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Abstract

To describe process knowledge at the watershed scale, hydrologists commonly refer
to a ‘perceptual model’, an expert summary of the watershed and its runoff pro-
cesses often supported by field observations. Perceptual models are often presented
as a schematic figure, although such a figure will necessarily simplify the hydrologist's
complex mental model. In this paper, our aim was to understand what constitutes a
visual expert summary of watershed process knowledge, and to evaluate how per-
ceptual models could be used to share hydrological process information at larger
scales. To do so, we conducted a systematic review of the literature and found
63 perceptual model figures. We counted and categorized the stores and fluxes in
each figure using a taxonomic classification and quantified a variety of figure attri-
butes including spatial or temporal zonation, inclusion of vegetation, soils, topograph-
ical and geological data and consideration of uncertainty. Our analysis showed that a
typical figure has 1 surface flux, 4 subsurface fluxes, 3-4 subsurface stores and 0-1
channel stores; 28 out of 63 figures use sub-figures to show temporal dynamics
(e.g., wet/dry conditions), and 12 out of 63 show spatial zones. Perceptual model fig-
ures, therefore, provide a concise summary of watershed processes with a complex-
ity comparable to that of many conceptual hydrological models. However, only four
figures showed any information on uncertainty or knowledge gaps. We recommend
that perceptual figure value could be easily increased by consistent captioning of fig-
ures to assist automated search, and wider use of standard figure annotations such
as legends and scale markings to ensure that information is fully conveyed to the
user. If perceptual figures are proposed as a primary method for sharing process
information, the hydrological community should consider how to link more detailed

text descriptions to figures, and how to represent process uncertainty.
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1 | INTRODUCTION

Hydrologic processes describe the flow paths and mechanisms that
move water from the canopy and land surface to its release as stream-
flow, deep groundwater flow or evapotranspiration. Process knowl-
edge is widely needed in hydrology, including for modelling, for
watershed management, and to develop fundamental theories about
watershed response. Process knowledge is typically described at the
hillslope or watershed scale, by field hydrologists and local experts.
One method that experts use to communicate their knowledge is a
‘perceptual model’, an expert summary of the watershed and its most
important hydrological processes that is commonly presented as a fig-
ure (Beven & Chappell, 2021). However, a challenge for knowledge-
sharing methods is that hydrologists are increasingly developing
models and analysing water use at national or global scales, requiring
process knowledge on similarly large scales. The question we address
here is therefore, how can we learn from watershed-scale perceptual
models to understand what constitutes a typical summary of water-
shed process knowledge? Answering this question is a first step
towards developing datasets of process knowledge across large sam-
ples of watersheds.

Process knowledge for large samples of watersheds is needed for
multiple reasons. Large-scale streamflow prediction and earth system
models now offer flexible model structures (Clark et al., 2015), and
process knowledge is needed to choose between structures, simulate
spatially variable processes, and improve model performance and
model realism (Markstrom et al., 2016; Prieto et al., 2021, 2022;
Wagener, 2003). Models that provide ‘the right answers for the right
reasons’ are vital for trustworthy predictions under novel climate or
land use conditions (Kirchner, 2006). In watershed management, pro-
cess knowledge is needed to design successful restoration programs
that mimic the natural water transport, storage and release processes
that control flow regime and sediment and nutrient supply to the
stream (EPA, 2012; Roni et al., 2002). Overall, large-sample process
knowledge is essential to understanding how emergent hydrologic
behaviour derives from patterns of climate and landscape (Fan
et al., 2019; Sivapalan, 2006), and understanding knowledge gaps can
guide future monitoring and data collection needs (Wagener, Dadson,
et al., 2021).

Despite its usefulness, process knowledge is not simple to define.
Processes include all functions of a watershed, which can be grouped
into partitioning (e.g., infiltration), storage (e.g., groundwater storage)
and release of water (e.g., evapotranspiration) (Black, 1997; Wagener
et al., 2007). The scope of all possible processes of interest is very
large, and the processes of interest will depend on the purpose of the
perceptual model. Many processes cannot be measured directly, and
must be inferred from measurements of stores or fluxes. For example,
at Panola watershed, Georgia, groundwater level and piezometric data
were used first to infer subsurface flow direction, then to infer varia-
tion in water and nutrient fluxes, and lastly to analyse hydrologic con-
nectivity between hillslopes and channel (Bracken et al, 2013;
Hopp & McDonnell, 2009). This example shows the key role of
experts in translating raw field measurements into derived knowledge

of a watershed's dominant flow pathways. Derived process knowl-
edge is also known as ‘soft data’ and it provides a valuable way to
draw conclusions about system behaviour and choose appropriate
model complexity based on expert interpretation (Fenicia et al., 2008;
Seibert & McDonnell, 2002).

Derived process knowledge can be communicated using a per-
ceptual model, a ‘qualitative (and personal) summary of our knowl-
edge about a system and its complexities, which evolves over time’
(Beven, 2001; Westerberg et al., 2017). These models are often pre-
sented in journal articles as a schematic figure showing watershed
stores and runoff pathways, although such a figure will necessarily
simplify the hydrologist's complex mental model. Perceptual models
have great potential to accumulate and share hydrologic knowledge
(Wagener, Gleeson et al., 2021), identify knowledge gaps (Wagener,
Dadson, et al., 2021), and condition or evaluate predictive models
(Beven & Chappell, 2021). For example, Hartmann et al. (2015) used
perceptual model figures to organize knowledge of carbonate rock
regions and improve recharge predictions, while Viglione et al. (2018)
used perceptual model figures to promote knowledge sharing
between geologists and hydrologists. Further, perceptual model fig-
ures can be used to illustrate how process understanding has evolved
over time (McGlynn et al., 2002).

Recent advances in large-scale modelling, big data science and
open science provide the opportunity and the motivation to extend
perceptual model concepts to larger samples of watersheds. Learning
for large samples offers new opportunities to use comparisons
between watersheds to understand which physical features drive the
differences in runoff generation processes (Lohse & Dietrich, 2005;
Soulsby et al., 2006; Zimmer & Gannon, 2018). Development so far
has focused on the need to create systematic procedures for develop-
ing perceptual models. Tetzlaff et al. (2008) discuss the need for ‘sim-
ple rules and/or clear procedures to determine the dominant
processes’, while Wrede et al. (2015) suggest a four-stage process
where perceptual models are developed through the sequential use of
physiographic analysis, soil and drilling surveys, streamflow and tracer
responses, and computer models. Dominant Runoff Process (DRP)
mapping produces an alternative style of perceptual model consisting
of a watershed map with each area labelled according to its DRP.
Antonetti et al. (2016) show that automatic DRP methods based on
GIS analysis can come close to reproducing manually derived maps. A
recent study advances the concept of a distributed perceptual model,
demonstrated across a 27 000km? catchment (Fenicia &
McDonnell, 2022). The model was created using five streamflow sig-
natures as indicators of runoff processes in the upstream catchment,
together with expert analysis of the influence of climate and land-
scape attributes that cause variability in each signature. These exam-
ples demonstrate the continued relevance of understanding what
constitutes a good summary of watershed process knowledge and
how this can be captured in a perceptual model.

The aim of this paper is therefore to leverage the extensive
expert knowledge contained in perceptual models published in the
hydrologic literature, and to analyse how experts describe watersheds

they know well. We survey papers describing well-studied watersheds
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where authors provide a perceptual model figure, that is, a figure pro-
viding an integrated description of watershed processes. For each fig-
ure, we evaluate which stores and fluxes are included, and whether
the figure describes spatial or temporal heterogeneity (e.g., processes
under wet and dry conditions, or in different spatial zones), flux mag-
nitudes, uncertainties, and more. Our analysis will provide insight into
which processes and temporal/spatial variations are viewed by water-
shed experts as most critical in defining watershed function. Our
results will contribute to guidance on how perceptual models could be

used to share process knowledge over large numbers of watersheds.

2 | METHODS

Our method had three parts. First, we collected source papers that
included perceptual model figures. Second, we extracted set informa-
tion from each perceptual model figure, such as how many and which
stores and fluxes were included. Third, we analysed the extracted data
for patterns in how experts formulate perceptual model figures.

2.1 | Collection of perceptual model figures

Our aim is to conduct a systematic review of perceptual model figures
in the hydrologic literature, focused on runoff generation processes.
As Wagener, Gleeson, et al. (2021) argue, a clearly communicated
strategy for the choice of reviewed papers strengthens the grounding
and contribution of hydrological studies. Best practices for systematic
reviews are summarized by the PRISMA method, which includes a
checklist for considerations such as eligibility criteria, sources and
screening and elimination strategies (Moher et al., 2009). In our case,
it is not easy to identify criteria for a citation database search that
would return all papers that include a perceptual model of runoff gen-
eration processes. We therefore used a combined method of a sys-
tematic search, augmented by specific lists of papers relating to
experimental watersheds.

Our database search used the following search criteria on Google
Scholar: ‘Runoff generation’ and (‘perceptual model’ or ‘conceptual
model’ or ‘conceptual diagram’). We used the first 500 results from
this search, ordered by relevance. The following pre-compiled lists
were added to the results: reference list for taxonomy of hydrological
processes (McMillan, 2022), reference list of process descriptions in
critical zone observatories (McMillan et al., 2022), reference lists from
experimental watersheds in the Experimental hydrology wiki (https://
experimental-hydrology.net), and papers contained in the Hydrologi-
cal Processes special issue on ‘Research and Observatory Catch-
ments: the Legacy and the Future’.

After removing duplicates, the results returned from the search
were first screened using eligibility criteria as follows. The article
should be a peer-reviewed journal article (not a conference abstract,
book, or thesis), written in English. The article should be about a spe-
cific watershed and not a general class of watersheds. For articles

meeting those criteria, we searched the article for a perceptual model

figure. The figures were further screened for eligibility as follows. The
figure should represent runoff generation throughout the watershed
and not just in some sub-system. The figure should have stores and/or
fluxes labelled in the figure or in the caption. The figure should relate
to understanding of the physical system and not its representation in
a computer model.

These eligibility criteria reflect our interpretation of what is meant
by a perceptual model figure. Alternative interpretations might return
a different set of figures, for example, those that focus on the sources
of water used by vegetation and released as evapotranspiration
(e.g., Brooks et al., 2010). We selected figures that represented runoff
generation mechanisms, and while many of the figures we found also
referred to residence and transit times of water, we did not insist that
this was included. The terminology ‘perceptual model’ has been used
to refer to generalized concepts of how water moves through a
watershed (e.g., the fill and spill concept, McDonnell et al., 2021), but
we restricted our review to perceptual models related to a specific
watershed. Finally, we found large variations in the extent of the field-
work used to create perceptual model figures, from those developed
over many years and papers (e.g., Hewlett & Hibbert, 1967; Sidle
et al., 2000), to those based on a single study. We included both
extremes within our definition of a perceptual model figure, but some
early-stage figures might be considered more akin to hypotheses,
while late-stage figures have been confirmed by multiple
investigators.

2.2 | Extraction and coding of data from
perceptual model figures

We manually collected the following data for each instance of an eligi-
ble perceptual model figure.

In some cases, expert judgement was needed to determine which
stores/fluxes to include and how to classify them. The following rules
were applied to ensure consistency. Precipitation was not included in
the flux list as this is assumed to occur in all watersheds, and although
it might form part of a hydrologist's perceptual model it was only
occasionally labelled. Stores that were labelled but not shown as inter-
acting with water movement (e.g., impermeable bedrock) were not
recorded. Water table was recorded as a store in addition to ground-
water as these were both commonly marked on figures, although the
water table is not always simple to define or measure (Baird &
Low, 2022). Fluxes or stores not matching those in the process taxon-
omy were recorded as new items. Where multiple items in the figure
mapped to the same taxonomy item, these were recorded as dupli-
cates (e.g., Soil Water Storage 1, Soil Water Storage 2). Fluxes or
stores marked with an arrow or water level but not labelled in the dia-
gram were recorded if they were described in the caption or if the
meaning was clear from the diagram. Fluxes marked with a generic
term in the figure but described with more specificity in the caption
or surrounding text (e.g., ‘surface runoff’ in figure described as ‘satu-
ration excess runoff in text) were recorded with the more

specific term.
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2.3 | Collection of perceptual model figures

The analysis of information in the perceptual models was structured
around a series of overarching questions, designed to provide an over-
view of what constitutes a typical summary of watershed process
knowledge.

2.3.1 | How detailed or complex a description of
runoff generation processes is typical?

To provide an overview of the amount of information in perceptual
model figures, we counted the number of stores and fluxes marked
on each figure. To determine which parts of the hydrological cycle
were most commonly included in perceptual figures, we used the list
of equivalent names from the hydrological process taxonomy. The
taxonomy separates process names into three Domains (Surface,
Subsurface and Channel), and within those provides three further
levels of hierarchy as Class, Process, and Sub-process. Items at the
same level are intended to have a comparable complexity, with ‘Pro-
cess’ being at the typical level of a pathway included in a runoff gen-
eration model (McMillan, 2022). Using the taxonomy classification,
we quantified the number of stores and fluxes in each Domain,
Class, Process and Sub-process and at each level of the hierarchy.
By plotting the numbers of processes throughout the taxonomy, we
could visualize the parts of the hydrological cycle that were more or
less well represented, and the hierarchical levels commonly

provided.

2.3.2 | How can watershed heterogeneity be
described in a perceptual diagram?

It is well known that topography, vegetation, soils and other features
are heterogeneous below the watershed scale. Even when processes
are considered to be emergent at larger scales, they often exhibit vari-
ability in space and time. For example, processes may vary during an
event as different flow paths are activated, or seasonally as tempera-
ture and precipitation patterns shift. We were therefore interested in
how heterogeneity was represented in perceptual model figures. We
tallied the numbers of figures that used sub-panels for spatial or tem-
poral zones, and described the most common categories. We further
analysed whether figures showed variability in magnitudes between
flow pathways, and if so what qualitative or quantitative method was

used to show the differences.

2.3.3 | Are there different approaches to creating a
perceptual model diagram?

The use of perceptual models and their accompanying figures is some-
thing that has developed organically in the hydrological community.

We were therefore interested in whether different approaches to

developing the figures had been developed for different applications
or by different authors. Based on the ‘Figure Information’ data
described in Section 2.2, and other notable features of the figures, we

described possible classification types for the figures.

3 | RESULTS

3.1 | Collection of perceptual data sources

Our systematic search returned 1404 potential papers, of which
500 came from the keyword search, 103 from the Hydrological Pro-
cesses special issue on ‘Research and Observatory Catchments: the
Legacy and the Future’, 669 from the reference lists in the Experi-
mental hydrology wiki, 24 from critical zone observatory references
and 108 from hydrological taxonomy references. From those papers,
we found 63 perceptual model figures that met the criteria as
described in Section 2.1 (3% of papers). The low percentage reflects
the wide scope of articles returned by our search, and the difficulty in
finding search terms that pinpoint papers that summarize runoff gen-
eration processes. Examples of perceptual model figures that met our
criteria are shown in Figure 1. The reference list in BibTex file format

is available in Data S1.

3.2 | Extraction and coding of data from
perceptual model figures

For each of the 63 perceptual model figures, we collected information
as described in Table 1. This included transcribing lists of the stores and
fluxes shown in the figure, and matching each of these to their equiva-
lent term in the hydrological process taxonomy (McMillan, 2022).

3.3 | Analysis of perceptual model information
3.3.1 | How detailed or complex a description of
runoff generation processes is necessary?

On average, perceptual model figures contained 4-5 stores (mode = 4,
mean = 4.2), of which a mean of 3.3 related to the subsurface, 0.3 to
the surface and 0.6 to the channel. They contained 4-5 fluxes
(mode = 4, mean = 4.6), of which a mean of 3.6 related to the subsur-
face, 0.8 to the surface and 0.2 to the channel. We interpret these
numbers as related to the extent of expert knowledge on runoff gen-
eration available for watersheds, and the quantity of information
needed for experts to provide a runoff generation summary to other
hydrologists. An understanding of the complexity of the average
expert-drawn perceptual model figure will provide an initial guide as
to the complexity we might aim for when collecting or developing per-
ceptual models for large samples of watersheds.

To analyse which parts of the hydrological cycle are most com-

monly included in perceptual figures, in Figure 2 we overlaid our
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Examples of perceptual model figures included in our review. (a) Two watersheds in the Susquehanna Shale Hills critical zone

observatory. Source: Reproduced from Li et al. (2018). (b) Pedler Creek in South Australia. Source: Reproduced from Gutierrez-Jurado et al.
(2021). (c) Four Austrian catchments: (c1) Dornbirnerach; (c2) Gail; (c3) Wimitzbach; and (c4) Perschling. Source: Reproduced from Viglione et al.
(2018). (d) The Upper Volga basin. Source: Reproduced from Helms et al. (2006).

results on a diagram of the taxonomy of hydrological processes
(McMillan, 2022; their Figure 1). The area of each circle represents
the total number of times each store or flux was found. The type of
process is indicated by the sector of the diagram, and the level of
detail in which stores or fluxes are described (process class, process,
or sub-process) is indicated by the inner to outer rings. The results
show that Subsurface Processes in yellow dominate the perceptual
model figures (428 instances), followed by Surface Processes in green
(82) and Channel Processes in blue (50). The most common classes in
Subsurface Processes were Groundwater (209), Soils (130) and Sub-
surface Stormflow (72). The most common classes in Surface

Processes were Overland Flow (36), Infiltration (16) and Evapotranspi-
ration (11). The most common class in Channel Processes was Chan-
nel Storage (36). For level of detail, diagrams most commonly
contained Processes (301), followed by Sub-Processes (177) and Clas-
ses (87).

Some parts of the hydrological cycle were poorly represented in
our survey. This is partly due to our selection of perceptual model fig-
ures that represent runoff generation processes and not, for example,
figures that focus on evapotranspiration or floodplain processes.
There were many surface processes recorded in the taxonomy that

were never found in perceptual model diagrams, particularly in the
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TABLE 1 Information collected from each perceptual model classes of snow, glacier, frozen ground, and evapotranspiration. Chan-
figure. nel processes apart from channel storage were rarely found. These
Article information  Citation, watershed name, watershed location are in contrast to the subsurface processes where almost all processes
(Lat/Lon) in the taxonomy were found in at least one perceptual model figure.

Figure information  Figure number, number and description of These results point to a greater emphasis on water transport and stor-

figure sub-panels for spatial or temporal
zones (e.g., wet/dry conditions), inclusion of
flux magnitudes (e.g., by arrow width),

age processes, and a lesser emphasis on the surface partitioning and

channel processes that control the quantity of water entering and

inclusion of vegetation/soil/geology names, leaving the watershed. This contrast was further emphasized by the

inclusion of topographic or 3D information, fact that few figures showed details or labels for surface features and

inclusion of uncertainty information. vegetation. Only three articles used labels or legend entries to

Store and flux Numbers of stores/fluxes, names of stores/ describe vegetation (differentiating vegetation category, species or

upatcn S E figur.e, SN B8 5 TR LT BT dormant and active vegetation), and a further 15 had unlabelled icons
from hydrologic process taxonomy

(McMillan, 2022) (of grasses, conifers) that might be intended to confer vegetation

information.
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FIGURE 2 Number of instances of each store and flux found in the review of perceptual model figures, overlain on the taxonomy of
hydrological processes reproduced from McMillan et al. (2022). Areas of black-edged circles are proportional to the number of instances of each
process. Smallest dots without edging indicate processes in the taxonomy that were not found in any perceptual figure. Colours indicate surface
processes (green), subsurface processes (yellow) and channel processes (blue).
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3.3.2 | How is watershed heterogeneity described runoff generation processes. This matches Beven's (2001) description
in perceptual model diagrams? of a perceptual model of runoff generation as a summary of ‘how the
catchment responds to rainfall under different conditions’.

Most perceptual models had only one figure panel, that is, they did We analysed the perceptual model figures for whether they
not use multi-part figures to show spatial or temporal heterogeneity showed variability of magnitude between fluxes, or showed one flux
across the watershed (Figure 3). This might reflect insufficient infor- as dominant. Most figures (51) gave no indication, while nine figures
mation to summarize processes under multiple conditions, or that used varying size or width of arrows to show magnitude. These differ-
authors felt that readers would intuitively understand that some pro- ences are assumed to be qualitative, that is, the width is not directly
cesses such as surface flow or interflow would only occur during proportional to flux magnitude, as arrow size was not typically
events. Where multi-part figures were used, temporal zoning was described in the legend or caption. For two diagrams the arrows were
more common than spatial zoning. Most figures have only one spatial somewhat different in size but it was unclear if this had significance.

zone (51 figures), with seven figures having two zones and five figures

having more than two zones. Example spatial zonings included hill-

slope steepness, aspect and thickness of weathered bedrock. Thirty- 3.3.3 | Are there different approaches to creating a
five figures have one temporal zone, with 11 figures having two zones perceptual model ﬁgu re?

and 17 figures having more than two zones. Most temporal zonings

related to wetness conditions, seasonality, or event stage. The figure We reviewed the collection of perceptual model figures to elicit

with the largest number of temporal zones (5; Wang et al., 2020) used themes or variations in the style of figures. We found several choices

multiple thresholds relating to the infiltration and storage capacities of in the way that figures are presented, these are depicted in Figure 4.

soil and epikarst subsurface layers. Therefore, we found that catch- Despite these differences, we found that most figures conformed

ment wetness was the most important heterogeneity when describing to the expected format of showing a watershed cross-section that
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FIGURE 5

(at minimum) marked the major water flow paths. Of note as a differ-
ent style of figure were the ‘process maps’ used by Viglione et al.
(2018) (reproduced in Figure 1c), which use a plan view to break up
the watershed into detailed hydrologic regions, and display only the
dominant flow path in each region. These are similar to maps used by
Schmocker-Fackel et al. (2007) and Antonetti et al. (2017; see also
references in their table 1) to show DRP estimated using GIS
techniques.

3.4 | Perceptual model visualization and search

Our search returned 63 perceptual figures, which we coded according
to the stores and fluxes included, as well as other characteristics of
the figures (see Section 3.2). To make these figures discoverable and
searchable, we created a GIS dashboard that can be viewed at www.
mcmillanhydrology.org/PerceptualModelDashboard.html (Figure 5). In
the left panel, the dashboard allows search for figures that contain a
given store or flux, specified using plain text or by hashtag identifier
from the process taxonomy (McMillan, 2022). The hashtag allows
search for process groups, for example, the partial hashtag ‘Surf.Over’
contains all overland flow processes such as ‘Surf.Over.IE.Frozen’,
meaning infiltration excess flow from frozen ground. Figures can be
filtered according to whether they show spatial or temporal zoning,
by other features, and by watershed area. Clicking on an icon displays
a panel with a link to the article, displaying the perceptual model fig-
ure if it is open access, and with store, flux and other information. This
dashboard will be updated in future as we collect additional percep-
tual model figures, and we invite readers to contact the first author if

they are aware of new figures that meet our eligibility criteria.

ArcGIS Dashboard viewer for Perceptual Model Database.
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Figure 5 shows that our review contained perceptual model fig-
ures from six continents, having a reasonable global spread with bias
towards North America and Europe. Given that we expect the stores
and fluxes found in the figures to depend on the watershed hydrocli-
mate, we tested the representativeness of the watersheds' climate
zones using three climate indices (Figure 6). Using the location of each
watershed, we calculated aridity, seasonality and snow fraction indi-
ces as defined by Knoben et al. (2018). Aridity and seasonality indices
are based on the mean and range of monthly Thornthwaite's moisture
index MI (Willmott & Feddema, 1992). Snow fraction index represents
the fraction of precipitation falling as snow (Woods, 2009).
Equations for these climate indices are given in Appendix A. Indices
for the perceptual figure locations are overlaid on those for all global
pixels, showing that the figures succeed in capturing almost the full
global range of each index. Compared with the global distribution,
perceptual figure watersheds are somewhat more likely to be located

in humid, less seasonal and mostly snow-free environments.

4 | DISCUSSION

41 |
figure?

How complex is an expert perceptual model

The complexity of perceptual model figures shows how much detail
experts use when producing a graphical summary of their watersheds,
and therefore guides us on how much detail is deemed necessary to
summarize key processes. We reiterate that the perceptual model fig-
ure will almost certainly simplify the hydrologist's expert understand-

ing. A typical figure had 1 surface flux, 4 subsurface fluxes, 3-4
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Seasonality

Snow Fraction

2D Scatter plot and 1D histograms of climatic representativeness of perceptual model locations, overlaid on indices for all global

pixels. Positive aridity indices indicate humid climates and negative aridity indices indicate arid climates. High seasonality indices indicate strong
intra-annual changes in the water budget. Equations for climate indices are given in Appendix A.

subsurface stores and 0-1 channel stores. These numbers reflect the
information needed to describe DRP, and how much information is
known in well-studied watersheds. They are similar to a conceptual
(‘bucket’) model, suggesting that perceptual model figures might be a
useful tool to evaluate model structure choices (Beven &
Chappell, 2021). However, as most figures lack flux and store magni-
tudes timescales, they would not be sufficient to define or constrain
parameter values. Most cases used a single figure, without subplots to
show spatial heterogeneity. Most figures (46 of 63) were presented at
watershed scale, and 17 of 63 were at the hillslope scale. Presentation
at watershed scale is consistent with the Representative Elementary
Area theory that for areas over 1 km?, hydrologic responses stabilize
over space (Wood et al., 1988). Therefore, a single figure is suitable
for areas over 1 km? whereas a collection of smaller-scale subplots
might miss out watershed-scale processes that can include longer,
subsurface flow paths (Frisbee et al., 2011). We note however that
larger spatial features such as geological boundaries or inter-basin
groundwater flow can dominate process regimes (Mufoz et al., 2016;
Pfister et al., 2017; Tague & Grant, 2004), an example where percep-
tual models with multiple spatial zones would be appropriate.

Stores and fluxes in perceptual figures are strongly biased
towards the subsurface, with surface and channel processes shown

less often. We can suggest several hypotheses to explain the predom-
inance of subsurface stores. The subsurface emphasis could reflect
the bias in our dataset towards humid and snow-free environments
(Figure 6). The subsurface emphasis could reflect the strength of its
control on runoff dynamics. For example, Fenicia and McDonnell
(2022) find that vegetation and soil types do not control streamflow
dynamics in their watershed, and so do not include them in the per-
ceptual model. However, their work focused on differences in stream-
flow dynamics between sub-watersheds; surface processes might be
more important when explaining differences between regions. The
subsurface emphasis could relate to measurement techniques. Articles
using isotopes or tracers were more likely to include perceptual
models, perhaps because tracers provide watershed-scale information
on flow sources (Tetzlaff et al., 2008). Indeed, McDonnell and Beven
(2014) argue that all watershed investigations should include tracer
measurements to complement hydrometric measurements and evalu-
ate the velocity as well as the celerity of water; 28 out of our 63 per-
ceptual model figures included tracers as a main data source. As tracer
studies often focus on subsurface flow paths, these perceptual models
favour the subsurface. More generally, our review searched for per-
ceptual models of runoff generation, in keeping with the definition by
Beven (2001) that a perceptual model should describe the rainfall-
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runoff process. The perceptual models in our survey were created and
used by catchment hydrologists who use fieldwork (54 papers) and
models (22 papers) to characterize the rainfall-subsurface-groundwa-
ter-channel pathway. Papers that focus on other processes (e.g., ET
response) or other environments such as the land surface or the flood-
plain, might be more likely to emphasize vegetation and details of sur-

face stores and fluxes.

4.2 | Using perceptual models to share
hydrological process information: Observations and
recommendations

Open and shared perceptual models have been proposed as a
method to share hydrological process understanding and our current
hydrologic knowledge of places (Wagener, Gleeson, et al.,, 2021).
Our analysis leads to recommendations to improve the success of
that approach, which are discussed below and summarized in
Table 2.

TABLE 2 Summary of recommendations for creating perceptual
model figures.

Figure item Recommendation

Use the words Perceptual Model or Conceptual Model
in the caption to enable automatic search for
figures. Consider adding the purpose of the
perceptual model, for example, perceptual model
of runoff generation, perceptual model of land-
atmosphere fluxes.

Caption

Process e Use one consistent name for each process
names throughout the paper including the text and the
perceptual figure

o Define processes in the text where there is any
uncertainty in the meaning of process names

o If not defining processes in the text, use standard
process names from a glossary or taxonomy (e.g.,
McMillan, 2022)

e Be as specific as possible when labelling
processes on the figure, for example, write
saturation excess overland flow not overland flow

e [f needed, use a letter or number label on the
figure and provide more information about the
process in the surrounding text

Legend Provide a legend that explains all icons or markings
on the figure such as vegetation icons (give
species or vegetation type if possible), hatching or
shading, and arrow styles

Scales Provide horizontal and vertical scale bars, and the
watershed area
Provide information on the temporal scale the model
represents (e.g., event, seasonal, long-term)

Where known, size arrows and stores according to
their fluxes and volumes, respectively; and add
time scales to fluxes

Quantities

Uncertainties  Mark unknown processes with ? icons, alternative

arrow styles or other annotations

421 | Current perceptual model figures can be too
simple for standalone use

Using a perceptual model figure rather than a text description or other
conceptual diagram (e.g., Coenders-Gerrits et al., 2013; Hopp &
McDonnell, 2009) enforces a simplified visualization of runoff genera-
tion. In many examples, processes in the figure could be more accu-
rately understood from the surrounding text. Overall, 29 of the
63 perceptual model figures could be fully understood without refer-
ence to the text, 24 benefitted from extra information in the text and
10 required the surrounding text to be understood. For example, Lor-
itz et al. (2017) mark macropores on the figure, while the text
describes two causes of macropores in different seasons (earthworm,
soil cracks). Li et al. (2018) mark an inverted triangle above their inter-
flow flux, while the text describes interflow formed due to a perched
water table. ‘Surface runoff’ marked on a perceptual figure was vari-
ously interpreted in the text to mean surface runoff caused by satura-
tion (Viglione et al., 2018), channel interception and saturation excess
flow from riparian zone (McMillan et al., 2011), or infiltration excess
from frozen ground (Mohammed et al., 2021). There are benefits to
providing a concise overview of dominant processes, and having a fig-
ure improves readability. However, these examples show that stand-
alone perceptual diagrams can lose important information. One solu-
tion may be to use numbered labels or hyperlinks to link runoff mech-
anisms shown in the figure to more extensive descriptions in the text,
as in Beven and Chappell (2021). These more extensive descriptions
could be used to aid understanding, while the simpler figure might be
sufficient to design a model structure.

Further information is lost because perceptual model figures are
often drawn informally, as visually-pleasing figures. Many figures con-
tained arrows, icons, shading and other features whose meaning was
unclear. For example, figures may show a watershed cross-section
with varying slopes, but it is unclear whether these show exact slope
changes or an artist's impression, and whether they signify changes in
hydrologic processes. Good practices that we saw included marking
vertical and horizontal scale bars on the figure (14 of 63 perceptual
model figures used scale bars), and using a legend to communicate
where varying plant icons represent known changes in vegetation, or
if hatching represents fractures or bedding (23 of 63 perceptual model
figures used a legend). We, therefore, recommend annotating figures
with standard legend and scale markings to ensure that information in
the figure is conveyed to the reader.

422 |
big data

Optimizing perceptual figures for the age of

As well as conveying information to human readers, future percep-
tual models will have a wider range of uses if they are ‘machine-read-
able’ and interpretable in the context of big data. For example, to
enable perceptual figures to be found by automated search, naming
should be consistent. Current figures have a range of captions

reflecting the evolving terminology used to describe perceptual
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models. These range from easily recognizable (‘perceptual model’,
‘conceptual model’ or ‘conceptual diagram’), moderately recogniz-
able (‘flow paths’, ‘idealized cross section’, ‘[schematic] representa-
tion of’, ‘major hydrological pathways of’), to difficult-to-recognize
names such as a caption that describes the specific watershed. Con-
sistent naming would mitigate the difficulty we found in designing
search terms to find perceptual model figures in the hydrological
literature.

Consistent and explicit terms to describe fluxes or storages
should be chosen to avoid confusion. Terms that we might think are
highly specific could be interpreted differently by different hydrologi-
cal communities, for example, ‘fill and spill’ is used by catchment
hydrologists to imply lateral flow between hollows at the soil-bedrock
interface (Tromp-van Meerveld & McDonnell, 2006), but is used by
wetland hydrologists to imply ‘event water raising the groundwater
table until depression storage is satisfied and then flow occurs’
(Gibson et al., 2016). As in this study where we mapped figure labels
onto taxonomic names, there is a need to ‘translate’ perceptual
models into a common and comparable language.

A possible pathway to improve figure standardization and read-
ability, while also catering to hydrologists lacking an artistic streak,
would be to create a visualization tool to generate figures. The user
could answer a structured set of questions and specify exactly what
information is known. The tool would generate a perceptual figure,
allowing adjustments by the user. Although this approach would
reduce user freedom, the digital objects produced would promote
reuse and open science, and may become an integral part of ‘geosci-

ence papers of the future’ (Gil et al., 2016).

423 | Centering uncertainty and knowledge gaps
Including uncertainties in perceptual model figures are critical if these
figures are to be used to identify knowledge gaps and therefore to
guide new fieldwork and drive hydrological advances. Uncertainties
can be large where processes are inferred from sparse measurements,
but few figures we surveyed included uncertainty information. Three
figures included ‘?° marks to indicate uncertainties in the extent of
the saturated zone, the lower boundary condition, and hillslope-
stream connectivity. Only Wrede et al. (2015) showed uncertainties
for all fluxes, using different arrow styles to indicate confidence level.
Being specific about knowledge gaps can lead to an evolving under-
standing of runoff generation that recognizes perceptual models as
hypotheses (Aulenbach et al., 2021; Flint et al., 2001; McGlynn
et al., 2002). This approach encourages further investigations to test
the hypotheses and update the model where needed, which might
involve revising the processes thought to dominate, or adding newly
discovered processes. The evolving perceptual model recognizes the
contributions of multiple investigators during long-term discovery sci-
ence programs. An updated perceptual model can drive improvements
in model structure, such as adding karst processes to provide more
realistic recharge estimates (Hartmann et al., 2015), or developing
watershed-specific models based on geological expertise (Viglione
etal, 2018).

Perceptual models currently lack agreement on how to indicate a
process that is thought to be important but is poorly understood. This
is part of a wider question of how to use and communicate partial
process knowledge. Papers in our study used several approaches to
partial knowledge. Sometimes processes were excluded: for example,
a perceptual figure only shows processes during events and excludes
dry conditions, or a perceptual figure focuses on runoff generation in
clay shales and excludes surface features (Allen et al., 2005). Some
papers inferred missing processes using qualitative information based
on expectations from similar sites or across large scales (Fenicia &
McDonnell, 2022). Other papers built or constrained perceptual
models based on prior understanding of the watershed, and evaluated
unknown processes by testing different model structures (Graeff
et al., 2009; Hartmann et al., 2013; Hrachowitz et al., 2014). Where
processes are excluded, the viewer does not know whether the pro-
cess is unknown, or whether it is known to be non-dominant in this
watershed. Hydrologists would benefit from a structured approach to
drawing, collecting and combining partial models, given that partial
process knowledge is a necessary step in building a complete under-
standing of the watershed. Partial models would help to identify
transferable knowledge gaps that stretch beyond individual water-
sheds and relate to processes that are understood in some landscapes
but not others, information that is currently very difficult to identify
(Wagener, Dadson, et al., 2021).

424 | Transferability of perceptual models

If we seek to create perceptual models for large numbers of water-
sheds, it is impractical to conduct detailed experimental work in every
watershed before developing the perceptual model. Instead, one aim
of developing a perceptual model would be to gain transferable infor-
mation about processes in a wider region. For example, initial observa-
tions of a rock moisture store at the Eel River Critical Zone
Observatory led to an understanding that this was a locally-important
process, and later that the process was important across large swaths
of the United States (McCormick et al, 2021; Rempe &
Dietrich, 2018; Salve et al., 2012). Alternatively, understanding of the
DRP under one set of landscape characteristics might be transferrable
to other landscapes with the same characteristics (Rennd et al., 2008).
However, we still lack methods to identify the spatial extent of per-
ceptual knowledge, to specify whether an updated perceptual model
in one location can be transferred to a wider region. Further difficul-
ties are introduced when transferring perceptual models between
scales, because runoff generation processes are scale-dependent and
do not linearly combine from plot to hillslope to watershed and larger
scales (McDonnell, 2003; McDonnell et al., 2021; Sidle et al., 2000). In
our survey, we found several instances where perceptual model fig-
ures were drawn for areas larger than a single watershed. These
included Northern basins (Tetzlaff et al., 2015), forested watersheds
(Sidle, 2006), and tropical forests (Bonell, 2005). Such development of
larger scale models, while retaining process inferences from the
underlying individual watershed studies, offers one path towards
transferring perceptual knowledge between watersheds.

QSUADIT suowwo)) aaneal) a[qesrjdde oy £q paUIdA0S oI SI[ONIE Y 9N JO sa[NI 10§ AIRIqL SuI[uQ) AIIAY UO (SUONIPUOI-PUE-SULIA)/ WO KI[1M" AIeIqI[aul[uo//:sdny) suonipuo) pue SwId ], 9yl 39S [£707/90/20] uo Areiqry autjuQ AS[ip © UR[IIADIN Ae[IH Aq $H8+ 1 dAy/z001°01/10p/wod Kofim- Kreiqiautjuo//:sdny woly papeojumod ‘€ ‘€207 ‘S8016601



12 of 15 Wl LEY

McMILLAN ET AL.

5 | CONCLUSIONS

We surveyed 1404 papers from the hydrological literature on runoff
generation, and found and analysed 63 eligible perceptual model fig-
ures. These figures demonstrate how experts describe the dominant
processes in the watersheds they study. Figures focus more strongly
on the subsurface, typically having 1 surface flux, 4 subsurface fluxes,
3-4 subsurface stores and 0-1 channel stores. Very few perceptual
models show sub-panels for spatial zones, but some include sub-
panels for different seasons or wetness conditions.

Perceptual figures provide a concise summary of a watershed,
that may otherwise be lacking or have to be pieced together from dis-
persed text descriptions within a paper. Figure complexity is similar to
that of conceptual hydrological models, suggesting that perceptual fig-
ures could be a useful tool to select model structure within modular
modelling frameworks. However, figures are necessarily simpler than
a text description, and may need to be read in conjunction with sur-
rounding text to fully understand the processes shown. Especially in
an age of big data, we recommend that perceptual figures will be
made more valuable by using standard figure names and process
names, by including scale bars and legend, and by linking to longer
text descriptions if needed. We also recommend a more explicit treat-
ment of uncertainty, which itself constitutes knowledge and helps to
identify knowledge gaps. A community effort to create guidelines for
perceptual figures could help to make figures more comparable and
transferable in future.

Creating perceptual figures can be difficult. Producing a figure
requires visualization skills and graphical software that may not be
readily available to authors. More fundamentally, creating a figure
requires that the author goes beyond descriptions of field data, and
interpret these data in terms of dominant runoff pathways. Such
interpretation requires deep knowledge of the field site, and of data
strengths and gaps, and may be highly uncertain and partly subjective.
However, the resulting understanding of hydrological processes is
valuable, and the perceptual figure captures and communicates that
expert knowledge to the hydrological community. Creating a database
of perceptual models, as shown here, adds a layer of value by enabling
the figures to be discoverable and searchable. Expansion of the per-
ceptual model database is an ongoing effort, and the authors welcome
members of the hydrological community to engage with us to contrib-

ute perceptual figures of their study watersheds.

ACKNOWLEDGEMENTS

We thank all the people who filled in and gave feedback on an earlier
survey on perceptual models, which helped to develop this manu-
script. In particular, we want to thank the people who sent us their
perceptual model drawings: Tomohiro Tanaka, Clare Stephens, Lina
Stein, Thibault Mathevet, Wouter Knoben, Marvin Hége and Flora
Branger. Support to Hilary McMillan and Ryoko Araki was provided
by the National Science Foundation Hydrologic Sciences Program,
Division of Earth Sciences, Award Number 2124923. Support to Thor-
sten Wagener and Sebastian Gnann was provided by the Alexander

von Humboldt Foundation in the framework of the Alexander von

Humboldt Professorship endowed by the German Federal Ministry of
Education and Research.

DATA AVAILABILITY STATEMENT

The database of perceptual model figures created for this paper can
be accessed via a GIS dashboard at www.mcmillanhydrology.org/
PerceptualModelDashboard.html.

ORCID

Hilary McMillan "= https://orcid.org/0000-0002-9330-9730
Ryoko Araki " https://orcid.org/0000-0002-3647-9768
REFERENCES

Allen, P. M., Harmel, R. D., Arnold, J., Plant, B., Yelderman, J., & King, K.
(2005). Field data and flow system response in clay (vertisol) shale ter-
rain, north Central Texas, USA. Hydrological Processes: An International
Journal, 19, 2719-2736. https://doi.org/10.1002/hyp.11488

Antonetti, M., Buss, R., Scherrer, S., Margreth, M., & Zappa, M. (2016).
Mapping dominant runoff processes: An evaluation of different
approaches using similarity measures and synthetic runoff simulations.
Hydrology and Earth System Sciences, 20(7), 2929-2945.

Antonetti, M., Scherrer, S., Kienzler, P. M., Margreth, M., & Zappa, M.
(2017). Process-based hydrological modelling: The potential of a
bottom-up approach for runoff predictions in ungauged catchments.
Hydrological Processes, 31(16), 2902-2920.

Aulenbach, B. T., Hooper, R. P., van Meerveld, H. J, Burns, D. A,
Freer, J. E., Shanley, J. B., Huntington, T. G., McDonnell, J. J., &
Peters, N. E. (2021). The evolving perceptual model of streamflow
generation at the Panola Mountain research watershed. Hydrological
Processes, 35, e14127.

Baird, A. J., & Low, R. G. (2022). The water table: Its conceptual basis, its
measurement and its usefulness as a hydrological variable. Hydrological
Processes, 36, €14622. https://doi.org/10.1002/hyp.14622

Beven, K. J. (2001). Rainfall-runoff modelling: The primer. John Wiley &
Sons.

Beven, K. J., & Chappell, N. A. (2021). Perceptual perplexity and parameter
parsimony. Wiley Interdisciplinary Reviews Water, 8, €1530.

Black, P. E. (1997). Watershed functions 1. Journal of the American Water
Resources Association, 33(1), 1-11.

Bonell, M. (2005). Runoff generation in tropical forests. In Forests, water
and people in the humid tropics: Past, present and future hydrological
research for integrated land and water management (pp. 314-406).
Cambridge University Press.

Bracken, L. J.,, Wainwright, J., Ali, G. A, Tetzlaff, D., Smith, M. W,,
Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological connec-
tivity: Research approaches, pathways and future agendas. Earth Sci-
ence Reviews, 119, 17-34.

Brooks, J. R, Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Eco-
hydrologic separation of water between trees and streams in a Medi-
terranean climate. Nature Geoscience, 3(2), 100-104.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E.,
Woods, R. A, Freer, J. E., Gutmann, E. D., Wood, A. W., & Gochis, D. J.
(2015). A unified approach for process-based hydrologic modeling:
2. Model implementation and case studies. Water Resources Research,
51,2515-2542.

Coenders-Gerrits, A. M. J., Hopp, L., Savenije, H. H. G., & Pfister, L. (2013).
The effect of spatial through fall patterns on soil moisture patterns at
the hillslope scale. Hydrology and Earth System Sciences, 17, 1749-
1763. https://doi.org/10.5194/hess-17-1749-2013

EPA. (2012). The economic benefits of protecting healthy watersheds. EPA
Fact Sheet EPA 841-N-12-004. https://www.epa.gov/sites/production/
files/2015-10/documents/economic_benefits_factsheet3.pdf

QSUADIT suowwo)) aaneal) a[qesrjdde oy £q paUIdA0S oI SI[ONIE Y 9N JO sa[NI 10§ AIRIqL SuI[uQ) AIIAY UO (SUONIPUOI-PUE-SULIA)/ WO KI[1M" AIeIqI[aul[uo//:sdny) suonipuo) pue SwId ], 9yl 39S [£707/90/20] uo Areiqry autjuQ AS[ip © UR[IIADIN Ae[IH Aq $H8+ 1 dAy/z001°01/10p/wod Kofim- Kreiqiautjuo//:sdny woly papeojumod ‘€ ‘€207 ‘S8016601



McMILLAN ET AL.

Wl LEY 13 of 15

Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L.,
Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., & Kirchner, J. W.
(2019). Hillslope hydrology in global change research and earth system
modeling. Water Resources Research, 55(2), 1737-1772.

Fenicia, F., & McDonnell, J. J. (2022). Modeling streamflow variability at
the regional scale: (1) perceptual model development through signa-
ture analysis. Journal of Hydrology, 605, 127287. https://doi.org/10.
1016/j.jhydrol.2021.127287

Fenicia, F., McDonnell, J. J., & Savenije, H. H. (2008). Learning from model
improvement: On the contribution of complementary data to process
understanding. Water Resources Research, 44(6), W06419. https://doi.
org/10.1029/2007WR006386

Flint, A. L., Flint, L. E., Bodvarsson, G. S., Kwicklis, E. M., & Fabryka-
Martin, J. (2001). Evolution of the conceptual model of unsaturated
zone hydrology at Yucca Mountain, Nevada. Journal of Hydrology, 247,
1-30.

Frisbee, M. D., Phillips, F. M., Campbell, A. R,, Liu, F., & Sanchez, S. A.
(2011). Streamflow generation in a large, alpine watershed in the
southern Rocky Mountains of Colorado: Is streamflow generation sim-
ply the aggregation of hillslope runoff responses? Water Resources
Research, 47, 9391.

Gibson, J., Yi, Y., & Birks, S. (2016). Isotope-based partitioning of stream-
flow in the oil sands region, northern Alberta: Towards a monitoring
strategy for assessing flow sources and water quality controls. Journal
of Hydrology: Regional Studies, 5, 131-148.

Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L.,
Karlstrom, L., Lee, H., Mills, H. J., Oh, J.-H., Pierce, S. A., Pope, A,
Tzeng, M. W., Villamizar, S. R., & Yu, X. (2016). Toward the geoscience
paper of the future: Best practices for documenting and sharing
research from data to software to provenance. Earth and Space Sci-
ence, 3, 388-415. https://doi.org/10.1002/2015EA000136

Graeff, T., Zehe, E. Reusser, D., Luck, E., Schréder, B., Wenk, G.,
John, H., & Bronstert, A. (2009). Process identification through rejec-
tion of model structures in a mid-mountainous rural catchment:
Observations of rainfall-runoff response, geophysical conditions and
model inter-comparison. Hydrological Processes, 23, 702-718. https://
doi.org/10.1002/hyp.7171

Gutierrez-Jurado, K. Y., Partington, D., & Shanafield, M. (2021). Taking the-
ory to the field: Streamflow generation mechanisms in an intermittent
Mediterranean catchment. Hydrology and Earth System Sciences, 25,
4299-4317.

Hartmann, A., Gleeson, T. Rosolem, R., Pianosi, F., Wada, Y., &
Wagener, T. (2015). A large-scale simulation model to assess karstic
groundwater recharge over Europe and the Mediterranean. Geoscienti-
fic Model Development, 8, 1729-1746. https://doi.org/10.5194/gmd-
8-1729-2015

Hartmann, A., Wagener, T., Rimmer, A, Lange, J., Brielmann, H. &
Weiler, M. (2013). Testing the realism of model structures to identify
karst system processes using water quality and quantity signatures.
Water Resources Research, 49, 3345-3358.

Helms, M., Evdakov, O., lhringer, J., & Nestmann, F. (2006). Modelling
spring flood in the area of the upper Volga basin. Advances in Geos-
ciences, 9, 115-122.

Hewlett, J. D., & Hibbert, A. R. (1967). Factors affecting the response of
small watersheds to precipitation in humid areas. In Forest hydrology
(Vol. 1, pp. 275-290). Pergamon Press.

Hopp, L., & McDonnell, J. J. (2009). Connectivity at the hillslope scale:
Identifying interactions between storm size, bedrock permeability,
slope angle and soil depth. Journal of Hydrology, 376, 378-391.

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J.,
Savenije, H. H. G., & Gascuel-Odoux, C. (2014). Process consistency in
models: The importance of system signatures, expert knowledge, and
process complexity. Water Resources Research, 50, 7445-7469.

Kirchner, J. W. (2006). Getting the right answers for the right reasons:
Linking measurements, analyses, and models to advance the science of
hydrology. Water Resources Research, 42, 4362.

Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A quantitative hydro-
logical climate classification evaluated with independent streamflow
data. Water Resources Research, 54, 5088-5109. https://doi.org/10.
1029/2018WR022913

Li, L., DiBiase, R. A., Del Vecchio, J., Marcon, V., Hoagland, B., Xiao, D.,
Wayman, C., Tang, Q., He, Y., & Silverhart, P. (2018). The effect of
lithology and agriculture at the Susquehanna Shale Hills critical zone
observatory. Vadose Zone Journal, 17, 1-15.

Lohse, K. A., & Dietrich, W. E. (2005). Contrasting effects of soil develop-
ment on hydrological properties and flow paths. Water Resources
Research, 41, 3403.

Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L.,
Wienhofer, J., & Zehe, E. (2017). Picturing and modeling catchments
by representative hillslopes. Hydrology and Earth System Sciences, 21,
1225-1249. https://doi.org/10.5194/hess-21-1225-2017

Markstrom, S. L., Hay, L. E., & Clark, M. P. (2016). Towards simplification
of hydrologic modeling: Identification of dominant processes. Hydrol-
ogy and Earth System Sciences, 20(11), 4655-4671.

McCormick, E. L., Dralle, D. N., Hahm, W. J., Tune, A. K., Schmidt, L. M,,
Chadwick, K. D., & Rempe, D. M. (2021). Widespread woody plant use
of water stored in bedrock. Nature, 597, 225-229.

McDonnell, J. J. (2003). Where does water go when it rains? Moving
beyond the variable source area concept of rainfall-runoff response.
Hydrological Processes, 17, 1869-1875. https://doi.org/10.1002/hyp.
5132

McDonnell, J. J., & Beven, K. (2014). Debates—The future of hydrological
sciences: A (common) path forward? A call to action aimed at under-
standing velocities, celerities and residence time distributions of the
headwater hydrograph. Water Resources Research, 50(6), 5342-5350.

McDonnell, J. J., Spence, C., Karran, D. J., Van Meerveld, H. J., &
Harman, C. J. (2021). Fill-and-spill: A process description of runoff
generation at the scale of the beholder. Water Resources Research,
57(5), e2020WR027514.

McGlynn, B. L., McDonnel, J. J., & Brammer, D. D. (2002). A review of the
evolving perceptual model of hillslope flowpaths at the Maimai catch-
ments, New Zealand. Journal of Hydrology, 257, 1-26.

McMillan, H. (2022). A taxonomy of hydrological processes and watershed
function. Hydrological Processes, 36, e14537. https://doi.org/10.1002/
hyp.14537

McMillan, H., Gnann, S. J., & Araki, R. (2022). Large scale evaluation of
relationships between hydrologic signatures and processes. Water
Resources Research, 58, e2021WR031751. https://doi.org/10.1029/
2021WR031751

McMillan, H. K., Clark, M. P., Bowden, W. B., Duncan, M., & Woods, R. A.
(2011). Hydrological field data from a modeller's perspective: Part
1. Diagnostic tests for model structure. Hydrological Processes, 25,
511-522.

Mohammed, A. A,, Cey, E. E., Hayashi, M., & Callaghan, M. V. (2021). Simu-
lating preferential flow and snowmelt partitioning in seasonally frozen
hillslopes. Hydrological Processes, 35, e14277.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009).
Preferred reporting items for systematic reviews and meta-analyses:
The PRISMA statement. PLoS Medicine, 6, e1000097. https://doi.org/
10.1371/journal.pmed.1000097

Mufioz, E., Arumi, J. L., Wagener, T., Oyarzin, R., & Parra, V. (2016). Unra-
veling complex hydrogeological processes in Andean basins in south-
Central Chile: An integrated assessment to understand hydrological
dissimilarity. Hydrological Processes, 30(26), 4934-4943.

Pfister, L., Martinez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E,,
Stewart, M. K., & McDonnell, J. J. (2017). Bedrock geology controls on
catchment storage, mixing, and release: A comparative analysis of
16 nested catchments. Hydrological Processes, 31(10), 1828-1845.

Prieto, C., Kavetski, D., Le Vine, N., Alvarez, C., & Medina, R. (2021). Identi-
fication of dominant hydrological mechanisms using Bayesian infer-
ence, multiple statistical hypothesis testing, and flexible models. Water
Resources Research, 57(8), e2020WR028338.

QSUADIT suowwo)) aaneal) a[qesrjdde oy £q paUIdA0S oI SI[ONIE Y 9N JO sa[NI 10§ AIRIqL SuI[uQ) AIIAY UO (SUONIPUOI-PUE-SULIA)/ WO KI[1M" AIeIqI[aul[uo//:sdny) suonipuo) pue SwId ], 9yl 39S [£707/90/20] uo Areiqry autjuQ AS[ip © UR[IIADIN Ae[IH Aq $H8+ 1 dAy/z001°01/10p/wod Kofim- Kreiqiautjuo//:sdny woly papeojumod ‘€ ‘€207 ‘S8016601



14 of 15 Wl LEY

McMILLAN ET AL.

Prieto, C., Le Vine, N., Kavetski, D., Fenicia, F., Scheidegger, A., & Vitolo, C.
(2022). An exploration of Bayesian identification of dominant hydro-
logical mechanisms in ungauged catchments. Water Resources
Research, 58(3), e2021WR030705.

Rempe, D. M,, & Dietrich, W. E. (2018). Direct observations of rock mois-
ture, a hidden component of the hydrologic cycle. Proceedings of the
National Academy of Sciences, 115, 2664-2669.

Rennd, C. D., Nobre, A. D., Cuartas, L. A, Soares, J. V., Hodnett, M. G, &
Tomasella, J. (2008). HAND, a new terrain descriptor using SRTM-
DEM: Mapping terra-firme rainforest environments in Amazonia.
Remote Sensing of Environment, 112(9), 3469-3481.

Roni, P., Beechie, T. J, Bilby, R. E., Leonetti, F. E., Pollock, M. M., &
Pess, G. R. (2002). A review of stream restoration techniques and a hier-
archical strategy for prioritizing restoration in Pacific northwest water-
sheds. North American Journal of Fisheries Management, 22(1), 1-20.

Salve, R., Rempe, D. M., & Dietrich, W. E. (2012). Rain, rock moisture
dynamics, and the rapid response of perched groundwater in weath-
ered, fractured argillite underlying a steep hillslope. Water Resources
Research, 48, 12583. https://doi.org/10.1029/2012WR012583

Schmocker-Fackel, P., Naef, F., & Scherrer, S. (2007). Identifying runoff
processes on the plot and catchment scale. Hydrology and Earth System
Sciences, 11, 891-906. https://doi.org/10.5194/hess-11-891-2007

Seibert, J., & McDonnell, J. J. (2002). On the dialog between experimental-
ist and modeler in catchment hydrology: Use of soft data for multicri-
teria model calibration. Water Resources Research, 38, 23-21.

Sidle, R. C. (2006). Stormflow generation in forest headwater catchments:
A hydrogeomorphic approach. Forest Snow and Landscape Research,
80, 115-128.

Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., & Shimizu, T.
(2000). Stormflow generation in steep forested headwaters: A linked
hydrogeomorphic paradigm. Hydrological Processes, 14(3), 369-385.

Sivapalan, M. (2006). Pattern, process and function: Elements of a unified
theory of hydrology at the catchment scale. In Encyclopedia of hydro-
logical sciences. Wiley. https://doi.org/10.1002/0470848944.hsa012

Soulsby, C., Tetzlaff, D., Dunn, S. M., & Waldron, S. (2006). Scaling up and
out in runoff process understanding: Insights from nested experimen-
tal catchment studies. Hydrological Processes: An International Journal,
20, 2461-2465.

Tague, C., & Grant, G. E. (2004). A geological framework for interpreting
the low-flow regimes of Cascade streams, Willamette River basin, Ore-
gon. Water Resources Research, 40(4), 2008WR002629.

Tetzlaff, D., Buttle, J., Carey, S. K., McGuire, K., Laudon, H., & Soulsby, C.
(2015). Tracer-based assessment of flow paths, storage and runoff
generation in northern catchments: A review. Hydrological Processes,
29, 3475-3490.

Tetzlaff, D., McDonnell, J., Uhlenbrook, S., McGuire, K., Bogaart, P.,
Naef, F., Baird, A., Dunn, S., & Soulsby, C. (2008). Conceptualizing
catchment processes: Simply too complex? Hydrological Processes: An
International Journal, 22, 1727-1730.

Tromp-van Meerveld, H. J., & McDonnell, J. J. (2006). Threshold relations
in subsurface stormflow: 2. The fill and spill hypothesis. Water
Resources Research, 42, 3800.

Viglione, A., Rogger, M., Pirkl, H., Parajka, J., & Bloschl, G. (2018). Concep-
tual model building inspired by field-mapped runoff generation mecha-
nisms. Journal of Hydrology and Hydromechanics, 66, 303-315.

Wagener, T. (2003). Evaluation of catchment models. Hydrological Pro-
cesses, 17, 3375-3378. https://doi.org/10.1002/hyp.5158

Wagener, T., Dadson, S. J,, Hannah, D. M., Coxon, G. Beven, K,
Bloomfield, J. P., Buytaert, W., Cloke, H., Bates, P., & Holden, J. (2021).
Knowledge gaps in our perceptual model of Great Britain's hydrology.
Hydrological Processes, 35, €14288.

Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N., Pianosi, F.,
Rahman, M., Rosolem, R., Stein, L., & Woods, R. (2021). On doing
hydrology with dragons: Realizing the value of perceptual models and
knowledge accumulation. WIREs Water, 8, €1550. https://doi.org/10.
1002/wat2.1550

Wagener, T., Sivapalan, M., Troch, P., & Woods, R. (2007). Catchment clas-
sification and hydrologic similarity. Geography Compass, 1, 901-931.

Wang, S., Fu, Z., Chen, H., Nie, Y., & Xu, Q. (2020). Mechanisms of surface
and subsurface runoff generation in subtropical soil-epikarst systems:
Implications of rainfall simulation experiments on karst slope. Journal
of Hydrology, 580, 124370.

Westerberg, |. K., Di Baldassarre, G., Beven, K. J., Coxon, G., & Krueger, T.
(2017). Perceptual models of uncertainty for socio-hydrological sys-
tems: A flood risk change example. Hydrological Sciences Journal,
62(11), 1705-1713.

Willmott, C. J., & Feddema, J. J. (1992). A more rational climatic moisture
index. The Professional Geographer, 44, 84-88. https://doi.org/10.
1111/j.0033-0124.1992.00084 .x

Wood, E. F., Sivapalan, M., Beven, K., & Band, L. (1988). Effects of spatial
variability and scale with implications to hydrologic modeling. Journal
of Hydrology, 102, 29-47.

Woods, R. A. (2009). Analytical model of seasonal climate impacts on snow
hydrology: Continuous snowpacks. Advances in Water Resources, 32,
1465-1481. https://doi.org/10.1016/j.advwatres.2009.06.011

Wrede, S., Fenicia, F., Martinez-Carreras, N., Juilleret, J., Hissler, C.,
Krein, A., Savenije, H. H., Uhlenbrook, S., Kavetski, D., & Pfister, L.
(2015). Towards more systematic perceptual model development: A
case study using 3 Luxembourgish catchments. Hydrological Processes,
29,2731-2750.

Zimmer, M. A, & Gannon, J. P. (2018). Run-off processes from mountains
to foothills: The role of soil stratigraphy and structure in influencing
run-off characteristics across high to low relief landscapes. Hydrologi-
cal Processes, 32, 1546-1560. https://doi.org/10.1002/hyp.11488

SUPPORTING INFORMATION
Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: McMillan, H., Araki, R., Gnann, S.,
Woods, R., & Wagener, T. (2023). How do hydrologists
perceive watersheds? A survey and analysis of perceptual
model figures for experimental watersheds. Hydrological
Processes, 37(3), e14845. https://doi.org/10.1002/hyp.14845

QSUADIT suowwo)) aaneal) a[qesrjdde oy £q paUIdA0S oI SI[ONIE Y 9N JO sa[NI 10§ AIRIqL SuI[uQ) AIIAY UO (SUONIPUOI-PUE-SULIA)/ WO KI[1M" AIeIqI[aul[uo//:sdny) suonipuo) pue SwId ], 9yl 39S [£707/90/20] uo Areiqry autjuQ AS[ip © UR[IIADIN Ae[IH Aq $H8+ 1 dAy/z001°01/10p/wod Kofim- Kreiqiautjuo//:sdny woly papeojumod ‘€ ‘€207 ‘S8016601



McMILLAN ET AL.

Wl LEY 15of 15

APPENDIX A: DERIVATION OF CLIMATE INDICES

We use the following climate indices, as defined by Knoben et al.
(2018). The Thornthwaite moisture index MI (Willmott &
Feddema, 1992) is used to define average aridity a and its seasonality
s. Snow fraction fs is a numerical implementation of the fraction of

annual precipitation that occurs as snowfall (Woods, 2009).

Ep(t)

~pg PO ER®

Mit)=¢ 0 P(t)=Ep(t),
P(t)

Eolt) 1 P(t) <Ep(t)

1 t=12

A=152 i—1

Mi(t),
s =max(MI(t)) —min(MI(t)),

o ZP(B=To)
SO

where P(t), E,(t) and T(t) are mean monthly values of precipitation,
potential evapotranspiration and temperature. Ty is the threshold
temperature below which precipitation is assumed to fall as snow, set
to 0°C.
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