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WILL SAWIN AND MARK SHUSTERMAN

Abstract. We establish cancellation in short sums of certain special
trace functions over Fq[u] below the Pólya-Vinogradov range, with sav-
ings approaching square-root cancellation as q grows. This is used to re-
solve the Fq[u]-analog of Chowla’s conjecture on cancellation in Möbius
sums over polynomial sequences, and of the Bateman-Horn conjecture
in degree 2, for some values of q. A final application is to sums of trace
functions over primes in Fq[u].
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1. Introduction

1.1. Quadratic Bateman-Horn. The history of interest in prime values
of integral polynomials dates back at least to Euler, with early conjectural
contributions also by Bunyakovsky, Landau, and Schinzel. Quantifying the
existing qualitative predictions, Bateman and Horn conjectured that for
every irreducible monic polynomial F (T ) 2 Z[T ], we have

(1.1) |{X  n  2X : F (n) is prime}| ⇠ S(F ) ·
X

logX

where

(1.2) S(F ) =
1

deg(F )

Y

p

1� 1
p
|{x 2 Z/pZ : F (x) ⌘ 0 mod p}|

1� 1
p

.

Even though the only completely resolved case is deg(F ) = 1, which
is the prime number theorem, significant progress on this conjecture has
been made in other cases as well. For example, it was shown by Iwaniec in
[Iw78] that there are � X/ logX integers n 2 [X, 2X] for which n2 + 1 is a
product of at most two primes. For an exposition of the proof of Iwaniec,
a generalization to other quadratic polynomials, and a discussion of related
results with deg(F ) > 2, we refer to [LO12].

Building and improving on a succession of previous works, Merikoski has
shown in [Mer19] that there are infinitely many integers n with n2+1 having
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a prime factor exceeding n1.279 (or exceeding n1.312 if Selberg’s eigenvalue
conjecture is assumed). Results in this vein have also been obtained in case
deg(F ) > 2, see for instance [dlB15] and references therein.

Among results on multivariate analogs of the Bateman-Horn conjecture,
we would like to mention the work [FI98] of Friedlander-Iwaniec obtaining
an asymptotic for the number of primes of the form n2 + m4, the paper
[HM04] by Heath-Brown–Moroz on counting primes represented by bivariate
cubic polynomials, and the article [May20] of Maynard on incomplete norm
forms. We also refer to [Yau19, BR20] and their references for results on the
Bateman-Horn conjecture ‘on average over the polynomial F ’.

Here we are concerned with the function field analog of the Bateman-Horn
conjecture. We fix throughout an odd prime number p and a power q of p.
We denote by Fq the field with q elements. In this function field analogy, the
ring Z is replaced by the univariate polynomial ring Fq[u]. Throughout this
work, we use ⇡ to denote a prime (monic irreducible) polynomial in Fq[u].
One defines the norm of a nonzero polynomial f 2 Fq[u] to be

(1.3) |f | = qdeg(f) = |Fq[u]/(f)|,

where deg(f) = degu(f) is the degree of f , and (f) is the ideal of Fq[u]
generated by f . The degree of the zero polynomial is negative 1, so we set
its norm to be 0.

Conjecture 1.1. Let F (T ) 2 Fq[u][T ] be an irreducible separable monic

polynomial with coe�cients in Fq[u]. Then we have

(1.4) |{g 2 Fq[u] : |g| = X, g is monic, F (g) is prime}| ⇠ S(F ) ·
X

logq X

as X ! 1 through powers of q, and

(1.5) S(F ) =
1

degT (F )

Y

⇡

1� 1
|⇡|

|{x 2 Fq[u]/(⇡) : F (x) ⌘ 0 mod ⇡}|

1� 1
|⇡|

.

Recall that a polynomial F in the variable T with coe�cients from Fq[u]

is separable if it is squarefree over an algebraic closure Fq(u) of Fq(u). For
an irreducible polynomial F (T ) 2 Fq[u][T ] to be separable, it is necessary
and su�cient that F is not a polynomial in T p.

Conjecture 1.1 is a fairly straightforward adaptation of the Bateman-
Horn conjecture to function fields, excluding inseparable polynomials over
Fq[u], a family of polynomials that does not have a counterpart over Z.
The importance of singling out the inseparable case, which we do not study
here, was first highlighted in the works of Conrad-Conrad-Gross who also
put forth a version of Conjecture 1.1 for this case in [CCG08, Conjecture
6.2].

Apart from discussing the prior translation of existing results on the
Bateman-Horn conjecture from Z to Fq[u], see [Pol06, Introduction], Pol-
lack shows that for certain polynomials F in Conjecture 1.1 that do not
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depend on the variable u (namely F 2 Fq[T ]), there exist infinitely many
monic g 2 Fq[u] for which F (g) is prime. The polynomials g that Pollack
substitutes into F are all monomials, so his method does not provide a lower
bound that is comparable to the one in Conjecture 1.1.

The main result of this work is the resolution of the function field qua-
dratic Bateman-Horn conjecture over certain finite fields.

Theorem 1.2. Let p be an odd prime number, and let q be a power of p
with q > 21032e2p4. Then Conjecture 1.1 holds in case degT (F ) = 2.

We obtain the asymptotic in Conjecture 1.1 with a power saving error
term. For somewhat larger (fixed) values of q, (the exponent of) this power
saving is inversely proportional to p2. We also have uniformity in the qua-
dratic polynomial F , allowing the norm of its coe�cients to grow almost as
fast as X2 when q is large, see Theorem 8.1 for a more detailed statement.

Bateman and Horn also made a conjecture for the ‘reducible’ or ‘split’
case, predicting simultaneous primality of the values of several irreducible
polynomials, which in the case of linear polynomials specializes to the Hardy-
Littlewood k-tuple conjecture. For some results in the direction of that
conjecture see our previous work [SS19] (and references therein) on which
this paper builds. In particular Theorem 1.2 is the nonsplit analog of the
twin prime number theorem [SS19, Theorem 1.1], obtained therein under
the assumption q > 685090p2. The values of q satisfying Theorem 1.2 are
somewhat smaller than those in [SS19, Theorem 1.1] for some very small
primes p, but are otherwise larger. This is due to a new kind of di�culty
appearing in one of the ranges in the proof of Theorem 1.2, as will be
explained later.

One of the di�culties in making progress on the Bateman-Horn conjecture
is the parity barrier, or in other words, producing many integers n with F (n)
having an odd number of prime factors. This is implicit for example in the
aforementioned work [Iw78] whose strategy is sieve-theoretic. We shall now
elaborate on this problem and on our resolution of a function field analog.

1.2. Chowla’s conjecture on polynomial sequences. In [Ch65, Eq.
(341)] Chowla conjectured that for every (monic) squarefree polynomial
F 2 Z[T ] one should have

(1.6)
X

nX

µ(F (n)) = o(X).

As in the Bateman-Horn conjecture, the only resolved case is the linear one.
For progress with multivariate polynomials F , we refer to works of Helfgott,
Frantzikinakis–Host, and others. See [Hel06, FH17, La18] and references
therein. Notable progress has also been made by Matomäki, Radziwi l l, Tao,
Teräväinen, and many others, in case F splits as a product of linear factors,
see [MRT19, Introduction].
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Recall that the Möbius function of a polynomial f 2 Fq[u] is 0 if f is
divisible by a square of a nonconstant polynomial, and is otherwise given by
(�1)r where r is the number of prime factors of f .

Theorem 1.3. Fix an odd prime number p, an integer k � 1, and a power

q of p satisfying q > 4e2k2p2. Let F (T ) 2 Fq[u][T ] be a separable polynomial

of degree k in T . Then

(1.7)
X

f2Fq [u]
|f |X

µ (F (f)) = o(X), X ! 1.

The result builds on and complements [CCG08] which deals with certain
squarefree inseparable polynomials F , for which Eq. (1.7) is shown not to
hold.

In fact, we obtain Eq. (1.7) with a power saving. This saving approaches
1
2p for fixed p and growing q. Moreover we can take the coe�cients of F to be
as large as any fixed power of X, by allowing some increase in q. An e↵ective
error term and wide uniformity in F are crucial (but not quite su�cient on
their own) in our approach to establishing Theorem 1.2. We could likely
obtain a similar cancellation in case the sum in Eq. (1.7) is restricted to
prime polynomials f 2 Fq[u], following [SS19, Corollary 6.1].

An analog of Conjecture 1.1 and Theorem 1.3, not considered in this
work, is to fix X and let q ! 1 (thus allowing F to change as well).
Refining many previous works, Entin in [Ent16, Ent21] and then Kowalski
in [Kow16] resolved the ‘large finite field’ variants of Conjecture 1.1 and
Chowla’s conjecture on polynomial sequences, obtaining an error term of

size O(q�
1
2 ) with the implied constant depending on X. It is plausible that

our arguments can be used to obtain superior error terms for certain special
cases of these works.

Our proof of Theorem 1.3 also builds on and refines arguments from
the proof of [SS19, Theorem 1.3] where F is assumed to be a product of
(distinct) linear factors. The power savings and uniformity in F obtained
here are similar to those in [SS19]. What follows is an overview of our proof
of Theorem 1.3, which leads to the technical heart of our work - cancellation
in short sums of trace functions.

We start, as in [SS19], by restricting in Eq. (5.11) to subsums over poly-
nomials f 2 Fq[u] sharing the same derivative, obtaining an equality of the
form

X

f

µ(F (f)) =
X

r

X

s

µ(F (r + sp))

with the goal of obtaining cancellation in the inner sum, for almost every r.
Applying Pellet’s formula from Eq. (4.85) to write the value of the Möbius
function in Eq. (4.87) as a (quadratic) character of the resultant of the
values at f of a pair of bivariate polynomials closely related to F and the
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aforementioned derivative. The outcome is an expression of the form
X

s

µ(F (r + sp)) ⇡
X

s

�2(Resultant(F (r + sp), Frr(r + sp)))

for the polynomial Frr from Eq. (4.69) that depends on F and on the
derivative rr of r.

This allows us to restate a good deal of the arithmetic problem in terms
of the geometry of the two plane curves given by the vanishing loci of our
pair (F, Frr) of bivariate polynomials, a strategy successfully employed in
previous works on factorization statistics of polynomials over finite fields by
Conrad-Conrad-Gross, Entin, Kowalski, and others.

Adapting a result from [CCG08], we obtain in Lemma 4.6 an expression
for the above resultant in terms of the intersection numbers of our curves.
We can then write in Proposition 4.9 a character of our resultant as a Jacobi
symbol. To make matters more explicit (yet simplified), let us say that we
find W 2 Fq[u][T ] and a squarefree M 2 Fq[u] (depending on F and on r)
such that

X

s

�2(Resultant(F (r + sp), Frr(r + sp))) ⇡
X

s

✓
W (s)

M

◆
.

Our problem becomes that of obtaining cancellation for very short sums
in the étale Fq-algebra Fq[u]/(M) of Jacobi symbols of the form

(1.8)
X

s

✓
W (s)

M

◆
.

The problem of cancellation in short multiplicative character sums with
W linear in s has been addressed in [SS19, Theorem 1.4], going below the
Burgess range. The vanishing cycles argument used in the proof of that
theorem, reducing the problem to bounds of Weil and Deligne, turns out
to be insu�cient for controlling Eq. (1.8) in part due to the lack of multi-
plicativity in s for a nonlinear polynomial W . Indeed, obtaining significant
cancellation in Eq. (1.8) for general W remains out of our reach. We refer
to [Saw20, Section 4, 4.3] for a further discussion of vanishing cycles in this
context.

Sums as in Eq. (1.8) have been studied, over the integers, in several works
of Burgess such as [Bur], and for multivariate integral polynomials W in
[MC09]. Burgess works with prime M , and obtains stronger results under
the assumption that W has a linear factor or even splits completely.

Although the arguments of Burgess are probably not directly applicable
to getting cancellation in sums as short as ours, along analogous lines we are
able, after making a linear change of variable in the original polynomial F ,
to show that the vast majority of our fixed derivative subsums give rise to
short character sums with a prime factor of M mod which W is a power of
a linear polynomial. This involves an application of a quantitative form of
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Hilbert’s irreducibility theorem due to S. D. Cohen from [Coh81] as adapted
to a function field setting by Bary-Soroker and Entin in [BSE21].

The most novel part of our work is in establishing cancellation in sums
satisfying this assumption on W and M , and more general short sums of
certain special trace functions that arise in our approach to proving Theo-
rem 1.2, which we now discuss.

1.3. Strategy for proving the main result. To prove Theorem 1.2, or
rather its stronger form in Theorem 8.1, we use a convolution identity ex-
pressing the indicator of primes in terms of the Möbius function. As is often
the case, it is more convenient to work with the von Mangoldt function

⇤(f) =

(
deg(⇡), f = ⇡m for some integer m � 1 and prime ⇡ 2 Fq[u]

0, otherwise

instead of the indicator function of primes. The aforementioned convolution
identity gives something of the form

X

|f |⇠X

⇤(F (f)) ⇡
X

A

X

B

AB=F (f)

µ(A)

the precise form appearing in Eq. (8.5).
Roughly speaking, this introduces three di↵erent ranges of summation.

In the first range, where |A| < X, we manipulate with Euler products and
use classical bounds for L-functions to single out and calculate the singular
series main term of Theorem 1.2 - see the treatment of Eq. (8.21) in the proof
of Theorem 8.1. For the second range, where |A| > X1+✏ for some fixed
✏ > 0, a uniform version of Theorem 1.3 with a power saving cancellation
is su�cient. (In fact, it would su�ce to have aversion of Theorem 1.3 with
logarithmic savings, as long as it holds uniformly for polynomials F with
coe�cients of size a reasonable power of X, but our methods naturally give
a power savings.) This part of our approach is similar to arguments from
[SS19], one di↵erence is the need of a greater uniformity here.

A more significant di↵erence is that in [SS19] the third range, where
X < |A| < X1+✏ did not present substantial di�culties, because a similar
problem has already been handled by Fouvry and Michel over Z, see [FM98].
Here however, in the third range we need (roughly speaking) to count (with
good savings) the number of values of a quadratic polynomial having a prime
factor of size somewhat larger than their square root. This problem has not
yet been resolved over Z, and we refer to the aforementioned work [Mer19]
for upper bounds and a discussion of the possibility of further progress.

In our solution of the problem over Fq[u], we first follow a strategy similar
to some parts of [Mer19], applying Poisson summation, completion, and
the theory of binary quadratic forms. This approach has its roots in the
work [Hoo63] of Hooley. Due to the lack of an appropriate reference, and
our desire to obtain Theorem 1.2 with significant uniformity, we develop
for that matter the necessary parts of binary quadratic form theory over
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function fields. This allows us to reduce the problem in the third range to a
version of Theorem 1.3 twisted by a Kloosterman fraction, see Theorem 5.1
for a more general twisted sum.

Our approach to proving Theorem 1.3 is also helpful for its twisted vari-
ants, leading again to short sums of trace functions. One di↵erence is that
in the twisted case the modulus of the resulting exponential sum is not
squarefree, so we use a simple sieve in Corollary 5.3 to reduce to squarefree
moduli.

1.4. Trace functions. In various works, Fouvry, Kowalski, and Michel
highlighted the importance of trace functions to number theory over the
integers, see for instance [FKMS19]. These are functions on the integers
modulo a prime p, equivalently, functions on the integers that are periodic
with period p, that arise from the trace of Frobenius on an `-adic sheaf on
the a�ne line over Fp. Examples include multiplicative characters, additive
characters, compositions of multiplicative characters or additive characters
with rational functions, Kloosterman sums such as

(1.9) t(x) =
1
p
p

X

a,b2F⇥
p

ab=x

e

✓
a+ b

p

◆
, e(y) = e2⇡iy,

compositions of Kloosterman sums with rational functions, and products or
sums of any of these functions. Despite this vast generality, it is possible to
obtain nontrivial results for all (or almost all) trace functions.

More generally, as in [WX16], one can work with periodic functions with
squarefree period, which are products of trace functions modulo distinct
primes. These behave similarly to trace functions, although most results
have not yet been proven at this level of generality.

We define trace functions over Fq[u] in an analogous way, as functions
on Fq[u]/(⇡) for a prime ⇡ 2 Fq[u] arising from sheaves on A1

Fq [u]/(⇡)
, or

products of these for distinct primes ⇡.

Definition 1.4. Fix throughout an auxiliary prime number ` di↵erent from
p and an embedding ◆ : Q` ,! C. We work with the abelian category of
constructible Q`-sheaves on a variety in characteristic p, see [KR14, Part 2,
Section 8], and call its objects simply ‘sheaves’. Let ⇡ 2 Fq[u] be a prime,
and let F be a sheaf on A1

Fq [u]/(⇡)
. We can think of any x 2 Fq[u]/(⇡) as a

point on A1
Fq [u]/(⇡)

and thus as a map

(1.10) x : Spec(Fq[u]/(⇡)) ! A1
Fq [u]/(⇡).

For a geometric point x over x, the stalk Fx of F at x is the under-
lying finite-dimensional vector space over Q` of the pullback x⇤F of F

to Spec(Fq[u]/(⇡)). This vector space is equipped with a linear action of
Frob

qdeg(⇡) , so we can define

(1.11) t : Fq[u]/(⇡) ! C, t(x) = ◆(tr(Frob
qdeg(⇡) ,Fx))
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independently of the choice of x.
A function t as above is called a trace function, and is sometimes denoted

by tF in order to emphasize that t arises from F via Eq. (1.11). On other
occasions, we omit F when mentioning t, making the dependence of t on F

implicit. There is usually an obvious choice of F for a given trace function
t, so confusion is unlikely. It is at times convenient to think of t as a ⇡-
periodic function on Fq[u]. In the sequel, abusing notation we drop ◆ from
our formulas.

Note that the construction above suggests an extension of the function
t to any finite field extension  of Fq[u]/(⇡), by considering the action of
Frob|| on Fx for every -valued point x of A1

Fq [u]/(⇡)
. One says that F is

punctually pure of weight w 2 R if for every -valued point x of A1
Fq [u]/(⇡)

,

all the eigenvalues of Frob|| on Fx are of absolute value ||
w
2 . The sheaf F

is said to be mixed of nonpositive weights if there exist a nonnegative integer
r, nonpositive real numbers w1, . . . , wr, and a filtration of F by subsheaves

(1.12) 0 = F
(0)

✓ F
(1)

✓ · · · ✓ F
(r) = F

such that the sheaf F (i)/F (i�1) is punctually pure of weight wi for every
1  i  r.

Set  = Fq[u]/(⇡), let ⌘ be a generic point of A1
, and let

(1.13) j : Spec((X)) ! Spec([X]) = A1


be the map arising from the inclusion of [X] ,! (X). Then j⇤F equips the
stalk F⌘ with the structure of a continuous finite-dimensional representation
of Gal((X)sep/(X)) over Q`. We call dimQ` F⌘ the (generic) rank of F ,
or the rank of t, and denote it by either r(F) or r(t).

Every closed point x 2 P1
 defines a valuation on (X), which we can

extend (non-uniquely) to a valuation vx on (X)sep. The closed subgroup

(1.14) Dx = {� 2 Gal((X)sep/(X)) : vx � � = vx}

fits into an exact sequence of profinite groups

(1.15) 1 ! Ix ! Dx ! Gal((x)/(x)) ! 1.

We call Ix the inertia subgroup of Gal((X)sep/(X)) at x, and note
that it is well-defined up to conjugation. We let Px be a (unique) p-Sylow
subgroup of Ix, and call it the wild inertia subgroup at x. We say that
F is unramified (respectively, tamely ramified) at x if Ix (respectively, Px)
acts trivially on F⌘. For x 2 P1

, we denote by swx(F) the swan conductor
of F at x, a nonnegative integer associated to the action of Px on F⌘. In
particular, it is zero if and only if the action of Px is trivial. For a thorough
exposition of this notion see [KR14, Section 4].

We say that the trace function t (or the sheaf F) is infinitame if F is
tamely ramified at 1 2 P1

, mixed of nonpositive weights, and has no finitely
supported sections. The latter condition means that for every étale map
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e : U ! A1
, and every section s of F over U , the support of s

(1.16) Supp(s) = {x 2 U : sx 6= 0 in Fx}

is infinite. This is equivalent to the vanishing of the cohomology group
H0

c (A1

,F), since any compactly supported global section can be decomposed

into sections supported at individual points.
We define the conductor of an infinitame trace function t (or of the sheaf

giving rise to it) to be the nonnegative integer

(1.17) c(t) = c(F) =
X

x2|A1
|

[(x) : ](r(F)� dim(Fx) + swx(F))

where the sum is taken over closed points, and the dimension is over Q`.

Remark 1.5. The assumption that F is mixed of nonpositive weights is
merely a normalization condition capable of capturing all of the examples
that are of interest. It implies that |t(x)|  r(t) for every x 2 Fq[u]/(⇡). The
technical assumption that F has no finitely supported sections guarantees
that the conductor defined above has certain desirable properties. This
assumption could easily be removed since the finitely supported sections
of a sheaf contribute to only finitely many values of the trace function, and
these values can be handled separately for most purposes, but it would make
the formulas involving the conductor more complicated.

On the other hand, the assumption that F is tamely ramified at infinity
is a substantive restriction necessitated by our methods of proof, and is
(to some extent) suggested by the trace functions arising in the proofs of
Theorem 1.2 and Theorem 1.3.

Remark 1.6. The definition of the conductor of t almost matches the loga-
rithm to base || of the (global) Artin conductor of the Galois representation
F⌘, defined as

(1.18)
Y

x2|A1
|

|(x)|r(F)�dim(FIx
⌘ )+swx(F).

Note that there is a natural map Fx ! F
Ix
⌘

whose injectivity is equivalent to
F having no sections supported at x. Hence, if F has no finitely supported
sections, all these maps are injections. If F is moreover a middle extension
sheaf, then these maps are isomorphisms. Hence the conductor of t is an
adaptation of the Artin conductor to infinitame trace functions.

This notion di↵ers from the complexity defined in [SFFK21] by O(r(F)),
see [SFFK21, Theorem 7.3(2)]. This O(r(F)) factor is not greatly signif-
icant, and either definition of conductor/complexity could be used in this
paper, but we chose a definition that is as easy as possible to use in our
arguments and gives a reasonably good bound, since it can be detected by
test-sheaves that are well suited to our inductive strategy in §3.2. It follows
that our conductor di↵ers at most quadratically from the conductor defined
by Fouvry, Kowalski, and Michel in [FKM15, Definition 1.13], see [SFFK21,
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Corollary 7.4], so changing to that conductor would require squaring the
conductor in the estimates.

Example 1.7. Let ⇡ 2 Fq[u] be a prime, let

(1.19) � : (Fq[u]/(⇡))
⇥
! C⇥,

be a nonprincipal Dirichlet character, let a 2 (Fq[u]/(⇡))⇥ be a scalar, and
let b 2 Fq[u]/(⇡) be a shift. After constructing the Kummer sheaf

(1.20) F = L�(aT + b)

on A1
Fq [u]/(⇡)

, we will see that the function

(1.21) t : Fq[u]/(⇡) ! C, t(x) =

(
�(ax+ b) x 6= �ba�1

0 x = �ba�1

is an infinitame trace function with r(t) = c(t) = 1. We call t a Dirichlet

trace function.

Definition 1.8. For a squarefree polynomial g 2 Fq[u], we say that

(1.22) t : Fq[u]/(g) ! C
is a (g-periodic) trace function if there exist trace functions

(1.23) t⇡ : Fq[u]/(⇡) ! C
for each prime factor ⇡ of g such that

(1.24) t(x) =
Y

⇡|g

t⇡(x mod ⇡), x 2 Fq[u]/(g).

We say that t is infinitame if t⇡ is for each ⇡ | g, and define

(1.25) r(t) = max
⇡|g

{r(t⇡)}, c(t) = max
⇡|g

{c(t⇡)}.

We will use the notation F⇡ for a sheaf giving rise to the trace function t⇡
via Eq. (1.11). This means that F⇡ is a sheaf with tF⇡ = t⇡.

The following trace functions appear in the proofs of Theorem 1.2 and
Theorem 1.3.

Example 1.9. Let g 2 Fq[u] be squarefree, let � : (Fq[u]/(g))⇥ ! C⇥ be a
multiplicative character, and let  : Fq[u]/(g) ! C⇥ be an additive charac-
ter. Let a(T ) be a nonconstant polynomial with coe�cients in Fq[u]/(g),
and define

t : Fq[u]/(g) ! C, t(x) =

8
><

>:

0 a(x) /2 (Fq[u]/(g))⇥

0 x /2 (Fq[u]/(g))⇥

�(a(x)) 
�
1
x

�
otherwise.

The function t is an infinitame trace function with

(1.26) r(t) = 1, c(t)  deg(a) + 2.
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The first problem about trace functions one usually studies is that of
obtaining cancellation in the complete sum

(1.27)
X

x2Fq [u]/(⇡)

t(x)

for a trace function t : Fq[u]/(⇡) ! C. For infinitame trace functions this is
carried out, using standard tools, in Proposition 9.2.

The following is our main result on trace functions, a significant can-
cellation in very short sums of infinitame trace functions with a ‘Dirichlet
component’.

Theorem 1.10. Let g 2 Fq[u] be a squarefree polynomial, and let t be an

infinitame g-periodic trace function. Suppose that there exists a prime ⇡ | g
for which t⇡ is a Dirichlet trace function. Then

(1.28)
X

f2Fq [u]
|f |<X

t(f) ⌧ X
1
2 |g|logq(2r(t)+c(t)), X, |g| ! 1

with the implied constant depending only on q.

In applications, the quantities r(t), c(t) are typically bounded, so for large
(but fixed) q we get arbitrarily close to square-root cancellation in intervals
as short as X = |g|✏, for any fixed ✏ > 0. The reason for working with
the kind of trace functions in Theorem 1.10 is that it seems to be the sim-
plest family of functions to which we can reduce Eq. (1.8) (and its twisted
variants) under the additional assumption on W and M discussed earlier.
Indeed Theorem 1.10 is a crucial input to our proofs of Theorem 1.2 and
Theorem 1.3. It would of course be desirable to treat trace functions of
sheaves which are neither tamely ramified at infinity, nor necessarily related
to Dirichlet characters.

A predecessor of Theorem 1.10 is [SS19, Theorem 2.1] proven under the
assumption that t⇡ is a Dirichlet trace function for every ⇡ | g, namely that
t is a shifted Dirichlet character. The vanishing cycles argument used to
prove that result produces comparable bounds, but its application beyond
the (shifted) multiplicative scenario remains challenging.

Over the integers, bounds for short sums of trace functions are in general

not available beyond the Pólya-Vinogradov range X � |g|
1
2 . We refer to

[FKMRRS17] for recent developments in this direction. For the function
field version of the Pólya-Vinogradov argument see Corollary 9.3.

We now give some examples demonstrating that, even though the assump-
tions in Theorem 1.10 are perhaps not strictly necessary, some restrictions
on the trace functions are required.

Example 1.11. The constant function t(x) = 1 for x 2 Fq[u]/(⇡) is an in-
finitame trace function of rank 1 and conductor 0, arising from the constant
sheaves F⇡ = Q`. This is not a Dirichlet trace function, and the conclusion
of Theorem 1.10 clearly fails in this case.
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Example 1.12. We use here exponentiation on Fq(u) as reviewed in Sec-
tion 2.4.1. Let ⌧,⇡ 2 Fq[u] be distinct primes, and let � : (Fq[u]/(⌧))⇥ ! C⇥

be a nontrivial character. Take ⇡ 2 Fq[u] satisfying ⇡⇡ ⌘ 1 mod ⌧ , and de-
fine the trace function

(1.29) t : Fq[u]/(⌧⇡) ! C, t(x) = �(x)e

✓
⇡⇡ � 1

⌧
·
x

⇡

◆
.

This trace function satisfies r(t) = 1, c(t) = 1, and all the assumptions of
Theorem 1.10 except that F⇡ is not tamely ramified at infinity.

For X such that |⌧ |  X 
|⌧⇡|

q
, we use properties of the exponential

function to compute
X

f2Fq [u]
|f |<X

t(f) =
X

f2Fq [u]
|f |<X

�(f)e

✓
⇡f

⌧
�

f

⌧⇡

◆
=

X

f2Fq [u]
|f |<X

�(f)e

✓
⇡f

⌧

◆
e

✓
�

f

⌧⇡

◆

=
X

f2Fq [u]
|f |<X

�(f)e

✓
⇡f

⌧

◆
=

X

|⌧ |

X

x2Fq [u]/(⌧)

�(x)e

✓
⇡x

⌧

◆
.

Since the Gauss sum appearing in the last formula has absolute value |⌧ |1/2,
taking |⌧ | to be very small compared to |⇡|, we get barely any cancellation,
so Eq. (1.28) does not hold.

1.4.1. The geometric strategy. Our proof of Theorem 1.10 relies on the the-
ory of sheaves and trace functions on higher-dimensional varieties, see [IK04,
11.11] for an exposition covering applications to analytic number theory. We
view the set of polynomials f 2 Fq[u] with |f | < X as the Fq-points of an
n-dimensional a�ne space, with one coordinate for each coe�cient of the
polynomial. We then construct in Corollary 3.14 a sheaf F on this space
whose trace of Frobenius at each point is t(f). The construction uses the
tensor direct image functor defined in [RL20].

Sheaves on higher-dimensional spaces are potentially much more compli-
cated objects than the individual sheaves F⇡ (on A1) used to define t, but F
can be constructed from the base changes Fi of the F⇡ along Fq-embeddings
of F

qdeg(⇡) into Fq, as a tensor product of pullbacks along (linear) evaluation

maps {ei}mi=1 at the roots x1, . . . , xm of g in Fq. This tensor product de-
composition, given in Eq. (3.85), is made possible by the factorizability into
distinct linear factors u� xi over Fq of the period g of the trace function t.

Our tensor product construction exhibits F as a lisse sheaf on An

Fq
away

from the inverse images under the ei of the finitely many points where each
Fi is singular (namely, fails to be lisse). In other words, F is lisse away from
the arrangement of hyperplanes

A =
m[

i=1

[

↵2Fq
Fi is singular at ↵

{f 2 Fq[u] : deg(f) < n, f(xi) = ↵}



14 WILL SAWIN AND MARK SHUSTERMAN

in n-dimensional a�ne space over Fq.
The bound in Theorem 1.10 follows from Corollary 3.7 - a strong coho-

mology vanishing result for F , which says that its étale cohomology with
compact support vanishes in all degrees except for the middle degree and the
next one, together with Lemma 3.13 - a bound for the dimensions of the po-
tentially nonvanishing cohomology groups. These are proven by completely
separate arguments.

The cohomology vanishing adapts a now-standard strategy to show van-
ishing for the cohomology of a sheaf on an a�ne variety by comparing its
compactly supported cohomology, its usual cohomology, and the cohomology
of a certain (derived) pushforward sheaf on the boundary of a well-chosen
compactification of the a�ne variety. This comparison is made possible by
the long excision exact sequence in Lemma 3.3.

By Artin’s a�ne theorem, the cohomology of any sheaf on an a�ne variety
vanishes in high degrees, and by duality, the cohomology with compact
support of a su�ciently nice sheaf on an a�ne variety vanishes in low degrees
The su�ciently nice sheaves are called, perversely, “perverse”. The required
perversity property of the sheaf F is established in Lemma 3.6.

Thus, the more similar we can show the usual and compactly supported
cohomologies are, the more vanishing we obtain, for both cohomology theo-
ries. The di↵erence between the usual and compactly supported cohomology
is controlled, unsurprisingly from the classical perspective, by the behavior
“near infinity” or, more productively in our setting, by the behavior near
the boundary of any given compactification. In our proof, this di↵erence is
captured by the third term in the exact sequence of Lemma 3.3.

The a�ne space An that F lives on has a natural compactification, a
projective space Pn. However, the divisor at infinity, which we denote by
H1, is unsuitable for our purposes. The étale-local behavior of the derived
pushforward of F from An to Pn near a point in H1 depends in a subtle way
on the individual sheaves F⇡, making it hard to compute this pushforward.

We could pass to a di↵erent compactification, but no obvious alternative
where this pushforward is easier to compute presents itself. Instead, we make
a change of perspective – in concrete terms, a projective change of coordinate
system - where we view the closure in Pn of one of the hyperplanes in A,
call it H1, as the boundary, and Pn with H1 removed as an a�ne variety.
Now, instead of working with the sheaf F on An which is Pn

�H1, we are
working with the sheaf F

�
on Pn

� H1 obtained from F in this change of
coordinates, see Eq. (3.5). We relate the cohomology of F to that of F

�
in

Eq. (3.7). We denote by v the inclusion of Pn
�H1 in Pn.

We must carefully choose the hyperplane H1 in order to make the derived
pushforward Rv⇤F

�
(appearing in Lemma 3.3) amenable to a local study.

We choose H1 to be the projective closure of the hyperplane of all f 2 An

with f(x1) = z, where z is the singular point of the Dirichlet trace function
�(x� z) that we assumed appears as a t⇡ in Theorem 1.10, and x1 2 Fq is
a root of ⇡.
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The sheaf F1 on A1
Fq
, obtained by base changing the sheaf giving rise to

the trace function �(x � z), has a local monodromy representation around
the point z which is one-dimensional and nontrivial. It follows that the
pushforward of F1 from A1

� {z} to A1, vanishes at the point z. We want
to use this vanishing to deduce that the derived pushforward Rv⇤F

�
of F

�

from Pn
�H1 to Pn vanishes at all but finitely many points of H1, namely

it is supported at those finitely many points. This is achieved in Lemma 3.4
and Lemma 3.5. Using this general method, we can prove that the number
of cohomology groups of F that may be nonzero is equal to the dimension
of the support of Rv⇤F

�
plus two, so because we show the support of Rv⇤F

�

is zero-dimensional, we can have nonzero cohomology only in two specific
degrees.

In the proofs of Lemma 3.4 and Lemma 3.5, in order to upgrade the
vanishing of the pushforward of F1 at z 2 A1 to the vanishing of Rv⇤F

�

at a point on H1, we find local coordinates near each point of H1, except
finitely many, in which the sheaf F splits as a tensor product of our well-
understood sheaf F1 associated with with trace function �(x�z), depending
on one coordinate x, and another sheaf, which depends on all the remaining
coordinates, and may do so in an arbitrarily complicated way, but does not
depend on x. This allows us to compute the pushforward locally, and obtain
the desired vanishing conclusion, by applying the Künneth formula.

One approach to the local tensor product decomposition would be to take
one coordinate for each linear map ei which we pull back a sheaf on, but
the number of linear maps is m = deg(g), which is greater than the dimen-
sion n = logq(X) of our variety, so this would be too many coordinates.
Instead we must show that some of the sheaves e⇤

i
Fi are lisse (essentially,

locally constant) and can be ignored in our local pushforward calculation.
For points on our special hyperplane that do not lie on H1 (the original
divisor Pn

� An at infinity), this requires controlling how many of the hy-
perplanes in A (where F is not lisse) can intersect at a point on H1, which
reduces to some simple algebra performed in Lemma 3.4. For points on both
H1 and H1, this doesn’t quite work, as all the sheaves F1, . . . ,Fm can have
singularities at infinity. Instead, we use in Lemma 3.5 our assumption that
the local monodromy of these sheaves at infinity is tame, and employ prop-
erties of sheaves with tame ramification (ultimately, Abhyankar’s Lemma)
to separate variables locally.

The argument in Lemma 3.6 showing that F has the necessary perversity
property, requires a similar separation-of-variables argument but fewer ex-
plicit calculations. At this point we have all the local properties needed to
complete the global argument in Corollary 3.7, which relies on the excision
long exact sequence from Lemma 3.3 and properties of semiperverse sheaves.

The bound for dimensions of cohomology groups (that is, Betti num-
bers) in Lemma 3.13 follows a strategy loosely inspired by the Betti num-
ber bounds for cohomological transforms proved by Fouvry, Kowalski, and
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Michel in [FKM21]. The basis of this strategy is to take as much advantage
as possible of our understanding of Betti numbers of sheaves on curves, see
for instance the proof of Lemma 3.11. This understanding comes from the
facts that all but one cohomology group of a sheaf on a curve has a simple
global representation-theoretic description, and this remaining group can
be controlled in terms of the Euler characteristic which can be expressed
via local representation-theoretic information using the Grothendieck-Ogg-
Shafarevich formula in Lemma 2.9 and Lemma 2.10.

At the heart of our strategy lies a procedure, introduced in the proof of
Lemma 3.13, that replaces a sheaf F⇡ in the construction of F with much
simpler sheaves - skyscraper sheaves and Artin-Schreier sheaves, whose trace
functions are indicators and additive characters. We are able to bound the
change in the sum of Betti numbers caused by such a replacement, in terms
of the rank and conductor of F⇡. Applying this procedure to F⇡ for each
prime ⇡ dividing g, we eventually arrive at a sheaf cohomology problem
that corresponds to a (possibly shorter) additive character sum. Such sums
can be evaluated explicitly, and indeed, we solve the corresponding sheaf
cohomology problem by an explicit computation using Lemma 3.12.

The aforementioned procedure starts by applying the projection formula
which expresses the cohomology of the tensor product F of the pullback
of m sheaves from m curves as the cohomology of one sheaf (in our case,
F⇡) on one of these curves (in our case, A1) tensored with the pushfor-
ward to that curve of the tensor product (of the pullbacks) of the remaining
sheaves. Our procedure then bounds in Lemma 3.11 the sum of Betti num-
bers for this tensor product in terms of the Betti numbers of the factors
twisted by skyscraper and Artin-Schreier sheaves. This is done by calculat-
ing the tensor product sheaf cohomology on the curve in degrees 0 and 2 from
the coinvariants of the global Galois representation associated to the sheaf,
applying the Grothendieck-Ogg-Shafarevich formula, producing in Corol-
lary 2.12 an upper bound for the Swan conductor of a tensor product in
terms of information available from the factors in the product, and applying
the Grothendieck-Ogg-Shafarevich formula once again in Lemma 3.10(5).
The procedure culminates with invoking the projection formula as in the
first step, and observing that the entire process is almost involutary in the
sense that the final expression is reminiscent of the original one, with the
sheaf F⇡ replaced by simpler sheaves.

Using this argument, we are able to obtain Betti number bounds that are
almost as strong as those obtained by [SS19] in a much more specialized
situation, namely the one where t⇡ is a Dirichlet trace function for every

prime ⇡ dividing g.
Thanks to the power and generality of Deligne’s Riemann hypothesis and

theory of weights, the main di�culty left to convert these cohomology van-
ishing and Betti number bounds into a bound for the exponential sum is to
verify that the trace function of the descent of the sheaf F to An

Fq
agrees
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with the original function t, see Eq. (3.86). This can be done using the
results of [RL20].

For the cohomology vanishing part of the argument, a strategy similar in
some respects was taken by Cohen, Dimca, and Orlik in [CDO03]. They gave
a general method to show cohomology vanishing for sheaves on projective
space, lisse away from an arrangement of hyperplanes in characteristic zero.
We adopt from them the strategy of choosing one of these hyperplanes to
play the role of the hyperplane at infinity, and showing vanishing of the
pushforward.

However, for them the greatest interest was to show vanishing of coho-
mology in every degree except the middle degree. For our purposes, it’s
just as good to show vanishing of cohomology in every degree except the
middle two degrees. We could even allow more degrees, but this would not
be helpful for the argument. This means that it is su�cient to show that
the support of the pushforward is zero-dimensional, rather than empty as
in [CDO03]. The pushforward having empty support is a stronger condition
that would not hold in our setting without additional assumptions.

The second di↵erence is that we work in characteristic p, where wild
ramification can occur, while [CDO03] works in characteristic zero, where it
does not. This is one reason why it is so helpful for us that the sheaf F arises
from a certain explicit construction with tensor products of sheaves pulled
back from curves. This allows us to control what types of wild ramification
occur. Unlike in the characteristic zero setting, it would be di�cult to come
up with a formulation of the cohomology vanishing statement that applies
to an arbitrary lisse sheaf on the complement of a hyperplane arrangement
and is suitable for our purpose.

The third, related, di↵erence is that [CDO03] uses an explicit resolution
of singularities - this is an iterated blow-up of the projective space such that
the inverse image of A (the hyperplane arrangement in question) is a simple
normal crossings divisor. This enables them to avoid working with perverse
sheaves, because lisse sheaves with tame ramification on the complement of
a normal crossings divisor have all the good properties of perverse sheaves
(because they are, in fact, a special case of perverse sheaves). For sheaves
with wild ramification, this description is not available, so we resort to the
machinery of perverse sheaves.

We can also compare to the strategy of [SS19], where we proved our
cohomology vanishing statement in the special case where all the sheaves
F⇡ are shifts of character sheaves, instead of just one. In that work, we
considered a family of hyperplane arrangements, and studied the support of
the vanishing cycles sheaf, rather than fixing a hyperplane at infinity and
studying the support of the pushforward. The arguments needed to calculate
the vanishing cycles and the pushforward are closely related. In both cases,
the problem is entirely local at a given point, and a key strategy to study a
sheaf constructed in a certain way, is to find a simpler construction which
produces an equivalent sheaf locally (but not globally).
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The advantage of the pushforward over the vanishing cycles for our pur-
poses is that we only need to do this local analysis for points on a single
hyperplane. Namely we need to consider only points on H1 and not every
point in Pn. Indeed, vanishing cycles could appear at any singular point,
i.e. on any hyperplane, unless an étale local study of the family of sheaves
(for which one takes the vanishing cycles) gives a compelling reason for the
vanishing cycles not to appear. The fact that we only need to do di�cult
local calculations at a single hyperplane means that we need to make strong
assumptions about only a single sheaf F⇡. However, abandoning the van-
ishing cycles method requires us to have an alternative strategy for Betti
number bounds, because the same vanishing cycles method that proved co-
homology vanishing statements in [SS19] was simultaneously used there to
prove Betti number bounds. In this paper, it does not seem possible to
derive Betti number bounds directly from considering the pushforward, so
we instead obtain them from a separate argument.

1.4.2. Trace functions vs Arithmetic functions. Inspired by [FKM14] and
other works on orthogonality of trace functions and arithmetic functions
over the integers, we consider here the correlation between trace functions
and von Mangoldt/Möbius functions over function fields. We shall use the
notation

(1.30) Mn = {f 2 Fq[u] : deg(f) = n, f is monic}

where n is a nonnegative integer.

Theorem 1.13. Let p be an odd prime, and let q > 4e2p2 be a power of p.
For a prime ⇡ 2 Fq[u], an infinitame trace function t : Fq[u]/(⇡) ! C, and
a nonnegative integer n we have

(1.31)
X

f2Mn

t(f)µ(f) ⌧ |Mn|
1� 1

2p+
logq(2ep)

p |⇡|
logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘

as n, |⇡| ! 1, with the implied constant depending only on q.

Theorem 1.13 improves on the savings obtained in [SS19, Theorem 1.8]
for the Kloosterman fraction t(f) = e(f/⇡), in case p is small enough and
q is large but fixed. For larger p, the savings here are smaller, but apply to
lengths of summation as short as |Mn| ⇠ |⇡|✏ for any ✏ > 0, once q is chosen
appropriately. As opposed to [SS19], here we do not pursue the possible
applications of a bound as in Theorem 1.13 to the level of distribution of
primes in arithmetic progressions. Over the integers, di↵erent arguments

have been given to obtain cancellation for sums longer than |⇡|
1
2 for more

general trace functions, see [FKM14, Theorem 1.7, Remark 1.9]. Using
Theorem 1.13 we are able to prove the following.
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Corollary 1.14. Let p be an odd prime, let q > 4e2p2 be a power of p, let
� > 0, and set

(1.32) ⇣ =
2�

1 + 2�

✓
1 +

1

2p
�

logq(2ep)

p

◆�1

.

Take a prime ⇡ 2 Fq[u], an integer n � (12 + �) deg(⇡), and an infinitame

trace function t : Fq[u]/(⇡) ! C arising from a sheaf F whose geometric

monodromy representation does not admit the trivial representation Q` as a

quotient. Then for any ✏ > 0 we have

X

f2Mn

t(f)⇤(f) = O

 
|Mn|

1
1+2�+⇣+✏|⇡|

logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘

+ (r(t) + c(t))
|Mn|

1+✏

|⇡|
1
2

!

with the implied constant depending only on q and ✏.

This result gives very modest savings, and applies to fewer trace functions
compared to [FKM14, Theorem 1.5]. Nevertheless, Corollary 1.14 guaran-
tees cancellation in intervals shorter than those treated over the integers,
see for instance [Irv14]. We obtain savings as long as deg(⇡) > ✏n and

(1.33) � >
(2p+ 1) log

⇣
r(t)

⇣
1 + 1

2p

⌘
+ c(t)

2p

⌘

log
⇣

q

4e2p2

⌘ ,

so in particular we can take � ! 0 as q ! 1 with fixed characteristic, rank,
and conductor. The results of [FKM14], [Irv14] give savings only when (in
our notation) � > 1

4 , though [Irv14] can handle any � with an additional
average over the modulus ⇡.

We have another application for Theorem 1.13, concerning very short
sums over primes of shifted multiplicative characters.

Corollary 1.15. Let p be an odd prime, let q > 4e2p2 be a power of p, set

(1.34) ⇣ =

 
1 +

1

p
�

logq(4e
2p2)

p

!
�1

< 1,

and let ✏ > 0. Then for a prime ⇡ 2 Fq[u], a nontrivial Dirichlet character

� : (Fq[u]/(⇡))⇥ ! C⇥
, a polynomial h 2 Fq[u], and a nonnegative integer

n we have

(1.35)
X

f2Mn

�(f + h)⇤(f) = O
⇣
|Mn|

1+⇣
2 +✏

|⇡|logq(3) + |Mn|
1+✏

|⇡|�1
⌘

as |⇡|, n ! 1, with the implied constant depending only on q and ✏.

As in Theorem 1.13, the strength of the result is in the shortness of the
range of summation, the power saving being quite small. Corollary 1.15
provides savings as long as

(1.36) ✏n < deg(⇡) <
log3

⇣
q

4e2p2

⌘

2p+ 2
n,
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which as q ! 1 with fixed p allows us to take deg(⇡) an arbitrarily large
multiple of n. For the state of the art on the analogous problem over the
integers we refer to [Rakh18] and references therein. In this result, and the
previous two, we have worked for simplicity with trace functions to prime
moduli only, but these results can be extended to trace functions (satisfying
the assumptions in the previous three results) with an arbitrary squarefree
period.

2. Sheaves

One can speak of sheaves and trace functions not only on A1, as we did
so far, but also on other curves and on more general varieties. Most of the
notions from Definition 1.4 admit natural generalizations to this setting.
We start here by constructing the sheaves giving rise to the trace func-
tions we have encountered, and their high-dimensional counterparts. These
constructions are standard [SGA41

2 , Sommes trig.], but we provide here a
detailed explanation including all the properties we need, for the reader’s
convenience.

2.1. Kummer sheaves.

Notation 2.1. Let  be a finite field of characteristic p, let � : ⇥ ! Q`

⇥
be

a multiplicative character, and let w 2 [T ] be a nonzero polynomial. We
extend � to a function on  by setting �(0) = 0, and construct a Q`-sheaf
L�(w), on the a�ne line A1

 = Spec [T ], whose trace function is �, as
follows.

Denote by || the number of elements in . Then the cover of A1
 defined

by the equation

(2.1) Y ||�1 = w(T )

is finite étale (see [Mil13, Example 2.5]) away from the set

(2.2) S = {z 2 A1
 : w(z) = 0}.

The group ⇥ acts on our cover (by automorphisms) via multiplication
on Y , since every ⇣ 2 ⇥ satisfies ⇣ ||�1 = 1. As all ⇣ 2  with ⇣ ||�1 = 1
lie in , we get a simply transitive action of ⇥ on the (geometric) fiber of
any geometric point x lying over a (not necessarily closed) point x of

(2.3) U = A1
 � S.

From the definition of the étale fundamental group as the automorphism
group of the fiber functor (e.g. [Sz09, Theorem 5.4.2(2)]), we get a continu-
ous action of ⇡ét1 (U, x) on the fiber of x in our étale cover of U , commuting
with the action of ⇥. Since the latter acts simply transitively, by pick-
ing a point t in the fiber over x, to each g 2 ⇡ét1 (U, x) we can associate
a unique � 2 ⇥ satisfying �(t) = g(t). This association is a continuous
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homomorphism as, if to g1, g2 2 ⇡ét1 (U, x) we have associated �1,�2 2 ⇥,
then

g1g2(t) = g1(g2(t)) = g1(�2(t)) = �2(g1(t)) = �2(�1(t)) = �2�1(t) = �1�2(t).

Therefore, by composition with �, we get a continuous homomorphism
⇡ét1 (U, x) ! Q`

⇥
. This gives rise to a continuous one-dimensional repre-

sentation of ⇡ét1 (U, x) over Q`, hence a rank one lisse sheaf on U via the
equivalence in [Ka88, 2.0.2]. We define L�(w) to be the extension by zero
of this lisse sheaf from U to A1

. We call L�(w) a Kummer sheaf.
As suggested by the notation, the construction is independent of the

choice of t. Indeed if h is another geometric point in the fiber over x,
then by transitivity there exists � 2 ⇥ with �(t) = h, so we have

g(h) = g(�(t)) = �(g(t)) = �(�(t)) = ��(t) = ��(t) = �(�(t)) = �(h),

where � 2 ⇥ is associated to g 2 ⇡ét1 (U, x). Moreover, by [Sz09, Proposition
5.5.1] the fiber functors for di↵erent geometric points on the connected curve
U are isomorphic, so our construction is also independent of the choice of
the point x 2 U (or the geometric point above it).

In case x is a geometric generic point of U , its fiber can be identified with
the set of all homomorphisms of (T )-algebras from (T )[Y ]/(Y ||�1

�w(T ))
to (T )sep. The group ⇡ét1 (x) = Gal((T )sep/(T )) acts on this set by
postcomposition, and this action factors through the aforementioned action
of ⇡ét1 (U, x) on the fiber of x (via the map on fundamental groups induced
from the inclusion of x in U).

In the following lemma, among other things, we will see that the trace
function tL�(w) arising from the sheaf L�(w) is infinitame, and calculate its
invariants.

Lemma 2.2. The sheaf L�(w) on A1
 has the following properties.

(1) For every x 2  we have tL�(w)(x) = �(w(x));
(2) the sheaf L�(w) is lisse on U , and vanishes on its complement S;
(3) the sheaf L�(w) has tame local monodromy at every closed point

x 2 P1
, or in other words, it is tamely ramified (everywhere);

(4) the sheaf L�(w) is mixed of nonpositive weights;

(5) the sheaf L�(w) has no finitely supported sections;

(6) the rank and conductor are given by

r(L�(w)) = 1, c(L�(w)) = |{a 2  : w(a) = 0}|  deg(w);

(7) the sheaf L�(w) is the extension by zero to A1
 of some one-dimensional

representation of the tame arithmetic fundamental group of A1
�{z}

for some z 2  if and only if there exists c 2 ⇥ and a positive integer

d such that

w(T ) = c(T � z)d.
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If this is the case, let v � 1 be the (multiplicative) order of �. Then

the representation is trivial on the geometric fundamental group of

A1
 � {z} if and only if v divides d.

Proof. Visibly, (2) is immediate from our construction.
To verify (1), first note that because the sheaf is zero on S, its trace

function is zero, which matches our convention

(2.4) �(w(x)) = �(0) = 0, x 2 S.

For x 2  \ S, we get from Eq. (2.1) that g = Frobx, 2 ⇡ét1 (U, x) acts on
the geometric fiber over x by

(2.5) g(x, y) = (x||, y||) = (x, y||) = (x,w(x)y).

Hence, by our definition of the representation giving rise to the sheaf L�(w),
the element � = w(x) 2 ⇥ is associated to g, so g is mapped to �(w(x)) as
desired.

For (3), note that since the monodromy (i.e. image) of the representation
giving rise to L�(w) is isomorphic to a quotient of ⇥, it has order prime to
p. Therefore, by Lagrange’s theorem, the image of an inertia group of any
closed point x 2 P1

 is of order prime to p as well. It follows that L�(w) has
tame local monodromy at x.

To get (4), note that for a closed point x 2 A1
, every eigenvalue of

Frobx,(x) is a value of the finite order character �, hence a root of unity

whose norm is thus 1 = |(x)|0/2. This shows that L�(w) is punctually pure
of weight 0, so in particular it is mixed of nonpositive weights.

Observe that (5) is immediate from (2). Indeed, L�(w) is lisse on U ,
so it has no finitely supported sections there, and it has no sections at all
supported on S as all of its stalks vanish there.

To get the first part of (6), recall from (2) that L�(w) is lisse on U ,
hence it is lisse at a geometric generic point ⌘ of U (and of A1

). Hence
the dimension of L�(w)⌘ is the rank of the representation giving rise to it,
which is 1. For the second part of (6), we get from (3) that L�(w) has
tame ramification everywhere so all the Swan conductors vanish. By the
definition in Eq. (1.17) we therefore have

c(L�(w)) =
X

x2|A1
|

[(x) : ](1� dimL�(w)x)

=
X

x2|U |

[(x) : ](1� 1) +
X

x2|S|

[(x) : ](1� 0) = |{a 2  : w(a) = 0}|

because the dimension of the stalk at every point where the sheaf is lisse
equals the generic rank.

For (7), if L�(w) is the extension by zero of a one-dimensional representa-
tion of ⇡ét1 (A1

�{z}), then it is lisse away from z and vanishes at z, making z
the unique root of w by (2). The uniqueness of the root z allows us to write
w(T ) = c(T � z)d for a scalar c 2 ⇥ and a positive integer d. Conversely,
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if z is the unique root of w, then by construction L�(w) is the extension by
zero of a one-dimensional representation, which is tame by (3).

Our representation is geometrically trivial if and only if the image of the
map from the geometric fundamental group to ⇥ is contained in Ker(�).
Since ⇥ is cyclic of order ||� 1, and � is of order v, we see that

(2.6) Ker(�) = {⇣v : ⇣ 2 ⇥} = {⇣ 2 ⇥ : ⇣n = 1}, n =
||� 1

v
.

Therefore, the aforementioned image is contained in the kernel above if
and only if the geometric fundamental group acts on the (geometric) generic
fiber via multiplication by n-th roots of unity. This is equivalent to the
geometric fundamental group acting trivially on the generic fiber of the
finite étale subcover

(2.7) eY v = w(T ) = c(T � z)d, eY = Y n

of A1

. Since the action of the fundamental group on the generic fiber is

that of Gal((T )sep/(T )), the triviality of the action is tantamount to the
existence of an v-th root for w(T ) in (T ). Such a root exists if and only if
d is a multiple of v, so we have finished the verification of (7). ⇤

2.2. Change of variable for sheaves. For future use, we record some
simple transformation rules of sheaves and their trace functions.

Proposition 2.3. Let g 2 Fq[u] be a squarefree polynomial, let

(2.8) t : Fq[u]/(g) ! C

be an infinitame trace function, and let P,C 2 Fq[u]. Then the function

defined by

(2.9) t0(x) = t(Px+ C)

is an infinitame trace function with rank and conductor satisfying

(2.10) r(t0)  r(t), c(t0)  c(t).

Notation 2.4. For a finite field  of characteristic p and r 2 , we define the
map

(2.11) Er : A1
 ! A1

, Er(x) = r + xp.

Proposition 2.5. Let F be an infinitame sheaf on A1
. Then the sheaf E⇤

rF

and its trace function enjoy the following properties.

(1) If F has no finitely supported sections, then neither does E⇤
rF .

(2) If F is tamely ramified at infinity then so is E⇤
rF .

(3) If F is mixed of nonpositive weights then so is E⇤
rF .

(4) We have c(E⇤
rF) = c(F) and r(E⇤

rF) = r(F).
(5) We have tE⇤

rF
(x) = tF (r + xp).

(6) If tF is a Dirichlet trace function then so is tE⇤
rF

.
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Proof. The map x 7! r+xp induces an autoequivalence of the étale site of A1
,

hence pullback under it preserves étale topological invariants such as generic
rank and conductor. This establishes (1)� (4), and (5) is a consequence of
the fact that (E⇤

rF)x ⇠= FEr(x) for x 2 A1
. For (6) we assume, following

Example 1.7, that there exist � : ⇥ ! Q`

⇥
, a 2 ⇥, and b 2  such that

tF (x) =

(
�(ax+ b) x 6= �ba�1

0 x = �ba�1

for every -valued point x on A1
. We then get from (5) and the multiplica-

tivity of � that

tE⇤
rF

(x) = tF (r + xp) =

(
�(axp + ar + b) xp 6= �ba�1

� r

0 xp = �ba�1
� r

=

(
�p(a1/px+ (ar + b)1/p) x 6= �(ar + b)1/pa�1/p

0 x = �(ar + b)1/pa�1/p

where for � 2  we denote by �1/p the unique element of  whose pth
power is �, and by ��1/p the multiplicative inverse of that element. Since
� 7! �1/p is an automorphism of , the equality above is justified. As �p

is also a character of ⇥, and a1/p 2 ⇥, we conclude that tE⇤
rF

(x) is a
Dirichlet trace function as required for (6). ⇤

2.3. Local invariants. Here we take a closer look at the local invariants
of a sheaf F on a curve C over a perfect field  of characteristic p. Some of
these invariants (and their analogs) were mentioned in passing earlier.

2.3.1. Drop, Slope, Swan.

Definition 2.6. For a sheaf F on a smooth curve C/ and a closed point
x of C, define the drop

(2.12) dx(F) = r(F)� dim(Fx).

This is the drop in the rank of F as we pass from a generic point to x.
If F has no sections supported at x, then dx(F) � 0. If F is a middle
extension sheaf at x in the sense that F is the (non-derived) pushforward
from C � {x} to C of some sheaf, then Fx is equal to the invariants of F⌘
under the inertia group Ix, and then dx(F) is the codimension of the inertia
invariants.

Next we introduce the ‘slope’ of an irreducible inertia representation,
which is sometimes also called ‘break’ or ‘jump’, see [Ka88, Chapter 1]. For
that we use the upper numbering filtration on an inertia group I indexed
by nonnegative real numbers. That is, for s � 0 we denote by Is what
is sometimes denoted by Gal(Lsep/L)s, where L is the completion of the
function field of C at x, see for instance [KR14, Definition 3.54].
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Definition 2.7. Let C be an open subset of a smooth proper curve C/, let
x be a closed point of C. For an irreducible (finite-dimensional, continuous)
representation V of Ix over Q` define

(2.13) slope(V ) = inf{s � 0 : Isx acts trivially on V }.

Let V be a representation of Ix over Q`, and let V1, . . . , Vn be the (irre-
ducible) Jordan-Hölder factors of V , listed with multiplicity. One defines
the Swan conductor of V by

(2.14) sw(V ) =
nX

i=1

dim(Vi) slope(Vi),

and the slopes of V to be

(2.15) slopes(V ) = {slope(Vi) : 1  i  n}.

For a sheaf F on C, we can view the stalk F⌘ at the generic point as a
representation of Ix, and define the Swan conductor of F at x by

(2.16) swx(F) = sw(F⌘) = sw(Ix y F⌘).

Here Ix y F⌘ means that Ix acts on F⌘, namely we emphasize that F⌘ is
viewed as a representation of Ix. Similarly, if Ix acts irreducibly on F⌘, we
set

(2.17) slopex(F) = slope(F⌘) = slope(Ix y F⌘)

and in general

(2.18) slopesx(F) = slopes(F⌘) = slopes(Ix y F⌘).

We further define the local conductor of F at x as

(2.19) cx(F) = dx(F) + swx(F).

Note that F is tamely ramified at x if and only if slopesx(F) = {0}, or
equivalently swx(F) = 0. By our earlier remarks, if F is a middle extension
sheaf at x (pushforward of a sheaf from C � {x} to C) then cx(F) is the
Swan conductor of the inertia representation of F at x plus the codimension
of the inertia invariants. By definition, this is the Artin conductor of the
inertia representation. Thus, cx(F) is an adaptation of the Artin conductor
to the setting of sheaves.

For an alternative definition of the Swan conductor see [KR14, Definition
4.72, Definition 4.82, Theorem 4.86].

2.3.2. Euler characteristic.

Definition 2.8. One defines the Euler characteristic of a sheaf F on a
smooth curve C/ by

(2.20) �(C,F) =
2X

i=0

(�1)i dimH i

c(C,F).
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For the constant sheaf on a proper smooth curve C = C of genus g we
have

(2.21) �(C) = �(C,Q`) =
2X

i=0

(�1)i dimH i

c(C,Q`) = 1� 2g + 1 = 2� 2g,

while in the a�ne case C ( C we have

�(C) = �(C,Q`) = dimH2
c (C,Q`)� dimH1

c (C,Q`)

= 1� (2g + |C � C|� 1) = �(C)� |C � C|.
(2.22)

Lemma 2.9. For a sheaf F on a proper smooth curve C/, we have

(2.23) �(C,F) = �(C)r(F)�
X

x2|C|

cx(F).

Note that swx(F) and dx(F) both vanish at every point x 2 |C| where
F is lisse, so the sum above is finite.

Proof. This is the Grothendieck-Ogg-Shafarevich formula [SGA5, X, Theo-
rem 7.1], specialized to the case of sheaves (instead of complexes of sheaves).

⇤

Lemma 2.10. For a sheaf F on an open subset C of a smooth proper curve

C/, we have

(2.24) �(C,F) = �(C)r(F)�
X

x2|C|

cx(F)�
X

x2C�C

swx(F)

Proof. Let j : C ! C be the open immersion. By Definition 2.8, Lemma 2.9,
and the definition of compactly supported étale cohomology we have

(2.25) �(C,F) = �(C, j!F) = �(C)r(j!F)�
X

x2|C|

cx(j!F).

Extension by zero preserves all local invariants at points of C, so we have

(2.26) r(j!F) = r(F), cx(j!F) = cx(F), x 2 |C|.

For x 2 C � C, we have (j!F)x = 0 so from Definition 2.6 we get

(2.27) dx(j!F) = r(j!F)� dim(j!F)x = r(F)

and by Definition 2.7 we have

(2.28) swx(j!F) = sw(j!F)⌘ = sw(F⌘) = swx(F)

so by definition of the local conductor in Eq. (2.19)

(2.29) cx(j!F) = r(F) + swx(F).
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Combining Eq. (2.22), Eq. (2.25), Eq. (2.26), and Eq. (2.29) we get

�(C,F) = �(C)r(j!F)�
X

x2|C|

cx(j!F)

= (�(C) + |C � C|)r(F)�
X

x2|C|

cx(F)�
X

x2C�C

(r(F) + swx(F))

= �(C)r(F)�
X

x2|C|

cx(F)�
X

x2C�C

swx(F)

as desired. ⇤

2.3.3. Local invariants of tensor products.

Proposition 2.11. For irreducible representations V1, V2 of an inertia group

I we have

(2.30) max slopes(V1 ⌦ V2)  max{slope(V1), slope(V2)}.

Moreover, in case dimV2 = 1, the representation V1 ⌦ V2 is irreducible, and

(2.31) slope(V1 ⌦ V2) = max{slope(V1), slope(V2)}

unless slope(V1) = slope(V2) and for every g 2 Islope(V1) there exists � 2 Q`

⇥

such that for every v1 2 V1 and v2 2 V2 we have

(2.32) g(v1) = �v1, g(v2) = ��1v2.

Proof. In order to establish Eq. (2.30), take s > max{slope(V1), slope(V2)}.
By the definition in Eq. (2.13), the subgroup Is acts trivially on both V1

and V2, so it acts trivially on V1⌦V2, hence on all its Jordan-Hölder factors.
It follows that max slopes(V1 ⌦ V2)  s, therefore Eq. (2.30) holds.

That V1 ⌦ V2 is irreducible if dimV2 = 1 is a general fact about rep-
resentations, because a subspace of V1 ⌦ V2 is invariant if and only if the
corresponding subspace of V1 is invariant.

For the proof of Eq. (2.31), assume first that slope(V1) 6= slope(V2). For

(2.33) min{slope(V1), slope(V2)} < s < max{slope(V1), slope(V2)},

the subgroup Is of I acts trivially on one of V1, V2 and nontrivially on the
other, so it acts nontrivially on their tensor product. Since Is ✓ Is

0
if s > s0,

we conclude that Is acts nontrivially on V1 ⌦ V2 for any

(2.34) s < max{slope(V1), slope(V2)},

hence slope(V1⌦V2) � max{slope(V1), slope(V2)}. Using Eq. (2.30) and the
irreducibility of V1 ⌦ V2, we arrive at Eq. (2.31).

Suppose now that slope(V1) = slope(V2) = s but slope(V1 ⌦ V2) < s, so
Is acts trivially on V1 ⌦ V2. As Is acts by scalars on the one-dimensional
representation V2, it must act by the inverses of these scalars on V1 for the
action on V1 ⌦ V2 to be trivial. In other words, Eq. (2.32) holds. ⇤
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Corollary 2.12. For representations V1, V2 of an inertia group we have

(2.35) sw(V1 ⌦ V2)  sw(V1) dim(V2) + sw(V2) dim(V1).

Proof. By Definition 2.7, the Swan conductor is additive in short exact se-
quences, so we are reduced to the case V1 is irreducible, and then also to the
case V2 is irreducible. If W1, . . .Wn are the Jordan-Hölder factors of V1⌦V2,
then by Proposition 2.11 we have

sw(V1 ⌦ V2) =
nX

i=1

dim(Wi) slope(Wi) 
nX

i=1

dim(Wi)max slopes(V1 ⌦ V2)



nX

i=1

dim(Wi)max{slope(V1), slope(V2)}

 (slope(V1) + slope(V2)) dim(V1 ⌦ V2)

= sw(V1) dim(V2) + sw(V2) dim(V1)

as required. ⇤
Lemma 2.13. Let F1 and F2 be sheaves on A1

. Then the tensor product

F1 ⌦ F2 has the following properties.

(1) For every x 2  we have

tF1⌦F2(x) = tF1(x)tF2(x);

(2) if F1 and F2 have no finitely supported sections, then neither does

F1 ⌦ F2;

(3) if F1 and F2 are tamely ramified at 1, then so is F1 ⌦ F2;

(4) if F1 and F2 are mixed of nonpositive weights, then so is F1 ⌦ F2;

(5) the rank of the tensor product is given by r(F1 ⌦ F2) = r(F1)r(F2);
(6) if F1 and F2 are infinitame, then so is their tensor product, and its

conductor satisfies

c(F1 ⌦ F2)  c(F1)r(F2) + r(F1)c(F2).

Proof. To verify (1), note that for every closed point x 2 A1
 we have a

Frobx,(x)-equivariant isomorphism

(2.36) (F1 ⌦ F2)x
⇠= F1,x ⌦ F2,x

so in case x is -valued, from Eq. (2.36) we get

tF1⌦F2(x) = tr(Frobx,, (F1 ⌦ F2)x) = tr(Frobx,,F1,x ⌦ F2,x)

= tr(Frobx,,F1,x) tr(Frobx,,F2,x) = tF1(x)tF2(x)

so (1) is established.
We further see from Eq. (2.36) that the eigenvalues of Frobx,(x) on the

stalk of the tensor product are products of the eigenvalues on F1,x and F2,x.

Since the product of complex numbers of norm at most ||
0
2 has norm at

most ||
0
2 , this verifies (4).



MÖBIUS ON POLYNOMIAL SEQUENCES AND QUADRATIC BATEMAN-HORN 29

To check (3), let ⌘ 2 A1
 be the generic point, and note that (as in

Eq. (2.36)) we have an isomorphism

(2.37) (F1 ⌦ F2)⌘
⇠= F1,⌘ ⌦ F2,⌘

of representations of Gal((T )sep/(T )). In particular this is an isomor-
phism of representations of the wild inertia subgroup P1. By the tameness
assumption, the latter subgroup acts trivially on each of the factors in the
right hand side of Eq. (2.37), so it acts trivially on their tensor product,
hence it also acts trivially on the left hand side of Eq. (2.37). This triviality
of the action of P1 is the desired tameness of the sheaf F1 ⌦ F2 at 1.

Let i 2 {1, 2}. If Fi has no finitely supported sections, then the natural
map Fi,x ! F

Ix
i,⌘

is injective for every closed point x 2 A1
. Since the tensor

product of two injective maps of vector spaces is injective, we get from
Eq. (2.36) and Eq. (2.37) that the mappings

(F1 ⌦ F2)x
⇠= F1,x ⌦ F2,x ! F

Ix
1,⌘ ⌦ F

Ix
2,⌘ ! (F1,⌘ ⌦ F2,⌘)

Ix ⇠= (F1 ⌦ F2)
Ix
⌘

are all injective, hence F1 ⌦ F2 has no finitely supported sections, so (2) is
established.

For (5), we use Eq. (2.37) to conclude that

r(F1 ⌦ F2) = dim (F1 ⌦ F2)⌘ = dim(F1,⌘ ⌦ F2,⌘)

= dim(F1,⌘) dim(F2,⌘) = r(F1)r(F2).
(2.38)

Now we check (6). For any closed point x 2 A1
, we have by Corollary 2.12

(2.39) swx(F1 ⌦ F2)  swx(F1)r(F2) + r(F1)swx(F2).

By definition of the conductor in Eq. (1.17) we have

c(F1 ⌦F2) =
X

x2|A1
|

[(x) : ](r(F1 ⌦F2)� dim(F1 ⌦F2)x + swx(F1 ⌦F2))

which in view of Eq. (2.36), Eq. (2.38), and Eq. (2.39), is at most
(2.40)X

x2|A1
|

[(x) : ](r(F1)r(F2)�dimF1,x dimF2,x +swx(F1)r(F2)+r(F1)swx(F2)).

On the other hand
c(F1)r(F2) + r(F1)c(F2) =
X

x2|A1
|

[(x) : ] ((r(F1)� dimF1,x + swx(F1))r(F2) + r(F1)(r(F2)� dimF2,x + swx(F2)))

which comparing term-by-term, is larger than Eq. (2.40) by
X

x2|A1
|

[(x) : ](r(F1)� dim(F1,x))(r(F2)� dim(F2,x)) � 0

since F1 and F2 have no finitely supported sections. ⇤
2.4. Artin-Schreier sheaves.
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2.4.1. Residues, exponentiation, additive characters. A variant of some of
the material presented here can also be found in [Hay66].

Each rational function a 2 Fq(u) has a unique expansion

(2.41) a(u) =
1X

i=�1

ai ·
1

ui

as a Laurent series with ai 2 Fq, such that ai = 0 for all but finitely many
negative i 2 Z. Using the i = 1 coe�cient a1, we set

(2.42) e(a) = exp

✓
2⇡i · TrFq/Fp

(a1)

p

◆

where we have identified Fp with {0, 1, . . . , p � 1} ✓ Z. An alternative
definition of a1 in terms of the residue at infinity is

(2.43) a1 = �Res1(a).

To get an explicit expression (or yet another equivalent definition) for

a1 write a = M/N with M,N 2 Fq[u], and let fM be the reduction of M
mod N (represented by a unique polynomial of degree less than deg(N)).

Then a1 equals the coe�cient of udeg(N)�1 in fM (this is 0 if there is no
such coe�cient) divided by the leading coe�cient of N . In particular, for a
polynomial a 2 Fq[u] we have a1 = 0 and thus e(a) = 1. One also readily
checks, either using Eq. (2.42) or the latter description, that

e(a+ b) = e(a)e(b)

for any a, b 2 Fq(u).
We say that a function  : Fq[u]/(N) ! C⇥ is an additive character if

(2.44)  (f + g) =  (f) (g), f, g 2 Fq[u]/(N).

Using the nondegeneracy of the bilinear map (x, y) 7! TrFq/Fp
(xy), we see

that the additive characters are given by

(2.45)  h(M) = e

✓
hM

N

◆
, h 2 Fq[u]/(N).

2.4.2. Construction and Properties. Our construction of Artin-Schreier sheaves
will be analogous to that of Kummer sheaves. Both constructions are special
cases of the Lang isogeny construction.

Notation 2.14. Let  be a finite field of characteristic p, let  :  ! Q`

⇥

be a nontrivial additive character, and let w 2 (X) be a rational function.
We construct an `-adic sheaf L (w), on the a�ne line A1

 = Spec [X], as
follows.

Write w = a

b
with a, b 2 [X] coprime, and b 6= 0. Let

(2.46) U = {x 2 A1
 : b(x) 6= 0}
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be the complement of the set S of poles of w, and consider the finite étale
cover of U defined by the equation

(2.47) Y ||
� Y = w(X).

The additive group of  acts on our cover (by automorphisms) via translation
on Y , since for every � 2  we have (Y + �)|| � (Y + �) = Y ||

� Y in the
polynomial ring [Y ]. We thus get a simply transitive action of  on the
fiber of any geometric point x lying over any point x 2 U .

Arguing as in the construction of Kummer sheaves, we get a continuous
homomorphism ⇡ét1 (U, x) ! , so composing with  gives rise to a lisse `-
adic sheaf of rank one on U . We define L (w) to be the extension by zero
of this sheaf from U to A1

.

We shall now establish some properties of Artin-Schreier sheaves. For
the study of local invariants, we will use not only the upper numbering
ramification filtration used so far, but also the lower numbering filtration,
as defined for instance in [KR14, Definition 3.31]. For a comparison of these
filtrations see [KR14, Definition 3.52]

Lemma 2.15. The sheaf L (w) on A1
 has the following properties.

(1) For every x 2  with b(x) 6= 0, we have tL (w)(x) =  (w(x)).

(2) The sheaf L (w) is lisse on U , and vanishes on S = A1
 � U .

(3) Unless deg(a)� deg(b) is a positive multiple of p, we have

slope1(L (w)) = max{deg(a)� deg(b), 0}.

In particular, if deg(a)  deg(b), then the sheaf L (w) is tamely

ramified at 1.

(4) The sheaf L (w) is mixed of nonpositive weights.

(5) The sheaf L (w) has no finitely supported sections.

(6) We have r(L (w)) = 1. In case deg(a)  deg(b) and the multiplicity

of every root of b is prime to p, we also have

c(L (w)) = |{x 2  : b(x) = 0}|+ deg(b).

(7) There exists a unique ↵ 2  such that  (xp) =  (↵x) for every

x 2 , and the sheaf L (w) is geometrically trivial on U if and only

if there exists an f 2 (X) such that w = fp
� ↵f .

Proof. Property (2) is immediate from our construction. As in Lemma 2.2,
(5) is immediate from (2).

To verify (1), note first that x 2 U . We get from Eq. (2.47) that the
Frobenius element Frobx, 2 ⇡ét1 (U, x) acts on the geometric fiber over x by

(2.48) Frobx,(x, y) = (x||, y||) = (x, y||) = (x,w(x) + y).

Hence, by our definition of the representation giving rise to the sheaf L (w),
the element w(x) 2  is associated to Frobx,, so Frobx, is mapped to
 (w(x)) as desired.
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For (3), first consider the case when deg(a)  deg(b). Then w = a

b
lies in

the étale local ring of P1 at 1, so by the Henselian property all roots of

(2.49) Y ||
� Y =

a(X)

b(X)

lie in that ring. Hence, the extension adjoining such a root is unramified,
thus invariant under Is1 for all s � 0, and in particular has slope 0.

Next consider the case when deg(a) � deg(b) is positive and prime to p,
for which we use the argument of [La81, Example 1.1.7]. The completion at
1 of the function field of P1 admits a valuation v satisfying

(2.50) v(X) = �1, v

✓
a(X)

b(X)

◆
= deg(b)� deg(a).

Adjoining a root y of Eq. (2.47), we can extend our valuation by setting

(2.51) v(y) =
deg(b)� deg(a)

||
.

Since deg(b)� deg(a) is prime to ||, there exist integers j1, j2 such that

(2.52) j1
deg(b)� deg(a)

||
� j2 =

1

||
.

Consequently v(yj1Xj2) = 1
||

so yj1Xj2 is a uniformizer. Every nontrivial
element � of the Galois group G of our local extension sends y to y + c for
some c 2 ⇥ so

(2.53) �(yj1Xj2) = (y + c)j1Xj2 = yj1Xj2

 
1 +

j1X

m=1

cm
�
j1
m

�

ym

!
.

Therefore

v(�(yj1Xj2)� yj1Xj2) = v

 
yj1Xj2

j1X

m=1

cm
�
j1
m

�

ym

!
=

1

||
�

deg(b)� deg(a)

||

so by the definition of the lower numbering, � lies in Gdeg(a)�deg(b) but not
in Gdeg(a)�deg(b)+1. It follows that the slope is deg(a)� deg(b).

To get (4), note that for a closed point x 2 U , every eigenvalue of
Frobx,(x) is a value of the finite order character  , hence a root of unity

whose norm is thus 1 = |(x)|0/2, and for x /2 U , there are no Frobenius
eigenvalues at all. Hence L (w) is punctually pure of weight 0 and thus
mixed of nonpositive weights.

To get the first part of (6), recall from (2) that L (w) is lisse on U ,
hence it is lisse at a geometric generic point ⌘ of U (and of A1

). Therefore
the dimension of L (w)⌘ is the rank of the representation giving rise to it,
which is 1. For the second part of (6), because deg(a)  deg(b), the sheaf
L (w) is infinitame by (3), (4) and (5). Because L (w) has rank 1, its Swan
conductor at each point is equal to its slope.
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To calculate slopex(L (w)) for a closed point x 2 A1
, we choose a -point

x lying over x, and perform a change of variable that sends 1 to x, replacing
X with x+ 1

X
. The degree in X of the rational function

(2.54)
a(x+ 1

X
)

b(x+ 1
X
)

is equal to the order of vanishing of b at x minus the order of vanishing of
a at x. By (3), the slope of L (w) at x is the maximum of this degree and
0, which is the order of vanishing of b at x since a and b are coprime.

By the definition in Eq. (1.17) we therefore have

c(L (w)) =
X

x2|A1
|

[(x) : ](1� dimL�(w)x + ordx(b))

=
X

x2|U |

[(x) : ](1� 1) +
X

x2|S|

[(x) : ](1 + ordx(b))

= |{x 2  : b(x) = 0}|+ deg(b)

(2.55)

where ordx(b) denotes the order of vanishing of b at x. ⇤
Notation 2.16. For a nonzero polynomial g 2 Fq[u] and a polynomial x in
Fq[u] coprime to g, we denote by x 2 Fq[u] the unique polynomial of degree
less than deg(g) satisfying

(2.56) xx ⌘ 1 mod g.

Proposition 2.17. Let g 2 Fq[u] be squarefree, and let h 2 Fq[u]. Then

there exists an infinitame g-periodic trace function t : Fq[u] ! C with

(2.57) r(t)  1, c(t)  2,

and

(2.58) t(x) = e

✓
hx

g

◆

for every x 2 Fq[u] that is coprime to g.

Proof. We induct on the number of distinct prime factors of g. In the base
case, where g is prime, by Eq. (2.45) and Lemma 2.15(1) we have

(2.59) e

✓
hx

g

◆
=  1(hx

�1) = tL 1 (hX�1)(x).

The fact that this is an infinitame trace function, and the requisite bounds
on the rank and conductor follow from Lemma 2.15(3,4,5,6).

Suppose now that g = g1g2 is a nontrivial factorization. Since g is square-
free, the polynomials g1, g2 are coprime, so there exist a, b 2 Fq[u] with

(2.60) ag1 + bg2 = 1.

We then have

(2.61) e

✓
hx

g

◆
= e

✓
hx

g1g2

◆
= e

✓
bhx

g1
+

ahx

g2

◆
= e

✓
bhx

g1

◆
e

✓
ahx

g2

◆
.
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By the induction hypothesis, we have a product of an infinitame g1-periodic
trace function and an infinitame g2-periodic trace function with ranks at
most 1 and conductors at most 2. By Definition 1.8, we get an infinitame
g-periodic trace function satisfying the rank and conductor bounds. ⇤

2.5. Abhyankar’s Lemma. The following version of Abhyankar’s lemma,
which follows from [SGA1][XIII 5.2], will be of use to us.

Lemma 2.18. Let X be a smooth scheme over an algebraically closed field

 of characteirstic p, let D be a smooth divisor on X, let F be a lisse sheaf

on X �D with tame monodromy around D, let f : X ! A1
be a map whose

zero locus is D with restriction f0 : X �D ! Gm, and let x 2 D. Suppose

that f vanishes to order one on D.

Then there exists a lisse sheaf L on Gm such that F and f⇤

0L become iso-

morphic upon restriction to some punctured étale neighborhood of x (namely

an étale neighborhood of x with the point over x removed).

Proof. Let R be the étale local ring of X at x, which contains the function f .
We can pull F back to SpecR[f�1], where it becomes a representation of the
tame fundamental group of SpecR[f�1]. By [SGA1][XIII 5.3], the tame fun-
damental group of SpecR[f�1] is

Q
`6=p

Z`, with the isomorphism obtained
from the covers taking prime-to-p power roots of f . On the other hand,
the tame fundamental group of Gm is also

Q
` 6=p

Z`, with the isomorphism
obtained from the covers taking prime-to-p power roots of the coordinate.
So we can view this representation of

Q
` 6=p

Z` as a lisse sheaf L on Gm,

whose pullback to SpecR[f�1] is isomorphic to the pullback of F . This
isomorphism must then be witnessed on some particular étale cover. ⇤

3. Short sums of trace functions

This section is devoted to proving Theorem 1.10.

3.1. Vanishing of cohomology. Here we obtain a vanishing of cohomol-
ogy result, which is a key input to the Grothendieck-Lefschetz trace formula.

Notation 3.1. For a variety (that is, a separated geometrically integral
scheme of finite type over a field) X we will be working with the bounded
derived category Db

c(X,Q`). We use notation such as f⇤, f⇤, for the derived
pushforward and pullback, never the operations on individual sheaves. This
is to avoid continually writing Rf⇤, Rf⇤, Rf!, etc. to refer to these opera-
tions.

Note that f⇤ always sends sheaves to sheaves, as does ⌦, and f! sends
sheaves to sheaves if f is an open immersion, so when only these operations
have been applied, we will be working with usual sheaves (as opposed to
complexes). For brevity of notation, we also occasionally denote the stalk
of a sheaf F at a geometric point x lying over a point x by Fx.
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Notation 3.2. Let  be an algebraically closed field of characteristic p. Let
g 2 [u] be a squarefree polynomial of degree m � 1, and let x1, . . . , xm 2 
be the roots of g. For each 1  i  m, let Fi be a sheaf on A1 = A1

. Our
interest here is in infinitame trace functions, so we assume for all i that

• the sheaf Fi has no finitely supported sections;
• the sheaf Fi has tame local monodromy at 1, or in other words, it
is tamely ramified at infinity.

For one of the sheaves, say F1, we make a more stringent assumption.
Assume that F1 is the extension by zero of some nontrivial (continuous)
one-dimensional Q`-representation of the tame étale fundamental group

(3.1) ⇡tame
1

�
A1

� {z}
�
⇠=
Y

`6=p

Z`

for some z 2 . This is a geometric form of the assumption in Theorem 1.10
that for some prime we have a Dirichlet trace function. The formulation of
this assumption is motivated in part by Lemma 2.2(7).

Let n  m be a nonnegative integer, view An = An
 as the space of

polynomials over  of degree less than n, and for every 1  i  m let

(3.2) ei : An
! A1, ei(a0, . . . , an�1) = a0 + a1xi + · · ·+ an�1x

n�1
i

,

be the (linear) map that evaluates a polynomial at xi. We set

F =
mO

i=1

e⇤iFi

and for a subset S ✓ {1, . . . ,m} we use the notation

FS =
O

i2S

e⇤iFi, F 6S =
O

1im

i/2S

e⇤iFi.

Our first goal is to prove (in Corollary 3.7) a vanishing statement for

the compactly supported cohomology groups Hj
c

⇣
An,F

⌘
. To do this, view

An as the complement of a hyperplane H1 in Pn = Pn
. Let H1 be the

hyperplane in Pn obtained as the closure of the hyperplane e�1
1 (z) in An.

Let

w : Pn
� (H1 [H1) ! Pn

�H1 = An, v : Pn
�H1 ! Pn

u : Pn
� (H1 [H1) ! Pn

�H1
(3.3)

be the natural open immersions and

(3.4) d : H1 ! Pn

the closed immersion.

Finally we put

(3.5) F
�
= u!w

⇤
F .
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Since F1 is an extension by zero from A1
� {z}, its stalk at z vanishes, so

the stalk of e⇤1F1 vanishes for every x 2 e�1
1 (z) ✓ An. Hence

(3.6) F = w!w
⇤
F .

The above implies that for every nonnegative integer j we have

(3.7) Hj

c

⇣
An,F

⌘
= Hj

c

⇣
Pn

� (H1 [H1), w⇤
F

⌘
= Hj

c

⇣
Pn

�H1,F
�
⌘
.

Our strategy will be focused on the following excision long exact sequence.

Lemma 3.3. We have the following long exact sequence indexed by j 2 Z.

· · · ! Hj

c

⇣
Pn

�H1,F
�
⌘
! Hj

⇣
Pn

�H1,F
�
⌘
! Hj

⇣
H1, d

⇤v⇤F
�
⌘
! . . .

Proof. By [SGA4-3, XVII, (5.1.16.2)] we have a long exact sequence
(3.8)

· · · ! H⇤

⇣
Pn, v!v

⇤v⇤F
�
⌘
! H⇤

⇣
Pn, v⇤F

�
⌘
! H⇤

⇣
Pn, d⇤d

⇤v⇤F
�
⌘
! . . . .

Each term can be simplified in this special case. For the first term, we
use the identity v⇤v⇤ = id, and then functoriality of compactly supported
pushforward in the derived category tells us that

H⇤(Pn, v!F
�
) = H⇤

c (Pn
�H1,F

�
).

For the second identity, we use functoriality of pushforward in the derived
category to obtain H⇤(Pn, v⇤F

�
) = H⇤(Pn

� H1,F
�
). For the third iden-

tity, we use functoriality of pushforward in the derived category to get
H⇤(Pn, d⇤d⇤v⇤F

�
) = H⇤(H1, d⇤v⇤F

�
). ⇤

In order to gain an insight into the cohomology groups in the exact se-
quence above, our first order of business will be understanding the complex
d⇤v⇤F

�
of sheaves on H1.

Given a sheaf F on a variety X, and a point x 2 X, we say that F is
lisse at x if there is a neighborhood N of x such that the restriction F|N is
a lisse sheaf. If F is not lisse at x, we say that x is a singular point of F .

Lemma 3.4. Let Z ✓ An
be the set of those polynomials f for which

(3.9) |{1  i  m : f(xi) is a singular point of Fi}| > n.

The set Z is finite, and the restriction of the complex v⇤F
�
to H1�(H1\H1)

vanishes away from Z.

Proof. There are only finitely many subsets of {1, . . . ,m} of size at least n,
and for each subset, only finitely many choices of a singular point of each
Fi. Since there is at most one polynomial of degree less than n that takes
prescribed values for (at least) n given points xi 2 , it follows that the set
Z is finite.
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Let j : Pn
�H1 ! Pn be the open immersion. The Cartesian square

Pn
� (H1 [H1) Pn

�H1

Pn
�H1 Pn

w

u j

v

gives j⇤v⇤ = w⇤u⇤ by the base change theorem [SGA41
2 , Exp. V, Theorem

3.2] for the smooth morphism j, and u is an open immersion so u⇤u! is the
identity, therefore

(3.10) j⇤v⇤u!w
⇤ = w⇤u

⇤u!w
⇤ = w⇤w

⇤.

Thus it su�ces to show that the stalk of the complex w⇤w⇤
F vanishes for

every point in H1 which is neither in H1 nor in Z.
Fix a point f0 2 H1 which is not in H1 and not in Z. Since f0 /2 H1, we

have f0 2 Pn
�H1 = An, and f0(x1) = z as f0 2 H1. Since f0 /2 Z, the set

(3.11) S = {1  i  m : f0(xi) is a singular point of Fi}

satisfies |S|  n. We show that the stalk of the complex w⇤w⇤
F at f0

vanishes. For each 1  i  m that is not in S, the sheaf Fi is lisse in a
neighborhood of the point f0(xi) = ei(f0) 2 A1, so the sheaf e⇤

i
Fi is lisse in

a neighborhood of f0. Because the pushforward and pullback along an open
immersion can be computed locally, and both commute with tensoring by a
lisse sheaf, it su�ces to prove that the complex

(3.12) w⇤w
⇤
FS = w⇤w

⇤
O

i2S

e⇤iFi

vanishes at f0.
Since |S|  n, the maps {ei}i2S are linearly independent, so we can

identify An with A|S|
⇥An�|S| by using the {f(xi)}i2S as the coordinates of

A|S|. Using this identification we can write

(3.13) FS
⇠=
⇣
⇥i2SFi

⌘
⇥Q`

where Q` stands for a constant rank one sheaf on An�|S|. It follows from
our assumptions that 1 2 S, so we make a further identification of An with
A1

⇥ A|S|�1
⇥ An�|S|, giving

(3.14) FS
⇠= F1 ⇥

⇣
⇥i2S\{1}Fi

⌘
⇥Q`.

Taking w : A1
� {z} ! A1 to be the open immersion, our identifications

give w = w⇥ idS\{1}⇥ id, so by Eq. (3.14), the complex from Eq. (3.12) can
be expressed as
(3.15)

w⇤w
⇤
FS

⇠=
⇣
w ⇥ idS\{1} ⇥ id

⌘

⇤

⇣
w ⇥ idS\{1} ⇥ id

⌘
⇤
⇣
F1⇥

⇣
⇥i2S\{1}Fi

⌘
⇥Q`

⌘
.
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By the Künneth formula, the above equals
⇣
w ⇥ idS\{1} ⇥ id

⌘

⇤

⇣
w⇤

F1 ⇥
⇣
⇥i2S\{1}Fi

⌘
⇥Q`

⌘
= w⇤w

⇤
F1 ⇥

⇣
⇥i2S\{1}Fi

⌘
⇥Q`.

As F1 has rank one with nontrivial monodromy around z, the stalk of
w⇤w⇤

F1 vanishes at z, so the stalk of our external tensor product vanishes
at any f 2 An with f(x1) = z. In particular, it vanishes at f0, so the stalk
of w⇤w⇤

FS also vanishes at f0, as required. ⇤
Lemma 3.5. The restriction of the complex v⇤F

�
to H1 \H1 vanishes.

Proof. We view the points of Pn as pairs (f : t) of a polynomial f over  of
degree less than n and a scalar t 2 , not both zero, up to scaling. Then

(3.16) H1 = {(f : t) 2 Pn
| t = 0}, H1 = {(f, t) : f(x1)� zt = 0},

and the map ei is given by the formula

(3.17) ei(f : t) =
f(xi)

t
, t 6= 0.

Let (f0 : 0) 2 H1 \H1, put

(3.18) S = {1  i  m | f0(xi) = 0},

note that 1 2 S, and that |S| < n since f0 6= 0.
Since our goal is to establish the vanishing of the stalk of the complex v⇤F

�

at (f0, 0), we are free to restrict to an étale neighborhood of (f0, 0). We will
first restrict to a Zariski open neighborhood with a convenient coordinate
system, and then further restrict to an étale neighborhood where the sheaves
e⇤
i
Fi for i /2 S become simpler.
Since n  m there exists a subset

(3.19) S ( T ✓ {1, . . . ,m}, |T | = n.

Any polynomial of degree less than n is uniquely determined by its values at
n distinct points. More precisely, Lagrange’s interpolation (or the nonsin-
gularity of the Vandermonde matrix) allows us to write the coe�cients of a
polynomial f of degree less than n as an invertible linear transformation of
the values {f(xi)}i2T . Therefore, the set {f(xi)}i2T [{t} forms a projective
coordinate system for Pn.

Fix j 2 T \ S, and define the coordinates

(3.20) c1 =
f(x1)� zt

f(xj)
, cj =

t

f(xj)
, ci =

f(xi)

f(xj)
, i 2 T \ {1, j}.

This system of coordinates is obtained from the previous one by dividing
all the coordinates by the coordinate f(xj) and then applying the linear
translation c1 7! c1 � zcj . Since f0(xj) 6= 0, it follows that {ci}i2T forms a
coordinate system for the a�ne neighborhood

(3.21) U = {(f : t) 2 Pn
| f(xj) 6= 0}

of (f0, 0) in Pn. We let ⌫ : U ! Pn be the open immersion.
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In our new coordinates,

(3.22) e1 =
c1
cj

+ z, ei =
ci
cj
, i 2 T \ {1, j}.

Let U1,j be the locus in U where c1 and cj are nonzero, and let

(3.23) ⇠ : U1,j ! Pn
� (H1 [H1)

be the open immersion, well-defined because ⌫�1(H1) is the vanishing locus
of c1 and ⌫�1(H1) is the vanishing locus of cj . We can write

(3.24) U1,j = (A1
� {0})⇥ (An�1

� An�2) ✓ U ⇠= An

where the coordinate in the first factor is c1, and the coordinates in the
second factor are {ci}i2T\{1}. We will now express the restriction of the

sheaf ⇠⇤w⇤
F to a certain punctured étale neighborhood of (f0 : 0) as the

restriction to that neighborhood of the external tensor product of sheaves on
each of the two factors of U1,j in Eq. (3.24), see Eq. (3.37) for this expression.
We do this for each 1  i  m separately, distinguishing between the three
cases i 2 S \ {1}, i /2 S, and i = 1.

In the first case, following Eq. (3.22), for i 2 S \ {1} we define the (re-
stricted) map

(3.25) ei : An�1
� An�2

! A1, ei
�
(ck)k2T\{1}

�
=

ci
cj
,

so that we have

(3.26) ⇠⇤w⇤e⇤iFi
⇠= Q` ⇥ e⇤iFi, i 2 S \ {1}.

In the second case, we take 1  i  m which is not in S. Let Zi be
the intersection of H1 with the vanishing locus of f(xi). Then, following
Eq. (3.17) we can extend ei to a map

(3.27) bei : Pn
� Zi ! P1, bei(f : t) =

f(xi)

t
.

Geometrically, we can see that H1 is a pole of bei, the vanishing locus of
f(xi) is the zero locus of bei, and the intersection Zi is the indeterminacy
locus.

By our definition of S and choice of i, the point (f0 : 0) 2 Pn
� Zi lies

in the pole and not in the indeterminacy locus, so the map bei is defined at
that point, and we have bei(f0 : 0) = 1 2 P1. On some punctured Zariski
neighborhood of 1 in P1 the sheaf Fi is lisse and tamely ramified around
1, so it follows that there exists a Zariski open neighborhood U⇤

✓ U of
(f0, 0) in Pn such that on the punctured Zariski open neighborhood

U 0 = U⇤
� (U⇤

\ bei�1(1)) = U⇤
� (U⇤

\H1)

of (f0, 0) in Pn the sheaf e⇤
i
Fi is lisse and tamely ramified along H1. There-

fore, on the punctured neighborhood U 0 of (f0, 0) in Pn the sheaf

(3.28) F 6S =
O

i/2S

e⇤iFi
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is lisse and tamely ramified at H1.
We let ↵ : U 0

! Pn
�H1 be the inclusion, let � : U⇤

! A1 be the restric-
tion of cj to U⇤, and let �0 : U 0

! Gm be the restriction of cj to U 0. Note
that U⇤

\H1 is a smooth divisor where � vanishes to order one. We now
apply Abhyankar’s lemma, as stated in Lemma 2.18, to the scheme U⇤, the
divisor U⇤

\H1, the sheaf ↵⇤
F 6S on U 0, and the map �. We conclude that

there exists an étale neighborhood V ! U⇤ of (f0, 0), giving rise to a map
� : V ⇥U⇤ U 0

! U 0, and a lisse sheaf L 6S on Gm, such that

(3.29) �⇤↵⇤
F 6S

⇠= �⇤�⇤0L 6S .

Let ⌧ : V ! U be the map induced by the composition V ! U⇤
! U ,

and let

(3.30) ⇣ : V ⇥U U1,j ! U1,j , � : V ⇥U U1,j ! V ⇥U (U �H1) = V ⇥U⇤ U 0

be maps obtained via projections from the fibered product, and via the
natural open immersion of U1,j into U �H1. We then have

(3.31) �⇤�⇤↵⇤
F 6S

⇠= �⇤�⇤�⇤0L 6S

and

(3.32) w � ⇠ � ⇣ = ↵ � � � �.

We further define

(3.33) ⇡ : An�1
� An�2

! Gm = A1
� {0}, ⇡

�
(ci)i2T\{1}

�
= cj ,

and let pr2 : U1,j ! An�1
� An�2 be the projection on the second factor in

Eq. (3.24). Then

(3.34) �0 � � � � = ⇡ � pr2 � ⇣

because both compositions are given by the coordinate cj . It follows from
Eq. (3.28), Eq. (3.32), Eq. (3.31), and Eq. (3.34) that

(3.35) ⇣⇤⇠⇤w⇤
F 6S = �⇤�⇤↵⇤

F 6S
⇠= �⇤�⇤�⇤0L 6S

⇠= ⇣⇤pr⇤2⇡
⇤
L 6S

⇠= ⇣⇤(Q`⇥⇡⇤L 6S).

We turn now to the third case, namely i = 1. Let L� be the sheaf on Gm

obtained by translating F1 by z. Then the sheaf ⇠⇤w⇤e⇤1F1 is the pullback
of L� by the map c1

cj
. By the multiplicative properties of tame rank one lisse

sheaves on Gm, this is the tensor product of the pullback of L� by c1 with
the pullback of its dual L_

� by cj , so

(3.36) ⇠⇤w⇤e⇤1F1
⇠= L� ⇥ ⇡⇤L_

�.
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Combining Eq. (3.35), and ⇣⇤ applied to Eq. (3.26) and Eq. (3.36), we see
that

⇣⇤⇠⇤w⇤
F ⇠= ⇣⇤

0

@Q` ⇥
O

i2S\{1}

e⇤iFi

1

A⌦ ⇣⇤(Q` ⇥ ⇡⇤L 6S)⌦ ⇣⇤(L� ⇥ ⇡⇤L_

�)

⇠= ⇣⇤

0

@L� ⇥
⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘
1

A .

(3.37)

Let

(3.38) v : A1
� {0} ! A1, u : An�1

� An�2
! An�1

be the inclusions of the locus where c1, respectively cj , does not vanish. We
have the commutative diagram

Pn
� (H1 [H1) Pn

�H1

(A1
� {0})⇥ (An�1

� An�2) (A1
� {0})⇥ An�1

Pn

A1
⇥ An�1

V ⇥U U1,j V ⇥U (U � ⌫�1H1) V

Pn
�H1

u

⇠

id⇥ u

v

⌫

v ⇥ id

⇣

ũ ṽ

w

⌧

where all morphisms are étale (hence smooth) and all squares are Cartesian.
We claim that we can make the following series of identifications

⌧⇤⌫⇤v⇤F
�
= ⌧⇤⌫⇤v⇤u!w

⇤

mO

i=1

e⇤iFi = ṽ⇤ũ!⇣
⇤⇠⇤w⇤

mO

i=1

e⇤iFi =

ṽ⇤ũ!⇣
⇤

⇣
L� ⇥

⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘⌘
=

⌧⇤(v ⇥ id)⇤(id⇥ u)!
⇣
L� ⇥

⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘⌘
.

(3.39)

The second equality requires base change over all four squares of the above
commutative diagram. For the top-right and bottom-right squares, we are
base-changing a pushforward by a smooth map, and so we may apply the
smooth base change theorem. For the top-left and bottom-left, we are base-
chaning a compactly supported pushforward (also by a smooth map), and
so we may apply the proper base change theorem. The third equality follows
from Eq. (3.37). The fourth equality requires base change along the bottom-
left and bottom-right squares, which again uses the smooth and proper base
change theorems.
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Since the pullbacks ⌧⇤ and ⌫⇤ are compatible with stalks, it follows from
Eq. (3.39) that the stalk of v⇤F

�
at (f0, 0) is isomorphic to the stalk of

(3.40) (v ⇥ id)⇤(id⇥ u)!
⇣
L� ⇥

⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘⌘

at (f0, 0). To show that the latter stalk vanishes, we invoke the Künneth
formula to get

(v ⇥ id)⇤(id⇥ u)!
⇣
L� ⇥

⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘⌘
=

(v ⇥ id)⇤
⇣
L� ⇥ u!

⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘⌘
=

v⇤L� ⇥ u!
⇣
⇡⇤L_

� ⌦ ⇡⇤L 6S ⌦

O

i2S\{1}

e⇤iFi

⌘
.

(3.41)

Since we assumed that F1 has nontrivial local monodromy at z, the rank
one sheaf L� has nontrivial local monodromy at 0, so the stalk of v⇤L� at 0
vanishes. We conclude that the stalk of the external tensor product above
vanishes at every point U with c1 = 0. In particular, it vanishes at (f0 : 0).

⇤

Lemma 3.6. The shifted sheaf F [n] is a perverse sheaf.

Proof. Perversity is an étale-local condition, so it su�ces to show that each
polynomial f 2 An has an étale neighborhood ⌫ : U ! An such that (⌫⇤F)[n]
is perverse. For each 1  i  m, we will choose a suitable étale neighborhood
Ui of ei(f) in A1 and then take

(3.42) U = (((An
⇥A1 U1)⇥A1 U2) . . . )⇥A1 Um,

which will be an étale neighborhood of f .
Fix 1  i  m. By definition, every section of the stalk of Fi at ei(f) is

defined over an étale neighborhood of ei(f) 2 A1. By constructibility,

(3.43) ri = dim(Fi)ei(f) < 1

so there exists an étale neighborhood U 0

i
of ei(f) in A1 over which all the

sections of Fi at ei(f) are defined. We then have a natural map

(3.44)  : Q`

ri
! Fi |U 0

i

from a constant sheaf on U 0

i
of some rank ri inducing an isomorphism on

the stalks at ei(f). We denote the cokernel of  by Qi, and note that its
stalk at ei(f) vanishes.

Observe that  is injective. Indeed if any nontrivial section of Q`

ri has
image vanishing on some Zariski open set containing ei(f), then the cor-
responding nontrivial section of Fi is supported in the finite complement
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of that open set, contradicting the assumption that Fi has no finitely sup-
ported sections. It follows that the restriction of Fi to U 0

i
is an extension of

Qi by Q`

ri .
Let Ui be the union with {ei(f)} of the largest open subset of U 0

i
where Qi

is lisse. Restricted to Ui, the sheaf Qi is lisse on Ui�{ei(f)} and extended by
zero to Ui. We define U using Eq. (3.42), and let eei : U ! Ui for 1  i  m
and ⌫ : U ! An be the projections.

As Fi restricted to Ui is an extension of Qi by Q`

ri , the sheaf ⌫⇤F is an
iterated extension of 2m sheaves, each of the form

(3.45)
O

i 62S

eei⇤Q`

ri
⌦

O

i2S

eei⇤Qi, S ✓ {1, . . . ,m}.

Since an extension of perverse sheaves is perverse, it su�ces to prove that

(3.46)

0

@
O

i 62S

eei⇤Q`

ri
⌦

O

i2S

eei⇤Qi

1

A [n]

is perverse for any S ✓ {1, . . . ,m}. Tensoring a sheaf M with the pullback
of Q`

ri is equivalent to taking a direct sum of ri copies of M , so it su�ces
to show that

(3.47)

 
O

i2S

eei⇤Qi

!
[n]

is perverse.
Since each Qi is the extension by zero from Ui � {ei(f)} to Ui of a lisse

sheaf, the sheaf eei⇤Qi is the extension by zero from U � eei�1
{ei(f)} to U of

a lisse sheaf, and thus the sheaf

(3.48)
O

i2S

eei⇤Qi

is the extension by zero of a lisse sheaf from the complement in U of

(3.49) D =
[

i2S

eei�1
{ei(f)}

to U .
We claim that the inclusion of the complement of D in U is an a�ne

open immersion. Since U1, . . . , Um are a�ne schemes, U is a�ne as well,
so it su�ces to show that the complement of eei�1

{ei(f)} is a�ne as the
intersection of a�ne open subsets of U is an open a�ne set. Since Ui is
étale over A1, it is a curve so the complement in Ui of (the point over) ei(f)
is a�ne. The map eei is a�ne, so the inverse image of the aforementioned
a�ne complement is a�ne, hence our claim is established.

Lisse sheaves shifted by dim(U) = dim(An) = n are perverse, and by
[BBD82, Corollary 4.1.3], extensions by zero along a�ne open immersions
of perverse sheaves are perverse, so indeed the complex in Eq. (3.47) is
perverse. We can thus conclude that F [n] is perverse. ⇤
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Corollary 3.7. We have

(3.50) Hj

c (An,F) = 0

for every integer j /2 {n, n+ 1}.

Proof. The vanishing for j < n follows from Artin’s a�ne theorem [BBD82,
Corollaire 4.1.2] and the fact, from Lemma 3.6, that F [n] is perverse.

By the excision long exact sequence

· · · ! Hj

c

⇣
Pn

�H1,F
�
⌘
! Hj

⇣
Pn

�H1,F
�
⌘
! Hj

⇣
H1, d

⇤v⇤F
�
⌘
! . . .

from Lemma 3.3, and Eq. (3.7), to prove vanishing for j > n+ 1, it su�ces
to show that for j > n we have

(3.51) Hj

⇣
Pn

�H1,F
�
⌘
= 0, Hj

⇣
H1, d

⇤v⇤F
�
⌘
= 0.

For the first, note that Pn
�H1 is an a�ne variety of dimension n, and

F
�
is a sheaf, so we can invoke Artin’s a�ne theorem again.
We shall now prove the second vanishing statement in Eq. (3.51). Since

F
�
is a sheaf on an n-dimensional variety, the complex F

�
[n] is semiperverse,

so (v⇤F
�
)[n] is semiperverse by [BBD82, Corollaire 4.1.3] as v is a�ne, and

(3.52)
⇣
d⇤v⇤F

�
⌘
[n]

is semiperverse by [BBD82, 4.2.4] because d is a closed immersion. It follows
that the stalks of this complex are supported in nonpositive degrees, hence
the stalks of the complex d⇤v⇤F

�
are supported in degrees not exceeding n.

We know from Lemma 3.4 and Lemma 3.5 that the complex d⇤v⇤F
�
is

supported at only finitely many points, so its cohomology is simply the direct
sum of its stalks. We have seen that these stalks are supported in degrees
not exceeding n, so the cohomology indeed vanishes in degrees greater than
n, as required for the second part of Eq. (3.51). ⇤

3.2. Betti numbers bound. Here we bound the dimension of the coho-
mology groups that are not known to vanish by our previous arguments. We
let  be a perfect field of characteristic p.

Definition 3.8. For K 2 Db
c(A1

,Q`) define the rank

(3.53) r(K) =
1X

j=�1

dimH
j(K)⌘

where ⌘ is a geometric generic point of A1, and the Fourier conductor

(3.54) cF (K) =
1X

j=�1

dimHj

c (A1
(↵)

,K ⌦ L (↵x))

where (↵) is the field of rational functions over  in a variable ↵,  is an
additive character of Fp, and L (↵x) is the Artin-Schreier sheaf.
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Note that the rank agrees with the usual notion of the generic rank when
K is a sheaf or a perverse sheaf. We call cF the Fourier conductor because
it is equal (by the proper base change theorem) to the rank of the Fourier
transform [KL85, Definition 2.1.1]. However, we will not use the character-
ization in terms of Fourier transform here. The Fourier conductor can also
be expressed in terms of local invariants, see Lemma 3.10(5). In order to
write this expression, we need the following ad-hoc modification of the Swan
conductor.

Definition 3.9. As in Definition 2.7, let V be a representation of an inertia
group over Q`, and let V1, . . . , Vn be the Jordan-Hölder factors of V . We set

sw0(V ) =
nX

i=1

max{sw(Vi)� dimVi, 0} =
nX

i=1

max{slope(Vi)� 1, 0} dimVi.

For a sheaf F on an open subset C of a proper curve C/ and a closed point
x of C, put

(3.55) sw0

x(F) = sw0(F⌘)

with F⌘ viewed as a representation of Ix.

Every complex K 2 Db
c(A1

,Q`) has a filtration into its truncations ⌧pK
taken with respect to the perverse t-structure [BBD82, Proposition 1.3.3(i)1],
whose associated graded objects are shifts of {pHj(K)}j2Z, which are per-
verse sheaves. We call this the perverse filtration.

Lemma 3.10. (1) For K 2 Db
c(A1

,Q`) we have

r(K) =
1X

j=�1

r(pHj(K)), cF (K) =
1X

j=�1

cF (
p
H

j(K)).

(2) For a short exact sequence of perverse sheaves

0 ! P1 ! P2 ! P3 ! 0,

on A1
, we have

r(P2) = r(P1) + r(P3), cF (P2) = cF (P1) + cF (P3).

(3) For a skyscraper sheaf K on A1
, we have

r(K) = 0, cF (K) = 1.

(4) For any � 2 , we have

r(L (�x)) = 1, cF (L (�x)) = 0.

(5) For a sheaf F on A1
 with no finitely supported sections, we have

cF (F) =
X

x2|A1
|

cx(F) + sw0

1(F).

(6) Suppose that  is finite. Then for an infinitame sheaf F on A1
 we

have cF (F) = c(F).
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Proof. For (1) and (2), the key point will be that for a perverse sheaf P on
A1
, the stalk H

i(P )⌘ vanishes for i 6= �1 and

(3.56) H i

c

⇣
A1
(↵)

, P ⌦ L (↵x)
⌘
= 0, i 6= 0.

The vanishing of Hi(P )⌘ is due to the fact that perverse sheaves on a
curve are lisse and supported in degree �1 on an open set. The vanishing
in Eq. (3.56) follows from the fact that P ⌦ L (↵x) is perverse on a curve,
hence has compactly-supported cohomology in degrees 0 and 1 only, and the
cohomology in degree 1 equals the monodromy coinvariants, which vanish
for ↵ generic since the representation L (↵x)_ = L (�↵x) can occur as
a quotient of the monodromy representation of P for only finitely many
specializations of ↵.

Write Pj = p
H

j(K). Associated to the perverse filtration, there is a
spectral sequence whose first page is

Ep,q

1 = H
2p+q(P�p)⌘

converging to H
p+q(K)⌘. Similarly, there is a spectral sequence whose first

page is Ep,q

1 = H2p+q
c (A1

(↵)
, P�p ⌦ L (↵x)) converging to

Hp+q

c (A1
(↵)

,K ⌦ L (↵x)).

Because of the vanishing above, in both spectral sequences we have Ep,q

1 =
0 unless q = �2p. Since the di↵erential on the rth page sends Ep,q to
Ep+r,q+1�r and 1� r = �2r only if r = �1, the di↵erentials on the rth page
for every r � 1 vanish, and so the spectral sequence degenerates on the first
page, giving (1).

We also deduce from the vanishing above that the functors on perverse
sheaves P 7! H

�1(P )⌘ and P 7! H0
c (A1

(↵)
, P ⌦L (↵x)) are exact, and that

composing these functors with dimension gives r(P ) and cF (P ) respectively.
This proves (2).

For a skyscraper sheaf, its stalk at the generic point vanishes, while its
twist by an Artin-Schreier sheaf is again a skyscraper sheaf, so has one-
dimensional cohomology in degree zero and no cohomology in all other de-
grees, verifying (3).

For an Artin-Schreier sheaf, its stalk at the generic point has rank one in
degree 0 and none in all other degrees, while its cohomology twisted by any
Artin-Schreier sheaf but its dual vanishes, verifying (4).

Now we check (5). Certainly the stalk of F at the generic point has rank
r(F) in degree 0 and rank zero in other degrees. Since F has no finitely
supported sections, we get that F [1] is perverse, so F ⌦ L (↵x) has no
cohomology in degrees other than 1, hence

(3.57) cF (F) = ��(A1
(↵)

,F ⌦ L (↵x)).
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From Lemma 2.10 we get that

�(A1
(↵)

,F⌦L (↵x)) = �(A1)r(F⌦L (↵x))�
X

y2|A1
(↵)

|

cy(F⌦L (↵x))�sw1(F⌦L (↵x))

so to establish (5), it su�ces to check that for all y 2

���A1
(↵)

���, we have

(3.58) cy(F ⌦ L (↵x)) = cy(F)

and that

(3.59) sw1(F ⌦ L (↵x))� �(A1)r(F ⌦ L (↵x)) = sw0

1(F).

Eq. (3.58) is straightforward from Eq. (2.19) since neither the Swan con-
ductor at y nor the drop at y can be changed by tensoring with a lisse sheaf
of rank one in a neighborhood of y.

For Eq. (3.59) note that �(A1) = 1 by Eq. (2.22), and that tensoring with
a lisse sheaf of rank one does not a↵ect the rank, so it su�ces to prove that

(3.60) sw1(F ⌦ L (↵x))� r(F) = sw0

1(F).

Every term above can be expressed in terms of the representation V = F⌘

of I1, so it su�ces to show that

(3.61) sw(V ⌦ L (↵x))� dim(V ) = sw0(V )

where we have abused notation by using L (↵x) for both a sheaf and its
inertia representation at 1.

Since all terms above are additive in extensions of irreducible represen-
tations, we may assume V is irreducible, in which case it su�ces by Defini-
tion 2.7 and Definition 3.9 to prove that

(3.62) slope(V ⌦L (↵x)) dim(V )�dim(V ) = max{slope(V )�1, 0} dim(V )

or, equivalently, that

(3.63) slope(V ⌦ L (↵x)) = max{slope(V ), 1}.

The above follows from Proposition 2.11 once we check that I11 does not
act on V by scalars via the character L (�↵x). If it were to act by scalars,
the character defined by those scalars would be unique, but L (�↵x) gives
distinct characters of I11 for di↵erent specializations of ↵, so such an action
by scalars is impossible for generic ↵.

At last we deduce (6) from (5). Since F has no finitely supported sec-
tions and is tamely ramified at infinity, it follows from (5), Definition 3.9,
Definition 2.7, Definition 2.6, and the definition in Eq. (1.17) that

(3.64) cF (F) =
X

x2|A1
|

cx(F) =
X

x2|A1
|

[(x) : ](dx(F) + swx(F)) = c(F)

as required for (6). ⇤



48 WILL SAWIN AND MARK SHUSTERMAN

3.2.1. Betti bounds for tensor products.

Lemma 3.11. For K1 2 Db
c(A1

,Q`) and a sheaf K2 on A1
 with no finitely

supported sections, we have

(3.65)
1X

j=�1

dimHj

c (A1
,K1 ⌦K2)  cF (K1)r(K2) + r(K1)cF (K2) + r(K1)r(K2).

Proof. First, let us reduce to the case when K1 is perverse. The perverse
filtration on K1, whose jth associated graded by definition is p

H
j(K1), in-

duces a filtration on K1 ⌦K2 whose jth associated graded is p
H

j(K1)⌦K2

and thus a filtration on H⇤(A1

,K1 ⌦ K2) whose jth associated graded is

H⇤
c (A1


, pHj(K1) ⌦K2). The spectral sequence associated to this filtration

converges to Hp+q
c (A1


,K1⌦K2) with first page H2p+q

c (A1

, pH�p(K1)⌦K2).

This spectral sequence gives the inequality

(3.66) dimHn

c (A1
,K1 ⌦K2) 

1X

j=�1

dimHn�j

c (A1
,

p
H

j(K1)⌦K2)

which implies

(3.67)
1X

i=�1

dimH i

c(A1
,K1⌦K2) 

1X

i=�1

1X

j=�1

dimH i

c(A1
,

p
H

j(K1)⌦K2).

Thus the left hand side of Eq. (3.65) is subadditive when we pass to
perverse cohomology. By Lemma 3.10(1), the right hand side of Eq. (3.65)
is additive when we pass to perverse cohomology. It is therefore su�cient to
handle the case when K1 is perverse. By the same argument, except using
Lemma 3.10(2), it su�ces to handle the case when K1 is an irreducible
perverse sheaf.

As K1 is an irreducible perverse sheaf, it is either a skyscraper sheaf or the
shift of a middle extension sheaf [BBD82, 5.2.2 (a),(b)], which in particular
will have no finitely supported sections. Since both sides of Eq. (3.65) are
invariant under shifts, it su�ces to handle the case when K1 is either a
skyscraper sheaf or a sheaf with no finitely supported sections.

If K1 = �x for some x 2 A1
 is a skyscraper sheaf then by Lemma 3.10(3)

we have cF (K1) = 1 and

(3.68) H i

c(A1
,K1 ⌦K2) = H

i(K2)x =

(
K2,x i = 0

0 i 6= 0

so since K2 has no finitely supported sections, we get

(3.69)
1X

i=�1

H i

c(A1
,K1 ⌦K2) = dimK2,x  r(K2) = cF (K1)r(K2)

so the required inequality in Eq. (3.65) is satisfied.
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Finally, we must check the case when K1 and K2 are sheaves with no
finitely supported sections. Thus K1⌦K2 has no finitely supported sections
either, so H0

c (A1

,K1 ⌦K2) = 0. Hence we have

1X

i=�1

dimH i

c(A1
,K1 ⌦K2) = dimH1

c (A1
,K1 ⌦K2) + dimH2

c (A1
,K1 ⌦K2)

= 2 dimH2
c (A1

,K1 ⌦K2)� �(A1
,K1 ⌦K2).

By [Ka88, 2.0.6], we can identify H2
c (A1


,K1 ⌦K2) with the coinvariants

of K1,⌘ ⌦ K2,⌘ under the action of ⇡ét1 (U), for some open U in A1

where

K1,K2 are lisse. By Lemma 2.10 we have

�(A1
,K1 ⌦K2) =

r(K1 ⌦K2)�
X

x2|A1
|

(r(K1 ⌦K2)� dim(K1 ⌦K2)x + swx(K1 ⌦K2))� sw1(K1 ⌦K2).

We will check that
(3.70)
r(K1⌦K2)�dim(K1⌦K2)x+swx(K1⌦K2)  cx(K1)r(K2)+r(K1)cx(K2)

for every x 2 |A1

|, and that

sw1(K1 ⌦K2)� r(K1 ⌦K2) + 2 dim(K1,⌘ ⌦K2,⌘)⇡ét
1 (U) 

sw0

1(K1)r(K2) + r(K1)sw
0

1(K2) + r(K1)r(K2).
(3.71)

The bound in Eq. (3.65) will then follow upon summing Eq. (3.70) over all
x 2 |A1


|, adding Eq. (3.71), and using Lemma 3.10(5).

For Eq. (3.70), first observe that

(3.72) dim(K1 ⌦K2)x = dim(K1,x ⌦K2,x) = dim(K1,x) dim(K2,x)

so that
r(K1 ⌦K2)� dim(K1 ⌦K2)x = r(K1)r(K2)� dim(K1,x) dim(K2,x) 

r(K1)r(K2)� dim(K1,x) dim(K2,x) + (r(K1)� dim(K1,x))(r(K2)� dim(K2,x)) =

r(K1)(r(K2)� dim(K2,x)) + (r(K1)� dim(K1,x))r(K2).

Next we apply Corollary 2.12 to obtain

(3.73) swx(K1 ⌦K2)  swx(K1)r(K2) + r(K1)swx(K2).

Eq. (3.70) now follows from the definition of cx(K1) and cx(K2).
We turn to Eq. (3.71). As every global monodromy coinvariant is a coin-

variant of the local monodromy at 1, it su�ces to prove that

sw1(K1⌦K2)+2 dim(K1,⌘⌦K2,⌘)I1  sw0

1(K1)r(K2)+r(K1)sw
0

1(K2)+2r(K1)r(K2).

Both sides above depend only on V1 = K1,⌘ and V2 = K2,⌘ viewed as rep-
resentations of I1. Writing V1 and V2 as iterated extensions of irreducible
representations, the swan conductor, rank, and sw0 are all additive, while
the dimension of the inertia coinvariants is subadditive, so it su�ces to
handle the case when V1 and V2 are irreducible.
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In case V1 and V2 are irreducible, by Definition 3.9, we must prove that

sw(V1 ⌦ V2) + 2 dim(V1 ⌦ V2)I1 

dim(V1) dim(V2)(max{slope(V1)� 1, 0}+max{slope(V2)� 1, 0}+ 2).

Since trivial representations have Swan conductor zero, and

dim(V1 ⌦ V2)I1 = dimHomI1(V1 ⌦ V2,Q`) = dimHomI1(V1, V
_

2 )  1

in view of irreducibility, it follows from Proposition 2.11(1) that

sw(V1 ⌦ V2)  (dim(V1) dim(V2)� dim(V1 ⌦ V2)I1)max{slope(V1), slope(V2)}

 (dim(V1) dim(V2)� dim(V1 ⌦ V2)I1)max{slope(V1), slope(V2), 2}

 dim(V1) dim(V2)max{slope(V1), slope(V2), 2}� 2 dim(V1 ⌦ V2)I1

and this is at most

dim(V1) dim(V2)(max{slope(V1)�1, 0}+max{slope(V2)�1, 0}+2)�2 dim(V1⌦V2)I1

so Eq. (3.71) is established. ⇤

We shall need an auxiliary vanishing statement for the cohomology of
Artin-Schreier sheaves.

Lemma 3.12. Let n,m be a positive integers, let An
be the a�ne space over

, let e1, . . . , em : An
! A1

be a�ne maps, and let ↵1, . . . ,↵m 2  be scalars

such that the map

(3.74) e =
mX

i=1

↵iei

is nonconstant. Then

(3.75) H⇤

c

 
An

,
mO

i=1

e⇤iL (↵ix)

!
= 0.

Proof. We start with the special case n = m = 1, ↵1 = 1, e1 = id, where
we need to show that

(3.76) H0
c (A1

,L (x)) = H1
c (A1

,L (x)) = H2
c (A1

,L (x)) = 0.

Vanishing in degree 0 follows from Lemma 2.15(5). For degree 2 we have

(3.77) H2
c (A1

,L (x)) = (L (x)⌘)⇡ét
1 (U)

for some open U ✓ A1

where L (x) is lisse as in Lemma 2.15(2). Since

dimL (x)⌘ = 1 by Lemma 2.15(6) and ⇡ét1 (U) acts nontrivially, the dimen-
sion of the coinvariants is less than 1, so we have the desired vanishing of
cohomology in degree 2. In view of the vanishing in degrees 0 and 2, we get
from Lemma 2.10, Lemma 2.15(2,6), and Eq. (2.22) that

dimH1
c (A1

,L (x)) = ��(A1
,L (x)) = sw1L (x)� �(A1

)r(L (x))

= 1 · 1� 1 = 0.
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For the general case, we shall begin by checking that

(3.78)
mO

i=1

e⇤iL (↵ix) ⇠= e⇤L (x).

Both sheaves are lisse of rank 1 on An, so it su�ces to check that each � in
⇡ét1 (An

) acts on their generic fibers by the same scalar. For each 1  i  m,
the action of � on the generic fiber of e⇤

i
L (↵ix) arises from its action on

the finite étale cover yp
i
� yi = ↵iei of An (by translation on yi) composed

with  , so the action of � on the generic fiber of the tensor product arises
from its action on the product of all these covers, composed with  , and
multiplying. That is, � acts by the scalar

mY

i=1

 (�(yi)� yi) =  

 
mX

i=1

(�(yi)� yi)

!
=  

 
�

 
mX

i=1

yi

!
�

mX

i=1

yi

!
.

Setting y =
P

m

i=1 yi, we see that

(3.79) yp � y =
mX

i=1

yp
i
�

mX

i=1

yi =
mX

i=1

↵iei = e,

so � acts by the same scalar on the generic fiber of e⇤L (x).
If e is nonconstant, we can use it as a coordinate of An, namely write

An = A1
⇥ An�1 with e projecting onto the first factor. From the Künneth

formula and Eq. (3.76) we get that

H⇤

c

 
An

,
mO

i=1

e⇤iL (↵ix)

!
= H⇤

c (An

, e
⇤
L (x)) = H⇤

c (A1
 ⇥ An�1


,L (x)⇥Q`)

= H⇤

c (A1
,L (x))⌦H⇤

c (An�1


,Q`)

= 0⌦H⇤

c (An�1


,Q`) = 0.

⇤
Lemma 3.13. Let  be an algebraically closed field of characteristic p, let
x1, . . . , xm 2  be distinct elements, and let K1, . . . ,Km be sheaves on A1



with no finitely supported sections. For a nonnegative integer n  m, view

An
 as the space of polynomials of degree less than n, and for 1  i  m let

ei : An
! A1

be the map that evaluates a polynomial at xi. We then have

(3.80)
1X

j=�1

dimHj

c

⇣
An,

mO

i=1

e⇤iKi

⌘


⇣ mY

i=1

(r(Ki)(1+Z) + cF (Ki)Z)
⌘
[Zn]

where Z is a formal variable and [Zn] is the operator extracting the coe�-

cient of Zn
from a polynomial.

Proof. We will prove this by inductively replacing each Ki with either a
skyscraper sheaf �↵i or an Artin-Schreier sheaf L (↵ix). To that end, let us
formulate a more general statement, depending on a parameter d, which we
will prove by induction.
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Fix 0  d  m. Let (↵d+1, . . . ,↵m) be the field of rational functions
in m � d variables. Let S ✓ {d + 1, . . . ,m} be a subset, and denote its
complement by Sc. Our more general statement is that

1X

j=�1

dimHj

c

⇣
An

(↵d+1,...,↵m)
,
⇣ dO

i=1

e⇤iKi

⌘
⌦

⇣O

i2S

e⇤i �↵i

⌘
⌦

⇣O

i2Sc

e⇤iL (↵ix)
⌘⌘

is at most

(3.81)
⇣
Z |S|

dY

i=1

(r(Ki)(1 + Z) + cF (Ki)Z)
⌘
[Zn].

Our lemma follows by taking d = m.
We prove the above by induction on d. Let us first check the base case,

when d = 0, so no Ki appear, and Eq. (3.81) is simply 1 if |S| = n and 0
otherwise. In this case, observe that

N
i2S

e⇤
i
�↵i is the constant sheaf on

(3.82) L = {f 2 An : f(xi) = ↵i, i 2 S}.

As the ↵i are independent transcendentals, L is empty in case |S| > n,
and then the sheaf

N
i2S

e⇤
i
�↵i is zero, so the cohomology is vanishing in

all degrees hence the zero bound in Eq. (3.81) is confirmed. In case |S| 
n, the locus L is an a�ne space of dimension n � |S|. By Lemma 3.12,
the cohomology of this a�ne space with coe�cients in

N
i2Sc e⇤iL (↵ix)

vanishes as long as
P

i2Sc ↵iei is nonconstant. Since the ↵i are independent
transcendentals this sum is nonconstant as soon as one of the ei (i.e. f 7!

f(↵i)) is nonconstant on L. If |S| < n then all of these forms are nonconstant
on L, and because n  m by assumption, the set Sc parametrizing these
forms is nonempty, so indeed at least one is nonconstant, and the zero bound
in Eq. (3.81) is valid also in case |S| < n. If |S| = n, we are taking the
cohomology of a point with coe�cients in a (constant) sheaf of rank 1,
hence the cohomology is 1-dimensional (concentrated in degree j = 0). This
verifies the base case.

For the induction step, we first introduce the simplifying notation

d = (↵d+1, . . . ,↵m), Kd =
dO

i=1

e⇤iKi, �S =
O

i2S

e⇤i �↵i , ASc =
O

i2Sc

e⇤iL (↵ix).

In this notation, the inductive statement is that

1X

j=�1

dimHj

c

�
An

d
,Kd ⌦ �S ⌦ASc

�

is bounded by Eq. (3.81). We assume that the statement is known for d�1;
we will verify it for d. By the projection formula and the definition of Kd,
for every integer j we have

Hj

c

�
An

d
,Kd ⌦ �S ⌦ASc

�
= Hj

c

�
A1
d
,Kd ⌦ ed,!

�
Kd�1 ⌦ �S ⌦ASc

��
.
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It follows from Lemma 3.11 that
1X

j=�1

dimHj

c

�
An

d
,Kd ⌦ �S ⌦ASc

�


r(Kd)cF
�
ed,!
�
Kd�1 ⌦ �S ⌦ASc

��
+ (r(Kd) + cF (Kd))r

�
ed,!
�
Kd�1 ⌦ �S ⌦ASc

��
.

Using the fact that d�1 is an algebraic closure of d(↵d), we get from
Definition 3.8, the projection formula, and the inductive hypothesis that

cF
�
ed,!
�
Kd�1 ⌦ �S ⌦ASc

��
=

1X

j=�1

dimHj

c

⇣
A1
d�1

,L (↵dx)⌦ ed,!
�
Kd�1 ⌦ �S ⌦ASc

�⌘
=

1X

j=�1

dimHj

c

⇣
An

d�1
,Kd�1 ⌦ �S ⌦ASc[{d}

⌘


⇣
Z |S|

d�1Y

i=1

(r(Ki)(1 + Z) + cF (Ki)Z)
⌘
[Zn].

We make a similar argument for the rank. To do so, observe that taking
the stalk at the generic point is equivalent to taking the stalk, over the field
extension of the base field adjoining a new variable ↵d, at the point ↵d, and
this is equivalent to taking the tensor product with the skyscraper sheaf �↵d

and taking cohomology in degree zero. This gives

r
�
ed,!
�
Kd�1 ⌦ �S ⌦ASc

��
=

1X

j=�1

dimHj

c

⇣
A1
d�1

, �↵d ⌦ ed,!
�
Kd�1 ⌦ �S ⌦ASc

�⌘
=

1X

j=�1

dimHj

c

⇣
An

d�1
,Kd�1 ⌦ �S[{d} ⌦ASc

⌘


⇣
Z |S|+1

d�1Y

i=1

(r(Ki)(1 + Z) + cF (Ki)Z)
⌘
[Zn].

Combining all the bounds above, we obtain
1X

j=�1

dimHj

c

�
An

d
,Kd ⌦ �S ⌦ASc

�


⇣
Z |S|(r(Kd) + (r(Kd) + cF (Kd))Z)

d�1Y

i=1

(r(Ki)(1 + Z) + cF (Ki)Z)
⌘
[Zn] =

⇣
Z |S|

dY

i=1

(r(Ki)(1 + Z) + cF (Ki)Z)
⌘
[Zn],

completing the induction step. ⇤
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3.2.2. Short trace sum bound.

Corollary 3.14. Let m be a positive integer, let g 2 Fq[u] be a squarefree

polynomial of degree m, and let

(3.83) t : Fq[u]/(g) ! C
be an infinitame trace function, such that for some prime factor ⌧ of g, the
function t⌧ is a Dirichlet trace function. Then for n < m we have

���
X

f2Fq [u]
deg(f)<n

t(f)
���  q

n
2+

1
2

⇣Y

⇡|g

(r(t⇡)(1 + Z) + c(t⇡)Z)deg(⇡)
⌘
[Zn]

while for n � m we have
X

f2Fq [u]
deg(f)<n

t(f) = 0.

Proof. Suppose first that n < m.
Let x1, . . . , xm 2 Fq be the roots of g ordered in such a way that ⌧(x1) = 0.

For each prime factor ⇡ of g, let F⇡ be a sheaf on A1
Fq [u]/(⇡)

giving rise to

the trace function t⇡.
Since t⌧ is a Dirichlet trace function, in view of Example 1.7 and Nota-

tion 2.1, we can take

(3.84) F⌧ = L�(c(T � z))

where c 2 (Fq[u]/(⌧))⇥, z 2 Fq[u]/(⌧), and � : (Fq[u]/(⌧))⇥ ! C⇥ is a
character of order greater than 1.

Fix 1  i  m. Since g is squarefree, there exists a unique prime factor ⇡
of g such that ⇡(xi) = 0. We define a sheaf Fi on A1

Fq
to be the base change of

F⇡ along the embedding Fq[u]/(⇡) ,! Fq mapping u to xi. Since ⌧(x1) = 0,
for the case i = 1 we have ⇡ = ⌧ , hence F1 is geometrically isomorphic to
the Kummer sheaf L�(c(T�z)), so we conclude from Lemma 2.2(7), that all
the assumptions made in Notation 3.2 are satisfied here. From that notation
we borrow the evaluation maps ei : An

! A1 defined in Eq. (3.2).
Let

(3.85) F =
mO

i=1

e⇤iFi.

We will construct a sheaf F on An

Fq
such that for every f 2 Fq[u] with

deg(f) < n we have

(3.86) tF (f) = t(f)

and the base change of F to An

Fq
is isomorphic to F .

To do this, fix a prime factor ⇡ of g. Let e⇡ : An

Fq [u]/(⇡)
! A1

Fq [u]/(⇡)

be the map sending a polynomial f of degree less than n to f(u) mod
⇡. Let �⇡ : An

Fq [u]/(⇡)
! An

Fq
be the map arising from the field embedding
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Fq ! Fq[u]/(⇡). The map �⇡ is a finite étale Galois cover. Antonio Rojas-
León has associated to such a cover in [RL20] a tensor direct image functor
�⇡⌦⇤ from sheaves on the source to sheaves on the target. Using this, we take

F =
O

⇡|g

�⇡⌦⇤e
⇤

⇡F⇡.

To prove Eq. (3.86), we note that

tF (f) = tr(Frobq,Ff ) = tr
⇣
Frobq,

O

⇡|g

�
�⇡⌦⇤e

⇤

⇡F⇡

�
f

⌘
=
Y

⇡|g

tr
⇣
Frobq,

�
�⇡⌦⇤e

⇤

⇡F⇡

�
f

⌘

=
Y

⇡|g

tr
⇣
Frobqdeg ⇡ , (e

⇤

⇡F⇡)f

⌘
=
Y

⇡|g

tr
⇣
Frobqdeg ⇡ , (F⇡)e⇡(f)

⌘
=
Y

⇡|g

t⇡(f) = t(f).

Here the first two equalities are by definition of tF and F , the third is a
basic property of tensor products, the key fourth equality is a consequence
of [RL20, Proposition 7], the fifth is a basic property of stalks, and the last
two are by definition of F⇡ and t.

We now prove that the base change of F to An

Fq
is isomorphic to F . It

follows from [RL20, Definition 1] that the pullback of �⇡⌦⇤e
⇤
⇡F⇡ to An

Fq [u]/(⇡)

under �⇡ is

(3.87)
O

⌧2Gal(Fq[u]/(⇡)/Fq)

⌧⇤e⇤⇡F⇡.

After making a further pullback (of the sheaf above) to Fq, each choice of
⌧ 2 Gal(Fq[u]/(⇡)/Fq) induces a di↵erent embedding ◆⌧ : Fq[u]/(⇡) ! Fq. The
pullback of e⇤⇡F⇡ along such an embedding ◆⌧ is the pullback of ◆⇤⌧F⇡ along
the map obtained from e⇡ by applying ◆⌧ to its coordinates.

For each embedding ◆⌧ , the element ◆⌧ (u) is the root xi⌧ of ⇡ for some
1  i⌧  m. Since e⇡ sends f to f(u) and ◆⌧ sends u to xi⌧ , the map obtained
from e⇡ by applying ◆⌧ to its coordinates sends f to f(xi⌧ ), namely this map
is ei⌧ . Similarly, since ⌧ is the embedding Fq[u]/(⇡) ! Fq sending u to xi⌧ ,
the sheaf ◆⇤⌧F⇡ is by definition Fi⌧ .

It follows that the base change of �⇡⌦⇤e
⇤
⇡F⇡, or equivalently of the sheaf in

Eq. (3.87), to An

Fq
is

O

⌧2Gal(Fq[u]/(⇡)/Fq)

e⇤i⌧Fi⌧ =
O

1im

⇡(xi)=0

e⇤iFi.

Taking the tensor product over all primes ⇡ dividing g, we conclude from the
definitions of F and F that the base change of F to An

Fq
is indeed isomorphic

to F .
Since F⇡ is mixed of nonpositive weights, a property that is preserved

under pullback and tensor product, the sheaf in Eq. (3.87) is mixed of non-
positive weights. Thus �⇡⌦⇤e

⇤
⇡F⇡ is mixed of nonpositive weights, and hence

F is mixed of nonpositive weights.
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It follows from Eq. (3.86) and the Grothendieck-Lefschetz trace formula
that

(3.88)
���
X

f2Fq [u]
deg f<n

t(f)
��� =

���
X

x2An(Fq)

tF (x)
��� 

1X

j=�1

���tr(Frobq, Hj

c (An

Fq
,F))

��� .

Since F is mixed of nonpositive weights, Deligne’s Riemann Hypothesis and
Eq. (3.85) bound the above by

(3.89)
1X

j=�1

qj/2 dimHj

c

⇣
An

Fq
,

mO

i=1

e⇤iFi

⌘
.

Corollary 3.7 allows us to bound the sum above by

(3.90) q
n+1
2 dimHn

c

⇣
An

Fq
,

mO

i=1

e⇤iFi

⌘
+ q

n+1
2 dimHn+1

c

⇣
An

Fq
,

mO

i=1

e⇤iFi

⌘
.

Since the sheaves Fi have no finitely supported sections, and n  m, we
get from Lemma 3.13 that the above is at most

(3.91) q
n+1
2

 
mY

i=1

(r(Fi)(1 + Z) + cF (Fi)Z)

!
[Zn]

and since each F⇡ occurs with multiplicity deg(⇡) among the Fi, we get

(3.92) q
n
2+

1
2

 
Y

⇡|g

(r(F⇡)(1 + Z) + cF (F⇡)Z)deg(⇡)
!
[Zn].

By Definition 1.4 we have r(F⇡) = r(t⇡), and since the sheaves F⇡ are
infinitame, we get from Lemma 3.10(6) and Eq. (1.17) that cF (F⇡) = c(t⇡),
so the above equals

(3.93) q
n
2+

1
2

 
Y

⇡|g

(r(t⇡)(1 + Z) + c(t⇡)Z)deg(⇡)
!
[Zn]

as required.
Suppose now that n � m. By the Chinese Remainder Theorem, and the

fact that each residue class mod g contains qn�m polynomials of degree less
than n, we have

X

f2Fq [u]
deg(f)<n

t(f) = qn�m
X

f2Fq [u]/(g)

Y

⇡|g

t⇡(f) = qn�m
Y

⇡|g

X

f2Fq [u]/(⇡)

t⇡(f).

For ⇡ = ⌧ we are summing a Dirichlet trace function over all residue classes,
so this sum vanishes, hence the product is zero. ⇤
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We deduce Theorem 1.10. Namely for a squarefree g 2 Fq[u], and an
infinitame g-periodic trace function t for which there exists a prime ⇡ | g
with t⇡ a Dirichlet trace function, we show that

X

f2Fq [u]
|f |<X

t(f) ⌧ X
1
2 |g|logq(2r(t)+c(t)).

Proof of Theorem 1.10. Applying Corollary 3.14 with n = dlogq(X)e, and
recalling Definition 1.8, we get the bound

X

f2Fq [u]
|f |<X

t(f) ⌧ q
n
2+

1
2

0

@
Y

⇡|g

(r(t⇡)(1 + Z) + cF (t⇡)Z)deg(⇡)

1

A [Zn]

⌧ X
1
2

0

@
Y

⇡|g

(r(t)(1 + Z) + c(t)Z)deg(⇡)

1

A [Zn].

(3.94)

The coe�cients of the polynomial above are nonnegative, so the coe�cient
of Zn is bounded by the sum of all the coe�cients. This sum is the value of
the polynomial at Z = 1 which equals

Y

⇡|g

(2r(t) + c(t))deg(⇡) = (2r(t) + c(t))
P
⇡|g deg(⇡)

= (2r(t) + c(t))deg(g) = |g|logq(2r(t)+c(t))

so we get the result after multiplying by the factor X
1
2 from Eq. (3.94). ⇤

4. Möbius function, discriminants, resultants

Notation 4.1. Define an interval I in Fq[u] to be a set of the form

(4.1) If,d = {f + g : g 2 Fq[u], deg(g) < d}

for some f 2 Fq[u] and some nonnegative integer d. Define the dimension,
length, and degree of the interval I = If,d to be

(4.2) dim(I) = d, len(I) = qd, deg(I) = max{d, deg(f)}.

While f is not uniquely determined by the interval I, it is easy to see that
the dimension, length, and degree are.

As an example, the set of monic polynomials of degree d is an interval of
dimension d, which we can see by taking f = ud.

Associated to an interval I = If,d, we have the subset IFq
of Fq[u], simi-

larly defined as

(4.3) IFq
= {f + g : g 2 Fq[u], deg(g) < d}.
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For f + g 2 IFq
, let ✓i(f + g) be the coe�cient of ui in f + g. Then writing

f = ⌧0u0 + · · ·+ ⌧deg(f)u
deg(f), we get that

(4.4) f + g =
d�1X

i=0

✓iu
i +

deg(f)X

j=d

⌧ju
j ,

and so g is uniquely determined by ✓0, . . . , ✓d�1. We say that {✓i}
d�1
i=0 are

the coordinates of IFq
. We call ✓0 the lowest coordinate of IFq

. Note that

the number of coordinates of IFq
is dim(I).

We say an interval I is F -adapted for F 2 Fq[u, T ] if the degree of
F (u, g(u)) is independent of g(u) 2 IFq

and nonnegative. For an F -adapted

interval I, call the degree of F (u, g(u)) for g(u) 2 IFq
the F -degree.

The next proposition shows that F -adapted intervals satisfy a property
that is seemingly slightly stronger.

Proposition 4.2. Keep Notation 4.1 and Notation 4.11. Let I be an F -

adapted interval in Fq[u]. Then the leading term of F (u, g(u)) is also inde-

pendent of g(u) 2 IFq
.

Proof. The coe�cient of the highest power ud of u in F (u, g(u)) is a poly-
nomial function P of the coordinates of g(u) 2 IFq

. Since the degree d of

F (u, g(u)) is independent of g(u) 2 IFq
, this polynomial function P vanishes

nowhere, so by the Nullstellensatz, it is constant. ⇤

4.1. Relating the Möbius function to Dirichlet characters. The main
goal of this section, generalizing [SS19, Section 3], is to prove Corollary 4.12,
which gives a formula for the quantity µ(F (u, f(u)) from Theorem 1.3, when
restricted to special subsets of the form f(u) = r(u)+s(u)p for fixed r(u) and
varying s(u). Later, we will use this to control the average of µ(F (u, f(u)))
by averaging over each special subset separately.

4.1.1. Zeuthen’s rule. We recall Zeuthen’s rule from [CCG08, Lemma 4.6]
in a slightly generalized form.

Notation 4.3. Let f1(u, T ) and f2(u, T ) be two polynomials in Fq[u, T ]. Set

(4.5) Zfi = {(a, b) 2 Fq

2
: fi(a, b) = 0}, i 2 {1, 2}.

In case Zf1 \ Zf2 is finite, for any

(4.6) x = (ux, tx) 2 Fq

2

we denote by

(4.7) ix(Zf1 , Zf2) = dimFq
Fq[u, T ](u�ux,T�tx)/(f1, f2)

the intersection number of Zf1 and Zf2 at x. One readily checks that the
quantity above is positive if and only if x 2 Zf1 \ Zf2 .
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Let d, d0 be nonnegative integers. As in [CCG08, Section 3], we denote by

(4.8) Rd,d0(↵(u),�(u)) 2 Fq

the resultant defined by the universal formula for a polynomial ↵(u) 2 Fq[u]
of degree at most d, and a polynomial �(u) 2 Fq[u] of degree at most d0 in
terms of the coe�cients of these polynomials (this universal formula is the
determinant of the Sylvester matrix associated to ↵ and �). Omitting d, d0

we set

(4.9) R(↵(u),�(u)) = Rdeg(↵),deg(�)(↵(u),�(u)).

In this work, every time we write Rd,d0(↵(u),�(u)) we will in fact have
d = deg(↵), in which case [CCG08, (3.2)] says that

(4.10) Rd,d0(↵(u),�(u)) = ↵d
0
�deg(�)

d
R(↵(u),�(u))

where ↵d is the coe�cient of ud in ↵(u). We conclude that

(4.11) Rd,d00(↵(u),�(u)) = ↵d
00
�d

0

d
Rd,d0(↵(u),�(u))

for any integer d00 � deg(�). We also recall from [CCG08, (3.1)] that

(4.12) R(↵(u),�(u)) = ↵deg(�)
d

Y

z2Fq

↵(z)=0

�(z).

Occasionally, we will think of f1, f2 2 Fq[u][T ] as polynomials in T with
coe�cients from Fq[u]. For example, the leading coe�cient of f1 is the
coe�cient of the highest power of T . Moreover, we use the notation R(f1, f2)
for the resultant of f1 and f2, always to be taken with respect to the variable
T , producing a polynomial in Fq[u].

For � 2 Fq[u] and u0 2 Fq, we denote by

(4.13) ordu=u0�(u) = sup{m � 0 : (u� u0)
m

| �(u)}

the order of vanishing of �(u) at u = u0. All of the above is in fact valid for
an arbitrary field in place of Fq.

Lemma 4.4. Keep Notation 4.3, and suppose that Zf1 \Zf2 is finite. Then

(4.14) ordu=u0 R(f1, f2) �
X

c2Fq

i(u0,c)(f1, f2)

for every u0 2 Fq, with equality if the leading coe�cient of one of the poly-

nomials f1, f2 does not vanish at u0.

Proof. The case where one leading coe�cient does not vanish is [CCG08,
Lemma 4.6], so we only prove the inequality above.

Since Zf1 \ Zf2 is finite, we can find � 2 Fq with (u0,�) /2 Zf1 \ Zf2 .
Making the change of variable T 7! T +�, which preserves both sides of the
inequality above, we can assume that (u0, 0) /2 Zf1 \ Zf2 . In other words,
the constant term of one of the polynomials f1, f2 does not vanish at u0.
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Let d1 and d2 be the degrees of f1 and f2 respectively, and set

(4.15) f 0

1(u, T ) = f1(u, T
�1)T d1 , f 0

2(u, T ) = f2(u, T
�1)T d2

exchanging the constant and leading terms. Then

(4.16) R(f 0

1, f
0

2) = (�1)d1d2R(f1, f2)

so

(4.17) ordu=u0 R(f1, f2) = ordu=u0 R(f 0

1, f
0

2).

Since the leading coe�cient of one of the polynomials f 0

1, f
0

2 does not
vanish at u0, by the previous case we have equality in Eq. (4.14), namely

(4.18) ordu=u0 R(f 0

1, f
0

2) =
X

c2Fq

i(u0,c)(f
0

1, f
0

2).

Removing c = 0, we get

(4.19)
X

c2Fq

i(u0,c)(f
0

1, f
0

2) �
X

c2Fq
⇥

i(u0,c)(f
0

1, f
0

2).

For every c 2 Fq

⇥
, mapping T to Y �1 induces an isomorphism

(4.20) Fq[u, T ](u�u0,T�c�1)
⇠= Fq[u, Y ](u�u0,Y�c)

hence also the isomorphisms

Fq[u, T ](u�u0,T�c�1)/(f1(u, T ), f2(u, T )) ⇠=

Fq[u, T ](u�u0,T�c)/(f1(u, T
�1), f2(u, T

�1)) ⇠=

Fq[u, T ](u�u0,T�c)/(f
0

1(u, T ), f
0

2(u, T )).

(4.21)

Therefore, by definition of intersection numbers in Eq. (4.7), we get

(4.22) i(u0,c
�1)(f1, f2) = i(u0,c)(f

0

1, f
0

2).

Inverting c 2 Fq

⇥
, we get

(4.23)
X

c2Fq
⇥

i(u0,c)(f
0

1, f
0

2) =
X

c2Fq
⇥

i(u0,c)(f1, f2) =
X

c2Fq

i(u0,c)(f1, f2)

where the last equality holds because the constant term of one of the poly-
nomials f1, f2 does not vanish at u0 so i(u0,0)(f1, f2) vanishes. Combining
Eqs. (4.17) to (4.19) and (4.23), we get Eq. (4.14). ⇤

Remark 4.5. The proof above is valid for every algebraically closed field in
place of Fq.
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4.1.2. Resultant formula. Using Zeuthen’s rule, we prove a formula for a
resultant, which we later apply to the resultant of a polynomial and its
derivative, namely the discriminant. The latter is related to the value of
Möbius by Pellet’s formula. Our formula is a variant of [CCG08, Theorem
4.5], with our condition on the interval I replacing the assumption on the
degree therein.

Lemma 4.6. Keep Notation 4.1 and Notation 4.3. Suppose that Zf1 \ Zf2

is finite, and let I be an f1-adapted interval in Fq[u]. Let d be the f1-degree
of I, and let d0 be an integer satisfying

(4.24) deg(f2(u, g(u)))  d0

for g 2 IFq
. Then there exists c 2 F⇥

q (depending on I, f1, f2) such that

(4.25) Rd,d0(f1(u, g(u)), f2(u, g(u))) = c
Y

x2Zf1
\Zf2

(g(ux)� tx)
ix(Zf1

,Zf2)

for any g(u) 2 IFq
, using the convention x = (ux, tx) from Notation 4.3.

Proof. We assume first that dim(I) � 2, namely that IFq
has at least two

coordinates ✓0, ✓1.
As in the proof of [CCG08, Theorem 4.5], the first step is to prove that

there exists c 2 F⇥
q and an assignment of a positive integer ex to each

x 2 Zf1 \ Zf2 such that

(4.26) Rd,d0(f1(u, g), f2(u, g)) = c
Y

x2Zf1
\Zf2

(g(ux)� tx)
ex

for every g 2 IFq
. In the proof of this factorization we essentially follow

the proof of [CCG08, Lemma 4.4], and the first paragraph in the proof of
[CCG08, Theorem 4.5], with some modifications to account for the fact that
we range over all polynomials g in a base-changed interval (over Fq) rather
than over all monic polynomials of a given degree.

Note that the left hand side of Eq. (4.26) is a polynomial in the coordinates
of g, and that for every x 2 Zf1 \ Zf2 , the polynomial g(ux) � tx is linear
in the coordinates of g, and thus geometrically irreducible. Moreover, using
our assumption that g has at least two coordinates, one readily checks that
for any y 2 Zf1 \ Zf2 di↵erent from x, the polynomial g(uy) � ty in the
coordinates of g, is not a multiple of g(ux)� tx by a scalar from Fq. Hence,

by the Nullstellensatz, in order to establish Eq. (4.26) with some c 2 Fq

⇥
,

it su�ces to show that our resultant Rd,d0(f1(u, g), f2(u, g)) vanishes if and
only if

(4.27) g(ux)� tx = 0

for some x 2 Zf1 \ Zf2 .
Our resultant vanishes if and only if f1(u, g(u)) and f2(u, g(u))) share a

root u0 2 Fq, or the coe�cients of ud in f1(u, g(u)) and of ud
0
in f2(u, g(u))



62 WILL SAWIN AND MARK SHUSTERMAN

both vanish. The latter possibility is excluded by our definition of d, and
the former is equivalent to the existence of an

(4.28) x = (u0, g(u0)) 2 Zf1 \ Zf2

for which Eq. (4.27) is satisfied. Hence, Eq. (4.26) is established with c 2

Fq

⇥
.

To check that c is in F⇥
q (and not merely in Fq

⇥
), we note that (each

linear factor, and thus) the product on the right hand side of Eq. (4.26) is
monic when viewed as a polynomial in the lowest coordinate ✓0 of g, so c
is a coe�cient of the polynomial on the left hand side of Eq. (4.26). The
latter is clearly a polynomial over Fq, so indeed c 2 F⇥

q .
Next, in order to establish Eq. (4.25), we fix y 2 Zf1 \ Zf2 , and check

that ey = iy(Zf1 , Zf2). Since dim(I) � 2, we can find g0 2 IFq
such that

(4.29) {x 2 Zf1 \ Zf2 : g0(ux) = tx} = {y}.

This choice of g0 is such that

(4.30) ordz=0(g0(ux) + z � tx)
ex =

(
ey, x = y

0, x 6= y

for any x 2 Zf1 \ Zf2 . We conclude from Eq. (4.26) and Eq. (4.30) that

(4.31) ordz=0Rd,d0(f1(u, g0 + z), f2(u, g0 + z)) = ey

and set

(4.32) ef1(u, z) = f1(u, g0 + z), ef2(u, z) = f2(u, g0 + z).

Since the degree d of f1(u, g) is independent of g 2 IFq
by the f1-

adaptedness assumption, we see that the coe�cient of ud in ef1 does not
vanish for any z 2 Fq, in particular for z = 0. We therefore get from
Eq. (4.10) that

(4.33) ordz=0Rd,d0

⇣
ef1(u, z), ef2(u, z)

⌘
= ordz=0R

⇣
ef1(u, z), ef2(u, z)

⌘
.

We apply the case of equality in Lemma 4.4 to the above. This requires
checking that

(4.34)
���Z ef1 \ Z ef2

��� < 1,

and that the coe�cients of the highest powers of u in ef1 and ef2 do not have
a common zero at z = 0. The former follows from our assumption that
Zf1 \ Zf2 is finite, and the latter was deduced above from our assumption
that the degree f1(u, g) is independent of g. It then follows from Lemma 4.4,
Eq. (4.31), and Eq. (4.33) that

(4.35) ey =
X

�2Fq

i(�,0)(Z ef1 , Z ef2).
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Using the definition of ef1, ef2 in Eq. (4.32) we get from the above that

(4.36) ey =
X

�2Fq

i(�,g0(�))(Zf1 , Zf2).

By construction of g0 in Eq. (4.29), the summands with (�, g0(�)) 6= y van-
ish, so our sum reduces to iy(Zf1 , Zf2), and it follows that ey = iy(Zf1 , Zf2)
as required.

Assume now that dim(I) = 1, so that there exists some h 2 Fq[u] such
that

(4.37) IFq
= {h+ z : z 2 Fq}.

Recall that we need to establish Eq. (4.25), which in this case can be rewrit-
ten as

(4.38) Rd,d0(f1(u, h(u) + z), f2(u, h(u) + z)) = c
Y

↵2Fq

(z � ↵)m↵

where

(4.39) m↵ =
X

x2Zf1
\Zf2

tx�h(ux)=↵

ix(Zf1 , Zf2).

As in the previous case, applying Eq. (4.10) and Lemma 4.4 we get that

(4.40) ordz=↵ Rd,d0(f1(u, h+ z), f2(u, h+ z))

equals

ordz=↵ R(f1(u, h+ z), f2(u, h+ z)) =
X

�2Fq

i(�,↵)
�
Zf1(u,h+z), Zf2(u,h+z)

�

=
X

�2Fq

i(�,↵+h(�)) (Zf1 , Zf2) .

We can restrict the sum above to those � 2 Fq with

(4.41) (�,↵+ h(�)) = (ux, tx)

for some x 2 Zf1 \ Zf2 , since the other terms vanish. We then see that our

sum equals m↵, so Eq. (4.38) holds with some c 2 Fq

⇥
. To show that in fact

c 2 F⇥
q , one can argue as in the previous case.

Suppose at last that dim(I) = 0, or equivalently that len(I) = 1. Note
that the left hand side of Eq. (4.25) is in Fq, and by invariance under the
action of Gal(Fq/Fq), the same is true for the product on the right hand side
of Eq. (4.25). Hence, Eq. (4.25) boils down to the fact, proven earlier, that
our resultant vanishes if and only if g(ux)�tx = 0 for some x 2 Zf1\Zf2 . ⇤
Remark 4.7. It is possible to extract from the proof an explicit expression
for the constant c.
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Notation 4.8. Keep Notation 4.3. Define the polynomial

(4.42) R[(f1, f2) = rad(R(f1, f2)) =
Y

⇡|R(f1,f2)

⇡

in Fq[u], and let

(4.43) L(f1, f2) 2 Fq[u]

be the greatest common divisor of the leading coe�cients of f1 and f2.
Assume from now on that q is odd, and denote the unique multiplicative

quadratic character of Fq by �2. For every x 2 Fq we have

(4.44) �2(x) =

8
><

>:

1 x 2 F⇥
q

2

�1 x 2 F⇥
q \ F⇥

q

2

0 x = 0.

For a 2 Fq[u] and a nonzero b 2 Fq[u] we denote by

(4.45)
⇣a
b

⌘
=
⇣a
b

⌘

2

the Jacobi symbol (quadratic residue symbol) in Fq[u], studied for instance
in [Ros02, Chapter 3]. For a nonzero M 2 Fq[u], we denote by

(4.46) N
Fq

Fq [u]/(M) : Fq[u]/(M) ! Fq

the norm map defined by

(4.47) N
Fq

Fq [u]/(M)(f) =
Y

a2Fq

M(a)=0

f(a)

where f(a) stands for the image of f 2 Fq[u]/(M) in Fq under the map
sending u to a. This map is surjective, and we have

(4.48) �2

⇣
N

Fq

Fq [u]/(M)(f)
⌘
=

✓
f

M

◆
.

The following proposition, whose proof builds on Lemma 4.6, is the key
to deducing Corollary 4.12. It is the generalization of [SS19, Lemma 3.1]
needed here.

Proposition 4.9. Keep Notation 4.8, and the assumptions of Lemma 4.6.

Suppose that degT (f1) � 1. Then there exists a polynomial

(4.49) W (u, T ) 2 (Fq[u]/(R
[(f1, f2)))[T ]

that satisfies the following two properties.

• For each root a 2 Fq of R[(f1, f2), the image W (a, T ) of W (u, T ) in
Fq[T ] under the map sending u to a satisfies

(4.50) ordT=bW (a, T ) = i(a,b)(Zf1 , Zf2)

for every b 2 Fq;
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• for all g 2 I we have

(4.51) �2(Rd,d0(f1(u, g(u)), f2(u, g(u)))) =

✓
W (u, g)

R[(f1, f2)

◆

the right hand side being the Jacobi symbol.

Remark 4.10. The first property above satisfied by W (u, T ) determines it
up to multiplication by an element of (Fq[u]/(R[(f1, f2)))⇥.

Proof. Fix a prime ⇡ | R[(f1, f2). For a root a 2 Fq of ⇡ define the polyno-
mial

(4.52) W (⇡,a)(T ) =
Y

x2Fq
2

ux=a

(T � tx)
ix(Zf1

,Zf2
)
2 Fq[T ].

That the above is indeed a polynomial follows from the assumption, made
in Lemma 4.6, that Zf1 \ Zf2 is finite.

We claim that W (⇡,a)(T ) belongs to F
qdeg(⇡) [T ], and that its pullback

(4.53) W (⇡,a)
0 (u, T ) 2 (Fq[u]/(⇡))[T ]

under the isomorphism from Fq[u]/(⇡) to F
qdeg(⇡) sending u to a, is indepen-

dent of the root a.
To prove the claim, note that the function x 7! ix(Zf1 , Zf2) is constant

on each orbit of the natural action

(4.54) Gal(Fq/Fq) y Fq

2
,

so it is also constant on orbits of the stabilizer of a in Gal(Fq/Fq), namely
the subgroup

(4.55) Gal(Fq/Fq(a)) = Gal(Fq/Fqdeg(⇡)).

It follows that W (⇡,a)(T ) is invariant under Gal(Fq/Fqdeg(⇡)), hence

(4.56) W (⇡,a)(T ) 2 F
qdeg(⇡) [T ].

We also conclude that for every � 2 Gal(Fq/Fq) we have

(4.57) �
⇣
W (⇡,a)(T )

⌘
= W (⇡,�(a))(T ).

Since the isomorphism from Fq[u]/(⇡) to F
qdeg(⇡) sending u to �(a) is

the composition of � with the isomorphism sending u to a, we get that

W (⇡,a)
0 (u, T ) is indeed independent of the chosen root a of ⇡. We denote

this polynomial by W (⇡)
0 (u, T ), and use the Chinese Remainder Theorem to

define a polynomial

(4.58) W0(u, T ) 2 (Fq[u]/(R
[(f1, f2)))[T ]

that reduces mod ⇡ to W (⇡)
0 (u, T ) for every ⇡ | R[(f1, f2).
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Next we claim that

(4.59) N
Fq

Fq [u]/(R[(f1,f2))
(W0(u, g)) =

Y

x2Zf1
\Zf2

(g(ux)� tx)
ix(Zf1

,Zf2)

for any g 2 I. By definition of the norm map from Eq. (4.47), we have

N
Fq

Fq [u]/(R[(f1,f2))
(W0(u, g)) =

Y

a2Fq

R
[(f1,f2)(a)=0

W0(a, g(a)).
(4.60)

By definition of W0(u, T ), and independence of a, the above equals

(4.61)
Y

⇡|R[(f1,f2)

Y

a2Fq

⇡(a)=0

W (⇡,a)
0 (a, g(a)) =

Y

⇡|R[(f1,f2)

Y

a2Fq

⇡(a)=0

W (⇡,a)(g(a)).

From the definition of W (⇡,a)(T ) in Eq. (4.52), we get

(4.62) N
Fq

Fq [u]/(R[(f1,f2))
(W0(u, g)) =

Y

x2Zf1
\Zf2

R
[(f1,f2)(ux)=0

(g(ux)� tx)
ix(Zf1

,Zf2
).

For every x 2 Zf1 \ Zf2 , the polynomials f1(ux, T ), f2(ux, T ) vanish at
tx. Hence R(f1(ux, T ), f2(ux, T )) = 0, so R(f1, f2) vanishes at ux. From the
definition of R[(f1, f2) in Eq. (4.42) we conclude that R[(f1, f2)(ux) = 0, so
Eq. (4.62) coincides with the right hand side of Eq. (4.59) as required for
our claim.

Finally, we take c 2 F⇥
q from Lemma 4.6 that satisfies

(4.63) c
Y

x2Zf1
\Zf2

(g(ux)� tx)
ix(Zf1

,Zf2) = Rd,d0(f1(u, g(u)), f2(u, g(u)))

and choose c0 2 (Fq[u]/(R[(f1, f2)))⇥ such that N
Fq

Fq [u]/(R[(f1,f2))
(c0) = c.

Define W (u, T ) = c0W0(u, T ), so that from Eq. (4.59) and Eq. (4.63) we get

(4.64) N
Fq

Fq [u]/R[(f1,f2)
(W (u, g)) = Rd,d0(f1(u, g(u)), f2(u, g(u))).

Applying �2 to the above, it follows from Eq. (4.48) that
✓

W (u, g)

R[(f1, f2)

◆
= �2

⇣
N

Fq

Fq [u]/R[(f1,f2)
(W (u, g))

⌘
= �2(Rd,d0(f1(u, g), f2(u, g)))

so Eq. (4.51) holds. For a, b 2 Fq we have

ordT=bW (a, T ) = ordT=bW0(a, T ) = ordT=bW
(⇡)
0 (a, T )

= ordT=bW
(⇡,a)
0 (a, T ) = ordT=bW

(⇡,a)(T ) = i(a,b)(Zf1 , Zf2)

so Eq. (4.50) holds. ⇤
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4.1.3. Möbius function formula. We set up much of the notation needed to
state, prove, and apply Corollary 4.12.

Notation 4.11. Keep Notation 4.8. Let k � 1 be an integer, let

(4.65) F (u, T ) =
kX

i=0

ai(u)T
i
2 Fq[u, T ], ak(u) 6= 0,

and let c1, c2 2 R such that

(4.66) c1 � 0, c2  0, deg(ai(u))  c1 + c2i, 0  i  k.

We introduce the auxiliary function

(4.67) E(c1, c2, x) = 2kc1 + kmax{0, c2 + x}� k + c2k
2, x 2 R.

Let Fq(u) be an algebraic closure of Fq(u), and let ↵1, . . . ,↵k 2 Fq(u) be
such that

(4.68) F (u, T ) = ak

kY

i=1

(T � ↵i).

We assume that F is separable as a polynomial in T , namely that the roots
↵1, . . . ,↵k are distinct. Equivalently the derivative @F

@T
of F with respect to

the variable T , which we also denote by @TF , does not vanish at T = ↵i for
any 1  i  k.

Set

(4.69) Fv = @uF + v@TF 2 Fq[u, T, v].

For a polynomial r 2 Fq[u] we denote its derivative by rr, and put

(4.70) Frr =
kX

j=0

bj(u)T
j
2 Fq[u, T ]

where

(4.71) bj = raj + (j + 1)aj+1rr, 1  j  k � 1, bk = rak.

Following Eq. (4.43), in case Frr 6= 0, we further set

(4.72) k0 = degT (Frr), LF,r = L(F, Frr) = gcd(ak, bk0) 2 Fq[u].

Denote by

(4.73) R(F, Fv) 2 Fq[u, v], R(F, Frr) 2 Fq[u]

the resultants in the variable T . By Eq. (4.12) and Eq. (4.69), we have

R(F, Fv) = a
degT Fv

k

kY

i=1

Fv(u,↵i)

= a
degT Fv

k

kY

i=1

(@uF (u,↵i) + v@TF (u,↵i)) .

(4.74)
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Following Eq. (4.42), define

(4.75) MF,r = R[(F, Frr) = rad(R(F, Frr)) =
Y

⇡|R(F,Frr)

⇡.

Let I be an interval in Fq[u] such that for some r 2 I the assumptions
of Proposition 4.9 are satisfied for f1 = F, f2 = Frr, with d0 the least even
integer satisfying Eq. (4.24). We can then fix a polynomial

(4.76) WF,r(u, T ) 2 (Fq[u]/(MF,r))[T ]

such that for each root a 2 Fq of MF,r and b 2 Fq we have

(4.77) ordT=bWF,r(a, T ) = i(a,b)(ZF , ZFrr),

and for all g 2 I we have

(4.78) �2(Rd,d0(F (u, g), Frr(u, g))) =

✓
WF,r(u, g)

MF,r

◆
.

For a prime ⇡ | MF,r, we denote by

(4.79) W (⇡)
F,r

(T ) 2 (Fq[u]/(⇡))[T ]

the reduction of WF,r mod ⇡.
For a polynomial f 2 Fq[u] we define its discriminant, following [CCG08,

(2.3)], to be

(4.80) �(f) =
Y

i<j

(�i � �j)
2.

where �1, . . . , �deg(f) are the roots of f in Fq. Denoting the leading coe�cient
of f by f0, and the degree of f by d, we learn from [CCG08, (3.3)] that

(4.81) �(f) =
(�1)

d(d�1)
2 Rd,d�1(f,rf)

f2d�1
0

.

If we want to emphasize that the discriminant is taken with respect to the
variable u, we write �u(f). For instance,

(4.82) �v(R(F, Fv)) 2 Fq[u]

stands for the discriminant with respect to v of the resultant in the variable
T of the polynomials F and Fv as above.

The following corollary is the generalization of [SS19, Lemma 3.2] needed
to prove Theorem 1.3. The proof mainly rests on Proposition 4.9 and Pellet’s
formula

(4.83) µ(f) = (�1)deg(f)�2(�(f)), f 2 Fq[u]

as given in [CCG08, (2.5)].
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Corollary 4.12. Keep Notation 4.1 and Notation 4.11. Let I be an F -

adapted interval in Fq[u], and fix r 2 I. Suppose that ZF \ ZFrr is finite.

Then for any s 2 Fq[u] with deg(s) < dim(I)
p

we have

(4.84) µ(F (u, r + sp)) = (�1)d�2(�1)
d(d�1)

2 �2(a)
d

✓
WF,r(u, r + sp)

MF,r

◆
.

Proof. By Proposition 4.2, the leading term of F (u, g(u)) is independent of
g(u) 2 IFq

. Let aud be this fixed leading term.
By Pellet’s formula above, we have

(4.85) µ(F (u, r + sp)) = (�1)d�2(�(F (u, r + sp))),

so applying Eq. (4.81), we see that the above equals

(�1)d�2(�1)
d(d�1)

2 �2(a)�2 (Rd,d�1 (F (u, r + sp),rF (u, r + sp))) .

Using the Leibniz derivative product rule, the chain rule, and the fact that
derivatives of p-th powers vanish, we arrive at

(4.86) (�1)d�2(�1)
d(d�1)

2 �2(a)�2 (Rd,d�1 (F (u, r + sp), Frr(u, r + sp))) .

Applying Eq. (4.11), the above becomes

(4.87) (�1)d�2(�1)
d(d�1)

2 �2(a)
d�d

0
�2
�
Rd,d0 (F (u, r + sp), Frr(u, r + sp))

�

with d0 defined in Notation 4.11, so using Eq. (4.78) we get

(4.88) (�1)d�2(�1)
d(d�1)

2 �2(a)
d�d

0
✓
W (u, r + sp)

MF,r

◆
.

Since d0 is even we have �2(a)d�d
0
= �2(a)d, so we arrive at the right hand

side of Eq. (4.84). ⇤
4.2. Tools for applying the Möbius function formula. Here we prove
several claims that help verify the hypotheses of Corollary 4.12, deal with the
cases when these fail, make the application of Corollary 4.12 more e↵ective,
and relate it to the trace function bounds we proved earlier.

4.2.1. Infinite intersection. We show that on special subsets for which the
finite intersection condition in Corollary 4.12 fails, the Möbius function van-
ishes almost everywhere.

Proposition 4.13. Keep Notation 4.11. Let r 2 Fq[u] for which ZF \ZFrr

is infinite. Then

(4.89) |{s 2 Fq[u] : µ(F (u, r + sp)) 6= 0}|  k(q � 1).

Proof. Since the two zero loci have infinite intersection, it follows from Be-
zout’s Theorem that F and Frr share a common irreducible factor P (u, T ).
From the chain rule, and the fact that derivatives of pth powers vanish in
characteristic p, we get that

(4.90) Frr(u, r + sp) = rF (u, r + sp).



70 WILL SAWIN AND MARK SHUSTERMAN

We conclude that both F (u, r + sp) and its derivative rF (u, r + sp) are
divisible by P (u, r + sp), hence µ(F (u, r + sp)) = 0 once P (u, r + sp) /2 F⇥

q .
Because P (u, r + sp) is a polynomial in sp of degree at most k, there are at
most (q � 1)k choices of sp 2 Fq(u) for which

(4.91) P (u, r + sp) 2 F⇥

q .

The proposition follows since in a field of characteristic p, the map s 7! sp

is injective. ⇤

4.2.2. Partitioning an interval. In order to prove (a generalized form of)
Theorem 1.3 we need to control suns of the form

P
g2I

µ(F (u, g)). For
the Möbius function formula from Corollary 4.12 to apply, we need the
leading term of F (u, g) to be independent of g. Since this is not always
the case, we introduce the following lemma partitioning I into well-behaved
subintervals. This will allow us to avoid unnecessary monicity conditions
and certain inequalities on degrees as in [SS19, Theorem 4.5].

Lemma 4.14. Keep Notation 4.1 and Notation 4.11. For every interval I

in Fq[u], there exists a collection P of intervals in Fq[u] such that

(1) every J 2 P is contained in I.

(2) for every f 2 I there exists J 2 P with f 2 J ;

(3) for every two distinct intervals J ,K 2 P we have J \K = ;;

(4) Each J 2 P, is either F -adapted or has length 1.
(5) for each 0  j  dim(I)� 1, we have |{J 2 P : dim(J ) = j}|  kq.

Proof. Fix an extension z 7! |z| of the norm on Fq[u] to Fq(u), and denote
by

(4.92) !(z) = � logq |z|

the associated valuation of z 2 Fq(u). Note that if z 2 Fq[u], then

(4.93) !(z) = � deg(z).

For f 2 I, if f /2 {↵1, . . . ,↵k}, let

(4.94) Jf =

⇢
z 2 I : |z � f | < min

1ik

|f � ↵i|

�
,

and for f 2 I \ {↵1, . . . ,↵k} set Jf = {f}. Put

(4.95) P = {Jf : f 2 I} ,

and note that (1) and (2) above are satisfied.
To check (3), suppose that Jf \ Jg 6= ; for some f, g 2 I. Since our

intervals are nonarchimedean, this implies (without loss of generality) that
Jg ✓ Jf , so in particular g 2 Jf . If g 2 {↵1, . . . ,↵k}, we see from Eq. (4.94)
that g 2 Jf implies f 2 {↵1, . . . ,↵k}. It follows that len(Jg) = len(Jf ) = 1
and thus that Jg = Jf as required. If g /2 {↵1, . . . ,↵k}, then this is also the
case for f , so from Eq. (4.94) we get that |g� f | < |f �↵i| for all 1  i  k.
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Our norm is nonarchimedean, so |g�↵i| = |f �↵i| by the above. It follows
from Eq. (4.94) that dimJg = dimJf so Jg = Jf as required.

To check (4) for some J 2 P, by definition, it su�ces to check that
deg(F (u, g(u))) is independent of g(u) 2 JFq

, since deg(F (u, g(u)) can be

negative for only finitely many values of g. Equivalently, by Eq. (4.93), we
need to check the independence of !(F (u, g)) on g 2 JFq

. For that, pick

an f 2 I \ {↵1, . . . ,↵k} with J = Jf . For g 2 JFq
we get as in the above

paragraph that !(g � ↵i) = !(f � ↵i) so Eq. (4.68) implies that

(4.96) !(F (u, g)) = !(ak) +
kX

i=1

!(g � ↵i) = !(ak) +
kX

i=1

!(f � ↵i)

is indeed independent of g.
At last we check (5). For that, fix 0  j  dim(I)� 1, and let f 2 I with

dim(Jf ) = j. It follows from our definition of Jf that there exists some
1  i  k such that !(f � ↵i) � �j. Therefore, it su�ces to check that for
a given i we have

(4.97) |{Jg : g 2 I, dim(Jg) = j, !(g � ↵i) � �j}|  q.

To establish the above inequality we show that Jg (as in Eq. (4.97)) is
determined by the coe�cient of uj in g. Let Jg,Jg0 be two intervals from
the set in Eq. (4.97). We have !(g � ↵i),!(g0 � ↵i) � �j, so we get from
Eq. (4.93) that

(4.98) deg(g � g0) = �!(g � g0)  j

since ! is nonarchimedean. Hence, if the coe�cient of uj in g coincides with
the coe�cient of uj in g0, we get that deg(g� g0)  j � 1 and thus Jg = Jg0

since dim(Jg) = dim(Jg0) = j. ⇤

4.2.3. Sheaf-theoretic setup. We set up some of the notation needed to prove
Theorem 1.3 and to state its ‘trace-twisted’ variant.

Notation 4.15. Keep Notation 4.11, Notation 2.1, and Notation 2.4. Let
r 2 Fq[u] be a polynomial for which ZF \ ZFrr is finite. Let g 2 Fq[u] be a
squarefree polynomial, let

(4.99) t : Fq[u]/(g) ! C
be an infinitame trace function, let F⇡ be a sheaf giving rise to the trace
function t⇡, and set

(4.100) gF,r = lcm(g,MF,r).

Fix a prime factor ⇡ of gF,r, let  = Fq[u]/(⇡), and let � : ⇥ ! Q`

⇥
be the

unique quadratic character. In other words, the character � is the Legendre
symbol mod ⇡, that is

(4.101) �(f) =

✓
f

⇡

◆
, f 2 ⇥ = (Fq[u]/(⇡))

⇥.
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We reduce r mod ⇡, and recall from Notation 2.4 the map

(4.102) Er : A1
 ! A1

, Er(x) = r + xp.

Using this map, we define a sheaf on A1
 by

(4.103) FF,r,⇡ = E⇤

r

8
>><

>>:

L�

⇣
W (⇡)

F,r

⌘
⇡ - g, ⇡ | MF,r

F⇡ ⇡ | g, ⇡ - MF,r

L�

⇣
W (⇡)

F,r

⌘
⌦ F⇡ ⇡ | g, ⇡ | MF,r

and use the shorthand notation tF,r,⇡ for the associated trace function tFF,r,⇡ .
At last, define the trace function

(4.104) tF,r =
Y

⇡|gF,r

tF,r,⇡.

By Lemma 2.2 and Lemma 2.13(6), this is an infinitame trace function.
For a positive � 2 R, we set

B(t; �) =
Y

⇡|g

(r(t⇡)(1 + �) + c(t⇡)�)
deg(⇡)

so in particular we have

B(tF,r; �) =
Y

⇡|gF,r

(r(tF,r,⇡)(1 + �) + c(tF,r,⇡)�)
deg(⇡).

In the proof of Theorem 1.3 and its variants, we will be tasked with
applying Corollary 3.14 to gF,r and tF,r. In order to make Corollary 3.14
a useful bound, we need to have some control on the rank and conductor.
The notation B(t; �) will help with keeping track of an upper bound for the
coe�cient of the polynomial of Corollary 3.14 given as a product.

4.2.4. Bounding rank and conductor. In order to control |MF,r| and |gF,r|,
we recall from Eq. (4.75) that |MF,r| is bounded by |R(F, Frr)|, so it su�ces
to control the latter. The following is the variant of [SS19, (4.24)] needed
here.

Proposition 4.16. Keep Notation 4.11. For r 2 Fq[u] we have

(4.105) deg(R(F, Frr))  E(c1, c2, deg(r)).

Proof. The quasi-homogeneity of the resultant from [GKZ08, p. 399, (1.6)],
and Sylvester’s formula as given in [GKZ08, p. 400, (1.12)], imply that
R(F, Frr) is a linear combination (over Fq) of subproducts of

(4.106) ai1(u) . . . aik(u)bj1(u) . . . bjk(u), i1 + · · ·+ ik + j1 + · · ·+ jk = k2.

By Eq. (4.71), we have the bound

deg(bi)  max {deg(ai)� 1, deg(r) + deg(ai+1)� 1}

 max{c1 � 1 + c2i, deg(r)� 1 + c1 + c2(i+ 1)}

= max{0, c2 + deg(r)}+ c1 � 1 + c2i

(4.107)
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for the degrees of the coe�cients of Frr. As a result we get that

deg(R(F, Frr))  max
i1+···+ik+j1+···+jk=k2

deg(ai1 . . . aikbj1 . . . bjk)

= max
i1+···+ik+j1+···+jk=k2

kX

`=1

(deg(ai`) + deg(bj`)) .
(4.108)

Using Eq. (4.66) and Eq. (4.107) we see that the above is at most

(4.109) 2kc1+kmax{0, c2+deg(r)}�k+ max
i1+···+ik+j1+···+jk=k2

kX

`=1

c2(i`+j`)

which evaluates to

(4.110) 2kc1 + kmax{0, c2 + deg(r)}� k + c2k
2.

By the notation in Eq. (4.67), the above equals E(c1, c2, deg(r)). ⇤
Proposition 4.17. Keep Notation 4.15. For any positive � 2 R we have

B(tF,r; �)  (1 + 2�)E(c1,c2,deg(r))B(t; �).

Proof. Let ⇡ be a prime dividing gF,r. In case ⇡ divides g and does not divide
MF,r, from the definition of FF,r,⇡ in Eq. (4.103)(2), and the invariance of
rank and conductor in Proposition 2.5(4), we get

r(FF,r,⇡)(1 + �) + c(FF,r,⇡)� = r(E⇤

rF⇡)(1 + �) + c(E⇤

rF⇡)�

= r(F⇡)(1 + �) + c(F⇡)�.
(4.111)

In case ⇡ divides both g andMF,r, from Eq. (4.103)(3), Proposition 2.5(4),
and Lemma 2.13(5) we get

r(FF,r,⇡) = r
⇣
E⇤

r

⇣
L�

⇣
W (⇡)

F,r

⌘
⌦ F⇡

⌘⌘
= r

⇣
L�

⇣
W (⇡)

F,r

⌘
⌦ F⇡

⌘
= r(F⇡).

(4.112)

Similarly, by Eq. (4.103)(3), Proposition 2.5(4), Lemma 2.13(6), and Lemma 2.2(6),
we have

c(FF,r,⇡) = c
⇣
E⇤

r

⇣
L�

⇣
W (⇡)

F,r

⌘
⌦ F⇡

⌘⌘
= c

⇣
L�

⇣
W (⇡)

F,r

⌘
⌦ F⇡

⌘

 c(F⇡) + c
⇣
L�

⇣
W (⇡)

F,r

⌘⌘
r(F⇡)  c(F⇡) + deg

⇣
W (⇡)

F,r

⌘
r(F⇡).

(4.113)

Let a 2 Fq be a root of ⇡. From the definition of W (⇡)
F,r

after Eq. (4.79),
the information on multiplicities in Eq. (4.77), and Lemma 4.4 we obtain

deg
⇣
W (⇡)

F,r

⌘
= deg(WF,r(a, T )) =

X

b2Fq

ordT=bWF,r(a, T )

=
X

x2ZF\ZFrr
ux=a

ix(ZF , ZFrr)  ordu=aR(F, Frr) = v⇡(R(F, Frr))

(4.114)
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where v⇡ is the ⇡-adic valuation on Fq[u]. From Eq. (4.113) and Eq. (4.114)
we conclude that

(4.115) c(FF,r,⇡)  c(F⇡) + v⇡(R(F, Frr))r(F⇡).

Combining Eq. (4.112) with Eq. (4.115), and using Bernoulli’s inequality,
we get

r(FF,r,⇡)(1 + �) + c(FF,r,⇡)�  r(F⇡)(1 + �) + c(F⇡)� + v⇡(R(F, Frr))r(F⇡)�

 (1 + v⇡(R(F, Frr))�)(r(F⇡)(1 + �) + c(F⇡)�)

 (1 + �)v⇡(R(F,Frr))(r(F⇡)(1 + �) + c(F⇡)�).

(4.116)

In case ⇡ divides MF,r and does not divide g, by Eq. (4.103)(1), Proposi-
tion 2.5(4), and Lemma 2.2(6) we have

(4.117) r(FF,r,⇡) = r(E⇤

rL�(W
(⇡)
F,r

)) = r(L�(W
(⇡)
F,r

)) = 1.

Similarly, from Eq. (4.103)(1), Proposition 2.5(4), Lemma 2.2(6), and Eq. (4.114)
we get

c(FF,r,⇡) = c
⇣
E⇤

rL�

⇣
W (⇡)

F,r

⌘⌘

= c
⇣
L�

⇣
W (⇡)

F,r

⌘⌘
 deg

⇣
W (⇡)

F,r

⌘
 v⇡(R(F, Frr)).

(4.118)

Since ⇡ dividesMF,r, it follows from the definition of the latter in Eq. (4.75)
that ⇡ divides R(F, Frr), or equivalently v⇡(R(F, Frr)) � 1. Therefore,
from Eq. (4.117), Eq. (4.118), and Bernoulli’s inequality we have

r(FF,r,⇡)(1 + �) + c(FF,r,⇡)�  1 + � + v⇡(R(F, Frr))�

 1 + 2v⇡(R(F, Frr))�  (1 + 2�)v⇡(R(F,Frr)).

(4.119)

At last, combining Definition 1.4, Eq. (4.119), Eq. (4.111), Eq. (4.116),
and Proposition 4.16 we get

B(tF,r; �) =
Y

⇡|gF,r

(r(FF,r,⇡)(1 + �) + c(FF,r,⇡)�)
deg(⇡)

=
Y

⇡|MF,r

⇡-g

(r(FF,r,⇡)(1 + �) + c(FF,r,⇡)�)
deg(⇡)

Y

⇡|g

(r(FF,r,⇡)(1 + �) + c(FF,r,⇡)�)
deg(⇡)

 B(t; �)
Y

⇡|MF,r

⇡-g

(1 + 2�)deg(⇡)v⇡(R(F,Frr))
Y

⇡|g

(1 + 2�)deg(⇡)v⇡(R(F,Frr))

= B(t; �)
Y

⇡|MF,r

(1 + 2�)deg(⇡)v⇡(R(F,Frr)) = B(t; �)(1 + 2�)
P
⇡|MF,r

deg(⇡)v⇡(R(F,Frr))

= B(t; �)(1 + 2�)deg(R(F,Frr))  B(t; �)(1 + 2�)E(c1,c2,deg(r)).

⇤
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4.2.5. Finding a good prime. Our goal here is to give a su�cient condition
for the existence of a prime ⌧ as in Corollary 3.14 for the trace function tF,r
from Notation 4.15.

Proposition 4.18. Keep Notation 4.11. Suppose that a 2 Fq is not a root

of the polynomial

(4.120) �v(R(F, Fv))

introduced in Eq. (4.82). Then for any r 2 Fq[u] for which ZF \ ZFrr is

finite, there exists at most one b 2 Fq such that (a, b) 2 ZF \ ZFrr .

Proof. Suppose toward a contradiction that there exist distinct b1, b2 2 Fq

with (a, b1), (a, b2) 2 ZF \ZFrr and let ⇡ 2 Fq[u] be the minimal polynomial
of a over Fq. We will arrive at a contradiction to a not being a root of
�v(R(F, Fv)) by showing that ⇡ divides �v(R(F, Fv)) in the ring Fq[u].

Denote by v0 the residue class of rr in Fq[u]/(⇡). To check that

(4.121) �v(R(F, Fv)) ⌘ 0 mod ⇡,

it su�ces to prove that

(4.122) ordv=v0 (R(F, Fv) mod ⇡) � 2.

By Eq. (4.74), we have

(4.123) R(F, Fv) = a
degT Fv

k

kY

i=1

(@uF (u,↵i) + v@TF (u,↵i)) .

Suppose first that degT (Fv) = 0. Then

(4.124) degT (Frr mod ⇡)  degT (Frr)  degT (Fv) = 0,

and since ⇡(a) = 0, the polynomial Frr mod ⇡ has a zero, so it is the zero
polynomial. It follows from finiteness of ZF \ ZFrr that F mod ⇡ is not
zero, and since ⇡(a) = 0, we conclude that F mod ⇡ has at least two zeros
so

(4.125) k = degT (F ) � degT (F mod ⇡) � 2.

Our assumption that Fv is constant as a polynomial in T , the separability
of F which implies that degv(Fv) = 1, and the fact that k � 2 established
above, imply that

(4.126) �v(R(F, Fv)) = �v(F
k

v ) = 0

so Eq. (4.121) holds in this case.
Suppose now that degT (Fv) � 1. We see from Eq. (4.123) that if ⇡ | ak

then Eq. (4.121) is satisfied, so we assume from now on that ⇡ - ak. Since the
↵i are roots of a polynomial with leading coe�cient not divisible by ⇡, we
can reduce Eq. (4.123) mod a prime of (the ring of Fq[u]-integral elements

of) Fq(u) lying over ⇡. Since ⇡(a) = 0, it follows that after the reduction,
at least two of the factors on the right hand side of Eq. (4.123) vanish at
v = v0. Hence, Eq. (4.122) holds. ⇤
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The following is the generalization of [SS19, Remark 3.3] needed here.

Proposition 4.19. Keep Notation 4.15. Suppose that R(F, Frr) is not

of the form A2B for any A 2 Fq[u] and any B 2 Fq[u] that divides the

polynomial

(4.127) g · ak · �v(R(F, Fv)) 2 Fq[u].

Then there exists a prime ⇡ 2 Fq[u] dividing gF,r such that tF,r,⇡ is a Dirich-

let trace function.

Proof. Our assumption on R(F, Frr) is equivalent to the existence of a prime
⇡ not dividing the polynomial in Eq. (4.127) such that v⇡(R(F, Frr)) is odd.
Since the latter valuation is nonzero, our prime ⇡ divides R(F, Frr), so by
the definition in Eq. (4.75), ⇡ divides MF,r. We conclude from the definition
of gF,r in Eq. (4.100), and from Eq. (4.127), that ⇡ divides gF,r and does
not divide g. By Eq. (4.103)(1) we have

(4.128) FF,r,⇡ = E⇤

rL�

⇣
W (⇡)

F,r

⌘
.

In order to show that the associated trace function tF,r,⇡ is a Dirichlet
trace function, by the permanence property in Proposition 2.5(6), it su�ces
to show that the function

(4.129) t
L�

⇣
W

(⇡)
F,r

⌘(x) = �
⇣
W (⇡)

F,r
(x)
⌘
, x 2 Fq[u]/(⇡),

is a Dirichlet trace function. Recall from Eq. (4.101) that the character �
is quadratic, so by the definition in Eq. (1.21) it is enough to show that

W (⇡)
F,r

is an odd power of a monic linear polynomial, up to a constant from

(Fq[u]/(⇡))⇥. In other words, we want to show that W (⇡)
F,r

vanishes at no

more than one point in Fq[u]/(⇡), and its order of vanishing there is odd.
Fix a root a 2 Fq of ⇡. We are tasked with showing that WF,r(a, T ) has

a unique zero in Fq, and the multiplicity of this zero is odd. Since ⇡ does
not divide the polynomial in Eq. (4.127), it does not divide �v(R(F, Fv)),
so �v(R(F, Fv))(a) 6= 0. The desired uniqueness of the zero of WF,r(a, T )
follows from Eq. (4.77) and Proposition 4.18. From Eq. (4.77) we moreover
conclude that the order of vanishing of WF,r(a, T ) at its unique vanishing
point is

(4.130)
X

b2Fq

i(a,b)(ZF , ZFrr).

Since ⇡ does not divide the polynomial in Eq. (4.127), it does not divide
the leading coe�cient of F . In other words, the leading coe�cient of F does
not vanish at a, so by Lemma 4.4 the sum above equals

(4.131) ordu=aR(F, Frr).

This order of vanishing equals v⇡(R(F, Frr)) which is odd by assumption.
⇤
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Proposition 4.19 is not useful in case �v(R(F, Fv)) = 0. The next propo-
sition characterizes the cases in which this vanishing occurs. The condition
that arises is our generalization of the ‘distinct derivatives’ assumption in
[SS19, Proposition 4.3].

Proposition 4.20. Keep Notation 4.11. In Fq(u) we have

(4.132)
@uF

@TF
(u,↵i) 6=

@uF

@TF
(u,↵j), 1  i < j  k,

if and only if �v(R(F, Fv)) is not the zero polynomial.

Proof. Our discriminant is nonzero if and only if R(F, Fv) does not have a
double root in Fq(u) as a polynomial in v. By Eq. (4.74), we have

(4.133) R(F, Fv) = a
degT Fv

k

kY

i=1

(@uF (u,↵i) + v@TF (u,↵i))

so the nonexistence of a double root among the k roots

(4.134) vi = �
@uF

@TF
(u,↵i), 1  i  k,

of R(F, Fv) in Fq(u) is equivalent to our assumption in Eq. (4.132). ⇤

Using Proposition 4.20, we show in the next proposition that we can
always arrive at a situation where �v(R(F, Fv)) 6= 0 by performing a linear
change of variable. This is our generalization of the main argument in the
proof of [SS19, Theorem 4.5].

Proposition 4.21. Keep Notation 4.11. There exists a monic polynomial

P (u) 2 Fq[u] with |P (u)|  q
�
k

2

�
such that for all c(u) 2 Fq[u], the polynomial

(4.135) G(u, T ) = F (u, P (u)T + c(u))

is separable in T and satisfies

(4.136) �v(R(G,Gv)) 6= 0.

Proof. In view of Eq. (4.68), for any choice of a monic P (u) 2 Fq[u] we have

(4.137) G

✓
u,
↵i � c(u)

P (u)

◆
= 0, 1  i  k,

so these are all the roots of G in Fq(u) since degT (G) = degT (F ) = k. By
Proposition 4.20, it su�ces to choose P (u) in such a way that

(4.138)
@uG

@TG

✓
u,
↵i � c(u)

P (u)

◆
6=
@uG

@TG

✓
u,
↵j � c(u)

P (u)

◆
, 1  i < j  k.
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Using the chain rule, we get

@uG

@TG

✓
u,
↵i � c(u)

P (u)

◆
=
@uF (u,↵i) +

↵i�c(u)
P (u) ·rP · @TF (u,↵i) +rc · @TF (u,↵i)

P (u)@TF (u,↵i)

=
@uF (u,↵i)

P (u)@TF (u,↵i)
+

(↵i � c(u))rP

P (u)2
+

rc

P (u)
.

Hence, Eq. (4.138) holds unless for some 1  i < j  k we have

(4.139)
@uF

@TF
(u,↵i) +

(↵i � c(u))rP

P (u)
=
@uF

@TF
(u,↵j) +

(↵j � c(u))rP

P (u)
.

Since ↵i � ↵j 6= 0 by separability, the above is equivalent to

(4.140)
rP

P (u)
=

@uF

@TF
(u,↵j)�

@uF

@TF
(u,↵i)

↵i � ↵j

so Eq. (4.138) holds if (and only if)

(4.141)
rP

P (u)

does not belong to a specific set of at most
�
k

2

�
elements of Fq(u).

The ‘logarithmic derivation’ map

(4.142) P 7!
rP

P
, P 2 Fq[u],

sends monic polynomials P,Q to the same rational function if and only if
their quotient P

Q
is a p-th power in Fq(u). In particular, the restriction of

the logarithmic derivation map to monic squarefree polynomials is injective.
By [Ros02, Proposition 2.3], and the formula for the sum of a geometric
progression, the number of such polynomials of degree at most d exceeds qd,
so we need that qd �

�
k

2

�
. We thus take

(4.143) d =

⇠
logq

✓
k

2

◆⇡
 logq

✓
k

2

◆
+ 1

so we can choose P satisfying Eq. (4.138) with |P |  qd  q
�
k

2

�
. ⇤

In order to bound the number of possible B in Proposition 4.19, we bound
the degree of the polynomial �v(R(F, Fv)).

Proposition 4.22. Keep Notation 4.11. Then

(4.144) deg(�v(R(F, Fv)))  4k(k � 1)(c1 + kmax{c2, 0}).

Proof. Since degT (F ), degT (Fv)  k, it follows from Sylvester’s formula as
given in [GKZ08, p. 400, (1.12)] that R(F, Fv) is a linear combination (over
Fq) of products of at most k coe�cients of F and at most k coe�cients of
Fv. By Eq. (4.66), the degree of every coe�cient ai of F is at most

(4.145) c1 + c2i  c1 + kmax{c2, 0}
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thus the degree in u of (every coe�cient of) Fv is also bounded by the right
hand side of Eq. (4.145). We conclude that

(4.146) degu(R(F, Fv))  2k(c1 + kmax{c2, 0}).

Since F is separable in T , it follows from Eq. (4.74) that

(4.147) degv(R(F, Fv))) = k.

We then infer from [GKZ08, p. 404] that �v(R(F, Fv)) is a linear combi-
nation (over Fq) of products of 2(k � 1) coe�cients of R(F, Fv). Using the
bound on the degree of a coe�cient from Eq. (4.146), we get that

(4.148) deg(�v(R(F, Fv)))  2(k � 1) · 2k(c1 + kmax{c2, 0})

and the right hand side above matches the right hand side of Eq. (4.144),
which gives the desired result. ⇤

Now that we have control over the number of possible B, we need to
know how often R(F, Frr) = A2B for a particular B. For that, we have the
following lemma which is a consequence of Cohen’s quantitative Hilbert’s ir-
reducibility theorem as stated in [Coh81, Theorem 2.3]. We refer to [BSE21]
of Bary-Soroker–Entin extending Cohen’s work to function fields.

Lemma 4.23. Let H(u, v) 2 Fq[u][v] be a polynomial which is not a perfect

square in Fq(u)[v], and let B 2 Fq[u]. Then for X � max{degu(H), deg(B)}4

we have

(4.149) |{g 2 Fq[u] : |g| < X, H(u, g(u)) = B ·⇤}| ⌧

p

X logX

as X ! 1, with the implied constant depending only on degv(H). Here the

symbol ⇤ stands for the square of a polynomial in Fq[u].

The lemma above is the generalization of [SS19, Proposition 4.2] needed
here. A proof can also be obtained by a standard sieve theoretic argument,
as in Heath-Brown’s square sieve for example. More specifically, we need
the following corollary.

Corollary 4.24. Keep Notation 4.1, Notation 4.11, and suppose that

(4.150) �v(R(F, Fv)) 6= 0.

Let B 2 Fq[u], and let I be an interval in Fq[u] with

(4.151) len(I) � max{E(c1, c2, deg(I)), deg(a
k

kB)}4.

Take R ✓ I such that for every f 2 I there exists a unique r 2 R with

(4.152) rf = rr.

Then as len(I) ! 1 we have

(4.153) |{r 2 R : R(F, Frr) = B ·⇤}| ⌧

p
len(I) log len(I)

with the implied constant depending only on k.
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Proof. Fix f 2 I, and note that

|{r 2 R : R(F, Frr) = B ·⇤}| = |{g 2 Fq[u] : |g| < len(I), R(F, Frf+rg) = B ·⇤}|

 |{g 2 Fq[u] : |g| < len(I), R(F, Frf+g) = B ·⇤}|.

Put j = degT (Frf+v). By Eq. (4.10), the above is at most
�����

j[

i=0

{g 2 Fq[u] : |g| < len(I), Rk,j(F, Frf+g) = aikB ·⇤}

�����

so setting

(4.154) H(u, v) = Rk,j(F, Frf+v),

and noting that j  k, we get the bound

(4.155)
kX

i=0

|{g 2 Fq[u] : |g| < len(I), H(u, g) = aikB ·⇤}|.

Therefore, in order to conclude by applying Lemma 4.23, one thing we
need to check is that len(I) � max{degu(H), deg(ak

k
B)}4. By our assump-

tion in Eq. (4.151), this amounts to showing that

(4.156) degu(H)  E(c1, c2, deg(I)).

We claim that there exists � 2 Fq for which

(4.157) degu(H) = degR(F, Fr(f+�u)).

Since F is separable, the coe�cient of the highest power of u in H(u, v) is
a nonzero polynomial P 2 Fq[v], and the coe�cient of the highest power of
T in Frf+v is a nonzero polynomial Q 2 Fq[u, v]. Hence, there exists � 2 Fq

such that P (�) 6= 0 and Q(u,�) 6= 0. It follows that

degu(H(u, v)) = deg(H(u,�)) = deg(Rk,j(F, Frf+�)) = degR(F, Fr(f+�u))

so our claim from Eq. (4.157) is established. From Proposition 4.16, Nota-
tion 4.1, and the fact that len(I) > 1, we get that

(4.158) deg(R(F, Fr(f+�u)))  E(c1, c2, deg(f + �u))  E(c1, c2, deg(I))

so the two equations above imply Eq. (4.156).
The other thing we need to check is that Rk,j(F, Frf+v) is not a perfect

square in Fq(u)[v]. For that we use Eq. (4.74) to write

Rk,j(F, Frf+v) = aj
k

kY

i=1

(@uF (u,↵i) + (rf + v) @TF (u,↵i)) .

Viewed as a polynomial in v, the roots in Fq(u) of the polynomial above are

(4.159) vi = �
@uF

@TF
(u,↵i)�rf, 1  i  k.
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Since �v(R(F, Fv)) 6= 0 by assumption, it follows from Proposition 4.20
that the roots above are pairwise distinct, so Rk,j(F, Frf+v) is not a square

of a polynomial in v over Fq(u). ⇤

5. Trace functions vs Möbius function

This section is devoted to proving Theorem 1.3 and its twisted variants.
The most general form is the following theorem. We give an essentially
self-contained statement, recalling some of Notation 4.11 and Notation 4.15.

Theorem 5.1. Fix an odd prime p, a power q of p, and a positive integer

k. Let 0 < �  1 and

(5.1) 0 < ↵ <
1

2p
+

logq �

p
� k logq(1 + 2�)

be real numbers, and set � = (1 + 2�)k. Take a separable polynomial

(5.2) F (u, T ) =
kX

i=0

ai(u)T
i
2 Fq[u, T ]

of degree k in T . Pick c1, c2 2 R with c1 � 0 � c2 such that

(5.3) deg(ai(u))  c1 + c2i, 0  i  k.

Let g 2 Fq[u] be a squarefree polynomial, let t be an infinitame g-periodic
trace function, and let I be an interval in Fq[u] as in Notation 4.1. Then

X

f2I

µ(F (u, f))t(f) ⌧

qdim(I)(1�↵)�2c1+(k+1)c2
⇣
��c2�dim(I) + �deg(I)�dim(I)

⌘Y

⇡|g

(r(t⇡)(1 + �) + c(t⇡)�)
deg(⇡)

(5.4)

as dim(I) ! 1, with the implied constant depending only on q, k,↵, �.

The trivial bound here is qdim(I)Q
⇡|g

r(t⇡), where qdim(I) = len(I) is the
length of the sum and

Q
⇡|g

r(t⇡) is a bound for each term. If we think
of c1, c2, t, and deg(I) � dim(I) as fixed, then the bound in the theorem
describes a power savings of ↵, with the other terms describing the quality
of the uniformity in F, t and I. Our proof builds on the strategy of proving
[SS19, Proposition 4.3]. The statement could be simplified by restricting to
the case c2 = 0, in which case c1 would be degu(F ), but this would lead
some of our later results, including Bateman-Horn, to be valid for larger
values of q only.

Proof. We first reduce to the case of a polynomial F with

(5.5) �v(R(F, Fv)) 6= 0.
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By Proposition 4.21, there exists a (nonzero) polynomial P 2 Fq[u] with
|P | ⌧ 1 such that for every c 2 Fq[u] with deg(c) < deg(P ) the polynomial
G(u, T ) = F (u, PT + c) is separable in T , and satisfies

(5.6) �v(R(G,Gv)) 6= 0.

Define the intervals

(5.7) Ic =

⇢
f � c

P
: f 2 I, f ⌘ c mod P

�
, c 2 Fq[u], deg(c) < deg(P ),

and note that
X

f2I

µ(F (u, f))t(f) =
X

c2Fq [u]
deg(c)<deg(P )

X

h2Ic

µ(G(u, h))t(Ph+ c)

⌧ |P |

�����
X

h2J

µ(G(u, h))t(Ph+ c)

�����

(5.8)

where J = Ic for some c as above (for which the maximum is achieved). In
view of Proposition 2.3, the change of the trace function increases neither
r(t⇡) nor c(t⇡), and the change of the polynomial F can be handled by
increasing c1 by k deg(P ). The overall loss in the change of variable T 7!

PT + c is therefore a factor of O(1), so we can assume throughout that
Eq. (5.5) is satisfied.

By Lemma 4.14 there exists a partition P of I into subintervals J which
are F -adapted (except possibly for those of dimension 0) and the number of
J 2 P of any given dimension is O(1). As a result, for

(5.9) ⇠ = 4 logq max{E(c1, c2, deg(I)), deg(g · a
k+1
k

· �v(R(F, Fv)))}

we have

X

f2I

µ(F (u, f))t(f) =
X

J2P

X

f2J

µ(F (u, f))t(f)

=
X

J2P

dim(J )�⇠

X

f2J

µ(F (u, f))t(f) +O

0

@q⇠
Y

⇡|g

r(t⇡)

1

A .

(5.10)

We will check later (around Eq. (5.37)) that the contribution of the error
term O(q⇠

Q
⇡|g

r(t⇡)) in Eq. (5.10) is indeed dominated by our final bound
from Eq. (5.4). Similarly, we will defer a few other elementary computations
comparing two di↵erent bounds until we have completed the more funda-
mental work of splitting the sum into di↵erent ranges and explaining the
bound we will use for each range.

Fix an interval J 2 P with dim(J ) � ⇠, and set n = dim(J )
p

. Pick a
subset R ✓ J in a way that for every f 2 J there exists a unique r 2 R
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and a unique s 2 Fq[u] with deg(s) < n such that f = r + sp. We can then
write

(5.11)
X

f2J

µ(F (u, f))t(f) =
X

r2R

X

s2Fq [u]
deg(s)<n

µ(F (u, r + sp))t(r + sp).

Our choice of R is such that for each f 2 J there is a unique r 2 R with

(5.12) rf = rr.

Fix r 2 R, and suppose first that ZF \ ZFrr is infinite. Then from
Proposition 4.13 we get that

(5.13)
X

s2Fq [u]
deg(s)<n

µ(F (u, r + sp))t(r + sp) ⌧
Y

⇡|g

r(t⇡).

Therefore, the contribution of such r to Eq. (5.11) is

(5.14) ⌧ |R|

Y

⇡|g

r(t⇡) ⌧ qdim(J )(1� 1
p )
Y

⇡|g

r(t⇡).

We will check later (around Eq. (5.25)) that the contribution of Eq. (5.14)
to Eq. (5.10) is bounded by Eq. (5.4).

From now on we assume that ZF \ ZFrr is finite, so that we can use
Notation 4.15. By Corollary 4.12 we have

X

s2Fq [u]
deg(s)<n

µ(F (u, r + sp))t(r + sp) ⌧

���������

X

s2Fq [u]
deg(s)<n

✓
WF,r(u, r + sp)

MF,r

◆
t(r + sp)

���������

.

By definition of the Jacobi symbol, and the definition of a trace function in
Eq. (1.24), the above equals

(5.15)
X

s2Fq [u]
deg(s)<n

Y

⇡|MF,r

0

@W (⇡)
F,r

(r + sp)

⇡

1

A
Y

⇡0|g

t⇡0(r + sp).

Using Proposition 2.5(5) and Lemma 2.2(1) we can rewrite the above as

(5.16)
X

s2Fq [u]
deg(s)<n

Y

⇡|MF,r

t
E⇤

rL�

⇣
W

(⇡)
F,r

⌘(s)
Y

⇡0|g

tE⇤
rF⇡0 (s).

With Lemma 2.13(1), the notation of Eq. (4.103), and Eq. (4.104) we arrive
at

(5.17)
X

s2Fq [u]
deg(s)<n

Y

⇡|gF,r

tF,r,⇡(s) =
X

s2Fq [u]
deg(s)<n

tF,r(s).
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For all those r 2 R for which tF,r,⇡ is not a Dirichlet trace function for
any ⇡ | gF,r, we bound the sum above trivially. Since ZF \ ZFrr is finite,
Proposition 4.19 tells us that for every such r there exist A,B 2 Fq[u] such
that

(5.18) R(F, Frr) = A2B, B | g · ak · �v(R(F, Fv)).

Let us now check that Corollary 4.24 applies here.
First, recall that we have �v(R(F, Fv)) 6= 0. Second, we use Notation 4.1,

Eq. (5.9), and Eq. (5.18) to get that that

len(J ) = qdim(J )
� q⇠ = max{E(c1, c2, deg(I)), deg(a

k

k · g · ak · �v(R(F, Fv)))}
4

� max{E(c1, c2, deg(J )), deg(akkB)}4.

This verifies the assumption made in Eq. (4.151), so we can indeed invoke
Corollary 4.24.

It follows from Corollary 4.24 applied to each B in Eq. (5.18), and the
function field version of the divisor bound in [IK04, Eq. (1.81)] that the
number of r 2 R for which tF,r,⇡ is not a Dirichlet trace function for any
⇡ | gF,r is

(5.19) ⌧ len(J )
1
2+✏|g · ak · �v(R(F, Fv))|

✏

for any ✏ > 0. Now we use Proposition 4.22, and conclude that the contri-
bution of these r to Eq. (5.17) is

(5.20) ⌧ len(J )
1
2+✏|g|✏ · |ak|

✏
· q4✏k(k�1)(c1+kmax{c2,0})+n

·

Y

⇡|gF,r

r(tF,r,⇡).

For all those r 2 R for which there exists a prime ⌧ dividing gF,r such
that tF,r,⌧ is a Dirichlet trace function, we bound the sum on the right hand
side of Eq. (5.17) by invoking Corollary 3.14 and get

X

s2Fq [u]
deg(s)<n

tF,r(s) ⌧ q
n
2

0

@
Y

⇡|gF,r

(r(tF,r,⇡)(1 + Z) + c(tF,r,⇡)Z)deg(⇡)

1

A [Zn].

As the coe�cients of powers of Z in the polynomial above are nonnegative,
for any � > 0 the coe�cient of Zn is at most
(5.21)

q
n
2 ��n

0

@
Y

⇡|gF,r

(r(tF,r,⇡)(1 + �) + c(tF,r,⇡)�)
deg(⇡)

1

A = q
n
2 ��nB(tF,r; �)

which, by Proposition 4.17, is bounded from above by

(5.22) q
n
2 ��n(1 + 2�)E(c1,c2,deg(r))B(t; �).

Using the definition of E in Eq. (4.67), and the inequalities

(5.23) deg(r)  deg(J )  deg(I),
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we see that Eq. (5.22) is at most

q
n
2 ��n(1 + 2�)2kc1+kmax{0,c2+deg(I)}�k+c2k

2
B(t; �).

We can ignore the factor (1 + 2�)�k as it is at most 1. Summing trivially
over R in Eq. (5.11), the above is multiplied by |R| ⌧ qdim(J )�n, so recalling

that n = dim(J )
p

, we obtain

(5.24) q
dim(J )

⇣
1� 1

2p

⌘

��
dim(J )

p (1 + 2�)2kc1+kmax{0,c2+deg(I)}+c2k
2
B(t; �).

This is the main contribution to the error term and responsible for the
form of Eq. (5.4). All other contributions (we shall soon see), are secondary,
and our estimates for them can be somewhat wasteful.

We are now ready to show that each of the four contributions Eq. (5.14),
Eq. (5.20), Eq. (5.24), and the error term in Eq. (5.10), are each bounded
by the right side of Eq. (5.4), proving Eq. (5.4).

First, we show that the contribution of those r for which ZF \ ZFrr is

infinite, bounded in Eq. (5.14) by qdim(J )(1� 1
p )
Q
⇡|g

r(t⇡) for each interval
K 2 P, is dominated by Eq. (5.4).

Summing qdim(J )(1� 1
p )
Q
⇡|g

r(t⇡) over the intervals J that partition I, we
get a contribution of

(5.25) ⌧ qdim(I)(1� 1
p )
Y

⇡|g

r(t⇡).

Using our assumption that 0 < �  1, we get that

(5.26) ↵ <
1

2p
+

logq �

p
� k logq(1 + 2�) 

1

2p
<

1

p

and that � = (1 + 2�)k � 1. From Notation 4.1 we recall that deg(I) is at
least dim(I), and from Eq. (5.3) we deduce that

(5.27) 2c1 + (k + 1)c2 = (c1 + c2) + (c1 + kc2) � deg(a1) + deg(ak) � 0.

It is now visible that the quantity in Eq. (5.25) is smaller than the right
hand side of Eq. (5.4).

We next handle the terms described in Eq. (5.20) and Eq. (5.24), by
first checking that the contribution from Eq. (5.20) is smaller than that of
Eq. (5.24), and then bounding Eq. (5.24). For the first step, observe that
Eq. (5.24) is at least

(5.28) q
dim(J )

⇣
1� 1

2p

⌘

(1 + 2�)2kc1+k(c2+deg(I))+c2k
2Y

⇡|g

(r(t⇡)(1 + �))deg(⇡)

since conductors are nonnegative, and �  1. As g is squarefree, its degree
is the sum of the degrees of its prime factors, so the above is at least

q
dim(J )

⇣
1� 1

2p

⌘

(1 + 2�)
2kc1+

⇣
k�

1
p

⌘
deg(I)+c2k(k+1)

(1 + �)deg(g)
Y

⇡|g

r(t⇡)
deg(⇡).
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Since deg(⇡) � 1 and n = dim(J )
p

, the above is at least
0

@q
1
2 dim(J )+n

Y

⇡|g

r(t⇡)

1

A ·

✓
q
dim(J )

⇣
p�3
2p

⌘

(1 + 2�)
2kc1+

⇣
k�

1
p

⌘
deg(I)+c2k(k+1)

(1 + �)deg(g)
◆
.

By Eq. (4.103), Lemma 2.2(6), Lemma 2.13(5), and Proposition 2.5(4),
for primes ⇡ dividing gF,r but not dividing g, we have r(tF,r,⇡) = 1, and for
primes ⇡ | g we have r(tF,r,⇡) = r(t⇡). Therefore, Eq. (5.20) equals

(5.29)

0

@q
1
2 dim(J )+n

Y

⇡|g

r(t⇡)

1

A ·

⇣
len(J )|g||ak|q

4k(k�1)(c1+kmax{c2,0})
⌘✏

so it su�ces to show that
⇣
len(J )|g||ak|q

4k(k�1)(c1+kmax{c2,0})
⌘✏

 q
dim(J )

⇣
p�3
2p

⌘

(1+2�)
2kc1+

⇣
k�

1
p

⌘
deg(I)+c2k(k+1)

(1+�)deg(g).

By assumption, � > 0 and p � 3, so by taking logarithms to base q, we
see that the above reduces to

dim(J ) + deg(g) + deg(ak) + 4k(k � 1)(c1 + kmax{c2, 0}) ⌧

2kc1 +

✓
k �

1

p

◆
deg(I) + c2k(k + 1) + deg(g).

(5.30)

By Notation 4.1 and Eq. (5.3) we have

(5.31) dim(J )  dim(I)  deg(I), deg(ak)  c1 + c2k

so Eq. (5.30) would follow once we check that

(5.32) c1 + kc2 + 4k(k � 1)(c1 + kmax{c2, 0}) ⌧ 2kc1 + k(k + 1)c2.

If k = 1 the above is obvious. Otherwise, because

c1 � 0, c1+kc2 � deg ak � 0, 2kc1+k(k+1)c2 = (k+1)(c1+kc2)+(k�1)c1,

we have

(5.33) 0  c1 + kc2 
2kc1 + k(k + 1)c2

k + 1
, 0  c1 

2kc1 + k(k + 1)c2
k � 1

,

so any linear combination of c1 and c2 is O(2kc1 + k(k+1)c2), which estab-
lishes Eq. (5.32) and thus concludes the argument that Eq. (5.20) is smaller
than Eq. (5.24).

Since Eq. (5.24) is exponential in dim(J ), and there are O(1) intervals J
of any given dimension in our partition of I, summing Eq. (5.24) over the
intervals J that make up I, we get a bound for the sum in Eq. (5.10) of

(5.34) q
dim(I)

⇣
1� 1

2p

⌘

��
dim(I)

p (1 + 2�)2kc1+kmax{0,c2+deg(I)}+c2k
2
B(t; �)

because the highest possible value of dim(J ) is dim(J ) = dim(I).
After exponentiating, the second inequality in Eq. (5.1) translates to

(5.35) q↵ < q
1
2p �

1
p (1 + 2�)�k
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so multiplying both sides by q and rearranging we get

(5.36) q1�
1
2p ��

1
p < q1�↵(1 + 2�)�k.

Raising to power dim(I) gives

q
dim(I)

⇣
1� 1

2p

⌘

��
dim(I)

p  qdim(I)(1�↵)(1+2�)�k dim(I) = qdim(I)(1�↵)(1+2�)�k(c2+dim(I))+c2k

which implies that Eq. (5.34) is

⌧ qdim(I)(1�↵)(1 + 2�)2kc1+kmax{�c2�dim(I),deg(I)�dim(I)}+c2k(k+1)B(t; �).

Recalling that � = (1 + 2�)k, and bounding the maximum of powers of �
by their sum, we arrive at Eq. (5.4).

All that remains is to control the error term in Eq. (5.10), which is

(5.37) max{E(c1, c2, deg(I)), deg(g · a
k+1
k

· �v(R(F, Fv)))}
4
Y

⇡|g

r(t⇡).

For every ✏ > 0 we have

deg(g · ak+1
k

· �v(R(F, Fv)))
4
Y

⇡|g

r(t⇡) ⌧ |g|✏|ak|
✏
|�v(R(F, Fv))|

✏
Y

⇡|g

r(t⇡)

so by Proposition 4.22, the above is bounded by Eq. (5.29). We have seen
that the latter is bounded by Eq. (5.24) which led us to Eq. (5.4), so this
term is controlled.

By the definition of E in Eq. (4.67) we have

(5.38) E(c1, c2, deg(I))
4
Y

⇡|g

r(t⇡) ⌧ q✏(2c1+max{0,c2+deg(I)}+c2k)
Y

⇡|g

r(t⇡)

for every ✏ > 0. In case the maximum is attained at 0, we have

(5.39) c2 + dim(I)  c2 + deg(I)  0

so by Eq. (5.27), the right hand side of Eq. (5.38) is

q✏(2c1+(k+1)c2)q�✏c2
Y

⇡|g

r(t⇡) = q✏ dim(I)q✏(2c1+(k+1)c2)q✏(�c2�dim(I))
Y

⇡|g

r(t⇡)

⌧ q(1�↵) dim(I)�2c1+(k+1)c2��c2�dim(I)
Y

⇡|g

r(t⇡)

which is bounded by Eq. (5.4).
If the maximum in Eq. (5.38) is attained at c2 + deg(I), then the right

hand side of Eq. (5.38) is

q✏ dim(I)q✏(2c1+c2(k+1))q✏(deg(I)�dim(I))
Y

⇡|g

r(t⇡) ⌧

q(1�↵) dim(I)�2c1+c2(k+1)�deg(I)�dim(I)
Y

⇡|g

r(t⇡)
(5.40)

again bounded by Eq. (5.4). ⇤
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Corollary 5.2. Let p be an odd prime, let k be a positive integer, and let

(5.41) q > 4e2k2p2

be a power of p. Take a nonnegative integer n, a scalar � 2 Fq, and define

the interval

(5.42) I = {fnu
n + fn�1u

n�1 + · · ·+ f0u
0
2 Fq[u] : fn = �}.

Then for a separable polynomial F (T ) 2 Fq[u][T ] with degT (F ) = k, and an

infinitame trace function t to a squarefree modulus g 2 Fq[u] we have

X

f2I

µ(F (f))t(f) ⌧ q
n

⇣
1� 1

2p+
logq(2ekp)

p

⌘Y

⇡|g

✓
r(t⇡)

✓
1 +

1

2kp

◆
+

c(t⇡)

2kp

◆deg(⇡)

as n ! 1, with the implied constant depending only on q and F .

Proof. We invoke Theorem 5.1 with

(5.43) � =
1

2kp
, ↵ =

1

2p
�

logq(2ekp)

p
, c1 = degu(F ), c2 = 0,

and note that the positivity of ↵ follows from Eq. (5.41) by taking logarithms
and dividing by 2p. Moreover we have

↵ =
1

2p
+

logq(�)

p
�

logq(e)

p
<

1

2p
+

logq(�)

p
�

logq

⇣
1 + 1

kp

⌘kp

p

=
1

2p
+

logq(�)

p
� k logq (1 + 2�)

(5.44)

so the assumptions on � and ↵ in Theorem 5.1 hold. The result follows by
absorbing into the implied constant all the factors in Eq. (5.4) that depend
only on q, F , and checking that dim(I) = n = deg(I). ⇤

Now we deduce Theorem 1.3.

Proof of Theorem 1.3. We invoke Corollary 5.2 with

(5.45) n = blogq(X)c+ 1, � = 0, g = 1, t = 1,

and since q > 4e2k2p2, get that

(5.46)
X

f2Fq [u]
|f |X

µ(F (f)) ⌧ X1� 1
2p+

logq(2ekp)

p = o(X)

as required. ⇤

We similarly deduce Theorem 1.13.

Proof of Theorem 1.13. We invoke Corollary 5.2 with

(5.47) k = 1, � = 1, F (u, T ) = T, g = ⇡,
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and get that

X

f2Mn

µ(f)t(f) ⌧ |Mn|
1� 1

2p+
logq(2ep)

p

✓
r(t)

✓
1 +

1

2p

◆
+

c(t)

2p

◆deg(⇡)

= |Mn|
1� 1

2p+
logq(2ep)

p |⇡|
logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘

.

⇤

We will need the following consequence of Theorem 5.1 in the proof of
Theorem 1.2.

Corollary 5.3. Keep Notation 2.16 and Notation 4.1. Fix an odd prime p,
and a power q of p. Let 0 < �  1 and ↵ be real numbers satisfying

(5.48)

0 < ↵ < min

⇢
1

2
� 10 logq(1 + 2�) + logq(1 + 3�),

1

2p
+

logq �

p
� 2 logq(1 + 2�)

�
.

Set � = (1 + 2�)2.
Let n be a nonnegative integer, pick c1, c2, c3 2 R with c1 � 0 � c2, and

let a, b, c 2 Fq[u] be polynomials satisfying

b2 � 4ac 6= 0, deg(a)  c1 + 2c2, deg(b)  c1 + c2 � n, deg(c)  c1 � 2n.

For every nonzero polynomial y 2 Fq[u] of degree at most n put

(5.49) Fy(T ) = aT 2 + byT + cy2 2 Fq[u][T ]

and let Iy be an interval in Fq[u] of degree at most c3. Then for h 2 Fq[u]
we have

X

y2Fq [u]\{0}
deg(y)n

��������

X

x2Iy

gcd(x,y)=1

µ(Fy(x))e

✓
hx

y

◆
��������
⌧ qn+c3(1�↵)�2c1+3c2

�
��c2�c3 + 1

�
(1 + 3�)n

(5.50)

as n ! 1, with the implied constant depending only on q,↵, �.

Proof. Every monic polynomial y 2 Fq[u] can be decomposed uniquely as
y = y1y2 with y1 a squareful monic polynomial, and y2 a squarefree monic
polynomial coprime to y1. Explicitly, the polynomial y2 is the product of
all those primes ⇡ 2 Fq[u] for which ⇡ divides y, but ⇡2 does not divide y.
We can therefore bound our sum by

(5.51)
nX

m=0

X

y12Sm

X

y22Hn�m
gcd(y1,y2)=1

���������

X

x2Iy1y2
gcd(x,y1y2)=1

µ(Fy1y2(x))e

✓
hx

y1y2

◆
���������
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where Sm,Hn�m ✓ Fq[u] are the sets of squareful polynomials of degree
m and squarefree polynomials of degree n � m respectively. Since every
polynomial in Sm is the product of a square and a cube, we have

(5.52) |Sm| ⌧ q
m
2 ,

see [RG17, (2.7)].
For every two coprime polynomials y1, y2 2 Fq[u], we can find polynomials

A,B 2 Fq[u] with Ay1 +By2 = 1, so we can rewrite the above as

(5.53)
nX

m=0

X

y12Sm

X

y22Hn�m
gcd(y1,y2)=1

���������

X

x2Iy1y2
gcd(x,y1y2)=1

µ(Fy1y2(x))e

✓
Bhx

y1

◆
e

✓
Ahx

y2

◆
���������

.

We use the trivial bound for those pairs (y1, y2) with deg(y1) > dim(Iy1y2),
which is

nX

m=0

X

y12Sm

X

y22Hn�m
gcd(y1,y2)=1

qdim(Iy1y2 ) 

nX

m=0

X

y12Sm

X

y22Hn�m

qmin{deg(Iy1y2 ),deg(y1)} 

nX

m=0

X

y12Sm

X

y22Hn�m

q
c3+m

2 ⌧

nX

m=0

q
m
2 qn�mq

c3+m
2 ⌧ nqn+

c3
2 ⌧ (1 + 3�)nqn+(1�↵)c3

and that is bounded by the right hand side of Eq. (5.50).
For the other pairs (y1, y2) in Eq. (5.53), those with dim(Iy1y2) � deg(y1),

we define the intervals

I
r

y1y2
=

⇢
f � r

y1
: f 2 Iy1y2 , f ⌘ r mod y1

�
, r 2 Fq[u], deg(r) < deg(y1),

so that the sum over those (y1, y2) can be bounded, using the triangle in-
equality, by

nX

m=0

X

y12Sm

X

r2Fq [u]
deg(r)<m

gcd(r,y1)=1

X

y22Hn�m
gcd(y1,y2)=1
dim(Iy1y2 )�m

���������

X

z2I
r
y1y2

gcd(y1z+r,y2)=1

µ(Fy1y2(y1z + r))e

 
Ah(y1z + r)

y2

!
���������

where x = y1z + r.
Since y2 is squarefree, from Proposition 2.17 we get that the above is at

most

nX

m=0

X

y12Sm

X

r2Fq [u]
deg(r)<m

X

y22Hn�m
dim(Iy1y2 )�m

���������

X

z2I
r
y1y2

gcd(y1z+r,y2)=1

µ(Fy1y2(y1z + r))t(y1z + r)

���������
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where t is an infinitame trace function with

(5.54) r(t)  1, c(t)  2.

We have

Fy1y2(y1T + r) = a(y1T + r)2 + by1y2(y1T + r) + cy21y
2
2

= ay21T
2 + (2ary1 + by21y2)T + ar2 + bry1y2 + cy21y

2
2.

It follows from our initial assumptions on a, b, c, and c2 that the degrees
of the coe�cients of Fy1y2(y1T + r) satisfy

deg(ar2+bry1y2+cy21y
2
2)  max{c1+2c2+2m, c1+c2�n+m+n, c1�2n+2n}  c1+2m,

deg(2ary1+by21y2)  max{c1+2c2+m+m, c1+c2�n+2m+n�m}  c1+c2+2m,

and
deg(ay21)  c1 + 2c2 + 2m.

We can drop the condition gcd(y1z+ r, y2) = 1 in the sum above since for
any nonconstant common divisor D 2 Fq[u] of y1z + r and y2, we see that
D2 divides Fy1y2(y1z + r) so µ(Fy1y2(y1z + r)) = 0. Since b2 � 4ac 6= 0, the
polynomial Fy1y2(y1T + r) is separable, so we can invoke Theorem 5.1 with

(5.55) p, q, k = 2, �, ↵, c1 + 2m, c2, g = y2, t,

and get from Eq. (5.54) that the sum above is

⌧

nX

m=0

X

y12Sm

X

r2Fq [u]
deg(r)<m

X

y22Hn�m
dim(Iy1y2 )�m

qdim(Ir
y1y2

)(1�↵)�2c1+4m+3c2
⇣
��c2�dim(Ir

y1y2
) + �deg(I

r
y1y2

)�dim(Ir
y1y2

)
⌘Y

⇡|y2

(1 + 3�)deg(⇡).

(5.56)

Since y2 is squarefree we have

(5.57)
Y

⇡|y2

(1 + 3�)deg(⇡) = (1 + 3�)
P
⇡|y2

deg(⇡) = (1 + 3�)deg(y2).

By our assumptions we have �  1 hence

(5.58) ↵ <
1

2p
+

logq �

p
� 2 logq(1 + 2�)  1� 2 logq(1 + 2�)

so from our choice of � we get

(5.59) logq � = 2 logq(1 + 2�)  1� ↵

or equivalently �  q1�↵.
Since dim(Iy1y2) � m we have

(5.60) dim(Ir

y1y2
) = dim(Iy1y2)�m  deg(Iy1y2)�m  c3 �m

so

(5.61) qdim(Ir
y1y2

)(1�↵)��c2�dim(Ir
y1y2

)
 q(c3�m)(1�↵)��c2�(c3�m)
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because �  q1�↵, and similarly

(5.62) qdim(Ir
y1y2

)(1�↵)�deg(I
r
y1y2

)�dim(Ir
y1y2

)
 q(c3�m)(1�↵)�c3�(c3�m).

It follows from Eq. (5.52), Eq. (5.57), Eq. (5.61), and Eq. (5.62) that
Eq. (5.56) is
(5.63)

⌧

nX

m=0

q
m
2 qmqn�mq(c3�m)(1�↵)�2c1+4m+3c2(�m�c2�c3 + �m)(1 + 3�)n�m

which simplifies to

(5.64) qn+c3(1�↵)�2c1+3c2(��c2�c3 + 1)(1 + 3�)n
nX

m=0

 
q↵�

1
2�5

1 + 3�

!m

so to obtain the bound in Eq. (5.50), it su�ces to check that

(5.65)
q↵�

1
2�5

1 + 3�
< 1.

After taking logarithms in the above, rearranging, and recalling that by
definition � = (1 + 2�)2, the above becomes

(5.66) ↵ <
1

2
� 10 logq(1 + 2�) + logq(1 + 3�)

which is part of our initial assumptions. ⇤

6. Quadratic congruences

Notation 6.1. Let N 2 Fq[u] be a nonzero polynomial, and set n = deg(N).
We identify Fq[u]/(N) with the set of representatives

(6.1) P<n = {f 2 Fq[u] : deg(f) < n}

for the residue classes. As in Section 2.4.1, for a polynomial M 2 Fq[u] we

denote by fM the unique representative of its residue class in P<n.

Proposition 6.2. For an integer 0  d  n, the indicator function of the

degree of the reduction of M mod N being less than d can be expressed as

(6.2) 1
deg(fM)<d

= qd�n
X

h2Fq [u]
deg(h)<n�d

e

✓
hM

N

◆
.

Proof. We claim first that the indicator function of the Fp-subspace P<d

of Fq[u]/(N) equals the average over all additive characters of Fq[u]/(N)
that are identically 1 on P<d. Clearly, this average is 1 on P<d, so the
claim follows in case d = n. In case d < n, we restrict to the (nonempty)
complementof P<d in Fq[u]/(N), and view our average as the average over
all characters of the nontrivial quotient group

(6.3) Qd =
Fq[u]/(N)

P<d

.
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By orthogonality of characters, this average vanishes, so our claim is verified.
The number of characters we are averaging over is

(6.4) |Qd| =

����
Fq[u]/(N)

P<d

���� =
|Fq[u]/(N)|

|P<d|
=

qn

qd
= qn�d

so by Section 2.4.1, these characters are

(6.5)  h(M) = e

✓
hM

N

◆
, h 2 Fq[u], deg(h) < n� d,

hence the proposition follows. ⇤
Notation 6.3. Let D in Fq[u] be a polynomial for which the polynomial

(6.6) F (T ) = T 2 +D 2 Fq[u][T ]

is irreducible over Fq[u]. For nonnegative integers d, k, and A 2 Mk, we set

(6.7) ⇢d(A;F ) = |{f 2 Md : F (f) ⌘ 0 mod A}|, ⇢(A;F ) = ⇢k(A;F ).

In case d � k we clearly have

(6.8) ⇢d(A;F ) = qd�k⇢(A;F ).

Corollary 6.4. Suppose that d < k. Then

⇢d(A;F ) = qd�k⇢(A;F ) + qd�k
X

h2Fq [u]\{0}
deg(h)<k�d

e

✓
�hud

A

◆ X

f2Fq [u]/(A)
F (f)⌘0 mod A

e

✓
hf

A

◆
.

Proof. We have

(6.9) ⇢d(A;F ) =
X

f2Fq [u]/(A)
F (f)⌘0 mod A

1f2Md
=

X

f2Fq [u]/(A)
F (f)⌘0 mod A

1deg(f�ud)<d

which by Proposition 6.2 equals

(6.10) qd�k
X

h2Fq [u]
deg(h)<k�d

e

✓
�hud

A

◆ X

f2Fq [u]/(A)
F (f)⌘0 mod A

e

✓
hf

A

◆
.

Separating the contribution of h = 0 gives the corollary. ⇤
Proposition 6.5. For every positive integer k and every ✏ > 0 we have

(6.11)
X

A2Mk

⇢(A;F ) ⌧ |Mk| · |D|
✏

with the implied constant depending only on q and ✏.

Proof. We can decompose uniquely D = D1D2
2 where

(6.12) D1 =
Y

⇡|D

v⇡(D)⌘1 mod 2

⇡
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is squarefree. We define a (completely multiplicative) function by

(6.13) �(f) =

✓
�D1

f

◆
, f 2 Fq[u] \ {0}.

If ⇡ 2 Fq[u] is a prime that does not divide D, for every positive integer
r we can use Legendre symbols to write

(6.14) ⇢(⇡r;F ) = 1 +

✓
�D

⇡

◆
= 1 +

✓
�D1D2

2

⇡

◆
= 1 + �(⇡)

in view of Hensel’s Lemma.
If ⇡ 2 Fq[u] is a prime that divides D1, for every integer r � 1 we have

(6.15) ⇢(⇡r;F ) =

(
|⇡|b

r
2 c r  v⇡(D)

0 r > v⇡(D).

Indeed, when D ⌘ 0 mod ⇡r, we are counting the elements in Fq[u]/(⇡r)
which square to zero, or equivalently are zero mod ⇡d

r
2 e, so their number is

(6.16)
|⇡|r

|⇡|d
r
2 e

= |⇡|r�d
r
2 e = |⇡|b

r
2 c.

Since v⇡(D) is odd by our definition of D1 in Eq. (6.12), no element of
Fq[u]/(⇡r) has square congruent to �D mod ⇡r for r > v⇡(D).

Finally, if ⇡ divides D2 and does not divide D1, for r � 1 we have

(6.17) ⇢(⇡r;F ) =

(
|⇡|b

r
2 c r  v⇡(D)

(1 + �(⇡))|⇡|v⇡(D2) r > v⇡(D).

Indeed, the first case is established as in Eq. (6.15). For the second case we
note that every element in Fq[u]/(⇡r) is of the form ⇡i↵ for a unique choice
of 0  i  r and ↵ 2 (Fq[u]/(⇡r�i))⇥. The elements whose square is �D
are those that have

(6.18) i =
v⇡(D)

2
=

v⇡(D1D2
2)

2
=

v⇡(D1) + 2v⇡(D2)

2
= v⇡(D2)

and

(6.19) ↵2
⌘ �D⇡�v⇡(D)

⌘ �D1D
2
2⇡

�2v⇡(D2) mod ⇡r�2v⇡(D2).

The number of such ↵ 2 (Fq[u]/(⇡r�v⇡(D2)))⇥ is

(6.20)

 
1 +

 
�D1D2

2⇡
�2v⇡(D2)

⇡

!!
|⇡|r�v⇡(D2)

|⇡|r�2v⇡(D2)
= (1 + �(⇡))|⇡|v⇡(D2)

as stated in the second case of Eq. (6.17).
Let us now define the formal power series

H(t) =
1X

k=0

tk
X

A2Mk

⇢(A;F ).

For compactness of notation, we will write d⇡ for deg(⇡).
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The function A 7! ⇢(A,F ) is multiplicative so in view of Eq. (6.14),
Eq. (6.15), and Eq. (6.17), we have the formal Euler product

H(t) =
1X

k=0

tk
X

A2Mk

⇢(A;F ) =
Y

⇡

 
1X

r=0

trd⇡⇢(⇡r;F )

!
=

Y

⇡-D

 
1 + (1 + �(⇡))

1X

r=1

trd⇡

!
·

Y

⇡|D1

0

@
v⇡(D)X

r=0

|⇡|b
r
2 ctrd⇡

1

A ·

Y

⇡|D2
⇡-D1

0

@(1 + �(⇡))|⇡|v⇡(D2)
X

r>2v⇡(D2)

trd⇡ +

2v⇡(D2)X

r=0

|⇡|b
r
2 ctrd⇡

1

A .

We will now express the above as the product of

(6.21) L(t;�)⇣Fq [u](t) =
Y

⇡-D1

1

1� �(⇡)td⇡
·

Y

⇡

1

1� td⇡

with a rapidly converging Euler product. To do this, note that for primes ⇡
not dividing D we have

(1� �(⇡)td⇡)(1� td⇡)

 
1 + (1 + �(⇡))

1X

r=1

trd⇡

!
=

(1� �(⇡)td⇡)(1 + �(⇡)td⇡) = 1� �2(⇡)t2d⇡ = 1� t2d⇡ .

Similarly, for primes ⇡ dividing D2 but not D1 we get

(1� �(⇡)td⇡)(1� td⇡)
⇣
(1 + �(⇡))|⇡|v⇡(D2)

X

r>2v⇡(D2)

trd⇡ +

2v⇡(D2)X

r=0

|⇡|b
r
2 ctrd⇡

⌘

= |⇡|v⇡(D2)t2d⇡v⇡(D2)(1� t2d⇡) + (1� �(⇡)td⇡)(1� td⇡)

2v⇡(D2)�1X

r=0

|⇡|b
r
2 ctrd⇡ .

Combining these, we obtain

H(t) = L(t;�)⇣Fq [u](t)
Y

⇡-D

⇣
1� t2d⇡

⌘ Y

⇡|D1

⇣
(1� td⇡)

v⇡(D)X

r=0

|⇡|b
r
2 ctrd⇡

⌘

Y

⇡|D2
⇡-D1

⇣
|⇡|v⇡(D2)t2d⇡v⇡(D2)(1� t2d⇡) + (1� �(⇡)td⇡)(1� td⇡)

2v⇡(D2)�1X

r=0

|⇡|b
r
2 ctrd⇡

⌘
.

(6.22)

A priori this is only a formal identity, but L(t,�) and ⇣Fq [u](t) are absolutely
convergent for |t| < q�1 and admit meromorphic continuation to the whole
complex plane. We will next show that the remaining Euler product terms
converge absolutely for |t|  q�3/4 and in fact are ⌧ |D|

✏ (any cuto↵ strictly
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between 1
2 and 1 in place of 3

4 would work equally well for our purposes here).
It will follow that H(t) is absolutely convergent for |t| < q�1 and admits
meromorphic continuation to the disc |t|  q�3/4, and that the identity
Eq. (6.22) holds on that disc.

We have������

Y

⇡-D

⇣
1� t2d⇡

⌘
������


Y

⇡

⇣
1 + |⇡|�2· 34

⌘


Y

⇡

1

1� |⇡|�
3
2

=
1

1� q�
1
2

⌧ 1.

The contribution of each prime ⇡ dividing D1 is
������
(1� td⇡)

v⇡(D)X

r=0

|⇡|b
r
2 ctrd⇡

������
 (1+|⇡|�

3
4 )

1X

r=0

|⇡|
r
2�

3r
4 = (1+|⇡|�

3
4 )

1

1� |⇡|�
1
4

 |⇡|✏

for all but finitely many primes ⇡ in Fq[u]. Similarly, every prime ⇡ dividing
D2 but not D1 gives
������
|⇡|v⇡(D2)t2d⇡v⇡(D2)(1� t2d⇡) + (1� �(⇡)td⇡)(1� td⇡)

2v⇡(D2)�1X

r=0

|⇡|b
r
2 ctrd⇡

������


|⇡|�
1
2v⇡(D2)(1 + |⇡|�

3
2 ) + (1 + |⇡|�

3
4 )2

1X

r=0

|⇡|
r
2�

3r
4 

|⇡|�
1
2 (1 + |⇡|�

3
2 ) + (1 + |⇡|�

3
4 )2

1

1� |⇡|�
1
4

 |⇡|✏

for all but finitely many ⇡. Combining these, we obtain

(6.23)
H(t)

L(t;�)⇣Fq [u](t)
⌧ |D|

✏, |t|  q�
3
4 ,

and recall that ⇣Fq [u](t) = (1� qt)�1.
We now split into two cases. In the first case, D1 is nonconstant, so L(t;�)

is a polynomial in t which satisfies

(6.24) L(t;�) ⌧ |D|
✏, |t|  q�

3
4 ,

byWeil’s Riemann Hypothesis, see for instance [Flo17, Corollary 8.2]. There-

fore, the only pole of H with |t|  q�
3
4 is at t = q�1, and this pole is simple.

By Cauchy’s residue theorem, we thus have

X

A2Mk

⇢(A;F ) ⌧

�����

I

|t|=q
� 3

4

H(t)

tk+1

�����+
���qk+1Rest=q�1 H(t)

���

⌧

I

|t|=q
� 3

4

|D|
✏
|1� qt|�1

|t|k+1
+ qk+1

|D|
✏
��Rest=q�1(1� qt)�1

��

⌧ |D|
✏

���1� q
1
4

���
�1

q
3k
4 + qk|D|

✏
⌧ qk|D|

✏.
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In the second case D1 is constant, so

(6.25) L(t;�) =
1X

k=0

tk
X

f2Mk

�(f) =
1X

k=0

tkqk(�1)k =
1

1 + qt
.

Therefore, the only poles of H with |t|  q�
3
4 are t = ±q�1, and these poles

are simple. From Cauchy’s residue theorem we similarly get

X

A2Mk

⇢(A;F ) ⌧

�����

I

|t|=q
� 3

4

H(t)

tk+1

�����+
���qk+1Rest=±q�1 H(t)

���

⌧

I

|t|=q
� 3

4

|D|
✏
|1� qt|�1

|1 + qt|�1

|t|k+1
+ qk+1

|D|
✏
��Rest=±q�1(1⌥ qt)�1

��

⌧ |D|
✏

���1� q
1
2

���
�1

q
3k
4 + qk|D|

✏
⌧ qk|D|

✏.

⇤
Notation 6.6. Keep Notation 6.3. For a prime ⇡ 2 Fq[u] set

�F (⇡) = ⇢(⇡;F )� 1 = |{f 2 Fq[u]/(⇡) : F (f) ⌘ 0 mod ⇡}|� 1 =

✓
�D

⇡

◆

and define the singular series

(6.26) S(F ) =
Y

⇡

�
1� (1 + �F (⇡)) |⇡|

�1
� �

1� |⇡|�1
��1

.

Define also the L-function of �F (in the variable t = q�s) to be

(6.27) L(t;�F ) =
Y

⇡

1

1� �F (⇡)tdeg(⇡)
.

Proposition 6.7. For a positive integer n we have

(6.28)
nX

k=1

kq�k
X

A2Mk

µ(A)⇢(A;F ) = �S(F ) + q�
n
2+o(n), n ! 1,

as soon as degu(F ) ⌧ n.

Proof. We define

(6.29) Z(t) = t
d

dt

1X

k=0

tk
X

A2Mk

µ(A)⇢(A;F )

and use the multiplicativity in A of µ(A) and ⇢(A;F ) to write the above as
an Euler product, getting an equality of formal power series

(6.30) Z(t) = t
d

dt

Y

⇡

⇣
1� (1 + �F (⇡)) t

deg(⇡)
⌘
= t

d

dt
((1� qt)G(t))

where

(6.31) G(t) =
Y

⇡

⇣
1� (1 + �F (⇡)) t

deg(⇡)
⌘⇣

1� tdeg(⇡)
⌘
�1

.
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An alternative expression for G(t) is

(6.32) G(t) = L(t;�F )
�1
Y

⇡

 
1�

t2 deg(⇡)�F (⇡)

(1� tdeg(⇡))(1� �F (⇡)tdeg(⇡))

!
.

By the derivative product rule and Eq. (6.26), we have

(6.33) Z

✓
1

q

◆
= �G

✓
1

q

◆
= �S(F ).

By Cauchy’s di↵erentiation formula, the left hand side of Eq. (6.28) di↵ers
from the above by

(6.34) ⌧

X

k>n

kq�k

�������

I

|t|=r

G(t)

tk+1

�������
, r = q�

1
2�✏ <

1
p
q

where we take ✏ = ✏(n) > 0 to satisfy

(6.35) ✏ = o(1), ✏�1 = o(log n).

To bound the integral in Eq. (6.34), we prove a pointwise bound on G.
We first handle the case where D is not a constant (an element of F⇥

q ) times
a square in Fq[u]. To do that, (assuming none of the factors in Eq. (6.31) is
zero) we write

(6.36) log |G(t)| =
X

⇡

log

�����1�
�F (⇡)tdeg(⇡)

1� tdeg(⇡)

�����

and using the bound log |1� z| = 1
2 log |1� z|2 ⌧ log(1� z � z + |z|2) get

X

⇡

log

0

@1 +
(�2

F
(⇡) + 2�F (⇡))|t|2 deg(⇡) � �F (⇡)

⇣
tdeg(⇡) + tdeg(⇡)

⌘

|1� tdeg(⇡)|2

1

A .

Since log(1 + x)  x for any real x > �1, and |1 � tdeg(⇡)|�2
⌧ 1, the

above is

(6.37) ⌧

X

⇡

r2 deg(⇡) +

�����
X

⇡

�F (⇡)tdeg(⇡)

|1� tdeg(⇡)|2

�����

so summing separately over each degree we get at most

(6.38)
1X

`=1

q`r2`+

������

1X

`=1

X

deg(⇡)=`

�F (⇡)t`

|1� t`|2

������
=

1

1� qr2
+

������

1X

`=1

X

deg(⇡)=`

�F (⇡)t`

|1� t`|2

������
.

Using the triangle inequality, and the bound |1� t`|�2
⌧ 1, we arrive at

(6.39)
1X

`=1

q`r2` +
1X

`=1

r`

������

X

deg(⇡)=`

�F (⇡)

������
.
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For the second sum we use a trivial bound for `  2 logq deg(D), and invoke
Weil’s Riemann Hypothesis (see [Rud10, (2.5)]) for all other ` to get

(6.40) ⌧
1

1� qr2
+

X

`2 logq deg(D)

r`q` +
X

`>2 logq deg(D)

deg(D)r`q
`
2 .

Evaluating the geometric series, and using the bound (1 � q�2✏)�1
⌧ ✏�1

we finally get

(6.41) log |G(t)| ⌧ ✏�1 deg(D)1�2✏.

It follows from our assumption that deg(D) ⌧ n, Eq. (6.34) and Eq. (6.41)
that our error term is

(6.42) eO(deg(D)1�2✏
✏
�1)
X

k>n

kq�kr�k
⌧ qO(n1�2✏

✏
�1)nq�

n
2+✏n.

In view of Eq. (6.35) the above is ⌧ q�
n
2+o(n) as required.

Now we handle the case where D = �D2
0, with � 2 Fq and D0 2 Fq[u].

Since F is irreducible by assumption, we get that �� 2 F⇥
q \F⇥

q

2 and D0 6= 0
so

(6.43) L(t,�F ) =
1

1 + qt

Y

⇡|D

(1� (�t)deg(⇡)).

Therefore, for any t 2 C with |t|  q�
1
2 we have

(6.44) |L(t,�F )|
�1 = (1+qt)

Y

⇡|D

|1�(�t)deg(⇡)|�1
⌧

Y

⇡|D

1

1� |⇡|�
1
2

⌧ |D|
✏.

In order to obtain a pointwise bound for G in this case, we shall bound
the Euler product in Eq. (6.32). Setting r = |t| as in Eq. (6.34), we have

Y

⇡

�����1�
t2 deg(⇡)�F (⇡)

(1� tdeg(⇡))(1� �F (⇡)tdeg(⇡))

����� 
Y

⇡

 
1 +

r2 deg(⇡)

(1� rdeg(⇡))2

!
=

Y

⇡

 
1 +

2r3 deg(⇡)

1� rdeg(⇡)

!
1

1� r2 deg(⇡)
=

1

1� qr2

Y

⇡

 
1 +

2r3 deg(⇡)

1� rdeg(⇡)

!

in which the final Euler product converges for r < q�
1
3 and is uniformly

bounded for r  q�1/2, so Eq. (6.32) defines a holomorphic function in this
disc.

By Eq. (6.34) we have

(6.45)
1

1� qr2
=

1

1� q�2✏
⌧ ✏�1

so the error term is bounded by

(6.46)
X

k>n

kq�k
✏�1

rk+1
= ✏�1

X

k>n

kq(✏�
1
2 )(k+1)�1

⌧ ✏�1q�
n
2+✏n
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which is ⌧ q�
n
2+o(n) in view of Eq. (6.35). ⇤

7. Quadratic forms

We establish here analogs over Fq[u] of several facts mentioned in [Hoo63].

Proposition 7.1. For every (binary) quadratic form

(7.1) Q(X,Y ) = aX2 + bXY + cY 2

over Fq[u] there exists a unique symmetric 2⇥ 2 matrix K over Fq[u] with

(7.2) Q(X,Y ) = (X,Y )K(X,Y )T .

Proof. For the existence of K as above, just note that

(X,Y )

✓
a b

2
b

2 c

◆
(X,Y )T =

✓
aX +

bY

2
,
bX

2
+ cY

◆
(X,Y )T = Q(X,Y ).

For uniqueness, let K be a symmetric matrix satisfying Eq. (7.2). Then

(7.3) K11 = (1, 0)K(1, 0)T = Q(1, 0), K22 = (0, 1)K(0, 1)T = Q(0, 1)

and since K is symmetric, we get from Eq. (7.2) that

2K12 = K12 +K21 = (1, 1)K(1, 1)T � (1, 0)K(1, 0)T � (0, 1)K(0, 1)T

= Q(1, 1)�Q(1, 0)�Q(0, 1)

so K is indeed uniquely determined by Q. ⇤
Definition 7.2. Keep the notation of the above proposition. We say that
the symmetric 2⇥ 2 matrix K is the matrix corresponding to the quadratic
form Q, and define the discriminant D of Q to be the determinant

(7.4) D = det(K) = ac�
b2

4
.

In case the polynomial

(7.5) F (T ) = T 2 +D 2 Fq[u][T ]

is reducible over Fq[u], that is, negative D is a square in Fq[u], we say that
Q is degenerate, and otherwise we say that it is nondegenerate.

Remark 7.3. For a nondegenerate form Q(X,Y ) = aX2 + bXY + cY 2, the
polynomial a = Q(1, 0) is nonzero. For if a = 0 then

(7.6) �D =
b2

4
� ac =

✓
b

2

◆2

� 0 · c =

✓
b

2

◆2

contrary to our assumption that Q is nondegenerate.

Definition 7.4. Let the group SL2(Fq[u]) act from the right on row vectors
in Fq[u]2 via the dual of the usual action by multiplication. This means that
for a matrix of polynomials

(7.7) M 2 SL2(Fq[u]), M =

✓
M11 M12

M21 M22

◆
, M11M22 �M12M21 = 1,
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and (x, y) 2 Fq[u]2, the action is given by

(x, y) ?M = (x, y)M�T = (x, y)

✓
M22 �M21

�M12 M11

◆

= (M22x�M12y,�M21x+M11y).
(7.8)

It is straightforward to check that the stabilizer of the vector (1, 0) is

(7.9) {M 2 SL2(Fq[u]) : (1, 0)M
�T = (1, 0)} =

⇢✓
1 g
0 1

◆
: g 2 Fq[u]

�
.

Notation 7.5. A vector (x, y) 2 Fq[u]2 is called primitive if gcd(x, y) = 1, or
equivalently, if the ideal of Fq[u] generated by x and y contains 1. For such
a vector, we denote by x 2 Fq[u] the polynomial of least degree for which

(7.10) xx = 1 mod y,

and let yx 2 Fq[u] be the polynomial of least degree satisfying

(7.11) xx� yxy = 1.

Put

(7.12) M(x,y) =

✓
x yx
y x

◆
2 SL2(Fq[u])

and note that

(7.13) (1, 0) = (x, y)M�T

(x,y).

In particular, the primitive vectors form an orbit under the action of SL2(Fq[u]).

Definition 7.6. The group SL2(Fq[u]) also acts from the right on quadratic
forms by

(7.14) Q(X,Y ) ?M = Q((X,Y )MT ) = Q(M11X +M12Y,M21X +M22Y ).

We say that two quadratic forms are equivalent if they belong to the same
orbit in this action.

For instance, if

(7.15) Q(X,Y ) = aX2 + bXY + cY 2, M =

✓
1 g
0 1

◆
2 SL2(Fq[u])

then we have

Q((X,Y )MT ) = Q(X + gY, Y ) = a(X + gY )2 + b(X + gY )Y + cY 2

= aX2 + (b+ 2ag)XY + (ag2 + bg + c)Y 2.

(7.16)

We show that equivalent quadratic forms have the same discriminant.

Proposition 7.7. Let Q be a quadratic form, and let M 2 SL2(Fq[u]). Then
the discriminant of the quadratic form Q0(X,Y ) = Q((X,Y )MT ) equals the
discriminant of Q.
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Proof. For the symmetric 2⇥2 matrixK corresponding toQ in Definition 7.2
we have

(7.17) Q0(X,Y ) = Q((X,Y )MT ) = (X,Y )MTKM(X,Y )T

so Q0 and MTKM satisfy the assumptions of Proposition 7.1 as the latter
matrix is symmetric. We conclude that MTKM is the matrix corresponding
to Q0, so the discriminant of Q0 is

(7.18) det(MTKM) = det(MT ) det(K) det(M) = 1 · det(K) · 1 = det(K)

which is the discriminant of Q. ⇤
Definition 7.8. A representation of a polynomial A 2 Fq[u] by a quadratic
form is an ordered pair (Q, (x, y)) where (x, y) 2 Fq[u]2, Q is a quadratic
form, and Q(x, y) = A. The representation is said to be primitive if (x, y)
is primitive and Q is nondegenerate. One checks that the actions defined
in Definition 7.4 and Definition 7.6 combine to a coordinatewise action of
SL2(Fq[u]) from the right on (primitive) representations of A. We call two
representations equivalent if they belong to the same orbit in this action.

Next we show that the action of SL2(Fq[u]) on primitive representations
is free, namely that the stabilizer of any primitive representation is trivial.

Proposition 7.9. Let Q be a nondegenerate quadratic form over Fq[u], and
let v 2 Fq[u]2 be a primitive vector. Then the only matrix M 2 SL2(Fq[u])
that satisfies

(7.19) Q((X,Y )MT ) = Q(X,Y ), vM�T = v,

is the identity matrix.

Proof. Write Q(X,Y ) = aX2+bXY +cY 2, and suppose first that v = (1, 0).
In this case, we know that (1, 0)M�T = (1, 0) so by Eq. (7.9), there exists a
polynomial g 2 Fq[u] such that

(7.20) M =

✓
1 g
0 1

◆
.

Using our assumption that M stabilizes Q and Eq. (7.16) we get

aX2 + bXY + cY 2 = Q(X,Y ) = Q((X,Y )MT )

= aX2 + (b+ 2ag)XY + (ag2 + bg + c)Y 2.
(7.21)

Since Q is nondegenerate, we get from Definition 7.2 that 4ac� b2 6= 0. It
follows that either a 6= 0 or b 6= 0 (or both). In case a 6= 0, from comparing
the coe�cients of XY above, we get that 2ag = 0 so g = 0. If a = 0 then
b 6= 0, so from equating the coe�cients of Y 2 above, we deduce that bg = 0
hence g = 0. We have thus shown that M is indeed the identity matrix in
case v = (1, 0).

Assume now that v is an arbitrary primitive vector. In Eq. (7.12) we have
written a matrix Mv 2 SL2(Fq[u]) such that v = (1, 0)MT

v . We set

(7.22) Q0(X,Y ) = Q((X,Y )MT

v ),
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infer from Proposition 7.7 that Q0 is a nondegenerate quadratic form, and
note that Q(X,Y ) = Q0((X,Y )M�T

v ). Now if M 2 SL2(Fq[u]) is a matrix
satisfying Eq. (7.19) then

Q0((X,Y )MTM�T

v ) = Q0((X,Y )M�T

v ), (1, 0)MT

v M
�T = (1, 0)MT

v

so

Q0((X,Y )(M�1
v MMv)

T ) = Q0((X,Y )), (1, 0)
�
M�1

v MMv

��T
= (1, 0).

From the previous special case where the primitive vector was (1, 0) we
conclude that M�1

v MMv is the identity, so M is the identity as well. ⇤
Definition 7.10. If Q is a nondegenerate quadratic form of discriminant D
as in Definition 7.2, and (Q, (1, 0)) represents a polynomial A, then we can
write

(7.23) Q(X,Y ) = AX2 + bXY + cY 2

so from the definition of the discriminant in Eq. (7.4) we get

(7.24)

✓
b

2

◆2

+D =
b2

4
+Ac�

b2

4
= Ac ⌘ 0 mod A.

We say that f = b

2 2 Fq[u]/(A) is the solution of the equation

(7.25) F (T ) = T 2 +D ⌘ 0 mod A

associated to the primitive representation (Q, (1, 0)) of A. Note that A 6= 0
by Remark 7.3.

Proposition 7.11. Let (Q, (1, 0)) and (Q0, (1, 0)) be representations of a

polynomial A 2 Fq[u] by nondegenerate quadratic forms of discriminant D.

Then the solutions to Eq. (7.25) associated to the representations (Q, (1, 0))
and (Q0, (1, 0)) coincide if and only if these representations are equivalent.

Proof. Suppose first that the representations (Q, (1, 0)) and (Q0, (1, 0)) are
equivalent. By the definitions in Eq. (7.8) and Eq. (7.14), equivalence means
that there exists a matrix M 2 SL2(Fq[u]) such that

(7.26) (1, 0)M�T = (1, 0), Q0(X,Y ) = Q((X,Y )MT ).

We have checked in Eq. (7.9) that the first equality above implies

(7.27) M =

✓
1 g
0 1

◆

for some g 2 Fq[u].
Since Q(1, 0) = A, we can write

(7.28) Q(X,Y ) = AX2 + bXY + cY 2

and get from the second equality in Eq. (7.26) and Eq. (7.16) that

(7.29) Q0(X,Y ) = Q((X,Y )MT ) = AX2+(b+2gA)XY +(Ag2+bg+c)Y 2
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so the coe�cient of XY in Q0 is

(7.30) 2gA+ b ⌘ b mod A.

Hence the solution of Eq. (7.25) associated to (Q0, (1, 0)) via Eq. (7.24) is
f = b

2 , which is also the solution associated to (Q, (1, 0)).
Suppose now that the representations (Q, (1, 0)) and (Q0, (1, 0)) of A give

rise to the same solution of Eq. (7.25). We can therefore write

(7.31) Q(X,Y ) = AX2 + bXY + cY 2, Q0(X,Y ) = AX2 + b0XY + c0Y 2

with b0 congruent to b mod A. Since Q and Q0 are of discriminant D, using
Definition 7.2 we see that 4Ac = b2 + 4D and that 4Ac0 = b02 + 4D. By
Remark 7.3, A is nonzero so we can rewrite our forms as
(7.32)

Q(X,Y ) = AX2+bXY+
b2 + 4D

4A
Y 2, Q0(X,Y ) = AX2+b0XY+

b02 + 4D

4A
Y 2.

In order to exhibit the equivalence of our representations, we take

(7.33) M =

✓
1 b

0
�b

2A
0 1

◆
2 SL2(Fq[u])

and note that (1, 0) = (1, 0)M�T . Using Eq. (7.32) and Eq. (7.16) we get

Q((X,Y )MT ) =

AX2 +

✓
b+ 2A ·

b0 � b

2A

◆
XY +

 
A

✓
b0 � b

2A

◆2

+ b ·
b0 � b

2A
+

b2 + 4D

4A

!
Y 2 =

AX2 + b0XY +

✓
b02 � 2bb0 + b2

4A
+

2bb0 � 2b2

4A
+

b2 + 4D

4A

◆
Y 2 =

AX2 + b0XY +

✓
b02 + 4D

4A

◆
Y 2 = Q0(X,Y )

so our representations are indeed equivalent. ⇤

Definition 7.12. To a primitive representation (Q, (x, y)) of a polynomial
A 2 Fq[u] by a quadratic form

(7.34) Q(X,Y ) = aX2 + bXY + cY 2

of discriminant D, using Notation 7.5 we associate the solution

(7.35) f = ayxx+
b

2
(xx+ yxy) + cxy 2 Fq[u]/(A)

of the congruence T 2
⌘ �D mod A from Eq. (7.25). Note that this agrees

with our previous definition f = b

2 for the case (x, y) = (1, 0).
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Now we check that Eq. (7.35) is indeed a solution for Eq. (7.25). We use
Notation 7.5 to associate with (Q, (x, y)) the quadratic form

Qx,y(X,Y ) = Q
⇣
(X,Y )MT

(x,y)

⌘
= Q(xX + yxY, yX + xY )

= a(xX + yxY )2 + b(xX + yxY )(yX + xY ) + c(yX + xY )2

(7.36)

and use Eq. (7.13) to conclude that (Q, (x, y)) is equivalent to (Qx,y, (1, 0)).
One readily checks that dividing the coe�cient of XY above by 2 gives the
right hand side of Eq. (7.35), so the latter is indeed a solution of Eq. (7.25).
In other words, the solution of Eq. (7.25) associated to (Q, (x, y)) is the so-
lution of Eq. (7.25) associated to the equivalent representation (Qx,y, (1, 0))
in Definition 7.10. At last note that by Remark 7.3 we have

(7.37) A = Q(x, y) = Qx,y(1, 0) 6= 0.

Corollary 7.13. Primitive representations (Q, (x, y)) and (Q0, (x0, y0)) of a
polynomial A by quadratic forms of discriminant D are equivalent if and only

if their associated solutions to the equation T 2 +D ⌘ 0 mod A coincide.

Proof. The representations (Q, (x, y)) and (Q0, (x0, y0)) are equivalent if and
only if (Qx,y, (1, 0)) and (Q0

x0,y0 , (1, 0)) are equivalent. From Proposition 7.11
applied to Qx,y and Q0

x0,y0 , we get that (Qx,y, (1, 0)) and (Q0

x0,y0 , (1, 0)) are
equivalent if and only if they give rise to the same solution for the congruence
T 2 +D ⌘ 0 mod A. Our corollary now follows because the solution asso-
ciated to (Q, (x, y)) is the one associated to (Qx,y, (1, 0)), and the solution
associated to (Q0, (x0, y0)) is also associated to (Q0

x0,y0 , (1, 0)). ⇤

Proposition 7.14. Let A 2 Fq[u] be a nonzero polynomial, and let D 2

Fq[u] be a polynomial with �D not a square. Then every solution f 2

Fq[u]/(A) of

(7.38) T 2 +D ⌘ 0 mod A

arises from a primitive representation of A by a quadratic form of discrim-

inant D.

Proof. We lift f to a polynomial in Fq[u], which by an abuse of notation, we
continue to denote by f . Consider the quadratic form

(7.39) Q(X,Y ) = AX2 + 2fXY +
f2 +D

A
Y 2

2 Fq[u][X,Y ]

that satisfies Q(1, 0) = A. By Definition 7.2, the discriminant of Q is

(7.40) A ·
f2 +D

A
�

(2f)2

4
= f2 +D � f2 = D.

By Eq. (7.24), f = 2f
2 is associated to the primitive representation (Q, (1, 0))

of A, as required. ⇤



106 WILL SAWIN AND MARK SHUSTERMAN

Proposition 7.15. As in Definition 7.12, let (Q, (x, y)) be a primitive rep-

resentation of a polynomial A 2 Fq[u] by a quadratic form

(7.41) Q(X,Y ) = aX2 + bXY + cY 2

of discriminant D, and let

(7.42) f = ayxx+
b

2
(xx+ yxy) + cxy 2 Fq[u]/(A)

be the associated solution to the equation T 2+D ⌘ 0 mod A. Suppose that

y 6= 0. Then

(7.43) e

✓
hf

A

◆
= e

✓
hx

y

◆

for any polynomial h 2 Fq[u] satisfying

(7.44) deg(h) < deg(A)� deg(b)� 1

and

(7.45) deg(h) < deg(A) + deg(y)� deg(a)� deg(x)� 1.

Proof. We have an equality of rational functions

cxy2 + ax(xx� 1) + b

2y(2xx� 1)

yA
+

ax+ b

2y

yA
=

x(ax2 + bxy + cy2)

yA
=

xQ(x, y)

yA
=

xA

yA
=

x

y
.

(7.46)

By Eq. (7.11), we have xx � 1 = yxy and thus 2xx � 1 = xx + yxy, so
plugging these in the first term of Eq. (7.46) we get

(7.47)
cxy2 + axyxy +

b

2y(xx+ yxy)

yA
⌘

f

A
mod Fq[u]

from the definition of the associated solution f in Eq. (7.42). We conclude
from the above and Eq. (7.46) that

(7.48)
f

A
+

ax+ b

2y

yA
⌘

x

y
mod Fq[u].

Multiplying the above by a polynomial h and exponentiating, we obtain

(7.49) e

✓
hx

y

◆
= e

✓
hf

A

◆
e

 
hax+ b

2hy

yA

!
.

The second factor in the right hand side above equals 1 provided

(7.50) deg

✓
hax+

b

2
hy

◆
< deg(yA)� 1.

The latter holds in case the two inequalities

deg(h) < deg(A)+deg(y)�deg(a)�deg(x)�1, deg(h) < deg(A)�deg(b)�1

are satisfied. ⇤
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Definition 7.16. Let D 2 Fq[u] be a polynomial for which

(7.51) F (T ) = T 2 +D 2 Fq(u)[T ]

is irreducible over Fq(u), that is �D is not a square of a polynomial. We say
that D is indefinite if the infinite place of Fq(u) splits in the splitting field of
F . By [Ros02, Proposition 14.6], this is equivalent to the degree of D being
even and the leading coe�cient of �D being a square in F⇥

q . Otherwise
(if the infinite place of Fq(u) is ramified or inert in the splitting field of
F ) we say that D is definite. A nondegenerate quadratic form is called
definite (respectively, indefinite) if its discriminant is definite (respectively,
indefinite).

7.1. Definite quadratic forms.

Definition 7.17. We say that a definite quadratic form

(7.52) Q(X,Y ) = aX2 + bXY + cY 2
2 Fq[u][X,Y ]

is standard if deg c � deg a > deg b.

Remark 7.18. For the discriminant D of a standard Q we have

(7.53) deg(a) + deg(c) = deg(D).

Indeed, otherwise deg(ac) = deg(a) + deg(c) 6= deg(D), and thus

2 deg(b) = deg(b2) = deg(4ac� 4D) = max{deg(ac), deg(D)}

� deg(ac) = deg(a) + deg(c) > deg(b) + deg(b) = 2 deg(b),
(7.54)

a contradiction. We infer that

(7.55) deg(a) =
deg(a) + deg(a)

2


deg(a) + deg(c)

2
=

deg(D)

2
.

Proposition 7.19. For a standard definite quadratic form, and x, y 2 Fq[u]
we have

deg(Q(x, y)) = max(deg(a) + 2 deg(x), deg(c) + 2 deg(y)) > deg(bxy).

Proof. We have

(7.56) deg(ax2) = deg(a) + 2 deg(x), deg(cy2) = deg(c) + 2 deg(y),

so since deg(c), deg(a) > deg(b) by Definition 7.17, we get

deg(bxy) = deg(b) + deg(x) + deg(y) <
deg(a) + deg(c)

2
+ deg(x) + deg(y)

=
deg(ax2) + deg(cy2)

2
 max(deg(ax2), deg(cy2)).

(7.57)

Suppose toward a contradiction that the leading terms of ax2 and �cy2

are equal. Then the leading terms of a and �c are equal up to multiplica-
tion by the square of a monomial, so the leading term of �ac is a square.
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Since deg(ac) > deg(b2), we conclude that the leading term of the negated
discriminant

(7.58) �D =
b2

4
� ac

of Q is a square, which contradicts the assumption that Q is definite.
We infer that the leading terms of ax2 and cy2 do not cancel each other

out, so Eq. (7.57) implies that deg(bxy) < deg(ax2 + cy2) and thus the
desired statement. ⇤
Definition 7.20. We say that a primitive vector (x, y) 2 Fq[u]2 is a short
vector of a definite quadratic form Q if

(7.59) deg(Q(x, y)) = min{deg(Q(v)) | v 2 Fq[u]
2, v is primitive}.

By Eq. (7.37), the degrees of polynomials primitively represented by Q form
a (nonempty) subset of the nonnegative integers. Such a subset necessarily
has a least element, so Q admits short vectors.

Proposition 7.21. Let Q(X,Y ) = aX2+bXY +cY 2
be a standard definite

quadratic form over Fq[u]. Then the short vectors of Q are

(7.60)

(
F⇥
q ⇥ {0} deg(a) < deg(c)

Fq ⇥ Fq \ {(0, 0)} deg(a) = deg(c).

Proof. We first determine the minimum in the right hand side of Eq. (7.59).
Invoke Proposition 7.19, and note that the minimum value of

(7.61) deg(Q(x, y)) = max(deg(a) + 2 deg(x), deg(c) + 2 deg(y))

over all primitive vectors (x, y) 2 Fq[u]2 is attained (at least) whenever
deg(x) and deg(y) are as small as possible, subject to gcd(x, y) = 1. That
is, the minimum occurs (at least) in case

(7.62) {deg(x), deg(y)} = {0,�1},

so this minimum is min(deg(a), deg(c)) which is deg(a) since the form Q is
standard.

To determine all short vectors, let (x, y) 2 Fq[u]2 be a primitive vector.
If deg(c) > deg(a), then we have

(7.63) max(deg(a) + 2 deg(x), deg(c) + 2 deg(y)) = deg(a)

if and only if y = 0 and x is a nonzero constant polynomial. Otherwise,
since Q is standard we have deg(c) = deg(a) so Eq. (7.63) is satisfied if and
only if x and y are both constant polynomials (but not both zero). ⇤

The following proposition shows that the action of SL2(Fq[u]) on represen-
tations restricts to an action on representations by short vectors of definite
quadratic forms.

Proposition 7.22. Let v be a short vector of a definite quadratic form Q
over Fq[u], and let M 2 SL2(Fq[u]). Then the primitive vector v0 = vM�T

is a short vector of the definite quadratic form Q0(X,Y ) = Q((X,Y )MT ).
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Proof. The form Q0 is definite since its discriminant is the discriminant of
Q by Proposition 7.7. Since Q(X,Y ) = Q0((X,Y )M�T ), and v is a short
vector of Q, for any primitive vector v0 2 Fq[u]2 we have

deg(Q0(v0)) = deg(Q(v0M
T )) � deg(Q(v))

= deg(Q0(vM�T )) = deg(Q0(v0))
(7.64)

so v0 is indeed a short vector of Q0. ⇤
Definition 7.23. Let Q be a definite quadratic form over Fq[u], and let
v be a short vector of Q. A standardizing matrix of Q at v is a matrix
M 2 SL2(Fq[u]) for which vM�T = (1, 0) and Q((X,Y )MT ) is a standard
definite quadratic form.

Proposition 7.24. There exists a unique standardizing matrix of Q at v.

Proof. We start by proving existence. By Definition 7.20, the vector v is
primitive, so as in Eq. (7.13) there exists a matrix Mv 2 SL2(Fq[u]) with
vM�T

v = (1, 0). By Proposition 7.22, the vector (1, 0) is then a short vector
of the definite quadratic form

(7.65) Q0(X,Y ) = Q((X,Y )MT

v ) = aX2 + bXY + cY 2.

By Remark 7.3, a is nonzero so division with remainder (Euclidean divi-
sion) provides us with a polynomial g 2 Fq[u] for which deg(b�ag) < deg(a).
Setting

(7.66) N =

✓
1 �

g

2
0 1

◆
2 SL2(Fq[u])

and applying Eq. (7.16), we get the quadratic form

(7.67) S(X,Y ) = Q0((X,Y )NT ) = aX2 + (b� ag)XY + c0Y
2

for some c0 2 Fq[u].
Applying Proposition 7.22 again, we find that the vector (1, 0) = (1, 0)N�T

is a short vector of the definite quadratic form S. Therefore

(7.68) deg(c0) = deg(S(0, 1)) � deg(S(1, 0)) = deg(a)

so S is standard by Definition 7.17. The existence part of our proposition
then follows by taking M = MvN as

(7.69) vM�T = v(MvN)�T = vM�T

v N�T = (1, 0)N�T = (1, 0)

and

(7.70) Q((X,Y )MT ) = Q((X,Y )NTMT

v ) = Q0((X,Y )NT ) = S(X,Y ).

To demonstrate uniqueness, let M1,M2 2 SL2(Fq[u]) be standardizing
matrices of Q at v. Then we have vM�T

1 = (1, 0) = vM�T

2 so

(7.71) (1, 0)(M�1
1 M2)

�T = (1, 0)
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and the quadratic forms
(7.72)
S1(X,Y ) = Q((X,Y )MT

1 ) = aX2 + bXY + cY 2, S2(X,Y ) = Q((X,Y )MT

2 )

are standard definite. From Eq. (7.71) and Eq. (7.9) we get that

(7.73) M�1
1 M2 =

✓
1 g
0 1

◆

for some g 2 Fq[u], so from Eq. (7.72) and Eq. (7.16) we get that

S2(X,Y ) = Q((X,Y )MT

2 ) = S1((X,Y )MT

2 M
�T

1 ) = S1((X,Y )(M�1
1 M2)

T )

= aX2 + (b+ 2ag)XY + (ag2 + bg + c)Y 2.

Suppose toward a contradiction that g 6= 0. As the form S1 is standard
definite we know that deg(a) > deg(b), so since S2 is also standard definite,
we get from the above that

(7.74) deg(a) > deg(b+ 2ag) = deg(2ag) � deg(a)

which is an absurdity. We conclude that g = 0 and thus M�1
1 M2 is the

identity in view of Eq. (7.73), so M1 = M2 as required. ⇤

Definition 7.25. Let Q be a definite quadratic form, let v be a short vector
of Q, let M be the standardizing matrix of Q at v, and let w 2 Fq[u]2 be a
primitive vector. We say that the standard quadratic form Q((X,Y )MT ) is
the standardization of Q at v, and that the representation

(7.75) (Q((X,Y )MT ), wM�T )

is the standardization at v of the representation (Q,w). A primitive rep-
resentation (S,w) by a definite quadratic form is called standard if S is
standard.

Theorem 7.26. Let (Q,w) be a primitive representation of a polynomial

A by a quadratic form Q of definite discriminant D. Then the function

that maps a short vector v of Q to the standardization of (Q,w) at v is a

bijection between the set of short vectors of Q and the set of those standard

representations of A that are equivalent to (Q,w).

Proof. To show that our function is injective, let v1, v2 be short vectors of
Q, let M1,M2 2 SL2(Fq[u]) be the standardizing matrices of Q at v1 and v2
respectively, and suppose that the standardization of (Q,w) at v1 coincides
with the standardization of (Q,w) at v2, namely

(7.76) wM�T

1 = wM�T

2 , Q((X,Y )MT

1 ) = Q((X,Y )MT

2 ).

We can rewrite the above as

(7.77) w = w(M2M
�1
1 )�T , Q(X,Y ) = Q((X,Y )(M2M

�1
1 )T )
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so from the freeness of the action of SL2(Fq[u]) on primitive representations
established in Proposition 7.9, we conclude that M2M

�1
1 is the identity

matrix. We therefore have M1 = M2 and thus

(7.78) v1 = (1, 0)MT

1 = (1, 0)MT

2 = v2

so injectivity is proven.
To obtain surjectivity, let (S, z) be a standard representation of A which

is equivalent to (Q,w). We can therefore find a matrix M 2 SL2(Fq[u]) with

(7.79) S((X,Y )MT ) = Q(X,Y ), zM�T = w.

The qudratic form S is standard, so by Proposition 7.21, the vector (1, 0) is
a short vector of S. We conclude from Proposition 7.22 that v = (1, 0)M�T

is a short vector of Q, hence M�1 is the standardizing matrix of Q at v, and
(S, z) is the standardization of (Q,w) at v. ⇤
Corollary 7.27. Let D 2 Fq[u] be definite. Consider the function

(aX2 + bXY + cY 2, (x, y)) 7! (ax2 + bxy + cy2, ayxx+
b

2
(xx+ yxy) + cxy)

which maps a standard representation (S,w) by a quadratic form of discrim-

inant D to the represented polynomial A = S(w) and the associated solution

f to the congruence T 2+D ⌘ 0 mod A. Then the image of this function is

(7.80) {(A, f) : A 2 Fq[u] \ {0}, f 2 Fq[u]/(A), f2 +D ⌘ 0 mod A}.

Moreover, the preimage of any (f,A) as above is either a set of q� 1 repre-

sentations, all satisfying deg(a) < deg(c), or a set of q2� 1 representations,

all satisfying deg(a) = deg(c).

Proof. The fact that the image of our function is contained in Eq. (7.80) is
immediate from Definition 7.12. Taking (A, f) from the set in Eq. (7.80),
Proposition 7.14 provides us with a primitive representation (Q,w) of A by
a quadratic form of discriminant D such that f is the associated solution to
this representation. Standardizing (Q,w) at a short vector of Q, we obtain
a standard representation

(7.81) (S(X,Y ) = aX2 + bXY + cY 2, w0)

of A, which is equivalent to (Q,w). It follows from Corollary 7.13 that f is
also the solution associated to (S,w0), so our function maps (S,w0) to (A, f),
hence its image is indeed given by Eq. (7.80).

By the other implication in Corollary 7.13, the preimage of (A, f) under
our function consists of all those standard representations of A that are
equivalent to (S,w0). These representation are in bijection with the short
vectors of S in view of Theorem 7.26. Since S is a standard definite quadratic
form, it follows from Proposition 7.21 that this set has q�1 elements in case
deg(a) < deg(c) and q2 � 1 elements in case deg(a) = deg(c).

Now if

(7.82) (S0(X,Y ) = a0X2 + b0XY + c0Y 2, w00)
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is any other representation (of A) in the preimage of (A, f), then it is equiv-
alent to (S,w0). It follows from Proposition 7.22 that the number of short
vectors of (S0, w00) equals the number of short vectors of (S,w0), so since
q � 1 6= q2 � 1, we conclude from Proposition 7.21 that deg(a0) < deg(c0) in
case deg(a) < deg(c) and that deg(a0) = deg(c0) if deg(a) = deg(c). ⇤
Notation 7.28. For a definite polynomial D 2 Fq[u] we denote by

S(D) =

⇢
(a, b, c) 2 Fq[u]

3 : deg(c) � deg(a) > deg(b), ac�
b2

4
= D

�

the set of all standard quadratic forms of discriminant D.

Corollary 7.29. For every ✏ > 0 we have |S(D)| ⌧ |D|
1
2+✏.

Proof. For i 2 {0, 1} set

(7.83) S(D; i) = {(a, b, c) 2 S(D) : deg(c) ⌘ i mod 2}

and note that S(D) = S(D; 0) [ S(D; 1) so it su�ces to show that

(7.84) |S(D; i)| ⌧ |D|
1
2+✏, i 2 {0, 1}.

Fix i 2 {0, 1}, let (a, b, c) 2 S(D; i), and let n � deg(D) be an integer
with

(7.85) n ⌘ i mod 2.

It follows from Proposition 7.19 that for coprime polynomials x, y 2 Fq[u]
with

(7.86) deg(x) <
n� deg(a)

2
, deg(y) =

n� deg(c)

2
,

the polynomial A = ax2 + bxy + cy2 has degree n. From the count of pairs
of coprime polynomials (x, y) in [ABSR15, Proof of Lemma 7.3], and Re-
mark 7.18, it follows that the number of standard representations of degree
n polynomials by quadratic forms of discriminant D is

(7.87) � |S(D; i)|q
n�deg(a)

2 +n�deg(c)
2 = |S(D; i)|qn�

deg(D)
2 .

On the other hand, using Notation 6.3, this number is

(7.88) ⌧

X

A2Mn

⇢(A;F )

in view of Corollary 7.27. By Proposition 6.5 the above is ⌧ qn|D|
✏ so

|S(D; i)| ⌧ q
deg(D)

2 |D|
✏ = |D|

1
2+✏

as desired. ⇤
Remark 7.30. Keeping track of all the constants in the proofs of Corol-
lary 7.29 and Proposition 6.5 would give a precise estimate for the number
of standard quadratic forms, weighted by the inverse of their number of
short vectors, in terms of a special value of the L-function. This would be
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an analogue of a classical proof of the class number formula, though we have
here avoided the relationship between quadratic forms and ideal classes.

7.2. Indefinite quadratic forms.

Definition 7.31. We say that a primitive representation (Q, (x, y)) of a
polynomial A 2 Fq[u] by a quadratic form Q(X,Y ) = aX2 + bXY + cY 2 of
indefinite discriminant D is standard if there exists a nonnegative integer s
such that

(7.89) deg(a) 
deg(D)

2
� s, deg(b) 

deg(D)

2
, deg(c) 

deg(D)

2
+ s

and

(7.90) deg(x) 
deg(A)

2
�

deg(D)

4
+

s

2
, deg(y) 

deg(A)

2
�

deg(D)

4
�

s

2
.

Define the weight of a standard representation as above to be

(7.91) !(Q, (x, y)) = !s =

(
1

q3�q
s = 0

1
(q�1)qs+1 s > 0.

We show that the weight is well-defined.

Proposition 7.32. At least one of the inequalities in Eq. (7.89) is an equal-

ity, and at least one of the inequalities in Eq. (7.90) is an equality, so the

integer s is uniquely determined by the standard representation (Q, (x, y))
of the polynomial A and satisfies

(7.92) s ⌘
deg(D)

2
� deg(A) mod 2, s 

deg(D)

2
.

Proof. For the first claim note that if all inequalities in Eq. (7.89) were strict,
we would have

deg(D) = deg

✓
ac�

b2

4

◆
 max{deg(a) + deg(c), 2 deg(b)} < deg(D).

which is contradictory.
We turn to the second claim. Since Q(x, y) = A we have

deg(A) = deg(Q(x, y)) = deg(ax2 + bxy + cy2)

 max{deg(a) + 2 deg(x), deg(b) + deg(x) + deg(y), deg(c) + 2 deg(y)}.

(7.93)

We assume that the maximum is attained by the first element above. Then
from Eq. (7.89) and Eq. (7.90) we get

(7.94) deg(a) + 2 deg(x) 
deg(D)

2
� s+ deg(A)�

deg(D)

2
+ s = deg(A)

so lest we arrive using Eq. (7.93) and the above at deg(A) < deg(A), all our
inequalities must be equalities. In particular

(7.95) deg(x) =
deg(A)

2
�

deg(D)

4
+

s

2
.
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A calculation similar to that in Eq. (7.94), using Eq. (7.89) and Eq. (7.90),
shows that in case the maximum in Eq. (7.93) is attained by the second
element, Eq. (7.95) still holds. In case the maximum is attained by the
third element in Eq. (7.93), we get that

(7.96) deg(y) =
deg(A)

2
�

deg(D)

4
�

s

2
.

In all three cases s is uniquely determined by (Q, (x, y)) and

(7.97) ± s+ deg(A)�
deg(D)

2
2 {2 deg(x), 2 deg(y)} ✓ 2Z

for an appropriate choice of sign (namely either + or � depending on which
of the three cases is being considered), so the congruence in Eq. (7.92) holds.
At last note that

(7.98) 0  deg(a) 
deg(D)

2
� s

in view of Eq. (7.89) and Remark 7.3, so the inequality in Eq. (7.92) holds.
⇤

Definition 7.33. A valuation on Fq[u]2 is a function

(7.99) v : Fq[u]
2
! Z [ {�1}

satisfying the following three conditions.

(1) For every a, x, y 2 Fq[u] we have

v(ax, ay) = deg(a) + v(x, y);

(2) For all x1, x2, y1, y2 2 Fq[u] we have

v(x1 + x2, y1 + y2)  max{v(x1, y1), v(x2, y2)};

(3) The values of v on nonzero vectors are bounded below, i.e.

inf
(x,y) 6=(0,0)

v(x, y) > �1.

For v a valuation, let

mv = inf
(x,y) 6=(0,0)

v(x, y).

Because mv is the infimum of a set of integers bounded below, mv is attained
by some x, y.

Notation 7.34. For integers � and � one readily checks that the function

(7.100) v�,�(x, y) = max{� + deg(x), � + deg(y)}

is a valuation. We say that a valuation v is standard if there exist integers
�  � such that v = v�,�. In this case mv = v(1, 0) = �.
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Definition 7.35. We have an action of SL2(Fq[u]) from the right on valu-
ations by

(7.101) (v ?M)(x, y) = v((x, y)MT ), M 2 SL2(Fq[u]), x, y 2 Fq[u].

Valuations in the same orbit will be called equivalent.

We calculate the order of the stabilizer of a standard valuation.

Proposition 7.36. For a standard valuation v�,� define the subgroup

(7.102) G�,� = {M 2 SL2(Fq[u]) : v�,� ?M = v�,�}.

Then

(7.103) |G�,�| =

(
q3 � q � = �

(q � 1)q���+1 � < �.

Proof. For each integer s � 0, we define a subgroup of SL2(Fq[u]) by

(7.104) Hs =

8
><

>:

SL2(Fq) s = 0( 
� f

0 ��1

!
: � 2 F⇥

q , f 2 Fq[u], deg(f)  s

)
s � 1

and claim that G�,� = H��� . The asserted number of elements in G�,� is
immediate from this claim.

To prove one inclusion let M 2 G�,�. We have

� = v�,�(1, 0) = v�,�((1, 0)M
T ) = v�,�(M11,M21)

= max{� + deg(M11), � + deg(M21)}.
(7.105)

We deduce that deg(M11) and deg(M21) are nonpositive, and in case � < �
we can moreover say that M21 = 0. Similarly we have

� = v�,�(0, 1) = v�,�((0, 1)M
T ) = v�,�(M12,M22)

= max{� + deg(M12), � + deg(M22)}
(7.106)

so deg(M22)  0. In case � = � we infer that deg(M12)  0 as well,
while in case � < � we get that deg(M12)  � � �. Since our matrices have
determinant 1, this establishes the inclusion G�,�  H��� towards our claim.

For the other inclusion pick M 2 H��� . In case � = � this is a matrix of
polynomials of nonpositive degree, so we have

v�,�((x, y)M
T ) = v�,�(M11x+M12y,M21x+M22y)

= � +max{deg(M11x+M12y), deg(M21x+M22y)}

 � +max{deg x, deg y} = v�,�(x, y).

In case � < � we have

(7.107) deg(M11) = 0, deg(M12)  ���, deg(M21) = �1, deg(M22) = 0
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so in this case we have the similar inequality

v�,�((x, y)M
T ) = v�,�(M11x+M12y,M21x+M22y)

= max{� + deg(M11x+M12y), � + deg(M21x+M22y)}

 max{� +max{deg(M11x), deg(M12y)}, � + deg(y)}

 max{� + deg x, � + deg y} = v�,�(x, y).

Since M�1
2 H��� , we can plug M�1 in place of M and then plug

(x, y)MT in place of (x, y), getting the inequality v�,�(x, y)  v�,�((x, y)MT ).
In conjunction with the above we have v�,�((x, y)MT ) = v�,�(x, y) so M is in
G�,� and thus H���  G�,�. This concludes the proof that G�,� = H��� . ⇤
Proposition 7.37. Every valuation v on Fq[u]2 is equivalent to a unique

standard valuation.

Proof. Let (x, y) 6= (0, 0) be a vector attaining the minimal valuation, namely

(7.108) v(x, y) = mv.

From Definition 7.33(1) and the minimality of (x, y) we get that

v(x, y) = v

✓
gcd(x, y)

x

gcd(x, y)
, gcd(x, y)

y

gcd(x, y)

◆

= deg(gcd(x, y)) + v

✓
x

gcd(x, y)
,

y

gcd(x, y)

◆

� deg(gcd(x, y)) + v(x, y)

(7.109)

so deg(gcd(x, y))  0, hence x and y are coprime.
We can therefore takeM(x,y) 2 SL2(Fq[u]) to be the matrix from Eq. (7.12)

satisfying (1, 0) = (x, y)M�T

(x,y). For the valuation v0 = v?M(x,y) we then have

v0(z, w) = v((z, w)MT

(x,y)) � mv, (z, w) 6= (0, 0), v0(1, 0) = v(x, y) = mv

so v0(1, 0) = mv0 .
Let (z, 1) 2 Fq[u]2 be a vector with

(7.110) v0(z, 1) = min{v0(x, 1) : x 2 Fq[u]}.

Let

(7.111) M =

✓
1 z
0 1

◆
2 SL2(Fq[u])

and note that (1, 0)MT = (1, 0). For the valuation v00 = v0 ?M we then have

v00(t, w) = v0((t, w)MT ) � mv0 , (t, w) 6= (0, 0), v00(1, 0) = v0(1, 0) = mv0

so v00(1, 0) = mv00 . Moreover

min{v00(x, 1) : x 2 Fq[u]} = min{v0((x, 1)MT ) : x 2 Fq[u]}

= min{v0(x+ z, 1) : x 2 Fq[u]}

= min{v0(x, 1) : x 2 Fq[u]} = v0(z, 1) = v00(0, 1).
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Set � = v00(1, 0) = mv00 and � = v00(0, 1) so that �  �. We claim that

(7.112) v00 = v�,�

and thus v is equivalent to the standard valuation v00. To prove the claim,
note first that by Definition 7.33(2) and Definition 7.33(1) we have

v00(x, y) = v00(x(1, 0) + y(0, 1))  max{v00(x(1, 0)), v00(y(0, 1))}

= max{deg(x) + v00(1, 0), deg(y) + v00(0, 1)} = v�,�(x, y).
(7.113)

Suppose toward a contradiction that there exists a vector (x, y) with

(7.114) v00(x, y) < v�,�(x, y)

so in particular (x, y) 6= (0, 0). If � + deg(x) > � + deg(y) then we have

� + deg(x) = v00(1, 0) + deg(x) = v00(x(1, 0)) = v00((x, y) + (0,�y))

 max{v00(x, y), v00(�y(0, 1))} = max{v00(x, y), v00(0, 1) + deg(y)}

= max{v00(x, y), � + deg(y)} < max{v�,�(x, y), � + deg(x)} = � + deg(x),

a contradiction. Similarly, if � + deg y > � + deg x, we have

� + deg(y) = v00(y(0, 1))  max{v00(x, y), v00(�x(1, 0))}

= max{v00(x, y), � + deg(x)} < � + deg(y),

a contradiction.
Finally, if � + deg(x) = � + deg(y), so in particular

(7.115) deg(x) = � � � + deg(y) � deg(y) � 0,

we can use division with remainder in Fq[u] to write

(7.116) x = wy+r, deg(r) < deg(y)  deg(x), deg(w) = deg(x)�deg(y).

Since v00(0, 1) = min{v00(z, 1) : z 2 Fq[u]} we have

� + deg(y) = v00(0, 1) + deg(y)  v00(w, 1) + deg(y) = v00(wy, y) = v00(x� r, y)

 max{v00(x, y), v00(�r(1, 0))} = max{v00(x, y), v000(1, 0) + deg(r)}

= max{v00(x, y), � + deg(r)} < max{v�,�(x, y), � + deg(x)} = � + deg(y),

the final contradiction.
We have seen that v is equivalent to the standard valuation v�,�. To prove

uniqueness, assume that v is also equivalent to some standard valuation
v�0,�0 . We conclude that v�,� is equivalent to v�0,�0 so

(7.117) � = v�,�(1, 0) = mv�,� = mv�0,�0 = v�0,�0(1, 0) = �0.

Since the valuations v�,� and v�0,�0 belong to the same orbit under the action
of SL2(Fq[u]), their stabilizers are conjugate subgroups of SL2(Fq[u]), so they
have the same cardinality. We conclude from Proposition 7.36 that

(7.118)

(
q3 � q � = �

(q � 1)q���+1 � < �
=

(
q3 � q � = �0

(q � 1)q�
0
��+1 � < �0.
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As q3 � q is not equal to q � 1 times a power of q, we infer that �0 = � and
thus v�,� = v�0,�0 as required for uniqueness. ⇤
Proposition 7.38. For every indefinite quadratic form Q(X,Y ) over Fq[u]
there exist linear forms L1(X,Y ) and L2(X,Y ) over Fq((u�1)) such that

(7.119) Q(X,Y ) = L1(X,Y )L2(X,Y ).

This factorization is unique up to scaling L1 by an element of Fq((u�1))⇥

and L2 by its inverse, and up to changing the order of the factors.

Proof. The discriminant D = ac� b2/4 of Q(X,Y ) = aX2 + bXY + cY 2 is
indefinite, namely the infinite place of Fq(u) splits in the splitting field of
F (T ) = T 2 +D over Fq(u), or equivalently �D is a square in the comple-
tion Fq((u�1)) of Fq(u) at infinity. This means that there exists a unique
(unordered) pair of scalars �1,�2 2 Fq((u�1)) such that

Q(X,Y ) = Y 2

 
a

✓
X

Y

◆2

+ b
X

Y
+ c

!
= Y 2a

✓
X

Y
� �1

◆✓
X

Y
� �2

◆

= a(X � �1Y )(X � �2Y ).

⇤
Notation 7.39. Using the notation of Proposition 7.38, for a primitive rep-
resentation (Q, (x, y)) we define a function on Fq[u]2 by

vQ(x,y)(z, w) = max{deg(L1(z, w))�deg(L1(x, y)), deg(L2(z, w))�deg(L2(x, y))}

where the degree of a nonzero element of Fq((u�1)) is the degree of its
highest-order term in u. It follows from the uniqueness part of Proposi-
tion 7.38 that the function vQ(x,y) is well-defined.

Lemma 7.40. The function vQ(x,y)(z, w) is a valuation, and it satisfies

(7.120) vQ(x,y)(z, w) �
deg(Q(z, w))� deg(Q(x, y))

2
.

Proof. To check Definition 7.33(1), we just need to note that for every poly-
nomial a 2 Fq[u] we have

deg(Li(az, aw)) = deg(a) + deg(Li(z, w)), i 2 {1, 2}.

For Definition 7.33(2), one has to observe that for i 2 1, 2 we have

deg(Li(z+r, w+s)) = deg(Li(z, w)+Li(r, s))  max{deg(Li(z, w)), deg(Li(r, s))}.

To verify Definition 7.33(3) note that twice the value of the function equals

2max{deg(L1(z, w))� deg(L1(x, y)), deg(L2(z, w))� deg(L2(x, y))} �

deg(L1(z, w))� deg(L1(x, y)) + deg(L2(z, w))� deg(L2(x, y)) =

deg(L1(z, w)L2(z, w))� deg(L1(x, y)L2(x, y)) = deg(Q(z, w))� deg(Q(x, y))
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and Q(z, w) 6= 0 for (z, w) 6= (0, 0) by the homogeneity of Q and Eq. (7.37),
so the above is at least � deg(Q(x, y)). This concludes the verification of
Eq. (7.120) and of all the conditions a valuation must satisfy. ⇤

Associating a valuation to a representation is an SL2(Fq[u])-equivariant
operation, as we shall now see.

Proposition 7.41. Let (Q, (x, y)) be a representation by an indefinite qua-

dratic form, and let M 2 SL2(Fq[u]) be a matrix. Then

(7.121) vQ?M(x,y)?M = vQ(x,y) ?M.

Proof. Since Q(X,Y ) = L1(X,Y )L2(X,Y ), we get from Definition 7.6 that

(7.122) (Q ?M)(X,Y ) = Q((X,Y )MT ) = L1((X,Y )MT )L2((X,Y )MT )

and from Definition 7.4 that (x, y) ?M = (x, y)M�T . Therefore

vQ?M(x,y)?M (z, w) = max
i2{1,2}

{deg(Li((z, w)M
T ))� deg(Li((x, y)M

�TMT ))}

= max
i2{1,2}

{deg(Li((z, w)M
T ))� deg(Li(x, y))} = (vQ(x,y) ?M)(z, w)

for every vector (z, w) 2 Fq[u]2, in view of Definition 7.35. ⇤
Remark 7.42. We can think of the set of valuations on Fq[u]2 as an analogue
of the upper half-plane, on which SL2(Fq[u]) acts, and our set of (standard)
representatives of each SL2(Fq[u])-orbit as an analog of the usual funda-
mental domain for the action of SL2(Z) on the upper half-plane. To each
indefinite quadratic form Q one associates a geodesic in the upper half-plane,
which for us consists of the valuations vQ(x,y) for the various vectors (x, y).

We will show that the standard representations correspond to points on this
geodesic that lie in the fundamental domain.

Lemma 7.43. Let (Q, (x, y)) be a primitive representation of A 2 Fq[u] by
an indefinite quadratic form. If the associated valuation is standard, namely

(7.123) vQ(x,y) = v�,�, �  �,

then (Q, (x, y)) is a standard representation of weight

(7.124) !(Q, (x, y)) = !��� =

(
1

q3�q
� = �

1
(q�1)q���+1 � < �.

Proof. It follows from Lemma 7.40 and our assumptions that

deg(az2 + bzw + cw2) = deg(Q(z, w))  2vQ(x,y)(z, w) + deg(Q(x, y)) =

2v�,�(z, w) + deg(A) = max{2� + 2deg(z), 2� + 2deg(w)}+ deg(A).

(7.125)

Taking w = 0, z = 1 above, we see that

(7.126) deg(a)  2� + deg(A),
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taking z = 0, w = 1, we see that

(7.127) deg(c)  2� + deg(A),

taking z = u��� , w = 1 in Eq. (7.125), and using Eq. (7.126), Eq. (7.127)
we see that

deg(b) + � � � = deg(bu���) = deg(Q(u��� , 1)� au2��2�
� c) 

max{deg(Q(u��� , 1)), deg(au2��2�), deg(c)}  2� + deg(A)

so

(7.128) deg(b)  � + � + deg(A).

From Eq. (7.37) we get that Q(x, y) 6= 0 so for the linear forms L1 and
L2 from Proposition 7.38 we have that deg(L1(x, y)) and deg(L2(x, y)) are
finite, hence

(7.129) 0 = vQ(x,y)(x, y) = v�,�(x, y) = max{� + deg(x), � + deg(y)}.

Therefore

(7.130) deg(x)  ��, deg(y)  ��.

Set s = � � �. Our proposition reduces to showing that the discriminant
D = ac� b2/4 of Q satisfies

(7.131) deg(D) = 2� + 2� + 2deg(A).

Indeed it follows from s = � � � and Eq. (7.131) that

(7.132) � =
deg(D)

4
�

deg(A)

2
�

s

2
, � =

deg(D)

4
�

deg(A)

2
+

s

2

so Eq. (7.89) and Eq. (7.90) follow from Eq. (7.126), Eq. (7.128), Eq. (7.127),
and Eq. (7.130).

To check Eq. (7.131), write

L1(X,Y ) = ↵1X + �1Y, L2(X,Y ) = ↵2X + �2Y, ↵1,�1,↵2,�2 2 Fq((u
�1))

so that

Q(X,Y ) = (↵1X+�1Y )(↵2X+�2Y ) = ↵1↵2X
2+(↵1�2+�1↵2)XY +�1�2Y

2

and thus

(7.133) �D =
(↵1�2 + �1↵2)2

4
� ↵1↵2�1�2 =

(↵1�2 � �1↵2)2

4
.

Therefore, it su�ces to show that

(7.134) deg(↵1�2 � �1↵2) = � + � + deg(A).

For i 2 {1, 2} we have

� = v�,�(1, 0) = vQ(x,y)(1, 0) � deg(Li(1, 0))� deg(Li(x, y))

= deg(↵i)� deg(Li(x, y))
(7.135)
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and similarly

(7.136) � = v�,�(0, 1) = vQ(x,y)(0, 1) � deg(�i)� deg(Li(x, y))

so

(7.137) deg(↵i)  � + deg(Li(x, y)), deg(�i)  � + deg(Li(x, y)).

We conclude that
deg(↵1�2 � �1↵2)  max{deg(↵1) + deg(�2), deg(�1) + deg(↵2)} 

� + � + deg(L1(x, y)L2(x, y)) = � + � + deg(Q(x, y)) = � + � + deg(A)

so we have established one inequality towards Eq. (7.134).
Assume for contradiction that the inequality above is strict. Denoting by

↵(0)
i

the coe�cient of ↵i in degree � + deg(Li(x, y)) for i 2 {1, 2}, and by

�(0)
i

the coe�cient of �i in degree � + deg(Li(x, y)), we can interpret our
assumption for contradiction as

(7.138) det

 
↵(0)
1 ↵(0)

2

�(0)1 �(0)2

!
= ↵(0)

1 �(0)2 � �(0)1 ↵(0)
2 = 0.

Let (r, t) 2 F2
q be a nonzero vector in the kernel of the matrix above. By

examining the coe�cients in degree � + deg(Li(x, y)) we see that

deg(Li(ru
��� , t)) = deg(ru���↵i + t�i) < � + deg(Li(x, y)), i 2 {1, 2}.

Since (at least) one of the scalars r, t is nonzero, we get that

� = max{deg(r) + �, deg(t) + �} = v�,�(ru
��� , t)

= vQ(x,y)(ru
��� , t) = max

i2{1,2}
{deg(Li(ru

��� , t))� deg(Li(x, y))} < �

which is a contradiction. This verifies Eq. (7.134), completing the proof. ⇤
Lemma 7.44. For every standard representation (Q, (x, y)) of a polynomial

A by an indefinite quadratic form, there exist integers �  � such that

(7.139) vQ(x,y) = v�,�.

Proof. Following Definition 7.31, and Eq. (7.132) we define

(7.140) � =
deg(D)

4
�

deg(A)

2
�

s

2
, � =

deg(D)

4
�

deg(A)

2
+

s

2
and note that �, � are indeed integers by Proposition 7.32. Our assumption
that (Q, (x, y)) is standard then gives

(7.141) deg(x)  ��, deg(y)  ��, � � � = s, � + � =
deg(D)

2
� deg(A).

By Proposition 7.38, for i 2 {1, 2} there exist linear forms

(7.142) Li(X,Y ) = ↵iX + �iY, ↵i,�i 2 Fq((u
�1))

such that

Q(X,Y ) = L1(X,Y )L2(X,Y ) = ↵1↵2X
2 + (↵1�2 + �1↵2)XY + �1�2Y

2
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and

(7.143) �D =
(↵1�2 � �1↵2)2

4

as in Eq. (7.133).
It follows from our expression for Q, Eq. (7.89), and Eq. (7.143) that

(7.144) deg(↵1�2 + �1↵2), deg(↵1�2 � �1↵2) 
deg(D)

2
and therefore that

(7.145) deg(↵1�2), deg(�1↵2) 
deg(D)

2
.

We further infer from our expression for Q, Eq. (7.89), and Eq. (7.141) that

(7.146) deg(↵1↵2) 
deg(D)

2
� � + �, deg(�1�2) 

deg(D)

2
+ � � �.

By Eq. (7.141), for i 2 {1, 2} we have

deg(Li(x, y))  max{deg(↵i) + deg(x), deg(�i) + deg(y)}

 max{deg(↵i)� �, deg(�i)� �}
(7.147)

which either gives a lower bound on the degree of ↵i or a lower bound on the
degree of �i (or both). Combined with the upper bounds on deg(↵i↵3�i) and
deg(�i↵3�i) in the first case, or deg(↵i�3�i) and deg(�i�3�i) in the second
case, we obtain using Eq. (7.141) that

deg(↵i) 

(
deg(D)

2 � � + � � deg(↵3�i)
deg(D)

2 � deg(�3�i)


deg(D)

2
� � � deg(L3�i(x, y))

= deg(A) + � � deg(L3�i(x, y)) = deg(Li(x, y)) + �

and

deg(�i) 

(
deg(D)

2 � deg(↵3�i)
deg(D)

2 + � � � � deg(�3�i)


deg(D)

2
� � � deg(L3�i(x, y))

= deg(A) + � � deg(L3�i(x, y)) = deg(Li(x, y)) + �.

The bounds on deg(↵i), deg(�i) imply that for (z, w) 2 Fq[u]2 we have

vQ(x,y)(z, w) = max
i2{1,2}

{deg(↵iz + �iw)� deg(Li(x, y))}

 max
i2{1,2}

{max{deg(↵i) + deg(z), deg(�i) + deg(w)}� deg(Li(x, y))}

 max{� + deg(z), � + deg(w)} = v�,�(z, w).

We must prove that this inequality is in fact an equality.
Assume toward a contradiction that for some (nonzero) vector (z, w) the

inequality above is strict, namely

(7.148) max
i2{1,2}

{deg(↵iz + �iw)� deg(Li(x, y))} < v�,�(z, w).
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For i 2 {1, 2} let ↵(0)
i

be the coe�cient of ↵i in degree deg(Li(x, y)) + �,

and let �(0)
i

be the coe�cient of �i in degree deg(Li(x, y))+ �. Let moreover
z(0) be the coe�cient of z in degree v�,�(z, w) � �, and let w(0) be the
coe�cient of w in degree v�,�(z, w) � �. Note that all the coe�cients in
degrees higher than these are necessarily zero, and that (z(0), w(0)) 6= (0, 0)
because (z, w) 6= (0, 0).

In the notation above, Eq. (7.148) translates to

(7.149)
�
z(0) w(0)

�
 
↵(0)
1 ↵(0)

2

�(0)1 �(0)2

!
=
�
0 0

�

so the determinant of the matrix above vanishes, that is

(7.150) ↵(0)
1 �(0)2 � ↵(0)

2 �(0)1 = 0.

We conclude, using Eq. (7.141), that

deg(↵1�2 � ↵2�1) < deg(L1(x, y)) + deg(L2(x, y)) + � + � = deg(A) + � + �

=
deg(D)

2
which contradicts Eq. (7.143). ⇤
Corollary 7.45. Let D 2 Fq[u] be indefinite. Consider the function

(aX2 + bXY + cY 2, (x, y)) 7! (ax2 + bxy + cy2, ayxx+
b

2
(xx+ yxy) + cxy)

which maps a standard representation (Q, v) by a quadratic form of discrim-

inant D to the represented polynomial A = Q(v) and the associated solution

f to the congruence T 2+D ⌘ 0 mod A. Then the image of this function is

(7.151) {(A, f) : A 2 Fq[u] \ {0}, f 2 Fq[u]/(A), f2 +D ⌘ 0 mod A}.

Moreover the number of elements in the preimage of any (A, f) from Eq. (7.151)
equals the inverse of the weight of any representation in this preimage.

Proof. It is immediate from Definition 7.12 that the image of our function is
contained in Eq. (7.151). For (A, f) in this set, Proposition 7.14 gives us a
primitive representation (Q, (x, y)) of A by a quadratic form of discriminant
D such that the associated solution is f . By Proposition 7.37 there exist
integers �  � and a matrix M 2 SL2(Fq[u]) such that

(7.152) vQ(x,y) ?M = v�,�.

Proposition 7.41 then implies that

(7.153) vQ?M(x,y)?M = v�,�.

Lemma 7.43 tells us that the representation (Q0, (x0, y0)) = (Q?M, (x, y)?M)
is a standard representation of A with weight

(7.154) !(Q0, (x0, y0)) =

(
1

q3�q
� = �

1
(q�1)q���+1 � < �.
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It follows from Corollary 7.13 that our function maps (Q0, (x0, y0)) to (A, f)
so its image is indeed given by Eq. (7.151).

By Corollary 7.13, the preimage of (A, f) under our function consists of
the standard representations of A that are equivalent to (Q0, (x0, y0)). These
are parametrized by matrices N 2 SL2(Fq[u]) for which the representation

(7.155) (Q0 ?N, (x0, y0) ?N)

is standard. By Lemma 7.43 and Lemma 7.44 this is equivalent to the
valuation

(7.156) vQ
0
?N

(x0,y0)?N

being standard. In view of Proposition 7.41 and Eq. (7.153), we are looking
for the set of all N 2 SL2(Fq[u]) for which the valuation

(7.157) vQ
0

(x0,y0) ?N = v�,� ?N

is standard.
Using the uniqueness part of Proposition 7.37, we see that the valuation

above is standard if and only if

(7.158) v�,� ?N = v�,�.

We conclude from Proposition 7.36 that the number of elements in the preim-
age of (A, f) is

(7.159) |{N 2 SL2(Fq[u]) : v�,� ?N = v�,�}| =

(
q3 � q � = �

(q � 1)q���+1 � < �.

At last, note that the above is the inverse of the weight of the representation
(Q0, (x0, y0)) given in Eq. (7.154). ⇤
Notation 7.46. Following Definition 7.31, for an indefinite polynomial D in
Fq[u] we set

S(D) =

(
(s, a, b, c) 2 Z⇥ Fq[u]

3 : deg(a) 
deg(D)

2
� s, deg(b) 

deg(D)

2

deg(c) 
deg(D)

2
+ s, ac�

b2

4
= D, s � 0

)
.

For (s, a, b, c) 2 S(D) let a(0), b(0), c(0) be the coe�cients of a, b, c in degrees

(7.160)
deg(D)

2
� s,

deg(D)

2
,

deg(D)

2
+ s.

For a standard representation ax2 + bxy+ cy2 of a degree n polynomial, we
denote by x(0), y(0) the coe�cients of x, y in degrees

(7.161)
n

2
�

deg(D)

4
+

s

2
,

n

2
�

deg(D)

4
�

s

2
.
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Corollary 7.47. For every ✏ > 0 we have

(7.162)
X

(s,a,b,c)2S(D)

!s ⌧ |D|
1
2+✏.

Proof. For i 2 Z/2Z set S(D; i) = {(s, a, b, c) 2 S(D) : s ⌘ i mod 2}, and
note that it is enough to obtain the bound

(7.163)
X

(s,a,b,c)2S(D;i)

!s ⌧ |D|
1
2+✏.

Fix i 2 Z/2Z, and let (s, a, b, c) 2 S(D; i). Arguing as in the proof of the
first claim in Proposition 7.32, we find that (at least) one of the coe�cients
a(0), b(0), c(0) is nonzero. Therefore choosing x0, y0 2 Fq via

(7.164) (x0, y0) =

8
><

>:

(1, 0) a(0) 6= 0

(0, 1) a(0) = 0, c(0) 6= 0

(1, 1) a(0) = 0, c(0) = 0, b(0) 6= 0

we see that

(7.165) a(0)x
2
0 + b(0)x0y0 + c(0)y

2
0 6= 0.

Let n �
deg(D)

2 + s be an integer with

(7.166) n ⌘
deg(D)

2
+ i mod 2,

and let x, y 2 Fq[u] be coprime polynomials with

deg(x) 
n

2
�

deg(D)

4
+

s

2
, deg(y) 

n

2
�

deg(D)

4
�

s

2
, x(0) = x0, y(0) = y0.

It follows from our choices that the polynomial A = ax2 + bxy + cy2 has
degree n, so this representation is standard. From the count of coprime
pairs (x, y) in [ABSR15, Proof of Lemma 7.3], it follows that the weighted
number of standard representations of degree n polynomials by forms of
discriminant D is

�

X

(s,a,b,c)2S(D;i)

!sq
n
2�

deg(D)
4 + s

2 q
n
2�

deg(D)
4 �

s
2 = qn�

deg(D)
2

X

(s,a,b,c)2S(D;i)

!s.

On the other hand, using Notation 6.3, the number of such representations
is

(7.167) ⌧

X

A2Mn

⇢(A;F )

in view of Corollary 7.27. By Proposition 6.5 the above is ⌧ qn|D|
✏ so

X

(s,a,b,c)2S(D;i)

!s ⌧ q
deg(D)

2 |D|
✏ = |D|

1
2+✏

as desired. ⇤
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8. Primes in quadratic sequences

We state and prove a uniform version of Theorem 1.2.

Theorem 8.1. Fix 0 < �  1. Let p be an odd prime, let

(8.1) q > max
n�

16pe��1
�3

,
�
96ep2��1

�2o

be a power of p, and let

(8.2) � = 1�
�

12p� 1
min

(
2� 6 logq

�
16pe��1

�
,
1

2p
�

logq
�
96ep2��1

�

p

)
.

Let d be a nonnegative integer and D a polynomial in Fq[u] with

(8.3) deg(D)  2d(1� �).

Let F (T ) = T 2 +D, and assume that F is irreducible in (Fq[u])[T ]. Then

(8.4)
X

f2Md

⇤(f2 +D) = S(F )qd +O(q�d), d ! 1,

with the implied constant depending only on � and q.

Note that � < 1 in view of Eq. (8.1), so Eq. (8.4) always gives a power
saving. If q > (96ep2)2 = max{(16pe)3, (96ep2)2} we can choose � < 1
satisfying Eq. (8.1), and in this way obtain a power saving bound for d suf-
ficiently large depending on deg(D). Specifically, we obtain a power savings
of 1

2p(12p�1)

�
1� 2 logq

�
96ep2

��
as this term always dominates in Eq. (8.2).

Proof. The identity ⇤ = �1⇤ (µ ·deg) expressing the von Mangoldt function
in terms of the Möbius function gives

(8.5) ⇤(F (f)) = �

2dX

k=1

k
X

A2Mk

X

B2M2d�k

AB=F (f)

µ(A)

for any polynomial f 2 Md. Summing Eq. (8.5) over all degree d monic
polynomials f 2 Fq[u] we get

(8.6)
X

f2Md

⇤(F (f)) = �

2dX

k=1

k
X

f2Md

X

A2Mk

X

B2M2d�k

AB=F (f)

µ(A).

Fix ✏ = ✏(q) 2 (0, �/4). The contribution of the range (1 + ✏)d  k  2d
is

(8.7) �

X

(1+✏)dk2d

k
X

B2M2d�k

X

g2Fq [u]
deg(g)<2d�k

F (g)⌘0 mod B

X

f2Md
f⌘g mod B

µ

✓
f2 +D

B

◆
.
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Writing f = g + CB we get

�

X

(1+✏)dk2d

k
X

B2M2d�k

X

g2Fq [u]
deg(g)<2d�k

F (g)⌘0 mod B

X

C2Mk�d

µ

✓
BC2 + 2gC +

g2 +D

B

◆
.

We note that the quadratic polynomials

(8.8) G(T ) = BT 2 + 2gT +
g2 +D

B
2 Fq[u][T ]

(appearing in the Möbius function above) are separable in the variable T
for every B, g. Indeed the discriminant of G in T is

(8.9) (2g)2 � 4B
g2 +D

B
= 4g2 � 4(g2 +D) = �4D 6= 0.

We can therefore apply Theorem 5.1 with

c1 = max{2d�k, deg(D)�(2d�k)}, c2 = 0, g = 1, I = Mk�d, �1 = (1+2�1)
2

obtaining

X

C2Mk�d

µ

✓
BC2 + 2gC +

g2 +D

B

◆
⌧ q(k�d)(1�↵1)�2max{2d�k,deg(D)�(2d�k)}

1

 q(k�d)(1�↵1)
⇣
�2(2d�k)
1 + �2 deg(D)�2(2d�k)

1

⌘

= q(k�d)(1�↵1)
⇣
(1 + 2�1)

4(2d�k) + (1 + 2�1)
4 deg(D)�4(2d�k)

⌘

for any ↵1 and 0 < �1  1 satisfying Eq. (5.1), namely

(8.10) 0 < ↵1 <
1

2p
+

logq �1
p

� 2 logq(1 + 2�1).

By Proposition 6.5, the contribution of each k with (1 + ✏)d  k  2d to
Eq. (8.7) is then

⌧ q(k�d)(1�↵1)
⇣
(1 + 2�1)

4(2d�k) + (1 + 2�1)
4 deg(D)�4(2d�k)

⌘ X

B2M2d�k

X

g2Fq [u]
deg(g)<2d�k

F (g)⌘0 mod B

1

= q(k�d)(1�↵1)
⇣
(1 + 2�1)

4(2d�k) + (1 + 2�1)
4 deg(D)�4(2d�k)

⌘
· |D|

o(1)q2d�k

= |D|
o(1)qdq�↵1(k�d)(1 + 2�1)

4(2d�k) + |D|
o(1)qdq�↵1(k�d)(1 + 2�1)

4 deg(D)�4(2d�k).

The first term is exponentially decreasing as a function of k. Hence for
k � (1 + ✏)d it is bounded from above by

(8.11) |D|
o(1)qdq�↵1✏d(1 + 2�1)

4(1�✏)d.

Therefore, in order to obtain power savings, we need

(8.12) q�↵1✏(1 + 2�1)
4(1�✏) < 1.
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If we assume for the moment that Eq. (8.12) holds, using our assumptions
that ✏  �

4 
1
2 , we get

(8.13) q�↵1(1 + 2�1)
4 < 1

so the second term |D|
o(1)qdq�↵1(k�d)(1+2�1)4 deg(D)�4(2d�k) is exponentially

decreasing as a function of k, and thus is bounded from above by

(8.14) |D|
o(1)qdq�↵1✏d(1 + 2�1)

4 deg(D)�4(1�✏)d

which is also bounded by Eq. (8.11) since

(8.15) deg(D)  2(1� �)d  2(1� ✏)d.

Consequently, the contribution of the range (1+✏)d  k  2d to Eq. (8.6)
is at most

(8.16) d2|D|
o(1)qdq�↵1✏d(1 + 2�1)

4(1�✏)d

as long as we have Eq. (8.10) and Eq. (8.12). We now specialize

✏ =
�

12p� 1
, �1 =

✏

2(4� 2✏)p
=

�

2p(48p� 4� 2�)
,↵1 =

1

2p
+

logq �1
p

�
4�1
log q

which satisfies the second inequality in Eq. (8.10) because

(8.17) ↵1 =
1

2p
+

logq �1
p

�
4�1
log q

<
1

2p
+

logq �1
p

� 2 logq(1 + 2�1)

and satisfies Eq. (8.12), and thus the first inequality in Eq. (8.10), because

q�↵1✏(1 + 2�1)
4(1�✏) < q�↵1✏e8�1(1�✏) = q�

✏
2p �

�
✏
p

1 e4✏�1+8(1�✏)�1

= q�
✏
2p �

�
✏
p

1 e
✏
p =

 
q

1
2 �

2pe(48p� 4� 2�)

!
�
✏
p(8.18)

which is < 1 since q > (96ep2��1)2 > (2pe(48p� 4� 2�)��1)2 by Eq. (8.1).
Applying Eq. (8.18), and using our assumption |D|  q2d(1��), which

guarantees that d2|D|
o(1) is bounded by any exponential in d, we conclude

that the total contribution of the range (1 + ✏)d  k  2d to Eq. (8.6) is
(8.19)

⌧ qd
 
2pe(48p� 4� 2�)

q
1
2 �

!d
✏
p

=
⇣
qd
⌘1� �

2p(12p�1) (1�2 logq(
2pe(48p�4�2�)

� ))
.

This is bounded by q�d, for our choice of � in Eq. (8.2).
The contribution of the range k < (1 + ✏)d to Eq. (8.6) is

(8.20) �

X

1k<(1+✏)d

k
X

A2Mk

µ(A)⇢d(A;F )

so by Eq. (6.8) from k  d we get

(8.21) �

dX

k=1

kqd�k
X

A2Mk

µ(A)⇢(A;F ).
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By Corollary 6.4, from d < k < (1 + ✏)d we have

X

d<k<(1+✏)d

�kqd�k
X

A2Mk

µ(A)⇢(A;F )+

X

d<k<(1+✏)d

�kqd�k
X

h2Fq [u]\{0}
deg(h)<k�d

e

✓
�hud

A

◆ X

A2Mk

µ(A)
X

f2Fq [u]/(A)
F (f)⌘0 mod A

e

✓
hf

A

◆
.

(8.22)

Uniting the first term in Eq. (8.22) with Eq. (8.21), and applying Propo-
sition 6.7, we get

(8.23) �

X

1k<(1+✏)d

kqd�k
X

A2Mk

µ(A)⇢(A;F ) = S(F )qd + o
⇣
q

d
2

⌘

which gives us our main term and an admissible error term. The second
term in Eq. (8.22) is

(8.24) ⌧ d2 sup
d<k<(1+✏)d

sup
h2Fq [u]

���������

X

A2Mk

µ(A)
X

f2Fq [u]/(A)
F (f)⌘0 mod A

e

✓
hf

A

◆
���������

.

By Corollary 7.27, and Proposition 7.15, the sum in absolute value above,
in the definite case, equals
(8.25)

X

a,b,c2Fq [u]
deg(c)�deg(a)>deg(b)

4ac�b
2=4D

1 + q · 1deg(c)>deg(a)

q2 � 1

X

x,y2Fq [u]
gcd(x,y)=1, y 6=0

ax
2+bxy+cy

2
2Mk

µ(ax2+bxy+cy2)e

✓
hx

y

◆

where we have excluded y = 0 because then we have a factor of µ(ax2) which
is zero. Indeed if it were nonzero, then x would be a nonzero constant, so
from Eq. (7.55) and our initial assumption on degu(F ) we would get

k = deg(A) = deg(ax2 + bxy + cy2) = deg(ax2)

= deg(a) 
deg(D)

2
=

degu(F )

2


2d(1� �)

2
< d

(8.26)

which is impossible because we are in the range d < k < (1 + ✏)d.
Let us now check that the assumptions of Proposition 7.15 are indeed met

here, namely that Eq. (7.44) and Eq. (7.45) hold. Using the second line in
Eq. (8.26), and the fact that deg(b) < deg(a) we get

(8.27) deg(h) < k�d = deg(A)�d  deg(A)�deg(a)  deg(A)�deg(b)�1
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so Eq. (7.44) is verified. By Proposition 7.19 and Eq. (8.26) we have

deg(A) + deg(y)� deg(a)� deg(x) =

max{deg(a) + 2 deg(x), deg(c) + 2 deg(y)}+ deg(y)� deg(a)� deg(x) �

max{deg(x) + deg(y), deg(c)� d(1� �)� deg(x)}.

If toward a contradiction Eq. (7.45) fails, then the above is at most
deg(h) + 1 which is bounded by k � d. The latter does not exceed ✏d,
so

(8.28) deg(x), deg(y)  ✏d, deg(c)  d(1� �) + deg(x) + ✏d

and thus

k = deg(A) = deg(ax2 + bxy + cy2)

= max{deg(a) + 2 deg(x), deg(c) + 2 deg(y)}

 max{d(1� �) + 2✏d, d(1� �) + 4✏d} = d(1� � + 4✏)  k(1� � + 4✏)

a contradiction since ✏ < �/4. Our invocation of Proposition 7.15 is thus
justified.

We then apply the triangle inequality to the sum over a, b, c, y in Eq. (8.25),
to get
(8.29)

⌧

X

a,b,c2Fq [u]
deg(c)�deg(a)>deg(b)

4ac�b
2=4D

X

y2Fq [u]
y 6=0

deg(y) k�deg(c)
2

���������

X

x2Sa,b,c,y

gcd(x,y)=1

µ(ax2 + bxy + cy2)e

✓
hx

y

◆
���������

where

(8.30) Sa,b,c,y = {x 2 Fq[u] : ax
2 + bxy + cy2 2 Mk}.

We claim that for a, b, c, y as above, the set Sa,b,c,y is a disjoint union of at
most two intervals in Fq[u], the degree of which is at most (k�deg(a))/2. To
show this, recall from Proposition 7.19 that since D = ac� b2/4 is definite,
we have

k = deg(ax2 + bxy + cy2)

= max{deg(a) + 2 deg(x), deg(c) + 2 deg(y)} > deg(bxy).
(8.31)

In case deg(c) + 2 deg(y) < k, the leading coe�cient 1 of the monic poly-
nomial ax2 + bxy + cy2 is the leading coe�cient of ax2, that is the leading
coe�cient of a times the square of the leading coe�cient of x. Hence, if
the leading coe�cient of a is not a square in F⇥

q , the set Sa,b,c,y is empty.
Otherwise, if the leading coe�cient of a is �2, for some � 2 F⇥

q , then

(8.32) Sa,b,c,y = ��1
· M k�deg(a)

2
[ (���1) · M k�deg(a)

2
.
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Suppose now deg(c) + 2 deg(y) = k. If cy2 is monic, we have

(8.33) Sa,b,c,y =

⇢
x 2 Fq[u] : deg(x) <

k � deg(a)

2

�
.

If cy2 is not monic, then the set Sa,b,c,y is empty in case k 6⌘ deg(a) mod 2,
while in case k ⌘ deg(a) mod 2, denoting by f0 the leading coe�cient of a
polynomial f 2 Fq[u], we get

(8.34) Sa,b,c,y =

⇢
x 2 Fq[u] : deg(x) =

k � deg(a)

2
, x20 =

1� c0y20
a0

�

which is a disjoint union of two (possibly empty) intervals corresponding
to polynomials with leading coe�cient equal to one of the square roots of
(1� c0y20)/a0 in F⇥

q . This concludes the verification of our claim in all cases.
We use Corollary 7.29 to bound the number of triples (a, b, c) in the outer

sum of Eq. (8.29), and recall from Remark 7.18 that deg(c)  deg(D), so it
su�ces to control
(8.35)

|D|
1
2+o(1) max

a,b,c2Fq [u]
4ac�b

2=4D
deg(b)<deg(a)deg(c)deg(D)

X

y2Fq [u]
y 6=0

deg(y) k�deg(c)
2

���������

X

x2Ia,b,c,y

gcd(x,y)=1

µ(ax2 + bxy + cy2)e

✓
hx

y

◆
���������

where Ia,b,c,y is an interval in Fq[u] with

(8.36) deg(Ia,b,c,y) 
k � deg(a)

2

for all a, b, c, y.
Fixing a, b, c, we define the polynomial

(8.37) Fy(T ) = aT 2 + byT + cy2 2 Fq[u][T ]

for any y 2 Fq[u] \ {0}, and note that its discriminant in the variable T is

(8.38) (by)2 � 4acy2 = y2(b2 � 4ac) = (2y)2 · (�D) 6= 0

so Fy is a separable polynomial in T .
Setting

n =
k � deg(c)

2
, c1 = k, c2 = �

k � deg(a)

2
, c3 =

k � deg(a)

2

we see that the coe�cient of T i in Fy(T ) has degree at most c1 + ic2 for
i 2 {0, 1, 2}. Therefore, Corollary 5.3 allows us to bound Eq. (8.35) by
(8.39)

|D|
1
2+o(1) max

a,b,c2Fq [u]
4ac�b

2=4D
deg(b)<deg(a)deg(c)deg(D)

q
k�deg(c)

2 q
k�deg(a)

2 (1�↵2)�
2k�3 k�deg(a)

2
2 (1+3�2)

k�deg(c)
2



132 WILL SAWIN AND MARK SHUSTERMAN

where ↵2 and 0 < �2  1 satisfy Eq. (5.48), namely
(8.40)

0 < ↵2 < min

⇢
1

2
� 10 logq(1 + 2�2) + logq(1 + 3�2),

1

2p
+

logq �2
p

� 2 logq(1 + 2�2)

�

and �2 = (1 + 2�2)2.
We can separate the terms involving k from those involving a, b, c, in

Eq. (8.39), rewriting the latter as

|D|
1
2+o(1) max

a,b,c2Fq [u]
4ac�b

2=4D
deg(b)<deg(a)deg(c)deg(D)

q�
deg(D)

2 +deg(a)
2 ↵2�

3deg(a)
2

2 (1 + 3�2)
�

deg(c)
2 qk(1�

↵2
2 )�

k
2
2 (1 + 3�2)

k
2 .

Observe that the terms depending on deg(a) are increasing, and those de-
pending on deg(c) are decreasing. We may therefore replace deg(a) by its

upper bound deg(D)
2 and deg(c) by its lower bound deg(D)

2 , obtaining

⌧ q(
1
2+o(1)) deg(D)q�

deg(D)
2 +deg(D)

4 ↵2�
3 deg(D)

4
2 (1 + 3�2)

�
deg(D)

4 qk(1�
↵2
2 )�

k
2
2 (1 + 3�2)

k
2

=

✓
q
↵2
4 +o(1)�

3
4
2 (1 + 3�2)

�
1
4

◆deg(D)✓
q1�

↵2
2 �

1
2
2 (1 + 3�2)

1
2

◆k

=
⇣
q
↵2
4 +o(1)(1 + 2�2)

3
2 (1 + 3�2)

�
1
4

⌘deg(D) ⇣
q1�

↵2
2 (1 + 2�2)(1 + 3�2)

1
2

⌘k



⇣
q
↵2
4 +o(1)(1 + 2�2)

3
2 (1 + 3�2)

�
1
4

⌘2d(1��) ⇣
q1�

↵2
2 (1 + 2�2)(1 + 3�2)

1
2

⌘d(1+✏)

=
⇣
q1+✏�

(�+✏)↵2
2 +o(1)(1 + 2�2)

(4+✏�3�)(1 + 3�2)
�+✏
2

⌘d
.

(8.41)

We now specialize to

✏ =
�

12p� 1
, �2 =

3�

4(12p� 1)� (15p� 4)�
,↵2 =

1

2p
+

logq �2
p

�
4�2
log q

which satisfies the third inequality in Eq. (8.40) because

↵2 =
1

2p
+

logq �2
p

�
4�2
log q

<
1

2p
+

logq �2
p

� 2 logq(1 + 2�2).

To check that the second inequality in Eq. (8.40) holds, we first note that

(8.42) q > 3.57 . . . = e
84
66 � e

84
33(p�1) = e

42
4(12p�1)�(15p�4)

2p
p�1 .

As a result, since 0 < �2  1 we have

�
1
p

2
(1 + 2�2)8

(1 + 3�2)
 (1+2�2)

7
 e14�2 = e

42�
4(12p�1)�(15p�4)�  e

42
4(12p�1)�(15p�4) < q

p�1
2p .

Taking logarithms to base q gives

(8.43)
logq �2

p
+ 8 logq(1 + 2�2)� logq(1 + 3�2) 

p� 1

2p
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or equivalently

1

2p
+

logq �2
p

� 2 logq(1 + 2�2) 
1

2
� 10 logq(1 + 2�2) + logq(1 + 3�2)

which implies that the second inequality in Eq. (8.40) holds as the third
does.

Multiplying Eq. (8.41) by the factor d2 from Eq. (8.24), we absorb it,
together with qo(d), into an exponential savings in d, so we get

d2
✓
q1+

�
12p�1�

6p�↵2
12p�1+o(1)(1 + 2�2)

(4� 36p�4
12p�1 �)(1 + 3�2)

6p�
12p�1

◆d

⌧

✓
q1+

�
12p�1�

6p�↵2
12p�1 e

2�2
⇣
4� 36p�4

12p�1 �

⌘
+3�2

6p�
12p�1

◆d

=

✓
q1+

�
12p�1�

3�
12p�1 �

�
6�

12p�1

2 e
24p�2�
12p�1 +2�2

⇣
4� 36p�4

12p�1 �

⌘
+3�2

6p�
12p�1

◆d

=

✓
q1�

2�
12p�1 �

�
6�

12p�1

2 e�2
8(12p�1)�(30p�8)�

12p�1

◆d

=

✓
q1�

2�
12p�1 �

�
6�

12p�1

2 e
6�

12p�1

◆d

=
⇣
qd
⌘1� 2�

12p�1(1�3 logq(e/�2))

=
⇣
qd
⌘1� 2�

12p�1

⇣
1�3 logq(e

4(12p�1)�(15p�4)�
3� )

⌘

.

In particular, by our definition of � in Eq. (8.2), this is bounded by q�d.
This also verifies the first inequality in Eq. (8.40).

In case D is indefinite, we get from Notation 7.46, Corollary 7.45 and
Proposition 7.15 that the sum in absolute value in Eq. (8.24) equals

(8.44)
X

(s,a,b,c)2SD

!s

X

x,y2Fq [u]
gcd(x,y)=1,y 6=0

deg(x) k
2�

deg(D)
4 + s

2

deg(y) k
2�

deg(D)
4 �

s
2

ax
2+bxy+cy

2
2Mk

µ(ax2 + bxy + cy2)e

✓
hx

y

◆
.

The condition y 6= 0 is justified here in the same way as in the definite case,
only that here we need to refer to Eq. (7.89) instead of Eq. (7.55).

We check that the assumptions of Proposition 7.15 are satisfied in this
case. From our initial assumption on degu(F ) we get that

deg(h)  k�d�1 = deg(A)�d�1 < deg(A)�
deg(D)

2
�1  deg(A)�deg(b)�1
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so Eq. (7.44) is satisfied. Moreover we have

deg(h) + deg(a) + deg(x)� deg(A) < k � d+
deg(D)

2
� s+

k

2
�

deg(D)

4
+

s

2
� k =

deg(D)

4
�

s

2
� d+

k

2


d(1� �)

2
� d+

(1 + ✏)d

2
=

d(✏� �)

2
 �1  deg(y)� 1

so Eq. (7.45) is satisfied as well.
Arguing as in the definite case, we arrive at

(8.45)

X

(s,a,b,c)2SD

!s

X

y2Fq [u]\{0}

deg(y) k
2�

deg(D)
4 �

s
2

���������

X

x2Ss,a,b,c,y

gcd(x,y)=1

µ(ax2 + bxy + cy2)e

✓
hx

y

◆
���������

where

Ss,a,b,c,y = {x 2 Fq[u] : deg(x) 
k

2
�

deg(D)

4
+

s

2
, ax2 + bxy + cy2 2 Mk}.

We can rewrite the set above as

Ss,a,b,c,y = {x 2 Fq[u] : deg(x) 
k

2
�
deg(D)

4
+
s

2
, a(0)x

2
(0)+b(0)x(0)y(0)+c(0)y

2
(0) = 1}

where (for instance) x(0), y(0) are the coe�cients of x, y in degrees

(8.46)
k

2
�

deg(D)

4
+

s

2
,

k

2
�

deg(D)

4
�

s

2
as in Notation 7.46. Therefore the set Sa,b,c,y is a disjoint union of at most
two intervals in Fq[u], corresponding to the solutions of the (possibly degen-
erate) quadratic equation in x(0).

As in the definite case it is thus enough to control

(8.47)
X

(s,a,b,c)2SD

!s

X

y2Fq [u]\{0}

deg(y) k
2�

deg(D)
4 �

s
2

���������

X

x2Is,a,b,c,y

gcd(x,y)=1

µ(Fy(x))e

✓
hx

y

◆
���������

where Fy(T ) is the separable polynomial aT 2+ byT + cy2, and Is,a,b,c,y is an
interval in Fq[u] with

(8.48) deg(Is,a,b,c,y) 
k

2
�

deg(D)

4
+

s

2
.

Applying Corollary 5.3 with

n =
k

2
�
deg(D)

4
�
s

2
, c1 = k, c2 =

deg(D)

4
�
s

2
�
k

2
, c3 =

k

2
�
deg(D)

4
+
s

2
we get a bound of

q

⇣
k
2�

deg(D)
4 �

s
2

⌘
+
⇣

k
2�

deg(D)
4 + s

2

⌘
(1�↵2)�

2k+3
⇣

deg(D)
4 �

s
2�

k
2

⌘

2 (�02+1)(1+3�2)
k
2�

deg(D)
4 �

s
2
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for the sum over y in Eq. (8.47). The above can be rewritten as

2

✓
q

2�↵2
2 �

1
2
2 (1 + 3�2)

1
2

◆k ✓
q�

2�↵2
4 �

3
4
2 (1 + 3�2)

�
1
4

◆deg(D)✓
q�

↵2
2 �

�
3
2

2 (1 + 3�2)
�

1
2

◆s

⌧

✓
q

2�↵2
2 �

1
2
2 (1 + 3�2)

1
2

◆k ✓
q�

2�↵2
4 �

3
4
2 (1 + 3�2)

�
1
4

◆deg(D)

since s � 0 and the term being raised to the power s is a product of factors
that are individually at most 1, hence is bounded by 1.

Summing over SD we get from Corollary 7.47 that
✓
q

2�↵2
2 �

1
2
2 (1 + 3�2)

1
2

◆k ✓
q�

2�↵2
4 �

3
4
2 (1 + 3�2)

�
1
4

◆deg(D) X

(s,a,b,c)2SD

!s =

✓
q1�

↵2
2 �

1
2
2 (1 + 3�2)

1
2

◆k ✓
q
↵2
4 +o(1)�

3
4
2 (1 + 3�2)

�
1
4

◆deg(D)

.

This is identical to the bound obtained in the definite case, more specifically
on the second line of Eq. (8.41). We may thus give the same argument
(choosing the same ✏,↵2, �2), and again obtain a bound which is ⌧ q�d. ⇤
Remark 8.2. The optimal value of ✏ depends on q, p, �. As � becomes smaller,
the contribution of the range d < k < (1 + ✏)d becomes more di�cult to
bound, forcing us to lower ✏. As q grows, this contribution becomes easier
to bound (even compared to the contribution from k � (1 + ✏)d), allowing
us to raise ✏.

There is likely no closed-form formula for the exact optimal value of ✏,
and if there was it would make our formulas distressingly complicated, so
we have chosen to approximate. Specifically, we have chosen ✏ to roughly
optimize the range of q, � in which we have some savings, rather than to
optimize the amount of savings when q is large and � ⇠ 1. (This would
require a much larger value of ✏, close to 1

4p+1 , obtaining power savings

tending to 1
8p2+4p as q ! 1 and � ! 1 with p fixed. )

The specific nature of our choice of ✏ is that it makes the first lower bound
in Eq. (8.1) proportional to ��3. We have chosen ✏ this way because making
that lower bound proportional to ��2 is impossible, requiring ✏ = 0. We
could choose an intermediate growth rate (the optimum should be roughly
��2 log(��1)), but this would again give a messier formula, for a mild gain.

9. Trace functions vs Primes

Lemma 9.1. For a prime ⇡ 2 Fq[u] and an integer k � deg(⇡) we have

(9.1)
X

A2Mk
⇡|A

µ(A) =

8
><

>:

�1 k ⌘ 0 mod deg(⇡)

q k ⌘ 1 mod deg(⇡)

0 otherwise.
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Proof. We rewrite our sum as
X

B2Mk�deg(⇡)

µ(B⇡) =
X

B2Mk�deg(⇡)

⇡-B

µ(B⇡) = µ(⇡)
X

B2Mk�deg(⇡)

⇡-B

µ(B)

=
X

B2Mk�deg(⇡)

⇡|B

µ(B)�
X

C2Mk�deg(⇡)

µ(C)
(9.2)

and argue by induction on k. For the base case k < 2 deg(⇡), the last sum
over B above is empty, so we are only left with minus the sum over C which
equals �1 in case k = deg(⇡), equals q in case k = deg(⇡)+1, and otherwise
vanishes by [Ros02, Exercise 2.12]. This matches the right hand side of
Eq. (9.1), so the base case is established. If k � 2 deg(⇡) then the sum over
C vanishes, and the lemma follows from the induction hypothesis. ⇤

We shall now deduce Corollary 1.15 from Lemma 9.1, Theorem 1.10, and
Theorem 1.13. Our task is to show that for a Dirichlet character � of prime
conductor ⇡ 2 Fq[u], where q is a power of a prime number p satisfying
q > 4e2p2, we have

X

f2Mn

�(f + h)⇤(f) = O
⇣
|Mn|

1+⇣
2 +✏

|⇡|logq(3) + |Mn|
1+✏

|⇡|�1
⌘

for any h 2 Fq[u], ✏ > 0, and ⇣ =
⇣
1 + 1

p
�

logq(4e
2
p
2)

p

⌘�1
.

Proof of Corollary 1.15. The identity ⇤ = (µ · deg) ⇤ (�1) gives

(9.3)
X

f2Mn

�(f + h)⇤(f) = �

nX

k=1

k
X

A2Mk

µ(A)
X

B2Mn�k

�(AB + h).

For any k  ⇣n and any A 2 Mk that is not divisible by ⇡, the contribu-
tion to Eq. (9.3) is

(9.4) ⌧ n
X

C2Fq [u]
deg(C)<n�k

�(AC +ATn�k + h)

where C = B � Tn�k. Since ⇡ - A, we are in the situation of Example 1.7,

so we can invoke Theorem 1.10 and get that the above is ⌧ nq
n�k
2 |⇡|logq(3).

The contribution from all such k and A is thus
(9.5)

⌧ max
k⇣n

n2
|Mk|q

n�k
2 |⇡|logq(3)  n2q

n(1+⇣)
2 |⇡|logq(3) ⌧ q

n(1+⇣+2✏)
2 |⇡|logq(3)

for any ✏ > 0.
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The contribution to Eq. (9.3) of all deg(⇡)  k  ⇣n and all A 2 Mk

that are divisible by ⇡ is

⌧ max
k�deg(⇡)

n2

��������

X

A2Mk
⇡|A

µ(A)
X

B2Mn�k

�(h)

��������
= max

k�deg(⇡)
n2qn�k

|�(h)|

��������

X

A2Mk
⇡|A

µ(A)

��������

⌧ max
k�deg(⇡)

n2qn�k
⌧ n2qn�deg(⇡)

in view of Lemma 9.1.
The contribution of all k � ⇣n to Eq. (9.3) is

⌧ max
k�⇣n

n2

������

X

B2Mn�k

X

A2Mk

µ(A)�(AB + h)

������
⌧ max

k�⇣n

B2Mn�k

n2qn�k

������

X

A2Mk

µ(A)�(AB + h)

������

and by Theorem 1.13 this is

⌧ max
k�⇣n

n2qn�k
|Mk|

1� 1
2p+

logq(2ep)

p |⇡|logq(3) ⌧ max
k�⇣n

qn�
k
2p+

k logq(2ep)

p +✏n
|⇡|logq(3)

for any ✏ > 0. Since q > 4e2p2 by assumption, the above is largest once k is
as small as possible, so we put k = ⇣n and get

(9.6) qn(1�
⇣
2p+

⇣ logq(2ep)

p +✏)
|⇡|logq(3).

One readily checks that our choice of ⇣ in Eq. (1.34) (recalled before the
proof) is such that the bounds in Eq. (9.5) and Eq. (9.6) coincide, giving
the final bound

(9.7) q
n(1+⇣)

2 +✏n
|⇡|logq(3) + qn(1+✏)�deg(⇡).

⇤
Proposition 9.2. Let ⇡ 2 Fq[u] be a prime, and let t : Fq[u]/(⇡) ! C be

an infinitame trace function arising from a sheaf F whose geometric mon-

odromy representation does not admit the trivial representation Q` as a quo-

tient. For an integer n � deg(⇡) and a polynomial h 2 Fq[u] we then have

(9.8)

���������

X

f2Fq [u]
deg(f)<n

t(f)e

✓
hf

⇡

◆
���������

 c(t)qn|⇡|�
1
2 .

Proof. In every residue class mod ⇡ there are qn�deg(⇡) polynomials of degree
less than n, so

(9.9)

���������

X

f2Fq [u]
deg(f)<n

t(f)e

✓
hf

⇡

◆
���������

=
qn

|⇡|

������

X

f2Fq [u]/(⇡)

t(f)e

✓
hf

⇡

◆������
.
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Setting Fh = F ⌦ L (hx), and using the Grothendieck-Lefschetz trace for-
mula, we get
(9.10)������

X

f2Fq [u]/(⇡)

t(f)e

✓
hf

⇡

◆������
=

������

X

y2A1(Fq [u]/(⇡))

tFh(y)

������


2X

i=0

���tr(Frob|⇡|, H i

c(A1
Fq [u]/(⇡)

,Fh))
���

where Fh is the base change of Fh to the algebraic closure of Fq[u]/(⇡).
For i = 0 there is no cohomology by the fact that F has no finitely

supported sections, Lemma 2.15(5), and Lemma 2.13(2). For i = 2 the
cohomology equals the geometric monodromy coinvariants of Fh. These
vanish for h = 0 in view of our assumption that the geometric monodromy
representation of F = F0 does not admit trivial quotients, and also vanish for
h 6= 0 because F is infinitame hence its geometric monodromy representation
does not have Artin-Schreier quotients.

Consequently, using Lemma 2.10 and Eq. (2.22) we get

dimH1
c (A1

Fq [u]/(⇡)
,Fh) = ��(A1

Fq [u]/(⇡)
,Fh) = sw1(Fh)�r(Fh)+

X

x2|A1|

cx(Fh).

From Lemma 2.13(5) and Lemma 3.10(5) we get that the above equals

(9.11) sw1(Fh)� r(F) + cF (Fh)� sw0

1(Fh).

In case h = 0 the above reduces to c(t)� r(t) because F is infinitame. In
case h 6= 0 we still have cF (Fh) = cF (F) in view of Definition 3.8, and since
F is infinitame, the local monodromy at 1 of Fh is a direct sum of r(F)
copies of the local monodromy of L (hx), so Eq. (9.11) equals

cF (F) + r(F)slope1(L (hx))� r(F)max{slope1(L (hx))� 1, 0}� r(F)

where the slopes are taken with respect to the representation of the inertia
group I1 on the generic fiber. Since slope1(L (hx)) = 1 by Lemma 2.15(3),
the above equals c(t).

Since Fh is mixed of nonpositive weights by Lemma 2.13(4), each eigen-

value of Frob|⇡| acting on H1
c (A1

Fq [u]/(⇡)
,Fh) is of absolute value at most |⇡|

1
2

by Deligne’s bound, so Eq. (9.10) is bounded by

(9.12) dimH1
c (A1

Fq [u]/(⇡)
,Fh)|⇡|

1
2  c(t)|⇡|

1
2 .

It follows from Eq. (9.9) that our original sum is bounded by

(9.13) qn|⇡|�1c(t)|⇡|
1
2 = c(t)qn|⇡|�

1
2

as required. ⇤
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Corollary 9.3. With assumptions as above, for an integer 0  d < deg(⇡)
we have

(9.14)

���������

X

f2Fq [u]
deg(f)<d

t(f)

���������

 c(t)|⇡|
1
2 .

Proof. By Proposition 6.2 and Proposition 9.2 we have
���������

X

f2Fq [u]
deg(f)<d

t(f)

���������

=
qd

|⇡|

���������

X

h2Fq [u]
deg(h)<deg(⇡)�d

X

f2Fq [u]
deg(f)<deg(⇡)

t(f)e

✓
hf

⇡

◆
���������

 sup
h2Fq [u]

deg(h)<deg(⇡)�d

���������

X

f2Fq [u]
deg(f)<deg(⇡)

t(f)e

✓
hf

⇡

◆
���������

 c(t)qdeg(⇡)|⇡|�
1
2 = c(t)|⇡|

1
2 .

⇤

We shall now deduce Corollary 1.14.

Proof of Corollary 1.14. The identity ⇤ = (µ · deg) ⇤ (�1) gives

(9.15)
X

f2Mn

t(f)⇤(f) = �

nX

k=1

k
X

A2Mk

µ(A)
X

B2Mn�k

t(AB).

For any k  ⇣n and any A 2 Mk that is not divisible by ⇡, the contribu-
tion to Eq. (9.15) is

(9.16) ⌧ n
X

C2Fq [u]
deg(C)<n�k

t(AC +ATn�k)

where C = B � Tn�k. Since ⇡ - A, the function C 7! t(AC + ATn�k)
satisfies the hypothesis of Proposition 9.2 and Corollary 9.3, so the above is
bounded by

(9.17) nc(t)|⇡|
1
2

✓
1 +

qn�k

|⇡|

◆
.

The contribution from all such k and A is thus
(9.18)

⌧ max
k⇣n

n2c(t)|⇡|
1
2 |Mk|

✓
1 +

qn�k

|⇡|

◆
⌧ c(t)|⇡|

1
2

 
qn(⇣+✏) +

qn(1+✏)

|⇡|

!

for any ✏ > 0.
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The contribution to Eq. (9.15) of all deg(⇡)  k  ⇣n and all A 2 Mk

that are divisible by ⇡ is

⌧ max
k�deg(⇡)

n2

��������

X

A2Mk
⇡|A

µ(A)
X

B2Mn�k

t(0)

��������
= max

k�deg(⇡)
n2qn�k

|t(0)|

��������

X

A2Mk
⇡|A

µ(A)

��������

⌧ max
k�deg(⇡)

n2qn�kr(t) ⌧ n2qn�deg(⇡)r(t)

in view of Lemma 9.1.
The contribution of all k � ⇣n to Eq. (9.15) is

⌧ max
k�⇣n

n2

������

X

B2Mn�k

X

A2Mk

µ(A)t(AB)

������
⌧ max

k�⇣n

B2Mn�k

n2qn�k

������

X

A2Mk

µ(A)t(AB)

������

and by Theorem 1.13 this is

⌧ n2 max
k�⇣n

qn�k
|Mk|

1� 1
2p+

logq(2ep)

p |⇡|
logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘

⌧ max
k�⇣n

qn�
k
2p+

k logq(2ep)

p +✏n
|⇡|

logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘(9.19)

for any ✏ > 0. The above is largest once k = ⇣n so we have the bound

(9.20) qn�
⇣n
2p+

⇣n logq(2ep)

p +✏n
|⇡|

logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘

It follows from the choice of ⇣ in Eq. (1.32), and our assumption on n
that

c(t)|⇡|
1
2 qn(⇣+✏) = c(t)qn(⇣+✏)+

1
2 deg(⇡)

 c(t)qn(
1

1+2�+⇣+✏)

⌧ qn(1�
⇣
2p+

⇣ logq(2ep)

p +✏)
|⇡|

logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘(9.21)

so the bound in Eq. (9.20) dominates the first summand in Eq. (9.18), hence
we can use

(9.22) qn(1�
⇣
2p+

⇣ logq(2ep)

p +✏)
|⇡|

logq

⇣
r(t)

⇣
1+ 1

2p

⌘
+ c(t)

2p

⌘

+ (c(t) + r(t))
qn(1+✏)

|⇡|
1
2

as a final bound. ⇤
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[KR14] L. Kindler, K. Rülling, (2014). Introductory course on `-adic sheaves and their

ramification theory on curves, arXiv preprint, 1409.6899.
[Kow16] E. Kowalski, (2016). The geometric Bunyakowsky problem, preprint.
[La18] A. Lachand, (2018) Fonctions arithmétiques et formes binaires irréductibles de
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