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A B S T R A C T

Tree mortality plays a fundamental role in the dynamics of forest ecosystems, yet it is one of the most difficult
phenomena to accurately predict. Various modeling strategies have been developed to improve individual tree
mortality predictions. One less explored strategy is the use of a multistage modeling approach. Potential im-
provements from this approach have remained largely unknown. In this study, we developed a novel multistage
approach and compared its performance in individual tree mortality predictions with a more conventional
approach using an identical individual tree mortality model formulation. Extensive permanent plot data (n ¼
9442) covering the Acadian Region of North America and over multiple decades (1965–2014) were used in this
study. Our results indicated that the model behavior with the multistage approach better depicted the observed
mortality and showed a notable improvement over the conventional approach. The difference between the
observed and predicted numbers of dead trees using the multistage approach was much smaller when compared
with the conventional approach. In addition, tree survival probabilities predicted by the multistage approach
generally were not significantly different from the observations, whereas the conventional approach consistently
underestimated mortality across species and overestimated tree survival probabilities over the large range of DBH
in the data. The new multistage approach also predictions of zero mortality in individual plots, a result not
possible in conventional models. Finally, the new approach was more tolerant of modeling errors because it based
estimates on ranked tree mortality rather than error-prone predicted values. Overall, this new multistage
approach deserves to be considered and tested in future studies.
1. Introduction

Tree mortality is fundamental to forest dynamics, and as a result there
is a long history of modeling efforts aimed at improving accuracy of
mortality predictions (Hawkes, 2000; Weiskittel et al., 2011a). At the
stand level, mortality generally is evaluated as mean basal area, volume,
or number of trees, all of which have important implications for
long-term forest projections (Wilson et al., 2019). Accurate stand-level
predictions can be achieved with increasing sample sizes (i.e., the
number of plots or size of each plot) or length of observational periods.
Individual tree mortality, however, is difficult to predict due to its binary
and stochastic nature (Weiskittel et al., 2011a). Increasing sample sizes
improve accuracy of mean tree mortality predictions but not necessarily
mortality probability of individual trees, because the probability of
).
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mortality does not always translate into the occurrence of tree death.
While both stand and individual tree-level mortality models can be

applied in forest growth and yield projections, accuracy in predicting in-
dividual tree deaths are critical to understanding trajectories of forest
development (Weiner, 1990). Mortality of specific trees rather than the
total stand-level mortality is more indicative of successional changes in
mixed forests like those in eastern North America (Franklin et al., 1987).
Prediction errors associated with mortality of individual trees divert pro-
jections of forest structure and composition over time (due to the com-
pounding nature of modeling errors (Gertner, 1989; Wilson et al., 2019).

Given the prevalence of individual tree mortality predictions in cur-
rent forest growth models (Weiskittel et al., 2011a), a number of
modeling strategies have been developed to improve their accuracy.
These strategies include.
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1) selecting influential predictors of tree mortality such as tree size (e.g.,
diameter at breast height (DBH) and its transformations; Wykoff
et al., 1982), one-sided competition (e.g., basal area of trees larger
than the subject tree (BAL)) and two-sided competition (e.g., total
basal area; Hamilton, 1986; Hann and Wang, 1990), species compo-
sition (e.g., the percentage basal area of a species; Eid and Tuhus,
2001), and site condition (e.g., climate site index; Weiskittel et al.,
2011b);

2) arranging predictors in suitable functional forms for regression
models, e.g., logistic transformation (Monserud, 1976; Hartmann
et al., 2007) and Gompit functions (Chen et al., 2017a; Salas-Eljatib
and Weiskittel, 2020);

3) utilizing measurements of varying intervals through the annual-
ization technique (Weiskittel et al., 2007; Chen et al., 2017b); and

4) estimating optimal thresholds to translate the 0–1 probability pre-
diction into a dichotomous mortality event (Hein and Weiskittel,
2010; Chen et al., 2018).

A less explored strategy in modeling individual tree mortality is the
use of a multistage approach, where models for additional stages (e.g., at
stand-level) are developed to adjust tree mortality predictions. For
example, in some variants of the widely used Forest Vegetation Simulator
(FVS; Dixon, 2002), the total number of trees that die in a stand is pre-
dicted in the first stage and distributed among individual trees according
to their predicted mortality probabilities in the second stage. Though
applied mostly in stand-level models (e.g., Woollons, 1998; �Alvarez
Gonz�alez et al., 2004; Pothier and Mailly, 2006), strategies similar to
Dixon's (2002) have also been proposed for individual tree mortality
models by Pretzsch et al. (2006), Pukkala and Miina (2006), and Le
Mogu�edec and Dhôte (2012). Their focus is on disaggregating stand
mortality among individual trees to create compatibility between stand-
and tree-level mortality predictions (e.g., Qin and Cao, 2006; Hevia et al.,
2015; Cao, 2021). In addition, Fridman and Ståhl (2001) developed a
three-stage approach to modeling individual tree mortality where the
binary response of whether a plot has observed mortality is modeled in
the first stage. Then, mortality as a proportion of total basal area of a plot
is modeled in the second stage using data from plots with observed
mortality. Finally, individual tree mortality probabilities are predicted in
the third stage and multiplied by a plot-specific constant so that the sum
of these modified probabilities equals to the proportion of basal area
mortality predicted in the first two stages.

A multistage approach adds considerable complexity to tree mortality
modeling, and errors from various stages are potentially compounded.
Existing (e.g., Johnson and Dixon, 1986; Fridman and Ståhl, 2001) have
not provided detailed evaluations of whether the multistage approach
improves predictions of individual tree mortality (e.g., in terms of ac-
curacy and bias) compared to a more conventional approach (i.e., a
single-stage approach), particularly across species in mixed forests. Given
the inherent challenges of accurately predicting individual tree mortality
(e.g. Hülsmann et al., 2017; Thrippleton et al., 2020, 2021), a compre-
hensive assessment of complex approaches to mortality modeling is
necessary.

In this study, we tested whether adopting a multistage approach can
improve individual tree mortality predictions. Identical individual tree
mortality models (with the same regression model, predictors, and
annualization technique) were applied alone and as a part of a multistage
approach, with the only difference being that the tree mortality model
was constrained by additional stages in the multistage approach. Per-
formances of these two approaches were evaluated and compared using
extensive permanent plot data covering the Acadian Region of the State
of Maine in the US and the provinces of New Brunswick, Nova Scotia, and
Quebec in Canada. Specific objectives of this study were to: 1) develop a
new multistage approach for individual tree mortality modeling; 2)
compare the behavior of the multistage approach with a conventional
tree mortality model; 3) evaluate whether this approach improves mor-
tality predictions based on data from the Acadian Region; and 4) assess
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differences in mortality predictions by region, species, DBH, and plot
size.

2. Materials and methods

2.1. Study area

The Acadian Forest region resides in the transition zone between the
softwood-dominant boreal forests to the north and the broadleaf forests
to the south (Braun, 1950; Rowe, 1972). Three Canadian Maritime
provinces (New Brunswick, Nova Scotia, and Prince Edward Island) are
found in the region, along with southern portions of Qu�ebec, andmuch of
the US state of Maine. Across the region, climate estimates indicate an
average annual precipitation of 1130 mm with a range of 870 to 1750
mm, with mean growing degree days (sum of temperatures >5 �C) of
1625 d fluctuating between 726 and 2292 d (Rehfeldt, 2006). Glacial till
is the principal soil parent material with soil types ranging from
well-drained loams and sandy loams on glacial till ridges to poorly and
very poorly drained loams on flat areas between low-profile ridges.

The majority of the Acadian Forest is dominated by naturally-
regenerated, mixed stands that primarily display mixed-cohort stand
structures. Amongst the more than 60 tree species that occur in the region
are coniferous evergreen species such as red spruce (Picea rubens Sarg.),
balsam fir (Abies balsamea L.), eastern white pine (Pinus strobus L.), and
eastern hemlock (Tsuga canadensis (L.) Carr.) as well as deciduous
hardwood species such as red maple (Acer rubrum L.), yellow birch
(Betula alleghaniensis Britton), sugar maple (Acer saccharum Marsh.),
American beech (Fagus grandifolia Ehrh.), paper birch (Betula papyrifera
Marsh.), and northern red oak (Quercus rubra L.). Common forest types
are described in Eyre (1980) as well as in Gawler and Cutko (2010), while
the general information on prevailing environmental conditions is
available in more detail in Bose et al. (2016).

2.2. Data

Data for this study were obtained from a network of permanent
sample plots across New Brunswick, Nova Scotia, and Quebec as well as
from four sources in Maine including the permanent plots of US Forest
Service Forest Inventory and Analysis (FIA; Bechtold and Patterson,
2005), the Penobscot Experimental Forest (PEF; Kimball, 2014), the
Ecological Reserve Monitoring of Maine (ERM; Kuehne et al., 2018), and
the Commercial Thinning Research Network from the Cooperative
Forestry Research Unit of the University of Maine (CTRN; Seymour et al.,
2014). The plots spanned the State of Maine and provinces of New
Brunswick and Nova Scotia, but were restricted to the southern portion of
Quebec. Data from the Canadian provinces were based on single 400 m2

plots, while FIA plots comprised a cluster of four 168 m2 sub-plots, and
PEF, ERM, and CTRN plots were 810, 168, and 810 m2 in size, respec-
tively. There were 9442 plots in the data and were established between
1965 and 2014 with measurement intervals ranging from 1 to 15 years.
The longest measurement history was 40 years.

The individual tree data used in this study are typical of the type
collected on permanent sample plots. Each individual tree was tagged
with a plot-unique ID number, and, at minimum, species and DBH were
recorded. Minimum threshold diameters and plot sizes varied from each
study. Total heights were measured on at least a subset of trees on each
plot for each measurement period. Tree status also was recorded for each
measurement period (live, dead, and cut), and new trees exceeding the
minimum threshold diameter were added to the tree list. This study
focused on plots without human-induced disturbances during the mea-
surement periods. Therefore, plot measurements, in which any cutting
occurred, were removed from the dataset resulting in a final record of
495,286 trees and 2,954,235 measurements (Table 1).

There were 66 tree species recorded in the dataset. Balsam fir was the
most abundant in each region with a total population of 168,947. Red
spruce was the second most abundant tree species with a total population



Table 1
Numbers of trees and plots in the data and summaries of tree sizes and plot-level
forest characteristics by region.

Attributes Maine New
Brunswick

Nova
Scotia

Quebec Overall

No. of plots 3417 1398 2288 2339 9442
No. of trees 213,238 108,927 76,209 96,912 495,286
No. of trees of the most abundant species
Balsam fir 71,366 31,301 29,487 36,793 168,947
Red spruce 26,448 11,568 13,507 2218 53,741
Red maple 25,118 10,183 8888 6508 50,697
Black spruce 3842 19,655 4961 10,910 39,368
Paper birch 12,398 6377 2966 11,989 33,730

Plot-level mean
Mortality
(m2⋅ha�1⋅yr�1)

0.14 0.32 0.17 0.28 0.18

Density
(trees⋅ha�1)

3153 1678 770 845 2061

Basal area
(m2⋅ha�1)

22.90 31.57 17.56 17.40 21.75

% basal area of
balsam fir

19.6 19.1 19.9 25.8 20.0

% basal area of
shade-intolerant
hardwood

10.6 12.8 7.3 22.3 10.5

Quadratic mean
DBH (cm)

17.0 16.6 17.1 16.2 17.0

Relative density 0.41 0.64 0.41 0.41 0.44
Climate site index 14.6 11.9 12.9 12.3 13.6

Tree-level mean
DBH (cm) 13.4 13.5 15.8 15.0 14.3
Height (m) 15.2 16.1 13.0 14.6 14.8
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of 53,741 followed by red maple, black spruce (Picea mariana (Mill.)
Britton, Sterns & Poggenburg) and paper birch with varying abundance
across the regions (Table 1).
2.3. Individual tree and plot summaries

Plot data were standardized to values on hectare basis by measure-
ment periods (Table 1). The following plot-level summaries were ob-
tained: stem density (trees⋅ha�1), total basal area (m2⋅ha�1), and percent
basal area of both balsam fir and shade-intolerant hardwood. In addition,
quadratic mean DBH (cm) and relative density were derived. Relative
density was expressed as the ratio between observed stand density index
(Reineke, 1933) and the theoretical maximum stand density index
calculated using the method proposed byWoodall et al. (2005). Finally, a
climate-based site index was estimated for each plot based on mean
temperature of the warmest month, temperature difference between the
warmest and coldest month, and the ratio of precipitation during the
growing season to total annual precipitation (Weiskittel et al., 2011b).

In addition to the stand-level summaries described above, several
variables for individual tree competition were calculated or estimated for
each individual tree. Preliminary screening of variables indicated that
basal area per ha of trees with DBHs greater than the subject tree was the
best measure of the local competition.
2.4. A new multistage approach to tree mortality modeling

The newmultistage approach has three stages in model development:
1) the annual probability that a plot will experience mortality (p) is
modeled based on all available plot observations; 2) per ha basal area
mortality (m; m2⋅ha�1⋅yr�1) is modeled using data only from plots with
observed mortality; and 3) annual tree survival probabilities (s) are
predicted for each tree within a plot.

The procedure to apply the multistage approach uses four steps: 1) the
second stage model, though developed using data only from plots with
observed mortality, is applied to predict m in all plots; 2) p from the first
stage model is multiplied by an indicator variable I such that I¼ 0 if p< v
3

or I ¼ 1 otherwise, where v is a threshold constant to be estimated (a
universal v is used in this study, but v may take specific values for
different regions and/or forest types); 3) m is multiplied by p � I; and 4)
trees are ranked by s predicted by the third stage model from low to high
in each plot, and trees with the lowest predicted survival probabilities are
sequentially “killed” until basal area mortality predicted in the first two
stages is achieved. The four steps are iterated to determine the value of v
that minimizes root mean squared error (RMSE) of mortality predictions
across all plots by the multistage approach. While modifying plot mor-
tality predictions by taking into consideration plot mortality probabilities
has been proposed (e.g., Woollons, 1998; �Alvarez Gonz�alez et al., 2004),
the addition of an indicator variable to reduce potential noises in
stand-level mortality probability predictions has not been evaluated
before to our knowledge. Predictions of plot mortality probabilities are
always nonzero whether or not mortality occurs in a given plot. The
threshold value, v, and the resulting indicator value, I, provide for zero
plot-level mortality predictions. Finally, the fourth step is a newmortality
disaggregation technique different from existing ones (e.g., Ritchie and
Hann, 1997; Qin and Cao, 2006; Hevia et al., 2015; Cao, 2021).

Measurement intervals varied across data sources in this study, so
annualization techniques were needed. The recursive annualization
technique proposed by Cao (2000) and Weiskittel et al. (2007) in the
form of Eq. (1) was used for plot mortality predictions in the first two
stages:

xj ¼ xi þ
Xj�1

t¼i

f ðxt ;wÞ (1)

where xj is the value of the variable of interest (e.g., DBH, height, or
observed mortality) at the end (year j) of the measurement cycle; xi is the
corresponding value at the beginning (year i) of the cycle (which is zero
for mortality); and f ðxt ;wÞ is the predictive model, which utilizes x along
with some other variables w as predictors. This technique recently has
shown successes in predicting tree diameter and height increments in the
same region included this study (Kuehne et al., 2022). Tree survival
probabilities were annualized using the compound interest formula
(Monserud, 1976) in the third stage because attributes of dead trees were
not recorded and hence cannot be interpolated for the recursive annu-
alization technique. Since the data were also collected from a number of
jurisdictions using different plot sizes and measurement protocols, plots
were grouped into regions of Maine, New Brunswick, Nova Scotia, and
Quebec. Random effects were tested on selected parameters across the
regions in each stage to account for unspecified regional variations.
Random effects on survival of various tree species were also included in
the third stage.

While logistic regression is the usual choice for tree mortality
modeling, there are debates over whether it is the optimal method
(Weiskittel et al., 2011a). Comparisons provided in Salas-Eljatib and
Weiskittel (2020) suggest that Gompit regression outperforms logistic
regression in many aspects, while Chen et al. (2017a) found that the
asymmetric Gompit model probably is more suitable to account for the
relatively rare event of tree mortality. Consequently, both logistic and
Gompit models using identical linear functions of predictors were
developed and tested in the first and third stages, while the models with
lower RMSE were applied in the multistage approach.

Based on prior model development and assessment, the following
logistic and Gompit models were used to predict annual plot mortality
probability p in the first stage:

p¼ 1
1þ ef ðxÞ

(2)

p¼ 1� e�ef ðxÞ (3)

where f ðxÞ ¼ p0 þ p1baþ p2CSIþ p3qDBHþ p4baBFþ p5baIH; ba is basal
area of a plot (m2⋅ha�1); CSI is climate site index (Weiskittel et al.,
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2011b); qDBH is quadratic mean DBH (cm); baBF and baIH are percent
basal area of balsam fir and shade-intolerant hardwood in a plot,
respectively; and p0 to p5 are parameters. Random effects across the re-
gions were included on p0. Preliminary results showed that the fixed
effect for p0 was not significantly (p > 0.05) different from zero so it was
not included in the final model.

Annual per ha basal area mortality (m, m2⋅ha�1⋅yr�1) was predicted
using data from plots with observed mortality in stage two. Cumulative
basal area mortality

P
m shows sigmoidal patterns over time t, and was

predicted using a three-parameter logistic model with the following
form:

X
m¼ ba0k

ba0 þ ðk � ba0Þe�rt
(4)

where ba0 is initial basal area of a plot (m2⋅ha�1); and k and r are pa-
rameters to be estimated representing the asymptotic and rate constants
of mortality, respectively. Differentiating

P
m with respect to t provides

annual basal area mortality in the following form:

d
P

m
dt

¼ r
�
1�

P
m
k

�X
m (5)

where k ¼ q0 þ q1CSIþ q2baBFþ q3baIH and r ¼ q4 þ q5qDBH; q0 to q5
are parameters. Random effects across regions were tested on q0 and q4.
Preliminary results showed that the fixed effect for q4 was not signifi-
cantly (p > 0.05) different from zero so it was not included in the final
model.

The logistic model (Eq. (2)) and Gompit model (Eq. (3)) were used to
predict annual tree survival probability s in the third stage using indi-
vidual tree predictors gðxÞ ¼ b0 þ b1DBHþ b2DBH2 þ b3BALþ
b4qDBHþ b5CSI, where b0 to b5 are parameters. Random effects across
tree species were included on b0 and b1, while those across regions on b0.
2.5. Comparisons with a conventional tree mortality model

Single-stage and multistage approaches were compared using the
same individual tree mortality models to control potential prediction
biases resulting from applying different regression models and predictors
between the two approaches. The third stage logistic (or Gompit) model
(Eqs. (2) and (3)) from the multistage approach is the stand-alone indi-
vidual tree mortality model in the single-stage approach. The multistage
approach uses models from all three stages described above (Section 2.4).
The comparisons were based on three statistics: 1) accuracy in classifying
live/dead trees, 2) true positive rate (the number of observed dead trees
predicted as dead/the number of observed dead trees; sensitivity), true
negative rate (the number of observed live trees predicted as live/the
number of observed live trees; specificity), receiver operating charac-
teristic (ROC) curves, and areas under curves (AUC) in classifying dead
trees, and 3) RMSE in annual plot basal area mortality predictions. These
comparisons were made across regions and plot sizes using the same
models (i.e., subset model output by region and plot size). Numbers of
dead trees by species and 95% confidence intervals of mean annual
survival probabilities by 0.5-cm DBH classes from observations and
predictions by the two modeling approaches were compared. Statistics
for each stage of the multistage approach were presented along with the
above overall statistics to show potential effects of compounding error.

All analyses were conducted in R v3.6.3 (R Core Team, 2020). R
packages “nlme” (Pinheiro et al., 2022) and “lme4” (Bates et al., 2015)
were used to fit nonlinear mixed effects models.

3. Results

Cumulative tree mortality rates over the course of the study period
varied from 7.5% in Maine to 20.4% in Quebec and averaged at 10.1%
across the four regions. Percentages of plots with observed mortality
4

exhibited a similar pattern with the lowest in Maine at 40.6% and the
highest in Quebec at 82.8%. Observed mean annual basal area mortality
was 0.18 m2 ha�1⋅yr�1 across all regions, ranging from 0.14 in Maine to
0.32 m2 ha�1⋅yr�1 in New Brunswick (Table 2). Balsam fir, red spruce,
red maple, paper birch, and black spruce had the highest observed
mortality of 60,679, 11,183, 11,115, 10,097, and 9160 trees, respec-
tively (Fig. 1), and accounted for 35.9%, 20.8%, 21.9%, 29.9%, and
23.3% of trees within each species, respectively. Trees in the 46.0–46.5
cm DBH class had the highest annual survival probability of 99.3% (i.e.,
an annual mortality probability of 0.7%; Fig. 2).

RMSEs of the logistic (Eq. (2)) and Gompit (Eq. (3)) models were
0.4493 and 0.4497 in the first stage, and 0.2906 and 0.2909 in the third
stage. All parameter estimates for both models were significantly
different from zero (p < 0.05, Tables 3 and 4). The ROC curves of these
models largely overlapped (Figs. 3 and 4). The logistic models (Eq. (2))
were selected in the multistage approach and reported in detail below.
The optimized threshold value v for classifying plots with and without
mortality in the first stage using the logistic model was estimated to be
0.72.

3.1. Stage-specific performance in the multistage approach

All parameter estimates in each stage from the multistage approach
were significantly different from zero (p < 0.05, Tables 3‒5). Summary
statistics of the three stages are presented in Table 6. Accuracies in
classifying plots with and without mortality in the first stage were be-
tween 63.6% and 83.0% across the regions when the classification cut-
point was 0.57 (stage-specific and not optimized for the whole
approach), maximizing the differences between true and false positive
rates. Accuracies were higher in regions where mortality occurred more
frequently (Tables 2 and 6). However, higher accuracies were generally
associated with higher true positive rates (28.4%–99.9% across the re-
gions). Few plots without observed mortality were largely misclassified
as having mortality (Tables 2 and 6).

RMSEs of plot basal area mortality predicted in the second stage were
between 0.29 and 0.48 m2 ha�1⋅yr�1 across the regions (Table 6). Overall
RMSE was 2.2 times of the mean observed mortality (note that the latter
was calculated including plots without observed mortality, while the
former is from a model fitted only using plots with observed mortality),
and there was no clear relationship between the RMSEs and observed
mortalities within each region (Tables 2 and 6). Accuracies in classifying
live/dead trees in the third stage ranged from 79.7% to 92.6% and were
higher in regions with lower observed tree mortality rates. Between
27.9% and 50.9% of dead trees were correctly classified by the third
stage model across regions (Tables 2 and 6).

3.2. Comparisons of performances of single-versus multistage approaches
in mortality prediction

With the multistage approach, individual trees were correctly classi-
fied as live or dead 72.7%–88.4% of the times; however, only 8.5%–

17.8% of dead trees were correctly identified across regions (i.e., high
true negative rates with low true positive rates; Table 2). These results
were lower than those obtained directly from the third stage model
(Table 6). RMSEs in plot basal area mortality predictions were greater by
0.37 to 0.54 m2 ha�1⋅yr�1 than those in the second stage model, which
were already greater than the mean observed values (Tables 2 and 6).
Accuracies of the single-stage approach in classifying live or dead trees
ranged from 77.3% to 92.2%; however, similar to the multistage
approach, only 2.4%–28.7% dead trees were correctly identified across
regions based on a classification cut-point of 0.67 that minimize RMSEs
for plot-level basal area mortality predictions. RMSEs ranged from 0.39
to 0.58 m2 ha�1⋅yr�1 across regions and were similar to those observed in
the multistage approach (Table 2).

The multistage approach overestimated mortality for several most
abundant species (including all spruce species) and underestimated for



Table 2
Summary statistics for observed mortality and comparisons of evaluation statistics for the single-stage and multistage approaches by region, where true positive rate is
defined as the number of observed dead trees predicted as dead/the number of observed dead trees, and true negative rate is defined as the number of observed live trees
predicted as live/the number of observed live trees.

Item Statistics Region

Maine New Brunswick Nova Scotia Quebec Overall

Observed mortality % plot observations 40.8 78.2 67.1 82.8 56.2
% tree observations 7.5 8.0 12.6 20.4 10.1
RMSE (m2⋅ha�1⋅yr�1) 0.14 0.32 0.17 0.28 0.18

Multistage approach Tree-level accuracy (%) 88.4 83.2 82.4 72.7 84.3
Tree-level true positive rate (%) 12.0 17.8 8.5 16.9 12.5
Tree-level true negative rate (%) 94.6 88.9 93.1 87.0 92.4
RMSE (m2⋅ha�1⋅yr�1) 0.48 0.54 0.37 0.45 0.45

Single-stage approach Tree-level accuracy (%) 92.2 91.7 86.0 77.3 89.2
Tree-level true positive rate (%) 17.1 2.4 8.0 28.7 12.8
Tree-level true negative rate (%) 98.4 99.5 97.3 89.8 97.8
RMSE (m2⋅ha�1⋅yr�1) 0.42 0.58 0.39 0.44 0.43

Fig. 1. Numbers of dead trees observed and predicted by the single-stage and
multistage approaches of species that have the highest numbers of
observed mortality.

Fig. 2. Ninety-five percent confidence intervals of mean annual survival prob-
abilities of trees and their associated sample sizes by 0.5-cm DBH classes from
observations and predicted by the two modeling approaches.

Table 3
Parameter estimates, standard errors, and p-values of the logistic and Gompit
models for annual plot mortality probabilities in the first stage of the multistage
approach.

Predictor Logistic model Gompit model

Parameter
Estimate

Standard
error

Parameter
estimate

Standard
error

Fixed effect
p1: Basal area
(m2⋅ha�1)

‒0.054 <0.001 0.036 <0.001

p2: Climate site index ‒0.047 0.004 0.031 0.002
p3: Quadratic mean
DBH (cm)

0.065 0.001 ‒0.044 <0.001

p4: % basal area of
balsam fir

0.230 0.027 ‒0.115 0.018

p5: % basal area of
intolerant
hardwood

‒0.811 0.037 0.474 0.024

Random effect
p0: intercept
Maine 1.441 ‒1.352
New Brunswick ‒0.135 ‒0.331
Nova Scotia ‒0.170 ‒0.225
Quebec ‒0.839 0.151

Table 4
Parameter estimates, standard errors, and p-values of the logistic and Gompit
models for annual tree survival probabilities in the third stage of the multistage
approach. The first number in the parentheses is random effect from the logistic
model, and the second number is from the Gompit model.

Predictor Logistic model Gompit model

Parameter
estimate

Standard
Error

Parameter
estimate

Standard
error

Fixed effect
p0: intercept ‒3.4250 0.0141 1.2171 0.0037
p1: DBH (cm) ‒0.1358 0.0008 0.0417 0.0002
p2: DBH2 (cm2) 0.0035 <0.0001 ‒0.0008 <0.0001
p4: Basal area of trees
larger than the
subject tree
(m2⋅ha�1)

0.0400 0.0002 ‒0.0092 <0.0001

p5: Quadratic mean
DBH (cm)

‒0.0530 0.0005 0.0118 0.0001

p6: Climate site index 0.0319 0.0008 ‒0.0071 0.0002
Random effect
p0: intercept
Maine ‒0.2134 0.0080
New Brunswick ‒0.6260 0.1018
Nova Scotia 0.0845 ‒0.0550
Quebec 0.5464 ‒0.1702

p0: intercept
See Supplemental materials Table S1

p1: DBH (cm)
See Supplemental materials Table S1
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the others, while the single-stage approach underestimated mortality for
all species (Fig. 1). For most species, both overestimates and un-
derestimates from the multistage approach generally occurred at smaller
scales than those from the single-stage approach, except for grey birch
(Betula populifolia Marshall; Fig. 1). The total number of dead trees
observed in the data was 138,206, and the predicted numbers were
132,820 using the multistage approach and 44,638 using the single-stage
approach. Annual tree survival probabilities were generally under-
estimated with the multistage approach and overestimated with the
5



Table 5
Parameter estimates, standard errors, and p-values of the second stage annual
plot basal area mortality (m2⋅ha�1⋅yr�1) model.

Predictor Parameter estimate Standard error

Fixed effect
p0: intercept 84.2843 12.9514
p1: Climate site index ‒1.1754 0.2436
p2: % basal area of balsam fir 83.4725 6.8540
p3: % basal area of intolerant hardwood 13.3258 3.2133
p5: Quadratic mean DBH (cm) 0.0005 <0.0001
Random effect
p0: intercept
Maine 44.8462
New Brunswick ‒8.2982
Nova Scotia ‒17.6687
Quebec ‒11.9457

p4: intercept
Maine 0.0009
New Brunswick 0.0012
Nova Scotia ‒0.0018
Quebec 0.0028
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single-stage approach. Predictions from the multistage approach gener-
ally were not significantly different from observations across the DBH
classes (Fig. 2). RMSEs in plot basal area mortality predictions decreased
with increasing plot size in both approaches, whereas inverse patterns
were found in true positive rates of tree mortality (Table 7).

Quebec was predicted to have the highest plot mortality probabilities
and annual basal area mortalities as well as the lowest tree survival
probabilities compared to the other regions, consistent with the
Fig. 3. Receiver operating characteristic (ROC) curves and areas under curves (AU
Gompit (Eq. (3)) models by region.
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observations (Tables 3–5). Tree survival probabilities varied by species as
estimated by random effects (Table S1). Among the most abundant
species, red maple and eastern hemlock had the highest predicted sur-
vival probabilities, while balsam fir and grey birch had the lowest pre-
dicted survival probabilities (Table 8).

4. Discussion

The single-stage and multistage approaches had similar RMSEs and
true positive rates in mortality predictions. The overall differences were
0.02 m2 ha�1⋅yr�1 in basal area mortality and 0.3% in tree mortality,
respectively (Table 2). However, the patterns in both predicted tree
survival probabilities and distributions of mortality across species were
distinct between the two approaches (Figs. 1 and 2). The accuracy of
individual tree mortality predictions was 4.9% higher in the single-stage
approach than in the multistage approach (Table 2). Given the similar
low true positive rates, a higher accuracy indicates that more trees,
including more dead trees, were classified as live in the single-stage
approach. The underlying causes were tree mortality being relatively
rare and thresholds for DBH measurements were relatively large in the
data. The model optimization process lowered mortality predictions to
reduce errors from the majority of zero-mortality observations. This
resulted in consistent underestimation of tree mortality across species as
shown in Fig. 1 and general overestimation of individual tree survival
probabilities across the range of DBH classes (Fig. 2).

Consequently, the model behavior in the multistage approach better
depicted observedmortality and showed a notable improvement over the
single-stage approach despite slightly inferior fit statistics. For example,
C) of predicted annual plot mortality probabilities using logistic (Eq. (2)) and



Fig. 4. Receiver operating characteristic (ROC) curves and areas under curves (AUC) of predicted annual individual-tree survival probabilities using logistic (Eq. (2))
and Gompit (Eq. (3)) models by region.

Table 6
Evaluation statistics of each stage in the multistage approach developed in this study by region.

Region Stage 1 Stage 2 Stage 3

Accuracy (%) True positive rate (%) True negative rate (%) RMSE (m2⋅ha�1⋅yr�1) Accuracy (%) True positive rate (%) True negative rate (%)

Overall 69.1 69.4 31.2 0.40 88.9 45.2 93.9
Maine 63.6 28.4 12.2 0.46 92.6 50.9 96.0
New Brunswick 78.0 99.4 98.8 0.48 88.5 27.9 93.8
Nova Scotia 71.9 88.3 61.6 0.29 86.6 46.9 92.3
Quebec 83.0 99.9 98.6 0.34 79.7 50.4 87.3
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the difference between the numbers of observed and predicted dead trees
from the multistage approach was 5,386, compared to 93,568 from the
single-stage approach. In addition, tree survival probabilities predicted
by the multistage approach generally were not significantly different
from observations across the range of DBH (Fig. 2). Nevertheless, the
multistage approach slightly overestimated mortality as a result of the
sequential “killing” of trees with lower predicted survival probabilities.

The multistage approach developed in this study was an improvement
over the Forest Vegetation Simulator (FVS) approach (Johnson and
Dixon, 1986; Dixon, 2002), which predicted stand mortality in one stage
before distributing it among trees. Tree mortality does not occur
frequently and may not be observed for years in any given plot (Eid and
Tuhus, 2001). While mortality is an intrinsic part of forest development,
nil observations of mortality from small sample plots and/or short du-
rations of observations are sampling errors that will be passed on to
mortality predictions (Curtis and Marshall, 2005). Consequently, basal
area mortality will be underestimated if all plots, including those without
7

mortality observations, are used in model development. Likewise, using
only plots where mortality occurred would overestimate mortality since
plot mortality probabilities are �1 but inflated to one when zero mor-
tality plots are censured. The multistage approach takes plot mortality
probabilities (predicted by the first stage model) into consideration and
uses them to adjust plot basal area mortality predictions from the second
stage. This strategy is similar to that of Woollons (1998) and �Alvarez
Gonz�alez et al. (2004).

The multistage approach used here advances one step further from
the above strategy of using plot mortality probabilities to adjust plot
basal area mortality. A limitation of stand-level mortality models is that
there is always some level of mortality predicted, even if no mortality
occurred (Weiskittel et al., 2011a). This also is the case for the second
stage plot mortality model in the multistage approach used here. Solely
multiplying mortality predictions by predicted plot mortality probabili-
ties cannot overcome this limitation because predicted probabilities also
are nonzero. The introduction of an indicator variable and an optimized



Table 7
Statistics of observed mortality and comparisons of statistics of the two modeling
approaches by plot size, where true positive rate is defined as the number of
observed dead trees predicted as dead/the number of observed dead trees, and
true negative rate is defined as the number of observed live trees predicted as
live/the number of observed live trees.

Item Statistics Plot size (m2)

128 400 810 Overall

Observed
mortality

% plot observations 42.3 71.4 32.7 56.2
% tree observations 8.8 11.8 6.8 10.1
RMSE (m2⋅ha�1⋅yr�1) 0.16 0.21 0.04 0.18

Multistage
approach

Tree-level accuracy (%) 82.6 81.5 92.0 84.3
Tree-level true positive
rate (%)

21.8 12.7 4.0 12.5

Tree-level true negative
rate (%)

98.3 90.8 88.5 92.4

RMSE (m2⋅ha�1⋅yr�1) 0.51 0.42 0.23 0.45
Single-stage
approach

Tree-level accuracy (%) 90.7 87.1 93.2 89.2
Tree-level true positive
rate (%)

7.0 11.0 25.2 12.8

Tree-level true negative
rate (%)

98.1 97.3 98.8 97.8

RMSE (m2⋅ha�1⋅yr�1) 0.45 0.44 0.14 0.43
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threshold in the first stage of the multistage approach extends the range
of predicted probabilities to zero. Consequently, plot mortality pre-
dictions of zero can be achieved, and this reduces the number of false
positive plot mortality predictions.

The most notable difference between the multistage approach and the
approach of Fridman and Ståhl (2001) as well as other various mortality
disaggregation techniques (e.g., Ritchie and Hann, 1997; Qin and Cao,
2006; Hevia et al., 2015; Cao, 2021) is in how predicted plot mortality is
distributed among trees in a plot. Fridman and Ståhl (2001) distribute
plot mortality across trees proportional to their predicted mortality
probabilities similar to the strategy used in FVS (Dixon, 2002). Many
mortality disaggregation techniques rely on this strategy and various
equations were developed to build quantitative relationships between
predicted mortality probabilities of individual trees and total plot mor-
tality. In these applications, a portion of a tree is “killed” by modifying
the tree's expansion factor (i.e., the ratio in a ratio estimator in sampling;
Thompson, 2012). As a result, stand composition remains somewhat
stable, and successional changes are not effectively articulated.

An obvious limitation of the disaggregation technique is that errors in
the nonzero tree mortality probability predictions are generally ignored.
In reality, a large portion of the nonzero predictions actually are zero
since tree mortality is not frequent. In the multistage approach, trees are
ranked by their predicted survival probabilities, and those with the
lowest survival probabilities are sequentially “killed” until predicted plot
mortality in the first two stages is achieved. Consequently, the multistage
approach is more tolerant of errors in mortality probability predictions
because only trees with the highest mortality probabilities are “killed”
Table 8
Predicted percent annual survival probabilities of the most abundant species by DBH

Species Maine New Brunswick

Annual survival prob. at DBH (cm) of Annual survival prob. at DBH (c

10 20 30 40 10 20 30 40

Balsam fir 98.7 98.0 93.9 70.5 99.0 98.5 95.4 76.
Red spruce 99.5 99.7 99.6 99.0 99.6 99.8 99.7 99.
Red maple 99.5 99.9 100.0 100.0 99.6 99.9 100.0 100
Paper birch 99.1 99.5 99.4 98.5 99.3 99.6 99.5 98.
Black spruce 99.3 99.0 97.2 85.8 99.5 99.3 97.9 89.
Quaking aspen 98.3 99.0 98.8 97.3 98.7 99.2 99.1 98.
White spruce 99.1 99.3 99.0 96.9 99.3 99.5 99.2 97.
American beech 99.1 99.3 99.0 96.8 99.3 99.5 99.2 97.
Grey birch 97.5 96.3 89.7 58.7 98.1 97.2 92.1 65.
Eastern hemlock 99.8 100.0 100.0 100.0 99.8 100.0 100.0 100
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regardless of specific predicted values and their associated errors. This is
the case provided these errors are commensurate with predicted values
and do not change tree ranks in survival. Overall, our multistage
approach may better represent the binary nature of tree mortality and be
in agreement with the stochastic occurrences of mortality across species
(Fig. 1).

Predicted tree survival probabilities from the third stage were a peak
function of DBH, in agreement with general ecological expectations
(Monserud and Sterba, 1999; Coomes and Allen, 2007; Weiskittel et al.,
2011a). Climate site index was positively related to mortality probabil-
ities at both stand- and tree-levels, while increased basal area of trees
larger than the subject tree (BAL) lowers tree survival probabilities. In
addition, tree survival probabilities increased with quadratic mean DBH
likely because most DBH observations were <50 cm in the data (Ta-
bles 3‒5). Regional variations in mortality were related to differences in
forest management as well as large-scale disturbance events like past
spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks (e.g., Chen
et al., 2017a, b). For hardwood species, variation may also be related to
species-specific differences in stem form and risk (e.g., Castle et al., 2017)
and susceptibility to internal decay (Frank et al., 2018). Finally, caution
is needed in comparing non-annual statistics across regions because they
are affected by various measurement intervals and plot sizes across data
sources.

Some important limitations persistent in single-stage tree mortality
modeling are also found in the multistage approach. First, there is no easy
way to determine the exact year of tree mortality in plots of multiyear
measurement intervals (Salas-Eljatib and Weiskittel, 2020). Tree mor-
tality generally is assumed to have occurred at the end of a multiyear
measurement period, which is not always true. Annual tree mortality
probability will likely be underestimated in these plots with the appli-
cation of annualization techniques. Greater underestimation comes with
longer measurement intervals since observed mortalities are more deeply
discounted. The longest measurement interval was 15 years in the data
used in this study. Second, the data do not cover life spans of most trees
despite a measurement history up to 40 years (most tree life spans range
from 60 to 500 years in the region; Burns and Honkala, 1990). The
observed mortality is certainly right-censored. There were only 1066
trees having>50 cm initial DBHwith 495,286 trees in the data and hence
large trees were scarce in the region. It is unlikely that including addi-
tional data would increase the numbers of large trees, and hence improve
accuracies of large tree mortality predictions. Records of champion trees
(American Forests, 2020) were initially considered to constrain survivals
of large trees in this study given their successful use in other studies (e.g.
Bragg, 2008). This strategy made practically no difference in survival
predictions because only 15 trees reached the DBH of champion trees,
and height measurements were not available in many tree records. Be-
sides, champion trees likely grow in the open, and are not comparable to
trees in forest stands.

Finally, much effort has been put into identifying core drivers and
influential predictors of tree mortality (Poorter et al., 2008; Weiskittel
and region using the multistage approach developed in this study.

Nova Scotia Quebec

m) of Annual survival prob. at DBH (cm) of Annual survival prob. at DBH (cm) of

10 20 30 40 10 20 30 40

2 98.7 98.0 93.8 70.2 97.9 96.8 90.4 59.3
3 99.4 99.7 99.6 99.0 99.1 99.5 99.3 98.4
.0 99.5 99.9 100.0 100.0 99.2 99.9 100.0 100.0
8 99.1 99.5 99.4 98.4 98.6 99.1 99.0 97.5
0 99.3 99.0 97.2 85.7 98.9 98.4 95.5 78.7
0 98.3 99.0 98.8 97.3 97.2 98.4 98.1 95.6
7 99.1 99.3 99.0 96.9 98.6 98.9 98.3 95.0
6 99.1 99.3 98.9 96.8 98.6 98.9 98.3 94.8
6 97.5 96.3 89.6 58.4 96.0 94.1 84.1 46.4
.0 99.8 100.0 100.0 100.0 99.6 100.0 100.0 100.0
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et al., 2011a), but successes seem to be largely dependent on specific
aspects of each study and availability of specific data. For example, costs
associated with measuring tree heights and spatial locations have limited
their applications in tree mortality modeling. Height and crown ratio
were measured for a subset of the trees, while spatial locations were not
available at all in the data. None of these factors were applied in the
models developed in this study. Such limitations in the data may affect
model performances, but comparisons between the single-stage and
multistage approaches are still valid since identical tree mortality models
were used in both approaches. In addition, prior analyses found no
substantial differences in predicting individual tree mortality using
contrasting distance-independent and -dependent competition metrics
(Kuehne et al., 2019). This suggests the continual need to better develop
and identify measures that simultaneously reflect both tree vigor and
competitive status.

This study evaluated the performance of a new multistage approach
on tree mortality predictions and demonstrated some improvements
compared to a conventional tree mortality model. The evaluation was
believed to have a significant level of general validity based on the
sample size and spatio-temporal scale of the data. Modifying tree mor-
tality predictions with constraints such as multistage equations has
opened up the utilization of information of various sources and scales. It
is a strategy that requires further refinement, and there are other tech-
niques in this direction that are worth exploring. One is the use of piece-
wise functions to predict mortality of trees in various ranges of DBH. It is
similar to the practice of predicting DBH increments separately for large
and small trees (Crookston and Dixon, 2005), and some studies have
found that such discontinuous methods provided better long-term pro-
jections (Weiskittel et al., 2016). Another technique is relating tree
mortality to growth (Hartmann et al., 2007), which, however, has been
considered challenging (Wunder et al., 2008) because of data availability
and robustness of implementation. Regardless, due to its importance,
continued exploration of alternative approaches for modeling tree mor-
tality across contrasting species and broad regions is critical.
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