ̸∈ ∂H(S). Hence
R ⊆ S, so |S| ⩾ |V (H)| −N − 1, a contradiction.

Therefore, any such set S has to satisfy the following:
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Case 4: S ′ is the union of a collection of sets Pxy,i and some primary vertices. Since
there are 2T − 4 sets Pxy,i and T − 2 primary vertices, the number of such sets S is at most

22T−4 · 2T−2 · 2 = 23T−5,

where we are multiplying by 2 to account for the fact that S either contains R or is disjoint
from R. If in(H) ⩽ 3, then, by Proposition 12, for each i ∈ [N + 2, |V (H)| −N − 2), there
exists some S ⊆ V (H) with |∂H(S)| ⩽ 2 and |S| ∈ {i, i+ 1}. Therefore,

|V (H)| − 2N − 4 ⩽ 2 · 23T−5 = 23T−4 < 23T .

However, V (H) contains as disjoint subsets R, a set Pxy,i with a ∈ {x, y} of size M , a set
Pxy,i with a ̸∈ {x, y} of size N , and at least one other set Pxy,i, so

|V (H)| ⩾ (N −M) +M +N + 24T > 2N + 4 + 23T ,

a contradiction. ■

Theorem 38. Suppose G0 ∈ F2. Then int(G0) ⩾ 4.

Proof. Let a, b be the shared vertices of the three bipaths forming G0 (see Definition 26).
Let T be the sum of the orders of the bipaths comprising G0, and suppose G is some
subdivision of G0 such that each edge is subdivided at least 24T times. We will show that
in(G) ⩾ 4. Note that G is in F2 and that every primary path in G contains at least 24T

internal vertices. Let P be a primary path of maximum length in G. Let D be the union
of the two bipaths not containing P . Let M (resp. L) be the maximum number of internal
vertices on a primary path in D adjoining a (resp. b). Without loss of generality, assume
that L ⩾ M and let N be the maximum number of internal vertices on a primary path in
D not adjoining a. Note that N ⩾ L ⩾ M and P has at least N internal vertices.

Let Q be an arbitrary ab-path through P disjoint from D. Let R be the set of N −M
vertices in V (Q) \ {a} closest to a. The induced subgraph H of G on V (D) ∪R satisfies
the assumptions of Proposition 37. Therefore, in(G) ⩾ in(H) ⩾ 4, as desired. ■

Theorem 39. Suppose G0 ∈ F3. Then int(G0) ⩾ 4.

Proof. Recall that by Definition 26, G0 consists of 4 bipaths Ba, Bb, Bc, Bd and two paths
P1, P2, such that Ba, Bb share endpoints v1 and v2, Bc, Bd share endpoints v3 and v4, but
the bipaths are otherwise pairwise vertex-disjoint. Furthermore, P1 has endpoints v1, v3,
and P2 has endpoints v2, v4, but these paths have no other vertices in common with the
bipaths (however, P1 and P2 may intersect each other).

Let T be the sum of the orders of the bipaths Ba, Bb, Bc, and Bd, and suppose G
is some subdivision of G0 such that each edge is subdivided at least 24T times. We will
show that in(G) ⩾ 4. Note that G is in F3 and every primary path in G has at least 24T

internal vertices. Let P be a primary path of maximum length in G. Suppose without loss
of generality that P belongs to a bipath with endpoints v3, v4. Let D be the subgraph of
G comprising the two bipaths with endpoints v1, v2. Let M (resp. L) be the maximum
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number of internal vertices on a primary path in D adjoining v1 (resp. v2). Without loss
of generality, assume that L ⩾ M and let N be the maximum number of internal vertices
on a primary path in D not adjoining v1. Note that N ⩾ L ⩾ M and P has at least N
internal vertices.

Let Q be a path that starts at v1, follows the path P1 to v3, and then continues to v4
through P . Let R be the set of N −M vertices in V (Q) \ {v1} closest to v1. The induced
subgraph H of G on V (D) ∪ R satisfies the assumptions of Proposition 37 (with v1 in
place of a and v2 in place of b). Therefore, in(G) ⩾ in(H) ⩾ 4, as desired. ■

8 Building simple GSP decompositions

8.1 GSP decompositions of K4-subdivision-free graphs

The main result of this subsection is Corollary 44, which says that connectedK4-subdivision-
free graphs admit GSP decompositions (with some control over the choice of terminals). By
Theorem 32, every graph G with int(G) ⩽ 3 must be K4-subdivision-free, so Corollary 44
implies that such G has a GSP decomposition. In the subsequent subsections we shall
explain how to make this GSP decomposition simple.

Lemma 40. Suppose G is a K4-subdivision-free graph and H is a connected subgraph of
G containing distinct vertices a, b such that a ̸∈ NH(b), {a, b} is not a cut-set of H, and
there exists a path from a to b in G− (H − {a, b}). Then there exists a cut vertex of H
separating a and b.

Proof. Suppose H contained internally disjoint paths P , Q between a and b. Since
a ̸∈ NH(b), P and Q must each contain at least one intermediate vertex. As H remains
connected after removing a and b, there must be some path connecting intermediate
vertices of P and Q that is internally disjoint from P and Q. Let v and w be the endpoints
of such a path. Then there are pairwise disjoint paths connecting each of the pairs of
vertices in {a, b, v, w} (the path between a and b in particular is taken to be one contained
in G − (H − {a, b}) given by the hypothesis). Thus G contains a subdivision of K4, a
contradiction. Hence H cannot contain a pair of internally disjoint paths between a and b,
and so the claim follows by Menger’s theorem [10, Corollary 3.3.5]. ■

Proposition 41. Suppose G is a 2-connected K4-subdivision-free graph, and {a, b} ⊆ V (G)
are either neighbors or a cut-set of G. Then (G, a, b) admits a series-parallel decomposition.

Proof. We shall prove this via induction on |V (G)|. The base case where |V (G)| = 2 is
trivial.

To prove the general case, let the connected components of G− {a, b} be H ′
0, . . . , H

′
k,

and for each i, let Hi be obtained from G[H ′
i ∪ {a, b}] by removing the edge between a

and b if it exists. For each i, the graph G−H ′
i contains an ab-path Pi. Indeed, if a and b

are neighbors, the edge between a and b is such a path. Otherwise, {a, b} is a cut-set of G
so there are at least two connected components of G− {a, b}. Hence k > 0 and we can
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choose some H ′
j distinct from H ′

i. Since G is 2-connected, G[H ′
j ∪ {a, b}] is a connected

subgraph of G −H ′
i, and thus it contains an ab-path. By Lemma 40, we may conclude

that Hi must contain a cut-vertex separating a and b.
Consider the block-cut tree of Hi. If it is not a single path from the block containing a

to the block containing b (which are distinct by the above), we can find some leaf block L
with a cut-vertex v such that a, b ̸∈ V (L) \ {v}. Then v separates V (L) \ {v} from the
rest of G, which is impossible as G is 2-connected.

Thus the block-cut tree of Hi is a path from the block containing a to the block
containing b. Enumerate the blocks of Hi as B0, . . . , Bℓ−1 in order of increasing distance
from a, and let vj be the cut-vertex between Bj−1 and Bj. We also write v0 = a, vℓ = b.
We can find a path from each vj to vj+1 without passing through any other vertices of
Bj: take a path from vj to a through the blocks Bj−1, . . . , B0 in order, then Pi, then a
path from b to vj+1 through the blocks Bℓ−1, . . . , Bj+1 in order. Furthermore, Bj cannot
contain a cut-vertex separating vj from vj+1, so by the contrapositive of Lemma 40, either
{vj, vj+1} is a cut-set of Bj, or vj ∈ NBj

(vj+1). In either case we can apply the induction
hypothesis to see that (Bj, vj, vj+1) admits a series-parallel decomposition.

Note that

(Hi, a, b) = (B0, v0, v1) ◦s (B1, v1, v2) ◦s · · · ◦s (Bℓ−1, vℓ−1, vℓ),

so this implies that (Hi, a, b) admits a series-parallel decomposition. Furthermore, we have

(G, a, b) =

{
(H0, a, b) ◦p · · · ◦p (Hk, a, b) if a ̸∈ NG(b);

(H0, a, b) ◦p · · · ◦p (Hk, a, b) ◦p (eab, a, b) if a ∈ NG(b),

where eab is the graph comprising the single edge between a and b, so G admits a series-
parallel decomposition, as desired. ■

Lemma 42. If G = (G, a, b) admits a series-parallel decomposition T , then G’s block-cut
tree comprises a single path (possibly a single block), and a and b are each contained in a
leaf block. If we let v1, . . . , vk−1 be the cut-vertices of G in order of distance from a, and
v0 = a, vk = b, then for every block B, (B, vi, vi+1) ∈ V (T ) where i is the unique index
such that {vi, vi+1} ⊆ V (B). Furthermore, for any v ∈ V (G), we can find a path from a
through v to b.

Proof. We shall show this by induction on |V (T )|. The claim is clearly true if T is trivial,
where G must comprise a single edge.

If ◦T,G = ◦s, suppose (H, a, c) and (K, c, b) are the children of G in T . Then c separates
V (H) \ {c} from V (K) \ {c} in G, so the block-cut tree of G is simply the union of the
block-cut trees of H and K with an additional edge between each of their blocks which
contain c. One notes that this, combined with the induction hypothesis, gives the desired
structure of the block-cut graph of G. Each block (B, vi, vi+1) is either a block of H or
a block of K, so it is in V (T ) by the induction hypothesis. Finally, for any v ∈ V (G),
suppose without loss of generality that v ∈ V (H). Then taking a path in H from a through
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v to c and extending it by any path in K from c to b gives a desired path from a through
v to b in G.

If ◦T,G = ◦p, we will show that G is 2-connected. Let (H, a, b) and (K, a, b) be the
children of G in T . Consider any vertex v ∈ V (G). We will show that the graph G− v is
connected. We may assume that v ̸= a (the argument when v = a is the same but with
the roles of a and b exchanged). We claim that every vertex w ∈ V (G) \ {v} is reachable
in G− v by a path from a. Without loss of generality, we may assume that w ∈ V (H). By
the induction hypothesis, we can find a path P from a through w to b in H and a path Q
from a to b in K. Write P = P1 ∪ P2, where P1 is an aw-path and P2 is a wb-path, noting
that P1 and P2 share only a single vertex w. If v ̸∈ V (P1), then P1 is a desired aw-path in
G− v. Otherwise, i.e., if v ∈ V (P1), a desired aw-path in G− v is Q ∪ P2. Now that we
have established that G is 2-connected, the block-cut graph of G comprises a single block,
and the desired properties in the claim follow immediately. To find a path from a through
v to b for any v ∈ V (G), we simply take the path in whichever of H or K contains v using
the induction hypothesis. ■

Lemma 43. Suppose G = (G, a, b) and H = (H, c, d) admit GSP decompositions TG, TH

respectively, and V (G)∩V (H) = {c}. Let K be the union of G and H. Then K = (K, a, b)
admits a GSP decomposition T with H ∈ V (T ) such that the induced decomposition of H
in T is TH .

Furthermore, if both TG and TH are simple, then we can additionally further restrict T
to be simple and have the same complexity as TG.

Proof. We shall proceed by induction on |V (G)|. For the base case, |V (G)| = 2 and G
comprises a single edge. If c = a, K = G ◦b H. Similarly, if c = b, K = G ◦b′ H and T
can be obtained directly by joining TG to TH . In either case, the complexity of T is equal
to the complexity of TG, so if TG and TH were simple, T would be simple too.

In the general case, TG is nontrivial. Let G0 = (G0, s, t), G1 be the children of G in
TG. Without loss of generality we may assume that c ∈ V (G0). Then by the induction
hypothesis, (G0 ∪ H, s, t) admits a GSP decomposition T ′ containing H with induced
decomposition TH . Connecting T ′ with the induced decomposition of TG on G1 gives the
desired decomposition T . If TG and TH were simple, the induced decompositions on G0

and G1 would be simple too. By the induction hypothesis, T ′ is simple and has the same
complexity as the induced decomposition on G0 by TG, so T has the same complexity as
TG and is simple. ■

Corollary 44. Suppose G is a connected K4-subdivision-free graph, and {a, b} ⊆ V (G)
are either neighbors or a cut-set of a 2-connected component of G. Then (G, a, b) is a GSP
graph.

Proof. We proceed by induction on the number of blocks in G. In the case where the
number of blocks is 1, this reduces to Proposition 41. In the general case, take a leaf block
L which does not contain both a and b. Let v be the cut-vertex of L. By the induction
hypothesis, (G− (L− {v}), a, b) is a GSP graph, and by Proposition 41, (L, {v, w}) is a
GSP graph for any neighbor w of v in L. Hence by Lemma 43, (G, a, b) is a GSP graph. ■
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8.2 Simple series-parallel decompositions of 2-connected graphs

The bulk of the work in the proof of the implication (2) =⇒ (3) in Theorem 7 is done
in this subsection, where we show that 2-connected graphs G without any member of
F1 ∪ F2 ∪ F3 as a subgraph admit simple series-parallel decompositions (Proposition 52).

Lemma 45. Suppose G = (G, a, b) has a GSP decomposition T with complexity k. Then
G contains at least k pairwise internally vertex-disjoint bipaths with endpoints {a, b}.
Proof. We proceed by induction on |V (G)|. If T is trivial, we are done as then k = 0.

If ◦T,G = ◦p, ◦b or ◦b′ , then by definition k is the sum of the complexities of the children
of G which have terminals (a, b). By the induction hypothesis, each of these children have
at least as many bipaths with terminals {a, b} as their respective complexities, and since
these children may only intersect at {a, b}, these bipaths are internally vertex-disjoint,
proving the claim.

Otherwise, ◦T,G = ◦s. Then, by definition, either G is bridged and k = 0 or G is not
bridged and k = 1. In the former case, there is nothing to prove, so we may suppose
that k = 1. Consider the block-cut tree of G. Since ◦T,G = ◦s, there exists at least one
cut-vertex separating a from b, so a and b do not share a block. Let P be the unique path
in the block-cut tree from the block containing a to the block containing b. If any block in
P comprises a single edge, this edge would be a bridge separating a from b, contradicting
the assumption that G is not bridged. Hence every block in P contains at least 3 vertices,
and thus has a cycle containing the cut-vertices it shares with its neighbors in P (or in the
case of the endpoint blocks, the one shared cut-vertex and whichever of a or b it contains).
The union of these cycles is a bipath, as desired. ■

We can note the following corollary, which immediately results from the previous
lemma:

Corollary 46. Suppose T is a complex GSP decomposition of a graph G. Then some
H ∈ V (T ) contains as a subgraph a pair of internally disjoint bipaths between its terminals.

Lemma 47. Suppose G = (G, a, b) admits a simple GSP decomposition T . Then (G, b, a)
also admits a simple GSP decomposition. Furthermore, if T is a series-parallel decomposi-
tion then (G, b, a) also admits a simple series-parallel decomposition.

Proof. We proceed by induction on |V (G)|. The base case where G comprises a single edge
is trivial. Suppose (G0, s0, t0) and (G1, s1, t1) are the children of G in T . Their induced
decompositions must be simple GSP decompositions, so by the induction hypothesis
(G0, t0, s0), (G1, t1, s1) also admit simple GSP decompositions. If ◦T,G = ◦s or ◦p, then
G = (G1, t1, s1) ◦T,G (G0, t0, s0). Otherwise, G = (G1, t0, s0) ◦∗ (G0, s1, t1) where ◦∗ is
whichever of {◦b, ◦b′ is not ◦T,G. In either case, connecting the two GSP decompositions
given of the children gives a GSP decomposition of G as desired. ■

Proposition 48. Suppose G is a 2-connected graph and (G, a, b) = (H, a, b) ◦p (K, a, b),
where both (H, a, b) and (K, a, b) admit simple series-parallel decompositions TH , TK

respectively. Then G admits a simple series-parallel decomposition with a as a terminal.
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Proof. Suppose without loss of generality that |V (H)| ⩽ |V (K)|. We argue by induction
on |V (H)|+ |E(H)|.

For the base case, where |V (H)| + |E(H)| = 3, i.e. H ∼= K2, directly combining TH

and TK gives a series-parallel decomposition T of G with complexity at most 1, since H
comprises a single edge and so TH is trivial, with complexity 0. Every proper subtree of
T is a subtree of TH or TK , and thus must have complexity at most 1, so T is simple as
desired.

In the general case, TH is nontrivial. Suppose ◦TH ,H = ◦p and (H0, a, b), (H1, a, b) are
the children of H in T . Since TH has complexity at most 1, one of these children has an
induced decomposition of complexity 0; suppose without loss of generality that this is H1.
This naturally gives a simple series-parallel decomposition of ((H1, a, b) ◦p (K, a, b)). Then,
note that

(G, a, b) = (H0, a, b) ◦p ((H1, a, b) ◦p (K, a, b)) .

Since H0 is a proper subgraph of H, the induction hypothesis implies that G has a simple
series-parallel decomposition with a as a terminal as desired.

Now suppose ◦TH ,H = ◦s. By Lemma 42, the block-cut tree of H comprises a path of
blocks from the block containing a to the block containing b, and each block is contained
in V (TH). Let B0, . . . , Bk−1 be the blocks in order of increasing distance from a, and let
v0, . . . , vk be defined as in Lemma 42. We have (Bi, vi, vi+1) ∈ V (TH) for each i, and so
they have simple induced series-parallel decompositions. By Lemma 47, (Bi, vi+1, vi) also
each admit simple series-parallel decompositions. Now, note that

(G, a, v1) = (B0, a, v1) ◦p ((K, a, b) ◦s (Bk−1, vk, vk−1) ◦s . . . ◦s (B1, v2, v1)) ,

and each graph with terminals admits a simple series-parallel decomposition. Since B0

has strictly fewer vertices than H, the induction hypothesis implies that G has a simple
series-parallel decomposition with a as a terminal as desired. ■

Lemma 49. If T is a GSP decomposition of a graph G, and (H, a, b) ∈ T , then {a, b}
separates V (H) \ {a, b} from the rest of G.

Proof. We proceed by induction on |V (G)| − |V (H)|. If H = G, the claim is trivial.
Otherwise, H is a proper subgraph of G and thus H is a child of some K in T . When
K = G, the claim immediately follows from the definition of the operations ◦s, ◦p, ◦b,
◦b′ . The remaining case is when K is also a proper subgraph of G. By the induction
hypothesis, substituting K for G, the only vertices of H which could have neighbors in
V (K) \ V (H) are {a, b}. If we instead substitute K for H, we get that the only vertices of
K which could have neighbors in V (G) \ V (K) are its terminals, and whichever of these
terminals are contained in H must themselves be terminals of H (one can easily verify
this by considering each possible choice of ◦T,K). These two combined show the claim,
completing the proof. ■

We say that graphs with terminals G = (G, a, b) and H = (H, c, d) are non-terminally
disjoint if V (G) ∩ V (H) ⊆ {a, b, c, d}.
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Proposition 50. Suppose G is a 2-connected graph that does not contain any member
of F3 as a subgraph. Let T0, T1 be series-parallel decompositions of G. If H0 ∈ V (T0),
H1 ∈ V (T1) are such that both their induced decompositions are complex, then they are
not non-terminally disjoint.

Proof. Suppose otherwise, so H0 and H1 are non-terminally disjoint. By Corollary 46,
the induced decompositions of H0 and H1 (in T0 and T1 respectively) contain (K0, a0, b0)
and (K1, a1, b1) which themselves contain two disjoint bipaths between their respective
terminals.

Since G is 2-connected, the sets V (K0) and V (K1) do not have a vertex separator
of size 1, so by Menger’s theorem [10, Theorem 3.3.1], there exist two disjoint paths P0,
P1 between them. Since K0 and K1 are non-terminally disjoint, by Lemma 49, we may
assume that P0 and P1 intersect K0 and K1 only at the terminals. Then the union of P0,
P1, K0 and K1 contains as a subgraph an element of F3, a contradiction. ■

If T is a series-parallel decomposition of a graph G, then for any two graphs H0,
H1 ∈ V (T ), either they are non-terminally disjoint or one of them contains the other
as a subgraph. Therefore, Proposition 50 implies that, given any complex series-parallel
decomposition T of a graph G without any member of F3 as a subgraph, there is a unique
inclusion-minimal H ∈ V (T ) whose induced decomposition is complex. We call this H
the minimal complex descendant of G in T .

Lemma 51. If G = (G, a, b) admits a series-parallel decomposition T , then G can be
obtained by combining, via ◦p, the graphs with terminals (H, a, b) ∈ V (T ) such that no
child of (H, a, b) in T has terminals (a, b).

Proof. Call the graphs with terminals (H, a, b) ∈ V (T ) such that no child of (H, a, b)
in T has terminals (a, b) good graphs. We argue by induction on the number of good
graphs. If there is a single good graph, then (G, a, b) itself must be good, as each graph
with terminals (a, b) is either good or has two children with terminals (a, b). Otherwise,
G = (H, a, b) ◦p (K, a, b) for some subgraphs H, K. Applying the induction hypothesis on
H and K and their induced decompositions shows that H and K can each be obtained
by combining some subset of the good graphs via ◦p, and hence so can G, proving the
lemma. ■

Proposition 52. Suppose G is a 2-connected graph without any member of F1 ∪ F2 ∪ F3

as a subgraph, and let T be a series-parallel decomposition of G. Then either T is simple
or G admits a simple series-parallel decomposition sharing a terminal with the minimal
complex descendant of G in T .

Proof. We may operate under the assumption that T is not simple. Let (H, a, b) be the
minimal complex descendant of G in T .

Claim 52.a. The graph with terminals (G, a, b) admits a series-parallel decomposition T ′.

▷ If V (H) = V (G), we can take T ′ = T . Otherwise, by Lemma 49, {a, b} separates
V (H) \ {a, b} from V (G) \ V (H), so we are done by Proposition 41. ◀

Let T ′ be a series-parallel decomposition of (G, a, b).
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Claim 52.b. Suppose (K, a, b) ∈ V (T ′) has no child in T ′ with terminals (a, b). Then K
is a subgraph of either H or G− (H − {a, b}).

▷ If K is a single edge, then it is a subgraph of H or of G − (H − {a, b}) depending
on whether a and b are neighbors in H. Otherwise, the induced decomposition on K in
T ′ is nontrivial, and we must have ◦T ′,K = ◦s as otherwise K would have a child with
terminals (a, b). By Lemma 42, the block-cut graph of K comprises a path, with the blocks
containing a and b as distinct endpoints. If K contains vertices of both H − {a, b} and
G−H, one of these blocks, say B, must contain vertices from both. By Lemma 49 applied
to H with respect to T , {a, b} must separate H−{a, b} from G−H, but B cannot contain
both a and b, so it remains connected after the removal of {a, b}, a contradiction. ◀

By Lemma 51, we can write

(G, a, b) = (K1, a, b) ◦p · · · ◦p (Kℓ, a, b),

where K1, . . . , Kℓ ∈ V (T ′) are such that their children do not have terminals (a, b). We
may order these graphs so that for some 1 ⩽ m ⩽ ℓ, the Ki with i < m are subgraphs of
G− (H − {a, b}) and the Ki with i ⩾ m are subgraphs of H. Then

⋃ℓ
i=m Ki = H, so

(G, a, b) = (K1, a, b) ◦p . . . ◦p (Km−1, a, b) ◦p (H, a, b).

Since (H, a, b) is the minimal complex descendant of G in T , the induced decompositions
of its children are simple and ◦T,H = ◦p. Let (H0, a, b) and (H1, a, b) be its children in T .
Then

(G, a, b) = ((K1, a, b) ◦p · · · ◦p (Km−1, a, b) ◦p (H0, a, b)) ◦p (H1, a, b).

Consider any Ki with i < m. Since it is a subgraph of G − (H − {a, b}), its induced
decomposition in T ′ cannot be complex, as otherwise H and Ki contradict Proposition 50.
Furthermore, (Ki, a, b) must be bridged, as otherwise, by Lemma 45, it would contain a
bipath between a and b which is internally disjoint from the two bipaths between a and
b contained in H (also given by Lemma 45), and so G would contain as a subgraph a
member of F2.

Hence each (Ki, a, b) is bridged and has a simple induced decomposition in T ′ of
complexity 0. By connecting each of these decompositions with the induced decomposition
of (H0, a, b) from T , we obtain a simple series-parallel decomposition of (K1, a, b) ◦p . . . ◦p
(Km−1, a, b) ◦p (H0, a, b). Finally, we may apply Proposition 48 to show that G admits a
simple series-parallel decomposition with a as a terminal. ■

8.3 The general case

In this subsection we complete the proof of implication (2) =⇒ (3) in Theorem 7 by
handling non-2-connected graphs.

Lemma 53. Let G be a connected graph which does not contain any member of F3 as a
subgraph. Suppose H, K are distinct leaf blocks of G with respective cut-vertices vH , vK.
If TH , TK are series-parallel decompositions of H and K respectively, and (H ′, a, b) ∈ TH

has a complex induced decomposition with vH ̸∈ V (H ′), then any K′ ∈ TK with a complex
induced decomposition must have vK ∈ V (K ′).
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Proof. By 2-connectedness of H, there exists a path from a to vH in G−{b}. By Lemma 49,
any such path of minimum length cannot contain any non-terminal vertex of H ′. Likewise,
we can find a path from b to vH which does not contain a non-terminal vertex of H ′.

If K ′ does not contain vK , we can similarly find paths from vK to each of its terminals
which does not contain the non-terminal vertices of K ′. Finally, we can take any path from
vH to vK to construct paths between each pair of terminals of H ′ and K ′ each avoiding the
non-terminal vertices of H ′ and K ′. Since each of H ′, K ′ contain a pair of bipaths between
their terminals (Lemma 45), G will contain as a subgraph a member of F3, contradicting
the assumption. ■

Theorem 54. Suppose G is a connected graph which does not contain any member of
F1 ∪ F2 ∪ F3 as a subgraph. Then G has a simple GSP decomposition.

Proof. We proceed by induction on the number of blocks in G. The base case when G has
only one block is handled by Proposition 52. Now suppose G has at least 2 blocks and let
H, K be distinct leaf blocks with respective cut-vertices vH , vK . By Proposition 41, we
can find series-parallel decompositions TH , TH of H and K respectively with each having
vH , vK respectively as a terminal (we can make the terminals be vH/vK and a neighbor,
for instance).

If at least one of TH , TK is simple, then by the inductive hypothesis we can find a
simple decomposition of the rest of the graph, and then, by Lemma 43, we get a simple
decomposition of G. Otherwise, both TH and TK are complex, so Lemma 53 implies that
at least one (without loss of generality, let it be H) has its minimal complex descendant
contain vH . Since H has vH as a terminal, vH must be a terminal of this minimal complex
descendant. Hence by Proposition 52, we can find a simple decomposition of H with vH
as a terminal, then again we can find a simple decomposition of the rest of the graph, and
by Lemma 43, we have a simple decomposition of G. ■

9 Searching subdivisions

9.1 Introduction

In this section we prove implication (3) =⇒ (1) of Theorem 7; i.e., we show that every
graph G with a simple GSP decomposition has topological inspection number at most 3.
We begin by noting that if a graph G has a simple GSP decomposition, then so do all its
subdivisions:

Lemma 55. Let G = (G, a, b) be a graph with terminals and let T be a GSP decomposition
of G. Suppose that G′ is a subdivision of G. For each subgraph D of G, let D′ denote the
corresponding subgraph of G′ obtained by subdividing D.

Then G′ = (G, a, b) has a GSP decomposition T ′ such that for all D = (D, s, t) ∈ V (T ),
we have D′ = (D′, s, t) ∈ V (T ′) and ◦T,D = ◦T ′,D′. Additionally, if T is simple, then T ′ is
simple too.
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Proof. Replace each node (D, s, t) in T with (D′, s, t). The leaf nodes now correspond to
subdivided edges (i.e., paths), which have series-parallel decompositions using only the
series operation. Replacing each leaf node with its series-parallel decomposition gives the
desired GSP decomposition T ′. Note that the series-parallel decompositions replacing leaf
nodes have complexity 0. Since whether a graph with terminals is bridged is not changed
by subdivision, the complexity of each subtree in the decomposition remains the same as
before, and hence if T is simple, then T ′ is simple as well. ■

In view of Lemma 55, to prove implication (3) =⇒ (1) of Theorem 7, we just need to
argue that every graph G with a simple GSP decomposition T has a subdivision G′ such
that in(G′) ⩽ 3. Indeed, by Lemma 55, this would imply that every subdivision of G has
a further subdivision with inspection number at most 3, as desired.

9.2 Aligned searches and quotient graphs

Given a graph G with a simple GSP decomposition T , we shall construct a subdivision G′

of G with in(G′) ⩽ 3 inductively by “amalgamating” successful 3-searches on subdivisions
of the descendants of G in T . In order for this amalgamation process to work, we need
these 3-searches to satisfy a certain property defined as follows:

Definition 56 (Aligned Searches). A k-search S of length ℓ on a graph G is aligned to
an ordered pair of vertices (a, b) ∈ V (G)2 if a ∈ PCt(S) for each 1 ⩽ t ⩽ ℓ, and b ̸∈ FCt(S)
for each 0 ⩽ t < ℓ.

If A ⊆ V (G) and S is a k-search of length ℓ, we say that S is aligned to (a, b) ∈ V (G)2

over A if a ∈ PCt(S, A) for each 1 ⩽ t ⩽ ℓ, and b ̸∈ FCi(S, A) for each 0 ⩽ t < ℓ.
Here PCt(S, A) and FCt(S, A) refer to the sets of pre-cleared and fully cleared vertices

if the set A is initially cleared (see Definition 9).

The next definition provides the terminology and notation that will be used in describing
the amalgamation process:

Definition 57 (Quotient Graphs). Let G be a graph and let E be an equivalence relation
on V (G). The quotient graph G/E is the graph with vertex set V (G)/E that includes
an edge between distinct E-equivalence classes c1, c2 ∈ V (G)/E if and only if there are
adjacent vertices v1 ∈ c1 and v2 ∈ c2.

A subset X ⊆ V (G) is E-invariant if it is a union of E-equivalence classes. For an
E-invariant set X ⊆ V (G), we write X/E to denote the set of all E-equivalence classes
contained in X.

Define two maps ∧E , ∨E : P(V (G)) → P(V (G)/E) via

∧E(X) = {c ∈ V (G)/E : c ⊆ X} and ∨E (X) = {c ∈ V (G)/E : c ∩X ̸= ∅}.

Note that if X is E-invariant, then ∧E(X) = ∨E(X) = X/E .
Let S be a k-search of length ℓ on G and let A ⊆ V (G). We say that S is E-invariant

over A if for all 1 ⩽ t ⩽ ℓ, the set PCt(S, A) is E-invariant. Given a k-search S = (St)
ℓ
t=1

on G, we let ∨E(S) = (∨E(St))
ℓ
t=1.

the electronic journal of combinatorics 29(3) (2022), #P3.9 33



If E is an equivalence relation on V (G) and S is a k-search on G, then ∨E(S) is a
k-search on G/E . The next proposition allows us to compute the sets of pre-cleared and
fully cleared vertices for it.

Proposition 58. Let G be a graph and let E be an equivalence relation on V (G). Suppose
that A ⊆ V (G) and S is a k-search of length ℓ on G that is E-invariant over A. Then:

• FCt(∨E(S),∧E(A)) = ∧E(FCt(S, A)) for all 0 ⩽ t ⩽ ℓ;

• PCt(∨E(S),∧E(A)) = PCt(S, A)/E for all 1 ⩽ t ⩽ ℓ.

Proof. We shall prove the following two implications for all 1 ⩽ t ⩽ ℓ:

(a) If FCt−1(∨E(S),∧E(A)) = ∧E(FCt−1(S, A)), then PCt(∨E(S),∧E(A)) = PCt(S, A)/E .

(b) If PCt(∨E(S),∧E(A)) = PCt(S, A)/E , then FCt(∨E(S),∧E(A)) = ∧E(FCt(S, A)).

Together with the observation that FC0(∨E(S),∧E(A)) = ∧E(A) = ∧E(FC0(S, A)), these
immediately yield the desired result.

First suppose that FCt−1(∨E(S),∧E(A)) = ∧E(FCt−1(S, A)). Then, by definition,

PCt(∨E(S),∧E(A)) = ∧E(FCt−1(S, A)) ∪ ∨E(St) and PCt(S, A) = FCt−1(S, A) ∪ St.

Since the set PCt(S, A) is E-invariant, every E-equivalence class c is either contained in it
or disjoint from it. Therefore,

c ∈ PCt(S, A)/E ⇐⇒ c ⊆ FCt−1(S, A) or c ∩ St ̸= ∅
⇐⇒ c ∈ ∧E(FCt−1(S, A)) or c ∈ ∨E(St)

⇐⇒ c ∈ PCt(∨E(S),∧E(A)).

Now suppose that PCt(∨E(S),∧E(A)) = PCt(S, A)/E . Then FCt(∨E(S),∧E(A)) com-
prises exactly those equivalence classes c ∈ PCt(S, A)/E that satisfy c∩∂G(PCt(S, A)) = ∅,
i.e., that are fully contained in FCt(S, A). Therefore, FCt(∨E(S),∧E(A)) = ∧E(FCt(S, A)),
as desired. ■

9.3 Clearing balls

Recall that for v ∈ V (G) and r ∈ N, BG(v, r) denotes the ball of radius r around v in G.
In this subsection we establish two useful auxiliary constructions that allow us to clear a
ball of large radius around a vertex in a subdivision of a given graph.

Lemma 59. Let G be a graph and let v, w ∈ V (G) be distinct vertices. Let d be the
degree of w in G. Fix some r ∈ N and let H be a subdivision of G such that each edge
incident to w is subdivided at least 2d−1r + 1 times. Then there exists a 3-search S on
H of length ℓ = (2d − 1)r such that w ∈ St for all 1 ⩽ t ⩽ ℓ, S is aligned to (w, v), and
FC∗(S) ⊇ BH(w, r).
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Proof. Let P1, . . . , Pd be the paths in H replacing the edges of G incident to w. Denote the
endpoint of Pi distinct from w by ui. Let H

′ be the graph obtained from H by removing
all the vertices in V (P1) ∪ . . . ∪ V (Pd) except for u1, . . . , ud, and let H∗ be the graph
obtained as a disjoint union of H ′ and d paths P ∗

1 , . . . , P
∗
d , where each P ∗

i is of the same
length as Pi. Denote the two endpoints of P ∗

i by wi and u∗
i and define an equivalence

relation E on V (H∗) by making the following sets the only nontrivial equivalence classes:
{w1, . . . , wd}, {u1, u

∗
1}, . . . , {ud, u

∗
d}. Then there is an obvious isomorphism H ∼= H∗/E ,

which allows us to identify H with H∗/E .
For 1 ⩽ i ⩽ d, denote by Vi[a, b] the set of all vertices in P ∗

i at distance between a and
b (inclusive) from wi. Let Si be the (d+ 2)-search on H∗ of length 2d−ir, where for each
1 ⩽ t ⩽ 2d−ir,

(Si)t = {w1, . . . , wd} ∪ Vi[t, t+ 1].

Note that since the length of P ∗
i is at least 2d−1r + 2, u∗

i ̸∈ (Si)t. Let S∗ = S1
⌢ · · · ⌢Sd,

where ⌢ denotes concatenation of sequences, and define S = ∨E(S∗). We claim that S is
as desired.

It is clear that S is a 3-search (since the vertices w1, . . . , wd represent the same
equivalence class). The length of S is equal to the length of S∗, which is

2d−1r + 2d−2r + · · ·+ r = (2d − 1)r.

Also, for each t, w is the unique vertex of G in St. This implies that S is aligned to (w, v).
Next we observe that the search S∗ is E-invariant. Indeed, the equivalence class

{w1, . . . , wd} is contained in every S∗
t , so all its elements are always pre-cleared. On the

other hand, the vertices in an equivalence class of the form {ui, u
∗
i } are never pre-cleared.

It is straightforward to verify that Vi[0, 2
d−ir] ⊆ FC∗(Si) and hence Vi[0, 2

d−ir] ⊆
FC(2d−2d−i)r(S∗). It follows that for each t ⩾ 1,

Vi[0, 2
d−ir − t+ 1] ⊆ PC(2d−2d−i)r+t(S∗) and Vi[0, 2

d−ir − t] ⊆ FC(2d−2d−i)r+t(S∗).

By applying this with t = (2d−i − 1)r, we get that Vi[0, r] ⊆ FC∗(S∗) for each i. Hence,
by Proposition 58, FC∗(S) contains all the vertices of H at distance at most r from w, as
desired. ■

Lemma 60. Let G be a graph and v, w ∈ V (G) be distinct vertices. Let d be the degree of
v in G. Fix some r ∈ N and let H be a subdivision of G such that each edge incident to v
is subdivided at least 2d−1r times. Let A = V (H) \BH(v, r). Then there exists a 3-search
S on H of length ℓ = (2d − 1)r such that v ∈ St for all 1 ⩽ t ⩽ ℓ, S is aligned to (w, v)
over A, and FC∗(S, A) = V (H).

Proof. Let P1, . . . , Pd be the paths in H replacing the edges of G incident to v. Denote the
endpoint of Pi distinct from v by ui. Let H

′ be the graph obtained from H by removing
all the vertices in V (P1) ∪ . . . ∪ V (Pd) except for u1, . . . , ud, and let H∗ be the graph
obtained as a disjoint union of H ′ and d paths P ∗

1 , . . . , P
∗
d , where each P ∗

i is of the same
length as Pi. Denote the two endpoints of P ∗

i by vi and u∗
i and define an equivalence
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relation E on V (H∗) by making the following sets the only nontrivial equivalence classes:
{v1, . . . , vd}, {u1, u

∗
1}, . . . , {ud, u

∗
d}. Then there is an obvious isomorphism H ∼= H∗/E ,

which allows us to identify H with H∗/E . Let A∗ ⊆ V (H∗) be the E-invariant set such
that A∗/E = A. Explicitly, A∗ comprises V (H ′) together with the vertices on each of the
paths Pi at distance more than r from vi.

For 1 ⩽ i ⩽ d, denote by Vi[a, b] the set of all vertices in P ∗
i at distance between a and

b (inclusive) from vi. Let Si be the (d+ 2)-search on H∗ of length 2i−1r where for each
1 ⩽ t ⩽ 2i−1r,

(Si)t = {v1, . . . , vd} ∪ Vi[2
i−1r − t, 2i−1r − t+ 1].

Let S∗ = S1
⌢ · · · ⌢Sd and S = ∨E(S∗). We claim that S is as desired.

It is clear that S is a 3-search (since the vertices v1, . . . , vd represent the same
equivalence class). The length of S is equal to the length of S∗, which is

r + 2r + 22r + · · ·+ 2d−1r = (2d − 1)r.

By construction, v ∈ St for all t.
For t < (2i−1− 1)r (the first turn of Si in S ′), we have V (Pi)\FCt(S∗, A∗) = Vi[0, r+ t].

Thus,
V (Pi) \ FC(2i−1−1)r(S∗, A∗) = Vi[0, 2

i−1r].

By turn (2i − 1)r, all the vertices in Pi will become fully cleared and will remain so for
the remainder of S∗. Since V (H ′) ⊆ A∗, we conclude that FC∗(S∗, A∗) = V (H∗).

Note that each vi is in S∗
t for all t, while ui and u∗

i are in PCt(S∗, A∗) for all t. This
shows that S∗ is E-invariant over A∗. Hence, by Proposition 58, FC∗(S, A) = V (H), as
desired. Finally, S is aligned to (w, v) over A, since every vertex of G except v is fully
cleared throughout, while v does not become fully cleared until the last move. ■

9.4 Amalgamation

In this subsection we combine aligned searches by the GSP operations.

Proposition 61. Let (G0, a, c) and (G1, c, b) be connected graphs with terminals such
that V (G0) ∩ V (G1) = {c} and let (G, a, b) = (G0, a, c) ◦s (G1, c, b). Suppose that for each
i ∈ {0, 1}, there is a subdivision Hi of Gi admitting a successful 3-search Si aligned to the
corresponding terminals. Then there is a subdivision of G admitting a successful 3-search
aligned to (a, b).

Proof. The proof is illustrated in Fig. 11. The desired subdivision of G is simply the
union of H0 and H1, and the desired 3-search is the concatenation S0

⌢S1. To aid in our
analysis, we let H be the disjoint union of the graphs H0 and H1 and denote the copy of c
in each Hi ⊂ H by ci. Let E be the equivalence relation on V (H) with {c0, c1} as the only
nontrivial equivalence class. Then H/E can be naturally identified with the (non-disjoint)
union of H0 and H1.

the electronic journal of combinatorics 29(3) (2022), #P3.9 36



H0

H1

a

c

b

S0

H0

H1

a

c

b

S1

H0

H1

a

c

b

Figure 11: A pictorial representation of the construction in Proposition 61.

Construct searches S ′
0 and S ′

1 on H from S0 and S1 respectively by replacing every
appearance of c by both c0 and c1, and let S = S ′

0
⌢S ′

1. Then ∨E(S) is a 3-search on H/E .
(If we identify H/E with the union of H0 and H1, then ∨E(S) = S0

⌢S1.)
We now check that S is E-invariant. To this end, we need to show that for all t,

c0 ∈ PCt(S) ⇐⇒ c1 ∈ PCt(S). We claim that for t ⩽ |S0|,

c0 ∈ PCt(S) ⇐⇒ c0 ∈ St ⇐⇒ c1 ∈ St ⇐⇒ c1 ∈ PCt(S).

The first equivalence follows since S0 is aligned to (a, c) and hence c0 ̸∈ FCt−1(S) for any
t ⩽ |S0|. The second equivalence holds by the construction of S. The final equivalence
holds since no neighbor of c1 is pre-cleared during the first |S0| moves.

Now suppose t > |S0|. Then both c0 and c1 are pre-cleared. Indeed, c0 is fully cleared
since S0 is a successful search on H0, while c1 is pre-cleared since S1 is aligned to (c, b).

Since S is E-invariant, we may apply Proposition 58 to conclude that ∨E(S) is successful
and aligned to (a, b), as desired. ■

Proposition 62. Let (G0, a, c) and (G1, a, c) be connected graphs with terminals such that
V (G0) ∩ V (G1) = {a} and let (G, a, b) = (G0, a, b) ◦b (G1, a, c). Suppose that there is a
subdivision H1 of G1 with a successful 3-search S1 aligned to (a, c), and every subdivision
of G0 has a further subdivision with a successful 3-search aligned to (a, b). Then there is a
subdivision of G admitting a successful 3-search aligned to (a, b).

Proof. The proof is illustrated in Fig. 12. Let d be the degree of a in G0 and let H0 be a
subdivision of G0 such that every edge incident to a is subdivided at least 2d−1 |S1|+1 times
and there is a successful 3-search S0 on H0 aligned to (a, b). By Lemma 59, there exists a
3-search Sa on H0 aligned to (a, b) with a ∈ (Sa)t for all t such that BH0(a, |S1|) ⊆ FC∗(Sa).
The desired subdivision of G is the union of H0 and H1, and the desired 3-search is the
concatenation Sa

⌢S1
⌢S0.

Let H be the disjoint union of H0 and H1 and denote the copy of a in each Hi ⊂ H
by ai. Let E be the equivalence relation on V (H) with {a0, a1} as the only nontrivial
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equivalence class. Then H/E can be naturally identified with the (non-disjoint) union of
H0 and H1.

Construct searches S ′
a, S ′

0, and S ′
1 on H from Sa, S0, and S1 respectively by replacing

every appearance of a with both a0 and a1. Let S = S ′
a
⌢S ′

1
⌢S ′

0. For brevity, let t0 = |Sa|
and t1 = t0 + |S1|.

We now check that S is E-invariant. To this end, we need to show that for all t,
a0 ∈ PCt(S) ⇐⇒ a1 ∈ PCt(S). By construction, a0 ∈ St for t ⩽ t0. Since BH(a0, |S1|) ⊆
FCt0(S), we have a0 ∈ PCt(S) for t0 < t ⩽ t1. Since S0 is aligned to (a, b), a0 ∈ PCt(S) for
t ⩾ t1. Thus, a0 ∈ PCt(S) for every t.

For t ⩽ t0, we have a1 ∈ St by construction. Since S1 is aligned to (a, c), a1 ∈ PCt(S)
for t0 < t ⩽ t1. Since S1 is successful, a1 ∈ FCt(S) for t > t1. Thus a1 ∈ PCt(S) for every
t too.

We have thus shown that S is E-invariant. Note that ∨E(S) is a 3-search on H/E (if
we identify H/E with the union of H0 and H1, then ∨E(S) = Sa

⌢S1
⌢S0), and furthermore,

by Proposition 58, ∨E(S) is successful and aligned to (a, b), as desired. ■

Proposition 63. Let (G0, a, b) and (G1, b, c) be connected graphs with terminals such that
V (G0) ∩ V (G1) = {b} and let (G, a, b) = (G0, a, b) ◦b′ (G1, b, c). Suppose that there is a
subdivision H1 of G1 with a successful 3-search S1 aligned to (c, b), and every subdivision
of G0 has a further subdivision with a successful 3-search aligned to (a, b). Then there is a
subdivision of G admitting a successful 3-search aligned to (a, b).

Proof. The proof is illustrated in Fig. 13. Let d be the degree of b in G0 and let H0 be a
subdivision of G0 such that every edge incident to b is subdivided at least 2d−1(|S1|+ 1)
times and there is a successful 3-search S0 on H0 aligned to (a, b). For our analysis, it will
be convenient to modify S0 so that the vertex b remains uncleared even after the last step.
To this end, we let S∗

0 be the search on H0 obtained from S0 by removing b from the set
(S0)|S0| (i.e., from the last searched set in S0).

Let A = V (H0) \ BH0(b, |S1| + 1). By Lemma 60, there exists a 3-search Sb on H0

aligned to (a, b) over A with b ∈ (Sb)t for all t such that FC∗(Sb, A) = V (H0). The desired

H0

a

b

H1

c

Sa

H0

a

b

S1

H1

c

H0

a

b

H1

c

S0

H0

a

b

H1

c

Figure 12: A pictorial representation of the construction in Proposition 62.
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subdivision of G is the union of H0 and H1, and the desired 3-search is the concatenation
S∗
0
⌢S1

⌢Sb.
Let H be the disjoint union of H0 and H1 and denote the copy of b in each Hi ⊂ H

by bi. Let E be the equivalence relation on V (H) with {b0, b1} as the only nontrivial
equivalence class. Then H/E can be naturally identified with the (non-disjoint) union of
H0 and H1.

We construct searches S ′
0, S ′

1, and S ′
b on H from S∗

0 , S1, and Sb respectively by replacing
every appearance of b with both b0 and b1. Let S = S ′

0
⌢S ′

1
⌢S ′

b. For brevity, let t0 = |S0|,
and t1 = t0 + |S1|.

We now check that S is E-invariant. To this end, we claim that for all t,

b0 ∈ PCt(S) ⇐⇒ b0 ∈ St ⇐⇒ b1 ∈ St ⇐⇒ b1 ∈ PCt(S).

The second equivalence holds by the construction of S, so we only need to establish the first
and third equivalences. We start by considering the case t ⩽ t0. The first equivalence then
follows since S0 is aligned to (a, b) and hence b0 ̸∈ FCt−1(S), while the third equivalence
holds since no neighbor of b1 is pre-cleared during the first t0 moves.

Next we consider the case t0 < t ⩽ t1. Since S0 is aligned to (a, b) and, by construction,
b ̸∈ (S∗

0)t0 , we have b ̸∈ PCt0(S). Since PC∗(S0) = V (H0), we have PCt0(S) = V (H0) \ {b0}
and hence FCt0(S) = V (H0) \BH0(b0, 1). Therefore, if t0 < t ⩽ t1, then no neighbor of b0
is in PCt(S). Thus b0 ̸∈ FCt(S) for such t, which yields b0 ∈ PCt(S) ⇐⇒ b0 ∈ St. Since S1

is aligned to (c, b), b1 ̸∈ FCt(S) for t < t1, so b1 ∈ PCt(S) ⇐⇒ b1 ∈ St as well.
Finally, if t > t1, then b0, b1 ∈ (Sb)t ⊆ PCt(S) always. We have thus shown that

the search S is E-invariant. Note that ∨E(S) is a 3-search on H/E , and furthermore, by
Proposition 58, it is successful and aligned to (a, b), proving the claim. ■

Proposition 64. Let (G0, a, b), (G1, a, c), and (G2, d, b) be connected graphs with terminals
such that V (G0) ∩ V (G1) = {a}, V (G0) ∩ V (G2) = {b}, and V (G1) ∩ V (G2) = ∅. Let

(G, a, b) = (G0, a, b) ◦p ((G1, a, c) ◦s (ecd, c, d) ◦s (G2, d, b)),

where ecd is the graph comprising a single edge between c and d. Suppose that for each
i ∈ {1, 2}, there exists a subdivision Hi of Gi with a successful 3-search Si aligned to (a, c)
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b

H1 c

S0

H0

a

b

H1 c

H0

a

b

H1 c

S1 Sb

H0

a

H1 c

Figure 13: A pictorial representation of the construction in Proposition 63.
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Figure 14: A pictorial representation of the construction in Proposition 64.

or (d, b) respectively, and every subdivision of G0 has a further subdivision with a successful
3-search aligned to (a, b). Then there is a subdivision of G admitting a successful 3-search
aligned to (a, b).

Proof. The proof is illustrated in Fig. 14. Let ∆ be the maximum of the degrees of a
and b in G0 and let H0 be a subdivision of G0 such that every edge incident to a is
subdivided at least 2∆−1 |S1| + 1 times, every edge incident to b is subdivided at least
2∆−1(|S2| + 1) times, and there is a successful 3-search S0 on H0 aligned to (a, b). By
Lemma 59, there exists a 3-search Sa on H0 aligned to (a, b) with a ∈ (Sa)t for each t such
that BH0(a, |S1|) ⊆ FC∗(Sa). Also, by Lemma 60, there is a 3-search Sb on H0 aligned to
(a, b) with b ∈ (Sb)t for each t such that FC∗(Sb, V (H0) \BH0(b, |S2|+ 1)) = V (H0).

Let H3 be a path from c to d of length |S0|+5 that is disjoint from H0∪H1∪H2 except
for the vertices c and d. The desired subdivision of G is the union H0 ∪H1 ∪H2 ∪H3.

Let Spa be a 3-search on H0 ∪H1 ∪H2 ∪H3 of length |S0|+ 2, where (Spa)t comprises
the vertices of distance t− 1 and t from c in H3, as well as a. Similarly, let Spb be a search
of length |S0|+ 2, where (Spb)t comprises the vertices of distance t+ 2 and t+ 3 from c
in H3, as well as b. (In particular, the last set in Spb contains d.) The desired successful
3-search on H0 ∪H1 ∪H2 ∪H3 is the concatenation

Sa
⌢S1

⌢Spa
⌢S0

⌢Spb
⌢({d})⌢S2

⌢Sb.
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Notice that in this search, after performing Spb we just check the one-element set {d}.
This is not strictly speaking necessary but makes the analysis a bit simpler.

Let H be the disjoint union of H0, H1, H2, and H3 and denote the copy of each vertex
x ∈ {b, c, d} in Hi ⊂ H by xi. Let E be the equivalence relation on V (H) relating a0 with
a1, b0 with b2, c1 with c3, and d2 with d3. Then the quotient graph H/E can be naturally
identified with the (non-disjoint) union of H0, H1, H2, and H3.

We construct searches S ′
a, S ′

b, S ′
0, S ′

1, S ′
2, S ′

pa, and S ′
pb on H from Sa, Sb, S0, S1, S2,

Spa, and Spb respectively by replacing every appearance of b, c, or d with both of their
copies in H. Define

S = S ′
a
⌢S ′

1
⌢S ′

pa
⌢S ′

0
⌢S ′

pb,

and R = ({d2, d3})⌢S ′
2
⌢S ′

b. For brevity, define

t0 = |Sa| , t1 = t0+|S1| , t2 = t1+|Spa| , t3 = t2+|S0| , t4 = t3+|Spb| , t5 = 1+|S2|.

We now check that S is E-invariant. For t ⩽ t0, since a ∈ (Sa)t, both a0 and a1 belong
to St, and thus a0, a1 ∈ PCt(S). It is also clear that none of b0, b2, c1, c3, d2, d3 are in
PCt(S) for t ⩽ t0.

For t0 < t ⩽ t1, since BH(a0, |S1|) ⊆ FCt0(S), we have NH(a0) ∪ {a0} ⊆ FCt−1(S), and
so a0 ∈ PCt(S). Since S1 is aligned to (a, c), we also have a1 ∈ PCt(S) and c ̸∈ FCt−1(S)
so

c1 ∈ PCt(S) ⇐⇒ c1 ∈ St ⇐⇒ c3 ∈ St ⇐⇒ c3 ∈ PCt(S).

It is also clear that none of b0, b2, d2, d3 are in PCt(S) for t0 < t ⩽ t1.
Since S1 is successful, V (H1) ⊆ FCt1(S), and hence {a1, c1} ⊆ PCt(S) for all t ⩾ t1.

Furthermore, if t1 < t ⩽ t2, then a0 ∈ PCt(S) since {a0, a1} ⊆ St. Note also that if
t1 < t ⩽ t2, then PCt(S) ∩ V (H3) = BH(c3, t− t1), so c3 ∈ PCt(S). Finally, none of b0, b2,
d2, d3 are in PCt(S) for t1 < t ⩽ t2.

For t2 < t ⩽ t3, we have {a1, c1} ⊆ PCt(S). Since S0 is aligned to (a, c), a0 ∈ PCt(S)
and

b0 ∈ PCt(S) ⇐⇒ b0 ∈ St ⇐⇒ b2 ∈ St ⇐⇒ b2 ∈ PCt(S).

Since BH(c3, |S0|+ 1) ⊆ FCt2(S), we have c3 ∈ PCt(S). Finally, neither d2 nor d3 are in
PCt(S).

For t3 < t ⩽ t4, we have {a1, c1} ⊆ PCt(S). Since S0 is successful, V (H0) ⊆ PCt3(S),
and hence {a0, b0} ⊆ PCt(S). We note that FCt2(S) contains BH(c3, |S0|+ 1) by construc-
tion, so FCt3(S) contains BH(c3, 1). We then see that FCt(S) includes BH(c3, 1 + t− t3),
and in particular it contains c3. Both b0 and b2 are in PCt(S) since {b0, b1} ⊆ St. Finally,
it is clear that

d2 ∈ PCt(S) ⇐⇒ d3 ∈ PCt(S) ⇐⇒ t = t4.

We have thus shown the E-invariance of S. It is straightforward to check that FC∗(S) =
V (H0) ⊔ V (H1) ⊔ V (H3), so, by Proposition 58, ∨E(S) is a 3-search on H/E with

FC∗(∨E(S)) = V (H0) ∪ V (H1) ∪ V (H3) \ {b, d}
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(here the union is non-disjoint). Let

A = V (H0) ⊔ V (H1) ⊔ V (H3) \ {b0, d3}.

Then A is an E-invariant subset of V (H) and A/E = FC∗(∨E(S)). We now wish to show
that the search R is E-invariant over A.

Note that {a0, a1, c1, c3, d2, d3} ⊆ PC1(R, A) and {b0, b2} ∩ PC1(R, A) = ∅. Further-
more, FC1(R, A) = V (H0) ⊔ V (H1) ⊔ V (H3) \BH(b0, 1).

For 1 < t ⩽ t5, {a0, a1, c1, c3, d3} ⊆ FCt(R, A). Since S2 is aligned to (d, b), d2 ∈
PCt(R, A) and

b0 ∈ PCt(R, A) ⇐⇒ b0 ∈ Rt ⇐⇒ b2 ∈ Rt ⇐⇒ b2 ∈ PCt(R, A).

Since S2 is successful, V (H2) ⊆ FCt5(R, A).
For t > t5, we have {a1, c1, b2, d2, c3, d3} ⊆ FCt(R, A). Since Sb is aligned to (a, b), we

have a0 ∈ PCt(R, A), and by construction b0 ∈ Rt ⊆ PCt(R, A).
We have thus shown that R is E-invariant over A. Hence, ∨E(R) is a successful 3-search

with A/E as its initial cleared set. It is also clear that ∨E(R) is aligned to (a, b), so
∨E(S)⌢ ∨E (R) is a successful 3-search on H/E aligned to (a, b) as desired. ■

9.5 Searching graphs with simple GSP decompositions

We are now ready to complete the proof of the implication (3) =⇒ (1) in Theorem 30.

Theorem 65. Suppose G is a connected graph with a simple GSP decomposition. Then
int(G) ⩽ 3.

Proof. We shall show by induction on |V (G)| that if G = (G, a, b) admits a simple GSP
decomposition T , then every subdivision of G has a further subdivision which has a
successful 3-search aligned to (a, b). The base case, where G is a single edge ab, is clear.

Now assume the GSP decomposition T is nontrivial. If ◦T,G ∈ {◦s, ◦b}, then we are
done by Propositions 61 and 62 respectively and the inductive hypothesis. If ◦T,G = ◦b′ ,
i.e., G = G0 ◦b′ G1, then we can use Lemma 47 to switch the order of the terminals in G1

and then apply Proposition 63 and the inductive hypothesis.
It remains to consider the case when ◦T,G = ◦p, i.e., (G, a, b) = (G0, a, b) ◦p (K, a, b).

Since T is simple, we may assume, without loss of generality, that K has a bridge cd
separating a and b, with c closer to a and d closer to b. To apply Proposition 64, we
need to decompose (K, a, b) as (G1, a, c) ◦s (ecd, c, d) ◦s (G2, d, b), where ecd is the graph
comprising the single edge cd.

Claim 65.a. Suppose (K, a, b) contains a bridge cd separating its terminals (with c closer
to a and d closer to b) and admits a simple GSP decomposition T ′. Let G0 be the subgraph
of K induced by the vertices that are separated from b by d, and let G1 be the subgraph
of K induced by the vertices that are separated from a by c. Then (G0, a, c) and (G1, d, b)
each either comprise a single vertex or admit simple GSP decompositions.
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▷ We shall induct on |V (K)|. The base case where K comprises a single edge is
trivial. Now suppose the decomposition T ′ is nontrivial. Note that ◦T ′,K ̸= ◦p, since
otherwise K would contain two internally disjoint ab-paths. If ◦T ′,K = ◦b, then (K, a, b) =
(K0, a, b) ◦b (K1, a, x) for some vertex x. Then cd is a bridge separating the terminals of
(K0, a, b), so, by the inductive hypothesis, the subgraphs H0 and H1 of K0 comprising the
vertices separated from each terminal by d, c respectively have simple GSP decompositions.
ButG1 = H1 and (G0, a, c) = (H0, a, c)◦b(K1, a, x). This yields simple GSP decompositions
of G0 and G1, as desired. The case where ◦T ′,K = ◦b′ follows similarly, mutatis mutandis.

Finally, suppose ◦T ′,K = ◦s, i.e., (K, a, b) = (K0, a, x) ◦s (K1, x, b) for some vertex x.
Since c and d are adjacent, they must both be contained in either K0 or K1; without loss
of generality, say c, d ∈ V (K0). By the inductive hypothesis, the subgraphs H0 and H1 of
K0 comprising the vertices separated from each terminal by d, c respectively have simple
GSP decompositions. But G0 = H0, and (G1, d, b) = (H1, d, x) ◦s (K1, x, b), which yields
simple GSP decompositions of G0 and G1, as desired. ◀

If necessary, we may replace K with a subdivision and assume that {a, b} ∩ {c, d} = ∅.
By the above claim, we may then write (K, a, b) = (G0, a, c) ◦s (ecd, c, d) ◦s (G1, d, b),
where (G0, a, c) and (G1, d, b) admit simple GSP decompositions. We can then apply
Proposition 64 to finish the proof. ■

10 Further investigations

Our main result, Theorem 7, provides a complete characterization of graphs with topological
inspection number at most 3. A natural next step would be to consider graphs with
topological inspection number at most k for larger values of k. In this case, it is perhaps
too optimistic to seek a complete characterization; however, even many rather fundamental
specific questions remain open. For instance, we do not know the values of int for such
basic families of graphs as complete graphs or complete bipartite graphs:

Open Problem 66. Determine int(Kn) and int(Ks,t).

Since int(K2) = 2, int(K3) = 3, and (by Theorem 32) int(K4) = 4, a natural guess
would be that int(Kn) = n for all n. This, however, turns out not to be the case, as the
following bound shows:

Proposition 67. int(Kn) ⩽ ⌈n
3
⌉+ 2.

Proof sketch. Given any subdivision G of Kn, partition the vertices of Kn in G into three
parts A, B, C, each of size at most ⌈n

3
⌉. Let E be the equivalence relation on V (G) where

A, B, and C are the nontrivial equivalence classes (that is, every vertex of G that is not
one of the original vertices of Kn forms its own equivalence class). Now consider G/E .
This graph comprises three vertices a, b, c, which are the images of A, B, C respectively
under the quotient map, along with several internally vertex-disjoint paths between each of
them, as well as some cycles which only intersect the rest of the graph at one of a, b, or c.
Let Pab, Pbc, Pac be the subgraphs of G/E comprising the paths between their respective
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subscripted vertices, and let Ca, Cb, Cc be the subgraphs comprising the cycles containing
their respective subscripted vertices.

We will construct a successful 3-search on some subdivision of G/E in which at most
one of a, b, or c is contained in each search set. Note that

(G/E , a, c) = (Pac, a, c) ◦p ((Pab, a, b) ◦s ((Pbc, b, c) ◦b (Cb, b, y)) ◦b (Ca, a, x) ◦b′ (Cc, c, z),

where x, y, and z are arbitrary vertices of Ca, Cb, and Cc respectively distinct from a,
b, and c. By Theorem 65, every subdivision of each of the graphs (Pac, a, c), (Pab, a, b),
(Pbc, b, c), (Cb, b, y), (Ca, a, x), (Cc, c, z) admits a further subdivision that has a successful
3-search aligned to the corresponding terminals; furthermore, it is easy to verify that if the
graphs are sufficiently subdivided, then the searches constructed in the proof of Theorem 65
include at most one terminal vertex in each search set. Combining these searches via
Propositions 61, 62, 63, and 64 gives a successful 3-search S on some subdivision of G/E
in which at most one of a, b, or c is contained in each search set, as desired.

Now note that every subdivision of G/E is the quotient graph under E of some sub-
division of G. Let G′ be the subdivision of G such that G′/E is the graph on which S is
defined. Let S ′ be the search on G′ obtained by taking S and replacing each instance of a,
b, or c with the corresponding equivalence class in E . Since at most one of a, b, or c is in
each St, we have |S ′

t| ⩽ ⌈n
3
⌉+ 2 and thus S ′ is a (⌈n

3
⌉+ 2)-search. By construction, S ′ is

E-invariant, and thus by Proposition 58 it is successful, proving the claim. ■

In particular, int(K5) = int(K6) = 4. It also follows that 4 ⩽ int(K7) ⩽ 5, but we do
not know which one is the correct value. We conjecture that limn→∞ int(Kn) = ∞, but
the best lower bound that we can currently prove is 4. Indeed, we do not know is there
exist any graphs G with int(G) > 4!

Open Problem 68. Is there n ∈ N such that int(Kn) > 4? Is it true that in fact
limn→∞ int(Kn) = ∞?

Another interesting class of graphs to consider comprises planar graphs. It follows from
Theorem 7 that outerplanar graphs have topological inspection number at most 3, and
that some planar graphs (e.g., K4) have topological inspection number 4. We do not know
if there is a constant upper bound that works for all planar graphs:

Open Problem 69. Is there a constant k such that int(G) ⩽ k for all planar graphs G?
Does k = 4 work?

We finish the paper with an enticing conjecture that may provide a characterization
of the inspection number in terms of vertex sets with small boundary. Observe that
every lower bound on the inspection number established in this paper is proved using
Proposition 12 (this includes Theorems 2, 15, 32, 38, and 39). Namely, to show that
in(G) > k, we exhibit a subgraph H of G that does not contain a subset C ⊆ V (H) of size
close to a certain value and with |∂H(C)| < k. Since this is the only method we have for
proving lower bounds on in(G), it is natural to wonder if Proposition 12 has a converse:
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Open Problem 70. If in(G) > k, do there necessarily exist a subgraph H ⊆ G and an
integer 1 ⩽ i ⩽ |V (H)| such that there is no subset C ⊆ V (H) with |∂H(C)| < k and
i− k < |C| < i?
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