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1. Introduction

Since its invention, and especially since Deligne’s proof [7] of the strongest form
of the Riemann Hypothesis over finite fields, étale cohomology has exerted a con-
siderable influence on analytic number theory. Its applications very often rely on
estimates for the dimension of various étale cohomology spaces, which appear in
“implicit constants” arising from the Grothendieck–Lefschetz trace formula com-
bined with the Riemann Hypothesis and depend on the characteristic p of the finite
fields under consideration. This characteristic is typically itself a variable going to
infinity, and getting uniform estimates in terms of p turns out to be the crucial
di�culty. Except for very simple cases, uniformity of such estimates is not a formal
feature of étale cohomology (for examples and further discussion, see [25, 11.11]).

In recent years, this issue has been particularly visible in a series of works by
Fouvry, Kowalski and Michel (see, e.g., [14] and [15]) that make extensive use of very
general sheaves on curves in various problems of analytic number theory. Due to the
simpler nature of curves (essentially, the Euler–Poincaré characteristic controls the
sum of Betti numbers, and has an expression in terms of “simple” local invariants),
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they obtained a satisfactory theory, phrased in terms of a “complexity” invariant
of an `-adic sheaf on a curve over a finite field, which they called the “(analytic)
conductor”. The key feature of this theory is that most natural operations on

sheaves and the analytic resulting estimates depend on the “input” sheaves only
through their conductor (see, e.g., [14, Th. 1.5]).

Another application of a suitable version of complexity for `-adic sheaves on
curves is the proof by Deligne [8] of the theorem that, for a lisse Q`-adic Weil sheaf
on a normal connected scheme of finite type over a finite field such that the traces
of Frobenius at all closed points are algebraic numbers, the field generated by these
traces is a number field. The complexity that we introduce here could also be used
in Deligne’s argument.

In this paper, we develop a similar theory for higher-dimensional quasi-projective
algebraic varieties over any field. (Being a geometric invariant, the complexity is
defined by base change to an algebraic closure of the base field, so most of this
paper will only deal with algebraically closed fields.) This leads to very general
estimates that solve most of the known problems of estimating Betti numbers in
analytic number theory.

We now state somewhat informally the definition of complexity and some of the
key statements, focusing for simplicity on sheaves on a�ne space An. Let k be
an algebraically closed field and ` a prime number di↵erent from the characteristic
of k. We will define:

• A non-negative integer c(A) for any object A of the bounded derived cat-
egory of constructible sheaves Db

c (A
n,Q`) (Definitions 3.2 and 6.3). Let-

ting u denote the open immersion of An in Pn, the integer c(A) is defined
as the maximum over integers 0 6 m 6 n of the sum of the Betti numbers
of the pullback of the extension by zero u!A to a “generic” linear subspace
of dimension m of Pn.

• A non-negative integer c(f) for any morphism f : An ! Am (Defini-
tion 6.6). In general, this is also defined in terms of sums of Betti num-
bers, but admits in the case at hand a completely explicit bound that
only involves n, m and the degrees of the polynomials defining f (Proposi-
tion 6.21).

We will then prove the following result (Theorems 6.8 and 6.17). In the state-
ment, D(A) denotes the Verdier dual of A and all functors and operations are
considered in the derived sense (so, e.g., we write f⇤ instead of Rf⇤).

Theorem 1.1. For any f : An ! Am
, for any objects A and B of Db

c (A
n,Q`),

and any object C of Db
c (A

m,Q`), the following estimates hold:

c(D(A))⌧ c(A),

c(A⌦B)⌧ c(A)c(B), c(H om(A,B))⌧ c(A)c(B),

c(f⇤C)⌧ c(f)c(C), c(f !C)⌧ c(f)c(C),

c(f!A)⌧ c(f)c(A), c(f⇤A)⌧ c(f)c(A).

In all these estimates, the implied constants depend only on (n,m) and are e↵ective.

Moreover, let S be the spectrum of a strictly Henselian discrete valuation ring

with special point � and generic point ⌘, and let  and � denote the nearby and

vanishing cycle functors from Db
c (A

n
S ,Q`) to Db

c (A
n
�,Q`). For any object A of
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Db
c (A

n
S ,Q`), the following estimates hold:

c( (A))⌧ c(A⌘),

c(�(A))⌧ c(A⌘) + c(A�).

Over finite fields, the conjunction of the Riemann Hypothesis and the theory of
complexity yields the following “quasi-orthogonality” statement (Theorem 7.13):

Theorem 1.2. Suppose that k is the algebraic closure of a finite field F, and let A
and B be irreducible perverse sheaves on An

defined over F that are pure of weight

zero, with trace functions tA and tB respectively. Then the estimate

X

x2Fn

|tA(x)|2 = 1 +O(c(A)2|F|�1/2)

holds, and the estimate

X

x2Fn

tA(x)tB(x)⌧ c(A)c(B)|F|�1/2

holds if A and B are not geometrically isomorphic. In both estimates, the implied

constants depend only on n and are e↵ective.

Remark 1.3. Readers from analytic number theory who are unfamiliar with per-
verse sheaves may be surprised by the lack of the averaging factor 1/|Fn| in the
writing of these sums, in comparison with statements like those in [14]. This is
due to the normalization inherent to the definition of weights in this setting: for
instance, for a perverse sheaf M on A1 that is a single lisse sheaf sitting in degree
�1, being pure of weight zero means that the eigenvalues of Frobenius at all points
have modulus |F|�1/2 (and not 1, as is the case for a lisse sheaf that is pointwise
pure of weight zero).

We highlight one first rather simple application (see part (1) of Corollary 7.23),
which gives a positive answer to a question of Katz [29, p. 8 and 12.6.6].

Theorem 1.4. Let n > 1 and d > 1 be integers. Let D(n, d) be the space of Deligne

polynomials of degree d in n variables, i.e. those whose homogeneous part of degree d
defines a non-singular hypersurface in Pn�1

. For each f 2 D(n, d)(Fp), set

S(f ; p) =
1

pn/2

X

x2Fn
p

e
⇣f(x)

p

⌘
,

where e(z) = exp(2i⇡z) for z 2 C. The families (S(f, p))f2D(n,d)(Fp) become

equidistributed as p ! +1 with respect to the image under the trace of the proba-

bility Haar measure on the unitary group U(d�1)n(C).

We now comment on the approach that we use. Previous Betti number bounds,
such as those of Bombieri [4], Adolphson–Sperber [1] and Katz [28], focused primar-
ily on bounding cohomology groups involving certain very explicit sheaves, namely
Artin–Schreier and Kummer sheaves. It is possible to apply these bounds to a
sheaf cohomology problem involving, say, higher-rank Kloosterman sheaves, but
only after unraveling their definition to recast the problem entirely in terms of
Artin–Schreier sheaves. When more complicated operations are performed (for ex-
ample, additive or multiplicative convolution, or Fourier transform), this process of
re-interpretation becomes exceedingly cumbersome.
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Our approach is instead built around the six functors formalism of étale cohomol-
ogy, and is closely related to the characteristic classes constructed by T. Saito [39].
We define the “complexity” of an arbitrary bounded complex of constructible `-adic
sheaves on a quasi-projective variety, and prove that it satisfies essentially all de-
sired properties suggested by the case of curves and the requirements of applications
to analytic number theory. In particular, the complexity of common sheaves such
as Artin-Schreier, Kummer and Kloosterman sheaves can be easily calculated, and
it turns out to be bounded independently of the characteristic of the underlying
field, which is the key uniformity property that we seek.

Remark 1.5. In fact, the complexity of a sheaf on an algebraic variety will also de-
pend on a chosen quasi-projective embedding of the variety; this seems unavoidable
to have a theory with good properties, as we explain in Example 6.1.

Remark 1.6. The definition of complexity and the arguments of this paper apply,
almost without modification, to the derived category of sheaves with coe�cients
in F` instead of Q`. Neither version is stronger. Although the Betti numbers of
a Q`-sheaf are bounded by the Betti numbers of the reduction mod ` of an integral
model of it, this inequality does not help us transfer statements of the form “a bound
for the Betti numbers of this sheaf implies a bound for the Betti numbers of that
sheaf” in either direction. We have stated and worked out in detail the Q`-version
as it is the most directly relevant for applications to analytic number theory, but
the F`-version may also be useful for other purposes.

We believe that this framework has a number of good properties, among which:

(1) Since the deeper aspects of étale cohomology are built primarily around
the six functors perspective, rather than the cohomology of varieties with
coe�cients in some simple explicit sheaves, this framework behaves much
better in arguments where sophisticated techniques of étale cohomology are
used.

(2) Many applications of exponential sum bounds from étale cohomology re-
volve around exponential sums that are produced from simpler ones by
applying analytic tools like changes of variables, summation over some
variables, Fourier transform, etc. Through the “function-sheaf dictionary”,
each of these usually corresponds to an operation on the sheaf side, which
is constructed by means of the six functors (e.g., summation corresponds
to direct image with compact support, etc). Since we control the growth
of the complexity under the six functors, we obtain automatically a good
control of the estimates in such operations.

As we will see, almost all of the bounds for the complexity of the output sheaf of
some cohomology operation are linear in the complexity of the input sheaf. This is
not always needed for applications, but shows that the theory has good structural
properties.

An interpretation. As suggested by Fouvry, Kowalski and Michel in the special
case of curves, the “quantitative sheaf theory” that is developed in this paper can
be thought of as defining the complexity of `-adic sheaves in such a way that most
(if not all) usual operations in étale cohomology are “continuous”, in the sense that
applying the operation to a sheaf with a given complexity will lead to another one
with complexity bounded only in terms of the initial one. Thus, we think of the



QUANTITATIVE SHEAF THEORY 5

complexity as being similar to a (semi)-norm on a topological vector space, with
functors on categories of sheaves playing the role of (often linear) maps between
vector spaces. For instance, the “continuity” of Deligne’s `-adic Fourier transform
(which was first observed in dimension one in [15, Prop. 8.2]) turns out to be one of
the most essential features of applications of étale cohomology to analytic number
theory.

Outline of the paper. Although the complexity is defined in terms of sums of
Betti numbers, the proof of its main properties deeply relies on T. Saito’s construc-
tion [39] of the characteristic cycle of `-adic complexes. We survey what we require
from this theory in Section 2, and prove a small complement on characteristic cycles
of tensor products (Theorem 2.2). In Section 3, we formally define the complexity
on projective space, we establish a few simple lemmas concerning “generic” injective
linear maps, and most importantly we connect this approach with the characteris-
tic cycle (Proposition 3.17). Section 4 is of technical nature: we define and prove
the existence of certain objects called “test sheaves” that will ultimately lead to
a comparison of the complexity with a norm of the characteristic cycle. Section 5
uses these tools to establish the first fundamental result, namely a bilinear bound
for the complexity of the tensor product (Theorem 5.1). Then Section 6 can rather
quickly exploit the formalism of étale cohomology to establish the general version of
Theorem 1.1, namely Theorems 6.8 and 6.17; later subsections derive various other
“continuity” properties. Finally, Section 7 gives some fundamental examples (such
as Artin–Schreier and Kummer sheaves) and summarizes a few direct applications
(including forms of the Riemann Hypothesis, such as Theorem 1.2, the finiteness
statement of Corollary 7.15, and a form of Deligne’s equidistribution theorem, from
which Theorem 1.4 folllows). In the concluding Section 8, we explain how all the
basic estimates can be stated with explicit constants.

Notation and conventions.

Algebraic geometry. We fix throughout a prime number ` and we denote by k a
field, algebraically closed unless otherwise specified, in which ` is invertible.

By an algebraic variety over a (not necessarily algebraically closed) field k, we
mean a reduced and separated scheme of finite type over the spectrum of k.

By a geometric generic point of an irreducible variety X over a separably closed
field k0, we mean, as is customary in the theory of étale cohomology, a map
Spec k0 ! X such that the image of the underlying set-theoretic map consists
of the generic point of X.

Let X be a scheme of finite type over k. We denote by Db
c (X) the bounded

derived category of constructible complexes ofQ`-sheaves onX (see, e.g., [32, II.5]).
We will usually write distinguished triangles in this category simply as

A �! B �! C.

For any object K of Db
c (X) and any integer i 2 Z, we denote by Hi(X,K) and

Hi
c(X,K) the étale cohomology and the étale cohomology with compact support

groups of X with coe�cients in K, and we write

hi(X,K) = dimHi(X,K), hi
c(X,K) = dimHi

c(X,K)

for the corresponding Betti numbers.
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When applied to objects of Db
c (X), the symbols f! and f⇤ always refer to the

derived functors; the tensor product and the hom functor of objects of Db
c (X) are

also always derived functors. We denote by D(A) the Verdier dual of an object A
of Db

c (X).
Given an algebraic variety X over k and objects A and B of Db

c (X), the shriek

tensor product of A and B is the object

A⌦! B = �!(A⇥B)

of Db
c (X), where � : X ! X ⇥X denotes the diagonal embedding. It is related to

the usual tensor product by the duality

D(A⌦! B) = D(A)⌦D(B).

We often use the projection formula in the derived category: for a morphism
f : X ! Y of algebraic varieties over k, and for objects A of Db

c (X) and B of Db
c (Y ),

there is a canonical isomorphism

f!(A⌦ f⇤B) ' f!A⌦B

in the category Db
c (Y ) (see, e.g., [18, Th. 7.4.7 (i)]).

We also recall the excision triangle: let i : Z ! X be a closed immersion
and j : U ! X the complementary open immersion, all varieties being defined
over k. For any object A of Db

c (X) and any morphism f : X ! Y over k, there is
a distinguished triangle

(f � j)!j⇤A �! f!A �! (f � i)!i⇤A

in the category Db
c (Y ) (see, e.g., [18, Th. 7.4.4 (iii)]).

Finite fields. In some sections (e.g., Sections 6.10 and 7.6), we will work over finite
fields. We usually denote by F such a field, which is always assumed to have
characteristic di↵erent from `. For integers n > 1, we then denote by Fn the
extension of F of degree n inside some fixed algebraic closure of F (which often will
be the field k).

Let X be an algebraic variety over F. For any object A of Db
c (X) and any finite

extension Fn of F, we denote by

tA(·;Fn) : X(Fn) �! Q`

the trace function of A on Fn. We refer the reader to [38, §1] for the basic for-
malism of trace functions in this generality. We will also write tA(x) = tA(x;F)
for x 2 X(F).

In all arguments involving the formalism of weights (in the sense of Deligne),
we will fix an isomorphism ◆ : Q` ! C and use it to identify both fields, viewing in
particular the trace functions as taking complex values. Weights are then considered
to be defined only with respect to ◆, e.g. we write “pure of weight zero” instead of
“◆-pure of weight zero”.

For a real number w and an element |F|�w in Q` corresponding to a choice
of |F|�w in C through the isomorphism ◆, we denote by Q`(w) the pullback to X of
the rank-one `-adic sheaf on Spec(F) on which Frobenius acts through multiplica-
tion by |F|�w. This allows one to define twists A(w) = A⌦Q`(w) for any object A
of Db

c (X), and hence to reduce questions about pure sheaves of some weight to
those of weight zero.
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The Euler–Poincaré characteristic. We recall the Euler–Poincaré characteristic for-
mula for a perverse sheaf on a smooth curve (see, e.g., [38, Th. 2.2.1.2] for the pro-
jective case, from which the general case below follows by considering the extension
by zero to the compactification). Let k be an algebraically closed field of character-
istic p > 0, let C be a smooth curve over k, and denote by C the smooth projective
compactification of C. Given a perverse sheaf A on C, we denote by

rank(A) = dimH �1(A)⌘

the generic rank of A and, for a closed point x of C, we write

dropx(A) = rank(A)� dimH �1(A)x

jumpx(A) = dimH 0(A)x.

For a closed point x of C, we denote by swanx(A) the Swan conductor at x of the
cohomology sheaf H �1(A). We further set

loc(A) =
X

x2C

(dropx(A) + jumpx(A) + swanx(A)) +
X

x2C�C

swanx(A),

where both sums run over closed points.
With the above notation, the Grothendieck–Ogg–Shafarevitch formula for the

Euler–Poincaré characteristic with compact support of A takes the form

�c(C,A) = rank(A)�c(C,Q`[1])� loc(A).

The same result holds for the usual Euler–Poincaré characteristic �(C,A) since
both are in fact equal for any constructible sheaf on any variety by a theorem of
Laumon [37].

If F is a middle-extension sheaf on C (by which we mean that there exists a
non-empty open subset j : U ,! C such that F is lisse on U and the adjunction
morphism is an isomorphism F ' j⇤j⇤F ), then A = F [1] is a perverse sheaf on C
satisfying H �1(A) = F . We use the notation rank(F ), dropx(F ), swanx(F ) and
loc(F ) accordingly; note that in this case jumpx(A) = 0 holds for all x.

Asymptotic notation. For complex-valued functions f and g defined on a set (or on
objects of a category, in which case the values of f and g are assumed to only depend
on their isomorphism classes), the notation f ⌧ g and f = O(g) are synonymous;
they mean that there exists a real number c > 0 such that, for all x in the relevant
set (or all objects in the category), the inequality |f(x)| 6 cg(x) holds. We call a
value of c an “implied constant”, and we may point out its (in)dependency on some
additional parameters. We also write f ⇣ g whenever both f ⌧ g and g ⌧ f hold.

Remarks on the text. All the important ideas of this paper are solely due to
W. Sawin, and were worked out in 2015 and 2016 while he was an ETH–ITS Junior
Fellow. The current text was written by A. Forey, J. Fresán and E.Kowalski, based
on the original draft by W. Sawin, in view of the applications to equidistribution
results for exponential sums on commutative algebraic groups in their work [11].
The quantitative form of the generic base change theorem is due to A. Forey.

Acknowledgements. We warmly thank the anonymous referees for their thor-
ough and friendly reading of a first version of this paper. Their many suggestions
greatly helped us improve the presentation and remove a number of inaccuracies.
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2. Characteristic cycles

In this section, we recall some properties of the characteristic cycles and the
characteristic classes of complexes of étale sheaves as defined by Beilinson [2] and
T. Saito [39]. We also prove a small complement (Theorem 2.2) regarding the
compatibility of characteristic cycles with tensor products.

Let X be a smooth scheme over a perfect field k. In [39], characteristic cycles are
defined for complexes of sheaves of ⇤-modules on X, where ⇤ is a finite local ring
whose residue characteristic ` is invertible in k (e.g., ⇤ = Z/`nZ). It was observed
by Umezaki, Yang and Zhao [42, Section 5] that the whole theory can be readily
adapted to the case of Q`-coe�cients. In what follows, we implicitly rely on [42] in
order to apply Saito’s results to ⇤ = Q`.

Assume X has pure dimension n. The characteristic cycle CC(A) of an object A
of Db

c (X) is an algebraic cycle on the cotangent bundle T ⇤X of X of the form

CC(A) =
X

i

miCi,

where mi is an integer and Ci is a closed conical (i.e. stable under the natural
action of Gm) subset of T ⇤X of dimension n. We refer the reader to [39, Def. 5.10]
for the definition of the multiplicities mi, and simply indicate some of the relevant
properties of the characteristic cycle.

Another invariant of A is its singular support SS(A), which is a closed conical
subset of T ⇤X of dimension n, containing the support of the characteristic cycle,
previously defined by Beilinson in [2]. Unlike what happens for the characteristic
cycle, two Z`-sheaves that are isomorphic after tensoring with Q` may have distinct
singular supports, so before stating results involving the singular support we will
choose a Z`-structure AZ̄`

(though the particular choice will matter little), and set

SS(A) = SS(AZ̄`
⌦ F̄`).

If the object A is perverse, then CC(A) is e↵ective (i.e., we have mi > 0 for
every i) by [39, Prop. 5.14].

The main property of the characteristic cycle is an index formula ([39, Th. 7.13])
according to which, if X is a smooth projective variety over an algebraically closed
field k, the Euler–Poincaré characteristic of A is given by the intersection number

�(X,A) = CC(A) · [T ⇤
XX].

In this formula, T ⇤
XX denotes the zero section of T ⇤X, and the intersection is

well-defined since the support of CC(A) has pure dimension n.

Example 2.1. Let X be a smooth projective curve and F a lisse sheaf on a dense
open subset j : U ! X. The characteristic cycle of the perverse sheaf A = j!F [1]
is given by

CC(A) = rankF · [T ⇤
XX] +

X

x2X\U

(rankF + swanx A)[T ⇤
xX],

where T ⇤
xX stands for the conormal bundle of x in T ⇤X. In this situation, the

index formula amounts to the Grothendieck–Ogg–Shafarevich formula.

Another deep result is the compatibility of the characteristic cycle with pullbacks.
Let h : W ! X be a morphism between smooth schemes of pure dimensionsm and n
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respectively and C ⇢ T ⇤X a closed conical subset. Let

h⇤C = W ⇥X C ⇢W ⇥X T ⇤X

be the pullback of C, and denote by K ⇢ W ⇥X T ⇤X the preimage of the zero
section T ⇤

WW by the map dh : W ⇥X T ⇤X ! T ⇤W . Following [39, Def. 3.3 and 7.1],
we say that the map h is properly C-transversal if the intersection h⇤C \ K is a
subset ofW⇥XT ⇤

XX and each irreducible component of h⇤C has dimensionm. This
implies in particular that the restriction of dh to h⇤C is finite (by [2, Lem. 1.2. (ii)] or
[39, Lem. 3.1]). Hence, given a cycle Z supported on the irreducible components of
C, we can define its pullback h!Z ⇢ T ⇤W as (�1)m�n times the push-forward along
the finite map h⇤C ! T ⇤W of the preimage of Z in W ⇥X T ⇤X (see [39, Def. 7.1]).

The main theorem of Beilinson and Saito [39, Th. 7.6] regarding pullbacks says
that, if A is an object of Db

c (X,Z`) and h : W ! X is a properly SS(A)-transversal
morphism, then the following equality holds:

CC(h⇤A) = h! CC(A).

For example, smooth morphisms are properly SS(A)-transversal by [39, Lem. 3.4],
and in that case the theorem essentially amounts to the statement that, for smooth
varieties X and Y and objects A of Db

c (X) and B of Db
c (Y ), the equality

CC(A⇥B) = CC(A)⇥ CC(B),

holds in T ⇤(X ⇥ Y ) = T ⇤X ⇥ T ⇤Y , see [40, Th. 2.2] for details.
In what follows, vector bundles on schemes are viewed as schemes in the usual

way. A sum of vector bundles V + W is isomorphic to their fiber product over
the base, whereas the product V ⇥W is their product as schemes, and hence is a
vector bundle on the product of the bases. As for T ⇤X, a closed subset of a vector
bundle is said to be conical if it is invariant under the scaling action of Gm. Given
a vector bundle V on a variety X, we denote by V = P(V + OX) the projective
bundle compactifying V , which admits a decomposition V = V [P(V ).

The main result of this section is the following theorem concerning characteristic
cycles of tensor products of sheaves.

Theorem 2.2. Let X be a smooth variety over k of pure dimension n. Let A and

B be objects of Db
c (X,Z`). Consider the summation and the inclusion maps

s : T ⇤X + T ⇤X ! T ⇤X, i : T ⇤X + T ⇤X ! T ⇤X ⇥ T ⇤X.

Assume that SS(A)\SS(B) is supported on the zero section and that each irreducible

component of SS(A)⇥X SS(B) has dimension at most n. Then:

(1) Each irreducible component of SS(A)⇥X SS(B) has dimension equal to n.
(2) The equality i⇤(SS(A)⇥ SS(B)) = SS(A)⇥X SS(B) holds.
(3) The restriction of s to SS(A)⇥X SS(B) is a finite map to T ⇤X.

(4) The following equality holds

CC(A⌦B) = (�1)ns⇤i⇤ (CC(A)⇥ CC(B)) ,

where the pullback and the pushforward are taken in the sense of intersection

theory. (By (1) and (2), the inverse image i⇤ (SS(A)⇥ SS(B)) has the

expected dimension, so the intersection-theoretic pullback is well-defined.)

(5) Assume that X is projective. Let CC(A) and CC(B) be the closures of

CC(A) and CC(B) inside the projective bundle T ⇤X. Then the equality

�(X,A⌦B) = (�1)n CC(A) · CC(B) = (�1)nCC(A) · CC(B)
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holds, where the dots denote intersection numbers of algebraic cycles.

Note that proving properties (1), (2) and (3) amounts to checking that the
diagonal map is properly SS(A) ⇥ SS(B)-transversal. The proof of the theorem
relies on the following lemma:

Lemma 2.3. Let X be a variety over k and let V be a vector bundle on X. Let

C1, C2 ⇢ V be conical subsets and C1 and C2 their closures inside the projective

bundle V . The following two conditions are equivalent:

(1) C1 \ C2 is contained in the zero section of V .

(2) C1 \ C2 does not intersect P(V ) inside V .

Proof. The intersection C1 \ C2 is proper, as a closed subset of V . Taking the
decomposition V = V [P(V ) into account, if condition (2) holds, then C1 \ C2 is
also a�ne, being a closed subset of V . Therefore, C1 \C2 is a finite conical subset
of V , and is hence contained in the zero section. Conversely, (1) implies (2) because
if x is a point of C1 \ C2 that lies in P(V ), then the line in V corresponding to x
is contained in C1 \ C2, which therefore is not just the zero section. ⇤

Proof of Theorem 2.2. We first prove statement (1). Since SS(A)⇥X SS(B) is the
intersection of the inverse images of SS(A) and SS(B) inside T ⇤X + T ⇤X (i.e. the
intersection of two 2n-dimensional schemes inside a smooth variety of dimension
3n), each of its irreducible components has dimension at least n, and hence equal
to n by assumption.

Statement (2) follows from the fact that pullback by the map i identifies the sum
T ⇤X +T ⇤X with T ⇤X ⇥X T ⇤X seen as a closed subset of T ⇤X ⇥T ⇤X. In the rest
of the proof, we will make this identification.

To prove (3), observe that s : T ⇤X + T ⇤X ! T ⇤X is a map of vector bundles
on X. Since SS(A) and SS(B) are conical and SS(A)\SS(B) is a subset of the zero
section T ⇤

XX of T ⇤X, the intersection of SS(A)⇥X SS(B) and the pullback along s
of T ⇤

XX is contained in the zero section of T ⇤X + T ⇤X. Hence, the restriction of s
to SS(A)⇥X SS(B) is finite by [39, Lem. 3.1].

We now turn to (4). Recall that the characteristic cycle of the external prod-
uct A⇥B is equal to CC(A)⇥CC(B) and that the tensor product A⌦B is given
by �⇤(A⇥B), where � : X ! X ⇥X denotes the diagonal map. We will compute
CC(A⌦B) using the compatibility of characteristic cycles with pullbacks, as recalled
above. For this, we need to show that � is a properly SS(A) ⇥ SS(B)-transversal
morphism.

From part (2), we know that every irreducible component of�⇤(CC(A)⇥CC(B))
has dimension n. For the transversality condition, we need to consider the maps

T ⇤X
s � T ⇤X + T ⇤X

i�! T ⇤(X ⇥X)

defined by the diagonal �, and check that the intersection of i⇤(SS(A) ⇥ SS(B))
with the preimage of the zero section T ⇤

XX by the map s is contained in the zero
section of T ⇤X + T ⇤X. But this is precisely the condition we checked in the proof
of (3), and is in fact equivalent to (3) by [39, Lem. 3.1]. Hence, [39, Th. 7.6] applies
to � and A⇥B, which yields the equality

CC(�⇤(A⇥B)) = �! CC(A⇥B).
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Combining this with the first part of the proof and the definition of �!, we get

CC(A⌦B) = CC(�⇤(A⇥B)) = �! CC(A⇥B) = (�1)ns⇤i⇤(CC(A)⇥ CC(B)).

Let us finally prove (5). By the index formula [39, Th. 7.13], the Euler–Poincaré
characteristic of A ⌦ B is the intersection number of CC(A ⌦ B) with the zero
section [T ⇤

XX]. Using part (4), it is hence given by

(�1)n[T ⇤
XX] · s⇤i⇤(CC(A)⇥ CC(B)).

By the projection formula in intersection theory (see, e.g., [20, Prop. 8.3 (c)]), the
equality

[T ⇤
XX] · s⇤i⇤(CC(A)⇥ CC(B)) = s⇤[T ⇤

XX] · i⇤(CC(A)⇥ CC(B))

holds, as long as the restriction of s to the support of i⇤(CC(A) ⇥ CC(B)) is
a proper map. Taking into account that the support of i⇤(CC(A) ⇥ CC(B)) is
SS(A) ⇥X SS(B), this is indeed the case by part (3). Now, s⇤[T ⇤

XX] is the closed
subset in T ⇤X + T ⇤X consisting of those elements with zero sum. Being conical,
CC(B) is in particular invariant under multiplication by �1, hence the equality

s⇤[T ⇤
XX] · i⇤(CC(A)⇥ CC(B)) = d⇤[T

⇤X] · i⇤(CC(A)⇥ CC(B)),

where d : T ⇤X ! T ⇤X + T ⇤X is the diagonal map. Since d is a closed immersion,
the projection formula yields

d⇤[T
⇤X] · i⇤(CC(A)⇥ CC(B)) = [T ⇤X] · d⇤i⇤(CC(A)⇥ CC(B)).

Furthermore, i � d is the diagonal map � : T ⇤X ! T ⇤X ⇥ T ⇤X, so the equality

[T ⇤X] · d⇤i⇤(CC(A)⇥ CC(B)) = [T ⇤X] · �⇤(CC(A)⇥ CC(B))

= CC(A) · CC(B)

holds. Combining all these identities we get the first equality of (5). Finally,

SS(A) \ SS(B) = SS(A) \ SS(B)

follows from Lemma 2.3, and this implies the equality of intersection numbers

CC(A) · CC(B) = CC(A) · CC(B),

which completes the proof. ⇤

The following definition is taken from Saito [39, Def. 6.7] and relies on the iso-
morphism

CH⇤(P
n) �! CHn

�
T ⇤Pn

�
, (ai) 7�!

X

i

p⇤aih
i,

where p : T ⇤Pn ! Pn is the projection and h is the first Chern class of the dual of
the universal sub line bundle of T ⇤Pn ⇥Pn (T ⇤Pn + OPn) (see [39, (6.12)]).

Definition 2.4 (Characteristic class). The characteristic class cc(A) 2 CH⇤(Pn)
of an object A of Db

c (P
n) is the image of CC(A) 2 CHn

�
T ⇤Pn

�
under the inverse

of the above isomorphism.
The total Chow group CH⇤(Pn) is isomorphic to Zn+1, with generators the

classes of linear subspaces of dimension 0 to n. Using this, we will view cc(A) as an
element of Zn+1. The lattice Zn+1 inherits the intersection pairing of CHn

�
T ⇤Pn

�
,

and this pairing is independent of the base field k.
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Lemma 2.5. Let 0 6 m 6 n be an integer, and let Km denote the constant

Q`-sheaf on an m-dimensional linear subspace of Pn
, extended by zero and placed

in degree �m. Then the characteristic cycle CC(Km) is the conormal bundle of that

m-dimensional subspace, and the characteristic classes cc(K0), . . . , cc(Kn) form a

basis of CH⇤(Pn). In particular, cc(K0), . . . , cc(Kn) form a basis of Zn+1
indepen-

dent of k and `.

Proof. The first statement follows from [39, Lem. 5.11(1) and 5.13(2)]. Recall that
CH⇤(Pn) has rank n + 1, so to show that the characteristic classes cc(K0), . . . ,
cc(Kn) form a basis, it su�ces to prove that they are linearly independent. We
will do this by proving that the matrix of intersection numbers cc(Ki) · cc(Kj)
is invertible. If i + j < n, then generic subspaces of dimensions i and j do not
intersect, so neither do their conormal bundles, and hence the intersection number
is 0. If i+j = n, then a generic i-dimensional subspace and a generic j-dimensional
subspace intersect transversely at a single point, so their conormal bundles intersect
transversely at a single point as well, and hence have intersection number 1. The
intersection matrix is thus invertible. The last sentence is just a restatement of
this, except for the independence of k and `, which follows from observing that
the isomorphism [39, (6.12)], applied to the closure of the conormal bundle of an
m-dimensional subspace, can be defined integrally and so is independent of the
characteristic. ⇤

3. Complexity and generic linear maps

In this section, we define the complexity of a complex of sheaves on projective
space and we establish a few results about generic linear maps between projective
spaces and their relationship with characteristic cycles.

Definition 3.1. Let k be a field. Let 0 6 m 6 n be integers. Let Mn+1,m+1
k be the

variety of (n+1)⇥(m+1) matrices of maximal rank, so that in particular Mn+1,n+1
k

is equal to GLn+1,k. Given an extension k0 of k and a k0-point a 2Mn+1,m+1(k0),
we denote by la : Pm

k0 ! Pn
k0 the associated linear map.

In the case m = n, in which a is an invertible matrix and la is an automorphism,
we may also use la to refer to the induced map on any scheme depending functorially
on Pn (e.g., its cotangent bundle).

Here is the key definition of this article. Although it is closely related to char-
acteristic cycles, as we will see, we have chosen to define it rather in terms of Betti
numbers, so it can be used more directly in situations where some Betti numbers
can be computed.

Definition 3.2 (Complexity of a complex of sheaves on projective space). Let
k be a field and let n > 0 be an integer. For each 0 6 m 6 n, let am be a
geometric generic point of Mn+1,m+1

k defined over an algebraically closed field k0.
The complexity c(A) of an object A of Db

c (P
n
k ) is the non-negative integer

c(A) = max
06m6n

X

i2Z

hi(Pm
k0 , l⇤am

A).

When working with this definition, we will often use the projection formula to
write

hi(Pm
k0 , l⇤am

A) = hi(Pn
k0 , A⌦ lam⇤Q`),
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which gives a slightly di↵erent expression for the complexity. Since étale cohomol-
ogy is invariant under base change of algebraically closed fields, the value of c(A)
is independent of the choice of the field of definition k0, and we will often drop it
from the notation.

Instead of considering geometric generic points of Mn+1,m+1 in the definition of
complexity, one can alternatively consider closed points in a suitable dense open
subset of Mn+1,m+1, as the following lemma shows.

Lemma 3.3. Let k be a field and k̄ an algebraic closure of k. Let 0 6 m 6 n
be an integer, and let A be a complex on Pn

k . There exists a dense open subset

U ⇢Mn+1,m+1
k such that the equality

hi(Pm
k0 , l⇤aA) = hi(Pm

k̄ , l⇤bA)

holds for any geometric generic point a of Mn+1,m+1
defined over an algebraically

closed field k0 and for every b 2 U(k̄) and i 2 Z.

Proof. For b 2 Mm+1,n+1(k̄), we view the linear map lb as the composition of the
map x 7! (x, b) from Pm to Pm ⇥Mm+1,n+1 with the matrix multiplication map

mult : Pm ⇥Mm+1,n+1 ! Pn.

Let p : Pm ⇥Mm+1,n+1 ! Mm+1,n+1 be the projection. Let U ⇢ Mn+1,m+1
k be a

dense open set such that the complex p⇤mult⇤A has lisse cohomology sheaves on U .
It follows from the proper base change theorem that the equality

hi(Pm
k0 , l⇤aA) = hi(Pm

k̄ , l⇤bA)

holds for every b 2 U(k̄). ⇤

We also note for later use the inequality c(l⇤bA) 6 c(A) for all b 2 U(k̄), which is a
straightforward consequence of the previous lemma and the definition of complexity.

Proposition 3.4. Let A be an object of Db
c (P

n
k ). The complexity c(A) vanishes if

and only if A = 0. More precisely, let dj be the dimension of the support of the

cohomology sheaf H j(A) and let rj be the maximum of the generic ranks of the

restrictions of H j(A) to the irreducible components of maximal dimension of its

support. Setting d = maxj2Z dj and r =
P

j2Z
dj=d

rj , the inequality c(A) > r holds.

Proof. Set m = n�d and let am be a geometric generic point of Mn+1,m+1
k defined

over an algebraically closed field k0. The cohomology sheaf H j(l⇤am
A) = l⇤am

H j(A)
vanishes in degrees j such that dj < d, whereas it has finite support Sj for all j such
that dj = d. Therefore, the Betti number hi(Pn

k0 ,H j(l⇤am
A)) vanishes for i 6= 0

and is equal to the sum of the dimensions of the stalks of H j(l⇤am
A) at points of Sj

for i = 0. By definition, there is a point of Sj at which the stalk has dimension rj ,
and hence the inequality hi(Pn

k0 ,H 0(l⇤am
A)) > rj holds for all j such that dj = d.

It follows from the vanishing of cohomology in non-zero degrees that the spectral
sequence

Hi(Pn
k0 ,H j(l⇤am

A)) =) Hi+j(Pn
k0 , l⇤am

A)

degenerates at the first page, hence an isomorphism

Hj(Pn
k0 , l⇤am

A) ⇠= H0(Pn
k0 ,H j(l⇤am

A)).
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By definition of complexity, we then get

c(A) >
X

j2Z

hj(Pn
k0 , l⇤am

A) =
X

j2Z

h0(Pn
k0 ,H j(l⇤am

A)) >
X

j2Z
dj=d

rj = r,

which concludes the proof, since r = 0 if and only if A = 0. ⇤
We will make several arguments involving generic points on di↵erent spaces of

linear maps. The next two lemmas describe all the properties we will need about
relationships between di↵erent generic points.

Lemma 3.5. Let X and Y be geometrically irreducible a�ne varieties over a

field k. Let x 2 X(k0) and y 2 Y (k0) be points defined over a field extension k0 of k.
Let k(x) and k(y) be the fields generated by the coordinates of x and y respectively.

If x is a geometric generic point of Xk and y is a geometric generic point of Yk(x),

then x is a geometric generic point of Xk(y).

Proof. Letting ⇠ and ⌘ denote the generic points of X and Y respectively, the result
follows from the observation that if we identify X ⇥ ⌘ and ⇠ ⇥ Y with (irreducible)
subschemes of X ⇥ Y , then the generic points of X ⇥ ⌘ and ⇠ ⇥ Y are the same as
the generic point of X ⇥ Y . ⇤
Lemma 3.6. Let a be an element of Mn+1,m+1(k) and let g be a geometric generic

point of GLn+1,k. Then ga is a geometric generic point of Mn+1,m+1
k .

Proof. Because GLn+1,k acts transitively on Mn+1,m+1
k , the map g 7! ga from

GLn+1,k to Mn+1,m+1
k is surjective, and hence dominant, so the image of g under

this map is a geometric generic point of Mn+1,m+1
k . ⇤

Lemma 3.7. Let k be a field and let 0 6 m 6 n be integers. Let a, g, and h
be points of Mn+1,m+1

k , GLn+1,k, and GLm+1,k respectively, all defined over an

algebraically closed field k0. Let b = gah�1
. Let k(a) be the subfield of k0 generated

by the coordinates of a, and similarly for k(g), k(a, g), and so on. Assume that g
is a geometric generic point of GLn+1,k(a) and that h is a geometric generic point

of GLm+1,k(a,g). Then b is a geometric generic point of Mn+1,m+1
k(a,h) and h is a

geometric generic point of GLm+1,k(a,b).

Proof. By Lemma 3.5, because g is generic over k(a) and h is generic over k(a, g),
g is a geometric generic point of GLn+1,k(a,h).

Because GLn+1,k acts transitively on Mn+1,m+1
k by left multiplication, applying

a geometric generic point g of GLn+1,k(a,h) to a point ah�1 of Mn+1,m+1
k(a,h) produces

a geometric generic point b = gah�1 of Mn+1,m+1
k(a,h) .

By Lemma 3.5, because h is geometric generic over k(a) and b is geometric
generic over k(a,h), it follows that h is geometric generic over k(a, b). ⇤
Definition 3.8. For �1, . . . ,�n+1 in k⇥, let Diag(�1, . . . ,�n+1) be the diagonal
matrix in GLn+1(k) whose diagonal entries are �1, . . . ,�n+1.

Lemma 3.9. Let k be a field and let n > 0 be an integer. Let g be a geometric

generic point of GLn+1,k, and let �1, . . . ,�n+1 be independent transcendentals over

the field k(g) generated by the matrix coe�cients of g. Then:

(1) gDiag(�1, . . . ,�n+1)g�1
is a geometric generic point of GLn+1,k.
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(2) gDiag(1, . . . , 1,�m+1, . . . ,�n+1) is a geometric generic point of GLn+1,k

for all 0 6 m 6 n+ 1.

Proof. Because (g,�1, . . . ,�n+1) is a geometric generic point of GLn+1,k ⇥Gn+1
m,k ,

to check that an element of GLn+1,k(g,�1,...,�n+1), expressed as a function of the
tuple (g,�1, . . . ,�n+1) is a geometric generic point of GLn+1,k, it su�ces to check
that the function in question is a dominant map from GLn+1,k ⇥Gn+1

m,k to GLn+1,k.
For gDiag(1, . . . , 1,�m+1, . . . ,�n+1), dominance is simply the fact that GLn+1,k

acts transitively on itself by left multiplication and for gDiag(�1, . . . ,�n+1)g�1

dominance is the well-known fact that generic matrices are diagonalizable. ⇤

Lemma 3.10. Let k be a field and let m and m0
be integers such that 0 6 m,m0 6 n

and 0 6 m + m0 � n. Let a and a0
be independent geometric generic points of

Mn+1,m+1
k and Mn+1,m0+1

k defined over a field k0 (i.e. such that a0
is a geo-

metric generic of Mn+1,m0+1
k(a) ). Then there exists a geometric generic point b of

Mn+1,m+m0�n+1
k such that the image of lb is the intersection of the images of la

and la0 and such that la⇤Q` ⌦ la0⇤Q` = lb⇤Q`.

Proof. View a and a0 as matrices of elements defined over k0, and la(x) � la0(y)
as a linear map from k0m+1+m0+1 to k0n+1. Because a and a0 are generic and
m +m0 � n > 0, this map is surjective, with kernel of dimension m +m0 + 1 � n.
We can choose a basis for this kernel by row reduction, and then let the columns
of b be a (equivalently a0) applied to the vectors in this basis.

We can check that the point b is generic by restricting to the special case where
the first m+m0 + 1� n columns of a agree with the first m+m0 + 1� n columns
of a0, and the other columns are generic. In this case, b will consist of exactly these
columns. Since some specialization of generic matrices maps to a generic matrix,
generic matrices also map to a generic matrix.

The last claim, on pushforwards, follows from the definition and the calculation
of the intersection of the image. ⇤

Lemma 3.11. Let A and B be perverse sheaves on Pn
k . For a geometric generic

point g 2 GLn+1(k0), the object A⌦ l⇤gB[�n] is perverse.

Proof. The external product A⇥B is perverse, and the sheaf A⌦l⇤gB on Pn⇥GLn+1

is the pullback of A⇥B by a smooth morphism of relative dimension (n+1)2� n,
so by [3, 4.2.5] is perverse after shifting by (n+1)2�n. We then take the pullback
to the fiber over a geometric generic point of GLn+1, which preserves perversity
after shifting by �(n+ 1)2 by definition of perversity. ⇤

Lemma 3.12. Let a be a geometric generic point of Mn+1,m+1
k . Let A be an object

of Db
c (P

n
k ). Then D(l⇤aA) = l⇤a D(A)[2(m�n)], and if A is perverse, then l⇤aA[m�n]

is perverse.

Proof. We view the linear map la as the composition of the map x 7! (x,a) fromPm

to Pm ⇥Mm+1,n+1 with the matrix multiplication map Pm ⇥Mm+1,n+1 ! Pn.
Observe that matrix multiplication is a smooth morphism of relative dimension
(m+ 1)(n+ 1) +m� n and the pullback to the geometric generic point is an in-
verse limit of open immersions. As in the previous lemma, the former preserve
perversity after shifting by (m+ 1)(n+ 1)+m� n, and the latter after shifting by
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�(m+ 1)(n+ 1). The statements for duals follow from the equality f ! = f⇤(d)[2d]
for a smooth morphism f of relative dimension d. ⇤

Lemma 3.13. Let 0 6 m 6 n�1 be an integer, and let A be a perverse sheaf on Pn
k .

There exists a dense open subset U ⇢ Mn+1,m+1
k such that, for any geometric

generic point a of Mn+1,m+1
k defined over an algebraically closed field k0 and for

any b 2 U(k̄), the complex l⇤bA[m� n] is perverse and satisfies

hi(Pm
k0 , l⇤aA) = hi(Pm

k̄ , l⇤bA)

for every i 2 Z.

Proof. Similarly to the proof of Lemma 3.12, we view the linear map lb as the
composition of the map x 7! (x, b) from Pm to Pm ⇥ Mm+1,n+1 with the ma-
trix multiplication map mult : Pm ⇥Mm+1,n+1 ! Pn. Since mult is smooth, the
pullback of A along it is perverse up to shift by (m + 1)(n + 1) � (n � m), so it
remains to show that, for any perverse Q`-sheaf mult⇤A[(m+ 1)(n+ 1)� (n�m)]
on Pm ⇥Mm+1,n+1, for b in some dense open subset U , the pullback to the fiber
over b is perverse up to shift by (m+ 1)(n+ 1).

To do this, we choose a Z`-structure on mult⇤A[(m + 1)(n + 1) � (n � m)],
obtaining a perverse Z`-sheaf K, and we let U be an open set over which K ⌦ F̄`
is locally acyclic. For any point b 2 U(k̄), after passing to a further open subset
we may assume the closure of b is smooth. Then, by [39, Cor. 8.10], the immersion
x 7! (x, b) is K-transversal and thus the pullback along this immersion is a shifted
perverse sheaf, as desired.

The second property is granted by Lemma 3.3. ⇤

We need the following corollary of Theorem 2.2.

Corollary 3.14. Let A and B be objects of Db
c (P

n
k ). For each geometric generic

point g of GLn+1,k over an algebraically closed field k0, the following equality holds:

�(Pn
k0 , A⌦ l⇤gB) = (�1)nCC(A) · CC(B).

Proof. We will prove the statement for objects A and B of Db
c (P

n
k ,Z`); the result

then follows for A and B in Db
c (P

n
k ,Q`) by choosing an integral structure and

noting that both the Euler characteristic and the characteristic cycle are preserved
by inverting `.

We will check that the singular supports of A and l⇤gB fulfil the conditions of
Theorem 2.2. From (5) of loc. cit., we will then get the equality

�(Pn
k0 , A⌦ l⇤gB) = (�1)nCC(A) · CC(l⇤gB) = (�1)nCC(A) · CC(B),

where the second identity follows from deformation-invariance of intersection num-
bers, on noting that the algebraic cycles CC(B) and CC(l⇤gB) = l⇤gCC(B) lie in a
family parameterized by GLn+1,k.

The first condition is that SS(A) \ SS(l⇤gB) is contained in the zero section. In

view of Lemma 2.3, this amounts to showing that SS(A)\SS(l⇤gB) does not intersect

P(T ⇤Pn) inside T ⇤Pn. Note the equality SS(l⇤gB) = l⇤gSS(B). The space of triples
(x, y, g) such that

x 2 SS(A) \P(T ⇤Pn), y 2 SS(B) \P(T ⇤Pn), g 2 GLn+1 and lg(y) = x
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is a bundle over SS(A)\P(T ⇤Pn)⇥SS(B)\P(T ⇤Pn). Since GLn+1 acts transitively
on P(T ⇤Pn), all its fibers have dimension (n+1)2 � (2n� 1), and hence the space
itself has dimension at most

dim
⇣
SS(A) \P(T ⇤Pn)

⌘
+ dim

⇣
SS(B) \P(T ⇤Pn)

⌘
+ (n+ 1)2 � (2n� 1)

= (n� 1) + (n� 1) + (n+ 1)2 � (2n� 1) = (n+ 1)2 � 1.

This dimension being less than (n + 1)2 = dimGLn+1, the fiber over generic g is
empty, which means that SS(A) \ SS(l⇤gB) does not intersect P(T ⇤Pn).

The second condition is that every irreducible component of

SS(A)⇥Pn SS(l⇤gB) = SS(A)⇥Pn l⇤g SS(B)

has dimension at most n. It is su�cient to prove that every irreducible component
of the scheme over GLn+1 whose fiber over a point h is SS(A) ⇥Pn l⇤h SS(B) has
dimension at most (n + 1)2 + n, because then the generic fiber has dimension at
most n. This scheme maps to SS(A) ⇥ SS(B), which has dimension 2n, and the
fiber over any point consists of all elements of GLn+1 that send one point in Pn to
another, so the fiber has dimension (n+1)2 � n and the total space has dimension
(n+ 1)2 + n, as desired. ⇤

Lemma 3.15. There exists a unique linear map fn : Zn+1 ! Zn
such that, for any

perverse sheaf A on Pn
k and any geometric generic point b of Mn+1,n

k , the equality

cc(l⇤bA) = fn (cc(A))

holds. This linear map does not depend on k and `.

Proof. Let Km be the perverse sheaf on Pn�1 described in Lemma 2.5.
It does not matter what geometric generic point b of Mn+1,n

k we take, because
any pair of geometric generic points defined over two di↵erent fields are isomorphic
after a suitable extension of both fields. Let a be a geometric generic point of
Mn+1,n

k , g a geometric generic point of GLn+1,k(a), and h a geometric generic

point of GLn,k(a,g). Let b = gah�1. Then Lemma 3.7 guarantees that b is a

geometric generic point of Mn+1,n
k and so we may work with b.

Furthermore, h is a geometric generic point of GLn,k(b) by Lemma 3.7, and hence
Corollary 3.14 yields the equality

cc(l⇤bA) · cc(Km) = �
�
Pn�1

k0 , l⇤bA⌦ l⇤h�1Km

�
.

Furthermore, since h is generic, the right-hand side is equal to

�
�
Pn�1

k0 , l⇤hl
⇤
bA⌦Km

�
= �

�
Pn�1

k0 , l⇤al
⇤
gA⌦Km

�

= �
�
Pn

k0 , l⇤gA⌦ la⇤Km

�

= cc(A) · cc(la⇤Km)

by the projection formula and Corollary 3.14, along with the fact that g is a geo-
metric generic point of GLn+1,k(a). Thus, cc(l⇤bA) · cc(Km) is a linear function
of cc(A).

Because the cc(Km) form a basis, by Lemma 2.5, the pairings cc(l⇤bA) · cc(Km)
of cc(l⇤bA) with that basis can be used as coordinates of cc(l⇤bA). Because these
pairings are linear functions of cc(A), the class cc(l⇤bA) is a linear function of A.
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By Lemma 2.5, the characteristic classes cc(Km) and cc(la⇤Km) (which is just
cc(Km) in a di↵erent projective space) are independent of ` and k, and so the linear
map is independent of ` and k. ⇤

Definition 3.16. For n > 0, let fn : Zn+1 ! Zn be the linear map uniquely
determined in Lemma 3.15. We define inductively a bilinear form

bn : Z
n+1 ⇥ Zn+1 ! Z

by setting b0(x, y) = xy for (x, y) 2 Z⇥ Z and

bn(x, y) = x · y + 4bn�1(fn(x), fn(y))

for n > 1 and (x, y) 2 Zn+1 ⇥ Zn+1, where x · y is the scalar product on Zn+1.

Proposition 3.17. For any perverse sheaves A and B in Db
c (P

n
k ), and for any

geometric generic point g of GLn+1,k defined over k0, the following holds:

X

i2Z

hi(Pn
k0 , A⌦ l⇤gB) 6 bn (cc(A), cc(B)) .

Proof. We prove this proposition by induction on n. The case n = 0 is trivial,
as then A and B are simply vector spaces, their characteristic classes are their
dimensions, and the sum of Betti numbers is the product of the dimensions.

Assume the inequality holds in dimension n � 1 and let A and B be perverse
sheaves in Db

c (P
n). By Lemma 3.11, the object A⌦ l⇤gB[�n] is perverse. Set

� =
X

i2Z

hi(Pn
k0 , A⌦ l⇤gB),

which is the quantity we want to estimate. By the definition of the Euler–Poincaré
characteristic, we have

h�n(Pn
k0 , A⌦ l⇤gB) = (�1)n�(Pn

k0 , A⌦ l⇤gB) +
X

i 6=�n

(�1)i+n+1hi(Pn
k0 , A⌦ l⇤gB)

6 (�1)n�(Pn
k0 , A⌦ l⇤gB) +

X

i 6=�n

hi(Pn
k0 , A⌦ l⇤gB),

hence the inequality

� =
X

i<�n

hi(Pn
k0 , A⌦ l⇤gB) + h�n(Pn

k0 , A⌦ l⇤gB) +
X

i>�n

hi(Pn
k0 , A⌦ l⇤gB)

6 2
X

i<�n

hi(Pn
k0 , A⌦ l⇤gB) + (�1)n�(Pn

k0 , A⌦ l⇤gB) + 2
X

i>�n

hi(Pn�1
k0 , A⌦ l⇤gB).

Let now a 2Mn+1,n(k0) be a geometric generic point of Mn+1,n
k(g) defined over an

algebraically closed field k0. By excision and the t-exactness of a�ne morphisms,
the canonical map

Hi(Pn
k0 , A⌦ l⇤gB)! Hi(Pn�1

k0 , l⇤a(A⌦ l⇤gB))

is an isomorphism in degrees less than �n. Because duality exchanges l⇤a and l!a,
and because the dual of A⌦ l⇤gB[�n] is also perverse, the canonical map

Hi(Pn�1
k0 , l!a(A⌦ l⇤gB))! Hi(Pn

k0 , A⌦ l⇤gB)
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is an isomorphism in degrees greater than �n. We thus obtain

� 6 2
X

i2Z

hi(Pn�1
k0 , l⇤a(A⌦l⇤gB))+(�1)n�(Pn

k0 , A⌦l⇤gB)+2
X

i2Z

hi(Pn�1
k0 , l!a(A⌦l⇤gB)).

For a geometric generic point a, the functor l!a coincides with l⇤a, up to a shift
and Tate twist, and hence

� 6 4
X

i2Z

hi(Pn�1
k0 , l⇤a(A⌦ l⇤gB)) + (�1)n�(Pn

k0 , A⌦ l⇤gB).

Now we observe that l⇤a(A ⌦ l⇤gB) = l⇤aA ⌦ l⇤al
⇤
gB. Take h to be a geometric

generic point of GLn,k(a,g) and b = gah�1 . Then l⇤al
⇤
gB = l⇤hl

⇤
bB. By Lemma 3.7,

h is generic over k(a, b). Together with the induction hypothesis and Lemma 3.15,
we deduce that
X

i2Z

hi(Pn�1
k0 , l⇤aA⌦ l⇤hl

⇤
bB) 6 bn�1(cc(l

⇤
aA), cc(l⇤bB)) = bn�1(fn(cc(A)), fn(cc(B))).

Finally, in view of the equality

(�1)n�(Pn
k0 , A⌦ l⇤gB) = cc(A) · cc(B)

given by Lemma 3.14, we obtain � 6 bn(cc(A), cc(B)) by definition of bn. ⇤

4. Test sheaves

The main result of this section is the construction, achieved in Corollary 4.13, of
a specific basis of the group CH(Pn

k ), which will play an essential role in controlling
the complexity of a tensor product in the next section.

Definition 4.1 (Test sheaf). A test sheaf on Pn
k is a perverse sheaf A on Pn

k such
that, for any field extension k0 of k, any perverse sheaf B on Pn

k0 , and any generic
point g of GLn+1,k0 defined over an algebraically closed field extension k

00
of k0, the

cohomology group Hi(Pn
k0 , A⌦ l⇤gB) vanishes in all degrees i 6= �n.

For example, a skyscraper sheaf A on Pn
k is a test sheaf, since the object A⌦ l⇤gB

is a skyscraper sheaf sitting in degree �n in that case.

Remark 4.2. The key properties of a test sheaf A are the following:

(1) the functor defined on perverse sheaves by B 7! H�n(Pn
k0 , A⌦l⇤gB) is exact,

(2) the cohomology groups Hi(Pn
k0 , A⌦ l⇤gB) and H�n(Pn

k0 , A⌦pH i(B)) agree,

up to renumbering, for all objects B of Db
c (P

n
k ).

Test sheaves are most useful when they are of the form highlighted in the next
definition:

Definition 4.3 (Strong test sheaf). Let d > 1 be an integer. A strong test sheaf

of depth d on Pn
k is a test sheaf A that admits a filtration

0 = F0 ⇢ F1 · · · ⇢ Fd = A

such that, for each 1 6 j 6 d, the quotient Fj/Fj�1 is isomorphic to a perverse
sheaf (see Lemma 3.12) of the form laj⇤Q`[mj ] for some 0 6 mj 6 n and some
aj 2Mn+1,mj+1(k).

Strong test sheaves have the following crucial property:
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Proposition 4.4. Let A be a strong test sheaf of depth d on Pn
k . The inequality

X

i2Z

��cc(A) · cc(pH i(B))
�� 6 dc(B)

holds for any field extension k0 of k and any object B of Db
c (P

n
k0).

Proof. Denote by (Fj)16j6d the terms of the filtration from Definition 4.3.
Let g be a generic point of GLn+1,k0 . By Corollary 3.14, we have:

X

i2Z

��cc(A) · cc(pH i(B))
�� =

X

i2Z

|�(Pn
k0 , A⌦ l⇤g

pH i(B))|

6
X

i2Z

X

j2Z

hj(Pn
k0 , A⌦ l⇤g

pH i(B)).

Since A is a test sheaf, the vanishing Hj(Pn
k0 , A ⌦ l⇤g

pH i(B)) = 0 holds for
all j 6= �n, and hence the spectral sequence computing Hi(Pn

k0 , A ⌦ l⇤gB) via the
perverse filtration on B degenerates at the first page. It follows that

X

i2Z

X

j2Z

hj(Pn
k0 , A⌦ l⇤g

pH i(B)) =
X

i2Z

hi(Pn
k0 , A⌦ l⇤gB).

On the other hand, the spectral sequence associated to the filtration (Fj) of A
yields the inequality of sums of Betti numbers

X

i2Z

hi(Pn
k0 , A⌦ l⇤gB) 6

dX

j=1

X

i2Z

hi(Pn
k0 , (Fj/Fj�1)⌦ l⇤gB).

By assumption, there exist isomorphisms Fj/Fj�1 = laj⇤Q`[mj ] for some integer
0 6 mj 6 n and k-point aj of Mn+1,mj+1, so that the following equalities hold:

dX

j=1

X

i2Z

hi(Pn
k0 , (Fj/Fj�1)⌦ l⇤gB) =

dX

j=1

X

i2Z

hi(Pn
k0 , laj⇤Q` ⌦ l⇤gB)

=
dX

j=1

X

i2Z

hi(P
mj

k0 , l⇤aj
l⇤gB).

Since g is generic over k0, the product gaj is a generic point of Mn+1,m+1
k0 , and

therefore the definition of c(B) implies the inequality

dX

j=1

X

i2Z

hi(P
mj

k0 , l⇤aj
l⇤gB) 6

dX

j=1

c(B) = dc(B),

which concludes the proof. ⇤

We will now construct strong test sheaves forming a basis of CH(Pn
k ).

Lemma 4.5. Let A and B be objects of Db
c (P

n
k ). Let g be a generic point of GLn,k.

Then there is a canonical isomorphism

A⌦ l⇤gB ⇠= (A⌦! l
⇤
gB)[�2n].

Proof. Let l : Pn ⇥GLn+1 ! Pn ⇥GLn+1 be the universal morphism given by

l(x, h) = (h · x, h)
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and let ⇡ : Pn ⇥GLn+1 ! Pn be the projection. Then A⌦ l⇤gB and A⌦! l⇤gB are
the generic fibers of ⇡⇤A⌦ l⇤⇡⇤B and (⇡⇤A⌦! l⇤⇡⇤B)[�2(n+ 1)2] respectively, so
it su�ces to prove that the objects ⇡⇤A⌦ l⇤⇡⇤B and ⇡⇤A⌦! l⇤⇡⇤B are isomorphic
up to shift.

For this, consider the morphism (⇡,⇡ � l) : Pn ⇥ GLn+1 ! Pn ⇥ Pn, which is
smooth because GLn+1 acts transitively on Pn. Since ⌦ commutes with smooth
pullbacks and ⌦! commutes with smooth pullbacks up to shifting by twice the
relative dimension, we obtain isomorphisms

⇡⇤A⌦ l⇤⇡⇤B = (⇡,⇡ � l)⇤ (pr⇤1A⌦ pr⇤2B) ,

⇡⇤A⌦! l
⇤⇡⇤B = (⇡,⇡ � l)⇤ (pr⇤1A⌦! pr

⇤
2B) [2(n+ 1)2 � 2n].

It is then enough to prove that pr⇤1A⌦ pr⇤2B and pr⇤1A⌦! pr⇤2B are isomorphic up
to shift. This follows from the computation

pr⇤1A⌦! pr
⇤
2B = D(D(pr⇤1A)⌦D(pr⇤2B))

= D(pr⇤1 D(A)[2n]⌦ pr⇤2 D(B)[2n])

= pr⇤1 D(D(A)[2n])⌦ pr⇤2 D(D(B)[2n])

= (pr⇤1A⌦ pr⇤2B)[�4n],

which uses the standard properties of Verdier duality and pr!i = pr⇤i [2n]. ⇤

Lemma 4.6. Let n > 0 be an integer. Let H1 and H2 be hyperplanes in Pn
k that

intersect transversely, and consider the commutative diagram

Pn
k �H1 Pn

k

Pn
k � (H1 [H2) Pn

k �H2.

a

b

d

c

The object a⇤b!Q`[n] is isomorphic to c!d⇤Q`[n] and is a test sheaf.

Proof. By adjunction, there is a natural morphism c!d⇤Q` ! a⇤b!Q` extending the
identity on Pn

k�(H1[H2), and it su�ces to prove that this map is an isomorphism
on stalks at all geometric points of H1 [H2. This is obvious save for points of the
intersection H1 [ H2. For those, we argue as follows: since H1 and H2 intersect
transversely, étale locally around each such point the diagram looks like

An�2
k ⇥ (A1

k � {0})⇥A1
k An

k

An�2
k ⇥ (A1

k � {0})⇥ (A1
k � {0}) An�2

k ⇥A1 ⇥ (A1
k � {0}).

a

b

d

c

Expressing the constant sheaf on the down left corner as an external product and
letting j : A1 � {0} ,! A1 denote the inclusion, the Künneth formula then implies
that the map c!d⇤Q` ! a⇤b!Q` is locally given by the identity on Q`⇥ j⇤Q`⇥ j!Q`.

We now proceed to the proof that a⇤b!Q`[n] ' c!d⇤Q`[n] is a test sheaf. First
of all, we check that a⇤b!Q`[n] is perverse. Indeed, all maps in the diagram are
a�ne open immersions, and the direct image and exceptional direct image by those
preserve perversity. Next, let B be a perverse sheaf on Pn

k and let i 2 Z. Using the
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projection formula, we get the equalities

Hi(Pn
k0 , c!d⇤Q`[n]⌦ l⇤gB) = Hi+n(Pn

k0 , c!(d⇤Q` ⌦ c⇤l⇤gB))

= Hi+n
c (Pn

k0 �H2, d⇤Q` ⌦ c⇤l⇤gB)

= Hi+n
c (Pn

k0 �H2, c
⇤(c!d⇤Q` ⌦ l⇤gB)).

The object c!d⇤Q` ⌦ l⇤gB is perverse by Lemma 3.11. Since pullbacks by open

immersions preserve perversity, the object c⇤(c!d⇤Q`⌦c⇤l⇤gB) is a perverse sheaf on
the a�ne variety Pn

k0�H2, and hence its compactly supported cohomology vanishes
when i+ n < 0 by Artin’s vanishing theorem.

Dually, using Lemma 4.5, we get

Hi(Pn
k0 , a⇤b!Q`[n]⌦ l⇤gB) = Hi�n(Pn

k0 , a⇤b!Q` ⌦! l
⇤
gB)

= Hi�n(Pn
k0 , a⇤(b!Q` ⌦! a

⇤l⇤gB))

= Hi�n(Pn
k0 �H1, b!Q` ⌦! a

⇤l⇤gB)

= Hi+n(Pn
k0 �H1, a

⇤(a⇤b!Q` ⌦! l
⇤
gB)[�2n]).

Arguing as above using Lemma 4.5, we see that a⇤(a⇤b!Q` ⌦! l⇤gB)[�2n] is a
perverse sheaf on the a�ne variety Pn

k0 �H1, so that its cohomology vanishes for
i+ n > 0 by Artin’s vanishing theorem. This completes the proof. ⇤

Lemma 4.7. Let a 2 Mn+1,m+1
k (k). If A is a test sheaf on Pm

k , then la⇤A is a

test sheaf on Pn
k .

Proof. Let B be a perverse sheaf on Pn
k0 and let g be a generic point in GLn+1,k0 .

By the projection formula, we have

Hi(Pn
k0 , la⇤A⌦ l⇤gB) = Hi(Pm

k0 , A⌦ l⇤al
⇤
gB).

Let h be a generic point of GLm+1,k0(a,g). Set b = gah�1 and k00 = k0(a, g,h).
By Lemma 3.7, the point b is a generic linear embedding and h is generic over the
field of definition of k0(b), so that

Hi(Pm
k00 , A⌦ l⇤al

⇤
gB) = Hi(Pm

k00 , A⌦ l⇤hl
⇤
bB) = Hi+n�m(Pm

k00 , A⌦ l⇤hl
⇤
bB[m� n]).

Because b is generic, the object l⇤bB[m�n] is perverse by Lemma 3.12, and therefore
this cohomology group vanishes for i+ n�m 6= �m, i.e., for i 6= �n. ⇤

Definition 4.8 (Standard test sheaf). For each integer 0 6 m 6 n, pick a point
am 2 Mn+1,m+1(k) and pick transversal hyperplanes H1 and H2 in Pm

k . As in
Lemma 4.6, let c : Pm

k � H2 ! Pm
k and d : Pn

k � (H1 [ H2) ! Pm
k � H2 be the

corresponding immersions. Define the m-th standard test sheaf Am as

Am = lam⇤c!d⇤Q`[m].

Remark 4.9. In the case m = 0, choosing a0 amounts to choosing a k-point of Pn
k ,

the only possible choices for H1 and H2 are the empty hyperplanes in P0
k = Spec k,

and A0 is a skyscraper sheaf supported at the chosen point.

Corollary 4.10. For each 0 6 m 6 n, the object Am is a strong test sheaf on Pn
k

of depth at most 4.
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Proof. The fact that Am is a test sheaf follows from applying Lemma 4.6 and
Lemma 4.7. Because la⇤ preserves constant sheaves on linear subspaces, it preserves
any filtration into constant sheaves on linear subspaces of the type required for a
strong test sheaf, and thus it su�ces to find such a filtration for c!d⇤Q`.

We use the notation of Lemma 4.6. Let h be the closed immersion of H2 into Pm
k .

Since c is an open immersion, there is a base change isomorphism d⇤Q` = c⇤a⇤Q`.
By adjunction, there is hence a morphism c!d⇤Q` = c!c⇤a⇤Q` ! a⇤Q`, which is
an isomorphism away from H2. Because c!d⇤Q` vanishes on H2, the morphism
c!d⇤Q` ! a⇤Q` has mapping cone h⇤a⇤Q`. The complex a⇤Q` has a filtration
whose associated quotients are the constant sheaf and a shift of the constant sheaf
on H1, so h⇤a⇤Q` has a filtration whose associated quotients are the constant sheaf
on H2 and a shift of the constant sheaf on the intersection H1 \H2. The mapping
cone triangle gives the desired filtration of c!d⇤Q`. ⇤
Remark 4.11. (1) One can also give a proof “by pure thought” of this proposition,
based on the fact that Am is equivariant for the subgroup of PGLm+1 acting on Pm

k
and preserving the hyperplanes H1 and H2. Because this group action has finitely
many orbits, and its stabilizers are connected, one can show that the only irreducible
elements of the category of perverse sheaves invariant under this group are the
intersection cohomology complexes of the closures of the orbits, which in this case
are simply the constant sheaves on Pm, H1, H2, andH1\H2. An analogous method
is used in the theory of the geometric Satake isomorphism to classify perverse
sheaves on the a�ne Grassmanian that are equivariant for the left action of the
formal arc group (see, e.g., [21, proof of Prop. 1]).

(2) The standard test sheaves depend on the choices in Definition 4.8; whenever
we use them, we assume implicitly these choices have been made for all m, and
that they are the same in the remainder of the arguments.

Lemma 4.12. Let (Aj)06j6n be standard test sheaves. The following holds:

cc(Am1) · cc(Am2) =

(
0 if m1 +m2 < n,

1 if m1 +m2 = n.

Proof. This is a straightforward consequence of Corollary 3.14, which identifies the
intersection number cc(Am1) · cc(Am2) with (�1)n�(Pn

k0 , Am1 ⌦ l⇤gAm2). Indeed,
the support of Am is of dimension m. If m1 +m2 < n, it follows that the support
of Am1 does not intersect that of Am2 after generic translation, and consequently
their tensor product vanishes, from which cc(Am1) · cc(Am2) = 0 follows. Similarly,
ifm1+m2 = n, the support of of Am1 intersects that of Am2 after generic translation
at a single point. At this point, both sheaves have stalk Q`, so their tensor product
is a skyscraper sheaf and has Euler–Poincaré characteristic 1. ⇤
Corollary 4.13. Let (Aj)06j6n be standard test sheaves on Pn

k . Then the charac-

teristic classes (cc(Aj))06j6n form a basis of CH(Pn
k ) ' Zn+1

.

Proof. Indeed, by Lemma 4.12, the matrix of intersection pairings between the
characteristic classes cc(Ai) is invertible. ⇤

5. Complexity of a tensor product

In this section, we prove the crucial theorem showing that the complexity controls
the sum of Betti numbers of a tensor product of complexes of `-adic sheaves, namely:
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Theorem 5.1. Let A and B be objects of Db
c (P

n
k ). Then the estimate

X

i2Z

hi(Pn
k , A⌦B)⌧ c(A)c(B)

holds, with an implied constant that only depends on n.

Remark 5.2. In Theorem 8.1, we state and sketch a proof of a version of this
result with an explicit constant.

Before starting the proof, we show how this implies an important corollary.

Corollary 5.3. Let A and B be objects of Db
c (P

n
k ). Then the estimate

c(A⌦B)⌧ c(A)c(B)

holds, with an implied constant that only depends on n.

Proof. Let g be a geometric generic point of GLn+1,k. For 0 6 m 6 n, let am

be a geometric generic point of Mn+1,m+1
k . From the definition of complexity and

Theorem 5.1, we get the estimate

c(A⌦B) = sup
06m6n

X

i2Z

hi(Pn
k , A⌦B ⌦ lam⇤Q`)

⌧ c(A) sup
06m6n

c(B ⌦ lam⇤Q`).

For 0 6 m0 6 n, let a0
m0 be a geometric generic point of Mn+1,m0+1

k(am) . Again by
definition, the complexity above is given by

c(B ⌦ lam⇤Q`) = sup
06m06n

X

i2Z

hi(Pn
k , B ⌦ lam⇤Q` ⌦ la0

m0⇤Q`)

for any m 6 n. By Lemma 3.10, the equality lam⇤Q` ⌦ la0
m0⇤Q` = lb⇤Q` holds for

a geometric generic point b of Mn+1,m+m0�n+1
k . This implies the inequality

X

i2Z

hi(Pn
k , B ⌦ lam⇤Q` ⌦ la0

m0⇤Q`) 6 c(B)

for any m and m0, from which the result follows. ⇤

The strategy for proving Theorem 5.1 consists in first establishing a “generic”
version of it, and then deducing from this the precise statement. In what follows,
we denote by (Am)06m6n the family of standard test sheaves from Definition 4.8.
For x 2 Rn+1 = CH⇤(Pn)⌦R, we set

kxk =
nX

m=0

|x · cc(Am)|

Because (cc(Am))06m6n is a basis of CH⇤(Pn), by Corollary 4.13, and the inter-
section form is non-degenerate, this is simply the `1-norm in the dual basis, and in
particular defines a norm on Rn+1.

Proposition 5.4. For any object B of Db
c (P

n
k ), the following inequality holds:

X

i2Z

k cc(pH i(B))k 6 4(n+ 1)c(B).
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Proof. Let 0 6 m 6 n. Because Am is a strong test sheaf of depth at most 4,
Proposition 4.4 yields the inequality

X

p2Z

|cc(pH p(B)) · cc(Am)| 6 4c(B).

Thus, we have

X

p2Z

k cc(pH p(B))k =
nX

m=0

X

p2Z

|cc(pH p(B) · cc(Am)| 6 4(n+ 1)c(B). ⇤

The second part of the next corollary shows that the complexity of a complex of
sheaves is, up to constants, the sum of the norms of the characteristic cycles of its
perverse cohomology sheaves.

Corollary 5.5. Let A and B be objects of Db
c (P

n
k ).

(1) For a generic point g of GLn+1,k defined over k0, the estimate

X

i2Z

hi(Pn
k0 , A⌦ l⇤gB)⌧ c(A)c(B)

holds, with an implied constant that only depends on n.
(2) We have

c(B) ⇣
X

i2Z

k cc(pH i(B))k,

where the implied constants depend only on n.

Proof. For the proof of (1), we apply the spectral sequences associated to the
perverse filtrations of A and B to get

X

i2Z

hi(Pn
k0 , A⌦ l⇤gB) 6

X

p2Z

X

q2Z

X

i2Z

hi(Pn
k0 , pH p(A)⌦ l⇤g

pH q(B)).

Applying Proposition 3.17, and denoting by Mn the norm of the bilinear form bn,
so that the inequality bn(↵,�) 6 Mnk↵k k�k holds for any ↵ and �, we get

X

i2Z

hi(Pn
k0 , A⌦ l⇤gB) 6 Mn

X

p2Z

X

q2Z

k cc(pH p(A))k k cc(pH q(B))k,

which is at most 16(n+ 1)2Mnc(A)c(B) by Proposition 5.4.
For (2), one bound follows from Proposition 5.4. In the other direction, we begin

as above (with the same g) until we reach the bound
X

i2Z

hi(Pn
k0 , A⌦ l⇤gB)⌧

X

p2Z

k cc(pH p(A))k
X

q2Z

k cc(pH q(B))k.

Taking A = lam⇤Q`, where am is an arbitrary element of Mn+1,m+1(k), this gives
X

i2Z

hi(Pm
k0 , l⇤am

l⇤gB)⌧
X

q2Z

k cc(pH q(B))k

for 0 6 m 6 n. This implies the desired bound, since gam is a generic point
of Mn+1,m+1

k by Lemma 3.6. ⇤
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Our main theorem in this section is the same as Corollary 5.5, but without the
generic pullback l⇤g. To remove it, we will use a double induction strategy. We view
a generic point g of GLn+1 as a generic diagonal matrix conjugated by a generic
invertible matrix. We will show that the theorem remains true if some of the entries
of the diagonal matrix are set to 1, by induction on the number of entries. Once
all the diagonal entries are set to 1, any conjugate is the identity matrix, and so we
obtain our desired statement.

At each step, we have a family of cohomology groups parameterized by Gm,
i.e. a complex of sheaves on Gm, and we want to bound the stalk at the identity
using the stalk at the generic point. In general, the stalk at the generic point could
be very small and the stalk at the identity could still be very large. However, we
will now show that this cannot happen as long as we also control the cohomology.
In our case, it turns out that controling the cohomology corresponds to a lower-
dimensional version of the problem, and we may use induction on the dimension to
achieve our goal.

Lemma 5.6. For each object A of Db
c (Gm,k), the inequality

(5.1)
X

i2Z

dimH i(A)1 6
X

i2Z

dimH i(A)⌘ +
X

i2Z

hi
c(Gm,k, A)

holds, where ⌘ denotes the generic point of Gm,k.

Proof. We first reduce the proof to the case when A is perverse. On the one hand,
the spectral sequence associated to the perverse filtration of A gives the inequality

X

i2Z

dimH i(A)1 6
X

j2Z

X

i2Z

dimH i(pH j(A))1.

On the other hand, because perverse sheaves are supported in a single degree at
the generic point, we have

X

i2Z

dimH i(A)⌘ =
X

j2Z

X

i2Z

dimH i(pH j(A))⌘.

Because the compactly supported cohomology of an a�ne curve with coe�cients
in a perverse sheaf is concentrated in degrees 0 and 1, the spectral sequence for the
perverse filtration of A degenerates and

X

i2Z

hi
c(Gm,k, A) =

X

j2Z

X

i2Z

hi
c(Gm,k,

pH j(A)).

Therefore, it is su�cient to prove the inequality (5.1) when A is a perverse sheaf.
If A is perverse, most of the terms in the sums in (5.1) vanish. Removing all the

terms that are known to vanish, the desired inequality can be stated as

dimH 0(A)1 + dimH �1(A)1 6 dimH �1(A)⌘ + h0
c(Gm,k, A) + h1

c(Gm,k, A).

Since dimH �1(A)1 6 dimH �1(A⌘), it su�ces to show the inequality

dimH 0(A)1 6 h0
c(Gm,k, A) + h1

c(Gm,k, A),

or even
�c(Gm,k, A) > dimH 0(A)1.

This follows from the Euler–Poincaré characteristic formula for perverse sheaves
on smooth curves, where the local term at the point 1 is at least dimH 0(A)1,
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all other local terms are non-negative, and the global term is a multiple of the
Euler–Poincaré characteristic of Gm and hence vanishes. ⇤

Let n > 1 be an integer. For each point g of GLn+1,k valued in an algebraically
closed field, the fixed points of the linear map lg are the projectivizations of the
eigenspaces of g. In particular, for any � 6= 1, the fixed points of lDiag(�,1,...,1)

on Pn consist of the isolated point x0 = [1 : 0 : · · · : 0] and the hyperplane
H0 = {[0 : a1 : · · · : an]}. We identify H0 with Pn�1.

In the next two lemmas, we will denote by U ✓ Pn the complement of {x0}[H0,
by j : U ! Pn the corresponding open immersion, and by ⇡ : U ! H0 ' Pn�1 the
projection map from U to the hyperplane H0. We also denote by p : {x0} ! Pn

the closed immersion of the isolated fixed point and by h : H0 = Pn�1 ! Pn the
closed immersion of the hyperplane.

Lemma 5.7. Let n > 1 be an integer. Let A and B be objects of Db
c (P

n
k ). Let �

be a geometric generic point of Gm,k defined over an algebraically closed field k0.
With notation as above, the following inequality holds:

X

i2Z

hi(Pn
k , A⌦B) 6

X

i2Z

hi(Pn
k0 , A⌦ l⇤Diag(�,1,...,1)B)

+ 2
X

i2Z

hi(Spec(k), p⇤A⌦ p⇤B) + 2
X

i2Z

hi(Pn�1
k , h⇤A⌦ h⇤B)

+
X

i2Z

hi(Pn�1
k ,⇡!j

⇤A⌦ ⇡!j⇤B).

Proof. Let K be the pushforward of A ⌦ l⇤Diag(µ,1,...,1)B from Pn ⇥ Gm to Gm,
where Gm has coordinate µ. Proper base change yields the equalities

X

i2Z

dimH i(K)1 =
X

i2Z

hi(Pn
k , A⌦B),

X

i2Z

H i(K)⌘ =
X

i2Z

hi(Pn
k0 , A⌦ l⇤Diag(�,1,...,1)B).

Hence, by Lemma 5.6, it su�ces to prove the inequality
X

i2Z

hi
c(Gm,k,K) 6 2

X

i2Z

hi(Spec(k), p⇤A⌦ p⇤B)

+ 2
X

i2Z

hi(Pn�1
k , h⇤A⌦ h⇤B) +

X

i2Z

hi(Pn�1
k , (⇡!j

⇤A)⌦ (⇡!j
⇤B)).

By the Leray spectral sequence, the equality

(5.2)
X

i2Z

hi
c(Gm,k,K) =

X

i2Z

hi
c

⇣
Pn ⇥Gm, A⌦ l⇤Diag(µ,1,...,1)B

⌘
.

holds. To compute the right-hand side, we partition Pn ⇥Gm = X0 [X1 [X2 as

X0 = {x0}⇥Gm, X1 = H0 ⇥Gm, X2 = U ⇥Gm.

Note that X0 and X1 are closed, and X2 is open. By excision, the right-hand side
of (5.2) is bounded by

2X

j=0

X

i2Z

hi
c(Xj , A⌦ l⇤Diag(µ,1,...,1)B).
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Since X0 and X1 are fixed points of l⇤Diag(�,1,...,1) for all �, the restriction of the
complex A ⌦ l⇤Diag(�,1,...,1)B to either of them is the same as that of A ⌦ B. The
Künneth formula gives

H⇤
c(X0, A⌦B) ' H⇤({x0}, A⌦B)⌦H⇤

c(Gm,Q`)

H⇤
c(X1, A⌦B) ' H⇤(H0, A⌦B)⌦H⇤

c(Gm,Q`),

and hence (since the sum of Betti numbers of Gm is equal to 2) we get
X

i2Z

hi
c(X0, A⌦B) = 2

X

i2Z

hi({x0}, A⌦B) = 2
X

i2Z

hi(Spec(k), p⇤A⌦ p⇤B)

X

i2Z

hi
c(X1, A⌦B) = 2

X

i2Z

hi(H0, A⌦B) = 2
X

i2Z

hi(Pn�1, h⇤A⌦ h⇤B).

Finally, note that the Gm-action on U is free, so that there is an isomorphism
between X2 and the space of pairs of points (x, y) in U ⇥ U such that x and y
lie in the same orbit of the Gm-action, which identifies the projection to U and
the pullback along lDiag(�,1,...,1) with the first and the second projections. The
space of such pairs is isomorphic to the fiber product of U with itself over the
quotient U/Gm. There is an isomorphism U/Gm ' H0 ' Pn�1 induced by ⇡,
hence the equality

X

i2Z

hi
c(X2, A⌦ l⇤Diag(�,1,...,1)B) =

X

i2Z

hi
c(U ⇥Pn�1 U, j⇤A⇥ j⇤B).

By the Künneth formula (or the projection formula applied twice), the right-hand
side is also equal to

X

i2Z

hi
c(U,A⌦ ⇡!j⇤B) =

X

i2Z

hi(Pn�1
k ,⇡!j

⇤A⌦ ⇡!j⇤B).

Gathering all these computations, we obtain the result. ⇤
Lemma 5.8. Let n > 1. Let A be an object of Db

c (P
n
k ) and let g be a geometric

generic point of GLn+1,k defined over an algebraically closed field k0. Then the

following inequalities hold:

c(h⇤l⇤gA) 6 c(A),

c(⇡!j
⇤l⇤gA) 6 3c(A),

X

i2Z

hi(Spec(k0), p⇤l⇤gA) 6 c(A).

Proof. For each 0 6 m 6 n � 1, let am be a geometric generic point of Mn,m+1
k(g) .

By definition,

c(h⇤l⇤gA) = sup
m

X

i2Z

hi(Pm, l⇤am
h⇤l⇤gA).

The composition lg � h � lam is a generic linear embedding from Pm to Pn, and
hence this quantity is 6 c(A) by definition.

For any i 2 Z, by proper base change, there is an isomorphism

(5.3) Hi(Pm, l⇤am
⇡!j

⇤l⇤gA) = Hi(⇡�1lam(Pm), l⇤gA).

The inverse image ⇡�1lam(Pm) is of the form

L� {x0}� (H0 \ L),
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where L is a general (m + 1)-dimensional subspace of Pn that contains x0. By
excision, the sum of the Betti numbers of (5.3) is at most

X

i2Z

hi(L, l⇤gA) +
X

i2Z

hi({x0}, l⇤gA) +
X

i2Z

hi(H0 \ L, l⇤gA).

Each of these is bounded by c(A) (since am and lg are generic, see Lemmas 3.5
and 3.6), hence c(⇡!j⇤l⇤gA) 6 3c(A).

Finally, lg � p is the inclusion map of a generic point, so the inequality
X

i2Z

hi(Spec(k0), p⇤l⇤gA) 6 c(A)

holds by the definition of c(A). ⇤

We are finally ready to prove the main theorem of this section.

Proof of Theorem 5.1. We prove the theorem by induction on n > 0. The theorem
holds for n = 0, because A and B are then simply complexes of vector spaces so

c(A) =
X

i2Z

hi(P0, A),

and hence X

i2Z

hi(P0, A⌦B) =
X

i2Z

hi(P0, A)
X

i2Z

hi(P0, B).

Now assume that n > 1 and that Theorem 5.1 holds for Pn�1.
Let g be a generic point of GLn+1,k and let �1, . . . ,�n+1 be independent tran-

scendentals over k(g). Let k0 be an algebraically closed extension of k(g) containing
�1, . . . ,�n+1. For 1 6 m 6 n+ 1, we denote

�m = Diag(1, . . . , 1,�m, . . . ,�n+1).

Then
X

i2Z

hi(Pn
k , A⌦B) =

X

i2Z

hi(Pn
k0 , l⇤gA⌦ l⇤gB) =

X

i2Z

hi(Pn
k0 , l⇤Diag(1,...,1)l

⇤
gA⌦ l⇤gB).

On the other hand, we have
X

i2Z

hi(Pn
k0 , l⇤�n+1

l⇤gA⌦ l⇤gB) =
X

i2Z

hi(Pn
k0 , A⌦ l⇤g�n+1g�1B)

⌧ c(A)c(B)

by Corollary 5.5 (1) and Lemma 3.9 (1).
Therefore, using a telescoping sum, we get

X

i2Z

hi(Pn
k , A⌦B)

=
n+1X

m=1

⇣X

i2Z

hi(Pn
k0 , l⇤gA⌦ l⇤�m+1

l⇤gB)�
X

i2Z

hi(Pn
k0 , l⇤gA⌦ l⇤�m l⇤gB)

⌘

+O(c(A)c(B)).
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By Lemma 5.7, for a fixed m, the term between parentheses is

6 2
X

i2Z

hi(Spec k0, p⇤l⇤gA⌦ p⇤l⇤�m+1
l⇤gB)

+ 2
X

i2Z

hi(Pn�1
k0 , h⇤l⇤gA⌦ h⇤l⇤�m+1

l⇤gB)

+
X

i2Z

hi(Pn�1
k0 , (⇡!j

⇤l⇤gA)⌦ (⇡!j
⇤l⇤�m+1

l⇤gB)).

Applying the induction hypothesis, this is

⌧ 2c(p⇤l⇤gA)c(p⇤l⇤�m+1
l⇤gB) + 2c(h⇤l⇤gA)c(h⇤l⇤�m+1

l⇤gB) + c(⇡!j
⇤l⇤gA)c(⇡!j

⇤l⇤�m+1
l⇤gB)

and finally, applying Lemma 5.8 and Lemma 3.9 (2), this is

6 2c(A)c(B) + 2c(A)c(B) + 9c(A)c(B) = 13c(A)c(B).

This concludes the proof. ⇤

6. Quantitative sheaf theory on quasi-projective varieties

The goal of this section is to define the complexity of objects of the derived
category for any quasi-projective algebraic variety over a field, or rather the pair
consisting of such a variety and a given quasi-projective embedding.

6.1. Definition of complexity and continuity of the six operations. It turns
out that it is not really possible to define a complexity invariant of sheaves on an
algebraic variety, with its expected properties, that only depends on the algebraic
variety. We give two examples, related to two desirable properties of a complexity
function (the second was suggested by an anonymous referee).

Example 6.1. (1) A hypothetical canonical complexity invariant c(A) for objects A
of Db

c (X) should of course be invariant under automorphisms of X. Another basic
requirement for applications of a complexity invariant should be that, if F is a
finite field and k an algebraic closure of F, then there should be, up to isomorphism
over k, only finitely many irreducible perverse sheaves of bounded complexity (see
Corollary 7.15). However, there are examples of algebraic varieties X over F with
infinitely many F-automorphisms and perverse sheaves A on X such that there are
infinitely many pairwise non-isomorphic perverse sheaves among the �⇤A for such
automorphisms � (e.g., let X be the a�ne plane, and let A be a suitable shift of
the constant sheaf Q` on an irreducible plane curve).

(2) Consider X = A2, with coordinates (x, y). For any polynomial f 2 k[x, y],
the map uf : (x, y) 7! (x, y�f(x)) is an automorphism of X. Let i : A1 ! X be the
closed immersion x 7! (x, 0). For any complexity function c on Db

c (X) that satisfies
the “bilinearity” property of Corollary 5.3 and is invariant under automorphisms,
the following estimate would hold:

c(i⇤Q`[1]⌦ u⇤
f (i⇤Q`[1]))⌧ 1.

This is impossible since the support of i⇤Q`[1] ⌦ u⇤
f (i⇤Q`[1]) is the intersection of

the line y = 0 and its image under uf , which can be an arbitrarily large finite set.
A similar projective example arises from X = E ⇥ E for an elliptic curve E, with
the immersion E ' E ⇥ {0}! E ⇥E and the automorphisms (x, y) 7! (x, y + nx)
for n 2 Z.
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We will work instead with pairs (X,u) consisting of an algebraic variety X
over k and a locally closed immersion u : X ! Pn

k for some integer n > 0, called
the embedding dimension of (X,u).

Remark 6.2. (1) Recall that a locally closed immersion u is a morphism that can
be factored as u = i � j, where j is an open immersion and i is a closed immersion.

(2) We will often simply denote by X the pair (X,u), when no confusion is
possible, and call this simply a quasi-projective variety. We will also sometimes do
this over a more general base S than the spectrum of a field.

Definition 6.3 (Complexity of a complex of sheaves on a quasi-projective variety).
Let (X,u) be a quasi-projective variety over an algebraically closed field k. The
complexity relative to u of an object A of Db

c (X) is the non-negative integer

cu(A) = c(u!A).

When the embedding is clearly understood, we will simply speak of the complexity
of A.

Remark 6.4. The complexity cu(A) vanishes if and only if A = 0 (Proposition 3.4).

The first main objective is to prove that the complexity is under control when
performing all usual operations, starting with Grothendieck’s six functors (i.e., in
the language used in the introduction, these functors are “continuous”). For this
purpose, we will also define a complexity invariant for morphisms.

Definition 6.5 (Complexity of a locally closed immersion). Let (X,u) be a quasi-
projective variety over k. We define the complexity of u to be

c(u) = cu(Q`) = c(u!Q`).

Definition 6.6 (Complexity of a morphism). Let f : (X,u)! (Y, v) be a morphism
of quasi-projective varieties over k. Let m and n be the embedding dimension of X
and Y respectively. For integers 0 6 p 6 m and 0 6 q 6 n, let ap and bq be
geometric generic points of Mm+1,p+1

k and Mn+1,q+1
k respectively, all defined over

a common algebraically closed field k0.
The complexity of the morphism f relative to (u, v) is defined as

cu,v(f) = max
06p6m

max
06q6n

X

i2Z

hi
c(Xk0 , u⇤lap⇤Q` ⌦ f⇤v⇤lbq⇤Q`).

In the vein of Lemma 3.3, the definition of cu,v(f) can be phrased in terms of
closed points over a dense open subset W ⇢ Mm+1,p+1

k ⇥Mn+1,q+1
k rather than

geometric generic points. Namely, letting � ⇢ Pm ⇥ Pn denote the graph of f
relative to the locally closed immersions u and v, there exist such W with the
property that the above Betti numbers are equal to

hj
c(� \ (ker(lap)⇥ ker(lbq )),Q`)

for all points (ap, bq) 2W (k̄).

Remark 6.7. These definitions are compatible in the sense that, for a locally closed
immersion u : X ! Pn, using Lemma 3.10, we have cu,Id(u) = c(u).

In a similar vein, if i : X ! Y is an immersion of quasi-projective varieties (X,u)
and (Y, v), such that u = v � i, then cu,v(i) = c(u), which can be seen readily from
the definition, the projection formula and Lemma 3.10.
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The fundamental result is the following:

Theorem 6.8 (Continuity of the six operations). Let (X,u) and (Y, v) be quasi-

projective varieties over k, and let f : X ! Y be a morphism. For objects A and B
of Db

c (X) and C of Db
c (Y ), the following estimates hold:

cu(D(A))⌧ c(u)cu(A)(6.1)

cu(A⌦B)⌧ cu(A)cu(B)(6.2)

cu(A⌦! B)⌧ c(u)3cu(A)cu(B)(6.3)

cu(H om(A,B))⌧ c(u)cu(A)cu(B)(6.4)

cu(f
⇤C)⌧ cu,v(f)cv(C)(6.5)

cv(f!A)⌧ cu,v(f)cu(A)(6.6)

cu(f
!C)⌧ c(u)c(v)cu,v(f)cv(C)(6.7)

cv(f⇤A)⌧ c(u)c(v)cu,v(f)cu(A).(6.8)

In all these estimates, the implied constants only depend on the embedding dimen-

sions of (X,u) and (Y, v).

In the next subsection, we will prove Theorem 6.8. In later subsections, we
will then handle similarly a number of additional operations, e.g., decomposing a
complex into irreducible perverse sheaves.

Remark 6.9. Let k0 be a field of characteristic coprime to `. For any quasi-
projective variety (X0, u0) over k0 and any object A0 of Db

c (X0), we set

cu0(A0) = cu(A),

where (X,u) is the base change of (X0, u0) to an algebraically closed field exten-
sion k of k0 and A is the base change of A0. Similarly, we define the complexity of
a morphism f0 : (X0, u0)! (Y0, v0) as

cu0,v0(f0) = cu,v(f),

where f is the base change of f0 to an algebraically closed field. Since the complexity
is independent of the chosen algebraically closed field, Theorem 6.8 also holds for
the complexity over non-algebraically closed fields.

Remark 6.10. Theorem 1.1 from the introduction follows from Theorem 6.8 ap-
plied to X = An and Y = Am with u and v the standard open immersions to Pn

and Pm respectively.

6.2. Proof of the continuity of the six functors. We begin with a lemma
concerning complexes on projective space.

Lemma 6.11. For each object A of Db
c (P

n
k ), the equality c(A) = c(D(A)) holds.

Proof. Let a be a geometric generic point of of Mn+1,m+1
k . Using Verdier duality

and Lemma 3.12, the computation
X

i2Z

hi(Pm, l⇤aA) =
X

i2Z

hi(Pm,D(l⇤aA)) =
X

i2Z

hi(Pm, l⇤a D(A))

yields c(A) = c(D(A)) by definition of complexity. ⇤
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Proof of (6.1). The equalities

cu(D(A)) = c(u! D(A)) = c(u⇤ D(A)⌦ u!Q`)

hold by definition, and hence we get the estimate

cu(D(A)) = c(D(u!A)⌦ u!Q`)⌧ c(D(u!A))c(u!Q`) = c(u!A)c(u!Q`) = cu(A)c(u)

by combining Corollary 5.3 and Lemma 6.11. ⇤

Proof of (6.2) and (6.3). By definition, we have

cu(A⌦B) = c(u!(A⌦B)).

Then by Corollary 5.3, we obtain

cu(A⌦B) = c(u!(A⌦B)) = c(u!A⌦ u!B)⌧ c(u!A)c(u!B) = cu(A)cu(B).

Combining this with (6.1), we obtain (6.3). ⇤

Proof of (6.4). We have by definition of internal Hom

cu(H om(A,B)) = cu(D(A)⌦B)⌧ cu(D(A))cu(B)⌧ c(u)cu(A)cu(B),

where the estimates follow by applying (6.2) and (6.1). ⇤

Proof of (6.5) and (6.6). Let m be the embedding dimension of X and n that of Y .
By definition, we have

cu(f
⇤C) = c(u!f

⇤C) = max
06p6m

X

i2Z

hi(Pp
k0 , l⇤ap

u!f
⇤C).

Applying three times the projection formula, we have for any p and i 2 Z

hi(Pp
k0 , l⇤ap

u!f
⇤C) = hi

c(Yk0 , f!u
⇤lap!Q` ⌦ C).

Applying the Leray spectral sequence for étale cohomology with compact support
to the morphism v : Y ! Pn, we derive

X

i2Z

hi
c(Yk0 , f!u

⇤lap!Q` ⌦ C) =
X

i2Z

hi(Pn
k0 , v!f!u

⇤lap!Q` ⌦ v!C).

Then, by Theorem 5.1 and the definition, we get
X

i2Z

hi(Pn
k0 , v!f!u

⇤lap!Q` ⌦ v!C)⌧ cv(f!u
⇤lap!Q`)cv(C).

Thus,

cu(f
⇤C)⌧ cv(C) max

06p6m
cv(f!u

⇤lap!Q`).

Applying again the definition and the projection formula three times, we have

cv(f!u
⇤lap!Q`) = max

06q6n

X

i2Z

hi(Pq, l⇤bq
v!f!u

⇤lap!Q`)

= max
06q6n

X

i2Z

hi
c(Xk0 , f⇤v⇤lbq !Q` ⌦ u⇤lap!Q`)

for any p. This concludes the proof of (6.5) by definition of cu,v(f), and the proof
of (6.6) is similar. ⇤
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Proof of (6.7) and (6.8). From f !C = D(f⇤ D(C)) we get the estimates

cu(f
!C)⌧ c(u)cu(f

⇤ D(C))⌧ c(u)cu,v(f)cv(D(C))⌧ c(u)c(v)cu,v(f)cv(C)

by (6.1) and (6.5). This establishes (6.7), and (6.8) is proved similarly using (6.6)
instead of (6.5). ⇤

We can also bound the complexity, with respect to the Segre embedding, of the
external product of complexes.

Proposition 6.12. Let (X,u) and (Y, v) be quasi-projective algebraic varieties

over k with embedding dimensions n and m respectively, and consider their product

(X ⇥ Y, u⇥ v), where u⇥ v = s � (u⇥ v) is the composition of u⇥ v with the Segre

embedding

s : Pn ⇥Pm ! P(n+1)(m+1)�1.

Let p1 : X⇥Y ! X and p2 : X⇥Y ! Y denote the projections. Then the estimate

cu⇥v(A⇥B)⌧ cu⇥v,u(p1)cu⇥v,v(p2)cu(A)cv(B)

holds for all objects A of Db
c (X) and B of Db

c (Y ), with an implied constant that

only depends on (n,m).

Proof. The estimate

cu⇥v(A⇥B)⌧ cu⇥v(p
⇤
1A)cu⇥v(p

⇤
2B)

holds by (6.2). Since the first factor on the right-hand side satisfies

cu⇥v(p
⇤
1A)⌧ cu⇥v,u(p1)cu(A)

by (6.5), and similarly for cu⇥v(p
⇤
2B), the result follows. ⇤

Remark 6.13. It should be possible to estimate the complexities cu⇥v,u(p1) and
cu⇥v,v(p2) in terms of c(u) and c(v). Indeed, this amounts to estimating the co-
homology of u!Q` ⇥ v!Q` on Pn ⇥ Pm restricted to the intersection of a general
linear subspace with the inverse image of a general linear subspace under the Segre
embedding. One can bound this by

cs(u!Q` ⇥ v!Q`)cs(F ),

where F is the constant sheaf on the intersection of a general linear subspace with
the inverse image of a general linear subspace under the Segre embedding, and then
attempt to estimate the two factors separately.

6.3. Linear operations.

Proposition 6.14. Let (X,u) be a quasi-projective variety over k.

(1) For any distinguished triangle A1 ! A2 ! A3 in Db
c (X), the following

holds:

cu(A2) 6 cu(A1) + cu(A3),

cu(A1) 6 cu(A2) + cu(A3),

cu(A3) 6 cu(A1) + cu(A2).

(2) For any objects A and B of Db
c (X), the following equality holds:

cu(A�B) = cu(A) + cu(B).
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(3) Let A be an object of Db
c (X). For any h 2 Z, the following equality holds:

cu(A[h]) = cu(A).

Proof. The first bound in (1), as well as the equalities in (2) and (3), follow imme-
diately from the definition cu(A) = c(u!A) and the expression of the complexity in
terms of Betti numbers. The second and third inequalities are then deduced from
the first (and from (3)) using the distinguished triangles A2 ! A3 ! A1[1] and
A3[�1]! A1 ! A2. ⇤

In general, it is not obvious how sharp the first inequality c(A2) 6 c(A1)+ c(A3)
is. However, in the important special case of the decomposition of a perverse sheaf
into its irreducible constituents, there is a more satisfactory estimate.

Theorem 6.15. Let (X,u) be a quasi-projective variety over k. Let A be an object

of Db
c (X). For any i 2 Z, let ni be the length of

pH i(A) in the abelian category

of perverse sheaves and let (Ai,j)16j6ni be the family of its Jordan-Hölder factors,

repeated with multiplicity. Then the estimates

cu(A) 6
X

i2Z

niX

j=1

cu(Ai,j)⌧ c(u)cu(A)

hold, with an implied constant that only depends on the embedding dimension of

(X,u).

Proof. The first inequality follows immediately from the previous proposition. We
prove the second one.

For i 2 Z, let mi be the length of pH i(u!A) in the category of perverse sheaves
on the projective space target of u, and let (Bi,j)16j6mi be the Jordan-Hölder
factors (repeated with multiplicity) of these perverse sheaves.

Let X be the closure of the image of u. The Bi,j are irreducible perverse sheaves
with support contained inX, and hence each u⇤Bi,j is either zero or is an irreducible
perverse sheaf on X.

Because u!A is supported on X, its perverse filtration is stable under pullback
to X. The perverse filtration is always stable under open immersions; since u is a
locally closed immersion, it follows that it is stable under u⇤.

Therefore, we have pH i(A) = pH i(u⇤u!A) = u⇤pH i(u!A). This perverse sheaf
is an iterated extension of u⇤Bi,j , . . . , u⇤Bi,mi ; by the uniqueness of the Jordan-
Hölder factors, the perverse sheaves u⇤Bi,1, . . . , u⇤Bi,mi that do not vanish coincide
with the Ai,1, . . . , Ai,ni , including multiplicity. We may therefore assume that the
equality u⇤Bi,j = Ai,j holds for 1 6 j 6 ni and u⇤Bi,j = 0 for j > ni.

Then we have

X

i2Z

niX

j=1

cu(Ai,j) =
X

i2Z

niX

j=1

cu(u
⇤Bi,j)⌧ c(u)

X

i2Z

miX

j=1

c(Bi,j)

⌧ c(u)
X

i2Z

miX

j=1

k cc(Bi,j)k,

by using (6.5) and Corollary 5.5 (2).
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On the other hand, we have

cc(pH i(u!A)) =

mjX

j=1

cc(Bi,j).

Since the Bi,j are perverse sheaves, their characteristic cycles are e↵ective. The
norm on Rn+1 is additive on the cone of e↵ective cycles, hence the equality

k cc(pH i(u!A))k =
miX

j=1

k cc(Bi,j)k.

The estimate

X

i2Z

niX

j=1

cu(Ai,j)⌧ c(u)
X

i2Z

k cc(pH i(u!A))k ⌧ c(u)c(u!A) = c(u)cu(A)

then follows by Proposition 5.4. ⇤

Corollary 6.16. Let (X,u) be a quasi-projective variety over k and w : W ! X
the embedding of a locally closed subvariety. For each perverse sheaf A on W , the

middle extension perverse sheaf w!⇤A on X satisfies

cu�w(A)⌧ c(u � w)cu(w!⇤A),

cu(w!⇤A)⌧ (c(u)c(u � w))2cu�w(A),

where the implied constants only depend on the embedding dimension of (X,u).

Proof. We recall that w!⇤A is the image of the canonical morphism

pH 0(w!A)! pH 0(w⇤A)

of perverse sheaves. It satisfies A = w⇤w!⇤A, and hence the estimates

cu�w(A) = cu�w(w
⇤w!⇤A)⌧ cu�w,u(w)cu(w!⇤A) = c(u � w)cu(w!⇤A)

follow from (6.5) and Remark 6.7. Conversely, Proposition 6.14 gives the bound

cu(w!⇤A) 6 cu(
pH 0(w!A)) + cu(

pH 0(w⇤A)).

Then Theorem 6.15, combined with (6.6) and (6.8) and Remark 6.7 again, gives
the estimate

cu(w!⇤A)⌧ c(u)(cu(w!A) + cu(w⇤A))⌧ c(u)(c(u � w) + c(u � w)2c(u))cu�w(A),

as we wanted to show. ⇤

6.4. Nearby and vanishing cycles. In this section, we prove the continuity of
the functors of nearby and vanishing cycles. Let S be the spectrum of a strictly
Henselian discrete valuation ring, with special point � and generic point ⌘. Let
⌘̄ be a geometric generic point above ⌘. Let f : X ! S be a quasi-projective
morphism and u : X ! Pn

S a locally closed embedding. We denote by X� and X⌘

the fibers of f over � and ⌘ respectively. We also consider the induced embeddings
u� : X� ! Pn and u⌘ : X⌘ ! Pn. For an object A of Db

c (X), we denote by A� and
A⌘ the restrictions of A to X� and X⌘ respectively. We denote by  f (resp. �f )
the functor of nearby cycles (resp. of vanishing cycles) from Db

c (X) to Db
c (X�).
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Theorem 6.17. Let X, S and f be as above. For each object A 2 Db
c (X), the

following estimates hold:

cu� ( f (A))⌧ c(u�)cu⌘ (A⌘),

cu� (�f (A))⌧ c(u�)cu⌘ (A⌘) + cu� (A�).

Before starting the proof, recall the following compatibilities of the nearby cycle
functor with pushforwards and pullbacks. Let h : X 0 ! X be an S-morphism,
and f 0 = f � h. Recall from [10, Exp.XIII (2.1.7.1)] that, if h is proper, there is a
canonical isomorphism

(6.9)  fh⇤ ! h⇤ f 0

by proper base change. Moreover, if h is smooth then by [10, Exp.XIII (2.1.7.2)],
there is a canonical isomorphism

(6.10) h⇤ f !  f 0h⇤.

Proof. By definition of the vanishing cycles, there is a distinguished triangle

A� !  f (A)! �f (A),

and hence the inequality cu� (�f (A)) 6 cu� (A�) + cu� ( f (A)) holds by Proposi-
tion 6.14. It is thus enough to prove the first inequality.

We first assume that f is proper, so that u is a closed immersion. Using (6.9)
with h = u, we can replace X by Pm

S and A by u!(A).
From (6.9), for every i 2 Z we get the equality

(6.11) hi(X⌘̄, A⌘̄) = hi(X�, f (A)).

By definition, we have

cu� ( f (A)) = max
06m6n

X

i2Z

hi(Pn
k0 , l⇤am

(A⌘)),

where am is a geometric generic point of Mn+1,m+1
k(�) defined over an algebraically

closed field k0, and similarly for cu⌘ (A⌘). As in the proof of Lemma 3.12, we view
lam as the composition of the map s : x 7! (x,am) from Pm to Pm ⇥Mm+1,n+1

with the matrix multiplication map p : Pm ⇥Mm+1,n+1 ! Pn. We still denote by
p the smooth map Pm

S ⇥S Mm+1,n+1
S ! Pn

S . By (6.10), there is an isomorphism

(6.12) p⇤ f !  fp
⇤,

where we still denote by f the natural morphism Pm
S ⇥S Mm+1,n+1

S ! S.
Let S0 denote the strict localization of Mm+1,n+1

S at the point am and let
s : S0 !Mm+1,n+1

S be the localization map. The scheme S0 is the spectrum of a
strictly Henselian discrete valuation ring, with special point �0 and generic point ⌘0,
which are mapped to � and ⌘ respectively by the canonical morphism s0 : S0 ! S.
The situation is similar to the discussion preceding [6, Lem. 3.3]. Set k̃ = k(⌘̄)⇥k(⌘)

k(⌘0), which is the fraction field of the strict localization of Mm+1,n+1
S̄

, where S̄ is

the normalization of S in ⌘̄. Then Gal(⌘̄/⌘) = Gal(k̃/⌘0) holds. Let ⌘̄0 the spectrum
of an algebraic closure of k̃ and P = Gal(⌘̄0/k̃), which is a pro-p group for p the
characteristic exponent of k.

Let f 0 : Pn
S0 ! S0 be the strict localization at am of the morphism

Pm
S ⇥S Mm+1,n+1

S �!Mm+1,n+1
S .
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We have the following cartesian diagram:

Pn
S0 S0

Pn
S ⇥S Mm+1,n+1

S Mm+1,n+1
S S.

f 0

s s s0

f

As recalled in (6.10), there is an isomorphism

(6.13) s⇤ f !  s0�f 0s⇤.

By [6, Th. Finitude, Lem. 3.3], for every object B of Db
c (P

n
S0) and i 2 Z, the

equality

(6.14)  s0�f 0(B) =  f 0(B)P

holds. Since P is a pro-p group, taking the P -fixed part is an exact functor, hence
the inequality

(6.15) hi(Pn
k0 , f 0(B)P ) 6 hi(Pn

k0 , f 0(B)).

Combining equations (6.12), (6.13) and (6.14), we find

(6.16) l⇤am
 f (A) = s⇤p⇤ f (A) = s⇤ f (p

⇤A) =  s0�f 0(s⇤p⇤A) =  f 0(l⇤am
A)P .

Hence, by (6.15) applied to B = s⇤p⇤A, we get

(6.17) hi(Pn
k0 , l⇤am

 f (A)) 6 hi(Pn
k0 , f 0(l⇤am

A)).

By (6.11) applied to f 0, we have

(6.18) hi(Pn
k0 , f 0(l⇤am

A)) = hi(Pn
⌘̄0 , (l

⇤
am

A)⌘) = hi(Pn
⌘̄0 , l

⇤
am

(A⌘̄0)).

Combining (6.17) and (6.18), we find the sought-after inequality

cu� ( f (A)) 6 cu⌘ (A⌘).

We now come back to the general case, i.e. we do not assume that f is proper.
We factor the immersion u : X ! Pn

S as i � j, where i is a closed immersion and j
is an open immersion.

By the first step, applied to j!A and the morphism f̄ given by the composition
of i and the projection Pn

S ! S, we get ci⌘ (j!(A)⌘) 6 ci� ( f̄ j!A). By (6.10), the
object j⇤� f̄ j!A is isomorphic to  f (A), and hence we get

cu� ( f (A))⌧ cu�,i� (j�)ci� ( f̄ j!A)

6 cu�,i� (j�)ci⌘ ((j!A)⌘)

= cu�,i� (j�)cu⌘ (A⌘) = c(u�)cu⌘ (A⌘)

by (6.5) and Remark 6.7. This finishes the proof. ⇤

Corollary 6.18. Let k be an algebraically closed field, f : (X,u) ! (S, v) a flat

morphism of quasi-projective varieties over k, with S smooth and irreducible of

dimension 1. Let � be a closed point of S. Let S(�) be the strict localization of S
at �. Denote by  f and �f the nearby and vanishing cycles functors of the base
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change of f to S(�), which we view as functors from Db
c (X) to Db

c (X�). For any

A 2 Db
c (X), the following estimates hold:

cu� ( f (A))⌧ cu,v(f)
2cu(A),

cu� (�f (A))⌧ cu,v(f)
2cu(A).

Proof. Let � ⇢ X ⇥k S be the graph of f . We denote by h : X ! � the canonical
S-morphism, and by f 0 : � ! S the projection. Abusively, we will also write
u : �! Pn

S for the canonical embedding induced by u : X ! Pn
k .

Since h is an isomorphism, the base change morphism  f 0h⌘⇤ ! h�⇤ f is an
isomorphism as well. Moreover, h⌘ and h� are isomorphisms and the equality
cu� (B) = cu� (h�⇤B) holds for any object B of Db

c (X�). By Theorem 6.17 applied
to the strict localization at � of f 0 : �! S and h⇤A, the following estimates hold:

cu� ( f 0(h⇤A))⌧ c(u�)cu⌘ (h⇤A⌘),

cu� (�f 0(h⇤A))⌧ c(u�)cu⌘ (h⇤A⌘) + cu� (h⇤A�).

Using the base change isomorphism previously quoted, this implies that

cu� ( f (A))⌧ c(u�)cu⌘ (A⌘),

cu� (�f (A))⌧ c(u�)cu⌘ (A⌘) + cu� (A�).

We will now prove the estimates

cu� (A�)⌧ cu,v(f)cu(A),

c(u�)⌧ cu,v(f),

cu⌘ (A⌘)⌧ cu,v(f)cu(A),

which will conclude the proof.
First, let �� 2 Db

c (S) be the rank-one skyscraper sheaf supported at � 2 S.
We have cv(��) = 1 and f⇤�� is the constant sheaf supported on X�, so that by
Theorem 6.8, we obtain cu(f⇤��)⌧ cu,v(f)cv(��). Hence, the estimate

c(u�) = cu(f
⇤��)⌧ cu,v(f)

holds. This proves the second inequality.
Moreover, we have A� = A⌦Q`|X�

, and hence the estimate

cu� (A�)⌧ cu(A)c(u�)

holds by Theorem 6.8. Combined with the second inequality, this yields the first
one.

For the third inequality, let b be a geometric generic point of MnS ,nS+1 such
that the intersection of v(S) and the image of lb in PnS

k0 is finite. This intersection
consists of finitely many geometric generic points ⌘̄1, . . . , ⌘̄n of S. The complex
f⇤v⇤lb⇤Q` is then the constant sheaf supported on f�1({⌘̄1, . . . , ⌘̄n}), hence the
estimate

cu⌘ (A⌘) 6 cu(A⌦ f⇤v⇤lb⇤Q`).

From Theorem 6.8 and the definition of cu,v(f), we deduce

cu(A⌦ f⇤v⇤lb⇤Q`)⌧ cu(A)cu(f
⇤v⇤lb⇤Q`) 6 cu(A)cu,v(f),

which ends the proof. ⇤
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6.5. Uniformity in families. In Theorem 6.8, the factors c(u) or cu,v(f) appear.
The next proposition ensures that these are bounded in algebraic families; for all
practical purposes, they will thus behave as constants in applications.

Proposition 6.19. Let S be a noetherian scheme in which ` is invertible. Let X
be a scheme of finite type over S, and let u : X ! Pn

S be a locally closed immersion

of schemes over S, so that for each geometric points s of S, the pair (Xs, us) is a

quasi-projective variety over the algebraically closed field k(s). Then:

(1) There exists a constant M1, depending only on (X,S, u), such that the

inequality c(us) 6 M1 holds for all s.
(2) For any object A of Db

c (X), there exists a constant M2, depending only on

(X,S, u,A), such that the inequality cus(As) 6 M2 holds for all s.
(3) Let Y be a scheme over S and let v : Y ! Pn0

S be a locally closed immersion

of schemes over S. Let f : X ! Y be a morphism of schemes over S. Then

there exists a constant M3, depending only on (X,S, u, Y, v, f) such that the

inequality cus,vs(fs) 6 M3 holds for all s.

Proof. By definition of c(us), part (1) will follow from (2) applied to A = Q`.
We now prove (2). Let 0 6 m 6 n be an integer. Let r : Mn+1,m+1

S ⇥SPm
S ! Pn

S
be the morphism defined by r(a, x) = la(x). Consider the diagram

X
u // Pn

S Mn+1,m+1
S ⇥S Pm

S
roo

pr1
✏✏

Mn+1,m+1
S .

Let s be a geometric point of S. Let am be a geometric generic point of the fiber
of Mn+1,m+1

S over s. Let i 2 Z. By the proper base change theorem, the equality
X

i2Z

hi(Pm
k0 , l⇤am

us!As) =
X

i2Z

dimH i(pr1⇤r
⇤u!A)am

holds. Since u is a locally closed immersion and r and pr1 are morphisms of finite
type, the complex pr1⇤r

⇤u!A is an object of Db
c (M

n+1,m+1
S ), so by constructibility,

the sum above is bounded as s varies.
For (3), we argue in a similar way with Mn+1,m+1

S ⇥S Mn0+1,m0+1
S . ⇤

Remark 6.20. For instance, if f : An ! Am is a morphism given by m polyno-
mials in n variables of degree at most d, then using the universal family of such
polynomials it follows that there exists a constant b(n,m, d) such that the inequal-
ity cu,v(f) 6 b(n,m, d) holds for all f (with the standard embeddings u : An ! Pn

and v : Am ! Pm). We can in fact make some cases fully explicit by appealing to
results of Katz [28]. Since this can be useful in some applications, we spell out one
such case in the next proposition.

For non-negative integers N , r and d, set

B(N, r, d) = 6 · 2r · (3 + rd)N+1.

Proposition 6.21. Let r, d, n1 and n2 be non-negative integers. Let X be a closed

subvariety of An1 over k defined by r equations of degree at most d. Let Y be any

subvariety of An2
k . Let u and v be the natural immersions of An1 and An2 in Pn1
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and Pn2 respectively. For any morphism f : X ! Y defined by n2 polynomials of

degree at most d, the following inequality holds:

cu,v(f) 6 B(n1, n2 + r, d).

Proof. By definition, the complexity cu,v(f) is the maximum over all integers
m1 6 n1 and m2 6 n2 of the sum of the compactly supported Betti numbers
(with Q`-coe�cients) of the intersection of X with a generic linear subspace of
dimension m1 in Pn1 and with the pullback by f of a generic linear subspace of
dimension m2 in Pn2 . The intersection of the first linear subspace with An1 is
an a�ne space of dimension n1. Its intersection with X is defined by r equations
of degree at most d, and the pullback of a linear subspace is defined by n2 �m2

linear combinations of the polynomials defining f , which are hence also of degree
at most d. Thanks to [28, Cor. of Th. 1, p. 34], we deduce the inequalities
X

i2Z

hi
c(X,u⇤l⇤am1

Q` ⌦ f⇤v⇤l⇤bm2
Q`) 6 B(m1, n2 �m2 + r, d) 6 B(n1, n2 + r, d)

(with notation as in Definition 6.6) for all m1 and m2, and the result follows. ⇤

Remark 6.22. In some cases, Katz’s remark in [28, p. 43] leads to better estimates.

6.6. The open set of lissity of a complex. Another invariant governed by the
complexity is the degree of the complement of a dense open set where an object of
the derived category is lisse (i.e., where all its cohomology sheaves are lisse). Below,
by degree of a subvariety Z of projective space, we mean the sum of the degrees of
its irreducible components (which may have di↵erent dimensions).

Theorem 6.23. Let (X,u) be an irreducible quasi-projective variety over k. Let

A be an object of Db
c (X). Let Z be the complement of the maximal open subset

where X is smooth and A is lisse. Then the estimate

deg(u(Z))⌧ (3 + s)c(u)cu(A)

holds, where the degrees are computed in the projective space target of u, and s is

the degree of the codimension 1 part of the singular locus of X.

Proof. We first assume that A is an irreducible perverse object. Let n be the
embedding dimension of (X,u). Let S be the support of A.

If S has codimension m > 1, then A is lisse (being zero) outside S; we will show
that the inequality cu(A) > deg(u(S)) holds. Indeed, let am be a geometric generic
point of Mm+1,n+1

k , so that lam : Pm ! Pn is a generic linear embedding that
intersects S in deg(u(S)) general points. The complex l⇤am

u!A is then supported
on deg(u(S)) points and non-zero on each of them, so the sum of its Betti numbers
is > deg(u(S)), which gives the stated bound.

Now assume that S is equal to X. In case A is lisse on the non-singular locus
of X, the subset Z is the singular locus of X, and the statement trivially holds
since the left-hand side of the estimate is independent of A. Otherwise, Z has
codimension 1 in X. Indeed, were its codimension bigger, A would be lisse on
the non-singular locus of X by purity of the branching locus [22, Exp.X, Cor. 3.3].
Let d be the degree of u(Z). Set m = 1 + codim(u(X)), and let am be a geometric
generic point of Mm+1,n+1

k , so that lam : Pm ! Pn is a generic linear embedding
that intersects the support of A in a curve C, of which d points lie in the singular
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locus Z. Let j be the embedding of C in X. Moreover, let C̃ be the normalization
of C and let ⇡ : C̃ ! C be the canonical morphism.

We can view the pullback j⇤A of A to C as obtained first by pullback along a
smooth morphism Mm+1,n+1 ⇥ Pm ! Pn, followed by pullback to the geometric
generic fiber. Thus any property of A that is preserved by smooth pullback and
by restriction to the geometric generic fiber will be preserved by pullback to C.
In particular, by Lemma 3.12 a shift of j⇤A is perverse on C, and because an
irreducible perverse sheaf on a curve is a shift of a middle-extension sheaf, the
pullback j⇤A is a shift of a middle extension sheaf F . In addition, F is not lisse
on at least d points, since neither smooth pullback nor restriction to the geometric
generic fiber can make a singular point disappear.

Let F̃ be the middle extension of ⇡⇤F from the maximal open set where it is
lisse; then F is canonically isomorphic to ⇡⇤F̃ , since both are middle-extension
sheaves on C that are isomorphic on a dense open set. Let d0 be the number of
points where F is not lisse and that are not contained in the singular support of
C. We have d 6 d0 + s and F̃ is not lisse in at least d0 points.

From the equalities
X

i2Z

hi(Pn, l⇤am
u!A) =

X

i2Z

hi
c(C, j

⇤A) =
X

i2Z

hi
c(C,F ) =

X

i2Z

hi
c(C̃, F̃ ),

we get

��c(C̃, F̃ ) 6
X

i2Z

hi
c(P

n, l⇤am
u!A) 6 cu(A).

Let r be the “generic rank of A” in the sense of Proposition 3.4. By Proposi-
tion 3.4, the inequality r 6 cu(A) holds. Since lam is a generic linear embedding,
r is also the “generic rank of j⇤A” in the sense of Proposition 3.4. Since j⇤A is
a shifted middle-extension sheaf F , r is also the generic rank of F , i.e. the rank
of a lisse sheaf of which F is the middle extension. Since F̃ be the middle exten-
sion of ⇡⇤F from the maximal open set where it is lisse, r is also the generic rank
of F̃ . Using the Grothendieck-Ogg-Shafarevich formula, we get �c(C̃, F̃ ) 6 d0�2r
. From this we derive the inequalities

d0 6 2r + cu(A) 6 3cu(A).

We finally get

d 6 d0 + s 6 (3 + s)cu(A),

since cu(A) > 1.
Now consider the general case. For i 2 Z, let ni be the length of pH u(A) and

let (Ai,j)16j6ni be the Jordan–Hölder factors of pH i(A), repeated with multiplic-
ity. The object A is lisse on the intersection over i and j of the maximal open
sets Ui,j where Ai,j is lisse. (Note that all the irreducible perverse factors of a lisse
sheaf are lisse, so that if Ai,j is not lisse at a point, then neither is A).

By the case of perverse sheaves, the complement of Ui,j is the union of subvari-
eties with total degree 6 (3 + s)cu(Ai,j). Thus, we obtain subvarieties Zi with

mX

i=1

deg(Zi) 6 (3 + s)
X

i2Z

niX

j=1

cu(Ai,j)⌧ (3 + s)c(u)cu(A)

by Theorem 6.15. ⇤
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6.7. Complexity of the cohomology sheaves of a complex. In this section,
we consider an analogue of Theorem 6.15 where the Jordan–Hölder components of
the perverse cohomology sheaves are replaced by the ordinary cohomology sheaves.
This is a case where we will only be able to prove “continuity” abstractly, without
explicit estimates. Precisely, we have:

Proposition 6.24. The exist a function N : R+ ⇥R+ ! R+
with the following

property: for any quasi-projective algebraic variety (X,u) over k with embedding

dimension n, and for any object A of Db
c (X), the following inequality holds:

X

i2Z

cu(H
i(A)) 6 N(n, cu(A)).

We begin with two lemmas.

Lemma 6.25. For any non-negative integers d and n, there exists C(d, n) > 0 such

that, for any algebraically closed field k, for any prime ` invertible in k, and for any

closed immersion u : X ! Pn
whose image is a union of irreducible subvarieties of

total degree d, the inequalities

c(u) 6 C(d, n)

deg(Xs) 6 C(d, n)

hold, where Xs is the singular locus of X.

Proof. The theory of Chow varieties (see, e.g., [33]) provides a quasi-projective
scheme Chowd,n over k whose points “are” the closed immersions i : X ! Pn

whose image is a union of irreducible subvarieties of total degree d. The first
inequality then follows from Proposition 6.19 (1), and the second is a consequence
of the constructibility of the function that maps a point of Chowd,n to the degree
of the singular locus of the corresponding quasi-projective variety. ⇤

Lemma 6.26. For any non-negative integers d and n, there exists C(d, n) > 0 with

the following property: for any algebraically closed field k, for any prime ` invertible
in k, for any quasi-projective variety (X,u) over k with embedding dimension n,
and for any object A of Db

c (X) with cu(A) 6 d, there exists a stratification

Xn+1 ✓ Xn ✓ Xn�1 ✓ . . . X1 ✓ X

of X such that

• The subvariety X1 is the support of A.

• For all i, the subvariety Xi �Xi�1 is smooth.

• For all i, the object A is lisse on Xi �Xi�1.

• For all i, the subvariety Xi is a union of at most C(d, n) subvarieties of

degree 6 C(d, n).
• For all i, the inequality c(ui) 6 C(d, n) holds, where ui : Xi �Xi+1 ! Pn

is the natural immersion.

Proof. The equality cu(A) = c(u!A) holds by definition, so we may replace X with
the projective space Pn (and u with the identity), and A with u!A, provided we
describe the subvarieties Xi as forming a stratification of the support of A.

Indeed, we define X1 to be the support of A, and then inductively Xi+1 to be
the complement in Xi of the maximal smooth open subset of Xi on which A is
lisse. On noting the inequality dim(Xi+1) < dim(Xi), this provides a stratification
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of the support of A with at most n + 1 non-empty subvarieties. We denote by vi
the immersion Xi ! Pn.

We now prove by induction on i with 1 6 i 6 n+1 that Xi is a union of varieties
whose total degree is bounded only in terms of (d, n), and that c(vi) is bounded
only in terms of (d, n).

Since X1 is the support of A, either X1 is equal to Pn or it is the complement
of the maximum open subset on which A is lisse (in fact, zero). In the second case,
Lemma 6.23 shows that that X1 is a union of varieties of degree at most 3cu(A).
In the first case, the same inequality holds trivially. Then by the first inequality in
Lemma 6.25, the complexity c(v1) has a bound in terms of cu(A) and n, and hence
in terms of (d, n). This establishes the base case of the induction.

Assume that the induction assumption holds for some i with 1 6 i 6 n. Then,
by (6.5), we obtain cvi(v

⇤
i A) 6 cvi,Id(vi)c(A) = c(vi)c(A). By the definition

of Xi+1, applying Lemma 6.23 and the second inequality of Lemma 6.25, we deduce
that Xi+1 is a union of varieties of total degree bounded only in terms of (d, n).
The first inequality of Lemma 6.25 applied once more shows that c(vi+1) is bounded
only in terms of (d, n). This completes the induction.

It only remains to bound the complexity of the immersions ui. The excision
triangle gives

ui!Q` �! vi!Q` �! v(i+1)!Q`

in Db
c (P

n), and hence the inequality

c(ui) = c(ui!Q`) 6 c(vi!Q`) + c(v(i+1)!Q`) = c(vi) + c(vi+1)

follows by Proposition 6.14 (1). ⇤

Proof of Proposition 6.24. We apply the previous lemma with d = cu(A), and we
let C(d, n) > 0 denote the corresponding number and

Xn+1 ✓ Xn ✓ Xn�1 ✓ . . . X1 ✓ X

a stratification of X with the properties of the lemma.
Applying excision repeatedly and Proposition 6.14 (1), we get

X

i2Z

cu(H
j(A)) =

X

i2Z

c(u!H
j(A))

6
X

i2Z

n+1X

j=1

c(uj!u
⇤
ju!H

i(A)) =
n+1X

j=1

X

i2Z

c(uj!u
⇤
ju!H

i(A)).

Applying (6.6) to f = uj viewed as a morphism from (Xj �Xj+1, uj) to (Pn, Id),
we have

c(uj!u
⇤
ju!H

i(A))⌧ cuj ,Id(uj)cuj (u
⇤
ju!H

i(A)) = c(uj)cuj (u
⇤
ju!H

i(A))

for all i and j. By construction, u⇤
juj!H i(A) is lisse on the smooth scheme

Xj �Xj+1; since the perverse homology sheaves and the usual homology sheaves
of a lisse sheaf on a smooth scheme agree, the estimates

X

i2Z

c(uj!u
⇤
ju!H

i(A))⌧ c(uj)
X

i2Z

cuj (
pH i(u⇤

ju!A))⌧ c(uj)
2cuj (u

⇤
ju!A)

hold by Theorem 6.15. Applying (6.5), we get

cuj (u
⇤
ju!A)⌧ c(uj)c(u!A) = c(uj)cu(A),
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and therefore
X

i2Z

cu(H
j(A))⌧ cu(A)

n+1X

j=1

c(uj)
3

is bounded only in terms of (n, d), since c(uj) 6 C(d, n) for all j. ⇤
6.8. Generic base change. We now prove an e↵ective version of Deligne’s generic
base change theorem [6, Th. finitude, 1.9]. This argument is due to A. Forey.

Theorem 6.27. Let (X,u), (Y, v) and (S,w) be quasi-projective algebraic varieties

over k. Let f : X ! Y and g : Y ! S be morphisms.

For any object A of Db
c (X), there exists an integer N > 0, depending only on

cu(A) and (f, g, u, v, w), and a dense open set U ⇢ S such that

(i) The image of the complement of U has degree 6 N .

(ii) The object f⇤A is of formation compatible with any base change S0 ! U ⇢ S.

Remark 6.28. The original generic base change theorem is stated for a con-
structible sheaf of R-modules, where R is a Noetherian ring satisfying nR = 0
for some integer n that is invertible in S, and S is not supposed to be defined
over a field k. An additional statement of the theorem is the constructibility of
f⇤A on YU . In the setting of the above statement, it is already known that f⇤A
is constructible, precisely by applying [6, Th. finitude, 1.9] to f : X ! Y over k.
However, in order to understand the complexity of the complement of the open set
U over which f⇤A is of formation compatible with base change, we would need to
redo the whole proof, following closely Deligne’s argument (see also [18, Th. 9.3.1]).

In this section, we will often write simply c(X) for the complexity c(u), where
(X,u) is a quasi-projective variety. Recall also from Remark 6.7 that if i : Z ! X
is an immersion, then cu�i,u(i) = c(Z).

Before starting the proof, we state a useful lemma.

Lemma 6.29. Let (X,u) be a quasi-projective variety over k of embedding di-

mension n. There exists a finite open cover (Ui) of X into at most dim(X) + 1
a�ne subvarieties with open immersions ui : Ui ! X such that cu�ui,u(ui) = c(Ui)
is bounded in terms of c(u) = c(X) and n.

Proof. The image of u in Pn can be written as Z �W , where Z and W are closed
subvarieties of Pn. As in the proof of Lemma 6.26, by Theorem 6.23 the degrees
of Z and W are bounded in terms of c(u) and n. Let H be a hypersurface of Pn

such that W ⇢ H but Z /2 W . One can choose W of degree at most the degree
of W . Then set U1 = Z�H, which is an a�ne open subset of Z�W , of complexity
bounded by the degrees of Z and H. Since dim(Z\H) < dim(Z), one can conclude
by induction: the a�ne open subsets of Z \ H that are obtained are restrictions
of a�ne open subsets of Pn, and hence their restrictions to Z produce a�ne open
subsets of Z �W , which, together with U1, cover Z �W . ⇤

During the proof of Theorem 6.27, we will repeatedly consider subschemes of
X, Y and S. These will always implicitly be considered with the locally closed
embedding inherited from X, Y or S. All complexities will be computed with
respect to those implicit embeddings, and hence we will simplify the notation by
dropping the embeding from the complexity. Moreover, whenever we say that
we can shrink S, we mean that we can replace S by a dense open subset whose
complement has bounded degree in terms of c(A).
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Proof of Theorem 6.27. Working successively with each irreducible component of S,
there is no loss of generality in assuming, as we do from now on, that S is irreducible.

Step 1. We first consider the particular case where S = Y , the variety X is
smooth of pure relative dimension d over S, and A is a lisse sheaf such that Rif!A0

is lisse for each i 2 Z. Here, A0 denotes the “naive” dual A0 = H om(A,Q`),
i.e. non-derived sheaf homomorphisms. Then Deligne [6, Th. finitude, 2.1] proves
the result with U = S (this is essentially a consequence of the proper base change
theorem and Poincaré duality).

Step 2. We now assume that S = Y , X is smooth over S of pure relative
dimension d, and that A is a lisse sheaf. Let again A0 = H om(A,Q`); by (6.6)
and Theorem 6.23, there exists an open set U ⇢ S whose complement has degree
bounded in terms of c(A0), and hence in terms of c(A), such that f!A0 is lisse on U .
Over the dense open set U , we are in the situation of Step 1, and hence the result
holds in this case too.

Step 3. We now perform some reductions for the proof of the general case.
We first observe that the problem is local on Y , so that we may assume that Y
a�ne. Using a finite a�ne cover of X and excision, we may also assume that X is
a�ne. Note that the complexity of the restriction of A to those a�ne open subsets
is bounded in terms of c(A) by (6.5).

Up to shrinking X again, we can now factor f into an open immersion followed
by a proper morphism g (this is a form of Nagata’s compactification theorem).

By proper base change, the result holds for the morphism g with U = S, and
hence it is enough to prove the result when f is an open immersion with dense
image. We will then prove the result by induction on the relative dimension n > 0
of X over S.

For n = 0, since X and Y are of dimension 0 over S, up to shrinking S to a
dense open subset (whose complement is of degree bounded in terms of X and Y ),
we have X = Y . Hence the result holds.

We now consider n > 1, and assume that the result holds for relative dimension
up to n� 1.

We will prove below the following sublemma:

Lemma 6.30. With notation and assumption as before, up to shrinking S, there
exists a dense open subset Y 0 ⇢ Y such that the result holds over Y 0

and such that

the complement of Y 0
in Y is finite of bounded degree over S.

Step 4. Under the conditions of Step 3, we further assume that X is smooth
over S and that A is a lisse sheaf. We can replace Y by its closure in the image of v,
and hence assume that Y is projective over S. Using Lemma 6.30, we can assume
that there exists Y 0 ⇢ Y such that the result holds for Y 0 and that Y � Y 0 is finite
over S of bounded degree. We then have the following commutative diagram:

Y 0

X Y Y � Y 0

S

j

f

a
b

i

c
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By Step 2, up to shrinking S, the object a⇤A is of formation compatible with any
base change. By the choice of Y 0 (after again shrinking S) the object j⇤f⇤A is of
formation compatible with any base change. By the proper base change theorem,
the same holds for b⇤j!j⇤f⇤A. Now we have a distinguished triangle

j!j
⇤f⇤A �! f⇤A �! i⇤i

⇤f⇤A

Applying b⇤ to it, we get the distinguished triangle

b⇤j!j
⇤f⇤A �! a⇤A �! c⇤i

⇤f⇤A

Since the first two complexes in this triangle are of formation compatible with any
base change, the same holds for the third one, namely c⇤i⇤f⇤A. Since c is finite,
this implies that i⇤f⇤A also has the same property. Hence in the first triangle, the
first and third complexes are of formation compatible with any base change, and
hence the middle one, namely f⇤A, also has this property. This finishes the proof
in this case.

Step 5. We now show how to reduce the situation (after the reduction in Step 3)
to that of Step 4. We will also prove below the following additional sublemma:

Lemma 6.31. Up to shrinking S, and performing a base change along a finite

surjective radicial morphism and reducing X, in an e↵ective way, we can find an

open dense subset V of X that is smooth over S and has complement of bounded

degree.

By Proposition 6.24, the complexity of the cohomology sheaves of A are bounded
in terms of c(A); hence, up to replacing A by each of its cohomology sheaves in
turn, we reduce to the case where A is a sheaf. If the support of A is not dense in X,
then the support has relative dimension 6 n � 1, and we are done by induction.
If the support of A is dense in X, then by Theorem 6.23, up to shrinking V , we
may assume that the restriction of A to V is a lisse sheaf. Applying induction to
the restriction of A to X � V and excision, we can assume that A is a lisse sheaf
supported on V .

Let j be the open immersion V ! X. By Step 4, the result holds for j, and hence
up to shrinking S, we may assume that j⇤j⇤A is of formation compatible with any
base change. Choose a cone C of the canonical adjunction morphism A ! j⇤j⇤A.
By definition, we have a distinguished triangle

A �! j⇤j
⇤A �! C

and the cohomology of C is supported on Z = X�V . Since the first two complexes
are of formation compatible with any base change, the same is true for C. By
Theorem 6.8 and Proposition 6.14, the complexity of the restriction of C to Z
is bounded in terms of the complexity of A. Since the relative dimension of Z
is < n, the induction hypothesis applies to the closed immersion Z ! X and to
the restriction of C to Z. Hence, up to shrinking S, we can assume that f⇤C is of
formation compatible with any base change.

We then apply f⇤ to the previous distinguished triangle and obtain

f⇤A! (fj)⇤j
⇤A! f⇤C

By Step 4 again, the result holds for the open immersion fj : V ! Y , so that after
shrinking S, the objet (fj)⇤j⇤A is of formation compatible with any base change.
Since we have seen that this also holds for f⇤C, we deduce that f⇤A is of formation
compatible with any base change, as desired. ⇤
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We now prove the sublemmas above.

Proof of Lemma 6.30. The problem is local on Y , so by Lemma 6.29, we can also
assume that Y is a�ne over S. We hence assume that Y ⇢ Ar

S , where the choice
of coordinates is induced by v.

For 1 6 i 6 r, consider the i-th coordinate projection pi : Y ! A1
S . We view

X and Y as A1
S-schemes using pi as structure morphism. The generic relative

dimensions of X and Y are then 6 n � 1, and hence we can apply the induction
hypothesis to this situation. We find a dense open subset Ui ⇢ A1

S such that the
complement of Ui in A1

S is of degree bounded in terms of c(A), and such that f⇤A
is of formation compatible with any base change S0 ! Ui ⇢ A1

S . Define

Y 0 =
[

16i6r

p�1
r (Ui).

Since the complexity of the Ui is bounded in terms of c(A), the same holds for Y 0.
From the definition of Ui, the result holds for the restriction of f to X 0 = f�1(Y 0).
Since the morphism

Y � Y 0 = (A1
S � U1)⇥S · · ·⇥S (A1

S � Ur) �! S

is generically finite, there exists a dense open S0 ⇢ S over which this morphism is
finite. The degree of S � S0 is bounded in terms of the degrees of A1

S � Ui, for
i = 1, . . . , r, and hence is itself bounded in terms of c(A), which ends the proof of
the sublemma. ⇤

Proof of Lemma 6.31. Recall that X is assumed to be a�ne, with a fixed closed
embedding into Ar

S for some integer r > 0. By the e↵ective version of generic
flatness, see, e.g., [43, Th. 2.45], we find a dense open subset S0 of S over which X
is flat and such that the complement of S0 in S is of bounded degree. We may
therefore assume that X is flat over S. To obtain smoothness, we use the Jacobian
criterion. We want to define U to be the complement in X of the vanishing locus of
the Jacobian ideal, which is indeed of bounded degree. However, for this to define
a dense open subset of X, we need to perform first a base change along a finite
surjective radicial morphism S0 ! S (which does not change étale cohomology),
then replace X and Y by their reductions. The degree of the finite surjective
radicial morphism is determined by the degrees (according to the a�ne embedding
of S) of the coe�cients of the polynomials defining X in Ar

S , and hence is bounded.
Once the result is known for XS0 over S0, we conclude the proof by considering the
image U of the dense open subset of S0 by the morphism S0 ! S, since the degree
of the complement of U is still bounded. ⇤

6.9. Tannakian operations. Let (X,u) be a connected quasi-projective algebraic
variety over k, and let F be a lisse `-adic sheaf on X. We shall view F as
a continuous representation ⇡ of the étale fundamental group of X on a finite-
dimensional Q`-vector space. The monodromy group of F is then defined as
the Zariski closure of its image, which is an algebraic group G over Q` equipped
with a distinguished faithful representation. Given a further algebraic representa-
tion ⇢ : G ! GLN (Q`), we denote by ⇢(F ) the lisse `-adic sheaf corresponding to
the representation ⇢ � ⇡.

The following lemma is very useful in deriving properties of ⇢(F ) from those
of F . By a reductive group over a field of characteristic zero, we mean a group G
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all whose finite-dimensional representations are completely reducible (that is, G is
not assumed to be connected).

Lemma 6.32. Let G ⇢ GLN be a reductive group over an algebraically closed field

of characteristic zero and denote by Std its tautological N -dimensional represen-

tation. For any algebraic irreducible representation ⇢ : G ! GL(V ), there exist

non-negative integers (a, b) such that ⇢ is a subrepresentation of Std⌦a⌦D(Std)⌦b
.

If the determinant of Std has finite order, there exists such a pair with b = 0.

Proof. For the first part of the statement, see, e.g., [5, Th. III.4.4] in the case of
compact Lie groups, and use the equivalence of categories between reductive groups
and compact Lie groups.

When the determinant has finite order, it su�ces to prove that the contragredient
of the tautological representation is a subrepresentation of a tensor power of the
standard representation. But, using brackets to denote multiplicity, we have

hD(Std), Std⌦ai = h1, Std⌦(a+1)i
for all a > 0, and if det(Std)m = 1 for some m > 1, we have h1, Std⌦mN i > 1.
Indeed, as the determinant is the highest exterior power, there is an inclusion
det ⇢ Std⌦N , and this induces 1 = det⌦m ⇢ Std⌦mN . ⇤
Proposition 6.33. With notation as above, assume that the group G is reductive

with finite center. There exists an integer a > 0, depending only on ⇢, such that

cu(⇢(F ))⌧ cu(F )a,

where the implied constant depends only on the embedding dimension of u.

Proof. Let Std denote the standard faithful representation of G corresponding to
the sheaf F . The identity component G0 of G is reductive, so the restriction of
the one-dimensional character det(Std) of G to G0 is non-trivial if and only if its
restriction to the central torus of G0 is non-trivial. The central torus of G0 is a torus
with an action of the (finite) component group of G by conjugation which does not
fix any non-trivial cocharacter. Hence, it does not fix any non-trivial character, so
the restriction of det(Std) to G0 is trivial, and thus det(Std) has finite order. By
Lemma 6.32, there exists a non-negative integer a such that ⇢ is a direct summand
of Std⌦a. Thus, the estimates

cu(⇢(F )) 6 cu(F
⌦a)⌧ cu(F )a

hold by Proposition 6.14 (2) and parts (6.1) and (6.2) of Theorem 6.8. ⇤
Remark 6.34. If X is a curve, the estimate can be strengthened considerably to

cu(⇢(F ))⌧ dim(⇢)cu(F )

by using the “local” formula of Theorem 7.3 below (see [26, Ch. 3] for arguments
of this kind). It would be very interesting to know whether such a strong bound
holds in higher dimension.

In some applications, it is natural to try to improve on this bound by estimating a
e↵ectively, or in other words, to make Lemma 6.32 e↵ective. We record here one
such estimate, since this might be of interest for other applications.

Let N > 1 be an integer and let G ⇢ GLN be a reductive algebraic group over
an algebraically closed field of characteristic zero. As above, we denote by Std the
tautological faithful representation of G in GLN .
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Definition 6.35. For any irreducible algebraic representation ⇢ of G, we define

w(⇢) = min
�
a+ b | ⇢ is a subrepresentation of Std⌦a ⌦D(Std)⌦b

 
.

Lemma 6.32 means that w(⇢) is finite for all irreducible algebraic representa-
tions ⇢ of G.

Proposition 6.36. Let ⇤ be the weight lattice of the identity component G0 of G.

Fix a norm k · k on ⇤. There exist real numbers ↵, � > 0 such that, for any

irreducible algebraic representation ⇢ of G, the inequality

w(⇢) 6 ↵max
i
k�ik+ �

holds, where the �i are the highest weights of the irreducible components of the

restriction of ⇢ to G0.

Proof. In this proof, we will say that a pair (a, b) is a spot for a representation ⇢
of G if ⇢ appears as a subrepresentation of Std⌦a ⌦D(Std)⌦b.

Let n be the semi-simple rank of G. For a positive dominant weight � in ⇤, we
denote by ⇡� the irreducible representation of G0 with highest weight �.

We first assume that G is a connected semisimple group. In this case, the
representation ⇢ is associated to a single highest weight �. Moreover, we can choose
a basis (ei) of the root lattice tensored with R such that a Weyl chamber can be
identified with the cone of vectors with coordinates > 0.

For integers i with 1 6 i 6 n, we denote by �i the weight in the line spanned
by ei with minimal i-th coordinate, and we write �i = xiei for some integer xi > 1.
Further, for each i, we fix spots (ai, bi) of ⇡�i (which exist by Lemma 6.32).

We denote by A the finite set of positive dominant weights µ such that each
coordinate of µ is 6 xi for all i. For each µ 2 A, we fix spots (aµ, bµ) of ⇡µ.

By subtracting from a weight � of G suitable multiples of �1, . . . , �n, until all
coordinates are 6 xi, we see that we may write

� = µ+
rX

i=1

ni�i

where µ 2 A and 0 6 ni 6 `i(�) for some linear maps `i : ⇤! Z.
From highest weight theory, the representation ⇢ with highest weight � is a

summand of

⇡µ ⌦
O

16i6r

⇡⌦ni
�i

.

Hence, by definition, the pair (a, b) given by

a = aµ +
rX

i=1

niai, b = bµ +
rX

i=1

nibi,

is a spot of ⇢. We have then

w(⇢) 6 a+ b 6 ↵+ �k�|

where

↵ = max
µ2A

(aµ + bµ), � = max
16i6r

k`ik ⇥
rX

i=1

(ai + bi)

(with the usual norm for linear maps ⇤! R with respect to the given norm on ⇤).
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Assume now that G is a connected reductive group. We construct the weights
�i and A of the derived group of G as before, then lift them (keeping the notation)
to the whole group. Let further (�j)16j6k be a basis of the subspace of the weights
whose associated representations are trivial on the derived group.

For any highest weight � of G = G0, the representation ⇡� can then be expressed
as a summand of a representation of the form

⇡µ ⌦
O

16i6r

⇡⌦ni
�i
⌦

O

16j6k

⇡⌦mj
�j

where, as before, the ni and mj are bounded by linear functions of �. This leads
to a bound of the desired type as in the semisimple case.

Finally, we consider the general case. Let Std0 be the tautological representation
of G0. Note that for any non-negative integers (a, b), the representation

(6.19) IndGG0(Std⌦a
0 ⌦D(Std0)

⌦b)

contains Std⌦a ⌦ D(Std)⌦b as a subrepresentation. Moreover, by Frobenius reci-
procity, the multiplicity of ⇢ in (6.19) is the dimension of the space of G0-morphisms
from the restriction ⇢0 of ⇢ to G0 to Std⌦a

0 ⌦D(Std0)⌦b. For an irreducible compo-
nent ⇢0 of ⇢0, this space is non-zero for some (a, b) with a+ b = w(⇢0). The bound
then follows from the case of connected groups established in the first part. ⇤

6.10. Independence of `. In this section and the next one, we work over a finite
field F and k is an algebraic closure of F. We use the notation for trace functions
from the introduction. We first prove that the complexities of a compatible system
of `-adic sheaves are largely independent of `, following ideas from Katz [28].

We fix a quasi-projective variety (X,u) over F and a field K of characteristic
zero. In order to vary the prime `, we make the following definitions. Let ⇤ be a
non-empty set and let S be a family (`�, ◆�)�2⇤ of pairs where each `� is a prime
number invertible in F and ◆� is a field embedding of the given field K in Q`� .

Definition 6.37. An S -compatible system of complexes on X is a family (A�)�2⇤

consisting of objects A� of Db
c (X,Q`�) such that the following conditions hold:

• for any � 2 ⇤, any finite extension Fn of F, and any x 2 X(Fn), the trace
tA�(x;Fn) takes values in the subfield ◆�(K) of Q`� ;

• for any �, µ in ⇤, any finite extension Fn of F, and any x 2 X(Fn), we
have

◆�1
� tA�(x;Fn) = ◆�1

µ tAµ(x;Fn).

Lemma 6.38. Let (A�)�2⇤ be an S -compatible system on X. The Euler–Poincaré

characteristic �c(X ⇥ k,A�) of A� is independent of �.

Proof. For any �, it follows from the definition of S -compatible system that the
L-function of A� is independent of �. From the expression for this L-function given
by the Grothendieck–Lefschetz formula, we know that �c(X⇥k,A�) is the degree of
this rational function (degree of the numerator minus degree of the denominator),
and hence is independent of �. ⇤

We then have the following result:

Theorem 6.39. Let S be as above.
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(1) Let n > 0 be an integer and let (A�)� be an S -compatible system of perverse

sheaves on Pn
F. Then for � and µ in ⇤, we have

c(A�) ⇣ c(Aµ),

where the implied constants only depend on n.
(2) Let (X,u) be a smooth quasi-projective variety over F and let (F�)� be an

S -compatible system of lisse sheaves on X. Then for all � and µ in ⇤, we have

cu(F�) ⇣ cu(Fµ),

where the implied constants only depend on the embedding dimension of (X,u).

Proof. (1) We argue by induction on n, following the strategy of Katz [28, Th. 7].
It is enough to prove the estimate

c(A1)⌧ c(A2)

for two compatible perverse sheaves A1 in Db
c (P

n,Q`1) and A2 in Db
c (P

n,Q`2),
with an implied constant that only depends on n.

If n = 0, then A1 and A2 are vector spaces of the same dimension and their
complexity c(A1) = c(A2) is this common dimension.

We now fix n > 1 and assume that the result holds on Pm for all 0 6 m 6 n�1.
For each 0 6 m 6 n� 1, we pick a geometric generic point am 2Mn+1,m+1(k0) for
some algebraically closed field k0.

Let 0 6 m 6 n � 1. By applying Lemma 3.13 to A1 and A2, we find open
dense subsets Um,1 and Um,2 of Mn+1,m+1

k satisfying the properties of Lemma 3.13.
Up to replacing F by a finite extension, which we may do, we can assume that
(Um,1 \Um,2)(F) is non-empty for all m, and we then pick bm 2 (Um,1 \Um,2)(F),
again for all m. The complexes l⇤bm

A1[m� n] and l⇤bm
A2[m� n] on Pm over F are

perverse and form a compatible system; hence, by the induction hypothesis, the
equivalence

(6.20) c(l⇤bm
A1) ⇣ c(l⇤bm

A2)

holds, with implied constants that only depend on n. We have

max
06m6n�1

X

i2Z

hi(Pm
k0 , l⇤am

A1) = max
06m6n�1

X

i2Z

hi(Pm
k0 , l⇤bm

A1),

again by Lemma 3.13. Hence

(6.21) max
06m6n�1

X

i2Z

hi(Pm
k0 , l⇤am

A1) = c(l⇤bm
A1),

by the definition of the complexity and Lemma 3.7.
Together with (6.20), it follows that

c(A1) = max
06m6n

X

i2Z

hi(Pm
k0 , l⇤am

A1)

6 max
06m6n�1

X

i2Z

hi(Pm
k0 , l⇤am

A1) +
X

i2Z

hi(Pn
k0 , l⇤an

A1)

⌧ c(l⇤bm
A2) +

X

i2Z

hi(Pn
k0 , l⇤an

A1)

⌧ c(A2) +
X

i2Z

hi(Pn
k0 , l⇤an

A1).
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Since the geometric generic point an 2 Mn+1,n+1
k0 induces an isomorphism lan

of Pn
k0 , it is enough to prove the estimate

�1 =
X

i2Z

hi(Pn
k0 , A1)⌧ c(A2)

Arguing as in the proof of Proposition 3.17, we have

h0(Pn
k0 , A1) = �(Pn

k0 , A1) +
X

i<0

(�1)i+1hi(Pn
k0 , A1) +

X

i>0

(�1)i+1hi(Pn
k0 , A1),

and therefore

�1 =
X

i<0

hi(Pn
k0 , A1) + h0(Pn

k0 , A1) +
X

i>0

hi(Pn
k0 , A1)

6 2
X

i<0

hi(Pn
k0 , A1) + �(Pn

k0 , A1) + 2
X

i>0

hi(Pn
k0 , A1).

By excision and Artin’s vanishing theorem for a�ne varieties, and the fact
that A1 is perverse, the canonical map

Hi(Pn
k0 , A1) �! Hi(Pn�1

k0 , l⇤an�1
A1)

is an isomorphism for i < 0. Similarly, because the dual of a perverse sheaf is
perverse and duality exchanges l⇤an�1

and l!an�1
, the canonical map

Hi(Pn�1
k0 , l!an�1

A1) �! Hi(Pn
k0 , A1)

is an isomorphism for i > 0. Since lan�1 is a closed immersion, the functors l⇤an�1

and l!an�1
are equal up to a shift and a Tate twist. Hence,

�1 = 2
X

i<0

hi(Pn
k0 , l⇤an�1

A1) + �(Pn
k0 , A1) + 2

X

i>0

hi(Pn
k0 , l!an�1

A1)

6 4
X

i2Z

hi(Pn�1, l⇤an�1
A1) + �(Pn

k0 , A2)

using Lemma 6.38. Hence,

�1 ⌧ c(A2) + �(Pn
k0 , A2)⌧ c(A2),

by (6.20) and (6.21), and the elementary Proposition 7.1 below.
(2) The proof is similar, using the obvious adaptation of Lemma 3.13 to lisse

sheaves, and the fact that the dual of a lisse sheaf on a smooth scheme is lisse.
Alternatively, but at the cost of adding a dependency of the implied constants on
c(u), we may use [19, Th. 3] to reduce to (1); indeed, this shows that the middle
extensions u!⇤A� of the components of a compatible system of lisse sheaves is a
compatible system of perverse sheaves on the projective space target of u, and one
can apply Corollary 6.16 to bound the complexity of the middle extensions. ⇤
6.11. Complex conjugation. We keep working over a finite field F with algebraic
closure k. In applications to analytic number theory, taking the complex conjugate
of the trace function tA is a natural operation, but this has no canonical counterpart
at the level of Db

c (X). Nevertheless, we have the following result:

Proposition 6.40. Let (X,u) be a quasi-projective algebraic variety over F. Given

any mixed object A of Db
c (X), there exists a mixed object A0

of Db
c (X) such that

tA0(·;Fn) = tA(·;Fn) for any n and cu(A
0)⌧ c(u)cu(A),
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where the implied constant depends only on the embedding dimension of (X,u).

Proof. For each n > 1, the trace function tA(·;Fn) is the restriction to the set
X(Fn) of Fn-rational points of X of the trace function of the complex u!A on Pn,
which is again mixed if so is A. Assume that we have found a mixed object eA
of Db

c (P
n) that “works” for u!A, then A0 = u⇤ eA works for A, and

cu(A
0)⌧ c(u)c( eA)⌧ c(u)c(u!A) = c(u)cu(A),

where the first bound is part (6.5) of Theorem 6.8. Thus, we may assume X = Pn

(with the identity embedding).
We first assume that A is a perverse sheaf. If A is pure of weight zero, then

A is geometrically semisimple by [3, 5.3.8]. As explained in [29, Lem. 1.8.1. (1)],
a result of Gabber on the independence of ` of traces of intermediate extensions
[19, Th. 3] then implies that we can take A0 = D(A). The perverse sheaf A0 is also
pure of weight zero and has complexity c(A0) = c(A) by Lemma 6.11. If A is pure of
weight w, then we can simply take A0 = D(A(w))(�w), which is pure of weight w.

Suppose now that A is a mixed perverse sheaf. Let (Fj) be the canonical weight
filtration on A, with quotients Fj+1/Fj pure of weight wj (see [3, Th. 5.3.5]). We
first claim that the estimate

X

j

c(Fj+1/Fj)⌧ c(A)

holds. Indeed, since the quotients are perverse sheaves, we have
X

j

c(Fj+1/Fj)⌧
X

j

k cc(Fj+1/Fj)k =
���
X

j

cc(Fj+1/Fj)
��� = k cc(A)k ⌧ c(A)

by Corollary 5.5 and the fact that the characteristic cycles of perverse sheaves are
e↵ective (compare with the end of the proof of Theorem 6.15). In view of the
equality

tA(·;Fn) =
X

j

tFj+1/Fj
(·;Fn)

for all n > 1, we can take

A0 =
M

j

D((Fj+1/Fj)(wi))(�wi),

which is a mixed perverse sheaf with complexity

c(A0) =
X

j

c(D(Fj+1/Fj)) =
X

j

c(Fj+1/Fj)⌧ c(A),

by Lemma 6.11 and the above.
Finally, in the general case, if A is a mixed complex of weights 6 w, then its

perverse cohomology sheaves pH i(A) are mixed of weights 6 w + i for all 2 Z
by [3, Th. 5.4.1] and we have

tA(·;Fn) =
X

i2Z

(�1)itpH i(A)(·;Fn)

for all n > 1. For all i, let A0
i be a mixed perverse sheaf satisfying the conditions

of the proposition for pH i(A). We can define

A0 =
M

i2Z

A0
i,
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which satisfies
c(A0) =

X

i2Z

c(A0
i)⌧

X

i2Z

c(pH i(A))⌧ c(A)

by the previous case. ⇤
Remark 6.41. In practice, the conjugate of the trace functions that occur in
concrete applications are often clearly trace functions with essentially the same
complexity (e.g., the conjugate of the trace function of an Artin–Schreier sheaf
L (f) is simply L (�f)). Nevertheless, Proposition 6.40 might be useful for certain
theoretical arguments.

Remark 6.42. In fact, the assumption that A is a mixed object is always satisfied
thanks to the deep theorem of L. La↵orgue that an irreducible lisse sheaf with
determinant of finite order on a normal variety X is pure of weight zero (see [36,
Prop.VII.7 (i)]). We briefly sketch how to deduce from this that A is mixed. By
definition, it su�ces to treat the case where A is a constructible sheaf and, by
induction on the dimension ofX, we can even suppose that A is lisse. The successive
quotients of a Jordan–Hölder filtration of A are then irreducible lisse sheaves; up to
a twist by some Q`(w), their determinant is of finite order by geometric class field
theory (see [7, (1.3.6)]), and hence they are pure thanks to La↵orgue’s theorem.

7. Examples and applications

7.1. Sums of Betti numbers. One of the most useful properties of the complexity
is that it controls Betti numbers, as the following proposition shows.

Proposition 7.1. Let (X,u) be a quasi-projective variety over k. For any A in

Db
c (X), the following holds:

|�c(X,A)| 6
X

i2Z

hi
c(X,A) 6 cu(A),

|�(X,A)| 6
X

i2Z

hi(X,A)⌧ c(u)cu(A).

Moreover, the implied constant in the second estimate only depends on the embed-

ding dimension of (X,u).

Proof. Let n be the embedding dimension of (X,u). For each object A of Db
c (X),

the equality hi
c(X,A) = hi(Pn

k̄
, u!A) holds. Since étale cohomology is invariant

under extension of scalars to an algebraically closed field k0 and lan : P
n
k0 ! Pn

k0 is
an isomorphism, the first bound is a straightforward consequence of the definition
of the complexity cu(A). On noting that Verdier duality implies the equality of
sums of Betti numbers

P
i2Z hi(X,A) =

P
i2Z hi

c(X,D(A)), the second estimate
then follows from the first one and the estimate cu(D(A))⌧ c(u)cu(A) from (6.1),
with an implied constant that only depends on n. ⇤
Remark 7.2. The converse estimate

cu(A)⌧
X

i2Z

hi
c(X,A)

does not hold in general, since the right-hand side is independent of u, whereas we
have seen in Example 6.1 that there is no reasonable intrinsic notion of complexity
of an object of Db

c (X). This can also be seen concretely, e.g. in the case of curves.
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7.2. Complexity of sheaves on curves. In the case of curves, we can write down
an explicit formula for the complexity.

Theorem 7.3. Let (C, u) be a smooth connected quasi-projective curve over k. Let

C be the smooth compactification of C, and denote by g the genus of C, by n the

number of points of C � C, and by d the degree of u(C).

(1) The complexity of an object A of Db
c (C) is given by

(7.1) cu(A) = max
⇣
d
X

i2Z

dimH i(A)⌘,
X

i2Z

hi
c(C,A)

⌘
,

where ⌘ stands for the generic point of C.

(2) If A is a perverse sheaf on C, the following inequalities hold:

max(d, 2g+n�2) rank(A)+ loc(A) 6 cu(A) 6 max(d, 2g+n+2) rank(A)+ loc(A).

(3) If F is a middle-extension sheaf on C, the following inequalities hold:

max(d, 2g+n�2) rank(F )+loc(F ) 6 cu(F ) 6 max(d, 2g+n+2) rank(F )+loc(F ).

Proof. Part (1) is simply a translation of the definition of cu(A).
To deduce (2), we first note that a perverse sheaf A satisfies

X

i2Z

dimH i(A)⌘ = dimH �1(A) = rank(A).

Writing the sum of Betti numbers as
X

i2Z

hi
c(C,A) = ��c(C,A) + 2h0(C,A) + 2h�2(C,A),

we then have

��c(C,A) 6
X

i2Z

hi
c(C,A) 6 ��c(C,A) + 4 rank(A).

Taking the equality �c(C,Q`[1]) = 2g � 2 + n into account, the statement then
follows from the Grothendieck–Ogg–Shafarevitch formula.

Finally, (3) is a special case of (2), for the perverse sheaf A = F [1]. ⇤

As a corollary, we can now compare the complexity defined in this paper with
the “analytic conductor” of Fouvry, Kowalski and Michel for the a�ne line over the
algebraic closure of a finite field. Precisely, for a middle-extension sheaf F on A1

over such a field, the latter is defined in [15, Def. 1.13] as

cfkm(F ) = rank(F ) + locfkm(F )

locfkm(F ) = (number of singular points of F in P1) +
X

x2P1

swanx(F ).

Corollary 7.4. For a middle-extension sheaf F on A1
over a finite field, the

inequalities

cfkm(F ) 6 cu(F ) 6 3c2fkm(F )

hold, with u the obvious embedding A1 ! P1
of degree 1.
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Proof. We apply Theorem 7.3 with g = 0, n = 1, and d = 1. On noting the
inequality dropx(F ) 6 rank(F ), the upper-bound in (3) leads to

cu(F ) 6 3 rank(F ) + loc(F ) 6 3 rank(F ) + rank(F ) locfkm(F )

6 3 rank(F )cfkm(F ) 6 3cfkm(F )2.

In addition, the inequality locfkm(F ) 6 loc(F ) holds, hence the inequalities

cfkm(F ) 6 rank(F ) + loc(F ) 6 cu(F )

by the lower-bound in loc. cit. ⇤
7.3. Artin–Schreier and Kummer sheaves. In this section, k is the algebraic

closure of a finite field F. Given an `-adic additive character  : F! Q`
⇥
(resp. an

`-adic multiplicative character � : F⇥ ! Q`
⇥
), we denote by L (resp. L�) the

corresponding Artin–Schreier sheaf on A1 over F (resp. the Kummer sheaf on Gm

over F), as defined, e.g., in [6, Sommes exp.]. These are lisse sheaves of rank one;
the Artin–Schreier sheaf is wildly ramified at 1 if  is non-trivial, whereas the
Kummer sheaf is tamely ramified at 0 and 1. We also denote by L and L� the
middle extensions of these sheaves to P1.

Proposition 7.5. Let C = P1
over k and u = Id.

(1) For any non-trivial additive character  of F, we have cu(L ) = 1.
(2) For any non-trivial multiplicative character � of F⇥

, we have cu(L�) = 1.

Proof. These follow from Theorem 7.3 (1) by the standard knowledge of the relevant
Betti numbers. ⇤

We can now easily estimate the complexity of more general Artin–Schreier and
Kummer sheaves, which are building blocks of many of the sheaves used in appli-
cations to analytic number theory.

Definition 7.6. LetX be a scheme over F and U a dense open subset ofX. Let j be
the open immersion U ! X. For each morphism f : U ! A1, we define the Artin–

Schreier sheaf L (f) on X as L (f) = j!f⇤L . For each morphism g : U ! Gm,
we define the Kummer sheaf L�(g) on X as L�(g) = j!g⇤L�.

Let (X,u) be a quasi-projective variety over k, and let v : A1 ! P1 be the
obvious embedding (or its restriction to Gm). Combined with (6.5) and (6.6),
Proposition 7.5 gives the estimates

cu(L (f))⌧ cu�j,u(j)cu�j,v(f)

cu(L�(g))⌧ cu�j,u(j)cu�j,v(g),

(with the same notation as above, and when  and � are non-trivial), where the
implied constants only depend on the embedding dimension of u. According to
Remark 6.20, these quantities are uniformly bounded if f or g varies among mor-
phisms with “bounded degree”. One can sometimes be more explicit, using tools
like Proposition 6.21. Here is a simple example:

Corollary 7.7. Let f1 and f2 be polynomials in n variables with coe�cients in k,
with f2 non-zero. Let U ⇢ An

be the open set where f2 does not vanish. Set

f = f1/f2 : U ! A1
. Then the following estimate holds:

cu(L (f))⌧ (4 + deg(f1) + deg(f2))
n+2
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where u : An ! Pn
is the standard embedding and the implied constant only depends

on n.

Proof. Apply the bound above combined with Proposition 6.21, viewing U as the
subscheme of An+1 defined by the equation f2(x)y = 1, and f : U ! A1 as the
morphism (x, y) 7! f1(x)y. ⇤

7.4. Further examples. We collect here a few more examples of “standard”
sheaves whose complexity is easily estimated. Again, k is the algebraic closure
of a finite field F.

Proposition 7.8.

(1) Let K be any hypergeometric sheaf on Gm in the sense of Katz
1
. We have

cu(K )⌧ rank(K )

where the implied constant is absolute and u : Gm ! P1
is the standard

embedding.

(2) Let (E, u) be an elliptic curve over F embedded in P2
as a cubic curve.

Let ✓ be a non-trivial character E(F)! Q`
⇥
, and let L✓ be the associated

character sheaf defined by the Lang isogeny. Then cu(L✓) = 3.
(3) Let {x1, . . . , x4} be four distinct points in P1(F). Let F be an irreducible

middle-extension sheaf of rank 2 on P1
over F with unipotent local mon-

odromy at those four points.
2
Then c(F ) = 2.

Proof. All these statements follow straightforwardly from calculating Betti numbers
and Theorem 7.3 (1).

In the case of a hypergeometric sheaf, the cohomology is one-dimensional.
In case (2), we apply (7.1) with (n, g, d) = (0, 1, 3). The rank of L✓ is 1, so the

first term in the maximum is equal to 3. The second term is 0, since hi(E,L✓) = 0
for all i by the assumption that ✓ is non-trivial.

In case (3), we apply the formula with (n, g, d) = (0, 0, 1). The first term in the
maximum is 2 since the rank of F is 2. In the second term, we have

h0(P1,F ) = h2(P1,F ) = 0,

since F is an irreducible middle-extension sheaf of rank 2. Thus, the sum of Betti
numbers is equal to ��(P1,F ). The Euler–Poincaré characteristic formula for F
gives

�(P1,F ) = 2�(P1,Q`)� 4⇥ 1 = 0

Hence, the sum of the Betti numbers vanishes and c(F ) = 2. ⇤

7.5. Tame ramification. When a sheaf naturally appears in higher dimension
without being obtained from simpler sheaves by means of Grothendieck’s six func-
tors, one may still be able to estimate its complexity, using either the direct defini-
tion of complexity, or sometimes the uniformity statement of Proposition 6.19. We
illustrate this here with some results involving tame ramification.

1See [27, § 8.2] for the definition and properties of hypergeometric sheaves.
2 Deligne and Flicker [9, Prop. 7.1] have proved that there are |F| such sheaves up to isomor-

phism and F-twisting.
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Proposition 7.9. Let X be a smooth scheme over k, and let j : X ! X be an

embedding into a smooth scheme X such that the complement D = X \ X is a

divisor with normal crossings. Let i : X ! Pn
k be a closed immersion, and let F be

a lisse sheaf on X that is tamely ramified along D. Then the following holds:

ci�j(F )⌧ rank(F )c(i � j).

Proof. Set d = dim(X). The object F [d] is perverse since F is a lisse sheaf on
a smooth scheme of dimension d. Since j is an a�ne open immersion, the object
j!F [d] is perverse on X, and since i is a closed immersion, the object A = i!j!F [d]
is also perverse (see [3, Cor. 4.1.3]). Since A is perverse, Corollary 5.5 (2) and
Lemma 2.5 yield

ci�j(F ) = c(A)⌧ kCC(A)k ⌧ sup
06m6n

|CC(A) · CC(Km)|,

where Km is the constant sheaf on a generic m-dimensional subspace of Pn.
By Theorem 2.2, |CC(A) ·CC(Km)| is the absolute value of the Euler–Poincaré

characteristic of the pullback of A to a generic m-dimensional subspace, or equiva-
lently the Euler–Poincaré characteristic of the restriction of F to the intersection
of a generic m-dimensional subspace with X.

For a generic m-dimensional subspace H, the intersection H \ X is smooth,
the intersection with D has normal crossings, and the restriction of F has tame
ramification around the intersection with D. This implies the equality

�(X \H,F ) = rank(F )�(X \H),

and since the linear subspace H is generic, the Euler–Poincaré characteristic of
X \H is bounded by c(i � j). ⇤

Corollary 7.10. Let (X,u) and (Y, v) be quasi-projective algebraic varieties over k,
and let ⇡ : Y ! X be a finite étale covering. Assume that v is the composition of

an embedding into a smooth normal crossings compactification Y with a closed

immersion. Let F be a lisse sheaf on X such that ⇡⇤F is tamely ramified along

Y � Y . Then the estimate

cu(F )⌧ rank(F )cv,u(⇡)c(v)

holds, with an implied constant that only depends on the embedding dimensions

of (X,u) and (Y, v).

Proof. The composition of the adjunction maps

F ! ⇡⇤⇡
⇤F = ⇡!⇡

⇤F ! F

is the multiplication by the degree of ⇡. The sheaf F is hence a direct factor of
⇡!⇡⇤F , and the estimates

cu(F ) 6 cu(⇡!⇡
⇤F )⌧ cv,u(⇡)cv(⇡

⇤F )⌧ rank(F )cv,u(⇡)c(v),

hold by Proposition 6.14, part (6.6) of Theorem 6.8, and Proposition 7.9 applied
to ⇡⇤F on Y . ⇤
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7.6. The Riemann Hypothesis. In this section, we record the general “quasi-
orthogonality” version of the Riemann Hypothesis over finite fields arising from
Deligne’s work and the theory of complexity developed here.

We work over a finite field F, and assume that k is an algebraic closure of F. We
fix an isomorphism ◆ from Q` to C to define weights, as explained in the notation
section. The notation for trace functions is also recalled there.

We first explain the type of bounds for values of trace functions of perverse
sheaves that can be obtained using the complexity.

Proposition 7.11. Let (X,u) be a quasi-projective variety over F of pure dimen-

sion d. Let M be a perverse sheaf on X that is pure of weight zero.

(1) For any x 2 X(F), the estimate tM (x)⌧ cu(M) holds.
(2) If d > 1 and M is geometrically irreducible with support equal to X, then

the following estimate holds:

tM (x)⌧ cu(M)|F|�1/2.

(3) There exists a stratification of X, defined over F, into locally closed strata

Sj that are irreducible and smooth of pure dimension dj such that the degree

of u(Sj) is bounded in terms of cu(M) and the estimate

tM (x)⌧ cu(M)|F|
max{�d,�dj�1}

2

holds for all j and all x 2 Sj(F).

In all these estimates, the implied constants only depend on the embedding dimen-

sion of (X,u).

Proof. (1) The perversity of M implies the vanishing of the cohomology sheaves
H i(M) in all degrees i > 0 and i < �d. By the definition of weights for perverse
sheaves, if M is pure of weight zero, then H i(M) is pointwise mixed of weight 6 i,
which means that the eigenvalues of Frobenius acting on the stalks H i(M)x all
have modulus 6 |F|i/2 6 1. Therefore, the inequality

|tM (x)| 6
X

�d6i60

|tH i(M)(x)| 6
X

�d6i60

dimH i(M)x

holds, and it su�ces to estimate the dimensions of the stalks of H i(M). From (6.5)
applied to the morphism x : Spec(F)! X, we derive the estimates

(7.2) dimH i(M)x 6 cu�x(x
⇤M)⌧ cu�x,u(x)cu(M) = c(u � x)cu(M) = cu(M),

and hence the estimate tM (x)⌧ cu(M) as claimed.
(2) If we assume, moreover, that M is a geometrically irreducible perverse sheaf

with support X, by [3, Th. 4.3.1 (ii)] there exists a dense open subset j : U ! X
and a lisse sheaf F on U such that M is the middle extension j!⇤F [d]. Then
H 0(M) vanishes by [3, Prop. 2.2.4], so that the eigenvalues of Frobenius have mod-
ulus 6 |F|�1/2 and the same argument as in (1) yields the stronger estimate

|tM (x)|⌧ cu(M)|F|�1/2.

(3) By Theorem 6.23, there exists a stratification ofX, defined over F, into locally
closed strata Sj such that the restriction of H i(M) to each Sj is lisse and the degree
of u(Sj) is bounded in terms of cu(M). By [3, Prop. 2.2.4], there is an inequality
dimSupp(H i(M)) < �i� 1 for all �i < d. Since H i(M) restricts to a lisse sheaf
on Sj , we must have dj < �i whenever H i(M) is non-zero and dj 6= d. ⇤
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Remark 7.12. The following example shows that the estimates in Proposition 7.11
are best possible in general. Assume that the finite field satisfies |F| ⌘ 1 (mod 3).
Let � be a non-trivial multiplicative character of order three of F and let L� be
the associated Kummer sheaf on Gm. Denote by j : U ! An the inclusion of the
complement of the hypersurface F ⇢ An given by the equation

x3
1 + · · ·+ x3

n = 0.

Let F be the lisse sheaf L�(x3
1+···+x3

n)
(�n/2) on U and let M = j!⇤(F [n]) be its

middle extension to An, shifted to make it perverse. Then M is a geometrically
irreducible perverse sheaf of weight zero and the equality |tM (x)| = |F|�n/2 holds
for all x 2 U(F). We claim that, at the origin, the trace function of M satisfies

|tM (0)| = |F|�1/2.

To see this, let h : X 0 ! An denote the blow-up of An at the origin, E ' Pn�1

the exceptional divisor, F 0 the strict transform of F , and j0 : U 0 ! X 0 the in-
clusion of the inverse image U 0 = h�1(U) of U . We define F 0 = h⇤F and
M 0 = j0!⇤(F

0[n]). Since � is a character of order three, a local computation
shows that F 0 extends to a lisse sheaf outside F 0 (for example, in the a�ne chart
given by y1 = 1 and yi = xi/x1 for i = 2, . . . , n, this follows from the equality
L�(x3

1+···+x3
n)

= L�(x3
1(1+y3

2+···+y3
n))

= L�(1+y3
2+···+y3

n)
). Since F 0 is a smooth divi-

sor, the perverse sheaf M 0 is the extension by zero of the shift of this lisse sheaf to
X 0. Hence, its trace function at a point y = [y1 : · · · : yn] 2 E(F) equals

tM 0(y) =

(
�(y31 + · · ·+ y3n) if y31 + · · ·+ y3n 6= 0,

0 otherwise.

By the decomposition theorem [3], the perverse sheaf M is a direct factor of
h!(M 0), and since h is an isomorphism outside the origin, the other irreducible com-
ponents of h!(M 0) are skyscraper sheaves supported at zero. By the Grothendieck–
Lefschetz trace formula, the trace function of M at 0 is equal to

1

|F|n/2
X

[y1:···:yn]2Pn�1(F)
y3
1+···+y3

n 6=0

�(y31 + · · ·+ y3n),

which up to the normalizing factor |F|�n/2 is a sum of Jacobi sums of weight n� 1
by a classical computation (see [24, Ch. 8, Th. 5]). Weyl’s equidistribution theorem
implies that this sum does not cancel, at least for some extensions of any given
finite field.

Theorem 7.13 (Quasi-orthogonality). Let F be a finite field of characteristic dif-

ferent from `. Let (X,u) be a geometrically irreducible quasi-projective algebraic

variety of dimension d over F.
(1) Assume that X is smooth. Let A and B be `-adic constructible sheaves

on X. Suppose that A and B are mixed of weights 6 0 and that there exists a dense

open subset U of X on which A and B are lisse sheaves, pure of weight zero, and

geometrically irreducible. Then there exists a complex number ↵ of modulus 1 such
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that the estimate
���

1

|F|d
X

x2X(F)

tA(x)tB(x)� ↵�(A,B)
���⌧ c(u)cu(A)cu(B)|F|�1/2

+ c(u)(cu(A) + cu(B))|F|�1

holds, with �(A,B) = 1 if A and B are geometrically isomorphic over U and

�(A,B) = 0 otherwise.

(2) Let A and B be geometrically irreducible `-adic perverse sheaves on X. Sup-

pose that A and B are pure of weight zero. Then there exists a complex number ↵
of modulus 1 such that the estimate

���
X

x2X(F)

tA(x)tB(x)� ↵�(A,B)
���⌧ c(u)cu(A)cu(B)|F|�1/2

holds, with �(A,B) = 1 if A and B are geometrically isomorphic and �(A,B) = 0.
In both estimates, the implied constant only depends on the embedding dimension

of (X,u).

Proof. We start with (1). Since B restricts (up to a shift and a Tate twist) to
a perverse sheaf of weight zero on U , the proof of Proposition 6.40 shows that tB
coincides with the trace function of D(B) on U(F). Since A and B are geometrically
irreducible, the object A⌦D(B) has non-trivial cohomology with compact support
in top degree 2d if and only if A and B are geometrically isomorphic, and in
that case this cohomology is one-dimensional. By [29, Lem. 1.8.1], if A and B
are geometrically isomorphic, there is an isomorphism B ' A ⌦ ↵deg for a unique
↵ 2 Q`, which has modulus 1 when viewed as a complex number. Arguing as
in the proof of Katz’s orthogonality theorem [29, Th. 1.7.2], the combination of
the Grothendieck–Lefschetz trace formula and Deligne’s Riemann Hypothesis thus
gives the estimate

���
1

|F|d
X

x2U(F)

tA(x)tB(x)� ↵�(A,B)
��� 6 �|F|�1/2,

where � denotes the sum of Betti numbers

� =
X

i2Z

hi
c(UF, A⌦D(B)).

By Proposition 7.1 and (6.2), this quantity is bounded by

� ⌧ c(A⌦D(B))⌧ cu(A)cu(D(B))⌧ c(u)cu(A)cu(B).

On the other hand, on the complement X � U , the functions tA and tB are
bounded by the generic rank of A and B respectively, which are in turn bounded
by their complexity taking (7.2) into account. This gives the estimate

���
1

|F|d
X

x2(X�U)(F)

tA(x)tB(x)
���⌧ cu(A)cu(B)|(X � U)(F)||F|�d.

We then note that U is contained in the intersection of the maximal open set U1

where A is lisse and the maximal open set U2 where B is lisse, and hence the
estimates

deg(X � U)⌧ deg(X � U1) + deg(X � U2)⌧ c(u)(cu(A) + cu(B))
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hold by Theorem 6.23 (recall that X is assumed to be smooth). We conclude using
the classical bound |(X � U)(F)| 6 deg(X � U)|F|dim(X�U).

The proof of (2) is the same, except that the term |F|�d does not appear due to
the normalization of weights for perverse sheaves (see Remark 1.3) and that we do
not need to treat the sum over points of X � U . ⇤

Taking X = An, the second statement immediately implies Theorem 1.2.

Remark 7.14. In the setting of part (2) of Theorem 7.13, suppose that one knows
that there is � > 0 such that

Hi
c(XF, A⌦D(B)) = 0

for i > �� (the case � = 0 corresponds to the assumption that A and B are
not geometrically isomorphic). Then by the same argument and the Riemann
Hypothesis, we obtain the stronger estimate

X

x2X(F)

tA(x)tB(x)⌧ c(u)cu(A)cu(B)|F|�(�+1)/2.

The case where � = dim(X)�1 corresponds to full square-root cancellation for the
sum over X(F).

A basic finiteness statement follows from this result:

Corollary 7.15. Let F be a finite field of characteristic di↵erent from `. Let (X,u)
be a geometrically irreducible quasi-projective algebraic variety over F.

For any c > 1, there are, up to geometric isomorphism, only finitely many `-adic
perverse sheaves A on X of complexity cu(A) 6 c that are geometrically irreducible

and pure of weight zero.

Proof. By Theorem 7.13, applied to finite extensions of F, we first see that there
exists a finite extension Fn of F (depending on c) such that the equality of trace
functions tA(·;Fn) = tB(·;Fn) implies that A and B are geometrically isomorphic,
for irreducible perverse sheaves A and B of weight zero on X with cu(A) 6 c
and cu(B) 6 c. Moreover, we can also ensure that X(Fn) is not empty and
that tA(·;Fn) 6= 0 when cu(A) 6 c.

Replacing F by Fn, it is then enough to prove that there are only finitely many
functions tA for irreducible perverse sheaves of weight zero with cu(A) 6 c, up to
geometric isomorphism. Let C(X(Fn)) be the finite-dimensional Hilbert space of
functions X(Fn)! C with norm

kfk =
X

x2X(Fn)

|f(x)|2.

Theorem 7.13 again implies that for A not geometrically isomorphic to B with
cu(A) 6 c and cu(B) 6 c, the functions tA/ktAk and tB/ktBk, viewed as elements
of the unit sphere of C(X(Fn)), make an angle > ✓ for some ✓ > 0 independent
of A and B. It is well-known that there can only be finitely many such vectors. ⇤

Remark 7.16. This argument can be made quantitative, although it is probably
far from sharp; see [12] for the case of curves.
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7.7. Examples. We collect here for ease of reference some immediate corollaries of
the formalism of Section 6. These contain and generalize all the basic “continuity”
estimates of Fouvry, Kowalski and Michel in the case of curves.

Example 7.17 (Fourier Transform). Let F be a finite field. Let n > 1 be an
integer and let X = An viewed as a commutative algebraic group over F, with the
obvious embedding in Pn to define the complexity. Let  be a fixed non-trivial
`-adic additive character of F and consider the Artin–Schreier sheaf L = L (x·y)
of rank 1 on An ⇥An, where x · y is the standard scalar product. Deligne defined
the `-adic Fourier transform FT as the functor Db

c (A
n)! Db

c (A
n) given by

FT (A) = p2,!(p
⇤
1A⌦L ) = p2,⇤(p

⇤
1A⌦L )

(see [38, 1.2.1.1]; the equality of the two expressions is a highly non-trivial fact,
often referred to as “the miracle of the Fourier transform”).

From the results of Section 6 and Corollary 7.7, we therefore deduce:

Proposition 7.18. There exists an integer N > 0, depending only on n, such that

c(FT (A)) 6 Nc(A)

holds for any object A of Db
c (A

n).

The results of Section 8, together with Propositions 6.21 and 7.5, lead to explicit
estimates for N . These are growing at least as fast as n!, and it might be interesting
to have a better estimate for this “norm” of the `-adic Fourier transform.

For n = 1, Fouvry, Kowalski and Michel proved the inequality

cfkm(FT (A)) 6 10cfkm(A)2

(for middle-extension Fourier sheaves) in [15, Prop. 8.2]; this estimate plays an
essential role in many analytic applications, and one can expect a similar use of
Proposition 7.18.

Example 7.19 (Other cohomological transforms). Let (X,u) and (Y, v) be quasi-
projective varieties over k andK an object of Db

c (X⇥Y ). Let TK : Db
c (X)! Db

c (Y )
denote the “cohomological transform with kernel K”, i.e., the functor such that

TK(A) = p2,!(p
⇤
1A⌦K),

where p1 : X ⇥ Y ! X and p2 : X ⇥ Y ! Y are the projections.
Applying again the formalism, there exists a constant NK , depending on K, such

that the inequality

cv(TK(A)) 6 NKcu(A)

holds for any object A of Db
c (X). Precisely, this holds with

NK = cu⇥v,v(p2)cu⇥v,v(p1)cu⇥v(K)

(where u⇥v is used to denote the composition of u⇥v with the Segre embedding of
the product of the projective spaces target of u and v; as in the case of the Fourier
transform, other embeddings of X ⇥ Y might be possible).

In the very special case where X = Y = A1 (over finite fields) and K is a rank 1
Artin–Schreier or Kummer sheaf on A2, we can apply Corollary 7.7 to estimate the
complexity of the kernel sheaf; a weaker form of the resulting estimate was proved
by Fouvry, Kowalski and Michel [16, Th. 2.3].
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Other special cases that have been already considered (when n = 1) for the
varieties X = Y = A1 or X = Y = Gm are additive convolution and multiplicative
convolution.

More generally, let G be a commutative quasi-projective algebraic group over k,
with a given locally closed embedding u. Let � : G ⇥ G ! G be the addition
morphism. We have two convolution functors

⇤ : Db
c (G)⇥Db

c (G)! Db
c (G), ⇤! : Db

c (G)⇥Db
c (G)! Db

c (G)

defined by

A ⇤B = �⇤(A⇥B), A ⇤! B = �!(A⇥B).

Use the composition of the Segre embedding with u ⇥ u to embed G ⇥ G in
projective space.3 Then by (6.8) and (6.6) and Proposition 6.12, there exists an
integer N such that the inequalities

cu(A ⇤B) 6 Ncu(A)cu(B), cu(A ⇤! B) 6 Ncu(A)cu(B)

hold for all objects A and B of Db
c (G).

Example 7.20 (Gowers uniformity sheaves). Let (G, u) be a commutative quasi-
projective algebraic group over a field k0, with the group law written additively. For
each integer d > 1, we denote by ⇡d : Gd+1 ! G the projection (x, h1, . . . , hd) 7! x.
Given a complex A of Db

c (G), we define the uniformity object Ud(A) as

Ud(A) = ⇡d,!
⇣O

I

D�|I|(�⇤
IA)

⌘
,

where the tensor product runs over all subsets I ⇢ {1, . . . , d}. For each of them,
D�|I| denotes the Verdier duality functor if |I| is odd and the identity functor if |I|
is even, and the morphism �I : Gd+1 ! G is given by

�I(x, h1, . . . , hd) = x+
X

i2I

hi.

The point of this construction is that, in the case where k0 is a finite field F and
A is a perverse sheaf pure of weight zero, the trace function of Ud(A) satisfies

X

x2F

tUd(A)(x) = ktAk2
d

Ud
,

where k · kUd is the d-Gowers norm for a complex-valued function on the finite
group G(F), see [41, Def. 11.2]. For G = Ga, this construction is implicitly used
in [13] to obtain an “inverse theorem” for Gowers norms of one-variable trace func-
tions, and various results from loc. cit. can actually be interpreted as bounds for
the complexity of Ud(A) in terms of that of A. Thanks to Theorem 6.8, we can gen-
eralize them to any group: there exists an integer Nd > 0 such that the inequality

cu(Ud(A)) 6 Ndcu(A)2
d

holds for all objects A of Db
c (G).

3 For certain groups, such as a�ne groups, one can also use other embeddings.
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Example 7.21 (Sum-product sheaves). In [34] and [35], special cases of the fol-
lowing construction are applied to Kloosterman sheaves: given an input object A
in Db

c (A
1) and an integer l > 1, one constructs a “sum-product” object

Bl =
O

16i6l

f⇤
i A⌦ f⇤

i+l D(A)

on A2+2l, with coordinates (r, s, b), by means of the functions fi(r, s, b) = r(s+bi).
It follows from the general formalism that, performing this construction with any

input object A in Db
c (A

1), we have

cv(Bl) 6 Nlcu(A)2l

for some constant Nl depending only on l (the embeddings are the standard em-
beddings u : A1 ! P1 and v : A2l+1 ! P2l+1).

7.8. Equidistribution. Using the theory of complexity developed in this paper,
the “horizontal” version of Deligne’s Equidistribution Theorem formulated by Katz
in the case of curves [26, Ch. 3] admits a straightforward extension to higher-
dimensional varieties. As before, we fix an isomorphism ◆ : Q` ! C through which
both fields are identified.

Theorem 7.22. Let N > 1 be an integer and let (X,u) be a smooth and connected

quasi-projective scheme over Spec(Z[1/N ]) with geometrically irreducible generic

fiber. For each prime p not dividing N , let (XFp , up) denote the reduction of (X,u)
modulo p. Let P be an infinite set of primes not dividing N`, and assume that we

are given, for each p 2 P, a lisse `-adic sheaf Fp on XFp that is pure of weight

zero and whose complexity satisfies cup(Fp)⌧ 1.
Assume that, for each p 2 P, the geometric and arithmetic monodromy groups

of Fp coincide and are isomorphic to a fixed semisimple (i.e., the connected compo-

nent of the identity is semisimple) algebraic group G. Let K be a maximal compact

subgroup of G(C).
For p 2 P and x 2 X(Fp), let ✓p(x) be the unique conjugacy class in K that

intersects the conjugacy class of the semisimplification of the image in G of the

Frobenius at x relative to Fp, so that the equality

Tr(✓p(x)) = tFp(x)

holds. Then the families (✓p(x))x2X(Fp) become equidistributed as p ! +1 in the

space of conjugacy classes of K, with respect to the Haar probability measure.

Proof. Let d be the relative dimension ofX over Spec(Z[1/N ]). Shrinking P andX
if necessary, we may assume that XFp is a smooth and geometrically connected
variety of dimension d and that X(Fp) is not empty for all primes p in P. In fact,
the number of Fp-points behaves asymptotically like |X(Fp)| ⇠ pd as p! +1 by
the Lang–Weil estimate.

Each lisse `-adic sheaf Fp corresponds to a representation of the fundamental
group ⇡1(XFp) of XFp . According to the Weyl Criterion, equidistribution follows
from the vanishing

(7.3) lim
p!+1

1

|X(Fp)|
X

x2X(Fp)

Tr(⇢(✓p(x))) = 0

for any non-trivial irreducible representation ⇢ of K. By the correspondance be-
tween semisimple algebraic groups and compact Lie groups, such a representation ⇢
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corresponds uniquely to an algebraic irreducible representation of the algebraic
group G, which is still denoted by ⇢. The lisse sheaf ⇢(Fp) on XFp (see Section 6.9)
satisfies

Tr(⇢(✓p(x))) = t⇢(Fp)(x)

for all x 2 X(Fp). Moreover, this sheaf is of weight zero (the group G being
semisimple, it is a subsheaf of some tensor power F⌦a by Lemma 6.32), geo-
metrically irreducible (since its arithmetic and geometric monodromy group are
equal), and non-trivial. By the Riemann Hypothesis (Theorem 7.13 (1)), applied
with B = Q`, the estimate

1

pd

X

x2X(Fp)

Tr(⇢(✓p(x)))⌧ cup(⇢(Fp))p
�1/2

holds for all p 2P. By Proposition 6.33, there exists an integer a > 0, depending
only on ⇢, such that

cup(⇢(Fp))⌧ cup(F )a.

Since we assumed that cup(Fp) is bounded, this estimate implies (7.3). ⇤

In practice, some multi-variable cases of this theorem could be proved by apply-
ing the Deligne–Katz equidistribution theorems to families of curves covering X.

Katz–Sarnak [31, §9.6] and Katz [29, Ch. 12] have proved earlier statements of
the same kind, but assuming that Fp is the base change to Fp of a “common” sheaf
or perverse sheaf on X over Z[1/N ].

In fact, we now show that Theorem 7.22 gives a positive answer to the question of
Katz [29, p. 8 and 12.6.6] concerning equidistribution of certain higher-dimensional
families of additive character sums. This illustrates that the theory of complexity
can, to a certain extent, obviate the lack of a theory of exponential sums over Z
(the second part implies Theorem 1.4 from the introduction).

Let n > 1 and d > 1 be integers. Let P (n, d) be the space of polynomials of
degree d in n variables, and P (n, d, odd) ⇢ P (n, d) the subspace consisting of odd
polynomials, by which we mean that only monomials of odd degree have non-zero
coe�cients. For a prime number p and f 2 P (n, d)(Fp), set

S(f ; p) =
1

pw(f)/2

X

x2Fn
p

e
⇣f(x)

p

⌘
,

where w(f) is the smallest integer such that the vanishing

Hi
c(A

n
Fp

,L (f)) = 0

holds for all i > w(f), and we recall the notation e(z) = exp(2i⇡z).
For an even integer N , we denote by

USpN (C) = UN (C) \ SpN (C)

the group of unitary symplectic matrices of size N , which is a maximal compact
subgroup of the symplectic group SpN (C).

Corollary 7.23. Let n > 1 and d > 1 be integers. Set Kn = U(d�1)n(C) and, for

odd d,

Kn,odd =

(
USp(d�1)n(C) if n is odd,

O(d�1)n(C) if n is even.
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(1) The families (S(f ; p))f2P (n,d)(Fp) become equidistributed as p ! +1 with

respect to the measure which is the image under the trace of the probability

Haar measure on Kn.

(2) Suppose that d is odd. The families (S(f ; p))f2P (n,d,odd)(Fp) become equidis-

tributed as p ! +1 with respect to the measure which is the image under

the trace of the probability Haar measure on Kn,odd.

Proof. Note that P (n, d) is a dense open subset of the a�ne space of polynomials
of degree 6 d in n variables. Let D(n, d) ⇢ P (n, d) denote the dense open subset
of Deligne polynomials (namely, those for which the homogeneous part of highest
degree defines a smooth hypersurface in Pn�1) and let D(n, d, odd) ⇢ P (n, d, odd)
be the subset of odd Deligne polynomials. BothD(n, d) andD(n, d, odd) are smooth
schemes over Z.

Because (by the Riemann Hypothesis) the estimate

|S(f ; p)| 6
X

i6w(f)

hi
c(A

n
Fp

,L (f))⌧ c(L (f))⌧ 1

holds for all p and f 2 P (n, d)(Fp), it is enough to prove the equidistribution of
the sums S(f ; p) for f 2 D(n, d)(Fp) (resp. f 2 D(n, d, odd)(Fp)).

We first handle separately the cases d = 1 and d = 2. If d = 1, the sum S(f ; p)
vanishes for any non-zero linear polynomial f . Since K0 = U0(C) is the trivial
group, whose only element has trace zero, the equidistribution holds in that case.

If d = 2, then K2 = U1(C) is the unit circle. Write a polynomial f 2 D(n, 2)(Fp)
as

f(x) = Q(x) + �(x) + µ,

where Q is a non-degenerate quadratic form, � a linear form and µ a constant.
For each prime p > 3, it is an elementary consequence of the fact that normalized
Gauss sums have modulus one that |S(f ; p)| = 1. Let h > 1 be an integer. Then

X

f2D(n,2)(Fp)

S(f ; p)h =
1

pnh/2

X

x1,...,xh2Fn
p

X

Q,�

e
⇣1
p

⇣X

i

(Q(xi)+�(xi)
⌘⌘ X

µ2Fp

e
⇣hµ

p

⌘
.

This vanishes as soon as p > h. If h 6 �1, we obtain the same conclusion after
noting that S(f ; p)�1 = S(f ; p) = S(�f ; p). Thus,

lim
p!+1

1

|D(n, 2)(Fp)|
X

f2D(n,2)(Fp)

S(f ; p)h = 0

for any non-zero integer h, which proves equidistribution in U1(C) = K2.
We now assume that d > 3. For a prime p, let  be an `-adic character with

trace function x 7! e(x/p), under the identification of Q` and C. On An⇥D(n, d)
over Fp with coordinates (x, f) we have the Kummer sheaf L (f(x)). Define

Dp = p2,!L (f(x))[n](n/2),

where p2 : An ⇥D(n, d) ! D(n, d) denotes the projection to the second factor, so
that the equality

S(f ; p) = (�1)ntDp(f)

holds by the trace formula. This is a priori an object of the derived category
of D(n, d) over Fp, but Deligne has shown (see [29, Cor. 3.5.11, Cor. 3.5.12]) that Dp

is in fact a lisse sheaf of rank N = (d�1)n and pure of weight zero for each prime p
not dividing d.
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We first prove (2), which fits exactly the statement of Theorem 7.22. The rel-
evant monodromy groups have been computed by Katz [29, Th. 12.6.3]: if p > 7
and p - d, the geometric and arithmetic monodromy groups of the restriction Fp

of Dp to D(n, d, odd) coincide and are equal to SpN if n is odd and to ON if n is
even (precisely, these references show that the geometric monodromy group is as
stated, but by [29, Th. 3.10.6], these sheaves are arithmetically self-dual, so their
arithmetic monodromy groups cannot be bigger). Hence, Kn,odd is a maximal com-
pact subgroup of the complex points of the geometric monodromy group for any p.
Moreover, denoting by i the closed immersion D(n, d, odd)! D(n, d), the estimate

c(Fp) = c(i⇤p2,!L ( (f(x))))⌧ c(i)c(p2)c(L (f(x)))

holds by (6.5) and (6.6) for any prime p, where the complexities are computed using
the embeddings ofAn,D(n, d) and their product and subschemes are induced by the
natural embeddings of a�ne spaces in the projective space of the same dimension.

By the bound in Section 7.3 and by Theorem 6.19, we deduce that c(Fp)⌧ 1 for
all p, where the implied constant depends only on (d, n). Thus, the equidistribution
in (2) follows from Theorem 7.22.

We now come back to (1). Here we note that, as above, we have c(Dp) ⌧ 1
for all p, but the setting is not exactly that of Theorem 7.22. Indeed, Katz proved
in [29, Th. 6.8.34] that the geometric monodromy group of Dp, for p > 7 that does
not divide d(d� 1), is the group

G2p = {g 2 GLN | det(g)2p = 1},

which depends on p. We argue then by repeating the use of the Weyl Criterion in
the proof of Theorem 7.22.

For f 2 D(n, d)(Fp), we denote by ✓p(f) the conjugacy class in G2p correspond-
ing to the Frobenius at f , whose trace is equal to S(f ; p). Let ⇢ be a non-trivial
irreducible representation of UN (C), which can also be viewed as a representation
of GLN . The lisse sheaf ⇢(Dp) satisfies c(⇢(Dp))⌧ 1 for all p (as in loc. cit.). The
restriction of ⇢ to G2p is a direct sum of a bounded number of irreducible represen-
tations. We claim that if p is large enough, depending on ⇢, then this restriction
does not contain the trivial representation of G2p. Indeed, by Frobenius reciprocity,
the multiplicity of the trivial representation is equal to the sum over h 2 Z of the
multiplicity of the character det(·)2ph in ⇢, i.e., it is equal to one if ⇢ = det(·)2ph
for some non-zero h (because ⇢ is non-trivial), and zero otherwise. The first case
cannot occur if p is large enough, hence the claim.

Now applying the Riemann Hypothesis as above to each irreducible subrepre-
sentation of ⇢(Dp), we obtain

1

|D(n, d)(Fp)|
X

f2D(n,d)(Fp)

Tr(⇢(✓p(f)))⌧ p�1/2

for all p, where the implied constant depends only on (n, d, ⇢). This implies the
equidistribution in (2). ⇤

In [11], the three last-named authors use the theory of complexity, among other
tools, to study the equidistribution of families of exponential sums arising as dis-
crete Fourier–Mellin transforms of trace functions on commutative algebraic groups,
generalizing the equidistribution theorems of Deligne [7] (for powers of Ga, through
the Fourier transform) and Katz [30] (for Gm), see [17] for a survey. Among other
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things, this has applications, also discussed in [11], to the study of the variance
of arithmetic functions over function fields in arithmetic progressions, improving
results of Hall, Keating and Roddity-Gershon [23]. We state here (a form of) the
basic result, in the “vertical” direction (see [11, Th. 2]).

Theorem 7.24. Let (G, u) be a connected commutative algebraic group over a

finite field F with a given quasi-projective embedding. Denote by Fn the extension

of F of degree n in an algebraic closure of F and by bG(Fn) the group of characters

of G(Fn).
Let A be a geometrically irreducible perverse sheaf on G which is pure of weight

zero. There exists a complex reductive algebraic group GA with a maximal compact

subgroup KA such that the sums

S(A,�) =
X

x2G(Fn)

�(x)tA(x;Fn),

defined for � 2 bG(Fn), become equidistributed on average in C with respect to the

image under the trace map of the Haar probability measure µ on KA, i.e. the

equality

lim
N!+1

1

N

X

16n6N

1

|G(Fn)|
X

�2 bG(Fn)

f(S(A,�)) =

Z

KA

f(Tr(g))dµ(g)

holds for any continuous and bounded function f : C! C.

8. Effective bounds

It is clear that the implied constants in our bounds for all of Grothendieck’s six
functors can be made e↵ective as long as that for the Betti numbers of a tensor
product of complexes in Theorem 5.1 can be made e↵ective. We state here such an
e↵ective bound and sketch the proof.

Theorem 8.1. For all objects A and B of Db
c (P

n
k ), the following estimate holds:

X

i2Z

hi(Pn
k , A⌦B) 6 216

34
e4/1313n(n+ 2)! c(A)c(B).

Sketch of proof. The primary issue is to control the bilinear form of Corollary 5.5.
It is convenient to calculate with this bilinear form in a basis generated by constant
sheaves (identical to that of Lemma 2.5 up to a sign). Let em be the class of CC(Km)
for Km the constant sheaf on an m-dimensional subspace, so that e0, . . . , en form
a basis of the vector space CHn

�
T ⇤Pn

�
⌦ Q. By Theorem 2.2, the intersection

pairing

em1 · em2 = CC(Km1) · CC(Km2)

is equal to (�1)n times the Euler–Poincaré characteristic of the intersection of a
general m1-dimensional subspace and a general m2-dimensional subspace. This
intersection is a projective space of dimension m1 +m2 � n, and hence has Euler–
Poincaré characteristic min(m1+m2+1�n, 0), so the intersection number is equal
to (�1)n min(m1 +m2 + 1� n, 0).

By construction, the function of Lemma 3.15 is easy to calculate with respect to
this basis: it sends em to em�1. Therefore, the bilinear form of Lemma 5.5 satisfies
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f(em1 , em2) = g(m1 +m2 + 1� n) with

g(x) =
xX

k=0

4k(x� k) =
4x+2 � 3x� 4

9

for x > 0 and g(x) = 0 for x 6 0. For simplicity, we will upper-bound it by the
simpler bilinear form f such that f(em1 , em2) = 4m1+m2+3�n/9.

Set e0i =
P

j6i 2
i�jej . Then e00, . . . , e

0
n also form a basis. Fix a norm k · k on

the vector space CHn

�
T ⇤Pn

�
⌦R which is the `1 norm in this basis. This basis

is convenient because the intersection of e0i with the characteristic cycle of a test
sheaf supported on Pm is 1 if m+ i = n and 0 otherwise. To check this, it su�ces
to check that the intersection number of ei with the characteristic cycle of a test
sheaf supported on Pm is equal to 1 if i +m = n, to �2 if i +m � n = 1, and to
0 otherwise. This follows from the fact that the tensor product of Ki with the test
sheaf supported on Pm is the test sheaf supported on Pi+m�n, which has Euler–
Poincaré characteristic equal to 1 if i+ 2� n = 0, to �2 if i+m� n = 1, and to 0
otherwise.

Because the intersection number of e0i with the characteristic cycle of a test sheaf
is equal to 1 on Pm if m + i = n and to 0 otherwise, Proposition 5.4 then shows
that for a perverse sheaf A, the norm kCC(A)k is bounded by 4(n+ 1)c(A).

Rewriting the bilinear form f in the basis e0i gives

f(e0i1 , e
0
i2) =

X

j16i1

X

j26i2

2i1�j12i2�j24j1+j2+3�n

9

=
2i1+i243�n

9

⇣X

j16i1

2j1
⌘⇣X

j26i2

2j2
⌘

6 2i1+i244�n

9
2i1+12i2+1 =

4i1+i2+4�n

9
.

Hence, the total norm of the bilinear form is at most

nX

i1=0

nX

i2=0

4i1+i24�n

9
=

44�n

9

⇣ nX

i=0

4i
⌘n

=
44�n

9

⇣4n+1

3

⌘2
=

46+n

34

and the constant of Corollary 5.5 involves an extra factor of 16(n+1)2 coming from
the constant of Proposition 5.4, for a total of (n+ 1)248+n/34.

Let bn be the constant in Theorem 5.1 in dimension n. Then we can see from
the induction argument that there are n terms (it may appear to be n+ 1, but we
may set �1 = 1 at the start by scaling the whole matrix, which does not a↵ect the
automorphism of Pm), each of size 13bn�1c(A)c(B), plus one term coming from
Corollary 5.5 of size 48+n(n+ 1)2c(A)c(B)/34, so we obtain:

bn = 13nbn�1 +
48+n

34
(n+ 1)2 =

nX

k=0

13n�k n!

k!

48+k(k + 1)2

34

= n!13n
nX

k=0

48+k(k + 1)2

3413kk!
6 (n+ 1)2n!13n

216

34
e4/13 6 (n+ 2)!13n

216

34
e4/13,

as we wanted to show. ⇤
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Remark 8.2. Being more careful in the numerical arguments would lead to a
significantly improved constant (the dominant terms in the sum defining bn are
those for small k, and for such values our bounds could see significant improvement,
e.g. we could use the constant 1 in Corollary 5.5 for k = 0 instead of 216/34),
and some minor adjustments to the algebraic geometry can lower the base of the
exponent 13n, but we do not know how to improve on the factorial growth, except in
characteristic zero where a completely di↵erent argument o↵ers exponential growth.

From this statement, it is completely straightforward to make explicit the in-
equalities of Section 6, because all the implicit constants in those inequalities come
from repeated applications of Theorem 5.1, which can be replaced with this e↵ective
version.
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17. J. Fresán, Équirépartition de sommes exponentielles [travaux de Katz], Séminaire Bourbaki,
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Abstract. We introduce a notion of complexity of a complex of `-adic sheaves
on a quasi-projective variety and prove that the six operations are “continu-
ous”, in the sense that the complexity of the output sheaves is bounded solely
in terms of the complexity of the input sheaves. A key feature of complexity is
that it provides bounds for the sum of Betti numbers that, in many interest-
ing cases, can be made uniform in the characteristic of the base field. As an
illustration, we discuss a few simple applications to horizontal equidistribution
results for exponential sums over finite fields.
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