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Abstract
A conjecture of Alon, Krivelevich and Sudakov states that, for any graph F, there is a constant cF > 0 such
that ifG is an F-free graph of maximum degree�, then χ(G)� cF�/ log�. Alon, Krivelevich and Sudakov
verified this conjecture for a class of graphs F that includes all bipartite graphs. Moreover, it follows from
recent work by Davies, Kang, Pirot and Sereni that if G is Kt,t-free, then χ(G)� (t + o(1))�/ log� as � →
∞. We improve this bound to (1+ o(1))�/ log�, making the constant factor independent of t. We further
extend our result to the DP-colouring setting (also known as correspondence colouring), introduced by
Dvořák and Postle.
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1. Introduction
All graphs in this paper are finite, undirected and simple. The starting point of our investigation
is the following celebrated conjecture of Alon, Krivelevich and Sudakov:

Conjecture 1.1 (Alon–Krivelevich–Sudakov [3, Conjecture 3.1]). For every graph F, there is a
constant cF > 0 such that if G is an F-free graph of maximum degree�� 2, then χ(G)� cF�/ log�.

Here we say that G is F-free if G has no subgraph (not necessarily induced) isomorphic to F. As
long as F contains a cycle, the bound in Conjecture 1.1 is best possible up to the value of cF , since
there exist �-regular graphs G of arbitrarily high girth with χ(G)� (1/2)�/ log� [7]. On the
other hand, the best known general upper bound is χ(G)� cF� log log�/ log� due to Johansson
[16] (see also [21]), which exceeds the conjectured value by a log log� factor.

Nevertheless, there are some graphs F for which Conjecture 1.1 has been verified. Among the
earliest results along these lines is the theorem of Kim [18] that if G has girth at least 5 (that is,
G is {K3, C4}-free), then χ(G)� (1+ o(1))�/ log�. (Here and in what follows o(1) indicates a
function of � that approaches 0 as � → ∞.) Johansson [15] proved Conjecture 1.1 for F =K3;
that is, Johansson showed that ifG is triangle-free, then χ(G)� c�/ log� for some constant c> 0.
Johansson’s proof gave the value c= 9 [22, p. 125], which was later improved to 4+ o(1) by Pettie
and Su [23] and, finally, to 1+ o(1) by Molloy [21], matching Kim’s bound for graphs of girth at
least 5.

In the same paper where they stated Conjecture 1.1, Alon, Krivelevich and Sudakov verified
it for the complete tripartite graph F =K1,t,t [3, Corollary 2.4]. (Note that the case t = 1 yields
Johansson’s theorem.) Their results give the bound cF =O(t) for such F, which was recently
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improved to t + o(1) by Davies, Kang, Pirot and Sereni [11, §5.6]. Numerous other results related
to Conjecture 1.1 can be found in the same paper.

Here we are interested in the case when the forbidden graph F is bipartite. It follows from
the result of Davies, Kang, Pirot and Sereni mentioned above that if F =Kt,t , then Conjecture 1.1
holds with cF = t + o(1). Prior to this work, this has been the best known bound for all t� 3 (the
graph F =K2,2 satisfies Conjecture 1.1 with cF = 1+ o(1) by [11, Theorem 4]). We improve this
bound to 1+ o(1) for all t (so only the lower order term actually depends on the graph F):

Theorem 1.2. For every bipartite graph F and every ε > 0, there is �0 ∈N such that every F-free
graph G of maximum degree ���0 satisfies χ(G)� (1+ ε)�/ log�.

As witnessed by random�-regular graphs, the upper bound on χ(G) in Theorem 1.2 is asymp-
totically optimal up to a factor of 2 [7]. Furthermore, this bound coincides with the so-called
shattering threshold for colourings of random graphs of average degree � [25, 1], as well as the
density threshold for factor of i.i.d. independent sets in �-regular trees [24], which suggests that
reducing the number of colours further would be a challenging problem, even for graphs G of
large girth. Indeed, it is not even known if such graphs admit independent sets of size greater than
(1+ o(1))|V(G)| log�/�.

In view of the results in [3] and [11], it is natural to ask if a version of Theorem 1.2 also holds for
F =K1,t,t . We give the affirmative answer in the paper [5], where we use some of the techniques
developed here to prove that every K1,t,t-free graphG satisfies χ(G)� (4+ o(1))�/ log�. In other
words, we eliminate the dependence on t in the constant factor, although we are unable to reduce
it all the way to 1+ o(1).

Returning to the case of bipartite F, we establish an extension of Theorem 1.2 in the context
of DP-colouring (also known as correspondence colouring), which was introduced a few years ago
by Dvořák and Postle [12]. DP-colouring is a generalisation of list colouring. Just as in ordinary
list colouring, we assume that every vertex u ∈V(G) of a graph G is given a list L(u) of colours to
choose from. In contrast to list colouring though, the identifications between the colours in the
lists are allowed to vary from edge to edge. That is, each edge uv ∈ E(G) is assigned a matching
Muv (not necessarily perfect and possibly empty) from L(u) to L(v). A proper DP-colouring then is
a mapping ϕ that assigns a colour ϕ(u) ∈ L(u) to each vertex u ∈V(G) so that whenever uv ∈ E(G),
we have ϕ(u)ϕ(v) /∈Muv. Note that list colouring is indeed a special case of DP-colouring which
occurs when the colours “correspond to themselves,” i.e., for each c ∈ L(u) and c′ ∈ L(v), we have
cc′ ∈Muv if and only if c= c′.

Formally, we describe DP-colouring using an auxiliary graph H called a DP-cover of G. Here
we treat the lists of colours assigned to distinct vertices as pairwise disjoint (this is a convenient
assumption that does not restrict the generality of the model). The definition below is a modified
version of the one given in [6]:

Definition 1.3. A DP-cover (or a correspondence cover) of a graph G is a pairH= (L,H), where
H is a graph and L : V(G)→ 2V(H) is a function such that:

• The set {L(v) : v ∈V(G)} forms a partition of V(H).
• For each v ∈V(G), L(v) is an independent set in H.
• For u, v ∈V(G), the induced subgraph H[L(u)∪ L(v)] is a matching; this matching is

empty whenever uv /∈ E(G).

We refer to the vertices of H as colours. For c ∈V(H), we let L−1(c) denote the underlying
vertex of c in G, i.e., the unique vertex v ∈V(G) such that c ∈ L(v). If two colours c, c′ ∈V(H)
are adjacent in H, we say that they correspond to each other and write c∼ c′. An H-colouring
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is a mapping ϕ : V(G)→V(H) such that ϕ(u) ∈ L(u) for all u ∈V(G). Similarly, a partial
H-colouring is a partial map ϕ : V(G) ���V(H) such that ϕ(u) ∈ L(u) whenever ϕ(u) is defined.
A (partial)H-colouring ϕ is proper if the image of ϕ is an independent set inH, i.e., if ϕ(u) 
∼ ϕ(v)
for all u, v ∈V(G) such that ϕ(u) and ϕ(v) are both defined. A DP-coverH is k-fold for some k ∈N

if |L(u)|� k for all u ∈V(G). The DP-chromatic number of G, denoted by χDP(G), is the smallest
k such that G admits a properH-colouring with respect to every k-fold DP-coverH.

An interesting feature of DP-colouring is that it allows one to put structural constraints not
on the base graph, but on the cover graph instead. For instance, Cambie and Kang [10] made the
following conjecture:

Conjecture 1.4 (Cambie–Kang [10, Conjecture 4]). For every ε > 0, there is d0 ∈N such that the
following holds. Let G be a triangle-free graph and let H= (L,H) be a DP-cover of G. If H has
maximum degree d� d0 and |L(u)|� (1+ ε)d/ log d for all u ∈V(G), then G admits a proper
H-colouring.

The conclusion of Conjecture 1.4 is known to hold if d is taken to be the maximum degree of
G rather than of H [6] (notice that �(G)��(H), so a bound on �(G) is a stronger assumption
than a bound on �(H)). Cambie and Kang [10, Corollary 3] verified Conjecture 1.4 when G is
not just triangle-free but bipartite. Amini and Reed [4] and, independently, Alon and Assadi [2,
Proposition 3.2] proved a version of Conjecture 1.4 for list colouring, but with 1+ o(1) replaced
by a larger constant (8 in [2]). To the best of our knowledge, it is an open problem to reduce the
constant factor to 1+ o(1) even in the list colouring framework.

Notice that in Cambie and Kang’s conjecture, the base graph G is assumed to be triangle-free
(which, of course, implies that H is triangle-free as well). In principle, it is possible that H is
triangle-free while G is not, and it seems that the conclusion of Conjecture 1.4 could hold even
then. We suspect that Conjecture 1.1 should also hold in the following stronger form:

Conjecture 1.5. For every graph F, there is a constant cF > 0 such that the following holds. Let G be
a graph and letH= (L,H) be a DP-cover of G. If H is F-free and has maximum degree d� 2 and if
|L(u)|� cFd/ log d for all u ∈V(G), then G admits a properH-colouring.

After this discussion, we are now ready to state our main result:

Theorem 1.6. There is a constant α > 0 such that for every ε > 0, there is d0 ∈N such that the
following holds. Suppose that d, s, t ∈N satisfy

d� d0, s� dαε , and t� αε log d
log log d

.

If G is a graph andH= (L,H) is a DP-cover of G such that:

(i) H is Ks,t-free,
(ii) �(H)� d, and
(iii) |L(u)|� (1+ ε)d/ log d for all u ∈V(G),

then G has a properH-colouring.

If F is an arbitrary bipartite graph with parts of size s and t, then an F-free graph is alsoKs,t-free.
Thus, Theorem 1.6 yields the following result for large enough d0 as a function of s, t and ε:

Corollary 1.7. For every bipartite graph F and ε > 0, there is d0 ∈N such that the following holds.
Let d� d0. SupposeH= (L,H) is a DP-cover of G such that:
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(i) H is F-free,
(ii) �(H)� d, and
(iii) |L(u)|� (1+ ε)d/ log d for all u ∈V(G).

Then G has a properH-colouring.

Setting d = �(G) in Corollary 1.7 gives an extension of Theorem 1.2 to DP-colouring:

Corollary 1.8. For every bipartite graph F and ε > 0, there is �0 ∈N such that every F-free graph
G with maximum degree ���0 satisfies χDP(G)� (1+ ε)�/ log�.

We close this introduction with a few words about the proof of Theorem 1.6. To find a proper
H-colouring of G we employ a variant of the so-called “Rödl Nibble” method, in which we ran-
domly colour a small portion of V(G) and then iteratively repeat the same procedure with the
vertices that remain uncoloured. (See [17] for a recent survey on this method.) Throughout the
iterations, both the maximum degree of the cover graph and the minimum list size are decreasing,
but we show that the former is decreasing at a faster rate than the latter. Thus, we eventually arrive
at a situation where �(H)� |L(v)| for all v ∈V(G), and then it is easy to complete the colouring.
The specific procedure in our proof is essentially the same as the one used by Kim [18] (see also
[22, Chapter 12]) to bound the chromatic number of graphs of girth at least 5, suitably modified
for the DP-colouring framework. We describe it in detail in §3. The main novelty in our analysis
is in the proof of Lemma 4.5, which allows us to control the maximum degree of the cover graph
after each iteration. This is the only part of the proof that relies on the assumption that H is Ks,t-
free. The proof of Lemma 4.5 involves several technical ingredients, which we explain in §5. In §6,
we put the iterative process together and verify that the colouring can be completed.

2. Preliminaries
In this section, we outline the main probabilistic tools that will be used in our arguments. We start
with the symmetric version of the Lovász Local Lemma.

Theorem 2.1 (Lovász Local Lemma; [22, §4]). Let A1, A2, . . ., An be events in a probability space.
Suppose there exists p ∈ [0, 1) such that for all 1� i� n we have P[Ai]� p. Further suppose that
each Ai is mutually independent from all but at most dLLL other events Aj, j 
= i for some dLLL ∈N.
If 4pdLLL � 1, then with positive probability none of the events A1, . . ., An occur.

Aside from the Local Lemma, we will require several concentration of measure bounds. The
first of these is the Chernoff Bound for binomial random variables. We state the two-tailed version
below:

Theorem 2.2 (Chernoff; [22, §5]). Let X be a binomial random variable on n trials with each trial
having probability p of success. Then for any 0� ξ �E[X], we have

P

[∣∣X −E[X]
∣∣� ξ

]
< 2 exp

(
− ξ 2

3E[X]

)
.

We will also take advantage of two versions of Talagrand’s inequality. The first version is the
standard one:

Theorem 2.3 (Talagrand’s Inequality; [22, §10.1]). Let X be a non-negative random variable, not
identically 0, which is a function of n independent trials T1, . . ., Tn. Suppose that X satisfies the
following for some γ , r > 0:

(T1) Changing the outcome of any one trial Ti can change X by at most γ .
(T2) For any s> 0, if X � s then there is a set of at most rs trials that certify X is at least s.
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Then for any 0� ξ �E[X], we have

P

[∣∣X −E[X]
∣∣� ξ + 60γ

√
rE[X]

]
� 4 exp

(
− ξ 2

8γ 2rE[X]

)
.

The second version of Talagrand’s inequality we will use was developed by Bruhn and Joos [9].
We refer to it as Exceptional Talagrand’s Inequality. In this version, we are allowed to discard a
small “exceptional” set of outcomes before constructing certificates.

Theorem 2.4 (Exceptional Talagrand’s Inequality [9, Theorem 12]). Let X be a non-negative ran-
dom variable, not identically 0, which is a function of n independent trials T1, . . ., Tn, and let 	 be
the set of outcomes for these trials. Let 	∗ ⊆ 	 be a measurable subset, which we shall refer to as the
exceptional set. Suppose that X satisfies the following for some γ > 1, s> 0:

(ET1) For all q> 0 and every outcome ω /∈ 	∗, there is a set I of at most s trials such that X(ω′)>
X(ω)− q whenever ω′ 
∈ 	∗ differs from ω on fewer than q/γ of the trials in I.

(ET2) P[	∗]�M−2, where M =max{supX, 1}.
Then for every ξ > 50γ

√
s, we have:

P

[∣∣X −E[X]
∣∣� ξ

]
� 4 exp

(
− ξ 2

16γ 2s

)
+ 4P(	∗).

Finally, we shall use the Kővári–Sós–Turán theorem for Ks,t-free graphs:

Theorem 2.5 (Kővári–Sós–Turán [19]; see also [13]). Let G be a bipartite graph with a bipartition
V(G)= X � Y, where |X| =m, |Y| = n, and m� n. Suppose that G does not contain a complete
bipartite subgraph with s vertices in X and t vertices in Y. Then |E(G)|� s1/tm1−1/tn+ tm.

3. The wasteful colouring procedure
To prove Theorem 1.6, we will start by showing we can produce a partialH-colouring of our graph
with desirable properties. Before we do so, we introduce some notation used in the next lemma.
When ϕ is a partial H-colouring of G, we define Lϕ(v) := {c ∈ L(v) :NH(c)∩ im(ϕ)= ∅}. Given
parameters d, �, η, β > 0, we define the following functions:

keep(d, �, η) :=
(
1− η

�

)d
,

uncolor(d, �, η) := 1− η keep(d, �, η),
�′(d, �, η, β) := keep(d, �, η) � − �1−β ,
d′(d, �, η, β) := keep(d, �, η) uncolor(d, �, η) d + d1−β .

The meaning of this notation will become clear when we describe the randomised colouring
procedure we use to prove the following lemma.

Lemma 3.1. There are d̃ ∈N, α̃ > 0 with the following property. Let η > 0, d, �, s, t ∈N satisfy:

(1) d� d̃,
(2) ηd < � < 8d,
(3) s� d1/4,

(4) t� α̃ log d
log log d

,
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(5)
1

log5 d
< η <

1
log d

.

Then whenever G is a graph andH= (L,H) is a DP-cover of G such that

(6) H is Ks,t-free,
(7) �(H)� d,
(8) |L(v)|� � for all v ∈V(G),

there exist a partial proper H-colouring ϕ and an assignment of subsets L′(v)⊆ Lϕ(v) to each v ∈
V(G) \ dom(ϕ) such that, setting

G′ := G[V(G) \ dom(ϕ)] and H′ := H

⎡⎣ ⋃
v∈V(G′)

L′(v)

⎤⎦ ,

we get that for all v ∈V(G′), c ∈ L′(v) and β = 1/(25t):
|L′(v)| � �′(d, �, η, β) and degH′(c) � d′(d, �, η, β).

To prove Lemma 3.1, we will carry out a variant of the the “Wasteful Coloring Procedure,” as
described in [22, Chapter 12]. As mentioned in the introduction, essentially the same procedure
was used by Kim [18] to bound the chromatic number of graphs of girth at least 5. We describe
this procedure in terms of DP-colouring below:

In §§4 and 5, we will show that, with positive probability, the output of the Wasteful Coloring
Procedure satisfies the conclusion of Lemma 3.1. With this procedure in mind, we can now pro-
vide an intuitive understanding for the functions defined in the beginning of this section. Suppose
G, H= (L,H) satisfy |L(v)| = � and �(H)= d. If we run the Wasteful Coloring Procedure with
theseG andH, then keep(d, �, η) is the probability that a colour c ∈ L(v) is kept by v (i.e., c ∈K(v)),
while uncolor(d, �, η) is approximately the probability that a vertex v ∈V(G) is uncoloured (i.e.,
ϕ(v)= blank). The details of these calculations are given in §4. Note that, assuming the terms
�1−β and d1−β in the definitions of �′(d, �, η, β) and d′(d, �, η, β) are small, we can write

d′(d, �, η, β)
�′(d, �, η, β)

≈ uncolor(d, �, η)
d
�
.
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In other words, an application of Lemma 3.1 reduces the ratio d/� roughly by a factor of
uncolor(d, �, η). In §6 we will show that Lemma 3.1 can be applied iteratively to eventually make
the ratio d/� less than, say, 1/8, after which the colouring can be completed using the following
proposition:

Proposition 3.2. Let G be a graph with a DP-cover H= (L,H) such that |L(v)|� 8d for every
v ∈V(G), where d is the maximum degree of H. Then, there exists a proper H-colouring of G.

This proposition is standard and proved using the Lovász Local Lemma. Its proof in the DP-
colouring framework can be found, e.g., in [6, Appendix].

For the reader already familiar with some of the applications the “Rödl Nibble” method to
graph colouring problems, let us make a comment about one technical feature of our Wasteful
Coloring Procedure. For the analysis of constructions of this sort, it is often beneficial to assume
that every colour has the same probability of being kept. It is clear, however, that in our proce-
dure the probability that a colour c ∈V(H) is kept depends on the degree of c in H: the larger
the degree, the higher the chance that c gets removed. The usual way of addressing this issue
is by introducing additional randomness in the form of “equalizing coin flips” that artificially
increase the probability of removing the colours of low degree. (See, for example, the procedure
in [22, Chapter 12].) However, it turns out that we can avoid the added technicality of dealing
with equalising coin flips by leveraging the generality of the DP-colouring framework. Namely, by
replacing H with a supergraph, we may always arrange H to be d-regular (see Proposition 4.1).
This allows us to assume that every colour has the same probability of being kept, even without
extra coin flips. This way of simplifying the analysis of probabilistic colouring constructions was
introduced by Bonamy, Perrett and Postle in [8] and nicely exemplifies the benefits of working
with DP-colourings compared to the classical list-colouring setting.

4. Proof of Lemma 3.1
In this section, we present the proof of Lemma 3.1, apart from one technical lemma that will be
established in §5.We start with the following proposition which allows us to assume that the given
DP-cover of G is d-regular.

Proposition 4.1. Let G be a graph and (L,H) be a DP-cover of G such that �(H)� d and H is
Ks,t-free for some d, s, t ∈N. Then there exist a graph G∗ and a DP-cover (L∗,H∗) of G∗ such that
the following statements hold:

• G is a subgraph of G∗,
• H is a subgraph of H∗,
• for all v ∈V(G), L∗(v)= L(v),
• H∗ is Ks,t-free,
• H∗ is d-regular.

Proof. Set N =∑
c∈V(H)(d − degH(c)) and let � be an N-regular graph with girth at least 5. (Such

� exists by [14, 20].) Without loss of generality, we may assume that V(�)= {1, . . . , k}, where
k := |V(�)|. Take k vertex-disjoint copies of G, say G1, . . ., Gk, and let (Li,Hi) be a DP-cover of
Gi isomorphic to (L,H). Define Xi := {c ∈V(Hi) : degHi(c)< d} for every 1� i� k. The graphs
G∗ and H∗ are obtained from the disjoint unions of G1, . . ., Gk and H1, . . ., Hk respectively by
performing the following sequence of operations once for each edge ij ∈ E(�), one edge at a time:

(1) Pick arbitrary vertices c ∈ Xi and c′ ∈ Xj.
(2) Add the edge cc′ to E(H∗) and the edge L−1

i (c)L−1
j (c′) to E(G∗).

(3) If degH∗(c)= d, remove c from Xi.
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(4) If degH∗(c′)= d, remove c′ from Xj.

Since � is N-regular, throughout this process the sum
∑

c∈V(Hi)(d − degH∗(c)) decreases
exactly N times, which implies that the resulting graph H∗ is d-regular. Furthermore, since �

has girth at least 5 and H is Ks,t-free, H∗ is also Ks,t-free. Hence, if we define L∗ : V(G∗)→
2V(H∗) so that L∗(v)= Li(v) for all v ∈V(Gi), then (L∗,H∗) is a DP-cover of G∗ satisfying all the
requirements.

Suppose d, �, s, t, η and a graph G with a DP-coverH= (L,H) satisfy the conditions of Lemma
3.1. By removing some vertices from H if necessary, we may assume that |L(v)| = � for all v ∈
V(G). Furthermore, by Proposition 4.1, wemay assume thatH is d-regular. Since wemay delete all
the edges of G whose corresponding matchings in H are empty, we may also assume that �(G)�
�d. Suppose we have carried out the Wasteful Coloring Procedure with these G and H. As in the
statement of Lemma 3.1, we let

G′ := G[V(G) \ dom(ϕ)] and H′ := H

⎡⎣ ⋃
v∈V(G′)

L′(v)

⎤⎦ .

For each v ∈V(G) and c ∈V(H), we define the random variables
�′(v) := |K(v)| and d′(c) := |NH(c)∩V(H′)|.

Note that if v ∈V(G′), then �′(v)= |L′(v)|; similarly, if c ∈V(H′), then d′(c)= degH′(c). As in
Lemma 3.1, we let β := 1/(25t). For the ease of notation, we will write keep to mean keep(d, �, η),
uncolor to mean uncolor(d, �, η), etc. We will show, for d large enough, that:

Lemma 4.2. For all v ∈V(G), E[�′(v)]= keep �,

Lemma 4.3. For all v ∈V(G), P
[∣∣�′(v)−E[�′(v)]

∣∣> �1−β
]
� d−100.

Lemma 4.4. For all c ∈V(H), E[d′(c)]� keep uncolor d + d/�,

Lemma 4.5. For all c ∈V(H), P
[
d′(c)>E[d′(c)]− d/� + d1−β

]
� d−100.

Together, these lemmas will allow us to complete the proof of Lemma 3.1, as follows.

Proof of Lemma 3.1. Take d̃ so large that Lemmas 4.2–4.5 hold. Define the following random
events for every vertex v ∈V(G) and every colour c ∈V(H):

Av :=
[
�′(v)� �′] and Bc :=

[
d′(c)� d′] .

We will use the Lovász Local Lemma, Theorem 2.1. By Lemma 4.2 and Lemma 4.3, we have:

P[Av]= P
[
�′(v)� keep � − �1−β

]
= P

[
�′(v)�E[�′(v)]− �1−β

]
� d−100.

By Lemma 4.4 and Lemma 4.5, we have:

P[Bc]= P
[
d′(c)� keep uncolor d + d1−β

]
� P

[
d′(c)�E[d′(c)]− (d/�)+ d1−β

]
� d−100.

Let p := d−100. Note that events Av and Bc are mutually independent from events of the form
Au and B′c where c′ ∈ L(u) and u ∈V(G) is at distance at least 5 from v. Since we are assuming
that �(G)� �d, there are at most 1+ (�d)4 vertices in G of distance at most 4 from v. For each
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such vertex u, there are � + 1 events corresponding to u and the colours in L(u), so we can let
dLLL := (� + 1)(1+ (�d)4)=O(d9). Assuming d is large enough, we have

4pdLLL � 1,

so, by Theorem 2.1, with positive probability none of the events Av, Bc occur, as desired.

The proofs of Lemmas 4.2–4.4 are fairly straightforward and similar to the corresponding parts
of the argument in the girth-5 case (see [22, Chapter 12]). We present them here.

Proof of Lemma 4.2. Consider any c ∈ L(v). We have c ∈K(v) exactly when NH(c)∩ col(A)= ∅,
i.e., when no neighbour of c is assigned to its underlying vertex. The probability of this event is
(1− η/�)d = keep. By the linearity of expectation, it follows that E[�′(v)]= keep �.

Proof of Lemma 4.3. It is easier to consider the random variable r(v) := � − �′(v), the number of
colours removed from L(v). We will use Theorem 2.3, Talagrand’s Inequality. Order the colours in
L(u) for each u ∈NG(v) arbitrarily. Let Tu be the random variable that is equal to 0 if u 
∈A and i if
u ∈A and col(u) is the i-th colour in L(u). Then Tu, u ∈NG(v) is a list of independent trials whose
outcomes determine r(v). Changing the outcome of any one of these trials can affect r(v) at most
by 1. Furthermore, if r(v)� s for some s, then this fact can be certified by the outcomes of s of
these trials. Namely, for each removed colour c ∈ L(v) \K(v), we take the trial Tu corresponding
to any vertex u ∈NG(v) such that u ∈A and col(u) is adjacent to c in H. Thus, we can now apply
Theorem 2.3 with γ = 1, r = 1 to get:

P

[∣∣�′(v)−E[�′(v)]
∣∣> �1−β

]
= P

[∣∣r(v)−E[r(v)]
∣∣> �1−β

]
= P

[∣∣r(v)−E[r(v)]
∣∣> �1−β

2
+ �1−β

2

]
� P

[∣∣r(v)−E[r(v)]
∣∣> �1−β

2
+ 60

√
E[r(v)]

]
� 4 exp

(
− �2(1−β)

32 (1− keep) �

)

� 4 exp
(

−�1−2β

32

)
� 4 exp

(
− (d/ log5 d)1−2β

32

)
� d−100,

where the first and last inequalities hold for d large enough.

Proof of Lemma 4.4. Let u ∈NG(v) and c′ ∈ L(u)∩NH(c). We need to bound the probability that
ϕ(u)= blank and c′ ∈K(u). We split into the following cases.

Case 1: u /∈A and c′ ∈K(u). This occurs with probability (1− η)keep.

Case 2: u ∈A, col(u)= c′′ 
= c′, ϕ(u)= blank and c′ ∈K(u). In this case, there must be some
w ∈NG(u) such that col(w)∼ c′′. Since c′ ∈K(u), we must have col(w) 
∼ c′. For each w ∈NG(u),

P
[
col(w)∼ c′′ | col(w) 
∼ c′

] =
(η

�

)
/
(
1− η

�

)
= η

� − η
.
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Therefore, we can write

P
[
ϕ(u)= blank | col(u)= c′′, c′ ∈K(u)

]
= 1−

(
1− η

� − η

)d

= 1− keep
(
1− η2

(� − η)2

)d

� 1− keep+ keep
dη2

(� − η)2

� 1− keep+ 1
�
,

where the last inequality follows since keep� 1, ηd < �, η < 1/ log d, and d is large enough.
Putting the two cases together, we have:

P
[
ϕ(u)= blank, c′ ∈K(u)

]
� (1− η) keep+ η

(
1− 1

�

)
keep

(
1− keep+ 1

�

)
� keep uncolor+ 1

�
.

Finally, by linearity of expectation, we conclude that

E[d′(c)] � d
(
keep uncolor+ 1

�

)
= keep uncolor d + d

�
,

proving the lemma.

The proof of Lemma 4.5 is quite technical and will be given in §5. It is the only part of our
argument that relies on the fact that H is Ks,t-free. To explain why proving Lemma 4.5 is difficult,
consider an arbitrary colour c ∈V(H). The value d′(c) depends on which of the neighbours of c in
H are kept. This, in turn, is determined by what happens to the neighbours of the neighbours of
c. Since we are only assuming that H is Ks,t-free, the neighbourhoods of the neighbours of c can
overlap with each other. Roughly speaking, we will need to carefully analyse the structure of these
overlaps to make sure that Talagrand’s inequality can be applied.

5. Proof of Lemma 4.5
Throughout this section, we shall use the following parameters, where t is given in the statement
of Lemma 3.1:

β := 1
25t

, β1 := 1
20t

, β2 := 1
15t

, δ := 1
3t
, δ2 := 1

10t
, τ := 4

9t
.

Fix a vertex v ∈V(G) and a colour c ∈ L(v). We need too show that, with high probability,
the random variable d′(c) does not significantly exceed its expectation. To this end, we make the
following definitions:

K := {c′ ∈NH(c) :NH(c′)∩ col(A)= ∅},
U := {c′ ∈NH(c) : ϕ(L−1(c′))= blank}.
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Then d′(c)= |U ∩K|. We will show that |U | is highly concentrated and prove that, with high
probability, |U \K| is not much lower than its expected value. Using the identity |U ∩K| = |U | −
|U \K| will then give us the desired upper bound on d′(c).

Lemma 5.1. P
[∣∣∣|U | −E

[|U |]∣∣∣� d1−β1

]
� d−110.

Proof. We use Theorem 2.4, Exceptional Talagrand’s Inequality. Let Vc := L−1(NH(c)). In other
words,Vc is the set of neighbours of vwhose lists include a colour corresponding to c. Then the set
U is determined by the colouring outcomes of the vertices in S := Vc ∪NG(Vc). More precisely,
as in the proof of Lemma 4.3, we arbitrarily order the colours in L(u) for each u ∈ S and let Tu be
the random variable that is equal to 0 if u 
∈A and i if u ∈A and col(u) is the i-th colour in L(u).
Then Tu, u ∈ S is a list of independent trials whose outcomes determine |U |. Let 	 be the set of
outcomes of these trials. Let C := 25 and define 	∗ ⊆ 	 to be the set of all outcomes in which
there is a colour c′ ∈ L(S) such that |NH(c′)∩ L(Vc)∩ col(A)|� Clog d. We claim that |U | satisfies
conditions (ET1) and (ET2) of Theorem 2.4 with s= 2d and γ = 1+ C log d.

To verify (ET1), take q> 0 and outcome ω /∈ 	∗. Each vertex u ∈ L−1(U) satisfies u /∈A or
there exists w ∈NG(u) such that u, w ∈A and col(w)∼ col(u). We call such w a conflicting neigh-
bour of u. Form a subset I of trials by including, for each u ∈ L−1(U), the trial Tu itself and, if
applicable, the trial Tw corresponding to any one conflicting neighbour w of u. Since |U |� d,
we have |I|� 2d = s. Now suppose that ω′ 
∈ 	∗ satisfies |U(ω′)|� |U(ω)| − q. For each vertex
u ∈ U(ω) \ U(ω′), the outcomes of either the trial Tu or the trial Tw ∈ I of a conflicting neighbour
w of umust be different in ω and in ω′. Since ω /∈ 	∗, every w ∈ S can be a conflicting neighbour
of at most Clog d vertices u. Therefore, ω′ and ω must differ on at least q/(1+ Clog d) trials, as
desired.

It remains to show P [	∗]�M−2, where M =max{sup |U |, 1}. For any c′ ∈ L(S), the number
of colours in NH(c′)∩ L(Vc)∩ col(A) is a binomial random variable with at most d trials, each
having probability η/�. Let Xc′ denote this random variable. Note that E[Xc′]= ηd/� < 1. By the
union bound, we have

P
[
Xc′ � Clog d

]
�
(

d�C log d�
) (η

�

)�C log d�
�
(

ed
�C log d�

)�C log d� (η

�

)�C log d�

�
(

e
�C log d�

)�C log d�
� d−150,

where the last inequality holds for d large enough. By the union bound and the fact that �� 8d
(by the assumptions of Lemma 3.1), we get

P
[∃ c′ ∈ L(S) such that X′c � C log d

]
� �|S|d−150 � d−125,

where we use that |S|� d + �d2 and d is large enough. Thus P[	∗]� d−125. Note that M =
max{sup|U |, 1} =max{d, 1} = d, so P[	∗]� 1/M2, for d large enough.

We can now use Exceptional Talagrand’s Inequality. Let ξ := d1−β1 . Note that ξ > 50γ
√
s for

d large enough. We can therefore write

P

[∣∣∣|U | −E
[|U |]∣∣∣� d1−β1

]
� 4 exp

(
− d2−2β1

32(1+ C log d)2d

)
+ 4P[	∗]

� 4 exp
(

−O
(
d1−2β1

log2 d

))
+ 4d−125

� d−110,

for d large enough.
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Lemma 5.2. P
[
|U \K|�E

[|U \K|]− d1−β1
]
� 1− d−110.

It is here that we take advantage of the fact that H is Ks,t-free. Before we proceed, we make a
few definitions. Recall that δ = 1/(3t), where t is given in the statement of Lemma 3.1. Let N2

H(c)
denote the set of all colours c′′ ∈V(H) that are joined to c by at least one path of length exactly 2
(there may also be other paths joining c and c′′). We say:

c′′ ∈N2
H(c) is bad if c′′ has at least d1−δ neighbors in NH(c),

good otherwise;
c′ ∈NH(c) is sad if c′ has at least d1−δ bad neighbors,

happy otherwise.

Let Bad, Good, Sad and Happy be the sets of bad, good, sad, and happy colours respectively.
Note that, as we are not assuming that H is triangle-free, it is possible that NH(c)∩N2

H(c) 
= ∅; in
particular, a colour can be both bad and sad. Bad colours are problematic from the point of view
of Talagrand’s inequality, as each of them can be responsible for the removal of a large number
of colours from K. Thankfully, we can use the Kővári–Sós–Turán theorem to argue that there are
few sad colours, i.e., most colours in NH(c) have only a few bad neighbours.

Claim 5.3. The number of sad colours is at most d1−β2 , where β2 = 1/(15t).

Proof. Since every bad colour has at least d1−δ neighbours in NH(c), we have

|Bad|� 2|E(NH(c),N2
H(c)

)|
d1−δ

� 2d2

d1−δ
= 2d1+δ .

Let B be the bipartite graphwith partsX andY , whereX = Bad andY is a copy ofNH(c) disjoint
from X, with the edges in B corresponding to those in H. Note that if a colour c′ ∈NH(c)∩N2

H(c)
is bad, then B contains two copies of c′, one in X and the other in Y . However, these two copies
cannot be adjacent to each other, and hence every subgraph of B isomorphic to Ks,t must use
only one copy of each colour. Since H is Ks,t-free, we conclude that B is Ks,t-free as well. If we set
ε̂ = 1/t,m= |Bad|, n= d, then, by the Kővári–Sós–Turán theorem,

|E(B)|� sε̂(2d1+δ)1−ε̂ d + 2 t d1+δ � 4d2−3ε̂/4+δ−δε̂ .

On the other hand, since every sad colour has at least d1−δ bad neighbours, we see that

|Sad| d1−δ � |E(B)|� 4d2−3ε̂/4+δ−δε̂ .

This implies that for d large enough,

|Sad|� 4d1−3ε̂/4+2δ−δε̂ � d1−β2 ,

as 3ε̂/4− 2δ + δε̂ > 1/(12t)> β2 > 0.

Instead of proving the desired one-sided concentration inequality for |U \K| directly, we will
focus on a slightly different parameter. Let

K̃ := {
c′ ∈Happy :NH(c′)∩ Good∩ col(A)= ∅}.

In other words, K̃ is the set of all happy colours that do not have a good neighbour in col(A).
Then

U \ K̃ = {c′ ∈NH(c): ϕ(L−1(c′))= blank, and either
(1) c′ ∈ Sad, or
(2) NH(c′)∩ Good∩ col(A) 
= ∅}.
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Claim 5.4. Let Z̃ := |(U \ K̃)∩Happy|. Then P
[̃
Z�E[̃Z]− d1−δ2

]
� 1− d−110, where δ2 =

1/(10t).

Proof. Recall that τ = 4/(9t). By definition, a good colour can be responsible for the removal of at
most d1−δ colours from K̃. Unfortunately, this bound is still too large to apply Talagrand’s inequal-
ity directly. Instead, we will first partition Happy into k := �d1−τ � sets Happy1, . . ., Happyk
satisfying certain properties and then argue that the random variable |(U \ K̃)∩Happyi| is highly
concentrated for each i. The following subclaim states these properties and proves the existence
of the partition.

Subclaim 5.4.a. There exists a partition of Happy into sets Happy1, . . ., Happyk such that the
following hold for all 1� i� k and every c′′ ∈ Good:

•
dτ

4
� |Happyi|�

3dτ

2
,

• |NH(c′′)∩Happyi|�
3dτ−δ

2
.

Proof of Subclaim 5.4.a. Independently for each c′ ∈Happy, assign c′ to Happyi uniformly
at random. Let si := |Happyi|. Then si is a binomial random variable with at most d and at
least d − d1−β2 trials, each succeeding with probability 1/k. We have E[si]= d/k ∈

[
3dτ

4 , dτ
]
as

3dτ /4< (d − d1−β2 )/k≈ dτ − dτ−β2 for d large enough, since τ > β2. By the Chernoff bound
(Theorem 2.2), we have:

P

[∣∣si −E[si]
∣∣� dτ

2

]
� 2 exp

(
−dτ

12

)
.

By the union bound and since t� α̃
log d

log log d
, we have the following for α̃ small enough:

P

[
∃ i:

∣∣si −E[si]
∣∣� dτ

2

]
� 2 k exp

(
−dτ

12

)
� d−1. (5.5)

Now, for c′′ ∈ Good, let ri(c′′) be the number of neighbours c′′ has in Happyi. Then ri(c′′)
is a binomial random variable with at most d1−δ trials (since c′′ is good), each succeeding
with probability 1/k. Let � be a binomial random variable with exactly �d1−δ� trials, each suc-
ceeding with probability 1/k. Note that E[ri(c′′)]�E[�]� dτ−δ and E[�]> dτ−δ/2. Then, by
Theorem 2.2,

P

[
ri(c′′)�

3dτ−δ

2

]
� P

[
��E[�]+ dτ−δ

2

]
� 2 exp

(
− (dτ−δ/2)2

3dτ−δ

)
= 2 exp

(
−dτ−δ

12

)
.

By the union bound and since t� α̃
log d

log log d
, we have the following for α̃ small enough

P

[
∃ i, c′′ ∈ Good : ri(c′′)�

3dτ−δ

2

]
� k d2 exp

(
−dτ−δ

12

)
� d−1. (5.6)

Putting together (5.5) and (5.6), we obtain

P
[
Happy1, . . . , Happyk satisfy the conditions stated

]
� 1− 2d−1 > 0.

So, such a partition must exist.
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Fromhere on out, we fix a partitionHappy1, . . .,Happyk ofHappy that satisfies the conclusions
of Subclaim 5.4.a. For each 1� i� k, let Z̃i := |(U \ K̃)∩Happyi|. We will now use Exceptional
Talagrand’s Inequality (Theorem 2.4) to show that each random variable Z̃i is highly concentrated.

Subclaim 5.4.b. For each 1� i� k, we have P
[ ∣∣̃Zi −E[̃Zi]

∣∣� dτ−δ2

]
� d−120.

Proof of Subclaim 5.4.b. For brevity, set X := Z̃i. Let D := L−1(Happyi) be the set of the under-
lying vertices of the colours in Happyi. The random variable X is determined by the colouring
outcomes of the vertices in S := D∪NG(D). More precisely, as in the proofs of Lemma 4.3 and
5.1, we arbitrarily order the colours in L(u) for each u ∈ S and let Tu be the random variable that
is equal to 0 if u 
∈A and i if u ∈A and col(u) is the i-th colour in L(u). Then Tu, u ∈ S is a list
of independent trials that determines X. Let 	 be the set of outcomes of these trials. Let C := 25
and define 	∗ ⊆ 	 to be the set of all outcomes in which there is a colour c′′ ∈ L(S) such that
|NH(c′′)∩Happyi ∩ col(A)|� Clog d. We claim that X satisfies conditions (ET1) and (ET2) in
Theorem 2.4 with s= 9dτ /2 and γ = 1+ 3dτ−δ/2+ Clog d.

To verify (ET1), take q> 0 and ω /∈ 	∗. We form a set I of at most s trials as follows.
Consider any colour c′ ∈Happyi that contributes towards X and let u := L−1(c′). By definition,
ϕ(u)= blank and there is a good neighbour c′′ of c′ with c′′ ∈ col(A). Pick any such c′′ and let
w := L−1(c′′). We say that w is the conflicting neighbour of u of Type I. Next, since ϕ(u)= blank,
we either have u /∈A, or there is y ∈NG(u) such that u, y ∈A and col(y)∼ col(u). Pick any such y
(if it exists) and call it the conflicting neighbour of u of Type II. Add the following trials to I:

Tu, Tw, Ty (if applicable).

Since |Happyi|� 3dτ /2, we have |I|� 3|Happyi|� 9dτ /2= s.
Note that, for every vertex w ∈ S, there can be at most 3dτ−δ/2 vertices u ∈D such that w is the

conflicting neighbour of u of Type I. Indeed, for w to be the Type I conflicting neighbour of any
vertex, it must be true that w ∈A and col(w) ∈ Good. Then, by Subclaim 5.4.a, col(w) has at most
3dτ−δ/2 neighbours in Happyi, as desired. Similarly, since ω 
∈ 	∗, for each vertex y ∈ S, there are
at most Clog d vertices u ∈D such that y is the conflicting neighbour of u of Type II.

Now suppose that ω′ 
∈ 	∗ satisfies X(ω′)� X(ω)− q. Consider any colour c′ ∈Happyi that
contributes towards X(ω) but not X(ω′) and let u := L−1(c′). Then either Tu or at least one of the
trials corresponding to the conflicting neighbours of umust have different outcomes in ω and ω′.
The observations in the previous paragraph imply that the total number of trials on which ω and
ω′ differ must be at least q/(1+ 3dτ−δ/2+ Clog d).

It remains to show that P [	∗]�M−2, where M =max{sup X, 1}. As in the proof of
Lemma 5.1, we get P [	∗]� d−125 for d large enough. Since M =max{sup X, 1} =
max{3dτ /2, 1}� d, we conclude that P [	∗]� 1/M2, as desired.

We can now use Exceptional Talagrand’s Inequality. Let ξ = dτ−δ2 . Note that 2δ − 2δ2 − τ > 0
and ξ > 50γ

√
s for d large enough. We can therefore write

P

[∣∣X −E[X]
∣∣� dτ−δ2

]
� 4 exp

⎛⎝− d2τ−2δ2

16
(
1+ 3dτ−δ/2+ Clog d

)2 ( 9dτ

2

)
⎞⎠+ 4P[	∗]

� 4 exp
(

−O
(
d2τ−2δ2

d3τ−2δ

))
+ 4d−125

� 4 exp
(−O

(
d2δ−2δ2−τ

))+ 4d−125

� d−120,

for d large enough and α̃ small enough.
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Using Subclaim 5.4.b and the union bound, we obtain

P

[
∃ i: Z̃i �E[̃Zi]− dτ−δ2

]
� d1−τd−120 � d−115.

Since Z̃ := ∑k
i=1 Z̃i, we conclude that

P
[̃
Z�E[̃Z]− d1−δ2

]
� P

[∀ i: Z̃i �E[̃Zi]− dτ−δ2
]
� 1− d−110,

for d large enough, as desired.
Since |(U \ K̃)∩Happy| = Z̃, the value Z̃ can differ from |U \ K̃| at most by the number of sad

colours. Thus, by Claim 5.3, we have 0� |(U \ K̃)| − Z̃� d1−β2 , from which it follows that

E[̃Z]�E
[|U \ K̃|]− d1−β2 . (5.7)

We now show that E
[|U \K|] is not much larger than E

[|U \ K̃|].
Claim 5.8. E

[|U \K|]−E
[|U \ K̃|]� d1−δ .

Proof. First note that
|U \K| − |U \ K̃|� ∣∣(U \K)∩ K̃

∣∣,
so it suffices to show E

[∣∣(U \K)∩ K̃
∣∣]� d1−δ . We have

(U \K)∩ K̃ ⊆ {c′ ∈NH(c) : ϕ(L−1(u))= blank, c′ ∈Happy, NH(c′)∩ Bad∩ col(A) 
= ∅}.
Note that if c′ ∈Happy, we have

P
[
NH(c′)∩ Bad∩ col(A) 
= ∅]� η

�
d1−δ < d−δ ,

from which it follows

E

[∣∣(U \K)∩ K̃
∣∣]� ∑

c′∈NH(c)
c′∈Happy

P
[
NH(c′)∩ Bad∩ col(A) 
= ∅]� d d−δ = d1−δ .

We are now ready to finish the proof of Lemma 5.2.

Proof of Lemma 5.2. Observe that (U \ K̃) \ (U \K) is the set of colours c′ ∈NH(c) which satisfy
that ϕ(L−1(c′))= blank, c′ ∈ Sad and c′ ∈K. By Claim 5.3, this implies

|U \ K̃| − |U \K|� d1−β2 .
Therefore, with probability at least 1− d−110, we have the following chain of inequalities:

|U \K|� |U \ K̃| − d1−β2

� Z̃ − d1−β2 (since Z̃ ⊆ U \ K̃ )
�E[̃Z]− d1−δ2 − d1−β2 (by Claim 5.4)
�E

[|U \ K̃|]− d1−δ2 − 2d1−β2 (by (5.7))
�E

[|U \K|]− d1−δ − d1−δ2 − 2d1−β2 . (by Claim 5.8).

Since β1 = 1/(20t), we have β1 � 1
2 min{δ, δ2, β2, 1}, thus d1−β1 � d1−δ + d1−δ2 + 2d1−β2 for d

large enough. Therefore,

P

[
|U \K|�E

[|U \K|]− d1−β1
]
� 1− d−110,

as desired.
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We can now complete the proof of Lemma 4.5:

P
[
d′(c)�E[d′(c)]− d

�
+ d1−β

]
� P

[
d′(c)�E[d′(c)]+ 2d1−β1

]
(for d large enough)

� P

[
|U | >E

[|U |]+ d1−β1
]
+ P

[
|U \K| <E

[|U \K|]− d1−β1
]

(union bound)

� d−110 + d−110 (by Lemmas 5.1 and 5.2)
� d−100.

6. Proof of Theorem 1.6
In this section we prove Theorem 1.6 by iteratively applying Lemma 3.1 until we reach a stage
where we can apply Proposition 3.2. To do so, we first define the parameters for the graph and
cover at each iteration and then define d0 such that the graphs at each iteration will satisfy the
conditions of Lemma 3.1. This section follows similarly to [22, Chapter 12].

We use the notation of Theorem 1.6. Let

G1 := G, H1 = (L1,H1) := H, �1 := (1+ ε)d/ log d, d1 := d,

where we may assume that ε is sufficiently small, say ε < 1/100. Since d is large, we may also
assume that �1 is an integer by slightly modifying ε if necessary. Define

κ := (1+ ε/2) log (1+ ε/100)≈ ε/100,

and fix η := κ/ log d, so that η is the same each time we apply Lemma 3.1. Set β := 1/(25t) and
recursively define the following parameters for each i� 1:

keepi :=
(
1− κ

�i log d

)di
, uncolori := 1− κ

log d
keepi,

�i+1 :=
⌈
keepi �i − �

1−β
i

⌉
, di+1 :=

⌊
keepi uncolori di + d1−β

i

⌋
.

Suppose that at the start of iteration i, the following numerical conditions hold:

(1) di � d̃,
(2) η di < �i < 8di,
(3) s� d1/4i ,

(4) t� α̃ log di
log log di

,

(5)
1

log5 di
< η <

1
log di

.

Furthermore, suppose that we have a graph Gi and a DP-coverHi = (Li,Hi) of Gi such that:

(6) Hi is Ks,t-free,
(7) �(Hi)� di,
(8) |Li(v)|� �i for all v ∈V(Gi).
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Then we may apply Lemma 3.1 to obtain a partialHi-colouring ϕi of Gi and an assignment of
subsets Li+1(v)⊆ (Li)ϕi(v) to each vertex v ∈V(Gi) \ dom(ϕi) such that, setting

Gi+1 := Gi[V(Gi) \ dom(ϕi)] and Hi+1 := Hi

⎡⎣ ⋃
v∈V(Gi+1)

Li+1(v)

⎤⎦ ,

we get that conditions (6)–(8) hold with i+ 1 in place of i. Note that, assuming d0 is large enough
and α is small enough, conditions (1)–(8) are satisfied initially (i.e., for i= 1). Our goal is to show
that there is some value i� ∈N such that:

• for all 1� i< i�, conditions (1)–(5) hold, and
• we have �i� � 8di� .

Since conditions (6)–(8) hold by construction, we will then be able to iteratively apply
Lemma 3.1 i� − 1 times and then complete the colouring using Proposition 3.2.

We first show that the ratio di/�i is decreasing for di, �i large enough.

Lemma 6.1. Suppose that for all j� i, we have �
β
j , d

β
j � 30 log2 d and �j � 8dj. Then

di+1
�i+1

� di
�i
.

Proof. The proof is by induction on i. Assume the statement holds for all values less than i. In
particular, di/�i � d1/�1 < log d. Using this we find the following bound:

keepi uncolori = keepi

(
1− κ

log d
keepi

)
= keepi −

κ

log d

(
1− κ

�i log d

)2di

� keepi −
κ

log d

(
1− 2κdi

�i log d

)
� keepi −

κ

2 log d
� keepi − 3�−β

i .

With this computation in mind, we have:

di+1
�i+1

� keepi uncolori di + d1−β
i

keepi �i − �
1−β
i

� di (keepi − 3�−β
i + d−β

i )
�i (keepi − �

−β
i )

� di
�i
.

The last inequality follows since �i � 8di and 8β � 2 for d large enough.
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For computational purposes, it is convenient to remove the error terms �
1−β
i and d1−β

i from
the definitions of di+1 and �i+1. This is done in the following lemma.

Lemma 6.2. Let �̂1 := �1, d̂1 := d1, and recursively define:

�̂i+1 := keepi �̂i,

d̂i+1 := keepi uncolori d̂i.

If for all 1� j< i, we have dβ
j , �

β
j � 30 log4 d and �j � 8dj, then

• |�i − �̂i|� �̂
1−β/2
i ,

• |di − d̂i|� d̂1−β/2
i .

Proof. Before we proceed with the proofs, let us record a few inequalities. By Lemma 6.1,

keepi � 1− di κ
�i log d

� 1− κ . (6.3)

Also, assuming d is large enough, we have

keepi � exp
(

− κ di
�i log d

)
� exp

(
− κ

8 log d

)
� 1− κ

10 log d
. (6.4)

It follows from (6.3) that

keepi uncolori = keepi −
κ

log d
keep2i � 1− κ

(
1+ keep2i

log d

)
� 1− 2κ .

Since κ < 1/4, the function f (x)= x1−β/2 − x is decreasing on [1− 2κ , 1]. It follows from (6.4)
that

keep1−β/2
i − keepi �

(
1− (1− β/2)

κ

10 log d

)
−
(
1− κ

10 log d

)
= βκ

20 log d
. (6.5)

Also, we can write

(keepi uncolori)1−β/2 − keepi uncolori � keep1−β/2
i − keepi �

βκ

20 log d
. (6.6)

Now we are ready to prove Lemma 6.2 by induction on i. Note that �̂i � �i, d̂i � di. For the base
case i= 1, the claim is trivial. Assume now that it holds for some i and consider i+ 1. We have

�̂i+1 = keepi �̂i
� keepi (�i + �̂

1−β/2
i ) (by the inductive hypothesis)

� �i+1 + �
1−β
i +

(
keep1−β/2

i − βκ

20 log d

)
�̂
1−β/2
i (by (6.5))

= �i+1 + �̂
1−β/2
i+1 + �

1−β
i − βκ

20 log d
�̂
1−β/2
i .

It remains to argue that
βκ

20 log d
�̂
1−β/2
i � �

1−β
i ,

which is equivalent to

�
1−β
i

�̂
1−β/2
i

� βκ

20 log d
.
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To this end, we write

�
1−β
i

�̂
1−β/2
i

� �
1−β
i

�
1−β/2
i

= �
−β/2
i � 1

5 log2 d
<

βκ

20 log d
,

since β = 	( log log d/ log d). Thus, the claim holds for d large enough.
The argument for d̂i+1 is almost identical. We have

d̂i+1 = keepi uncolori d̂i
� keepi uncolori (di − d̂1−β/2

i ) (by the inductive hypothesis)

� di+1 − d1−β
i −

(
(keepi uncolori)1−β/2 − βκ

20 log d

)
d̂1−β/2
i (by (6.6))

= di+1 − d̂1−β/2
i+1 − d1−β

i + βκ

20 log d
d̂1−β/2
i .

It remains to argue that

βκ

20 log d
d̂1−β/2
i � d1−β

i ,

which is equivalent to

d1−β
i

d̂1−β/2
i

� βκ

20 log d
.

To this end, we write

d1−β
i

d̂
1−β/2
i

� d−β
i

d̂
1−β/2
i

(
d̂i + d̂1−β/2

i

)
= d−β

i (d̂β/2
i + 1)� 2d−β/2

i � 1
2 log2 d

<
βκ

20 log d
,

and so, the claim holds for d large enough.

Next we show that �i never gets too small:

Lemma 6.7. Suppose that for all j< i, we have �j � 8dj. Then �i � dε/15.

Proof. For brevity, set ri := di/�i and r̂i := d̂i/�̂i. The proof is by induction on i. The base case
i= 1 is clear. Now we assume that the desired bound holds for �1, . . ., �i and consider �i+1.
Assuming d is large enough, we have

1− κ

�i log d
� exp

(
− κ

(1− ε/4)�i log d

)
. (6.8)
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Note that r1 = r̂1 = log d/(1+ ε) and, assuming ε < 1/100, (1− ε/4)
(1+ ε)� (1+ ε/2). Hence,

keepi =
(
1− κ

�i log d

)di

� exp
(

− κ

(1− ε/4) log d
ri
)

(by (6.8))

� exp
(

− κ

(1− ε/4) log d
r1
)

(by Lemma 6.1)

� exp
(

− κ

(1+ ε/2)

)
.

With this bound on keepi, we can bound r̂i as follows:

r̂i = r̂1
∏
j<i

uncolorj

= r̂1
∏
j<i

(
1− κ

log d
keepj

)

� log d
1+ ε

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))i−1
.

Applying Lemma 6.2, we get a bound on ri for d large enough in terms of ε:

ri � r̂i

(
1+ d̂−β/2

i

1− �̂
−β/2
i

)
� r̂i(1+ �̂

−β/2
i + d̂−β/2

i )
� r̂i

(
1+O(d−εβ/30)

)
<

log d
1+ ε/2

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))i−1
.

Note that for ε small enough, (1− ε/4)(1+ ε/2)� 1+ ε/8. Applying this and the above bound
on ri, we can get a better bound on keepi:

keepi � exp
(

− κ

(1− ε/4) log d
ri
)

� exp

(
− κ

(1− ε/4) log d
log d

1+ ε/2

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))i−1
)

� exp

(
− κ

(1+ ε/8)

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))i−1
)
.
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With this bound on keepi, we can get a lower bound on �̂i+1 as follows:

�̂i+1 = �̂1
∏
j�i

keepj

� �̂1
∏
j�i

exp

(
− κ

(1+ ε/8)

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))j−1
)

= (1+ ε)
d

log d
exp

⎛⎝− κ

(1+ ε/8)
∑
j�i

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))j−1
⎞⎠

� (1+ ε)
d

log d
exp

⎛⎝− κ

(1+ ε/8)

∞∑
j=1

(
1− κ

log d
exp

(
− κ

(1+ ε/2)

))j−1
⎞⎠

= (1+ ε)
d

log d
exp

(
− log d
(1+ ε/8)

exp
(

κ

(1+ ε/2)

))

= (1+ ε)
d

log d
d

(
−exp (κ/(1+ ε/2))

(1+ ε/8)

)
.

Recalling that κ = (1+ ε/2) log (1+ ε/100), we get

exp (κ/(1+ ε/2))
(1+ ε/8)

= 1+ ε/100
1+ ε/8

< 1− ε/9.

Therefore, for d large enough, we get

�̂i+1 > (1+ ε)
d

log d
dε/9−1 > dε/10.

Applying Lemma 6.2, we finally get the bound we desire:

�i+1 � �̂i+1 − �̂
1−β/2
i+1 � dε/10(1− �̂

−β/2
i+1 )� dε/15.

We can now finally establish the existence of the desired bound i�:

Lemma 6.9. There exists an integer i� � 1 such that �i� � 8di� .

Proof.As in the proof of Lemma 6.7, set ri := di/�i and r̂i := d̂i/�̂i. Suppose, towards a contradic-
tion, that �i < 8di (i.e., ri > 1/8) for all i� 1. By Lemma 6.7, this implies that �i � dε/15 for all i.
Note that r̂i = uncolori r̂i−1 is a decreasing sequence. Furthermore, keepj � keep1 � 1− κ

1+ε
�

1/2. Thus,

ri � 2r̂i

� 2r̂1
∏
j<i

(
1− κ

log d
keepj

)

� 2r̂1
(
1− κ

2 log d

)i

� 2 log d exp
(

− κ

2 log d
i
)
.

For i� 10
κ

log d log log d, the last expression is less than 1/8; a contradiction.
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Let i� � 1 be the smallest integer such that �i� � 8di� (which exists by Lemma 6.9). Take any
i< i�. We need to verify conditions (1)–(5). Note that Lemma 6.7 yields

�i � dε/15 and di �
�i
8
� dε/15

8
� dε/20. (6.10)

Therefore, condition (1) holds assuming that d0 > d̃20/ε . For (2), we use Lemma 6.1 to write
�i
di

� �1
d1

� 1
log d

� η.

Next, due to (6.10), we can take α so small that

s� dαε � d
1
4
i and t� αε log d

log log d
� α̃ log di

log log di
,

which yields conditions (3) and (4). Finally, it follows for d large enough that
1

log5 di
� 1

(ε/20)5 log5 d
� η � 1

log d
� 1

log di
,

so (5) holds as well. As discussed earlier, we can now iteratively apply Lemma 3.1 i� − 1 times and
then complete the colouring using Proposition 3.2. This completes the proof of Theorem 1.6.
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