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1. INTRODUCTION

Since its invention, and especially since Deligne’s proof [7] of the strongest form
of the Riemann Hypothesis over finite fields, étale cohomology has exerted a con-
siderable influence on analytic number theory. Its applications very often rely on
estimates for the dimension of various étale cohomology spaces, which appear in
“implicit constants” arising from the Grothendieck-Lefschetz trace formula com-
bined with the Riemann Hypothesis and depend on the characteristic p of the finite
fields under consideration. This characteristic is typically itself a variable going to
infinity, and getting uniform estimates in terms of p turns out to be the crucial
difficulty. Except for very simple cases, uniformity of such estimates is not a formal
feature of étale cohomology (for examples and further discussion, see [25, 11.11]).

In recent years, this issue has been particularly visible in a series of works by
Fouvry, Kowalski and Michel (see, e.g., [14] and [15]) that make extensive use of very
general sheaves on curves in various problems of analytic number theory. Due to the
simpler nature of curves (essentially, the Euler—Poincaré characteristic controls the
sum of Betti numbers, and has an expression in terms of “simple” local invariants),

Received by the editors March 4, 2021.

2010 Mathematics Subject Classification. Primary 14F20.

Key words and phrases. f-adic cohomology, Betti numbers, characteristic cycles, Riemann
hypothesis, equidistribution of exponential sums.

W.S. was supported by Dr. Max Rossler, the Walter Haefner Foundation and the ETH Ziirich
Foundation and by by NSF grant DMS-2101491. A.F. and E. K. are supported by the DFG-
SNF lead agency program grant 200020L_175755. A.F. is supported by SNF Ambizione grant
PZ00P2.193354. J.F. is partially supported by the grant ANR-18-CE40-0017 of the Agence
Nationale de la Recherche.

©XXXX American Mathematical Society



2 WILL SAWIN

they obtained a satisfactory theory, phrased in terms of a “complexity” invariant
of an f-adic sheaf on a curve over a finite field, which they called the “(analytic)
conductor”. The key feature of this theory is that most natural operations on
sheaves and the analytic resulting estimates depend on the “input” sheaves only
through their conductor (see, e.g., [14, Th. 1.5]).

Another application of a suitable version of complexity for f-adic sheaves on
curves is the proof by Deligne [3] of the theorem that, for a lisse Q,-adic Weil sheaf
on a normal connected scheme of finite type over a finite field such that the traces
of Frobenius at all closed points are algebraic numbers, the field generated by these
traces is a number field. The complexity that we introduce here could also be used
in Deligne’s argument.

In this paper, we develop a similar theory for higher-dimensional quasi-projective
algebraic varieties over any field. (Being a geometric invariant, the complexity is
defined by base change to an algebraic closure of the base field, so most of this
paper will only deal with algebraically closed fields.) This leads to very general
estimates that solve most of the known problems of estimating Betti numbers in
analytic number theory.

We now state somewhat informally the definition of complexity and some of the
key statements, focusing for simplicity on sheaves on affine space A™. Let k be
an algebraically closed field and ¢ a prime number different from the characteristic
of k. We will define:

e A non-negative integer c¢(A) for any object A of the bounded derived cat-
egory of constructible sheaves D?(A”, Q,) (Definitions 3.2 and 6.3). Let-
ting u denote the open immersion of A™ in P™, the integer ¢(A) is defined
as the maximum over integers 0 < m < n of the sum of the Betti numbers
of the pullback of the extension by zero u;A to a “generic” linear subspace
of dimension m of P™.

e A non-negative integer ¢(f) for any morphism f: A™ — A™ (Defini-
tion 6.6). In general, this is also defined in terms of sums of Betti num-
bers, but admits in the case at hand a completely explicit bound that
only involves n, m and the degrees of the polynomials defining f (Proposi-
tion 6.21).

We will then prove the following result (Theorems 6.8 and 6.17). In the state-
ment, D(A) denotes the Verdier dual of A and all functors and operations are
considered in the derived sense (so, e.g., we write f, instead of Rf.).

Theorem 1.1. For any f: A" — A™, for any objects A and B of D2(A™, Q,),

and any object C' of DP(A™, Q,), the following estimates hold:

c(D(A)) < ¢(A),
¢(A® B) < ¢(A)ce(B), c(#om(A, B)) < c(A)e(B),

([ C) < e(f)e(C),  o(f'C) < e(f)e(C),

c(fid) <c(f)e(A),  c(feA) < c(f)e(A).
In all these estimates, the implied constants depend only on (n,m) and are effective.
Moreover, let S be the spectrum of a strictly Henselian discrete valuation ring

with special point o and generic point n, and let ¥ and ® denote the nearby and
vanishing cycle functors from DP(A%, Q,) to D2(A7,Q,). For any object A of
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DP(A%, Qy), the following estimates hold:
c(¥(A4)) < c(4y),
c(P(A)) < c(Ay) + c(As).

Over finite fields, the conjunction of the Riemann Hypothesis and the theory of
complexity yields the following “quasi-orthogonality” statement (Theorem 7.13):

Theorem 1.2. Suppose that k is the algebraic closure of a finite field F, and let A
and B be irreducible perverse sheaves on A™ defined over F that are pure of weight
zero, with trace functions to and tp respectively. Then the estimate

D lta@)® =1+ O(c(A)?*F|71/%)

zcFn

holds, and the estimate

> ta(@)tp(x) < c(A)e(B)[F|~/?

zeFn
holds if A and B are not geometrically isomorphic. In both estimates, the implied
constants depend only on n and are effective.

Remark 1.3. Readers from analytic number theory who are unfamiliar with per-
verse sheaves may be surprised by the lack of the averaging factor 1/|F"| in the
writing of these sums, in comparison with statements like those in [14]. This is
due to the normalization inherent to the definition of weights in this setting: for
instance, for a perverse sheaf M on A' that is a single lisse sheaf sitting in degree
—1, being pure of weight zero means that the eigenvalues of Frobenius at all points
have modulus |F|~'/2 (and not 1, as is the case for a lisse sheaf that is pointwise
pure of weight zero).

We highlight one first rather simple application (see part (1) of Corollary 7.23),
which gives a positive answer to a question of Katz [29, p.8 and 12.6.6].

Theorem 1.4. Letn > 1 and d > 1 be integers. Let D(n,d) be the space of Deligne
polynomials of degree d inn variables, i.e. those whose homogeneous part of degree d
defines a non-singular hypersurface in P"~1. For each f € D(n,d)(F)), set

S(fip) = 1/2 > 6(%),

pn
wng

where e(z) = exp(2irz) for z € C. The families (S(f,p))rep(ndyF,) become
equidistributed as p — +oo with respect to the image under the trace of the proba-
bility Haar measure on the unitary group Ug_1)=(C).

We now comment on the approach that we use. Previous Betti number bounds,
such as those of Bombieri [4], Adolphson—Sperber [1] and Katz [28], focused primar-
ily on bounding cohomology groups involving certain very explicit sheaves, namely
Artin—Schreier and Kummer sheaves. It is possible to apply these bounds to a
sheaf cohomology problem involving, say, higher-rank Kloosterman sheaves, but
only after unraveling their definition to recast the problem entirely in terms of
Artin—Schreier sheaves. When more complicated operations are performed (for ex-
ample, additive or multiplicative convolution, or Fourier transform), this process of
re-interpretation becomes exceedingly cumbersome.
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Our approach is instead built around the six functors formalism of étale cohomol-
ogy, and is closely related to the characteristic classes constructed by T. Saito [39].
We define the “complexity” of an arbitrary bounded complex of constructible ¢-adic
sheaves on a quasi-projective variety, and prove that it satisfies essentially all de-
sired properties suggested by the case of curves and the requirements of applications
to analytic number theory. In particular, the complexity of common sheaves such
as Artin-Schreier, Kummer and Kloosterman sheaves can be easily calculated, and
it turns out to be bounded independently of the characteristic of the underlying
field, which is the key uniformity property that we seek.

Remark 1.5. In fact, the complexity of a sheaf on an algebraic variety will also de-
pend on a chosen quasi-projective embedding of the variety; this seems unavoidable
to have a theory with good properties, as we explain in Example 6.1.

Remark 1.6. The definition of complexity and the arguments of this paper apply,
almost without modification, to the derived category of sheaves with coefficients
in F; instead of Q,. Neither version is stronger. Although the Betti numbers of
a Q,-sheaf are bounded by the Betti numbers of the reduction mod ¢ of an integral
model of it, this inequality does not help us transfer statements of the form “a bound
for the Betti numbers of this sheaf implies a bound for the Betti numbers of that
sheaf” in either direction. We have stated and worked out in detail the Q,-version
as it is the most directly relevant for applications to analytic number theory, but
the Fy-version may also be useful for other purposes.

We believe that this framework has a number of good properties, among which:

(1) Since the deeper aspects of étale cohomology are built primarily around
the six functors perspective, rather than the cohomology of varieties with
coefficients in some simple explicit sheaves, this framework behaves much
better in arguments where sophisticated techniques of étale cohomology are
used.

(2) Many applications of exponential sum bounds from étale cohomology re-
volve around exponential sums that are produced from simpler ones by
applying analytic tools like changes of variables, summation over some
variables, Fourier transform, etc. Through the “function-sheaf dictionary”,
each of these usually corresponds to an operation on the sheaf side, which
is constructed by means of the six functors (e.g., summation corresponds
to direct image with compact support, etc). Since we control the growth
of the complexity under the six functors, we obtain automatically a good
control of the estimates in such operations.

As we will see, almost all of the bounds for the complexity of the output sheaf of
some cohomology operation are linear in the complexity of the input sheaf. This is
not always needed for applications, but shows that the theory has good structural
properties.

An interpretation. As suggested by Fouvry, Kowalski and Michel in the special
case of curves, the “quantitative sheaf theory” that is developed in this paper can
be thought of as defining the complexity of ¢-adic sheaves in such a way that most
(if not all) usual operations in étale cohomology are “continuous”, in the sense that
applying the operation to a sheaf with a given complexity will lead to another one
with complexity bounded only in terms of the initial one. Thus, we think of the
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complexity as being similar to a (semi)-norm on a topological vector space, with
functors on categories of sheaves playing the role of (often linear) maps between
vector spaces. For instance, the “continuity” of Deligne’s ¢-adic Fourier transform
(which was first observed in dimension one in [15, Prop. 8.2]) turns out to be one of
the most essential features of applications of étale cohomology to analytic number
theory.

Outline of the paper. Although the complexity is defined in terms of sums of
Betti numbers, the proof of its main properties deeply relies on T. Saito’s construc-
tion [39] of the characteristic cycle of f-adic complexes. We survey what we require
from this theory in Section 2, and prove a small complement on characteristic cycles
of tensor products (Theorem 2.2). In Section 3, we formally define the complexity
on projective space, we establish a few simple lemmas concerning “generic” injective
linear maps, and most importantly we connect this approach with the characteris-
tic cycle (Proposition 3.17). Section 4 is of technical nature: we define and prove
the existence of certain objects called “test sheaves” that will ultimately lead to
a comparison of the complexity with a norm of the characteristic cycle. Section 5
uses these tools to establish the first fundamental result, namely a bilinear bound
for the complexity of the tensor product (Theorem 5.1). Then Section 6 can rather
quickly exploit the formalism of étale cohomology to establish the general version of
Theorem 1.1, namely Theorems 6.8 and 6.17; later subsections derive various other
“continuity” properties. Finally, Section 7 gives some fundamental examples (such
as Artin—Schreier and Kummer sheaves) and summarizes a few direct applications
(including forms of the Riemann Hypothesis, such as Theorem 1.2, the finiteness
statement of Corollary 7.15, and a form of Deligne’s equidistribution theorem, from
which Theorem 1.4 folllows). In the concluding Section 8, we explain how all the
basic estimates can be stated with explicit constants.

Notation and conventions.

Algebraic geometry. We fix throughout a prime number ¢ and we denote by k a
field, algebraically closed unless otherwise specified, in which £ is invertible.

By an algebraic variety over a (not necessarily algebraically closed) field &, we
mean a reduced and separated scheme of finite type over the spectrum of k.

By a geometric generic point of an irreducible variety X over a separably closed
field k', we mean, as is customary in the theory of étale cohomology, a map
Speck’ — X such that the image of the underlying set-theoretic map consists
of the generic point of X.

Let X be a scheme of finite type over k. We denote by D?(X) the bounded
derived category of constructible complexes of Q,-sheaves on X (see, e.g., [32, IL5]).
We will usually write distinguished triangles in this category simply as

A— B —C.

For any object K of D2(X) and any integer i € Z, we denote by H(X, K) and
H!(X, K) the étale cohomology and the étale cohomology with compact support
groups of X with coefficients in K, and we write

rY(X,K) = dimH (X, K), hi(X,K) = dim H,(X, K)

for the corresponding Betti numbers.
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When applied to objects of DP(X), the symbols f; and f. always refer to the
derived functors; the tensor product and the hom functor of objects of DP(X) are
also always derived functors. We denote by D(A) the Verdier dual of an object A
of D2(X).

Given an algebraic variety X over k and objects A and B of D?(X), the shrick
tensor product of A and B is the object

A® B=A(AXB)

of DY(X), where A: X — X x X denotes the diagonal embedding. It is related to
the usual tensor product by the duality

D(A® B) =D(A) @ D(B).
We often use the projection formula in the derived category: for a morphism

f: X — Y of algebraic varieties over k, and for objects A of D?(X) and B of D?(Y),
there is a canonical isomorphism

fiA® f*B)~ fA® B

in the category D2(Y) (see, e.g., [18, Th.7.4.7 (i)]).

We also recall the excision triangle: let i: Z — X be a closed immersion
and j: U — X the complementary open immersion, all varieties being defined
over k. For any object A of D?(X) and any morphism f: X — Y over k, there is
a distinguished triangle

(fohj*A— fiA — (foi)i*A
in the category D2(Y) (see, e.g., [18, Th. 7.4.4 (iii)]).

Finite fields. In some sections (e.g., Sections 6.10 and 7.6), we will work over finite
fields. We usually denote by F such a field, which is always assumed to have
characteristic different from ¢. For integers n > 1, we then denote by F,, the
extension of F of degree n inside some fixed algebraic closure of F (which often will
be the field k).

Let X be an algebraic variety over F. For any object A of D?(X) and any finite
extension F,, of F, we denote by

tA('; Fn): X(Fn) — Qﬁ

the trace function of A on F,,. We refer the reader to [38, §1] for the basic for-
malism of trace functions in this generality. We will also write t4(z) = ta(z;F)
for z € X(F).

In all arguments involving the formalism of weights (in the sense of Deligne),
we will fix an isomorphism ¢: Q, — C and use it to identify both fields, viewing in
particular the trace functions as taking complex values. Weights are then considered
to be defined only with respect to ¢, e.g. we write “pure of weight zero” instead of
“i-pure of weight zero”.

For a real number w and an element |F|~" in Q, corresponding to a choice
of |F|=* in C through the isomorphism ¢, we denote by Q,(w) the pullback to X of
the rank-one ¢-adic sheaf on Spec(F') on which Frobenius acts through multiplica-
tion by |F|~*. This allows one to define twists A(w) = A® Q,(w) for any object A
of D2(X), and hence to reduce questions about pure sheaves of some weight to
those of weight zero.
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The Euler—Poincaré characteristic. We recall the Euler-Poincaré characteristic for-
mula for a perverse sheaf on a smooth curve (see, e.g., [38, Th. 2.2.1.2] for the pro-
jective case, from which the general case below follows by considering the extension
by zero to the compactification). Let k be an algebraically closed field of character-
istic p > 0, let C be a smooth curve over k, and denote by C the smooth projective
compactification of C. Given a perverse sheaf A on C, we denote by

rank(A) = dim ' (A),
the generic rank of A and, for a closed point = of C, we write
drop, (A) = rank(A) — dim 7~ (A),
jump, (4) = dim #°(A),.

For a closed point x of C, we denote by swan,(A) the Swan conductor at x of the
cohomology sheaf #~1(A). We further set

loc(A) = Y (drop, (A) + jump, (A) + swan,(A)) + > swan,(A),
zeC zeC—C

where both sums run over closed points.
With the above notation, the Grothendieck-Ogg—Shafarevitch formula for the
Euler—Poincaré characteristic with compact support of A takes the form

Xe(C, A) = rank(A)x.(C, Q,[1]) — loc(A).

The same result holds for the usual Euler—Poincaré characteristic x(C, A) since
both are in fact equal for any constructible sheaf on any variety by a theorem of
Laumon [37].

If % is a middle-extension sheaf on C' (by which we mean that there exists a
non-empty open subset j: U < C such that .% is lisse on U and the adjunction
morphism is an isomorphism % =~ j,j*.%), then A = .Z[1] is a perverse sheaf on C
satisfying #~1(A) = .. We use the notation rank(.%), drop, (%), swan,(.Z) and
loc(.#) accordingly; note that in this case jump,(A) = 0 holds for all z.

Asymptotic notation. For complex-valued functions f and g defined on a set (or on
objects of a category, in which case the values of f and g are assumed to only depend
on their isomorphism classes), the notation f < g and f = O(g) are synonymous;
they mean that there exists a real number ¢ > 0 such that, for all = in the relevant
set (or all objects in the category), the inequality |f(z)| < cg(z) holds. We call a
value of ¢ an “implied constant”, and we may point out its (in)dependency on some
additional parameters. We also write f < g whenever both f < g and g < f hold.

Remarks on the text. All the important ideas of this paper are solely due to
W. Sawin, and were worked out in 2015 and 2016 while he was an ETH-ITS Junior
Fellow. The current text was written by A.Forey, J. Fresdn and E. Kowalski, based
on the original draft by W.Sawin, in view of the applications to equidistribution
results for exponential sums on commutative algebraic groups in their work [11].
The quantitative form of the generic base change theorem is due to A. Forey.

Acknowledgements. We warmly thank the anonymous referees for their thor-
ough and friendly reading of a first version of this paper. Their many suggestions
greatly helped us improve the presentation and remove a number of inaccuracies.
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2. CHARACTERISTIC CYCLES

In this section, we recall some properties of the characteristic cycles and the
characteristic classes of complexes of étale sheaves as defined by Beilinson [2] and
T. Saito [39]. We also prove a small complement (Theorem 2.2) regarding the
compatibility of characteristic cycles with tensor products.

Let X be a smooth scheme over a perfect field k. In [39], characteristic cycles are
defined for complexes of sheaves of A-modules on X, where A is a finite local ring
whose residue characteristic ¢ is invertible in k (e.g., A = Z/¢"Z). It was observed
by Umezaki, Yang and Zhao [12, Section 5] that the whole theory can be readily
adapted to the case of Q,-coefficients. In what follows, we implicitly rely on [42] in
order to apply Saito’s results to A = Q,.

Assume X has pure dimension n. The characteristic cycle CC(A) of an object A
of DP(X) is an algebraic cycle on the cotangent bundle 7% X of X of the form

where m; is an integer and C; is a closed conical (i.e. stable under the natural
action of G,,) subset of T*X of dimension n. We refer the reader to [39, Def. 5.10]
for the definition of the multiplicities m;, and simply indicate some of the relevant
properties of the characteristic cycle.

Another invariant of A is its singular support SS(A), which is a closed conical
subset of T*X of dimension n, containing the support of the characteristic cycle,
previously defined by Beilinson in [2]. Unlike what happens for the characteristic
cycle, two Z-sheaves that are isomorphic after tensoring with Q, may have distinct
singular supports, so before stating results involving the singular support we will
choose a Z-structure Ay , (though the particular choice will matter little), and set

SS(A) = SS(Az, ® Fy).
If the object A is perverse, then CC(A) is effective (i.e., we have m; > 0 for
every i) by [39, Prop. 5.14].
The main property of the characteristic cycle is an index formula ([39, Th. 7.13])

according to which, if X is a smooth projective variety over an algebraically closed
field &, the Euler—Poincaré characteristic of A is given by the intersection number

X(X,A) = CC(A) - [Tx X].
In this formula, 7% X denotes the zero section of T*X, and the intersection is

well-defined since the support of CC(A) has pure dimension n.

Example 2.1. Let X be a smooth projective curve and .% a lisse sheaf on a dense
open subset j: U — X. The characteristic cycle of the perverse sheaf A = j.%[1]
is given by
CC(A) =rank Z - [TxX]+ > (rank.Z + swan, A)[T; X],
zeX\U

where T X stands for the conormal bundle of x in T*X. In this situation, the
index formula amounts to the Grothendieck-Ogg—Shafarevich formula.

Another deep result is the compatibility of the characteristic cycle with pullbacks.
Let h: W — X be a morphism between smooth schemes of pure dimensions m and n
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respectively and C' C T* X a closed conical subset. Let
KWC=WxxCCWxxT*X

be the pullback of C, and denote by K C W xx T*X the preimage of the zero
section Ty, W by the map dh: W x x T*X — T*W. Following [39, Def. 3.3 and 7.1],
we say that the map h is properly C-transversal if the intersection h*C' N K is a
subset of W x x Ty X and each irreducible component of h*C' has dimension m. This
implies in particular that the restriction of dh to h*C' is finite (by [2, Lem. 1.2. (ii)] or
[39, Lem. 3.1]). Hence, given a cycle Z supported on the irreducible components of
C, we can define its pullback h'Z C T*W as (—1)™" times the push-forward along
the finite map h*C — T*W of the preimage of Z in W x x T* X (see [39, Def. 7.1]).

The main theorem of Beilinson and Saito [39, Th. 7.6] regarding pullbacks says
that, if A is an object of D2(X,Z,) and h: W — X is a properly SS(A)-transversal
morphism, then the following equality holds:

CC(h*A) = h' CC(A).

For example, smooth morphisms are properly SS(A)-transversal by [39, Lem. 3.4],
and in that case the theorem essentially amounts to the statement that, for smooth
varieties X and Y and objects A of DP(X) and B of DP(Y), the equality

CC(AK B) = CC(A) x CC(B),

holds in T*(X xY) =T*X x T*Y, see [10, Th. 2.2] for details.

In what follows, vector bundles on schemes are viewed as schemes in the usual
way. A sum of vector bundles V 4+ W is isomorphic to their fiber product over
the base, whereas the product V' x W is their product as schemes, and hence is a
vector bundle on the product of the bases. As for T* X, a closed subset of a vector
bundle is said to be conical if it is invariant under the scaling action of G,,,. Given
a vector bundle V on a variety X, we denote by V = P(V + Ox) the projective
bundle compactifying V, which admits a decomposition V =V UP (V).

The main result of this section is the following theorem concerning characteristic
cycles of tensor products of sheaves.

Theorem 2.2. Let X be a smooth variety over k of pure dimension n. Let A and
B be objects of DX(X,Z,). Consider the summation and the inclusion maps

s:T*"X+T'X -T*X, T X+T'X ->T'X xT*X.
Assume that SS(A)NSS(B) is supported on the zero section and that each irreducible
component of SS(A) x x SS(B) has dimension at most n. Then:
(1) Each irreducible component of SS(A) x x SS(B) has dimension equal to n.
(2) The equality i*(SS(A) x SS(B)) = SS(A) xx SS(B) holds.
(3) The restriction of s to SS(A) x x SS(B) is a finite map to T*X.
(4) The following equality holds
CC(A® B) = (—1)"s4i* (CC(A) x CC(B)),
where the pullback and the pushforward are taken in the sense of intersection
theory. (By (1) and (2), the inverse image i* (SS(A) x SS(B)) has the
expected dimension, so the intersection-theoretic pullback is well-defined.)

(5) Assume that X is projective. Let CC(A) and CC(B) be the closures of
CC(A) and CC(B) inside the projective bundle T*X. Then the equality

X(X,A® B) = (—1)" CC(A) - CC(B) = (~1)"CC(A) - CC(B)
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holds, where the dots denote intersection numbers of algebraic cycles.

Note that proving properties (1), (2) and (3) amounts to checking that the
diagonal map is properly SS(A) x SS(B)-transversal. The proof of the theorem
relies on the following lemma:

Lemma 2.3. Let X be a variety over k and let V' be a vector bundle on X. Let
Cq,Cy C V be conical subsets and Cy and Cy their closures inside the projective
bundle V. The following two conditions are equivalent:

(1) C1NCy is contained in the zero section of V.
(2) C1 N Cy does not intersect P(V) inside V.

Proof. The intersection C; N Cy is proper, as a closed subset of V. Taking the
decomposition V =V UP(V) into account, if condition (2) holds, then C; N Cy is
also affine, being a closed subset of V. Therefore, C; N Cs is a finite conical subset
of V, and is hence contained in the zero section. Conversely, (1) implies (2) because
if z is a point of C; N Oy that lies in P(V), then the line in V corresponding to
is contained in C7 N Cy, which therefore is not just the zero section. O

Proof of Theorem 2.2. We first prove statement (1). Since SS(A) x x SS(B) is the
intersection of the inverse images of SS(A) and SS(B) inside T*X + T*X (i.e. the
intersection of two 2n-dimensional schemes inside a smooth variety of dimension
3n), each of its irreducible components has dimension at least n, and hence equal
to n by assumption.

Statement (2) follows from the fact that pullback by the map 4 identifies the sum
T*X +T*X with T* X x x T*X seen as a closed subset of T*X x T*X. In the rest
of the proof, we will make this identification.

To prove (3), observe that s: T*X + T*X — T*X is a map of vector bundles
on X. Since SS(A) and SS(B) are conical and SS(A)NSS(B) is a subset of the zero
section T% X of T* X, the intersection of SS(A) x x SS(B) and the pullback along s
of T'x X is contained in the zero section of T*X + T X. Hence, the restriction of s
to SS(A) x x SS(B) is finite by [39, Lem. 3.1].

We now turn to (4). Recall that the characteristic cycle of the external prod-
uct AX B is equal to CC(A) x CC(B) and that the tensor product A ® B is given
by A*(AX B), where A: X — X x X denotes the diagonal map. We will compute
CC(A® B) using the compatibility of characteristic cycles with pullbacks, as recalled
above. For this, we need to show that A is a properly SS(A) x SS(B)-transversal
morphism.

From part (2), we know that every irreducible component of A*(CC(A)xCC(B))
has dimension n. For the transversality condition, we need to consider the maps

T*X ¢ T*X + T*X -5 T*(X x X)

defined by the diagonal A, and check that the intersection of i*(SS(A) x SS(B))
with the preimage of the zero section T3 X by the map s is contained in the zero
section of T* X + T*X. But this is precisely the condition we checked in the proof
of (3), and is in fact equivalent to (3) by [39, Lem. 3.1]. Hence, [39, Th. 7.6] applies
to A and AKX B, which yields the equality

CC(A* (AR B)) = A'CC(AX B).
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Combining this with the first part of the proof and the definition of A', we get
CC(A® B) = CC(A* (AR B)) = A'CC(AR B) = (—1)"s,i*(CC(A) x CC(B)).

Let us finally prove (5). By the index formula [39, Th. 7.13], the Euler—Poincaré
characteristic of A ® B is the intersection number of CC(A ® B) with the zero
section [T% X]. Using part (4), it is hence given by

(—=D)"[T5%X] - 841" (CC(A) x CC(B)).
By the projection formula in intersection theory (see, e.g., [20, Prop.8.3 (c)]), the
equality
[T%X] - s.4"(CC(A) x CC(B)) = s*[TxX] - i*(CC(A) x CC(B))

holds, as long as the restriction of s to the support of i*(CC(A) x CC(B)) is
a proper map. Taking into account that the support of i*(CC(A) x CC(B)) is
SS(A) x x SS(B), this is indeed the case by part (3). Now, s*[T%X] is the closed
subset in T* X + T* X consisting of those elements with zero sum. Being conical,
CC(B) is in particular invariant under multiplication by —1, hence the equality

s [T X] - i*(CC(A) x CO(B)) = du[T* X] - i* (CC(A) x CC(B)),

where d: T* X — T*X 4+ T*X is the diagonal map. Since d is a closed immersion,
the projection formula yields

d[T*X] - i*(CC(A) x CC(B)) = [T*X] - d*i"(CC(A) x CC(B)).
Furthermore, i o d is the diagonal map ¢: T*X — T*X x T*X, so the equality
[T*X]-d*i*(CC(A) x CC(B)) = [T*X] - §*(CC(A) x CC(B))
= CC(A) - CC(B)
holds. Combining all these identities we get the first equality of (5). Finally,

SS(A) NSS(B) = SS(A) N SS(B)

follows from Lemma 2.3, and this implies the equality of intersection numbers

CC(A) - CC(B) = CC(A) - CC(B),

which completes the proof. (I
The following definition is taken from Saito [39, Def.6.7] and relies on the iso-
morphism

CH,(P") — CH,, (T"P"), (a;) — »_pa;il’,

where p: T*P™ — P" is the projection and h is the first Chern class of the dual of
the universal sub line bundle of T*P" xpn (T*P" 4+ Opn) (see [39, (6.12)]).

Definition 2.4 (Characteristic class). The characteristic class cc(A) € CH,.(P™)
of an object A of DP(P™) is the image of CC(A) € CH,, (T*P") under the inverse
of the above isomorphism.

The total Chow group CH.(P™) is isomorphic to Z"*!, with generators the
classes of linear subspaces of dimension 0 to n. Using this, we will view cc(A) as an
element of Z"*!. The lattice Z"*! inherits the intersection pairing of CH,, (T*P"),
and this pairing is independent of the base field k.
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Lemma 2.5. Let 0 < m < n be an integer, and let K,, denote the constant
Q,-sheaf on an m-dimensional linear subspace of P™, extended by zero and placed
in degree —m. Then the characteristic cycle CC(K,y,) is the conormal bundle of that
m-dimensional subspace, and the characteristic classes cc(Ky),...,cc(K,) form a
basis of CH,(P™). In particular, cc(Ky), . ..,cc(K,) form a basis of Z"*! indepen-
dent of k and .

Proof. The first statement follows from [39, Lem. 5.11(1) and 5.13(2)]. Recall that
CH..(P") has rank n + 1, so to show that the characteristic classes cc(Kp), ...,
cc(K,) form a basis, it suffices to prove that they are linearly independent. We
will do this by proving that the matrix of intersection numbers cc(K;) - cc(Kj)
is invertible. If ¢ + j < n, then generic subspaces of dimensions ¢ and j do not
intersect, so neither do their conormal bundles, and hence the intersection number
is 0. If ¢4+ j = n, then a generic i-dimensional subspace and a generic j-dimensional
subspace intersect transversely at a single point, so their conormal bundles intersect
transversely at a single point as well, and hence have intersection number 1. The
intersection matrix is thus invertible. The last sentence is just a restatement of
this, except for the independence of k and ¢, which follows from observing that

the isomorphism [39, (6.12)], applied to the closure of the conormal bundle of an
m-~dimensional subspace, can be defined integrally and so is independent of the
characteristic. (]

3. COMPLEXITY AND GENERIC LINEAR MAPS

In this section, we define the complexity of a complex of sheaves on projective
space and we establish a few results about generic linear maps between projective
spaces and their relationship with characteristic cycles.

Definition 3.1. Let k be a field. Let 0 < m < n be integers. Let M,?H’mﬂ be the
variety of (n+1) x (m+1) matrices of maximal rank, so that in particular A"+
is equal to GL,41 4. Given an extension k' of k and a k’-point @ € M™FLmF1(g),
we denote by [ : P} — P}, the associated linear map.

In the case m = n, in which a is an invertible matrix and [/, is an automorphism,
we may also use [, to refer to the induced map on any scheme depending functorially
on P" (e.g., its cotangent bundle).

Here is the key definition of this article. Although it is closely related to char-
acteristic cycles, as we will see, we have chosen to define it rather in terms of Betti
numbers, so it can be used more directly in situations where some Betti numbers
can be computed.

Definition 3.2 (Complexity of a complex of sheaves on projective space). Let
k be a field and let n > 0 be an integer. For each 0 < m < n, let a,, be a
geometric generic point of M, FTLmHL defined over an algebraically closed field &'
The complezity c(A) of an object A of D?(P?) is the non-negative integer
_ i mo 7%
c(A) = [max h' (P, 15, A).
i€Z

When working with this definition, we will often use the projection formula to

write

WP, A) =0 (P, A®la,Qy),
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which gives a slightly different expression for the complexity. Since étale cohomol-
ogy is invariant under base change of algebraically closed fields, the value of ¢(A)
is independent of the choice of the field of definition k', and we will often drop it
from the notation.

Instead of considering geometric generic points of M" 1™+ in the definition of
complexity, one can alternatively consider closed points in a suitable dense open
subset of M™ 1™+l ag the following lemma shows.

Lemma 3.3. Let k be a field and k an algebraic closure of k. Let 0 < m < n
be an integer, and let A be a complex on P}. There exists a dense open subset
UcC M,?H’mﬂ such that the equality

WP, I A) = 1 (P 15 A)

holds for any geometric generic point a of M"T1™+1 defined over an algebraically

closed field k' and for every b€ U(k) and i € Z.

Proof. For b € M™Th"+1(k), we view the linear map I as the composition of the
map z +— (z,b) from P™ to P™ x M™T1 ! with the matrix multiplication map

mult: P™ x mymtbntl _ pn

Let p: P™ x M™+hetl  ppm+1n+l be the projection. Let U € M} ! be a
dense open set such that the complex p,mult* A has lisse cohomology sheaves on U.
It follows from the proper base change theorem that the equality

RY (P15 A) = hi(PgL,ll’;A)
holds for every b € U(k). O

We also note for later use the inequality c(lfA) < ¢(A) for all b € U(k), which is a
straightforward consequence of the previous lemma and the definition of complexity.

Proposition 3.4. Let A be an object of D2(P?). The complexity c(A) vanishes if
and only if A = 0. More precisely, let d; be the dimension of the support of the
cohomology sheaf 7 (A) and let r; be the mazimum of the generic ranks of the
restrictions of 7 (A) to the irreducible components of mazimal dimension of its

support. Setting d = maxjez d; and r =) jez rj, the inequality c(A) > r holds.
dj=d

Proof. Set m =n—d and let a,, be a geometric generic point of M, """ defined
over an algebraically closed field &’. The cohomology sheaf 77 (I}, A) =15 7(A)
vanishes in degrees j such that d; < d, whereas it has finite support .S; for all j such
that d; = d. Therefore, the Betti number h*(P},, 27 (I% A)) vanishes for i # 0
and is equal to the sum of the dimensions of the stalks of .7#7 (I3, A) at points of S;
for i = 0. By definition, there is a point of S; at which the stalk has dimension r;,
and hence the inequality h*(P},, 2°(1 A)) > r; holds for all j such that d; = d.

It follows from the vanishing of cohomology in non-zero degrees that the spectral
sequence

HY(Py, 09 (1, A)) = HT(PR,I A)
degenerates at the first page, hence an isomorphism

H/ (P}, 15 A) = HO(P},, 27 (15 A)).

*
lam
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By definition of complexity, we then get

c(A) =Y W (PRI A) =Y KPR, A1 A) =Y =,
JEZ JEZ C{E_Zd

which concludes the proof, since r = 0 if and only if A = 0. ([l

We will make several arguments involving generic points on different spaces of
linear maps. The next two lemmas describe all the properties we will need about
relationships between different generic points.

Lemma 3.5. Let X and Y be geometrically irreducible affine varieties over a
field k. Let x € X(k') andy € Y (k') be points defined over a field extension k' of k.
Let k(x) and k(y) be the fields generated by the coordinates of x and y respectively.
If x is a geometric generic point of Xy and y is a geometric generic point of Yy,
then x is a geometric generic point of Xy ().

Proof. Letting £ and n denote the generic points of X and Y respectively, the result
follows from the observation that if we identify X x n and & x Y with (irreducible)
subschemes of X X Y, then the generic points of X x 1 and £ x Y are the same as
the generic point of X x Y. O

Lemma 3.6. Let a be an element of M™ 1™+ (k) and let g be a geometric generic

point of GLy 1. Then ga is a geometric generic point of M,:LH"'”H.

Proof. Because GL,41  acts transitively on M,?H’mH, the map g — ga from
GL 41, to M,?H"mﬂ is surjective, and hence dominant, so the image of g under

this map is a geometric generic point of M; T, O

Lemma 3.7. Let k be a field and let 0 < m < n be integers. Let a, g, and h
be points of M,?H’m“, GLyy1,k, and GLy, 41, respectively, all defined over an
algebraically closed field k'. Let b= gah™'. Let k(a) be the subfield of k' generated
by the coordinates of a, and similarly for k(g), k(a,g), and so on. Assume that g
is a geometric generic point of GLy 11 ka) and that h is a geometric generic point
of GLy11,k(a,g)- Then b is a geometric generic point of M:(Z?,;TH and h is a
geometric generic point of GLy, 11 k(a,b)-

Proof. By Lemma 3.5, because g is generic over k(a) and h is generic over k(a, g),
g is a geometric generic point of GL,, 11 k(a,n)-

Because GL,, 11, acts transitively on M;" """ by left multiplication, applying
a geometric generic point g of GLj, 11 x(a,n) to a point ah™! of M:(';?;LTH produces
a geometric generic point b = gah™* of M;L(ZI;ITH.

By Lemma 3.5, because h is geometric generic over k(a) and b is geometric
generic over k(a, h), it follows that h is geometric generic over k(a, b). O
Definition 3.8. For Ay,...,A\,41 in k%, let Diag(A1,..., Ant1) be the diagonal
matrix in GL,1(k) whose diagonal entries are A1, ..., A1

Lemma 3.9. Let k be a field and let n > 0 be an integer. Let g be a geometric
generic point of GLy 41k, and let Ay, ..., A\py1 be independent transcendentals over
the field k(g) generated by the matriz coefficients of g. Then:

(1) gDiag(A1,...,A\ns1)g~ " is a geometric generic point of GLy41 k.
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(2) gDiag(1,...,1, Am41,- -, Ant1) S a geometric generic point of GLyy1
for all0 <m < n+1.

Proof. Because (g, A\1,...,An+1) is a geometric generic point of GLy,41 XG:;Z_kI’
to check that an element of GLj, 11 k(g,x;,....\ns1)s €XPressed as a function of the

tuple (g, A1,..., Ant1) is a geometric generic point of GLy41 .k, it suffices to check
that the function in question is a dominant map from GL;, 11,k ><G;Z:rk1 to GLp 41 k-
For gDiag(1,...,1, App41,- -+ Ant1), dominance is simply the fact that GLyy1
acts transitively on itself by left multiplication and for g Diag(A1,..., A\ps1)g ™"
dominance is the well-known fact that generic matrices are diagonalizable. (]

Lemma 3.10. Let k be a field and let m and m’ be integers such that 0 < m,m’ <n
and 0 < m+m' —n. Let a and a' be independent geometric generic points of

M,?Jrl’erl and M£+1’m,+1 defined over a field k' (i.e. such that a’ is a geo-

metric generic of M:(J;;’mlﬂ). Then there exists a geometric generic point b of

M,?+1’m+ml_"+1 such that the image of lp is the intersection of the images of lq

and lg: and such that 14 Q, @ lar+Qp = 1 Q.

Proof. View a and a’ as matrices of elements defined over k', and l4(z) — o/ (y)
as a linear map from k™1™ +1 {5 k/m+1  Because a and a’ are generic and
m +m' —n > 0, this map is surjective, with kernel of dimension m +m’ + 1 — n.
We can choose a basis for this kernel by row reduction, and then let the columns
of b be a (equivalently a’) applied to the vectors in this basis.

We can check that the point b is generic by restricting to the special case where
the first m +m’ + 1 — n columns of a agree with the first m +m’ + 1 — n columns
of a@’, and the other columns are generic. In this case, b will consist of exactly these
columns. Since some specialization of generic matrices maps to a generic matrix,
generic matrices also map to a generic matrix.

The last claim, on pushforwards, follows from the definition and the calculation
of the intersection of the image. O

Lemma 3.11. Let A and B be perverse sheaves on P}. For a geometric generic
point g € GLy,41(K'), the object A ® Iy B[—n] is perverse.

Proof. The external product AXB is perverse, and the sheaf A®lz B on P" X GLj 41
is the pullback of AX B by a smooth morphism of relative dimension (n +1)? —n,
so by [3, 4.2.5] is perverse after shifting by (n+ 1)? —n. We then take the pullback
to the fiber over a geometric generic point of GL, 41, which preserves perversity
after shifting by —(n + 1)? by definition of perversity. a

Lemma 3.12. Let a be a geometric generic point of Mgﬂ’mﬂ, Let A be an object
of D2(P?). Then D(IA) =I5, D(A)[2(m—n)], and if A is perverse, then I}, Ajm—n)]
1S perverse.

Proof. We view the linear map [, as the composition of the map = — (z, a) from P™
to P™ x M™*t1ntl with the matrix multiplication map P™ x MmtlLntl 5 pn,
Observe that matrix multiplication is a smooth morphism of relative dimension
(m+1)(n+ 1) +m —n and the pullback to the geometric generic point is an in-
verse limit of open immersions. As in the previous lemma, the former preserve
perversity after shifting by (m + 1)(n+ 1) +m — n, and the latter after shifting by
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—(m+1)(n + 1). The statements for duals follow from the equality f' = f*(d)[2d]
for a smooth morphism f of relative dimension d. ([

Lemma 3.13. Let 0 < m < n—1 be an integer, and let A be a perverse sheaf on Pj}}.

n+1m+1
M,

There exists a dense open subset U C such that, for any geometric

generic point a of Mt defined over an algebraically closed field k' and for

any b € U(k), the complex l; Alm — n] is perverse and satisfies
R (P I A) = W (PP, 1L A)
for every i € Z.

Proof. Similarly to the proof of Lemma 3.12, we view the linear map [, as the
composition of the map = + (x,b) from P™ to P™ x M™*+Ln*l with the ma-
trix multiplication map mult: P™ x M™*+1Ln+l 5 P" Since mult is smooth, the
pullback of A along it is perverse up to shift by (m + 1)(n + 1) — (n — m), so it
remains to show that, for any perverse Q,-sheaf mult*A[(m + 1)(n +1) — (n —m)]
on P™ x M™+Lntl for b in some dense open subset U, the pullback to the fiber
over b is perverse up to shift by (m + 1)(n + 1).

To do this, we choose a Z-structure on mult*A[(m + 1)(n + 1) — (n — m)],
obtaining a perverse Z,-sheaf K, and we let U be an open set over which K @ Fy
is locally acyclic. For any point b € U(k), after passing to a further open subset
we may assume the closure of b is smooth. Then, by [39, Cor. 8.10], the immersion
x +— (z,b) is K-transversal and thus the pullback along this immersion is a shifted
perverse sheaf, as desired.

The second property is granted by Lemma 3.3. (|

We need the following corollary of Theorem 2.2.

Corollary 3.14. Let A and B be objects of DE(PZ). For each geometric generic
point g of GLy,41x over an algebraically closed field k', the following equality holds:

(P}, A®13B) = (~1)"CC(A) - CO(B).

Proof. We will prove the statement for objects A and B of D2(P%,Z,); the result
then follows for A and B in D2(P?,Q,) by choosing an integral structure and
noting that both the Euler characteristic and the characteristic cycle are preserved
by inverting ¢.

We will check that the singular supports of A and /3B fulfil the conditions of
Theorem 2.2. From (5) of loc. cit., we will then get the equality

X(P}, A®I3B) = (~1)"CC(A) - CC(I; B) = (—1)"CC(A) - CC(B),

where the second identity follows from deformation-invariance of intersection num-
bers, on noting that the algebraic cycles CC(B) and CC(l}B) = [;CC(B) lie in a
family parameterized by GLy, 41 k-

The first condition is that SS(A) N SS(I; B) is contained in the zero section. In

view of Lemma 2.3, this amounts to showing that SS(A)NSS(l} B) does not intersect
P(T*P") inside T*P". Note the equality SS(I3 B) = [3SS(B). The space of triples

(x,y,g) such that

z € SS(A)NP(T*P"), yeSS(B)NP(T*P"), ge Gl and l(y) ==
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is a bundle over SS(A)NP(T*P™) xSS(B)NP(T*P™). Since GL, 11 acts transitively
on P(T*P™), all its fibers have dimension (n + 1)? — (2n — 1), and hence the space
itself has dimension at most
dim (SS(A) N P(T*P")) + dim (SS(B) N P(T*P")) F(n+1)? - (2n—1)
=n-D+n-D+n+1)>=2n—-1)=(n+1)7?-1
This dimension being less than (n + 1)? = dim GL,,;1, the fiber over generic g is

empty, which means that SS(A) N SS(I} B) does not intersect P(T*P").
The second condition is that every irreducible component of

SS(A) xpn SS(IZB) = SS(A) xpn I SS(B)

has dimension at most n. It is sufficient to prove that every irreducible component
of the scheme over GL,4+1 whose fiber over a point h is SS(A) xp» [}, SS(B) has
dimension at most (n + 1)? + n, because then the generic fiber has dimension at
most n. This scheme maps to SS(A) x SS(B), which has dimension 2n, and the
fiber over any point consists of all elements of GL,, 11 that send one point in P" to
another, so the fiber has dimension (n + 1)? — n and the total space has dimension
(n+1)% + n, as desired. O

Lemma 3.15. There exists a unique linear map fp,: Z"! — Z" such that, for any
perverse sheaf A on P} and any geometric generic point b of M,?'H’n, the equality

cc(lzA) = fn (cc(A))
holds. This linear map does not depend on k and {.

Proof. Let K,, be the perverse sheaf on P"~! described in Lemma 2.5.

It does not matter what geometric generic point b of M, T we take, because
any pair of geometric generic points defined over two different fields are isomorphic
after a suitable extension of both fields. Let a be a geometric generic point of
M +1’", g a geometric generic point of GL, 41 k), and h a geometric generic
point of GL,, x(a,g)- Let b = gah™'. Then Lemma 3.7 guarantees that b is a
geometric generic point of M;" 17 and so we may work with b.

Furthermore, h is a geometric generic point of GL,, x(») by Lemma 3.7, and hence
Corollary 3.14 yields the equality

ce(lfA) - cc(Km) = x (PR L ARG 1 Kyy,) .
Furthermore, since h is generic, the right-hand side is equal to
X (P L GBARKY) =x (PR L A® Ky
=X ( Z’a l;A Y la*Km)
=cc(A4) - cc(lax Kim)
by the projection formula and Corollary 3.14, along with the fact that g is a geo-
metric generic point of GL, 41 k). Thus, cc(lzA) - cc(Ky,) is a linear function
of cc(4).
Because the cc(K,,) form a basis, by Lemma 2.5, the pairings cc(lfA) - cc(K,y,)

of cc(lfA) with that basis can be used as coordinates of cc(lfA). Because these
pairings are linear functions of cc(A), the class cc(lfA) is a linear function of A.
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By Lemma 2.5, the characteristic classes cc(K,,) and cc(lg«K,,) (which is just
cc(K,,) in a different projective space) are independent of £ and k, and so the linear
map is independent of £ and k. O

Definition 3.16. For n > 0, let f,: Z"*! — Z" be the linear map uniquely
determined in Lemma 3.15. We define inductively a bilinear form

by: Z" x 2"t 5 7Z
by setting bg(z,y) = zy for (z,y) € Z x Z and
bn(2,y) = 2y + 4bn_1(fu(), fu(y))

forn > 1 and (z,y) € Z"" x Z"*, where x -y is the scalar product on Z"**.

Proposition 3.17. For any perverse sheaves A and B in DE(PZ), and for any
geometric generic point g of GLy41, defined over k', the following holds:

> PR, ARILB) < by (ce(A), ce(B)).

icZ
Proof. We prove this proposition by induction on n. The case n = 0 is trivial,
as then A and B are simply vector spaces, their characteristic classes are their
dimensions, and the sum of Betti numbers is the product of the dimensions.

Assume the inequality holds in dimension n — 1 and let A and B be perverse
sheaves in DP(P"). By Lemma 3.11, the object A @ I} B[—n] is perverse. Set

o= Zhi( v, A®IB),
i€Z
which is the quantity we want to estimate. By the definition of the Euler—Poincaré
characteristic, we have

h (PR, A®3B) = (-1)"X(PR, A®I5B) + > (—1)" (PR, A® 1 B)
i#—n
< (1)"x(PR,A®zB)+ Y W(Py, A®I;B),
i#—n
hence the inequality
o= > h(PLARI;B)+h (PR, ARL;B)+ >  h(PL,A®I;B)
<—n i>—n
<2 ) W(PLARIE) + (-1)"Xx(PR, A®B) +2 )  h(Py ' A®I;B).
i<—n i>—n

Let now a € M™17(k’) be a geometric generic point of M,?(;)l’" defined over an

algebraically closed field &’. By excision and the t-exactness of affine morphisms,
the canonical map

H'(Pp, A®13B) — H (P15 (A I3 B))

is an isomorphism in degrees less than —n. Because duality exchanges [} and I},
and because the dual of A ® Iy B[—n] is also perverse, the canonical map

H Py 1L (A® 12 B)) — H (P}, A® I B)
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is an isomorphism in degrees greater than —n. We thus obtain
o <2 KPR (AL B))+(—1)"x (P, AL B)+2 > K (PR, 1, (AL B)).
i€Z i€Z
For a geometric generic point a, the functor I}, coincides with [, up to a shift
and Tate twist, and hence
o <4y BPELIL(ARIB)) + (—1)"Xx (P, A® I3 B).
i€EZ
Now we observe that I3, (A ® [z B) = [;A® I3l;B. Take h to be a geometric
generic point of GL,, j(a,q) and b = gah™' . Then lalgB = l;ly B. By Lemma 3.7,

h is generic over k(a,b). Together with the induction hypothesis and Lemma 3.15,
we deduce that

DKL EA®GEB) < bua(ce(lgA), ce(lpB)) = baoi(falce(A)), fulee(B))).
i€Z
Finally, in view of the equality
(=1)"x(Pp, A® Iy B) = cc(A) - cc(B)
given by Lemma 3.14, we obtain o < b, (cc(4), cc(B)) by definition of b,,. O

4. TEST SHEAVES

The main result of this section is the construction, achieved in Corollary 4.13, of
a specific basis of the group CH(P}), which will play an essential role in controlling
the complexity of a tensor product in the next section.

Definition 4.1 (Test sheaf). A test sheaf on P} is a perverse sheaf A on P} such
that, for any field extension k' of k, any perverse sheaf B on P},, and any generic
point g of GL,, 41, defined over an algebraically closed field extension k" of k', the
cohomology group H'(P},, A® [} B) vanishes in all degrees i # —n.

For example, a skyscraper sheaf A on P} is a test sheaf, since the object A®I;B
is a skyscraper sheaf sitting in degree —n in that case.
Remark 4.2. The key properties of a test sheaf A are the following:
(1) the functor defined on perverse sheaves by B — H™"(P},, A®I; B) is exact,
(2) the cohomology groups H* (P}, A®ly B) and H™" (P}, AQP (D)) agree,
up to renumbering, for all objects B of D (P).

Test sheaves are most useful when they are of the form highlighted in the next
definition:

Definition 4.3 (Strong test sheaf). Let d > 1 be an integer. A strong test sheaf
of depth d on P} is a test sheaf A that admits a filtration

O0=FyCF,---CF;=A

such that, for each 1 < j < d, the quotient F;/F;_; is isomorphic to a perverse
sheaf (see Lemma 3.12) of the form I, ;. Q,[m;] for some 0 < m; < n and some
a; € M™HLmitl(k).

Strong test sheaves have the following crucial property:
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Proposition 4.4. Let A be a strong test sheaf of depth d on P}. The inequality

Z |cc(A) - cc(P " (B))| < de(B)
1€EZ
holds for any field extension k' of k and any object B of D2 (PZ,).

Proof. Denote by (F})1<;<a the terms of the filtration from Definition 4.3.
Let g be a generic point of GL,,11,/. By Corollary 3.14, we have:

Z}cc -cc(PAH(B |_Z\X k/aA®l;p<%m(B))|
i€EZ i€Z
<D W(PL AP (B)).
i€Z jeZ

Since A is a test sheaf, the vanishing H? (P}, A ® [;*5¢*(B)) = 0 holds for
all j # —n, and hence the spectral sequence computing H*(P%,, A @ l3B) via the
perverse filtration on B degenerates at the first page. It follows that

SO WP, AP AN(B) =Y h(PR, A2 1;B).
i€Z jEZ i€Z

On the other hand, the spectral sequence associated to the filtration (F};) of A
yields the inequality of sums of Betti numbers

> (PR, A®I;B) < ZZH 5 (Fj/Fj-1) @ 15 B).

i€Z j=1icZ

By assumption, there exist isomorphisms Fj/F;_1 = lq,.Q,[m;] for some integer
0 < m; < n and k-point a; of M"T1mitl g0 that the following equalities hold:

d
SN (PR (F/Fim) ® 13B) = Zth v la;+ Q@13 B)

j=14i€Z Jj=14i€Z
d
=> Y WP 15B).
j=14€Z
Since g is generic over &, the product ga; is a generic point of M, ™! and
therefore the definition of ¢(B) implies the inequality
d d
SN RHPL LI 15B) <Y e(B) = de(B),
j=14€Z j=1
which concludes the proof. O

We will now construct strong test sheaves forming a basis of CH(P}).

Lemma 4.5. Let A and B be objects of DE(PZ). Let g be a generic point of GL,, j.
Then there is a canonical isomorphism

A®1,B = (A® lyB)[—2n].
Proof. Let [: P™ x GL,,41 — P™ X GL,,4+1 be the universal morphism given by
l(z,h) = (h-x,h)
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and let m: P™ X GLy+1 — P" be the projection. Then A ® Iz B and A ®, [3B are
the generic fibers of 7*A ® I*7*B and (7* A @, I*7* B)[—-2(n + 1)?] respectively, so
it suffices to prove that the objects 7*A ® I*7*B and n* A ®, [*n* B are isomorphic
up to shift.

For this, consider the morphism (7,7 ol): P" x GL,4+1 — P™ x P", which is
smooth because GL,,1 acts transitively on P”. Since ® commutes with smooth
pullbacks and ®; commutes with smooth pullbacks up to shifting by twice the
relative dimension, we obtain isomorphisms

TTAQU'n*B = (m,mol)* (priA® pryB),
T A *n* B = (m,mol)* (prjA @ pryB) [2(n + 1)* — 2n].

It is then enough to prove that pri A ® pri B and priA ® priB are isomorphic up
to shift. This follows from the computation

priA @ pr3B = D(D(pri4) ® D(pr3B))
= D(pr D(4)[2n] ® pr; D(B)[2n])
= pr; D(D(4)[2n]) ® pr; D(D(B)[2n])
= (priA @ pr; B)[—4n],

which uses the standard properties of Verdier duality and pr; = pr¥[2n]. O

Lemma 4.6. Let n > 0 be an integer. Let Hy and Hy be hyperplanes in P} that
intersect transversely, and consider the commutative diagram

Pl —H —* P

o T

P} — (H,UHy) —%— P} — Hy.
The object a.bQ,[n] is isomorphic to id.Qy[n] and is a test sheaf.

Proof. By adjunction, there is a natural morphism ¢;d.Q, — a.bQ, extending the
identity on P} — (H,UH>), and it suffices to prove that this map is an isomorphism
on stalks at all geometric points of Hy U Ho. This is obvious save for points of the
intersection Hy U Hy. For those, we argue as follows: since H; and Hs intersect
transversely, étale locally around each such point the diagram looks like

AT x (AL —{0}) x A} - AR

d |

A77? x (AL~ {0)) x (A} — {0}) —% AJ72 x A x (AL — {0}).

Expressing the constant sheaf on the down left corner as an external product and
letting j: A! — {0} < A! denote the inclusion, the Kiinneth formula then implies
that the map ¢d.Q, — a.bQ, is locally given by the identity on Q,Xj.Q,X 5 Q,.

We now proceed to the proof that a.bQ,n] ~ ¢1d.Q,[n] is a test sheaf. First
of all, we check that a.bQ,[n] is perverse. Indeed, all maps in the diagram are
affine open immersions, and the direct image and exceptional direct image by those
preserve perversity. Next, let B be a perverse sheaf on P} and let i € Z. Using the
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projection formula, we get the equalities
H' (P}, d.Qyn] ® I3 B) = H" (P}, a1(d.Q, ® ¢*1}B))
=Ht" (P} — H»,d.Q, ® "I} B)
= H/""(P}, — Ha, c*(ad.Q, ® I} B)).

The object cd.Q, ® lgB is perverse by Lemma 3.11. Since pullbacks by open

immersions preserve perversity, the object ¢*(c1d.Q, ®c*l;B) is a perverse sheaf on

the affine variety P}, — Ho, and hence its compactly supported cohomology vanishes

when ¢ + n < 0 by Artin’s vanishing theorem.

Dually, using Lemma 4.5, we get

H' (P}, a.bQyn] ® I3 B) = H"(P}, a.biQ, @1 I} B)

= Hi_n(P ’ a*(bIQZ ] a*l;B))
(P — Hl, b!@g & a*l;B)
(

= Hi_n ’
 — Hy,a*(a.bQ, @ I} B)[—2n]).

n
k
n
k
— Hz+n Z
Arguing as above using Lemma 4.5, we see that a*(a.bQ, @ I¥B)[—2n] is a
perverse sheaf on the affine variety P}, — H;, so that its cohomology vanishes for
i+ mn > 0 by Artin’s vanishing theorem. This completes the proof. ([

Lemma 4.7. Let a € Mg“”"“(k). If A is a test sheaf on P, then lg. A is a
test sheaf on P7}.

Proof. Let B be a perverse sheaf on P}, and let g be a generic point in GL,, 1 5.
By the projection formula, we have

H' (P}, o A® 15 B) = H/(PE, A® 151 B).

Let h be a generic point of GL,, 41 4/(a,g)- Set b = gah™' and k' = k/'(a,g,h).
By Lemma 3.7, the point b is a generic linear embedding and h is generic over the
field of definition of k'(b), so that

H'(P, A®;1: B) = H' (P, A® I3 B) = H" (P}, A® I, 1y Blm — n)).

Because b is generic, the object [; B[m—n] is perverse by Lemma 3.12, and therefore
this cohomology group vanishes for i +n —m # —m, i.e., for i # —n. O

Definition 4.8 (Standard test sheaf). For each integer 0 < m < n, pick a point
a, € M mH1(k) and pick transversal hyperplanes H; and Hy in P, As in
Lemma 4.6, let ¢: P — Hy — P} and d: P} — (Hy U Hz) — PJ" — Hy be the
corresponding immersions. Define the m-th standard test sheaf A, as

Ay = la, »1d.Qm].

Remark 4.9. In the case m = 0, choosing ay amounts to choosing a k-point of P},
the only possible choices for H; and Hs are the empty hyperplanes in PY = Speck,
and Ay is a skyscraper sheaf supported at the chosen point.

Corollary 4.10. For each 0 < m < n, the object A, is a strong test sheaf on P}
of depth at most 4.
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Proof. The fact that A, is a test sheaf follows from applying Lemma 4.6 and
Lemma 4.7. Because l4 preserves constant sheaves on linear subspaces, it preserves
any filtration into constant sheaves on linear subspaces of the type required for a
strong test sheaf, and thus it suffices to find such a filtration for ¢;d, Q,.

We use the notation of Lemma 4.6. Let h be the closed immersion of Hj into P}.
Since c is an open immersion, there is a base change isomorphism d.Q, = c*a.Q,.
By adjunction, there is hence a morphism ¢d.Q, = cic*a.Q, — a.Q,, which is
an isomorphism away from H,. Because ¢;d,Q, vanishes on Hy, the morphism
ad.Q, — a.Q, has mapping cone h*a.Q,. The complex a.Q, has a filtration
whose associated quotients are the constant sheaf and a shift of the constant sheaf
on Hy, so h*a,Q, has a filtration whose associated quotients are the constant sheaf
on Hs and a shift of the constant sheaf on the intersection H; N Hy. The mapping
cone triangle gives the desired filtration of ¢d.Q,. O

Remark 4.11. (1) One can also give a proof “by pure thought” of this proposition,
based on the fact that A,, is equivariant for the subgroup of PGL,,; acting on P}
and preserving the hyperplanes H; and Hy. Because this group action has finitely
many orbits, and its stabilizers are connected, one can show that the only irreducible
elements of the category of perverse sheaves invariant under this group are the
intersection cohomology complexes of the closures of the orbits, which in this case
are simply the constant sheaves on P™, Hy, Hy, and H;NHs. An analogous method
is used in the theory of the geometric Satake isomorphism to classify perverse
sheaves on the affine Grassmanian that are equivariant for the left action of the
formal arc group (see, e.g., [21, proof of Prop. 1]).

(2) The standard test sheaves depend on the choices in Definition 4.8; whenever
we use them, we assume implicitly these choices have been made for all m, and
that they are the same in the remainder of the arguments.

Lemma 4.12. Let (A;)ogj<n be standard test sheaves. The following holds:

0 ifmi+me<n,
1 ifmi+ms=n.

CC(AWM) ' CC(Amz) = {

Proof. This is a straightforward consequence of Corollary 3.14, which identifies the
intersection number cc(Anm,) - cc(Am,) with (=1)"x (P}, Ay, @ 15 Ap,). Indeed,
the support of A,, is of dimension m. If mq + my < n, it follows that the support
of A,,, does not intersect that of A,,, after generic translation, and consequently
their tensor product vanishes, from which cc(Ayy, ) - cc(Am,) = 0 follows. Similarly,
if mi+mg = n, the support of of A,,, intersects that of A,,, after generic translation
at a single point. At this point, both sheaves have stalk Q,, so their tensor product
is a skyscraper sheaf and has Euler—Poincaré characteristic 1. O

Corollary 4.13. Let (A;)o<j<n be standard test sheaves on P}. Then the charac-
teristic classes (cc(A;))ogj<n form a basis of CH(PY) ~ Z"+1,

Proof. Indeed, by Lemma 4.12, the matrix of intersection pairings between the
characteristic classes cc(4;) is invertible. O

5. COMPLEXITY OF A TENSOR PRODUCT

In this section, we prove the crucial theorem showing that the complexity controls
the sum of Betti numbers of a tensor product of complexes of f-adic sheaves, namely:
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Theorem 5.1. Let A and B be objects of D2(P?). Then the estimate
> KPR, A® B) < ¢(A)ce(B)
i€Z

holds, with an implied constant that only depends on n.

Remark 5.2. In Theorem 8.1, we state and sketch a proof of a version of this
result with an explicit constant.

Before starting the proof, we show how this implies an important corollary.
Corollary 5.3. Let A and B be objects of DE(PT). Then the estimate
c(A® B) < ¢(A)c(B)
holds, with an implied constant that only depends on n.

Proof. Let g be a geometric generic point of GLy4; 5. For 0 < m < n, let a,,
be a geometric generic point of M, +LmH From the definition of complexity and
Theorem 5.1, we get the estimate

c(A®B)= sup > h'(P}AQB®a,.Q)

o<m<n icZ
< c(A) sup ¢(B®la, Q).
os<mgn

For 0 < m’ < n, let a/, be a geometric generic point of M ,?(Zl ’)n "+ Again by

definition, the complex1ty above is given by
(B b2 lam*Qe <bup< Z hl Za B® lam*Q[ ® lgr ,*6@)
O m TL " m

for any m < n. By Lemma 3.10, the equality lo, «Q, ® lo/ *Qe = Ip.Q, holds for

—n+1

a geometric generic point b of M’ +1mtm’ . This 1mphes the inequality

th( Z? B ® lam*aé ® lain,*él) < C(B)
i€Z
for any m and m/, from which the result follows. |
The strategy for proving Theorem 5.1 consists in first establishing a “generic”
version of it, and then deducing from this the precise statement. In what follows,

we denote by (A;,)o<msn the family of standard test sheaves from Definition 4.8.
For z € R"*! = CH,(P") ® R, we set

lzll = D la - ce(A

m=0

Because (cc(Am))ocmsn 18 a basis of CH,(P™), by Corollary 4.13, and the inter-
section form is non-degenerate, this is simply the ¢*-norm in the dual basis, and in
particular defines a norm on R*t!,

Proposition 5.4. For any object B of D2(P?}), the following inequality holds:

Y lee(P(B))I| < 4(n+ 1)e(B).

1€Z
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Proof. Let 0 < m < n. Because 4,, is a strong test sheaf of depth at most 4,
Proposition 4.4 yields the inequality

Z [cc(PH#P(B)) - cc(An)| < 4c(B).
pEZ

Thus, we have

Sl B) =3 3 lec(PAP(B) - ce(An)| < d(n + De(B). O
m=0 p€eZ

pEZ

The second part of the next corollary shows that the complexity of a complex of
sheaves is, up to constants, the sum of the norms of the characteristic cycles of its
perverse cohomology sheaves.

Corollary 5.5. Let A and B be objects of D2(P?).
(1) For a generic point g of GLy,y1, defined over k', the estimate
> KPR, A®13B) < c(A)c(B)
i€Z
holds, with an implied constant that only depends on n.
(2) We have

e(B) =Y | cc(*#7(B))ll,
i€Z
where the implied constants depend only on n.

Proof. For the proof of (1), we apply the spectral sequences associated to the
perverse filtrations of A and B to get

S WP, AREB) <Y Y S WH(PLPA(A) @ 1P A (B)).
icZ pEZ qcZ icZ

Applying Proposition 3.17, and denoting by M,, the norm of the bilinear form b,
so that the inequality b, (c, 3) < Myl [|B]| holds for any a and 3, we get

Y WP A@EB) < My Yy Y [lec(P AP (A))]| [|ec(P#(B))],
i€Z pEZ qeZ

which is at most 16(n + 1) M, c(A)c(B) by Proposition 5.4.
For (2), one bound follows from Proposition 5.4. In the other direction, we begin
as above (with the same g) until we reach the bound

Y WP AEB) <Y [ecPAP(A)] D | ec*AUB)).
i€EZ pEZ q€Z
Taking A = l,,,.Q, where a,, is an arbitrary element of M"+L™F1(k), this gives
DN 15B) < Y |lecPA(B))|
1€EZ qE€Z

for 0 < m < n. This implies the desired bound, since ga,, is a generic point
of M,?H’mH by Lemma 3.6. O
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Our main theorem in this section is the same as Corollary 5.5, but without the
generic pullback 3. To remove it, we will use a double induction strategy. We view
a generic point g of GL, ;1 as a generic diagonal matrix conjugated by a generic
invertible matrix. We will show that the theorem remains true if some of the entries
of the diagonal matrix are set to 1, by induction on the number of entries. Once
all the diagonal entries are set to 1, any conjugate is the identity matrix, and so we
obtain our desired statement.

At each step, we have a family of cohomology groups parameterized by G.,,
i.e. a complex of sheaves on G,,, and we want to bound the stalk at the identity
using the stalk at the generic point. In general, the stalk at the generic point could
be very small and the stalk at the identity could still be very large. However, we
will now show that this cannot happen as long as we also control the cohomology.
In our case, it turns out that controling the cohomology corresponds to a lower-
dimensional version of the problem, and we may use induction on the dimension to
achieve our goal.

Lemma 5.6. For each object A of D2(G,, 1), the inequality

(5.1) > dim i (A)) < dim A (A)y + Y hi(Gon i A
i1€Z i€Z i€Z

holds, where 1 denotes the generic point of Gy, k.

Proof. We first reduce the proof to the case when A is perverse. On the one hand,
the spectral sequence associated to the perverse filtration of A gives the inequality

D dim A (A) <D0 dim (A (A)).

i€Z JEZ icZ
On the other hand, because perverse sheaves are supported in a single degree at
the generic point, we have

Zdlméf’ ZZdlme’(pij( V-
1€EZ JEZ i€Z

Because the compactly supported cohomology of an affine curve with coefficients
in a perverse sheaf is concentrated in degrees 0 and 1, the spectral sequence for the
perverse filtration of A degenerates and

> h(Grg A) =Y WG i, P (A)).
i€Z JEZi€Z
Therefore, it is sufficient to prove the inequality (5.1) when A is a perverse sheaf.

If A is perverse, most of the terms in the sums in (5.1) vanish. Removing all the
terms that are known to vanish, the desired inequality can be stated as

dim #°(A); + dim #1(A); < dim #7H(A),, + hY(Gpg, A) + AL (G g, A).
Since dim #71(A); < dim 5 ~1(4,), it suffices to show the inequality
dim #°(A)1 < hY(Grn ki, A) + hi (G i, A),

or even
Xe(Gmi, A) = dim%ﬂO(A)l.

This follows from the Euler—Poincaré characteristic formula for perverse sheaves
on smooth curves, where the local term at the point 1 is at least dim.#°(A);,
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all other local terms are non-negative, and the global term is a multiple of the
Euler—Poincaré characteristic of G,,, and hence vanishes. O

Let n > 1 be an integer. For each point g of GL, 1 valued in an algebraically
closed field, the fixed points of the linear map l; are the projectivizations of the
eigenspaces of g. In particular, for any A # 1, the fixed points of Ipiag(a,1,....1)
on P" consist of the isolated point zp = [1 : 0 : --- : 0] and the hyperplane
Ho={[0:ay:---:ay]}. We identify Hy with P"~1.

In the next two lemmas, we will denote by U C P™ the complement of {z}U Hy,
by j: U — P the corresponding open immersion, and by 7: U — Hy ~ P"~! the
projection map from U to the hyperplane Hy. We also denote by p: {zq} — P"
the closed immersion of the isolated fixed point and by h: Hy = P*~! — P” the
closed immersion of the hyperplane.

Lemma 5.7. Let n > 1 be an integer. Let A and B be objects of D2(P?). Let A
be a geometric generic point of G, i defined over an algebraically closed field k'
With notation as above, the following inequality holds:

Zhi(PZH‘l ® B) < Zhi(PZuA @ Diag(a1,...,1)B)

i€Z i€Z
+2) hi(Spec(k),p*A@p*B)+2> h'(Pp ' h*A® h*B)
i€EZ i€Z
+) R(Py mitA® mj*B).
i€Z
Proof. Let K be the pushforward of A ® l]’giag(u 1. 1)B from P” x G,, to Gy,

where G, has coordinate u. Proper base change yields the equalities
> dim s (K)y =Y b (P}, A® B),
i€Z i€Z
Z l%&2([()77 = Z hZ(PZH A® lEiag(A,l,...,l)B)'
i€Z i€Z
Hence, by Lemma 5.6, it suffices to prove the inequality
> Gk, K) <2 h'(Spec(k),p* A @ p*B)
i€Z i€Z
+2) WP R A@B B) + Y KPR (mjt A) @ (mj* B)).
i€Z i€Z
By the Leray spectral sequence, the equality
(5.2) S WG K) = S B (P" X Gy A® zgiag(uvl,__”l)B) .
i€Z i€Z
holds. To compute the right-hand side, we partition P x G,, = XgU X; U X5 as
XQZ{LIZ‘()}XGm, )(1:[’10><G},ﬂ7 XQZUXGm.
Note that Xy and X; are closed, and X5 is open. By excision, the right-hand side
of (5.2) is bounded by
2

Zzhi(Xj7A®lEiag(u,l ..... 1)B)

j=04icZ
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*

Since Xo and X, are fixed points of Ify; .y ; ;) for all A, the restriction of the
complex A ® l]*mag(A 1 1)B to either of them is the same as that of A ® B. The
Kinneth formula gives

H; (X0, A® B) ~ H*({z0}, A® B) @ H (G, Qy)
H;(X1,A® B) ~ H*(Ho, A® B) ® H:(Gn, Qy),

.....

and hence (since the sum of Betti numbers of G, is equal to 2) we get

> hi(Xo,A® B) =2 h'({zo},A® B) =2 h'(Spec(k),p*A® p*B)

i€Z i€Z i€Z
> hi(X1,A® B)=2) hi(Ho,A® B)=2) h'(P"' h*A®h*B).
i€EZ i€Z i€Z

Finally, note that the G,,-action on U is free, so that there is an isomorphism
between X5 and the space of pairs of points (z,y) in U x U such that z and y
lie in the same orbit of the G,,-action, which identifies the projection to U and
the pullback along Ipiag(x,1,...,1) With the first and the second projections. The
space of such pairs is isomorphic to the fiber product of U with itself over the
quotient U/G,,. There is an isomorphism U/G,, ~ Hy ~ P"~! induced by m,
hence the equality

D R KXoy A® g, yB) = Y he(U xpas U, j* AR j*B).

i€Z icZ
By the Kiinneth formula (or the projection formula applied twice), the right-hand
side is also equal to

S KU A@mi*B)=> h (P ' mj*A®mj*B).

1€Z i€Z
Gathering all these computations, we obtain the result. O
Lemma 5.8. Let n > 1. Let A be an object of D2(P}) and let g be a geometric

generic point of GLy11k defined over an algebraically closed field k'. Then the
following inequalities hold:

c(h* I3 A) < c(A),
c(mj*lzA) < 3c(A),
> hi(Spec(k'), p*iyA) < c(A).

i€Z

<
<

Proof. For each 0 < m < n — 1, let a,, be a geometric generic point of M ,?(’;’)LH

By definition,
c(h*I3A) = sup » _h'(P™, 1% h*I3A).
™ ez
The composition Ig o h o l,,, is a generic linear embedding from P to P", and
hence this quantity is < ¢(A) by definition.
For any ¢ € Z, by proper base change, there is an isomorphism

(5.3) HY(P™, 15 mj*lyA) = H (7 g, (P™), 1% A).

The inverse image 7~ l,,, (P™) is of the form
L —A{xo} — (HoN L),
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where L is a general (m + 1)-dimensional subspace of P" that contains xg. By
excision, the sum of the Betti numbers of (5.3) is at most

STRUL A+ >R ({0}, 5 A) + Y hi(Ho ML, A).
i€Z i€Z i€Z
Each of these is bounded by ¢(A) (since a,, and lg are generic, see Lemmas 3.5
and 3.6), hence c(mj*l; A) < 3c(A).
Finally, lg o p is the inclusion map of a generic point, so the inequality
> hi(Spec(k'), pI;A) < c(A)
i€Z
holds by the definition of ¢(A). O

We are finally ready to prove the main theorem of this section.

Proof of Theorem 5.1. We prove the theorem by induction on n > 0. The theorem
holds for n = 0, because A and B are then simply complexes of vector spaces so

c(4) =) _n'(P°,A),
i€Z
and hence
> (P’ A B) =Y h'(P° A)Y (P B).
i€Z i€Z i€Z
Now assume that n > 1 and that Theorem 5.1 holds for P™*~1.
Let g be a generic point of GL, 41 and let Aq,..., A\,+1 be independent tran-

scendentals over k(g). Let k' be an algebraically closed extension of k(g) containing
Aly .oy Apg1. For 1 <m < n+ 1, we denote

S =Diag(L, ..., 1, Ay oy Ans)-

Then
S OW(PYLA®B)=> W (PR IsA®EB)=> W (P, . 1nlsA®B).
i€Z i€EZ i€Z

On the other hand, we have

S WP ARIB) =Y WP, AR 1 B)
i€Z i€Z
< c¢(A)e(B)

by Corollary 5.5 (1) and Lemma 3.9 (1).
Therefore, using a telescoping sum, we get

> KPR A® B)

€L
ntl . .
=3 (WP Al B - Y N (PLAR L 15B))
m=1 <€Z i€Z

+ O(c(A)e(B)).
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By Lemma 5.7, for a fixed m, the term between parentheses is

<2) h'(Speck,p*l;A@p*l; . 13B)
i€Z
+2) RPLL R A@ B, 15B)
i€EZ
+ Y RPE (Mt A) @ (mi*l, 15 B)).
i€Z
Applying the induction hypothesis, this is

< 2(ptlgA)e(p™ly,,  lgB) + 2c(h*lgA)e(h*15 |, 1gB) + c(mj*lgA)e(mi*ls, . lgB)

and finally, applying Lemma 5.8 and Lemma 3.9 (2), this is
< 2¢(A)e(B) + 2¢(A)e(B) + 9¢(A)c(B) = 13¢(A)c(B).
This concludes the proof. ([

6. QUANTITATIVE SHEAF THEORY ON QUASI-PROJECTIVE VARIETIES

The goal of this section is to define the complexity of objects of the derived
category for any quasi-projective algebraic variety over a field, or rather the pair
consisting of such a variety and a given quasi-projective embedding.

6.1. Definition of complexity and continuity of the six operations. It turns
out that it is not really possible to define a complexity invariant of sheaves on an
algebraic variety, with its expected properties, that only depends on the algebraic
variety. We give two examples, related to two desirable properties of a complexity
function (the second was suggested by an anonymous referee).

Example 6.1. (1) A hypothetical canonical complexity invariant ¢(A) for objects A
of D?(X) should of course be invariant under automorphisms of X. Another basic
requirement for applications of a complexity invariant should be that, if F is a
finite field and k an algebraic closure of F, then there should be, up to isomorphism
over k, only finitely many irreducible perverse sheaves of bounded complexity (see
Corollary 7.15). However, there are examples of algebraic varieties X over F with
infinitely many F-automorphisms and perverse sheaves A on X such that there are
infinitely many pairwise non-isomorphic perverse sheaves among the o* A for such
automorphisms o (e.g., let X be the affine plane, and let A be a suitable shift of
the constant sheaf Q, on an irreducible plane curve).

(2) Consider X = A2, with coordinates (z,y). For any polynomial f € k[z,y],
the map uys: (z,y) — (x,y— f(x)) is an automorphism of X. Let i: A — X be the
closed immersion z — (z,0). For any complexity function ¢ on D?(X) that satisfies
the “bilinearity” property of Corollary 5.3 and is invariant under automorphisms,
the following estimate would hold:

c(ix Q1] ® up (i Qy[1])) < 1.

This is impossible since the support of i, Q,[1] ® u}(i*ﬁg[l]) is the intersection of
the line y = 0 and its image under uy, which can be an arbitrarily large finite set.
A similar projective example arises from X = E x E for an elliptic curve E, with
the immersion E ~ E x {0} — F x E and the automorphisms (z,y) — (z,y + nx)
for n € Z.
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We will work instead with pairs (X, u) consisting of an algebraic variety X
over k and a locally closed immersion u: X — P} for some integer n > 0, called
the embedding dimension of (X, u).

Remark 6.2. (1) Recall that a locally closed immersion u is a morphism that can
be factored as u = i 0 j, where j is an open immersion and i is a closed immersion.

(2) We will often simply denote by X the pair (X, u), when no confusion is
possible, and call this simply a quasi-projective variety. We will also sometimes do
this over a more general base S than the spectrum of a field.

Definition 6.3 (Complexity of a complex of sheaves on a quasi-projective variety).
Let (X, u) be a quasi-projective variety over an algebraically closed field k. The
complezity relative to u of an object A of DP(X) is the non-negative integer

cu(4) = c(wA).

When the embedding is clearly understood, we will simply speak of the complexity
of A.

Remark 6.4. The complexity ¢, (A) vanishes if and only if A = 0 (Proposition 3.4).

The first main objective is to prove that the complexity is under control when
performing all usual operations, starting with Grothendieck’s six functors (i.e., in
the language used in the introduction, these functors are “continuous”). For this
purpose, we will also define a complexity invariant for morphisms.

Definition 6.5 (Complexity of a locally closed immersion). Let (X, u) be a quasi-
projective variety over k. We define the complexity of u to be

c(u) = cu(Qp) = c(wQy).

Definition 6.6 (Complexity of a morphism). Let f: (X, u) — (Y, v) be a morphism
of quasi-projective varieties over k. Let m and n be the embedding dimension of X
and Y respectively. For integers 0 < p < m and 0 < ¢ < n, let a, and b, be

M ,;"'H’p + M} et pespectively, all defined over

geometric generic points of and
a common algebraically closed field &’.
The complexity of the morphism f relative to (u,v) is defined as
cuw(f) = max max hi(Xk/7u*lap*6z ® f*v*lbq*ée).

0<p<m 0<q<n 4
i€Z

In the vein of Lemma 3.3, the definition of ¢, ,(f) can be phrased in terms of
closed points over a dense open subset W C M,znﬂ’pﬂ X M;;H’q+1 rather than
geometric generic points. Namely, letting I' C P™ x P™ denote the graph of f
relative to the locally closed immersions v and v, there exist such W with the
property that the above Betti numbers are equal to

hI(T N (ker(lq,) x ker(ly,)), Qp)
for all points (a,, b,) € W (k).
Remark 6.7. These definitions are compatible in the sense that, for a locally closed
immersion u: X — P", using Lemma 3.10, we have ¢, 14(u) = c(u).
In a similar vein, if i: X — Y is an immersion of quasi-projective varieties (X, u)
and (Y,v), such that u = v o ¢, then ¢, ,(¢) = c¢(u), which can be seen readily from
the definition, the projection formula and Lemma 3.10.
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The fundamental result is the following:

Theorem 6.8 (Continuity of the six operations). Let (X,u) and (Y,v) be quasi-
projective varieties over k, and let f: X — Y be a morphism. For objects A and B
of DP(X) and C of D2(Y), the following estimates hold:
6.1) cu(D(A)) < c(u)cy(A)
cu(A® B) < cy(A)cu(B)
cu(A @ B) < c(u)?cy(A)cy(B)
cu(Hom(A, B)) < c(u)cy(A)cu(B)
cu(f7C) < eypw(f)en(C)
co(id) < cyw(f)ew(4)
eulf1C) < cw)e(®)eun(F)en ()
) o (fed) < c(u)e(v)cuw(f)eu(A).

In all these estimates, the implied constants only depend on the embedding dimen-
sions of (X,u) and (Y,v).

—_ — — — — ~—

In the next subsection, we will prove Theorem 6.8. In later subsections, we
will then handle similarly a number of additional operations, e.g., decomposing a
complex into irreducible perverse sheaves.

Remark 6.9. Let ky be a field of characteristic coprime to £. For any quasi-
projective variety (Xo,uo) over kg and any object Ay of D2(Xy), we set

Cuo (Ao) = cu(A),

where (X, u) is the base change of (X, ug) to an algebraically closed field exten-
sion k of kg and A is the base change of Ay. Similarly, we define the complexity of
a morphism fy: (Xo,ug) = (Yo, v0) as

Cug,wo (fo) = cuw(f),

where f is the base change of fj to an algebraically closed field. Since the complexity
is independent of the chosen algebraically closed field, Theorem 6.8 also holds for
the complexity over non-algebraically closed fields.

Remark 6.10. Theorem 1.1 from the introduction follows from Theorem 6.8 ap-
plied to X = A™ and Y = A™ with u and v the standard open immersions to P"
and P™ respectively.

6.2. Proof of the continuity of the six functors. We begin with a lemma
concerning complexes on projective space.

Lemma 6.11. For each object A of DP(PT), the equality c(A) = c(D(A)) holds.

Proof. Let a be a geometric generic point of of M,?H’mﬂ

and Lemma 3.12, the computation
S OR(PTIA) =Y hI(P™ D(I34)) = Y hI(P™, 13 D(A))
i€Z i€Z i€Z
yields ¢(A) = ¢(D(A)) by definition of complexity. O

. Using Verdier duality
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Proof of (6.1). The equalities
cu(D(A)) = c(uy D(A)) = c(u. D(4) @ wQy)

hold by definition, and hence we get the estimate
cu(D(A)) = c(D(wA) @ wQ,) < c(D(wA))c(uQy) = c(wA)c(uQy) = cu(A)c(u)
by combining Corollary 5.3 and Lemma 6.11. O
Proof of (6.2) and (6.3). By definition, we have

cu(A® B) = ¢(w(A® B)).
Then by Corollary 5.3, we obtain

cu(A® B) = c(w(A® B)) = c(wA @ wB) < c(wA)c(wB) = cu(A)cy(B).
Combining this with (6.1), we obtain (6.3). O
Proof of (6.4). We have by definition of internal Hom
cu(Hom(A, B)) = ¢,(D(A) ® B) < ¢, (D(A))cy(B) < c(u)ey(A)ey(B),

where the estimates follow by applying (6.2) and (6.1). O

Proof of (6.5) and (6.6). Let m be the embedding dimension of X and n that of Y.
By definition, we have

cu(f*C) = c(u f*C) = max hi(Pﬁ,,l:;pugf*C).

o<p<m
SPS™cz

Applying three times the projection formula, we have for any p and i € Z
W (Ph, 1 wf*C) = hi(Yar, fin*la,Q, ® C).

Applying the Leray spectral sequence for étale cohomology with compact support
to the morphism v: Y — P", we derive

Z hi(Yk/, fyu*laplag ® C) = Z hi(PZ/, U[f!u*lapyég ® U}C).
i€Z i€Z
Then, by Theorem 5.1 and the definition, we get
Z R (PR, v fiula, Qp ® viC) < v fiu*la,1Qy)cu(C).
i€Z
Thus,
a(f C) < ¢, (C) [max Cv(flu*laplag).

IP™M

Applying again the definition and the projection formula three times, we have

c@(f!u*lapgae) = max Z h'(PY, l;qwﬁu*l%gaé)
1€Z

0<gsn 4

= max hE (X, f*v*lbqgég ® ’U/*lap!éé)

0<g<n
SISt ez

for any p. This concludes the proof of (6.5) by definition of ¢, ,(f), and the proof
of (6.6) is similar. O
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Proof of (6.7) and (6.8). From f'C = D(f*D(C)) we get the estimates

cu(f'C) < c(u)eu(f*D(0)) <€ c(u)eu(f)en(D(C)) < e(u)e(v)ew,o(f)eu(C)
by (6.1) and (6.5). This establishes (6.7), and (6.8) is proved similarly using (6.6)
instead of (6.5). O

We can also bound the complexity, with respect to the Segre embedding, of the
external product of complexes.

Proposition 6.12. Let (X,u) and (Y,v) be quasi-projective algebraic varieties
over k with embedding dimensions n and m respectively, and consider their product
(X xY,ulv), where ulkv = so (u X v) is the composition of u x v with the Segre
embedding

5: P" x P™ — pthmth =1

Letp1: X XY = X and pa: X XY — Y denote the projections. Then the estimate
CyRov (A X B) < Cu@v,u(pl)cuﬁv,v(pQ)Cu(A)cv(B)
holds for all objects A of D2(X) and B of DY(Y), with an implied constant that
only depends on (n,m).
Proof. The estimate
Cuv (A X B) < CyRy (pTA)CuIXv (p;B)
holds by (6.2). Since the first factor on the right-hand side satisfies
CuRv (pTA) <K CyRv,u (pl)cu (A)
by (6.5), and similarly for c,x,(psB), the result follows. O
Remark 6.13. It should be possible to estimate the complexities ¢,m, . (p1) and
CuRv.v(p2) in terms of ¢(u) and c¢(v). Indeed, this amounts to estimating the co-
homology of u/Q, X 1Q, on P™ x P™ restricted to the intersection of a general

linear subspace with the inverse image of a general linear subspace under the Segre
embedding. One can bound this by

cs(wQy X viQy)es (F),

where . is the constant sheaf on the intersection of a general linear subspace with
the inverse image of a general linear subspace under the Segre embedding, and then
attempt to estimate the two factors separately.

6.3. Linear operations.

Proposition 6.14. Let (X, u) be a quasi-projective variety over k.

(1) For any distinguished triangle Ay — Ay — As in DP(X), the following
holds:

cu(Az2) < cu(Ar) + cu(As),
< cu(A2) + cu(43),
cu(A3) < cy(Ar) + cu(A2).

(2) For any objects A and B of DY(X), the following equality holds:
cu(A @ B) = ¢y (A) + ¢y (B).
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(3) Let A be an object of D2(X). For any h € Z, the following equality holds:
cu(A[R]) = ¢ (4).

Proof. The first bound in (1), as well as the equalities in (2) and (3), follow imme-
diately from the definition ¢, (A) = ¢(wA) and the expression of the complexity in
terms of Betti numbers. The second and third inequalities are then deduced from
the first (and from (3)) using the distinguished triangles Ay — A — A;[1] and
Ag[—l]—>A1 —)Ag. O

In general, it is not obvious how sharp the first inequality ¢(A2) < ¢(A41) + ¢(A4s)
is. However, in the important special case of the decomposition of a perverse sheaf
into its irreducible constituents, there is a more satisfactory estimate.

Theorem 6.15. Let (X, u) be a quasi-projective variety over k. Let A be an object
of D2(X). For any i € Z, let n; be the length of *#°(A) in the abelian category
of perverse sheaves and let (A; j)1<j<n, be the family of its Jordan-Hélder factors,
repeated with multiplicity. Then the estimates

A<y icu(Ai,j) < c(u)e,(A)

i€Z j=1

hold, with an implied constant that only depends on the embedding dimension of
(X, u).

Proof. The first inequality follows immediately from the previous proposition. We
prove the second one.

For i € Z, let m; be the length of P57 (u;A) in the category of perverse sheaves
on the projective space target of u, and let (B;;)i<j<m,; be the Jordan-Holder
factors (repeated with multiplicity) of these perverse sheaves.

Let X be the closure of the image of u. The B;, ; are irreducible perverse sheaves
with support contained in X, and hence each u* B, ; is either zero or is an irreducible
perverse sheaf on X.

Because wA is supported on X, its perverse filtration is stable under pullback
to X. The perverse filtration is always stable under open immersions; since u is a
locally closed immersion, it follows that it is stable under u*.

Therefore, we have P 1 (A) = P # (u*u A) = u*? 2 (uyA). This perverse sheaf
is an iterated extension of u*B,; j,...,u*B; n,;; by the uniqueness of the Jordan-
Holder factors, the perverse sheaves u*B; 1, ..., u* B, ,, that do not vanish coincide
with the 4;1,...,4; »,;, including multiplicity. We may therefore assume that the
equality u*B; ; = A; ; holds for 1 < j < n; and u*B; ; = 0 for j > n;.

Then we have

S el = XYl Biy) < ) 3D el

i€Z j=1 i€Z j=1 i€Z j=1

< c(u ZZHCC

i€Z j=1

by using (6.5) and Corollary 5.5 (2).
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On the other hand, we have
m;
cc(PH (wA)) =Y ce(B; ;).
j=1

Since the B; ; are perverse sheaves, their characteristic cycles are effective. The
norm on R™*! is additive on the cone of effective cycles, hence the equality

lecC A wAN]| =3 [lee(Bi)ll

j=1
The estimate
DY culAig) < efw) - llee(" o (wA))| < elwe(uA) = clu)e,(4)
i€Z j=1 i€Z
then follows by Proposition 5.4. O
Corollary 6.16. Let (X,u) be a quasi-projective variety over k and w: W — X

the embedding of a locally closed subvariety. For each perverse sheaf A on W, the
middle extension perverse sheaf wi, A on X satisfies

Cuow(A) K c(uow)ey(wi ),
cu(wiA) < (c(u)c(uo w))zcuow(A)’
where the implied constants only depend on the embedding dimension of (X, u).

Proof. We recall that w, A is the image of the canonical morphism
PAO (unA) — P A (w, A)
of perverse sheaves. It satisfies A = w*wi, A, and hence the estimates
Cuow(A) = Cyow (UJ*UJI*A) < Cuow,u(w)cu (w'*A) = C(U © w)cu(w'*A)
follow from (6.5) and Remark 6.7. Conversely, Proposition 6.14 gives the bound
cu(wiA) < ey (P A (Wi A)) + (P (w, A)).

Then Theorem 6.15, combined with (6.6) and (6.8) and Remark 6.7 again, gives
the estimate

cu(winA) < c(u)(cy(wnA) + co(weA)) < c(u)(c(uow) + c(u o w)?c(u))cyow(4),
as we wanted to show. (]
6.4. Nearby and vanishing cycles. In this section, we prove the continuity of
the functors of nearby and vanishing cycles. Let S be the spectrum of a strictly
Henselian discrete valuation ring, with special point o and generic point n. Let
7 be a geometric generic point above 1. Let f: X — S be a quasi-projective
morphism and u: X — P% a locally closed embedding. We denote by X, and X,
the fibers of f over o and 7 respectively. We also consider the induced embeddings
Uy X, — P™ and u,: X,, — P™. For an object A of D2(X), we denote by A, and

A, the restrictions of A to X, and X,, respectively. We denote by W (resp. ®y)
the functor of nearby cycles (resp. of vanishing cycles) from DP(X) to D2(X,).
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Theorem 6.17. Let X, S and f be as above. For each object A € D2(X), the
following estimates hold:

cu, (P(4)) < c(uo)cu, (Ay),
Cu, (Pr(A)) < c(ug)cu, (Ay) + cu, (As).

Before starting the proof, recall the following compatibilities of the nearby cycle
functor with pushforwards and pullbacks. Let h : X’ — X be an S-morphism,
and f' = f o h. Recall from [10, Exp. XIII (2.1.7.1)] that, if h is proper, there is a

canonical isomorphism

by proper base change. Moreover, if h is smooth then by [10, Exp. XIII (2.1.7.2)],
there is a canonical isomorphism

Proof. By definition of the vanishing cycles, there is a distinguished triangle
Ay = Wp(A) = @4(A),

and hence the inequality c,, (®f(A4)) < cu, (As) + cu, (¥(A)) holds by Proposi-
tion 6.14. It is thus enough to prove the first inequality.

We first assume that f is proper, so that u is a closed immersion. Using (6.9)
with h = u, we can replace X by PZ and A by wi(A).

From (6.9), for every i € Z we get the equality
(6.11) h'(Xg, Ag) = h'(Xo, Up(A)).

By definition, we have

cu, (Pp(A)) = max > K (PR, lg (Ay)),

Osmsnizz
where a,, is a geometric generic point of M, ;’(g’mﬂ defined over an algebraically
closed field &', and similarly for c,, (A,). As in the proof of Lemma 3.12, we view
la,, as the composition of the map s: x = (z,a,,) from P™ to P™ x pMm+intl
with the matrix multiplication map p: P™ x M™*tLn+1  P™ We still denote by
p the smooth map P xg MgnH’"H — P%. By (6.10), there is an isomorphism

(6.12) p*\I/f — ‘I’fp*7

where we still denote by f the natural morphism P x g Mg“’l’"“ — 8.

Mgn+1’"+1 at the point a,, and let

Let S’ denote the strict localization of
5: 8" — M?H’”H be the localization map. The scheme S’ is the spectrum of a
strictly Henselian discrete valuation ring, with special point ¢’ and generic point 7/,
which are mapped to o and 7 respectively by the canonical morphism s': S’ — S.
The situation is similar to the discussion preceding [0, Lem. 3.3]. Set k = k() X k(n)
k(n'), which is the fraction field of the strict localization of Mén+1’"+17 where S is

the normalization of S in 7. Then Gal(7j/n) = Gal(k/n’) holds. Let 77’ the spectrum
of an algebraic closure of k and P = Gal(7'/ l~c), which is a pro-p group for p the
characteristic exponent of k.

Let f': P% — S’ be the strict localization at a,, of the morphism

m m+1,n+1 m+1,n+1
Py xs Mg — Mg .
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We have the following cartesian diagram:

f/
Pg/

i I

Pn X g Mm+1 n+1 Mm+1 n+1
~__ f /

As recalled in (6.10), there is an isomorphism

(613) S*\I/f — \Ifs/ofls*.

By [6, Th. Finitude, Lem. 3.3], for every object B of D2(P%,) and i € Z, the
equality

(6.14) Wyop (B) = Up(B)

holds. Since P is a pro-p group, taking the P-fixed part is an exact functor, hence
the inequality

(6.15) W (PR, Uy (B)") < W' (P, W p(B)).

Combining equations (6.12), (6.13) and (6.14), we find

(6.16) 1, Wy(A) = 8Py (A) = 50, (0" A) = Wyops(s°p" A) = Wy (15, A
Hence, by (6.15) applied to B = s*p* A, we get

(6.17) BRI W (A)) < B (PR, (15, A)).
By (6.11) applied to f’, we have
(6.18) WP, Uyl A)) = h' (PR, (I, A)y) = B (PL. 15, (Ag))-

Combining (6.17) and (6.18), we find the sought-after inequality
Cu, (\ij (4)) < Cu,, (An)-

We now come back to the general case, i.e. we do not assume that f is proper.
We factor the immersion u: X — P% as i o j, where i is a closed immersion and j
is an open immersion.

By the first step, applied to jiA and the morphism f given by the composition
of ¢ and the projection Pg — S, we get ¢;, (ji(A),) < ¢, (VpiA). By (6.10), the
object joW A is 1som0rphlc to ¥(A), and hence we get

Cu, (U (A)) < cu, i, (Jo)ci, (ViR A)
< Cug i, (Jo)ci, ((1A)y)
= Cug ip (Jo)Cu, (An) = ¢(uo)cu, (An)
by (6.5) and Remark 6.7. This finishes the proof. O
Corollary 6.18. Let k be an algebraically closed field, f: (X,u) — (S,v) a flat
morphism of quasi-projective varieties over k, with S smooth and irreducible of

dimension 1. Let o be a closed point of S. Let S, be the strict localization of S
at o. Denote by ¥y and ®; the nearby and vanishing cycles functors of the base
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change of f to S(y), which we view as functors from DE(X) to DY(X,). For any
A € DP(X), the following estimates hold:

Cu, (Uf(A)) < cun(f)?eu(A),

Cu,y ((bf(A)) < Cu,v(f)ch(A)'
Proof. Let I' C X xj S be the graph of f. We denote by h: X — I' the canonical
S-morphism, and by f’: I' — S the projection. Abusively, we will also write
u: I' = P?% for the canonical embedding induced by u: X — P}.

Since h is an isomorphism, the base change morphism Wy hy, — he Wy is an
isomorphism as well. Moreover, h, and h, are isomorphisms and the equality
cu, (B) = cu, (he«B) holds for any object B of D?(X,). By Theorem 6.17 applied
to the strict localization at o of f': ' — S and h,A, the following estimates hold:

Cu, (Vs (R A)) < c(Ug)Cu, (s Ay),
Cu, (@ (heA)) < c(ug)cu, (heAy) + cu, (hiAs).

Using the base change isomorphism previously quoted, this implies that

Cug (\I/f(A)) < C(uo)cun (A'r?)a
Cuy ((I)f(A)) < C(ua)cun (An) + cu, (Ag)-

We will now prove the estimates

Cu, (Ar) < Cu,v(f)cu(A)a
c(ue) < cuw(f),
Cu,, (An) < Cu,v(f)cu(A)7
which will conclude the proof.
First, let 6, € D2(S) be the rank-one skyscraper sheaf supported at o € S.

We have ¢,(d,) = 1 and f*0, is the constant sheaf supported on X,, so that by
Theorem 6.8, we obtain ¢, (f*ds) < cyo(f)cy(ds). Hence, the estimate

c(uo) = cu(f"05) K cupw(f)

holds. This proves the second inequality.
Moreover, we have A, = A® le x,» and hence the estimate

Cu, (Ag) < cy(A)e(uy)

holds by Theorem 6.8. Combined with the second inequality, this yields the first
one.

For the third inequality, let b be a geometric generic point of M™s:"s+! such
that the intersection of v(S) and the image of I in P} is finite. This intersection
consists of finitely many geometric generic points 7, ...,7, of S. The complex
f*v*1p+Q, is then the constant sheaf supported on f=1({#1,...,%,}), hence the
estimate

Cu, (Ay) < cu(A® [0 15 Q).
From Theorem 6.8 and the definition of ¢, ,(f), we deduce
Cu(A ® f*v*lb*az) < Cu(A)cu( *U*lb*éz) g Cu(A)Cu,v(f)7
which ends the proof. [
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6.5. Uniformity in families. In Theorem 6.8, the factors c¢(u) or ¢, ,(f) appear.
The next proposition ensures that these are bounded in algebraic families; for all
practical purposes, they will thus behave as constants in applications.

Proposition 6.19. Let S be a noetherian scheme in which £ is invertible. Let X
be a scheme of finite type over S, and let u: X — P% be a locally closed immersion
of schemes over S, so that for each geometric points s of S, the pair (Xs,us) is a
quasi-projective variety over the algebraically closed field k(s). Then:

(1) There exists a constant M, depending only on (X,S,u), such that the
inequality c(us) < My holds for all s.

(2) For any object A of D2(X), there exists a constant My, depending only on
(X, S,u, A), such that the inequality c,, (As) < Ma holds for all s.

(3) LetY be a scheme over S and letv: Y — Pg/ be a locally closed immersion
of schemes over S. Let f: X — Y be a morphism of schemes over S. Then
there exists a constant Ms, depending only on (X, S,u,Y,v, f) such that the
inequality cy, v, (fs) < M3 holds for all s.

Proof. By definition of c(us), part (1) will follow from (2) applied to A = Q,.
We now prove (2). Let 0 < m < n be an integer. Let r: Mgﬂ’mJr1 xgP% — PL
be the morphism defined by r(a,z) = lo(x). Consider the diagram

X =Pl <" MV g PR

\Lprl

n+1,m+1
M :

Let s be a geometric point of S. Let a,, be a geometric generic point of the fiber
of MgH’mH over s. Let ¢ € Z. By the proper base change theorem, the equality

SOW (PR uaAs) =Y dim A (priotud)a,

i€Z i€Z
holds. Since u is a locally closed immersion and r and pr; are morphisms of finite
type, the complex pr;, r*w A is an object of DE(MSH’WH), so by constructibility,
the sum above is bounded as s varies.

’ ’
For (3), we argue in a similar way with Mg+th" xg My THm L O

Remark 6.20. For instance, if f: A™ — A" is a morphism given by m polyno-
mials in n variables of degree at most d, then using the universal family of such
polynomials it follows that there exists a constant b(n,m, d) such that the inequal-
ity cuo(f) < b(n,m,d) holds for all f (with the standard embeddings u: A — P™
and v: A™ — P™). We can in fact make some cases fully explicit by appealing to
results of Katz [28]. Since this can be useful in some applications, we spell out one
such case in the next proposition.

For non-negative integers N, r and d, set
B(N,r,d) =6-2"-(3+rd)N T

Proposition 6.21. Let r, d, ny and ny be non-negative integers. Let X be a closed
subvariety of A™ over k defined by r equations of degree at most d. Let'Y be any
subvariety of A})?. Let u and v be the natural immersions of A™ and A" in P™
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and P™ respectively. For any morphism f: X — Y defined by ny polynomials of
degree at most d, the following inequality holds:

Cuw(f) < B(ni,ng +r,d).

Proof. By definition, the complexity c,,(f) is the maximum over all integers
m1 <ny and mo < ng of the sum of the compactly supported Betti numbers
(with Qy-coefficients) of the intersection of X with a generic linear subspace of
dimension m; in P™* and with the pullback by f of a generic linear subspace of
dimension ms in P™2. The intersection of the first linear subspace with A™ is
an affine space of dimension n;. Its intersection with X is defined by r equations
of degree at most d, and the pullback of a linear subspace is defined by ny — mo
linear combinations of the polynomials defining f, which are hence also of degree
at most d. Thanks to [28, Cor. of Th. 1, p. 34], we deduce the inequalities

ZhZ(X, u*lZml@ ® f*v*limzég) < B(mi,ne —mg +1,d) < B(ny,ne +1,d)
i€Z

(with notation as in Definition 6.6) for all m; and ms, and the result follows. [

Remark 6.22. In some cases, Katz’s remark in [28, p. 43] leads to better estimates.

6.6. The open set of lissity of a complex. Another invariant governed by the
complexity is the degree of the complement of a dense open set where an object of
the derived category is lisse (i.e., where all its cohomology sheaves are lisse). Below,
by degree of a subvariety Z of projective space, we mean the sum of the degrees of
its irreducible components (which may have different dimensions).

Theorem 6.23. Let (X, u) be an irreducible quasi-projective variety over k. Let
A be an object of D2(X). Let Z be the complement of the mazimal open subset
where X is smooth and A is lisse. Then the estimate

deg(u(Z)) < (3+ s)c(u)cu(A)

holds, where the degrees are computed in the projective space target of u, and s is
the degree of the codimension 1 part of the singular locus of X.

Proof. We first assume that A is an irreducible perverse object. Let n be the
embedding dimension of (X, u). Let S be the support of A.

If S has codimension m > 1, then A is lisse (being zero) outside .S; we will show
that the inequality ¢, (A) > deg(u(S)) holds. Indeed, let a,, be a geometric generic
point of M 1" 5o that I, : P™ — P™ is a generic linear embedding that
intersects S in deg(u(S)) general points. The complex I wA is then supported
on deg(u(S)) points and non-zero on each of them, so the sum of its Betti numbers
is > deg(u(S)), which gives the stated bound.

Now assume that S is equal to X. In case A is lisse on the non-singular locus
of X, the subset Z is the singular locus of X, and the statement trivially holds
since the left-hand side of the estimate is independent of A. Otherwise, Z has
codimension 1 in X. Indeed, were its codimension bigger, A would be lisse on
the non-singular locus of X by purity of the branching locus [22, Exp. X, Cor. 3.3].
Let d be the degree of u(Z). Set m = 1 + codim(u(X)), and let a,, be a geometric
generic point of M]" """ so that I, : P™ — P™ is a generic linear embedding
that intersects the support of A in a curve C, of which d points lie in the singular
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locus Z. Let j be the embedding of C' in X. Moreover, let C' be the normalization
of C and let 7: C — C be the canonical morphism.

We can view the pullback j*A of A to C as obtained first by pullback along a
smooth morphism M™+Lntl x Pm — P followed by pullback to the geometric
generic fiber. Thus any property of A that is preserved by smooth pullback and
by restriction to the geometric generic fiber will be preserved by pullback to C.
In particular, by Lemma 3.12 a shift of j*A is perverse on C, and because an
irreducible perverse sheaf on a curve is a shift of a middle-extension sheaf, the
pullback j*A is a shift of a middle extension sheaf .#. In addition, .% is not lisse
on at least d points, since neither smooth pullback nor restriction to the geometric
generic fiber can make a singular point disappear.

Let .# be the middle extension of 7*.% from the maximal open set where it is
lisse; then .# is canonically isomorphic to T F , since both are middle-extension
sheaves on C' that are isomorphic on a dense open set. Let d’ be the number of
points where % is not lisse and that are not contained in the singular support of
C. We have d < d' + s and . is not lisse in at least d’ points.

From the equalities

S ORIP I wA) =D hi(C,j*A) = hi(C,.F)=> hi(C,F),
i€Z i€Z i€Z i€Z
we get
~xe(C,.F) <Y RLP 1L wA) < cu(A).
1€EZ
Let r be the “generic rank of A” in the sense of Proposition 3.4. By Proposi-
tion 3.4, the inequality r < ¢, (A) holds. Since l,,, is a generic linear embedding,
r is also the “generic rank of j*A” in the sense of Proposition 3.4. Since j*A is
a shifted middle-extension sheaf . %, r is also the generic rank of .#, i.e. the rank
of a lisse sheaf of which .Z is the middle extension. Since .# be the middle exten-
sion of 7*.% from the maximal open set where it is lisse, r is also the generic rank
of .Z. Using the Grothendieck-Ogg-Shafarevich formula, we get Xc(é T )< d —
. From this we derive the inequalities

d < 2r +c,(A) < 3cyu(A).

We finally get
d<d +s<(3+s)cu(A),

since ¢, (A) > 1.

Now consider the general case. For i € Z, let n; be the length of ».#*(A) and
let (A; j)1<j<n; be the Jordan-Hélder factors of P.7#71(A), repeated with multiplic-
ity. The object A is lisse on the intersection over i and j of the maximal open
sets U, ; where A; ; is lisse. (Note that all the irreducible perverse factors of a lisse
sheaf are lisse, so that if A, ; is not lisse at a point, then neither is A).

By the case of perverse sheaves, the complement of U; ; is the union of subvari-
eties with total degree < (3 + s)cy (4, ;). Thus, we obtain subvarieties Z; with

Z deg(Z;) < (3+ ) Z Z cu(Aij) <€ (34 s)c(u)eu(A)

i€Z j=1
by Theorem 6.15. (]
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6.7. Complexity of the cohomology sheaves of a complex. In this section,
we consider an analogue of Theorem 6.15 where the Jordan-Holder components of
the perverse cohomology sheaves are replaced by the ordinary cohomology sheaves.
This is a case where we will only be able to prove “continuity” abstractly, without
explicit estimates. Precisely, we have:

Proposition 6.24. The exist a function N: R™ x RT — R™T with the following
property: for any quasi-projective algebraic variety (X, u) over k with embedding
dimension n, and for any object A of D2(X), the following inequality holds:

D cu(H(A)) < N(n,cu(A)).

i€Z
We begin with two lemmas.

Lemma 6.25. For any non-negative integers d and n, there exists C(d,n) = 0 such
that, for any algebraically closed field k, for any prime £ invertible in k, and for any
closed immersion u: X — P™ whose image is a union of irreducible subvarieties of
total degree d, the inequalities

c(u) < C(d,n)
deg(Xs) < C(d,n)
hold, where X is the singular locus of X .

Proof. The theory of Chow varieties (see, e.g., [33]) provides a quasi-projective
scheme Chowg, over k£ whose points “are” the closed immersions i: X — P”"
whose image is a union of irreducible subvarieties of total degree d. The first
inequality then follows from Proposition 6.19 (1), and the second is a consequence
of the constructibility of the function that maps a point of Chow,,,, to the degree
of the singular locus of the corresponding quasi-projective variety. (|

Lemma 6.26. For any non-negative integers d and n, there exists C(d,n) > 0 with
the following property: for any algebraically closed field k, for any prime £ invertible
in k, for any quasi-projective variety (X, u) over k with embedding dimension n,
and for any object A of D2(X) with c,(A) < d, there exists a stratification

Xn1 € XX, 1 C... X1 CX
of X such that
The subvariety X1 is the support of A.
For all i, the subvariety X; — X;—1 is smooth.
For all i, the object A is lisse on X; — X;_1.
For all i, the subvariety X; is a union of at most C(d,n) subvarieties of
degree < C(d,n).
e For all i, the inequality c(u;) < C(d,n) holds, where u;: X; — X;11 — P"
is the natural immersion.

Proof. The equality ¢, (A) = c(u1A) holds by definition, so we may replace X with
the projective space P™ (and w with the identity), and A with w A, provided we
describe the subvarieties X; as forming a stratification of the support of A.
Indeed, we define X; to be the support of A, and then inductively X;11 to be
the complement in X; of the maximal smooth open subset of X; on which A is
lisse. On noting the inequality dim(X; 1) < dim(Xj;), this provides a stratification
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of the support of A with at most n + 1 non-empty subvarieties. We denote by v;
the immersion X; — P™.

We now prove by induction on ¢ with 1 <4 < n+1 that X; is a union of varieties
whose total degree is bounded only in terms of (d,n), and that ¢(v;) is bounded
only in terms of (d,n).

Since X7 is the support of A, either X is equal to P™ or it is the complement
of the maximum open subset on which A is lisse (in fact, zero). In the second case,
Lemma 6.23 shows that that X; is a union of varieties of degree at most 3¢, (A).
In the first case, the same inequality holds trivially. Then by the first inequality in
Lemma 6.25, the complexity ¢(v1) has a bound in terms of ¢, (A) and n, and hence
in terms of (d,n). This establishes the base case of the induction.

Assume that the induction assumption holds for some ¢ with 1 < ¢ < n. Then,
by (6.5), we obtain ¢, (v;A) < ¢, 1a(vi)e(A) = c(vi)c(A). By the definition
of X1, applying Lemma 6.23 and the second inequality of Lemma 6.25, we deduce
that X; ;1 is a union of varieties of total degree bounded only in terms of (d,n).
The first inequality of Lemma 6.25 applied once more shows that ¢(v;41) is bounded
only in terms of (d,n). This completes the induction.

It only remains to bound the complexity of the immersions u;. The excision
triangle gives

unQp — v Qp — U(i+1)!Q£

in D?(P™), and hence the inequality

c(ui) = c(unQy) < c(vaQy) + c(v(it1)Qp) = c(vi) + c(vit1)
follows by Proposition 6.14 (1). O

Proof of Proposition 6.24. We apply the previous lemma with d = ¢,(A4), and we
let C(d,n) = 0 denote the corresponding number and
Xn1 € X CX, 1 C... X1 CX

a stratification of X with the properties of the lemma.
Applying excision repeatedly and Proposition 6.14 (1), we get

S (I (A) = 3 clw 7 (A))

icZ i€Z
n+1 n+1
< Z Z c(uj!u;u!%i(A)) = Z Z c(ujyu;u;%i(A)).
i€Z j=1 j=14i€Z

Applying (6.6) to f = u; viewed as a morphism from (X; — X;41,u;) to (P™,1d),
we have

c(ujiufu st (A)) < cu, 1a(uj)cu, (Wju st (A)) = c(uj)cy, (uju " (A))

for all ¢ and j. By construction, uyuﬂ%ﬂi(A) is lisse on the smooth scheme
X; — Xj41; since the perverse homology sheaves and the usual homology sheaves
of a lisse sheaf on a smooth scheme agree, the estimates

Z c(ujru;‘uyﬁl(A)) < C(’U,j) Z Cuj (P%z(u;‘u,A)) < C(uj)ZCuj (u;UIA)
i€Z i€Z
hold by Theorem 6.15. Applying (6.5), we get
cu; (ujwA) < c(uj)e(mA) = c(uj)eu(A),
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and therefore
n+1

Y A(A) < cu(4) Y eluy)?
i€Z j=1
is bounded only in terms of (n,d), since c(u;) < C(d, n) for all j. O

6.8. Generic base change. We now prove an effective version of Deligne’s generic
base change theorem [0, Th. finitude, 1.9]. This argument is due to A. Forey.

Theorem 6.27. Let (X, u), (Y,v) and (S,w) be quasi-projective algebraic varieties
overk. Let f: X =Y and g: Y — S be morphisms.

For any object A of D2(X), there exists an integer N > 0, depending only on
cu(A) and (f, g,u,v,w), and a dense open set U C S such that

(i) The image of the complement of U has degree < N.

(ii) The object f.A is of formation compatible with any base change 8" — U C S.

Remark 6.28. The original generic base change theorem is stated for a con-
structible sheaf of R-modules, where R is a Noetherian ring satisfying nR = 0
for some integer n that is invertible in S, and S is not supposed to be defined
over a field k. An additional statement of the theorem is the constructibility of
f+A on Yy. In the setting of the above statement, it is already known that f,A
is constructible, precisely by applying [6, Th.finitude, 1.9] to f: X — Y over k.
However, in order to understand the complexity of the complement of the open set
U over which f, A is of formation compatible with base change, we would need to
redo the whole proof, following closely Deligne’s argument (see also [18, Th.9.3.1]).

In this section, we will often write simply ¢(X) for the complexity c¢(u), where
(X,u) is a quasi-projective variety. Recall also from Remark 6.7 that if i: Z — X
is an immersion, then cyoi (1) = ¢(2).

Before starting the proof, we state a useful lemma.

Lemma 6.29. Let (X,u) be a quasi-projective variety over k of embedding di-
mension n. There exists a finite open cover (U;) of X into at most dim(X) + 1
affine subvarieties with open immersions u;: U; — X such that cyou,; «(ui) = c(U;)
is bounded in terms of ¢(u) = ¢(X) and n.

Proof. The image of v in P™ can be written as Z — W, where Z and W are closed
subvarieties of P". As in the proof of Lemma 6.26, by Theorem 6.23 the degrees
of Z and W are bounded in terms of ¢(u) and n. Let H be a hypersurface of P"
such that W C H but Z ¢ W. One can choose W of degree at most the degree
of W. Then set U; = Z — H, which is an affine open subset of Z — W of complexity
bounded by the degrees of Z and H. Since dim(ZNH) < dim(Z), one can conclude
by induction: the affine open subsets of Z N H that are obtained are restrictions
of affine open subsets of P™, and hence their restrictions to Z produce affine open
subsets of Z — W, which, together with Uy, cover Z — W. ([

During the proof of Theorem 6.27, we will repeatedly consider subschemes of
X, Y and S. These will always implicitly be considered with the locally closed
embedding inherited from X, Y or S. All complexities will be computed with
respect to those implicit embeddings, and hence we will simplify the notation by
dropping the embeding from the complexity. Moreover, whenever we say that
we can shrink S, we mean that we can replace S by a dense open subset whose
complement has bounded degree in terms of ¢(A).
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Proof of Theorem 6.27. Working successively with each irreducible component of .S,
there is no loss of generality in assuming, as we do from now on, that S is irreducible.

Step 1. We first consider the particular case where S = Y, the variety X is
smooth of pure relative dimension d over S, and A is a lisse sheaf such that R’ f; A’
is lisse for each i € Z. Here, A’ denotes the “naive” dual A’ = #om(A,Q,),
i.e.non-derived sheaf homomorphisms. Then Deligne [6, Th. finitude, 2.1] proves
the result with U = S (this is essentially a consequence of the proper base change
theorem and Poincaré duality).

Step 2. We now assume that S = Y, X is smooth over S of pure relative
dimension d, and that A is a lisse sheaf. Let again A’ = J#om(A,Q,); by (6.6)
and Theorem 6.23, there exists an open set U C S whose complement has degree
bounded in terms of ¢(A’), and hence in terms of ¢(A), such that fi A’ is lisse on U.
Over the dense open set U, we are in the situation of Step 1, and hence the result
holds in this case too.

Step 3. We now perform some reductions for the proof of the general case.
We first observe that the problem is local on Y, so that we may assume that Y
affine. Using a finite affine cover of X and excision, we may also assume that X is
affine. Note that the complexity of the restriction of A to those affine open subsets
is bounded in terms of ¢(A) by (6.5).

Up to shrinking X again, we can now factor f into an open immersion followed
by a proper morphism g (this is a form of Nagata’s compactification theorem).

By proper base change, the result holds for the morphism g with U = S, and
hence it is enough to prove the result when f is an open immersion with dense
image. We will then prove the result by induction on the relative dimension n > 0
of X over S.

For n = 0, since X and Y are of dimension 0 over S, up to shrinking S to a
dense open subset (whose complement is of degree bounded in terms of X and Y'),
we have X =Y. Hence the result holds.

We now consider n > 1, and assume that the result holds for relative dimension
up ton — 1.

We will prove below the following sublemma:

Lemma 6.30. With notation and assumption as before, up to shrinking S, there
exists a dense open subset Y' C'Y such that the result holds over Y' and such that
the complement of Y' in'Y is finite of bounded degree over S.

Step 4. Under the conditions of Step 3, we further assume that X is smooth
over S and that A is a lisse sheaf. We can replace Y by its closure in the image of v,
and hence assume that Y is projective over S. Using Lemma 6.30, we can assume
that there exists Y/ C Y such that the result holds for Y’ and that Y —Y” is finite
over S of bounded degree. We then have the following commutative diagram:

~

VA
e
'\<

|

=

n
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By Step 2, up to shrinking S, the object a, A is of formation compatible with any
base change. By the choice of Y’ (after again shrinking S) the object j*f.A is of
formation compatible with any base change. By the proper base change theorem,
the same holds for b,j1j* f+ A. Now we have a distinguished triangle

17 e A — LA — 07 fL A
Applying b, to it, we get the distinguished triangle
bug1i* fxA — a, A — c 1" fL A

Since the first two complexes in this triangle are of formation compatible with any
base change, the same holds for the third one, namely c,i* f, A. Since c is finite,
this implies that i* f, A also has the same property. Hence in the first triangle, the
first and third complexes are of formation compatible with any base change, and
hence the middle one, namely f,A, also has this property. This finishes the proof
in this case.

Step 5. We now show how to reduce the situation (after the reduction in Step 3)
to that of Step 4. We will also prove below the following additional sublemma:

Lemma 6.31. Up to shrinking S, and performing a base change along a finite
surjective radicial morphism and reducing X, in an effective way, we can find an
open dense subset V' of X that is smooth over S and has complement of bounded
degree.

By Proposition 6.24, the complexity of the cohomology sheaves of A are bounded
in terms of ¢(A); hence, up to replacing A by each of its cohomology sheaves in
turn, we reduce to the case where A is a sheaf. If the support of A is not dense in X,
then the support has relative dimension < n — 1, and we are done by induction.
If the support of A is dense in X, then by Theorem 6.23, up to shrinking V', we
may assume that the restriction of A to V is a lisse sheaf. Applying induction to
the restriction of A to X — V and excision, we can assume that A is a lisse sheaf
supported on V.

Let j be the open immersion V' — X. By Step 4, the result holds for j, and hence
up to shrinking S, we may assume that j,j*A is of formation compatible with any
base change. Choose a cone C' of the canonical adjunction morphism A — j,.j*A.
By definition, we have a distinguished triangle

A—j.jA—C

and the cohomology of C' is supported on Z = X — V. Since the first two complexes
are of formation compatible with any base change, the same is true for C. By
Theorem 6.8 and Proposition 6.14, the complexity of the restriction of C' to Z
is bounded in terms of the complexity of A. Since the relative dimension of Z
is < n, the induction hypothesis applies to the closed immersion Z — X and to
the restriction of C' to Z. Hence, up to shrinking S, we can assume that f.C is of
formation compatible with any base change.
We then apply f. to the previous distinguished triangle and obtain

feAd = (f)«7A = f.C

By Step 4 again, the result holds for the open immersion fj: V — Y, so that after
shrinking S, the objet (fj).j*A is of formation compatible with any base change.
Since we have seen that this also holds for f,C, we deduce that f, A is of formation
compatible with any base change, as desired. [



48 WILL SAWIN

We now prove the sublemmas above.

Proof of Lemma 6.30. The problem is local on Y, so by Lemma 6.29, we can also
assume that Y is affine over S. We hence assume that Y C A, where the choice
of coordinates is induced by v.

For 1 < i < 7, consider the i-th coordinate projection p;: Y — A}g. We view
X and Y as Ak-schemes using p; as structure morphism. The generic relative
dimensions of X and Y are then < n — 1, and hence we can apply the induction
hypothesis to this situation. We find a dense open subset U; C A}; such that the
complement of U; in Aj is of degree bounded in terms of ¢(A), and such that f.A
is of formation compatible with any base change S’ — U; C A}. Define

Y= |J »' W)

1<igr

Since the complexity of the U; is bounded in terms of ¢(A), the same holds for Y.
From the definition of Uj, the result holds for the restriction of f to X’ = f=1(Y”).
Since the morphism

Y -Y' =(AL —U)) x5--- x5 (AL —U,) — S

is generically finite, there exists a dense open S’ C S over which this morphism is
finite. The degree of S — S’ is bounded in terms of the degrees of A} — U;, for
i=1,...,r, and hence is itself bounded in terms of ¢(A4), which ends the proof of
the sublemma. O

Proof of Lemma 6.31. Recall that X is assumed to be affine, with a fixed closed
embedding into A% for some integer r > 0. By the effective version of generic
flatness, see, e.g., [43, Th.2.45], we find a dense open subset S’ of S over which X
is flat and such that the complement of S’ in S is of bounded degree. We may
therefore assume that X is flat over S. To obtain smoothness, we use the Jacobian
criterion. We want to define U to be the complement in X of the vanishing locus of
the Jacobian ideal, which is indeed of bounded degree. However, for this to define
a dense open subset of X, we need to perform first a base change along a finite
surjective radicial morphism S’ — S (which does not change étale cohomology),
then replace X and Y by their reductions. The degree of the finite surjective
radicial morphism is determined by the degrees (according to the affine embedding
of S) of the coefficients of the polynomials defining X in A%, and hence is bounded.
Once the result is known for Xg: over S’, we conclude the proof by considering the
image U of the dense open subset of S by the morphism S’ — S, since the degree
of the complement of U is still bounded. O

6.9. Tannakian operations. Let (X, u) be a connected quasi-projective algebraic
variety over k, and let % be a lisse f-adic sheaf on X. We shall view # as
a continuous representation m of the étale fundamental group of X on a finite-
dimensional Q-vector space. The monodromy group of % is then defined as
the Zariski closure of its image, which is an algebraic group G over Q, equipped
with a distinguished faithful representation. Given a further algebraic representa-
tion p: G — GLN(Q,), we denote by p(.Z) the lisse f-adic sheaf corresponding to
the representation p o 7.

The following lemma is very useful in deriving properties of p(%) from those
of #. By a reductive group over a field of characteristic zero, we mean a group G
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all whose finite-dimensional representations are completely reducible (that is, G is
not assumed to be connected).

Lemma 6.32. Let G C GLy be a reductive group over an algebraically closed field
of characteristic zero and denote by Std its tautological N-dimensional represen-
tation. For any algebraic irreducible representation p: G — GL(V), there exist
non-negative integers (a,b) such that p is a subrepresentation of Std®* @ D(Std)®®.
If the determinant of Std has finite order, there exists such a pair with b= 0.

Proof. For the first part of the statement, see, e.g., [5, Th.111.4.4] in the case of
compact Lie groups, and use the equivalence of categories between reductive groups
and compact Lie groups.

When the determinant has finite order, it suffices to prove that the contragredient
of the tautological representation is a subrepresentation of a tensor power of the
standard representation. But, using brackets to denote multiplicity, we have

(D(Std), Std®*) = (1, Std® @+ 1)y

for all a > 0, and if det(Std)™ = 1 for some m > 1, we have (1,Std®™") > 1.
Indeed, as the determinant is the highest exterior power, there is an inclusion
det  Std®”, and this induces 1 = det®™ c Std®™¥ . a

Proposition 6.33. With notation as above, assume that the group G is reductive
with finite center. There exists an integer a > 0, depending only on p, such that

cu(p(F)) < cu(F)",
where the implied constant depends only on the embedding dimension of u.

Proof. Let Std denote the standard faithful representation of G corresponding to
the sheaf .#. The identity component G° of G is reductive, so the restriction of
the one-dimensional character det(Std) of G to G° is non-trivial if and only if its
restriction to the central torus of GO is non-trivial. The central torus of GV is a torus
with an action of the (finite) component group of G' by conjugation which does not
fix any non-trivial cocharacter. Hence, it does not fix any non-trivial character, so
the restriction of det(Std) to G is trivial, and thus det(Std) has finite order. By
Lemma 6.32, there exists a non-negative integer a such that p is a direct summand
of Std®®. Thus, the estimates

cu(p(F)) < cu(FH?) < cu(F)"
hold by Proposition 6.14 (2) and parts (6.1) and (6.2) of Theorem 6.8. O

Remark 6.34. If X is a curve, the estimate can be strengthened considerably to
cu(p(F)) < dim(p)eu(F)

by using the “local” formula of Theorem 7.3 below (see [26, Ch. 3] for arguments
of this kind). It would be very interesting to know whether such a strong bound
holds in higher dimension.

In some applications, it is natural to try to improve on this bound by estimating a
effectively, or in other words, to make Lemma 6.32 effective. We record here one
such estimate, since this might be of interest for other applications.

Let N > 1 be an integer and let G C GLy be a reductive algebraic group over
an algebraically closed field of characteristic zero. As above, we denote by Std the
tautological faithful representation of G in GLy.
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Definition 6.35. For any irreducible algebraic representation p of G, we define
w(p) = min{a+b | p is a subrepresentation of Std®" ® D(Std)®b} .

Lemma 6.32 means that w(p) is finite for all irreducible algebraic representa-
tions p of G.

Proposition 6.36. Let A be the weight lattice of the identity component Gy of G.
Fiz a norm || - || on A. There exist real numbers «, 8 > 0 such that, for any
irreducible algebraic representation p of G, the inequality

w(p) < amax |\l + B

holds, where the X\; are the highest weights of the irreducible components of the
restriction of p to Gy.

Proof. In this proof, we will say that a pair (a,b) is a spot for a representation p
of G if p appears as a subrepresentation of Std®* @ D(Std)®?.

Let n be the semi-simple rank of G. For a positive dominant weight A in A, we
denote by ) the irreducible representation of GV with highest weight \.

We first assume that G is a connected semisimple group. In this case, the
representation p is associated to a single highest weight A\. Moreover, we can choose
a basis (e;) of the root lattice tensored with R such that a Weyl chamber can be
identified with the cone of vectors with coordinates > 0.

For integers ¢ with 1 < 7 < n, we denote by \; the weight in the line spanned
by e; with minimal i-th coordinate, and we write \; = z;e; for some integer z; > 1.
Further, for each 4, we fix spots (a;, b;) of 7y, (which exist by Lemma 6.32).

We denote by A the finite set of positive dominant weights p such that each
coordinate of p is < z; for all 4. For each 1 € A, we fix spots (a,, b,) of 7.

By subtracting from a weight A of G suitable multiples of Ay, ..., A,, until all
coordinates are < z;, we see that we may write

i=1

where p € A and 0 < n; < £;(\) for some linear maps ¢;: A — Z.
From highest weight theory, the representation p with highest weight A is a

summand of
®n;
T & ® UDVIRE
1<igr

Hence, by definition, the pair (a,b) given by

T T
a:a#—l—Zniai, b:bu—i—Znibi,
i=1 i=1
is a spot of p. We have then

w(p) <a+b< a+ bl

where
.

o= majf(% +bu), B= max [14:]] x Z(ai + b;)

S
" =1

(with the usual norm for linear maps A — R with respect to the given norm on A).
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Assume now that G is a connected reductive group. We construct the weights
A; and A of the derived group of G as before, then lift them (keeping the notation)
to the whole group. Let further (v;)1<;j<x be a basis of the subspace of the weights
whose associated representations are trivial on the derived group.

For any highest weight A of G = G, the representation 7 can then be expressed
as a summand of a representation of the form

®n; j
me @ e @

1<igr 1<i<k

where, as before, the n; and m; are bounded by linear functions of A. This leads
to a bound of the desired type as in the semisimple case.

Finally, we consider the general case. Let Stdg be the tautological representation
of G°. Note that for any non-negative integers (a, b), the representation

(6.19) d& (Std5* @ D(Stdy)®?)

contains Std®® ® D(Std)®? as a subrepresentation. Moreover, by Frobenius reci-
procity, the multiplicity of p in (6.19) is the dimension of the space of G’-morphisms
from the restriction pg of p to G to Stdy* ® D(Stdg)®?. For an irreducible compo-
nent p’ of pg, this space is non-zero for some (a,b) with a +b = w(p’). The bound
then follows from the case of connected groups established in the first part. O

6.10. Independence of /. In this section and the next one, we work over a finite
field F and k is an algebraic closure of F. We use the notation for trace functions
from the introduction. We first prove that the complexities of a compatible system
of (-adic sheaves are largely independent of ¢, following ideas from Katz [28].

We fix a quasi-projective variety (X, u) over F and a field K of characteristic
zero. In order to vary the prime ¢, we make the following definitions. Let A be a
non-empty set and let . be a family (£y,t))rea of pairs where each £, is a prime
number invertible in F and ¢, is a field embedding of the given field K in QA'

Definition 6.37. An .-compatible system of complexes on X is a family (A)rea
consisting of objects Ay of DP(X, Q,, ) such that the following conditions hold:
e for any A € A, any finite extension F,, of F, and any z € X (F,,), the trace
ta, (2;F,) takes values in the subfield ¢ (K) of Qy,;
e for any A, p in A, any finite extension F,, of F, and any = € X(F,,), we
have
L;11§AA (;F,) = L;ltAu (x;Fp).

Lemma 6.38. Let (Ay)aea be an 7 -compatible system on X. The Euler—Poincaré
characteristic x.(X X k, Ay) of Ay is independent of \.

Proof. For any A, it follows from the definition of .#’-compatible system that the
L-function of Ay is independent of X\. From the expression for this L-function given
by the Grothendieck—Lefschetz formula, we know that x.(X x k, Ay) is the degree of
this rational function (degree of the numerator minus degree of the denominator),
and hence is independent of A. O

We then have the following result:
Theorem 6.39. Let . be as above.
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(1) Let n > 0 be an integer and let (Ax)x be an 7 -compatible system of perverse
sheaves on Pg. Then for A and p in A, we have

c(Ax) < c(Ap),
where the implied constants only depend on n.

(2) Let (X,u) be a smooth quasi-projective variety over F and let (Fx)x be an
& -compatible system of lisse sheaves on X. Then for all A and p in A, we have

cu(Fr) < cu(Fp),
where the implied constants only depend on the embedding dimension of (X, u).

Proof. (1) We argue by induction on n, following the strategy of Katz [28, Th. 7).
It is enough to prove the estimate

c(Ar) < c(A2)

for two compatible perverse sheaves A; in D2(P",Q,,) and A, in D2(P™,Q,,),
with an implied constant that only depends on n.

If n = 0, then A; and As are vector spaces of the same dimension and their
complexity C(Al) = ¢(Ay) is this common dimension.

We now fix n > 1 and assume that the result holds on P™ forall0 <m <n—1.
For each 0 < m < n— 1, we pick a geometric generic point a,, € M’H'1 m+1(kj’) for
some algebraically closed field &'

Let 0 < m < n — 1. By applying Lemma 3.13 to A; and Ay, we find open
dense subsets U, 1 and U, 2 of M,?H’mﬂ satisfying the properties of Lemma 3.13.
Up to replacing F by a finite extension, which we may do, we can assume that
(U1 NUp 2)(F) is non-empty for all m, and we then pick by, € (Up,.1 NUp2)(F),
again for all m. The complexes [j; Aj[m —n] and lj Az[m —n] on P™ over F are
perverse and form a compatible system; hence, by the induction hypothesis, the
equivalence

(620) C(lZmAl) = C(l;;mAg)
holds, with implied constants that only depend on n. We have

max E h(Pm,1* Aq) max E hz moly Ay
os<m<n—1 -t ( k , O<m<n 1 ks "o ),
K3

again by Lemma 3.13. Hence

(6.21) 0<g§§1§;h1 wln, A = clly, A,
1€

by the definition of the complexity and Lemma 3.7.
Together with (6.20), it follows that

c(4y) = max Zh Ay)

<o<%25§_12h2< Bola, AN+ D KPR, Ay
i€Z 1€L
<clly, A2)+ > K (PRI Ay)
i€Z

< c(Ar)+ Y R(PR, 1L Ar).

i€Z
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n+1,n+1
€ My,

Since the geometric generic point a, induces an isomorphism g,

of P}, it is enough to prove the estimate
Z RY( ) < ¢(A2)
1€EZ
Arguing as in the proof of Proposition 3.17, we have

hO( Z/,A ) Al +Z 'L+1h2 Al +Z z+1hz n ,A1)7

<0 >0

=Y KPR, AL+ hO(PR, AL + DR

and therefore

1<0 >0
<2y hi( 1) + X (PR, Ay + 23  hi(PR, A
<0 >0

By excision and Artin’s vanishing theorem for affine varieties, and the fact
that A; is perverse, the canonical map

H (P, A)) — H(PL' 1L Ay

is an isomorphism for ¢ < 0. Similarly, because the dual of a perverse sheaf is
perverse and duality exchanges I | and l;nil, the canonical map

HY(PY L1, A — H(PR,A))

is an isomorphism for ¢ > 0. Since lq, , is a closed immersion, the functors [},

an—1

n—1

and liln_ , are equal up to a shift and a Tate twist. Hence,

o1 =2 KW (Pp,l5 A1)+ x(PR, A +2> W (PL, L, A)
<0 i>0
<4 KR(PTLLL AL+ X(PR, As)
icZ
using Lemma 6.38. Hence,
0 K C(AQ) + X( Z’a AQ) < C(AQ)v

by (6.20) and (6.21), and the elementary Proposition 7.1 below.

(2) The proof is similar, using the obvious adaptation of Lemma 3.13 to lisse
sheaves, and the fact that the dual of a lisse sheaf on a smooth scheme is lisse.
Alternatively, but at the cost of adding a dependency of the implied constants on
c(u), we may use [19, Th. 3] to reduce to (1); indeed, this shows that the middle
extensions ui, Ay of the components of a compatible system of lisse sheaves is a
compatible system of perverse sheaves on the projective space target of u, and one
can apply Corollary 6.16 to bound the complexity of the middle extensions. (|

6.11. Complex conjugation. We keep working over a finite field F with algebraic
closure k. In applications to analytic number theory, taking the complex conjugate
of the trace function ¢ 4 is a natural operation, but this has no canonical counterpart
at the level of D?(X). Nevertheless, we have the following result:

Proposition 6.40. Let (X, u) be a quasi-projective algebraic variety over F. Given
any mized object A of D2(X), there exists a mized object A’ of DY(X) such that

ta(Fp)=ta(F,) foranyn and c,(A") < c(u)c,(A),
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where the implied constant depends only on the embedding dimension of (X, u).

Proof. For each n > 1, the trace function t4(;F,,) is the restriction to the set
X (F,) of F,-rational points of X of the trace function of the complex wyA on P",
which is again mixed if so is A. Assume that we have found a mixed object A
of D2(P") that “works” for ujA, then A’ = u* A works for A, and
cu(A") < c(u)e(A) < e(u)e(umA) = c(u)ey, (A),

where the first bound is part (6.5) of Theorem 6.8. Thus, we may assume X = P"
(with the identity embedding).

We first assume that A is a perverse sheaf. If A is pure of weight zero, then
A is geometrically semisimple by [3, 5.3.8]. As explained in [29, Lem. 1.8.1. (1)],
a result of Gabber on the independence of ¢ of traces of intermediate extensions
[19, Th. 3] then implies that we can take A’ = D(A). The perverse sheaf A’ is also
pure of weight zero and has complexity ¢(A’) = ¢(A) by Lemma 6.11. If A is pure of
weight w, then we can simply take A’ = D(A(w))(—w), which is pure of weight w.

Suppose now that A is a mixed perverse sheaf. Let (F};) be the canonical weight
filtration on A, with quotients F;11/F; pure of weight w; (see [3, Th.5.3.5]). We
first claim that the estimate

D Fj /Fy) < e(A)
J
holds. Indeed, since the quotients are perverse sheaves, we have
> clFiia/F) < leelFya /i)l = |3 colFyia/Fy)| = llee(a)]| < e(4)
J J J
by Corollary 5.5 and the fact that the characteristic cycles of perverse sheaves are

effective (compare with the end of the proof of Theorem 6.15). In view of the
equality

ta(sFy) = ZtFjJrl/Fj(';Fn)
J
for all n > 1, we can take

A = @ D((Fj+1/F;)(wi))(—w;),

which is a mixed perverse sheaf with complexity
c(A') =Y e(D(Fj1/Fy) = > e(Fi1/Fy) < c(A),
J J
by Lemma 6.11 and the above.
Finally, in the general case, if A is a mixed complex of weights < w, then its

perverse cohomology sheaves ¥ 7#%(A) are mixed of weights < w + 4 for all € Z
by [3, Th.5.4.1] and we have

ta(5Fn) =Y (=)'t siay (5 F)
i€Z
for all n > 1. For all 4, let A, be a mixed perverse sheaf satisfying the conditions
of the proposition for P #¢(A). We can define

A=A,

i€Z
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which satisfies
c(A) = c(A]) <D c(PH(A)) < c(A)
i€Z =Y/
by the previous case. (I

Remark 6.41. In practice, the conjugate of the trace functions that occur in
concrete applications are often clearly trace functions with essentially the same
complexity (e.g., the conjugate of the trace function of an Artin—Schreier sheaf
ZLy(y) is simply £y, 5)). Nevertheless, Proposition 6.40 might be useful for certain
theoretical arguments.

Remark 6.42. In fact, the assumption that A is a mixed object is always satisfied
thanks to the deep theorem of L.Lafforgue that an irreducible lisse sheaf with
determinant of finite order on a normal variety X is pure of weight zero (see [36,
Prop. VIL.7 (i)]). We briefly sketch how to deduce from this that A is mixed. By
definition, it suffices to treat the case where A is a constructible sheaf and, by
induction on the dimension of X, we can even suppose that A is lisse. The successive
quotients of a Jordan—Holder filtration of A are then irreducible lisse sheaves; up to
a twist by some Q,(w), their determinant is of finite order by geometric class field
theory (see [7, (1.3.6)]), and hence they are pure thanks to Lafforgue’s theorem.

7. EXAMPLES AND APPLICATIONS

7.1. Sums of Betti numbers. One of the most useful properties of the complexity
is that it controls Betti numbers, as the following proposition shows.

Proposition 7.1. Let (X,u) be a quasi-projective variety over k. For any A in
DP(X), the following holds:

Xe(X, A)| <D RUX, A) < cu(A),
i€Z
IX(X, A)] <D (X, A) < c(u)eu(A).
i€Z
Moreover, the implied constant in the second estimate only depends on the embed-
ding dimension of (X, u).

Proof. Let n be the embedding dimension of (X,u). For each object A of D?(X),
the equality hi(X,A) = h'(P%,wA) holds. Since étale cohomology is invariant
under extension of scalars to an algebraically closed field ¥’ and 4, : P}, — P}, is
an isomorphism, the first bound is a straightforward consequence of the definition
of the complexity ¢,(A). On noting that Verdier duality implies the equality of
sums of Betti numbers Y, 5 h'(X,A) = 3, 5 hi(X,D(A)), the second estimate
then follows from the first one and the estimate ¢, (D(A)) < ¢(u)c,(A4) from (6.1),
with an implied constant that only depends on n. O

Remark 7.2. The converse estimate
cu(A) < Y hL(X,A)
i€Z
does not hold in general, since the right-hand side is independent of u, whereas we

have seen in Example 6.1 that there is no reasonable intrinsic notion of complexity
of an object of D?(X). This can also be seen concretely, e.g. in the case of curves.
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7.2. Complexity of sheaves on curves. In the case of curves, we can write down
an explicit formula for the complexity.

Theorem 7.3. Let (C,u) be a smooth connected quasi-projective curve over k. Let
C be the smooth compactification of C, and denote by g the genus of C, by n the
number of points of C' — C, and by d the degree of u(C).

(1) The complexity of an object A of D?(C) is given by
(7.1) cu(4) = max(dZdlm%m U,Zhl C, A)
i€Z i€Z

where 1 stands for the generic point of C.
(2) If A is a perverse sheaf on C, the following inequalities hold:

max(d, 2g+n —2) rank(A) +1oc(A) < ¢, (A) < max(d,2g+n+2) rank(A) +loc(A).
(3) If Z# is a middle-extension sheaf on C, the following inequalities hold:
max(d, 2g+n—2) rank(F)+loc(F) < ¢, (F) < max(d, 29+n+2) rank(F )+loc(.F).

Proof. Part (1) is simply a translation of the definition of ¢, (A).
To deduce (2), we first note that a perverse sheaf A satisfies

> dim . (A), = dim £~ (A) = rank(A).
i€EZ
Writing the sum of Betti numbers as
D hi(C,A) = —xe(C, A) +20°(C, A) + 207 %(C, A),
i€Z
we then have
—xe(C, A) <D hL(C, A) < —xe(C, A) + drank(A).
i€Z

Taking the equality x.(C,Q,[1]) = 2g — 2 + n into account, the statement then
follows from the Grothendieck—Ogg—Shafarevitch formula.
Finally, (3) is a special case of (2), for the perverse sheaf A = .Z[1]. O

As a corollary, we can now compare the complexity defined in this paper with
the “analytic conductor” of Fouvry, Kowalski and Michel for the affine line over the
algebraic closure of a finite field. Precisely, for a middle-extension sheaf .# on Al
over such a field, the latter is defined in [15, Def. 1.13] as

Cfkm (ﬁ) = rank(ﬁ) + IOkam(j)

locgen (:F) = (number of singular points of .# in P') + Z swan, ().

Corollary 7.4. For a middle-extension sheaf .# on Al over a finite field, the
inequalities

e (F) < cu(F) < B (F)
hold, with u the obvious embedding A — P of degree 1.
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Proof. We apply Theorem 7.3 with ¢ = 0, n = 1, and d = 1. On noting the
inequality drop, (%) < rank(.%), the upper-bound in (3) leads to

cu(F) < 3rank(.F) + loc(F) < 3rank(.F) + rank(.F) locsim (F)
< 3rank(F)cam (F) < 3cpam (F)2.
In addition, the inequality locgm, (%) < loc(#) holds, hence the inequalities
Ckm (F) < rank(F) + loc(F) < ¢y (F)
by the lower-bound in loc. cit. ([

7.3. Artin—Schreier and Kummer sheaves. In this section, k is the algebraic
closure of a finite field F. Given an ¢-adic additive character ¥: F — QZX (resp. an
l-adic multiplicative character y: F* — QL;X), we denote by %, (resp..Z),) the
corresponding Artin—Schreier sheaf on Al over F (resp. the Kummer sheaf on G,
over F), as defined, e.g., in [6, Sommes exp.]. These are lisse sheaves of rank one;
the Artin—Schreier sheaf is wildly ramified at oo if 1 is non-trivial, whereas the
Kummer sheaf is tamely ramified at 0 and co. We also denote by %), and .2 the
middle extensions of these sheaves to P*.

Proposition 7.5. Let C = P! over k and u = Id.
(1) For any non-trivial additive character ¢ of F, we have ¢, (Zy) = 1.
(2) For any non-trivial multiplicative character x of F*, we have c¢,(%,) = 1.

Proof. These follow from Theorem 7.3 (1) by the standard knowledge of the relevant
Betti numbers. O

We can now easily estimate the complexity of more general Artin—Schreier and
Kummer sheaves, which are building blocks of many of the sheaves used in appli-
cations to analytic number theory.

Definition 7.6. Let X be a scheme over F and U a dense open subset of X. Let j be
the open immersion U — X. For each morphism f: U — A', we define the Artin—
Schreier sheaf £y sy on X as ZLyp) = nf*%Zy. For each morphism g: U — Gy,
we define the Kummer sheaf £y on X as 2,y = 19" L.

Let (X,u) be a quasi-projective variety over k, and let v: A' — P! be the
obvious embedding (or its restriction to G,,). Combined with (6.5) and (6.6),
Proposition 7.5 gives the estimates

cu(Ly(f)) K Cuojuld)Cuosv(f)
Cu(gx(g)) < Cuojuld)Cuojn(9),

(with the same notation as above, and when ¢ and x are non-trivial), where the
implied constants only depend on the embedding dimension of u. According to
Remark 6.20, these quantities are uniformly bounded if f or g varies among mor-
phisms with “bounded degree”. One can sometimes be more explicit, using tools
like Proposition 6.21. Here is a simple example:

Corollary 7.7. Let fi and fa be polynomials in n variables with coefficients in k,
with fo non-zero. Let U C A™ be the open set where fo does not vanish. Set
f=fi/fo: U— Al. Then the following estimate holds:

cu(Lyp) < (44 deg(f1) + deg(f2))"*?
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where u: A™ — P™ is the standard embedding and the implied constant only depends
on n.

Proof. Apply the bound above combined with Proposition 6.21, viewing U as the
subscheme of A"t! defined by the equation fy(z)y = 1, and f: U — Al as the
morphism (z,y) — f1(z)y. O

7.4. Further examples. We collect here a few more examples of “standard”
sheaves whose complexity is easily estimated. Again, k is the algebraic closure
of a finite field F.

Proposition 7.8.
(1) Let % be any hypergeometric sheaf on G, in the sense of Katz'. We have

cu(H) < rank(H%)

where the implied constant is absolute and u: G,, — P! is the standard
embedding.
(2) Let (E,u) be an elliptic curve over F embedded in P? as a cubic curve.

Let 0 be a non-trivial character E(F) — Qéx, and let £y be the associated
character sheaf defined by the Lang isogeny. Then ¢, (%) = 3.

(3) Let {x1,...,24} be four distinct points in PY(F). Let F be an irreducible
middle-extension sheaf of rank 2 on P! over F with unipotent local mon-
odromy at those four points.> Then c(F) = 2.

Proof. All these statements follow straightforwardly from calculating Betti numbers
and Theorem 7.3 (1).

In the case of a hypergeometric sheaf, the cohomology is one-dimensional.

In case (2), we apply (7.1) with (n,g,d) = (0,1,3). The rank of .% is 1, so the
first term in the maximum is equal to 3. The second term is 0, since h'(E, %) = 0
for all i by the assumption that 6 is non-trivial.

In case (3), we apply the formula with (n,g,d) = (0,0,1). The first term in the
maximum is 2 since the rank of .% is 2. In the second term, we have

(P, 7) = 1(P',.7) =0,

since % is an irreducible middle-extension sheaf of rank 2. Thus, the sum of Betti
numbers is equal to —x(P!,.#). The Euler—Poincaré characteristic formula for .F
gives

X(P,F) = 2(PL,Q,) —4x 1=0

Hence, the sum of the Betti numbers vanishes and ¢(.#) = 2. O

7.5. Tame ramification. When a sheaf naturally appears in higher dimension
without being obtained from simpler sheaves by means of Grothendieck’s six func-
tors, one may still be able to estimate its complexity, using either the direct defini-
tion of complexity, or sometimes the uniformity statement of Proposition 6.19. We
illustrate this here with some results involving tame ramification.

ISee [27, §8.2] for the definition and properties of hypergeometric sheaves.
2 Deligne and Flicker [9, Prop. 7.1] have proved that there are |F| such sheaves up to isomor-
phism and F-twisting.
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Proposition 7.9. Let X be a smooth scheme over k, and let j: X — X be an
embedding into a smooth scheme X such that the complement D = X \ X is a
divisor with normal crossings. Leti: X — P be a closed immersion, and let F be
a lisse sheaf on X that is tamely ramified along D. Then the following holds:

Cioj (F) < rank(F)c(i o j).

Proof. Set d = dim(X). The object .#[d] is perverse since .# is a lisse sheaf on
a smooth scheme of dimension d. Since j is an affine open immersion, the object
J1:7d] is perverse on X, and since i is a closed immersion, the object A = i,j.7[d]
is also perverse (see [3, Cor.4.1.3]). Since A is perverse, Corollary 5.5(2) and
Lemma 2.5 yield

Cioj(F) = ¢(A) < [|CC(A)[| < sup [CC(A) - CC(Km)l,

os<m<n

where K, is the constant sheaf on a generic m-dimensional subspace of P™.

By Theorem 2.2, | CC(A) - CC(K,,)| is the absolute value of the Euler—Poincaré
characteristic of the pullback of A to a generic m-dimensional subspace, or equiva-
lently the Euler—Poincaré characteristic of the restriction of .% to the intersection
of a generic m-dimensional subspace with X.

For a generic m-dimensional subspace H, the intersection H N X is smooth,
the intersection with D has normal crossings, and the restriction of .# has tame
ramification around the intersection with D. This implies the equality

X(XNH,7)=rank(ZF)x(X N H),

and since the linear subspace H is generic, the Euler—Poincaré characteristic of
X N H is bounded by ¢(i o j). O

Corollary 7.10. Let (X, u) and (Y, v) be quasi-projective algebraic varieties over k,
and let m:'Y — X be a finite étale covering. Assume that v is the composition of
an embedding into a smooth normal crossings compactification Y with a closed
immersion. Let % be a lisse sheaf on X such that n*.F is tamely ramified along

Y — Y. Then the estimate
cu(F) < rank(F)cy o (m)c(v)

holds, with an implied constant that only depends on the embedding dimensions
of (X,u) and (Y,v).

Proof. The composition of the adjunction maps
F s F =mntF = F

is the multiplication by the degree of w. The sheaf .%# is hence a direct factor of
mn*.%, and the estimates

cu(F) < cu(mm™ F) < cyu(m)ey(n*F) < rank(F)cy, o (m)c(v),

hold by Proposition 6.14, part (6.6) of Theorem 6.8, and Proposition 7.9 applied
to % on Y. O
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7.6. The Riemann Hypothesis. In this section, we record the general “quasi-
orthogonality” version of the Riemann Hypothesis over finite fields arising from
Deligne’s work and the theory of complexity developed here.

We work over a finite field F, and assume that & is an algebraic closure of F. We
fix an isomorphism ¢ from Q, to C to define weights, as explained in the notation
section. The notation for trace functions is also recalled there.

We first explain the type of bounds for values of trace functions of perverse
sheaves that can be obtained using the complexity.

Proposition 7.11. Let (X, u) be a quasi-projective variety over F of pure dimen-
sion d. Let M be a perverse sheaf on X that is pure of weight zero.
(1) For any x € X(F), the estimate tpyr(x) < ¢ (M) holds.
(2) If d 2 1 and M is geometrically irreducible with support equal to X, then
the following estimate holds:

tar(x) < c(M)|F|71/2,

(3) There exists a stratification of X, defined over F, into locally closed strata
S; that are irreducible and smooth of pure dimension d; such that the degree
of u(S;) is bounded in terms of ¢, (M) and the estimate

max{—d,—d;—1}

tar(z) < cu(M)|F| z
holds for all j and all x € S;(F).

In all these estimates, the implied constants only depend on the embedding dimen-
sion of (X, u).

Proof. (1) The perversity of M implies the vanishing of the cohomology sheaves
(M) in all degrees i > 0 and i < —d. By the definition of weights for perverse
sheaves, if M is pure of weight zero, then #*(M) is pointwise mixed of weight < 1,
which means that the eigenvalues of Frobenius acting on the stalks 5#%(M), all
have modulus < |F|”/2 < 1. Therefore, the inequality

(@) < Y ftean@)| < Y dimat (M),
—d<i<0 —d<i<0

holds, and it suffices to estimate the dimensions of the stalks of 5#*(M). From (6.5)
applied to the morphism z: Spec(F) — X, we derive the estimates

(7.2)  dim (M), < Cuox(r* M) < Cuopu(®)cu(M) = c(uo x)cy, (M) = c, (M),

and hence the estimate tpr(z) < ¢, (M) as claimed.

(2) If we assume, moreover, that M is a geometrically irreducible perverse sheaf
with support X, by [3, Th.4.3.1(ii)] there exists a dense open subset j: U — X
and a lisse sheaf .# on U such that M is the middle extension j..%#[d]. Then
O (M) vanishes by [3, Prop. 2.2.4], so that the eigenvalues of Frobenius have mod-
ulus < |F|~1/2 and the same argument as in (1) yields the stronger estimate

tar(2)] < co(M)[F| V2.

(3) By Theorem 6.23, there exists a stratification of X, defined over F, into locally
closed strata S; such that the restriction of (M) to each S; is lisse and the degree
of u(S;) is bounded in terms of ¢,(M). By [3, Prop.2.2.4], there is an inequality
dim Supp(##*(M)) < —i — 1 for all —i < d. Since (M) restricts to a lisse sheaf
on S;, we must have d; < —i whenever 5#*(M) is non-zero and d; # d. O
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Remark 7.12. The following example shows that the estimates in Proposition 7.11
are best possible in general. Assume that the finite field satisfies |F| =1 (mod 3).
Let x be a non-trivial multiplicative character of order three of F and let £, be
the associated Kummer sheaf on G,,. Denote by j: U — A™ the inclusion of the
complement of the hypersurface ' C A" given by the equation

x:{’—l—--~+x220.

Let .7 be the lisse sheaf .2, ;34 443)(—n/2) on U and let M = ji.(F[n]) be its
middle extension to A", shifted to make it perverse. Then M is a geometrically
irreducible perverse sheaf of weight zero and the equality |ty ()| = |[F|~"/2 holds
for all z € U(F). We claim that, at the origin, the trace function of M satisfies

|t2(0)] = |F| /2.

To see this, let h: X’ — A" denote the blow-up of A™ at the origin, £ ~ P!
the exceptional divisor, F’ the strict transform of F, and j': U’ — X’ the in-
clusion of the inverse image U’ = h™1(U) of U. We define #' = h*% and
M’ = ji,(#'[n]). Since x is a character of order three, a local computation
shows that .#’ extends to a lisse sheaf outside F’ (for example, in the affine chart
given by y1 = 1 and y; = x; /21 for i = 2,...,n, this follows from the equality
Li@itta3) = Lt @yd o) = Lu(tyi+yg))- Since F' is a smooth divi-
sor, the perverse sheaf M’ is the extension by zero of the shift of this lisse sheaf to
X'. Hence, its trace function at a point y = [y1: -+ : y,] € E(F) equals

_ xR tyn) iyl £0,
tar (y) = .
0 otherwise.

By the decomposition theorem [3], the perverse sheaf M is a direct factor of
hi(M"), and since h is an isomorphism outside the origin, the other irreducible com-
ponents of hi(M') are skyscraper sheaves supported at zero. By the Grothendieck—
Lefschetz trace formula, the trace function of M at 0 is equal to

1
[F[7? Z X+ + ),
[y1:-yn]EP™—1(F)
v+ +yd#0

which up to the normalizing factor |F|~™/2 is a sum of Jacobi sums of weight n — 1
by a classical computation (see [24, Ch. 8, Th.5]). Weyl’s equidistribution theorem
implies that this sum does not cancel, at least for some extensions of any given
finite field.

Theorem 7.13 (Quasi-orthogonality). Let F be a finite field of characteristic dif-
ferent from L. Let (X,u) be a geometrically irreducible quasi-projective algebraic
variety of dimension d over F.

(1) Assume that X is smooth. Let A and B be {-adic constructible sheaves
on X. Suppose that A and B are mized of weights < 0 and that there exists a dense
open subset U of X on which A and B are lisse sheaves, pure of weight zero, and
geometrically irreducible. Then there exists a complex number a of modulus 1 such
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that the estimate

‘ﬁ > ta(@)ts(x) — ad(A, B)| < c(u)eu(A)ey(B)[F| 712
zeX(F)
+ c(u)(cu(A) + cu(B))|F|

holds, with 6(A,B) = 1 if A and B are geometrically isomorphic over U and
d(A, B) = 0 otherwise.

(2) Let A and B be geometrically irreducible £-adic perverse sheaves on X. Sup-
pose that A and B are pure of weight zero. Then there exists a complex number «
of modulus 1 such that the estimate

| tal)ia@ - ab(A4, B)| < clu)eu(A)en(B)F|
zeX(F)

holds, with §(A, B) =1 if A and B are geometrically isomorphic and 6(A, B) = 0.
In both estimates, the implied constant only depends on the embedding dimension
of (X,u).

Proof. We start with (1). Since B restricts (up to a shift and a Tate twist) to
a perverse sheaf of weight zero on U, the proof of Proposition 6.40 shows that g
coincides with the trace function of D(B) on U(F). Since A and B are geometrically
irreducible, the object A ® D(B) has non-trivial cohomology with compact support
in top degree 2d if and only if A and B are geometrically isomorphic, and in
that case this cohomology is one-dimensional. By [29, Lem. 1.8.1], if A and B
are geometrically isomorphic, there is an isomorphism B ~ A ® a9 for a unique
a € Q,, which has modulus 1 when viewed as a complex number. Arguing as
in the proof of Katz’s orthogonality theorem [29, Th.1.7.2], the combination of
the Grothendieck—Lefschetz trace formula and Deligne’s Riemann Hypothesis thus
gives the estimate
‘ﬁ S ta(@)ts() — ad(A, B)| < oF| 712,
zeU(F)

where o denotes the sum of Betti numbers
o= hi(Us, A®D(B)).
icZ
By Proposition 7.1 and (6.2), this quantity is bounded by
0L (AR D(B)) < ¢y, (A)cy(D(B)) < c(u)ey(A)ey(B).

On the other hand, on the complement X — U, the functions ¢4 and tp are
bounded by the generic rank of A and B respectively, which are in turn bounded
by their complexity taking (7.2) into account. This gives the estimate

\ﬁ Y. ta(@)tp(n)| < cu(A)eu(B)|(X — U)(F)|[F| .
z€(X—U)(F)

We then note that U is contained in the intersection of the maximal open set U
where A is lisse and the maximal open set Uy where B is lisse, and hence the
estimates

deg(X —U) < deg(X — Uy) + deg(X — Us) < c(u)(cy(A) + cu(B))
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hold by Theorem 6.23 (recall that X is assumed to be smooth). We conclude using
the classical bound |(X — U)(F)| < deg(X — U)|F|dim(X=U),

The proof of (2) is the same, except that the term |F|~¢ does not appear due to
the normalization of weights for perverse sheaves (see Remark 1.3) and that we do
not need to treat the sum over points of X — U. O

Taking X = A™, the second statement immediately implies Theorem 1.2.

Remark 7.14. In the setting of part (2) of Theorem 7.13, suppose that one knows
that there is 8 > 0 such that

H (X A®D(B)) =0

for i > —p (the case 8 = 0 corresponds to the assumption that A and B are
not geometrically isomorphic). Then by the same argument and the Riemann
Hypothesis, we obtain the stronger estimate

S ta@)in(@) < c(w)eu(A)es(B)[F[-FH/2,
zeX (F)

The case where 8 = dim(X) — 1 corresponds to full square-root cancellation for the
sum over X (F).

A basic finiteness statement follows from this result:

Corollary 7.15. Let F be a finite field of characteristic different from €. Let (X, u)
be a geometrically irreducible quasi-projective algebraic variety over F.

For any ¢ > 1, there are, up to geometric isomorphism, only finitely many £-adic
perverse sheaves A on X of complexity ¢, (A) < ¢ that are geometrically irreducible
and pure of weight zero.

Proof. By Theorem 7.13, applied to finite extensions of F, we first see that there
exists a finite extension F,, of F (depending on ¢) such that the equality of trace
functions t4(+; Fp,) = tp(-; F,,) implies that A and B are geometrically isomorphic,
for irreducible perverse sheaves A and B of weight zero on X with ¢,(A) < ¢
and ¢,(B) < ¢. Moreover, we can also ensure that X(F,) is not empty and
that ta(-; F,) # 0 when ¢, (A) < c.

Replacing F by F,,, it is then enough to prove that there are only finitely many
functions t 4 for irreducible perverse sheaves of weight zero with ¢, (A) < ¢, up to
geometric isomorphism. Let C(X(F,,)) be the finite-dimensional Hilbert space of
functions X (F,,) — C with norm

IF="> 1f@)

zeX(F,)

Theorem 7.13 again implies that for A not geometrically isomorphic to B with
cu(A4) < c and ¢,(B) < ¢, the functions t4/||[ta|| and tg/||tg||, viewed as elements
of the unit sphere of C(X(F,)), make an angle > 6 for some # > 0 independent
of A and B. It is well-known that there can only be finitely many such vectors. [

Remark 7.16. This argument can be made quantitative, although it is probably
far from sharp; see [12] for the case of curves.
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7.7. Examples. We collect here for ease of reference some immediate corollaries of
the formalism of Section 6. These contain and generalize all the basic “continuity”
estimates of Fouvry, Kowalski and Michel in the case of curves.

Example 7.17 (Fourier Transform). Let F be a finite field. Let n > 1 be an
integer and let X = A™ viewed as a commutative algebraic group over F, with the
obvious embedding in P" to define the complexity. Let ¢ be a fixed non-trivial
(-adic additive character of F and consider the Artin-Schreier sheaf & = £ ,.,)
of rank 1 on A™ x A™, where x - y is the standard scalar product. Deligne defined
the f-adic Fourier transform FT,, as the functor D?(A™) — DP(A™) given by

FTy(A) = p21(piAR L) = pa2.(p1A® L)

(see [38, 1.2.1.1]; the equality of the two expressions is a highly non-trivial fact,
often referred to as “the miracle of the Fourier transform”).
From the results of Section 6 and Corollary 7.7, we therefore deduce:

Proposition 7.18. There exists an integer N > 0, depending only on n, such that
c¢(FTy(A)) < Ne(A)
holds for any object A of D2(A™).

The results of Section 8, together with Propositions 6.21 and 7.5, lead to explicit
estimates for N. These are growing at least as fast as n!, and it might be interesting
to have a better estimate for this “norm” of the ¢-adic Fourier transform.

For n = 1, Fouvry, Kowalski and Michel proved the inequality

Cfkm (FTw (A4)) < 10¢tm (A)2

(for middle-extension Fourier sheaves) in [15, Prop.8.2]; this estimate plays an
essential role in many analytic applications, and one can expect a similar use of
Proposition 7.18.

Example 7.19 (Other cohomological transforms). Let (X, u) and (Y, v) be quasi-
projective varieties over k and K an object of D (X xY). Let Tk : D?(X) — D2(Y)
denote the “cohomological transform with kernel K7, i.e., the functor such that

Ti(A) =p2i(pTA® K),

where p1: X XY — X and po: X XY — Y are the projections.
Applying again the formalism, there exists a constant N, depending on K, such
that the inequality
co(Tx (4)) < Niceu(A)

holds for any object A of DP(X). Precisely, this holds with

NK = CyXuv,v (p2)cu|Z|'u,v (pl)cu&v (K)

(where uXwv is used to denote the composition of u x v with the Segre embedding of
the product of the projective spaces target of u and v; as in the case of the Fourier
transform, other embeddings of X x Y might be possible).

In the very special case where X =Y = Al (over finite fields) and K is a rank 1
Artin—Schreier or Kummer sheaf on A2, we can apply Corollary 7.7 to estimate the
complexity of the kernel sheaf; a weaker form of the resulting estimate was proved
by Fouvry, Kowalski and Michel [16, Th. 2.3].
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Other special cases that have been already considered (when n = 1) for the
varieties X =Y = Al or X =Y = G,,, are additive convolution and multiplicative
convolution.

More generally, let G be a commutative quasi-projective algebraic group over k,
with a given locally closed embedding u. Let 0: G x G — G be the addition
morphism. We have two convolution functors

x: D2(G) x D(G) — DE(@), : DP(@) x D?(@) — DP(@)
defined by
AxB=0,(ARB), A% B=o0/(AXB).

Use the composition of the Segre embedding with u X u to embed G x G in
projective space.” Then by (6.8) and (6.6) and Proposition 6.12, there exists an
integer N such that the inequalities

cu(A* B) < Ncy(A)ey(B), cu(A % B) < Ny (A)eu(B)
hold for all objects A and B of D?(G).

Example 7.20 (Gowers uniformity sheaves). Let (G, u) be a commutative quasi-
projective algebraic group over a field kg, with the group law written additively. For
each integer d > 1, we denote by m;: G4*1 — G the projection (z,h1, ..., hq) — 2.
Given a complex A of DP(G), we define the uniformity object Uy(A) as

Ual(4) = 7as (@ DV (07 4) ).
1

where the tensor product runs over all subsets I C {1,...,d}. For each of them,
D°Hl denotes the Verdier duality functor if |I] is odd and the identity functor if |I|
is even, and the morphism o;: G4 — G is given by

or(x,hy, ... hq) :x—l—Zhi.
iel
The point of this construction is that, in the case where kg is a finite field F and
A is a perverse sheaf pure of weight zero, the trace function of Uy(A) satisfies

d
> tuaa (@) = [talld,,

zeF
where || - ||y, is the d-Gowers norm for a complex-valued function on the finite
group G(F), see [11, Def.11.2]. For G = G, this construction is implicitly used
in [13] to obtain an “inverse theorem” for Gowers norms of one-variable trace func-

tions, and various results from loc. cit. can actually be interpreted as bounds for
the complexity of Uy(A) in terms of that of A. Thanks to Theorem 6.8, we can gen-
eralize them to any group: there exists an integer Ny > 0 such that the inequality

ca(Ua(A)) < Nacu(A)*
holds for all objects A of DP(G).

3 For certain groups, such as affine groups, one can also use other embeddings.
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Example 7.21 (Sum-product sheaves). In [34] and [35], special cases of the fol-
lowing construction are applied to Kloosterman sheaves: given an input object A
in D?(A') and an integer [ > 1, one constructs a “sum-product” object

Bi= Q) fiA® f,D(A)
1<igl
on A?T2 with coordinates (r, s, b), by means of the functions f;(r, s, b) = r(s+b;).
It follows from the general formalism that, performing this construction with any
input object A in DP(A!), we have

Cv(Bl) < NlCu(A>2l

for some constant N; depending only on ! (the embeddings are the standard em-
beddings u: A! — P! and v: A?+! — P2+l

7.8. Equidistribution. Using the theory of complexity developed in this paper,
the “horizontal” version of Deligne’s Equidistribution Theorem formulated by Katz
in the case of curves [26, Ch.3] admits a straightforward extension to higher-
dimensional varieties. As before, we fix an isomorphism ¢: Q, — C through which
both fields are identified.

Theorem 7.22. Let N > 1 be an integer and let (X, u) be a smooth and connected
quasi-projective scheme over Spec(Z[1/N]) with geometrically irreducible generic
fiber. For each prime p not dividing N, let (Xg,,up) denote the reduction of (X, u)
modulo p. Let & be an infinite set of primes not dividing N¢, and assume that we
are given, for each p € &, a lisse l-adic sheaf F, on Xg, that is pure of weight
zero and whose complexity satisfies cy,(Fp) < 1.

Assume that, for each p € P, the geometric and arithmetic monodromy groups
of #, coincide and are isomorphic to a fized semisimple (i.e., the connected compo-
nent of the identity is semisimple) algebraic group G. Let K be a maximal compact
subgroup of G(C).

Forpe & and x € X(F,), let 0,(x) be the unique conjugacy class in K that
intersects the conjugacy class of the semisimplification of the image in G of the
Frobenius at x relative to Fp,, so that the equality

Tr(0p(2)) = t7,(x)

holds. Then the families (0,(x))scx¥,) become equidistributed as p — +o0o in the
space of conjugacy classes of K, with respect to the Haar probability measure.

Proof. Let d be the relative dimension of X over Spec(Z[1/N]). Shrinking & and X
if necessary, we may assume that Xg, is a smooth and geometrically connected
variety of dimension d and that X (F,) is not empty for all primes p in &?. In fact,
the number of F,-points behaves asymptotically like | X (F,)| ~ p? as p — +o0 by
the Lang—Weil estimate.

Each lisse ¢-adic sheaf .%, corresponds to a representation of the fundamental
group 71 (Xr,) of Xp,. According to the Weyl Criterion, equidistribution follows
from the vanishing

. 1
(7.3) Jm e 2 TG = 0
zeX(F)p)
for any non-trivial irreducible representation p of K. By the correspondance be-
tween semisimple algebraic groups and compact Lie groups, such a representation p
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corresponds uniquely to an algebraic irreducible representation of the algebraic
group G, which is still denoted by p. The lisse sheaf p(.%,) on X¥, (see Section 6.9)
satisfies

Tr(p(0p(2))) = tp(2,)(x)
for all x € X(F,). Moreover, this sheaf is of weight zero (the group G being
semisimple, it is a subsheaf of some tensor power .Z®% by Lemma 6.32), geo-
metrically irreducible (since its arithmetic and geometric monodromy group are
equal), and non-trivial. By the Riemann Hypothesis (Theorem 7.13 (1)), applied
with B = Q,, the estimate

Z Tr ) < Cy,, (/’(«gp))p_l/2

p zeX (Fp)

holds for all p € &. By Proposition 6.33, there exists an integer a > 0, depending
only on p, such that

Cup(p(gzp)) < Cup(gz)a'
Since we assumed that c,,(.%,) is bounded, this estimate implies (7.3). O

In practice, some multi-variable cases of this theorem could be proved by apply-
ing the Deligne-Katz equidistribution theorems to families of curves covering X.

Katz—Sarnak [31, §9.6] and Katz [29, Ch.12] have proved earlier statements of
the same kind, but assuming that .%, is the base change to F, of a “common” sheaf
or perverse sheaf on X over Z[1/N].

In fact, we now show that Theorem 7.22 gives a positive answer to the question of
Katz [29, p.8 and 12.6.6] concerning equidistribution of certain higher-dimensional
families of additive character sums. This illustrates that the theory of complexity
can, to a certain extent, obviate the lack of a theory of exponential sums over Z
(the second part implies Theorem 1.4 from the introduction).

Let n > 1 and d > 1 be integers. Let P(n,d) be the space of polynomials of
degree d in n variables, and P(n,d,odd) C P(n,d) the subspace consisting of odd
polynomials, by which we mean that only monomials of odd degree have non-zero
coefficients. For a prime number p and f € P(n, d)(F ), set

S(fip) = w(f)/2 > ( )

z€F}
where w(f) is the smallest integer such that the vanishing
HU(Ag . L) =0

holds for all ¢ > w(f), and we recall the notation e(z) = exp(2imz).
For an even integer NV, we denote by

USpy(C) = Un(C) N Spy(C)
the group of unitary symplectic matrices of size IV, which is a maximal compact

subgroup of the symplectic group Sp (C).

Corollary 7.23. Letn > 1 and d > 1 be integers. Set K,, = Uz_1)»(C) and, for
odd d,

K ~ JUSp_1y=(C) ifn is odd,
modd = O(4-1)»(C) if n is even.



68 WILL SAWIN

(1) The families (S(f;p))fep(n,d)(F,) become equidistributed as p — +oo with
respect to the measure which is the image under the trace of the probability
Haar measure on K,,.

(2) Suppose that d is odd. The families (S(f;p))fep(n.d,odd)(¥,) become equidis-
tributed as p — +oo with respect to the measure which is the image under
the trace of the probability Haar measure on Ky, oqq-

Proof. Note that P(n,d) is a dense open subset of the affine space of polynomials
of degree < d in n variables. Let D(n,d) C P(n,d) denote the dense open subset
of Deligne polynomials (namely, those for which the homogeneous part of highest
degree defines a smooth hypersurface in P*"~!) and let D(n,d,odd) C P(n,d,odd)
be the subset of odd Deligne polynomials. Both D(n,d) and D(n, d, odd) are smooth
schemes over Z.

Because (by the Riemann Hypothesis) the estimate

SIS D hilAg  Lyp) < el Lyp) < 1
i<w(f)
holds for all p and f € P(n,d)(F)), it is enough to prove the equidistribution of
the sums S(f;p) for f € D(n,d)(F,) (resp. f € D(n,d,odd)(F))).

We first handle separately the cases d = 1 and d = 2. If d = 1, the sum S(f;p)
vanishes for any non-zero linear polynomial f. Since Ky = Uy(C) is the trivial
group, whose only element has trace zero, the equidistribution holds in that case.

If d = 2, then Ky = U;(C) is the unit circle. Write a polynomial f € D(n,2)(F))
as

f(@) = Q) + A@) + 1,
where @ is a non-degenerate quadratic form, A a linear form and p a constant.
For each prime p > 3, it is an elementary consequence of the fact that normalized
Gauss sums have modulus one that |S(f;p)| = 1. Let h > 1 be an integer. Then

> st =mm X Sl (X a@)) o).
FED(n,2)(F,) @1,een €FF QA i HEF,

This vanishes as soon as p > h. If h < —1, we obtain the same conclusion after
noting that S(f;p)~" = S(f;p) = S(—f;p). Thus,

—_

i e Y S =0
v DG D] |25
for any non-zero integer h, which proves equidistribution in U;(C) = K.
We now assume that d > 3. For a prime p, let ¢ be an f-adic character with
trace function  — e(x/p), under the identification of Q, and C. On A™ x D(n,d)
over F), with coordinates (z, f) we have the Kummer sheaf .Z;f(,)). Define

Dy = 2Ly () [M](n/2),
where py: A" x D(n,d) — D(n,d) denotes the projection to the second factor, so
that the equality
S(fip) = (=1)"t2,(f)

holds by the trace formula. This is a priori an object of the derived category
of D(n, d) over F, but Deligne has shown (see [29, Cor. 3.5.11, Cor. 3.5.12]) that 2,
is in fact a lisse sheaf of rank N = (d —1)™ and pure of weight zero for each prime p
not dividing d.
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We first prove (2), which fits exactly the statement of Theorem 7.22. The rel-
evant monodromy groups have been computed by Katz [29, Th.12.6.3]: if p > 7
and p { d, the geometric and arithmetic monodromy groups of the restriction %,
of 9, to D(n,d,odd) coincide and are equal to Spy if n is odd and to Oy if n is
even (precisely, these references show that the geometric monodromy group is as
stated, but by [29, Th. 3.10.6], these sheaves are arithmetically self-dual, so their
arithmetic monodromy groups cannot be bigger). Hence, K, oqq is a maximal com-
pact subgroup of the complex points of the geometric monodromy group for any p.
Moreover, denoting by i the closed immersion D(n,d,odd) — D(n,d), the estimate

A(Fp) = c(i¥p2,Z (Y (f(2)))) < c(D)e(p2)e(Ly(s(a))

holds by (6.5) and (6.6) for any prime p, where the complexities are computed using
the embeddings of A™, D(n,d) and their product and subschemes are induced by the
natural embeddings of affine spaces in the projective space of the same dimension.

By the bound in Section 7.3 and by Theorem 6.19, we deduce that ¢(.%,) < 1 for
all p, where the implied constant depends only on (d,n). Thus, the equidistribution
in (2) follows from Theorem 7.22.

We now come back to (1). Here we note that, as above, we have ¢(%,) < 1
for all p, but the setting is not exactly that of Theorem 7.22. Indeed, Katz proved
in [29, Th. 6.8.34] that the geometric monodromy group of %,, for p > 7 that does
not divide d(d — 1), is the group

G2p = {9 € GLy | det(g)? =1},

which depends on p. We argue then by repeating the use of the Weyl Criterion in
the proof of Theorem 7.22.

For f € D(n,d)(F,), we denote by 6,(f) the conjugacy class in Go, correspond-
ing to the Frobenius at f, whose trace is equal to S(f;p). Let p be a non-trivial
irreducible representation of Uy (C), which can also be viewed as a representation
of GLy. The lisse sheaf p(Z,) satisfies ¢(p(Z,)) < 1 for all p (as in loc. cit.). The
restriction of p to G, is a direct sum of a bounded number of irreducible represen-
tations. We claim that if p is large enough, depending on p, then this restriction
does not contain the trivial representation of Ga,. Indeed, by Frobenius reciprocity,
the multiplicity of the trivial representation is equal to the sum over h € Z of the
multiplicity of the character det(-)2P" in p, i.e., it is equal to one if p = det(-)?""
for some non-zero h (because p is non-trivial), and zero otherwise. The first case
cannot occur if p is large enough, hence the claim.

Now applying the Riemann Hypothesis as above to each irreducible subrepre-
sentation of p(Z,), we obtain

: > TpB,(1) <p

1D(n, d)(Fp)| | b e
for all p, where the implied constant depends only on (n,d,p). This implies the
equidistribution in (2). O
In [11], the three last-named authors use the theory of complexity, among other

tools, to study the equidistribution of families of exponential sums arising as dis-
crete Fourier—Mellin transforms of trace functions on commutative algebraic groups,
generalizing the equidistribution theorems of Deligne [7] (for powers of G, through
the Fourier transform) and Katz [30] (for G,,), see [17] for a survey. Among other



70 WILL SAWIN

things, this has applications, also discussed in [11], to the study of the variance
of arithmetic functions over function fields in arithmetic progressions, improving
results of Hall, Keating and Roddity-Gershon [23]. We state here (a form of) the
basic result, in the “vertical” direction (see [11, Th. 2]).

Theorem 7.24. Let (G,u) be a connected commutative algebraic group over a
finite field F with a given quasi-projective embedding. Denote by F,, the extension
of F of degree n in an algebraic closure of F and by é(Fn) the group of characters
of G(F,,).

Let A be a geometrically irreducible perverse sheaf on G which is pure of weight
zero. There exists a complex reductive algebraic group G 4 with a mazimal compact
subgroup K4 such that the sums

SAx) = Y x@ta(x;Fy),

(I;EG(FH)

defined for x € @(Fn), become equidistributed on average in C with respect to the
image under the trace map of the Haar probability measure u on Ka, i.e. the
equality

Jm 5 Yy X A6 = [ i)

1<n<N X€G(F,)

holds for any continuous and bounded function f: C — C.

8. EFFECTIVE BOUNDS

It is clear that the implied constants in our bounds for all of Grothendieck’s six
functors can be made effective as long as that for the Betti numbers of a tensor
product of complexes in Theorem 5.1 can be made effective. We state here such an
effective bound and sketch the proof.

Theorem 8.1. For all objects A and B of D2(P?), the following estimate holds:

16

> hi(Pp,A® B) < 23—464/1313"(71 +2)! ¢(A)e(B).

i€Z
Sketch of proof. The primary issue is to control the bilinear form of Corollary 5.5.
It is convenient to calculate with this bilinear form in a basis generated by constant
sheaves (identical to that of Lemma 2.5 up to a sign). Let e, be the class of CC(K,,)
for K,, the constant sheaf on an m-dimensional subspace, so that eg,...,e, form
a basis of the vector space CH, (T*P”) ® Q. By Theorem 2.2, the intersection
pairing

€m, * €m, = CC(Kp, ) - CC(Kpn,)

is equal to (—1)" times the Euler—Poincaré characteristic of the intersection of a
general mi-dimensional subspace and a general mo-dimensional subspace. This
intersection is a projective space of dimension m; + ms — n, and hence has Euler—
Poincaré characteristic min(mj +ms+1—n,0), so the intersection number is equal
to (—1)" min(my + mo + 1 — n,0).

By construction, the function of Lemma 3.15 is easy to calculate with respect to
this basis: it sends e,, to e,,_1. Therefore, the bilinear form of Lemma 5.5 satisfies
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flem,sem,) = glmi +ma+1—n) with

a 47+2 _ 35— 4
=Y e = Tt

for x > 0 and g(z) = 0 for < 0. For simplicity, we will upper-bound it by the
simpler bilinear form f such that f(es,,,em,) = 4™ Tm2+3=n /9,

Set e} = ngiQi_jej. Then ey, ..., e also form a basis. Fix a norm | - || on
the vector space CH,, (T*P") ® R which is the > norm in this basis. This basis
is convenient because the intersection of e} with the characteristic cycle of a test
sheaf supported on P™ is 1 if m + ¢ = n and 0 otherwise. To check this, it suffices
to check that the intersection number of e; with the characteristic cycle of a test
sheaf supported on P™ is equal to 1 if i +m =n, to =2 if i + m —n = 1, and to
0 otherwise. This follows from the fact that the tensor product of K; with the test
sheaf supported on P™ is the test sheaf supported on P**™ " which has Euler—
Poincaré characteristic equal to 1if i +2—n=0,to —2ifi+m—n =1, and to 0
otherwise.

Because the intersection number of e with the characteristic cycle of a test sheaf
is equal to 1 on P™ if m + ¢ = n and to 0 otherwise, Proposition 5.4 then shows
that for a perverse sheaf A, the norm ||[CC(A)|| is bounded by 4(n + 1)c(A).

Rewriting the bilinear form f in the basis e gives

/ ry § : § :
f(eil’eiQ) -

J1<i j2 iz

2i1+i2437n

i1 —J19i2— J24]1+]2+3 n

B () (5 )
J1<in J2<i2
i1+i2 44—n i1+iz+4—n
< t1tizy gir+Hlgia+1 _ Jirtizt
9 9

Hence, the total norm of the bilinear form is at most
47,1+124 n 44771 n \n 44771 4n+1 2 46+n
>y =5 () = (F) =
9 \« - 9 3 3

’Ll—O 22—0 7=

and the constant of Corollary 5.5 involves an extra factor of 16(n+1)? coming from
the constant of Proposition 5.4, for a total of (n + 1)243t7 /3%,

Let b,, be the constant in Theorem 5.1 in dimension n. Then we can see from
the induction argument that there are n terms (it may appear to be n + 1, but we
may set A\; = 1 at the start by scaling the whole matrix, which does not affect the
automorphism of P™), each of size 13b,_1¢(A)c(B), plus one term coming from
Corollary 5.5 of size 431" (n + 1)%¢(A)c(B) /3%, so we obtain:

g5+n enl 43R (4 1)2
b = 13nb,—1 + ——(n +1)? § 13—
k=0
n 48+k(k+1)2 916 916
_ 112" 2, 119n 4/13 112n 4/13
=nl13" Y o < (0 1)%nl13" et/ < (n 421137 et

as we wanted to show. O
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Remark 8.2. Being more careful in the numerical arguments would lead to a
significantly improved constant (the dominant terms in the sum defining b, are

th

ose for small k, and for such values our bounds could see significant improvement,

e.g. we could use the constant 1 in Corollary 5.5 for k = 0 instead of 216/3%)
and some minor adjustments to the algebraic geometry can lower the base of the
exponent 13", but we do not know how to improve on the factorial growth, except in
characteristic zero where a completely different argument offers exponential growth.

From this statement, it is completely straightforward to make explicit the in-

equalities of Section 6, because all the implicit constants in those inequalities come
from repeated applications of Theorem 5.1, which can be replaced with this effective
version.
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ABSTRACT. We introduce a notion of complexity of a complex of ¢-adic sheaves
on a quasi-projective variety and prove that the six operations are “continu-
ous”, in the sense that the complexity of the output sheaves is bounded solely
in terms of the complexity of the input sheaves. A key feature of complexity is
that it provides bounds for the sum of Betti numbers that, in many interest-
ing cases, can be made uniform in the characteristic of the base field. As an
illustration, we discuss a few simple applications to horizontal equidistribution
results for exponential sums over finite fields.
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