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ABSTRACT
Recent progress in data-driven vision and language-based tasks de-
mands developing training datasets enriched with multiple modal-
ities representing human intelligence. The link between text and
image data is one of the crucial modalities for developing AI mod-
els. The development process of such datasets in the video domain
requires much effort from researchers and annotators (experts and
non-experts). Researchers re-design annotation tools to extract
knowledge from annotators to answer new research questions.
The whole process repeats for each new question which is time-
consuming. However, since the last decade, there has been little
change in how the researchers and annotators interact with the an-
notation process. We revisit the annotation workflow and propose
a concept of an adaptable and scalable annotation tool. The con-
cept emphasizes its users’ interactivity to make annotation process
design seamless and efficient. Researchers can conveniently add
newer modalities to or augment the extant datasets using the tool.
The annotators can efficiently link free-form text to image objects.
For conducting human-subject experiments on any scale, the tool
supports the data collection for attaining group ground truth. We
have conducted a case study using a prototype tool between two
groups with the participation of 74 non-expert people. We find
that the interactive linking of free-form text to image objects feels
intuitive and evokes a thought process resulting in a high-quality
annotation. The new design shows ≈ 35% improvement in the data
annotation quality. On UX evaluation, we receive above-average
positive feedback from 25 people regarding convenience, UI assis-
tance, usability, and satisfaction.

CCS CONCEPTS
•Computingmethodologies→ Scene understanding; •Human-
centered computing → Graphical user interfaces; • Informa-
tion systems → Users and interactive retrieval.

KEYWORDS
Vision and Language, Scene Understanding, Data Annotation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HILDA ’22 , June 12, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9442-0/22/06. . . $15.00
https://doi.org/10.1145/3546930.3547499

ACM Reference Format:
Md Fazle Elahi, Renran Tian, and Xiao Luo. 2022. Flexible and Scalable
Annotation Tool to Develop Scene Understanding Datasets. In Workshop on
Human-In-the-Loop Data Analytics (HILDA ’22 ), June 12, 2022, Philadelphia,
PA, USA.ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3546930.
3547499

1 INTRODUCTION
Scene understanding is one of the fundamental challenges in com-
puter vision, which is vital for the machine to interact with other
functional systems by processing visual information from the exter-
nal world. A model’s understanding of the scene can be measured
by evaluating its ability to answer open-ended questions related to
the scene [9, 22]. Answering visual questions may require success-
ful object detection, modeling the relationship and the interaction
among the objects, and reasoning from an external knowledge
base absent in the scene [6, 23]. These visual tasks of answering
questions can be ranked in the order of cognitive complexity. For
example, problems like object detection, instance segmentation,
and activity recognition fall under the recognition category with
a lower level of complexity. On the other hand, cognitively more
complex tasks like image and video captioning, coreference res-
olution [11, 13], visual question answering (VQA) [1], and visual
commonsense reasoning [36] encompass solving both the recog-
nition and the cognition sub-tasks. For the rest of the article, we
refer to the former visual tasks as Recognition-Only (RO) tasks and
the latter as Recognition+Cognition (RC) tasks.

In the past few decades, powerful computing hardware and deep
learning models significantly advanced toward solving RO tasks.
Especially in the field of object detection, the researchers [4, 19,
33, 34] have made significant progress with very low error margin.
Obtaining a satisfactory result in any visual task is an iterative
procedure. Each iteration either refines the model’s architecture,
enhances training data, or does both. Among these two aspects,
developing large-scale image datasets requires countless hours of
human effort. For example, to solve RO tasks like object detection
and instance segmentation, the training data containing millions
of images [7, 14, 17] are labeled with object localization instead
of global association (bounding box containing a cat vs. a whole
image containing a cat).

The substantial progress in RO tasks has shifted the research
focus to developing AI models for solving RC tasks. Expectantly,
solving RC tasks requires more modalities than the existing object
detection datasets alone can offer. When the model’s architecture
stays unchanged, the performance of the RC models is driven by
the size and quality of the training data.
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A common practice for developing such multi-modal datasets for
RC tasks is by crowdsourcing additional modality to existing object
detection datasets. For instance, the object-detection datasets can
be gradually enhanced by adding text descriptions to solve RC tasks
like image captioning and VQA. Similar modalities can be added
to video datasets to conduct other video-based RC tasks like video
description generations. Among these practices, models developed
on training data containing the link between visual region and
the text-phrase has better performance than those developed with
description-only data [20]. This link between text-phrase and visual
object is an important modality and is referred as object-level-
grounding (OLG) for the rest of the paper.

2 RELATED WORKS
Considering the importance of training data to support RC tasks,
we investigate the existing image and video datasets and the com-
mon annotation practice with the following questions:
To what extent extant datasets are generalizable to solve new
RC tasks?
Initially, AI models for solving RC tasks [1] are trained on data
without OLG in texts. As a result, the models suffer from various
performance issues like attending wrong region [18] (correct de-
scription but model focuses on incorrect visual region) and object
hallucination (describing something absent in the image) [27]. OLG
in training data is found to alleviate those issues and can boost the
model’s performance [20]. This success inspired development of
datasets like visual genome [14] and Flickr30k [25].

Though there exists large image datasets with OLG, correspond-
ing video datasets are rather limited. Most of the video datasets
belong to limited number of domains like movie [21, 28, 29], TV se-
ries [15, 16, 26], gameplay and cartoon [12, 24] , surveillance footage
[31], and cooking [5]. It is not surprising that mostly movies and
TV series are chosen because of available modalities like subtitles,
scripts, plots, synopsis, and Descriptive Video Service (DVS). The
existing video datasets cannot be conveniently generalized to other
domains in solving RC problems. For example, in [26] only persons’
face and their referred pronouns are linked to frames of video. As a
result, such datasets can be insufficient when the research question
concerns some other activity or entities.
For creating new datasets, how challenging the data collec-
tion and annotation process is to the researchers?
Typically the large-scale datasets are developed from crowd-sourcing
platforms like Amazon Mechanical Turk (MTurk). Generally, the
researchers re-purpose the MTurk annotation interface to augment
new datasets with additional modalities. In this approach, a com-
plex task is decomposed into multiple subtasks. Though such task
decomposition is intended for productivity, some human intelli-
gence tasks like obtaining event descriptions and text to visual
object mapping are more natural when completed sequentially. In
the current practice, the event description and OLG are done in
multiple stages in MTurk. Firstly, a group of MTurk workers adds
event descriptions to the video. Secondly, another group identifies
and draws bounding boxes around the entities and their mentions
in the image via a guided approach. Finally, another group of MTurk
workers further checks the annotation quality. While separating
the task of description and annotation provides task simplification,

it can be less natural to obtain a description of an event or scene
that is continuous in time.
Are existing tools sufficient to support necessary data anno-
tation process?
Many image annotation tools already exist to support the devel-
opment of datasets for solving RO and RC tasks. Most existing
video annotation tools mainly focus on interpolated object labeling
across multiple frames [2, 3, 8, 10, 32, 35]. The object annotation
supports labeling with various geometric shapes, e.g., rectangle,
oval, polygon. Few tools, for instance, ViTBAT [3] and VIA [8]
support behavior or activity annotation and event description with
temporal reference in the video. CVAT is an advanced tool for la-
beling objects in video and succeeded previous annotation tools
[32, 35]. Both iVAT [2] and CVAT [10] support object annotation in
interpolated frames but lack the support for OLG between text de-
scriptions and images and video frames. Besides these open-source
annotation tools, some commercial annotation solutions exist. How-
ever, these closed-source tools offer limited features and modalities
and are usually not customizable for different research purposes.

3 RESEARCH GAP
An increasing shift toward solving RC tasks requires changing how
the text modalities in the videos are augmented with OLG. Natu-
rally, existing video datasets with OLG cannot meet the demand of
the dynamic nature of research questions requiring complex reason-
ing. The existing pipeline for developing these datasets can improve
when the interaction of researchers and annotators (human-in-the-
loop) with the annotation process is revamped considering the
following criteria:
Control over data collection design: The pipeline should have
an interface that enables the researchers to customize the data an-
notation process with minimal effort. The data collection interface
can be designed to add custom modalities. They should be able
to collect data from expert and non-expert people when required
by the experiment design. The data collection can be conducted
on public and private platforms without sacrificing scalability. Al-
though MTurk offers an annotation interface, its crowd workers are
almost anonymous and suitable for doing micro-tasks. Additionally,
working with sensitive data and complex tasks requires a specific
group of people. For instance, data needs to be collected from a
group of medical professionals to develop an AI system capable of
reading radiology reports. However, in crowd-sourced platforms,
the presence of medical professionals is less obvious.
Extraction of human intelligence: The pipeline should offer an
interface that can efficiently extract knowledge for the human intel-
ligent task. In complex experiments, for example, asking annotators
to explain an event in a video for a commonsense reasoning task,
the data annotators can effectively share their intelligence if the
annotation interface can support an environment where objects
and their inter-relation in the text and image can be connected
conveniently.

4 CONCEPT OF PROPOSED ANNOTATION
TOOL

To address the limitations in the current practice of creating scene
understanding datasets, we propose the following improvements
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Figure 1: Conceptual workflow of processing of new and pre-labeled video and language data

in the design of the annotation process using our tool. The main
contributions to the design improvement are:

• A GUI for researchers to customize Data Collection User
Interface (DCUI) to label text, video, image data with spatio-
temporal modalities.

• Support of OLG in the free-form description in both videos
and images.

• Integration of novel interaction design for evoking human
thinking while describing scenes via self-guided visual feed-
back (i.e., point at object in image, link, and explain them in
text description.)

Fig. 1 shows an overview for annotating and processing the raw
data and pre-existing annotations. In the workflow, the researchers
and data annotators interact with the tool to transform the raw
data into useful training data. The functionalities1 of the tool in
terms of interaction with humans are as follows:
Customizability: With this feature, researchers can exert more
control over data collection in terms of DCUI design. They can
design versatile research questions for the data by selecting existing
or adding new modalities.

In the first stage, the researcher can select the raw data for
annotation. Additionally, the tool will be capable of extracting the
existing annotation linked to the input if the annotation belongs to
the supported modality. The modalities include but are not limited
to pre-labeled data like image or video description, subtitle, scripts,
DVS, and audio. In the case of videos, temporal information of the
annotation will be required for temporal alignment.

1demo video: https://youtu.be/h9hIYcOEuEE

Next, in stage 2, the researcher can add custom modality in the
form of text or audio and define the annotation type. Ideally, for
all the modalities, OLG is to be supported. Including OLG in the
free-form text provides a more fluid experience for text-to-image
linking. The connection of text in the image using bounding boxes
provides self-guided visual feedback. Such visual feedback encour-
ages the annotator to share more information. Section 4.1.2 follows
more details on OLG implementation. In the case of adding text
modality, researchers can define the question-answer (QA) format.
Annotators can also fill in the QA if the research design requires it.
Researchers can specify multiple formats of the answer, viz. mul-
tiple choice question (MCQ), preset check-boxes, and free-form.
When the researcher finalizes the customization and deployment
option, the tool generates the DCUI for collecting the data from
the target people through the deployment platform like MTurk or
a private server.

In stage 3, the main actors are the data annotators who label
the data following the research design. The DCUI can support data
correction, viz. relocation, resizing of bounding box across existing
and new modalities. Additionally, the text phrase and its mentions
can be linked to the bounding box and vice-versa. The DCUI can
support various shapes of bounding boxes for visual region annota-
tion. To mark the moments of interest in the video, the records of
the start and end times of the moments can be saved.
Scalability: The design proposes the DCUI to be scalable and cross-
platform from the deployment perspective. Such criteria ensure that
people can remotely interact with it. Remote access increases the
reach-ability of the DCUI to collect data from a diverse range of peo-
ple. If necessary for the experiment, the DCUI can be distributed to

https://youtu.be/h9hIYcOEuEE
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a special group of subjects by hosting on lab machines. The design
also supports the deployment of DCUI in popular crowd-sourcing
platforms like MTurk. which allows the DCUI to be accessed by
non-experts. The DCUI can be conveniently used without further
installation as a cross-platform and web-based app.
Compatibility:While exporting the annotation, the researchers
can select the modalities of the augmented data. The export for-
mat of annotated data should be compatible and easy to parse. An
evaluation tool for assessing the quality of the annotation can be
integrated.

5 CASE STUDY AND PROTOTYPE OF
ANNOTATION TOOL

A case study is conducted to evaluate the annotation tool’s effec-
tiveness in data collection following two criteria: (1) User attitudes
towards the DCUI, and (2) the effect of integrating the OLG fea-
ture on the annotation quality. In the case study, a human subject
experiment is done to study pedestrian interaction with vehicles.
For this purpose, 204 15-second videos with interactions between
designated pedestrians and the car driving on the road are sampled
from TASI large-scale dataset [30].

A prototype DCUI based on the proposed annotation workflow
was built. The DCUI’s front-end is written in JavaScript, and the
python flask framework supports its back-end. It was hosted on a
private server in the lab. The study participants can remotely access
the DCUI with an internet connection. 74 human subjects with
driving experience in the USA were recruited randomly to complete
the experiments. To qualitatively assess the UX performance of
DCUI, a questionnaire with 11 questions (Table 1) about multiple
usability types is used. This survey was optional; participants could
ignore it if they wanted to.

The participants are divided into two groups to measure the
effect of OLG feature on data annotation quality. One group with 50
participants used the DCUI with OLG feature to annotate 204 videos
in total, and each was shown 45 videos. Keeping other conditions
unchanged, the second group of 24 participants annotated from a
subset of 110 videos using the DCUI with no OLG feature. Then
the data quality of annotation is compared between two groups to
evaluate the impact of OLG feature in UI design.

5.1 Overview of the experiment
5.1.1 Experimental Setting. After recruitment, each participant
is trained by the researchers to navigate the DCUI and annotate
the data through a one-one virtual meeting. For each video, at a
particular timestamp, the participants are asked to answer two
questions. The first question is, "would the target pedestrian cross
in front of the car?" Its answer is designed in MCQ format with
three options: yes, no, and “not sure.” For the second question, the
participant is asked to provide the explanation behind their answer
to the first question. The explanation is collected in free-form text.

The participants are encouraged to follow the guidelines to think
from five perspectives derived from the existing literature. How-
ever, they are free to provide any explanation outside those five
categories if necessary. Fig 2 shows how the text modalities are
used to obtain the answers in multiple formats for two pre-defined
questions. Each free-form response is accompanied by OLG and

video timestamp. At any paused moment in the video, the answer
about pedestrians’ crossing intention is subjective and may not be
necessarily correct. However, the participant needs to justify their
answer by sharing their reasoning and thought-process.

5.1.2 OLG in free-form text. To add OLG to the explanation, the
participants connect any text phrase representing the entities (hu-
man, vehicles, traffic light, curb, crosswalk) they consider important
to the visual region in the paused video. The participant highlights
the text phrase and draws the bounding box around the entity in
the paused video to link the text phrase. A unique field is created
for each bounding box that can refer to multiple text phrases. If
multiple text phrases refer to the same bounding box, participants
can highlight another text phrase and click that field to make the
connection. This way, drawing only one bounding box suffices for
multiple text phrases or mentions. Fig 3 shows the implementa-
tion of linking multiple phrases to a single bounding box. Labeling
this way is natural and more efficient and if required, can support
datasets requiring OLG. After linking the text phrase and visual
objects, the annotation is saved with the video’s current timestamp.
Thus, the OLG-supported explanation contains the accumulated
information till that moment in the video.

After that moment, the participant keeps playing the video and
observes the changes in the pedestrian’s crossing intention. If there
is a transition in the pedestrian’s crossing intention, the participant
is instructed to pause and answer the previous two questions for
that moment. This explanation and answer contain the accumu-
lated information between two pauses. The process is repeated till
the participant is confident about the pedestrian’s crossing inten-
tion. For each video, we collected answers and explanations from 9
such participants. A snapshot of the data from a single participant
obtained using the tool is shown in Fig. 4.

5.1.3 Annotation Output. From Fig. 4, we see that the data can be
used for solving a wide range of visual tasks like object-detection,
VQA, VCR, visual coreference resolution, and referring expressions
where OLG-supported description is required. By design, the output
data also contains temporal information about the events. Addition-
ally, the OLG-supported explanation accumulated from multiple
participants can be used for ground truth which can also be used
to analyze human behavior and thought processes.

5.2 Evaluation of the Prototype and Annotation
In this section, we highlight the effectiveness of the prototype
annotation tool through qualitative and quantitative evaluation
based on previously mentioned two criteria.

5.2.1 User Attitudes Evaluation. To assess the UX performance
qualitatively, we used the voluntary responses from 25 participants
collected within one week after their study completion. The 11
questions are grouped into four categories: satisfaction, usability,
UI feedback, and convenience. The answers are in the Likert scale
format in the range 1 through 5, while 1 being ‘strongly disagree’
and 5 being ‘strongly agree.’

We present the result of the collected responses in multiple types
of usability in Table 1. The scores are averaged across all the 25
participants for each question. For each category, ‘categorical mean
score’ indicates the mean across average scores across all questions
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Figure 2: Additional modalities in text-form

Figure 3: Annotation of multiple text-phrases and mentions pointing to single bounding box

Figure 4: Output of annotated data mapped back to the video

belonging to the category. From the categorical mean scores, except
in ‘satisfaction,’ all other categories have scored higher than 4.1,
meaning the experience with the study and the prototype annota-
tion tool is in the agree-able range. The ‘satisfaction’ category is
3.84, close to 4. The result suggests that there is room for improve-
ment in the prototype design.

We also asked the participants about their suggestions to improve
the user interface via an open-ended question: “Do you have any
suggestions/comments that will help us make the system better?”.
Many of the participants mentioned several aspects of the UI to
improve usability. For example, “The data being erased after hitting
save or scrubbing to a new part of the video should have a “are you
sure” warning. Make a box to ignore in future, but I would have loved
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Table 1: Mean score of responses in Likert scale across 25 participants

ID Question Category Mean (Std) Category Mean (Std)
1 It was easy to learn to use this interface. convenience 3.92 (1.17)

4.24 (0.28)2 The resources were effective in helping me complete the tasks and sce-
narios.

convenience 4.33 (0.88)

3 The training was effective in helping me complete the tasks and scenarios. convenience 4.46 (1.04)
4 Overall, I am satisfied with how easy it is to use this interface. satisfaction 3.88 (1.19)

3.84 (0.19)5 I felt comfortable using this interface. satisfaction 4.00 (1.17)
6 I liked using the interface of this system. satisfaction 3.63 (0.81)
7 The interface gave errormessages that clearly toldme how to fix problems. UI feedback 3.96 (0.90) 4.13 (0.23)8 The information (such as online help, on-screen messages, and other

documentation) provided with this interface was clear.
UI feedback 4.29 (0.82)

9 I was able to complete the tasks and scenarios quickly using this interface. usability 4.12 (0.72)
4.18 (0.07)10 It was easy to find the information I needed. usability 4.25 (1.09)

11 The organization of information on the interface screens was clear. usability 4.17 (1.24)

to go back and fix an error.”, “It would be great if you could go back
and see your annotation–because it disappears and you can’t double
check it”. Some of them emphasized designing the DCUI to match
the layout of popular social platforms. For instance, “Maybe the
interface would feel more natural if the text boxes were on the right
side of the screen. It would feel better to navigate because I’m already
used to that type of layout on sites like YouTube or Twitch. It’s a small
change but I think it would make UX better.”

5.2.2 Data Quality Evaluation. Following the experimental design,
we have compared the quality of annotated data based on the vol-
ume of annotation collected from two groups of subjects. We use the
average number of words disregarding punctuation and whitespace
characters in annotation for each video as a comparison metric.
The explanations with higher word counts are assumed to provide
more information and better quality.

To compare between two groups, for each video, we calculate
the average word counts across all the subjects working on that
video. We have conducted a t-test for independent samples assum-
ing unequal variance to examine the effect of the OLG feature on
data annotation. We compare the average word counts across all
the videos between the two groups. We find that there is a signifi-
cant difference in average word counts between the group using
OLG (M=77.37, SD=34.57) and the group not using OLG (M=57.08,
SD=9.5); t(125)=5.93,p<.001, The result suggests that participants
are likely to describe with ≈35% more words with OLG feature in
UI.

Furthermore, manual inspection of the annotations reveals that
with OLG, descriptions contain more references (pronouns) to the
previously mentioned entities reducing repetitive mentions, e.g.
“The car is moving slowly. A woman is looking at the car. She is check-
ing if it will yield to her." In the previous sentence, “The car, car, it"
refers to the same car, and “woman, She, her" refers to the same
person. In the descriptions without OLG, entities are described
relative to another entity in the scene for localization information.
For example, “There is another pedestrian ahead. That pedestrian is
on the lane the car just turned onto. That pedestrian is crossing from
left to right. There are two more pedestrian standing on the sidewalk
to the right." Such mentions are less prevalent in descriptions with

OLG because entities can be linked in the image, and localization
in the description is unnecessary. These differences indicate that
OLG support in free-form texts makes the video annotation more
natural and encourages the annotators to provide more informa-
tion efficiently. Furthermore, the text-to-image linking also aids in
providing more data about interaction among the objects.

6 FUTUREWORKS AND LIMITATION
The prototype annotation tool based on the proposed concepts can
help the researchers augment existing data without extensively re-
purposing the DCUI. However, we did not discuss the assessment
metric for the annotated data in the workflow. We believe these
quality-check metrics are research question-oriented and can be
challenging to generalize. However, they are critical regarding the
development of a high-quality dataset. Nonetheless, if investigated
thoroughly, that last step can also be generalized, and we include
them in the future research endeavor. Additionally, the prototype
design needs to be fully developed, and experiments need to be
conducted to assess the efficacy of the overall workflow.

7 CONCLUSION
In this study, we present that the existing datasets in the video
domain are limited and challenging to generalize for solving vision
andNLP-based taskswith higher cognitive complexity. Additionally,
existing annotation tools have limited support to add OLG modality
from free-form description to both image and video data. To tackle
this challenge, we propose a tool in the annotation workflow that
enables researchers to tailor the DCUI more flexibly. Furthermore,
we devise an interaction design that encourages annotators to pro-
vide better data through “indicate, connect, and explain" in both
image and text modalities. Such design is conducive to providing
data about objects of interest and their interaction which in turn
aids in modeling human intelligence.

We conducted a case study with the participation of 74 subjects
to show the feasibility of efficient data collection for solving a
vison and NLP-based tasks using a prototype tool. Furthermore,
we confirm the effectiveness of the UI design based on volunteered
feedback collected from the participants. We also do a quantitative
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analysis to measure the quality of collected annotation. We find
the collected data has better quality and show how the UI design
of the tool plays a vital role in extracting the thought process from
human subjects.
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