MOBIUS CANCELLATION ON POLYNOMIAL SEQUENCES
AND THE QUADRATIC BATEMAN-HORN CONJECTURE

OVER FUNCTION FIELDS

WILL SAWIN AND MARK SHUSTERMAN

ABSTRACT. We establish cancellation in short sums of certain special
trace functions over Fgy[u] below the Pélya-Vinogradov range, with sav-
ings approaching square-root cancellation as ¢ grows. This is used to re-
solve the Fg4[u]-analog of Chowla’s conjecture on cancellation in M&bius
sums over polynomial sequences, and of the Bateman-Horn conjecture
in degree 2, for some values of ¢. A final application is to sums of trace
functions over primes in Fg[u].
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1. INTRODUCTION

1.1. Quadratic Bateman-Horn. The history of interest in prime values
of integral polynomials dates back at least to Euler, with early conjectural
contributions also by Bunyakovsky, Landau, and Schinzel. Quantifying the
existing qualitative predictions, Bateman and Horn conjectured that for
every irreducible monic polynomial F(T') € Z[T], we have

(1.1) {X <n<2X: F(n) is prime}| ~ &(F) - 10‘;()(
where

1 1—-L{z €Z/pZ: F(x) =0 mod p}|
(1.2) S(F) = dog(F) 1;[ - '

Even though the only completely resolved case is deg(F) = 1, which
is the prime number theorem, significant progress on this conjecture has
been made in other cases as well. For example, it was shown by Iwaniec in
[[w78] that there are > X/log X integers n € [X,2X] for which n? + 1 is a
product of at most two primes. For an exposition of the proof of Iwaniec,
a generalization to other quadratic polynomials, and a discussion of related
results with deg(F') > 2, we refer to [LO12].

Building and improving on a succession of previous works, Merikoski has
shown in [Mer19] that there are infinitely many integers n with n?+1 having
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a prime factor exceeding n (or exceeding n if Selberg’s eigenvalue
conjecture is assumed). Results in this vein have also been obtained in case
deg(F) > 2, see for instance [dIB15] and references therein.

Among results on multivariate analogs of the Bateman-Horn conjecture,
we would like to mention the work [FI98] of Friedlander-Iwaniec obtaining
an asymptotic for the number of primes of the form n? + m?, the paper
[HMO04] by Heath-Brown—Moroz on counting primes represented by bivariate
cubic polynomials, and the article [May20] of Maynard on incomplete norm
forms. We also refer to [Yaul9, [BR20] and their references for results on the
Bateman-Horn conjecture ‘on average over the polynomial F”.

Here we are concerned with the function field analog of the Bateman-Horn
conjecture. We fix throughout an odd prime number p and a power g of p.
We denote by F, the field with ¢ elements. In this function field analogy, the
ring Z is replaced by the univariate polynomial ring Fy[u]. Throughout this
work, we use 7 to denote a prime (monic irreducible) polynomial in Fy[u].
One defines the norm of a nonzero polynomial f € Fy[u] to be

(1.3) If| = ¢ = |Fg[ul/(f)],

where deg(f) = deg,(f) is the degree of f, and (f) is the ideal of F[u]
generated by f. The degree of the zero polynomial is negative oo, so we set
its norm to be 0.

Conjecture 1.1. Let F(T) € Fyu|[T] be an irreducible separable monic
polynomial with coefficients in Fylu]. Then we have

X
log, X

(1.4) |{g € Fylu]:|g| = X, g is monic, F(g) is prime}| ~ &(F)

as X — oo through powers of q, and
1 — & o € Fyful/(r) : F(z) = 0 mod n}]
1— & :

m ~ Il

(15) &(F) = deg;(F) 11

Recall that a polynomial F' in the variable T' with coefficients from F[u]

is separable if it is squarefree over an algebraic closure Fy(u) of Fy(u). For
an irreducible polynomial F(T') € F,[u][T] to be separable, it is necessary
and sufficient that F' is not a polynomial in TP.

Conjecture is a fairly straightforward adaptation of the Bateman-
Horn conjecture to function fields, excluding inseparable polynomials over
F,[u], a family of polynomials that does not have a counterpart over Z.
The importance of singling out the inseparable case, which we do not study
here, was first highlighted in the works of Conrad-Conrad-Gross who also
put forth a version of Conjecture for this case in [CCGO8, Conjecture
6.2].

Apart from discussing the prior translation of existing results on the
Bateman-Horn conjecture from Z to Fgu], see [Pol06, Introduction], Pol-
lack shows that for certain polynomials F' in Conjecture that do not
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depend on the variable u (namely F' € F,[T7]), there exist infinitely many
monic g € Fyu] for which F(g) is prime. The polynomials g that Pollack
substitutes into F' are all monomials, so his method does not provide a lower
bound that is comparable to the one in Conjecture |1.1

The main result of this work is the resolution of the function field qua-
dratic Bateman-Horn conjecture over certain finite fields.

Theorem 1.2. Let p be an odd prime number, and let q¢ be a power of p
with q > 21932e2p*. Then Conjecture holds in case degy(F) = 2.

We obtain the asymptotic in Conjecture with a power saving error
term. For somewhat larger (fixed) values of ¢, (the exponent of) this power
saving is inversely proportional to p?. We also have uniformity in the qua-
dratic polynomial F', allowing the norm of its coefficients to grow almost as
fast as X2 when ¢ is large, see Theorem for a more detailed statement.

Bateman and Horn also made a conjecture for the ‘reducible’ or ‘split’
case, predicting simultaneous primality of the values of several irreducible
polynomials, which in the case of linear polynomials specializes to the Hardy-
Littlewood k-tuple conjecture. For some results in the direction of that
conjecture see our previous work [SS19] (and references therein) on which
this paper builds. In particular Theorem is the nonsplit analog of the
twin prime number theorem [SS19, Theorem 1.1], obtained therein under
the assumption ¢ > 685090p%. The values of g satisfying Theorem are
somewhat smaller than those in [SS19, Theorem 1.1] for some very small
primes p, but are otherwise larger. This is due to a new kind of difficulty
appearing in one of the ranges in the proof of Theorem as will be
explained later.

One of the difficulties in making progress on the Bateman-Horn conjecture
is the parity barrier, or in other words, producing many integers n with F'(n)
having an odd number of prime factors. This is implicit for example in the
aforementioned work [Iw78] whose strategy is sieve-theoretic. We shall now
elaborate on this problem and on our resolution of a function field analog.

1.2. Chowla’s conjecture on polynomial sequences. In [Ch65, Eq.
(341)] Chowla conjectured that for every (monic) squarefree polynomial
F € Z[T) one should have

(L6) 3" w(E®)) = oX).

n<X

As in the Bateman-Horn conjecture, the only resolved case is the linear one.
For progress with multivariate polynomials F', we refer to works of Helfgott,
Frantzikinakis—Host, and others. See [Hel06l [FH17, [Lal8] and references
therein. Notable progress has also been made by Matomaki, Radziwilt, Tao,
Teraviinen, and many others, in case F splits as a product of linear factors,
see [MRT19, Introduction].
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Recall that the Mobius function of a polynomial f € Fylu] is 0 if f is
divisible by a square of a nonconstant polynomial, and is otherwise given by
(—1)" where 7 is the number of prime factors of f.

Theorem 1.3. Fix an odd prime number p, an integer k > 1, and a power
q of p satisfying q > 4e*k*p?. Let F(T) € Fy[u][T] be a separable polynomial
of degree k in T. Then

(L.7) S w(F () =o(X), X - oc.
e

The result builds on and complements [CCGO08] which deals with certain
squarefree inseparable polynomials F', for which Eq. is shown not to
hold.

In fact, we obtain Eq. with a power saving. This saving approaches
% for fixed p and growing q. Moreover we can take the coefficients of F' to be
as large as any fixed power of X, by allowing some increase in ¢q. An effective
error term and wide uniformity in F' are crucial (but not quite sufficient on
their own) in our approach to establishing Theorem We could likely
obtain a similar cancellation in case the sum in Eq. (1.7]) is restricted to
prime polynomials f € Fy[u], following [SS19, Corollary 6.1].

An analog of Conjecture [L.1] and Theorem [1.3] not considered in this
work, is to fix X and let ¢ — oo (thus allowing F' to change as well).
Refining many previous works, Entin in [Ent16, [Ent21] and then Kowalski
in [Kowl6] resolved the ‘large finite field’ variants of Conjecture and
Chowla’s conjecture on polynomial sequences, obtaining an error term of
size O(q_%) with the implied constant depending on X. It is plausible that
our arguments can be used to obtain superior error terms for certain special
cases of these works.

Our proof of Theorem also builds on and refines arguments from
the proof of [SS19, Theorem 1.3] where F' is assumed to be a product of
(distinct) linear factors. The power savings and uniformity in F' obtained
here are similar to those in [SS19]. What follows is an overview of our proof
of Theorem [1.3] which leads to the technical heart of our work - cancellation
in short sums of trace functions.

We start, as in [SS19], by restricting in Eq. to subsums over poly-
nomials f € F,[u] sharing the same derivative, obtaining an equality of the

form
S TuFEW)) =D u(F(r+s")
f T S

with the goal of obtaining cancellation in the inner sum, for almost every 7.
Applying Pellet’s formula from Eq. to write the value of the Mobius
function in Eq. as a (quadratic) character of the resultant of the
values at f of a pair of bivariate polynomials closely related to F' and the
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aforementioned derivative. The outcome is an expression of the form

> WEF(r+sP) &Y xo(Resultant(F(r + sP), Fo,(r + s7)))

for the polynomial Fy, from Eq. that depends on F' and on the
derivative Vr of r.

This allows us to restate a good deal of the arithmetic problem in terms
of the geometry of the two plane curves given by the vanishing loci of our
pair (F, Fy,) of bivariate polynomials, a strategy successfully employed in
previous works on factorization statistics of polynomials over finite fields by
Conrad-Conrad-Gross, Entin, Kowalski, and others.

Adapting a result from [CCGO08], we obtain in Lemma an expression
for the above resultant in terms of the intersection numbers of our curves.
We can then write in Proposition a character of our resultant as a Jacobi
symbol. To make matters more explicit (yet simplified), let us say that we
find W € Fy[u][T] and a squarefree M € Fy[u] (depending on F' and on r)
such that

ng(Resultant(F(r + sP), Fyp(r + sP))) ~ Z (W]\(j)> '

s

Our problem becomes that of obtaining cancellation for very short sums
in the étale Fy-algebra F,[u]/(M) of Jacobi symbols of the form

(1.8) > (W) .

S

The problem of cancellation in short multiplicative character sums with
W linear in s has been addressed in [SS19, Theorem 1.4], going below the
Burgess range. The vanishing cycles argument used in the proof of that
theorem, reducing the problem to bounds of Weil and Deligne, turns out
to be insufficient for controlling Eq. in part due to the lack of multi-
plicativity in s for a nonlinear polynomial W. Indeed, obtaining significant
cancellation in Eq. for general W remains out of our reach. We refer
to [Saw20), Section 4, 4.3] for a further discussion of vanishing cycles in this
context.

Sums as in Eq. have been studied, over the integers, in several works
of Burgess such as [Bur|, and for multivariate integral polynomials W in
[MCO09]. Burgess works with prime M, and obtains stronger results under
the assumption that W has a linear factor or even splits completely.

Although the arguments of Burgess are probably not directly applicable
to getting cancellation in sums as short as ours, along analogous lines we are
able, after making a linear change of variable in the original polynomial F,
to show that the vast majority of our fixed derivative subsums give rise to
short character sums with a prime factor of M mod which W is a power of
a linear polynomial. This involves an application of a quantitative form of
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Hilbert’s irreducibility theorem due to S. D. Cohen from [Coh81] as adapted
to a function field setting by Bary-Soroker and Entin in [BSE21].

The most novel part of our work is in establishing cancellation in sums
satisfying this assumption on W and M, and more general short sums of

certain special trace functions that arise in our approach to proving Theo-
rem which we now discuss.

1.3. Strategy for proving the main result. To prove Theorem or
rather its stronger form in Theorem we use a convolution identity ex-
pressing the indicator of primes in terms of the Mobius function. As is often
the case, it is more convenient to work with the von Mangoldt function

AS) = deg(m), f = x" for some integer m > 1 and prime 7 € F[u]
B 0, otherwise

instead of the indicator function of primes. The aforementioned convolution
identity gives something of the form

SAFD) ~ S5 w4
[fl~X A B

AB=F(f)
the precise form appearing in Eq. .

Roughly speaking, this introduces three different ranges of summation.
In the first range, where |A| < X, we manipulate with Euler products and
use classical bounds for L-functions to single out and calculate the singular
series main term of Theorem— see the treatment of Eq. in the proof
of Theorem (8.1l For the second range, where |A| > X1*¢ for some fixed
€ > 0, a uniform version of Theorem [1.3| with a power saving cancellation
is sufficient. (In fact, it would suffice to have aversion of Theorem with
logarithmic savings, as long as it holds uniformly for polynomials F' with
coefficients of size a reasonable power of X, but our methods naturally give
a power savings.) This part of our approach is similar to arguments from
[SS19], one difference is the need of a greater uniformity here.

A more significant difference is that in [SS19] the third range, where
X < |A| < X'¢ did not present substantial difficulties, because a similar
problem has already been handled by Fouvry and Michel over Z, see [FM98].
Here however, in the third range we need (roughly speaking) to count (with
good savings) the number of values of a quadratic polynomial having a prime
factor of size somewhat larger than their square root. This problem has not
yet been resolved over Z, and we refer to the aforementioned work [Mer19]
for upper bounds and a discussion of the possibility of further progress.

In our solution of the problem over F,[u], we first follow a strategy similar
to some parts of [Merl9], applying Poisson summation, completion, and
the theory of binary quadratic forms. This approach has its roots in the
work [Hoo63| of Hooley. Due to the lack of an appropriate reference, and
our desire to obtain Theorem [1.2| with significant uniformity, we develop
for that matter the necessary parts of binary quadratic form theory over
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function fields. This allows us to reduce the problem in the third range to a
version of Theorem twisted by a Kloosterman fraction, see Theorem
for a more general twisted sum.

Our approach to proving Theorem is also helpful for its twisted vari-
ants, leading again to short sums of trace functions. One difference is that
in the twisted case the modulus of the resulting exponential sum is not
squarefree, so we use a simple sieve in Corollary to reduce to squarefree
moduli.

1.4. Trace functions. In various works, Fouvry, Kowalski, and Michel
highlighted the importance of trace functions to number theory over the
integers, see for instance [FKMS19]. These are functions on the integers
modulo a prime p, equivalently, functions on the integers that are periodic
with period p, that arise from the trace of Frobenius on an f-adic sheaf on
the affine line over IF,. Examples include multiplicative characters, additive
characters, compositions of multiplicative characters or additive characters
with rational functions, Kloosterman sums such as

(1.9 o)== X e (). e =

\/]3 a,beFy b

ab=x

compositions of Kloosterman sums with rational functions, and products or
sums of any of these functions. Despite this vast generality, it is possible to
obtain nontrivial results for all (or almost all) trace functions.

More generally, as in [WX16], one can work with periodic functions with
squarefree period, which are products of trace functions modulo distinct
primes. These behave similarly to trace functions, although most results
have not yet been proven at this level of generality.

We define trace functions over F,[u] in an analogous way, as functions
on Fylu]/(m) for a prime m € Fy[u] arising from sheaves on A%Fq[u] J(ry> OF

products of these for distinct primes 7.

Definition 1.4. Fix throughout an auxiliary prime number /¢ different from
p and an embedding ¢: Q, — C. We work with the abelian category of
constructible Qg-sheaves on a variety in characteristic p, see [KR14| Part 2,
Section 8|, and call its objects simply ‘sheaves’. Let m € F4[u] be a prime,
and let F be a sheaf on A]%q[u}/(ﬂ). We can think of any z € Fy[u]/(7) as a

point on Aﬂqu (] () and thus as a map

For a geometric point T over x, the stalk Fz of F at T is the under-
lying finite-dimensional vector space over Q, of the pullback z*F of F
to Spec(Fq[u]/(m)). This vector space is equipped with a linear action of
Frob deg(r) , S0 we can define

(1.11) t: Folul/(m) = C,  t(z) = o(tr(Frobaee(x), 7))
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independently of the choice of 7.

A function t as above is called a trace function, and is sometimes denoted
by tr in order to emphasize that t arises from F via Eq. . On other
occasions, we omit F when mentioning ¢, making the dependence of ¢t on F
implicit. There is usually an obvious choice of F for a given trace function
t, so confusion is unlikely. It is at times convenient to think of ¢ as a =-
periodic function on F,fu]. In the sequel, abusing notation we drop ¢ from
our formulas.

Note that the construction above suggests an extension of the function
t to any finite field extension s of Fy[u]/(7), by considering the action of
Frob), on Fz for every r-valued point z of Aﬂqu[u] J(n)" One says that F is

punctually pure of weight w € R if for every k-valued point x of A]qu (u]/(7)’

all the eigenvalues of Froby, on Fz are of absolute value ||Z. The sheaf F
is said to be mixed of nonpositive weights if there exist a nonnegative integer
r, nonpositive real numbers wy, ..., w,, and a filtration of F by subsheaves

(1.12) 0=FOcrWc...cr=F

such that the sheaf F() /F (i-1) is punctually pure of weight w; for every
1< <r.
Set = Fy[u]/(m), let n be a generic point of AL, and let

(1.13) j: Spec(k(X)) — Spec(k[X]) = AL

be the map arising from the inclusion of k[X] < x(X). Then j*F equips the
stalk F7 with the structure of a continuous finite-dimensional representation
of Gal(k(X)%P/k(X)) over Q,. We call dimg, F7 the (generic) rank of F,
or the rank of ¢, and denote it by either r(F) or r(t).

Every closed point # € PL defines a valuation on x(X), which we can
extend (non-uniquely) to a valuation v, on k(X )%P. The closed subgroup

(1.14) D, ={o € Gal(k(X)*P/k(X)) : vy 00 = v, }

fits into an exact sequence of profinite groups

(1.15) 1 — I - Dy — Gal(k(z)/k(x)) — 1.

We call I, the inertia subgroup of Gal(k(X)*P/k(X)) at z, and note
that it is well-defined up to conjugation. We let P, be a (unique) p-Sylow
subgroup of I, and call it the wild inertia subgroup at z. We say that
F is unramified (respectively, tamely ramified) at x if I, (respectively, P;)
acts trivially on . For z € PL, we denote by sw,(F) the swan conductor
of 7 at x, a nonnegative integer associated to the action of P, on F7. In
particular, it is zero if and only if the action of P, is trivial. For a thorough
exposition of this notion see [KR14l Section 4].

We say that the trace function t (or the sheaf F) is infinitame if F is
tamely ramified at oo € PL, mixed of nonpositive weights, and has no finitely
supported sections. The latter condition means that for every étale map
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e: U — AL, and every section s of F over U, the support of s
(1.16) Supp(s) ={z € U : sz # 0 in Fz}

is infinite. This is equivalent to the vanishing of the cohomology group
H S(A%, F), since any compactly supported global section can be decomposed
into sections supported at individual points.

We define the conductor of an infinitame trace function ¢ (or of the sheaf
giving rise to it) to be the nonnegative integer

(1.17) c(t)=c(F) = > [5(x) : 6](r(F) — dim(Fz) + swa(F))

zelAL]
where the sum is taken over closed points, and the dimension is over Q.

Remark 1.5. The assumption that F is mixed of nonpositive weights is
merely a normalization condition capable of capturing all of the examples
that are of interest. It implies that [t(x)| < r(¢) for every o € Fy[u]/(7). The
technical assumption that F has no finitely supported sections guarantees
that the conductor defined above has certain desirable properties. This
assumption could easily be removed since the finitely supported sections
of a sheaf contribute to only finitely many values of the trace function, and
these values can be handled separately for most purposes, but it would make
the formulas involving the conductor more complicated.

On the other hand, the assumption that F is tamely ramified at infinity
is a substantive restriction necessitated by our methods of proof, and is
(to some extent) suggested by the trace functions arising in the proofs of
Theorem [1.2] and Theorem [1.3]

Remark 1.6. The definition of the conductor of ¢ almost matches the loga-
rithm to base |x| of the (global) Artin conductor of the Galois representation

Fi7, defined as

(118) H ‘li(l})‘r(f)_dim(]:ﬁlz)+swz(]:).
zelAL]

Note that there is a natural map Fz — .7-%11 whose injectivity is equivalent to
F having no sections supported at x. Hence, if F has no finitely supported
sections, all these maps are injections. If F is moreover a middle extension
sheaf, then these maps are isomorphisms. Hence the conductor of ¢ is an
adaptation of the Artin conductor to infinitame trace functions.

This notion differs from the complexity defined in [SFFK21] by O(r(F)),
see [SFFK21, Theorem 7.3(2)]. This O(r(F)) factor is not greatly signif-
icant, and either definition of conductor/complexity could be used in this
paper, but we chose a definition that is as easy as possible to use in our
arguments and gives a reasonably good bound, since it can be detected by
test-sheaves that are well suited to our inductive strategy in It follows
that our conductor differs at most quadratically from the conductor defined
by Fouvry, Kowalski, and Michel in [FKM15| Definition 1.13], see [SEFK21],
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Corollary 7.4], so changing to that conductor would require squaring the
conductor in the estimates.

Example 1.7. Let m € Fy[u] be a prime, let
(1.19) x: (Fg[u]/(m))* = C,

be a nonprincipal Dirichlet character, let a € (Fy[u]/(7))* be a scalar, and
let b € Fy[u]/(m) be a shift. After constructing the Kummer sheaf

(1.20) F = Lo(aT +b)

on A%q[u} /() We will see that the function

(121) G Ful/(7) > C, ) = {ff(‘m w7 _Zj

is an infinitame trace function with r(t) = ¢(t) = 1. We call ¢t a Dirichlet
trace function.

Definition 1.8. For a squarefree polynomial g € F,[u], we say that
(1.22) t: Fylu)/(9) = C
is a (g-periodic) trace function if there exist trace functions
(1.23) tr: Fylul/(m) = C
for each prime factor m of g such that
(1.24) t(z) = [[te(z mod 7), € Fylul/(g).
7lg

We say that ¢ is infinitame if t, is for each 7 | g, and define

(1.25) r(t) = rg%X{r(tw)}, cft) = mﬂf;X{C(tw)}-

We will use the notation F, for a sheaf giving rise to the trace function t,
via Eq. (1.11). This means that F; is a sheaf with tx, = t,.

The following trace functions appear in the proofs of Theorem and
Theorem [1.3]

Example 1.9. Let g € F,[u] be squarefree, let x: (Fq[u]/(g))* — C* be a
multiplicative character, and let ¢: Fq[u]/(g) = C* be an additive charac-
ter. Let a(T') be a nonconstant polynomial with coefficients in Fgy[u]/(g),
and define

0 a(z) ¢ (Fglul/(9))"
t: Fqlul/(g) = C, t(x) =40 x & (Fylu]/(9))*
x(a(z))y (2)  otherwise.
The function ¢ is an infinitame trace function with

(1.26) r(t) =1, c(t) < deg(a) + 2.
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The first problem about trace functions one usually studies is that of
obtaining cancellation in the complete sum

(1.27) >t

z€Fg[ul/(m)

for a trace function ¢: Fy[u]/(m) — C. For infinitame trace functions this is
carried out, using standard tools, in Proposition

The following is our main result on trace functions, a significant can-
cellation in very short sums of infinitame trace functions with a ‘Dirichlet
component’.

Theorem 1.10. Let g € Fylu| be a squarefree polynomial, and let t be an
infinitame g-periodic trace function. Suppose that there exists a prime 7 | g
for which t; is a Dirichlet trace function. Then

(1.28) ST H(f) < X2|g[leE@r®O+®) X g - oo
fEF [u]
|fl<X

with the implied constant depending only on q.

In applications, the quantities r(t), c(t) are typically bounded, so for large
(but fixed) g we get arbitrarily close to square-root cancellation in intervals
as short as X = |g|¢, for any fixed ¢ > 0. The reason for working with
the kind of trace functions in Theorem [L.10]is that it seems to be the sim-
plest family of functions to which we can reduce Eq. (and its twisted
variants) under the additional assumption on W and M discussed earlier.
Indeed Theorem [1.10]is a crucial input to our proofs of Theorem and
Theorem [1.3l It would of course be desirable to treat trace functions of
sheaves which are neither tamely ramified at infinity, nor necessarily related
to Dirichlet characters.

A predecessor of Theorem [1.10 is [SS19, Theorem 2.1] proven under the
assumption that ¢, is a Dirichlet trace function for every 7 | g, namely that
t is a shifted Dirichlet character. The vanishing cycles argument used to
prove that result produces comparable bounds, but its application beyond
the (shifted) multiplicative scenario remains challenging.

Over the integers, bounds for short sums of trace functions are in general
not available beyond the Pélya-Vinogradov range X > ]g\% We refer to
[FKMRRS17] for recent developments in this direction. For the function
field version of the Pélya-Vinogradov argument see Corollary

We now give some examples demonstrating that, even though the assump-
tions in Theorem [1.10]| are perhaps not strictly necessary, some restrictions
on the trace functions are required.

Example 1.11. The constant function ¢(x) = 1 for x € F4[u]/(7) is an in-
finitame trace function of rank 1 and conductor 0, arising from the constant
sheaves F = Q. This is not a Dirichlet trace function, and the conclusion
of Theorem [I.10 clearly fails in this case.
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Example 1.12. We use here exponentiation on Fy(u) as reviewed in Sec-
tion Let 7, m € F,[u] be distinct primes, and let x: (F,[u]/(7))* — C*
be a nontrivial character. Take 7 € F[u] satisfying 777 =1 mod 7, and de-
fine the trace function

71
(1.29) t: Folul/(rm) = C, t(z) = x(z)e (” : “’“) .

T s

This trace function satisfies r(t) = 1,¢(t) = 1, and all the assumptions of
Theorem [I.10] except that F is not tamely ramified at infinity.

For X such that |7] < X < @, we use properties of the exponential
function to compute

Z t(f) = Z X(f)e(?—:;): Z X(f)€<7r7_f>e<—:;>

fEF[u] feFq[u] feFq[u]
[fl<X [fl<X [fl<X
_ Ty _X T
- Y we(F)=5 T e ().
J€Fyu weFalul/(7)
Ifl<X

Since the Gauss sum appearing in the last formula has absolute value |7'|1/ 2

taking || to be very small compared to ||, we get barely any cancellation,

so Eq. (1.28) does not hold.

1.4.1. The geometric strategy. Our proof of Theorem [1.10 relies on the the-
ory of sheaves and trace functions on higher-dimensional varieties, see [IK04,
11.11] for an exposition covering applications to analytic number theory. We
view the set of polynomials f € Fyu] with |f| < X as the Fy-points of an
n-dimensional affine space, with one coordinate for each coefficient of the
polynomial. We then construct in Corollary @ a sheaf F on this space
whose trace of Frobenius at each point is ¢(f). The construction uses the
tensor direct image functor defined in [RL20].

Sheaves on higher-dimensional spaces are potentially much more compli-
cated objects than the individual sheaves F, (on A') used to define ¢, but F
can be constructed from the base changes F; of the F; along F,-embeddings
Of IF deg(x) into F,, as a tensor product of pullbacks along (linear) evaluation
maps {e;}I", at the roots x1,...,z, of g in E. This tensor product de-
composition, given in Eq. , is made possible by the factorizability into
distinct linear factors u — z; over F, of the period g of the trace function t.

Our tensor product construction exhibits F as a lisse sheaf on A%q away
from the inverse images under the e; of the finitely many points where each
F; is singular (namely, fails to be lisse). In other words, F is lisse away from
the arrangement of hyperplanes

A= U {feFu]:deg(f) <n, fla:) =a}
i Fi is siorlleglglqar at «
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in n-dimensional affine space over F,.

The bound in Theorem [I.10 follows from Corollary - a strong coho-
mology vanishing result for F, which says that its étale cohomology with
compact support vanishes in all degrees except for the middle degree and the
next one, together with Lemma 3.13|- a bound for the dimensions of the po-
tentially nonvanishing cohomology groups. These are proven by completely
separate arguments.

The cohomology vanishing adapts a now-standard strategy to show van-
ishing for the cohomology of a sheaf on an affine variety by comparing its
compactly supported cohomology, its usual cohomology, and the cohomology
of a certain (derived) pushforward sheaf on the boundary of a well-chosen
compactification of the affine variety. This comparison is made possible by
the long excision exact sequence in Lemma |3.3

By Artin’s affine theorem, the cohomology of any sheaf on an affine variety
vanishes in high degrees, and by duality, the cohomology with compact
support of a sufficiently nice sheaf on an affine variety vanishes in low degrees
The sufficiently nice sheaves are called, perversely, “perverse”. The required
perversity property of the sheaf F is established in Lemma

Thus, the more similar we can show the usual and compactly supported
cohomologies are, the more vanishing we obtain, for both cohomology theo-
ries. The difference between the usual and compactly supported cohomology
is controlled, unsurprisingly from the classical perspective, by the behavior
“near infinity” or, more productively in our setting, by the behavior near
the boundary of any given compactification. In our proof, this difference is
captured by the third term in the exact sequence of Lemma |3.3

The affine space A that F lives on has a natural compactification, a
projective space P". However, the divisor at infinity, which we denote by
H, is unsuitable for our purposes. The étale-local behavior of the derived
pushforward of F from A" to P near a point in Hy, depends in a subtle way
on the individual sheaves F, making it hard to compute this pushforward.

We could pass to a different compactification, but no obvious alternative
where this pushforward is easier to compute presents itself. Instead, we make
a change of perspective — in concrete terms, a projective change of coordinate
system - where we view the closure in P™ of one of the hyperplanes in A,
call it Hy, as the boundary, and P with H; removed as an affine variety.
Now, instead of working with the sheaf F on A" which is P* — H,, we are
working with the sheaf F~ on P" — H; obtained from F in this change of
coordinates, see Eq. . We relate the cohomology of F to that of Fin
Eq. . We denote by v the inclusion of P — Hy in P".

We must carefully choose the hyperplane Hy in order to make the derived
pushforward Ruv, F’ (appearing in Lemma amenable to a local study.
We choose Hp to be the projective closure of the hyperplane of all f € A"
with f(z1) = z, where z is the singular point of the Dirichlet trace function
Xx(z — z) that we assumed appears as a t, in Theorem @, and x; € E is
a root of 7.
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The sheaf 77 on A]}T—, obtained by base changing the sheaf giving rise to
q

the trace function x(z — z), has a local monodromy representation around
the point z which is one-dimensional and nontrivial. It follows that the
pushforward of F from A! — {2} to A!, vanishes at the point z. We want
to use this vanishing to deduce that the derived pushforward Rv,F  of F~
from P"” — Hy to P" vanishes at all but finitely many points of Hy, namely
it is supported at those finitely many points. This is achieved in Lemma |3.4
and Lemma Using this general method, we can prove that the number
of cohomology groups of F that may be nonzero is equal to the dimension
of the support of Rv,F plus two, so because we show the support of Rv, F
is zero-dimensional, we can have nonzero cohomology only in two specific
degrees.

In the proofs of Lemma [3.4] and Lemma [3.5] in order to upgrade the
vanishing of the pushforward of F; at z € A! to the vanishing of Ruv,F.
at a point on Hp, we find local coordinates near each point of Hy, except
finitely many, in which the sheaf F splits as a tensor product of our well-
understood sheaf F; associated with with trace function y(x —z), depending
on one coordinate x, and another sheaf, which depends on all the remaining
coordinates, and may do so in an arbitrarily complicated way, but does not
depend on x. This allows us to compute the pushforward locally, and obtain
the desired vanishing conclusion, by applying the Kiinneth formula.

One approach to the local tensor product decomposition would be to take
one coordinate for each linear map e; which we pull back a sheaf on, but
the number of linear maps is m = deg(g), which is greater than the dimen-
sion n = log,(X) of our variety, so this would be too many coordinates.
Instead we must show that some of the sheaves e!F; are lisse (essentially,
locally constant) and can be ignored in our local pushforward calculation.
For points on our special hyperplane that do not lie on H, (the original
divisor P™ — A™ at infinity), this requires controlling how many of the hy-
perplanes in A (where F is not lisse) can intersect at a point on Hj, which
reduces to some simple algebra performed in Lemma|3.4, For points on both
H, and H,, this doesn’t quite work, as all the sheaves Fi, ..., F,, can have
singularities at infinity. Instead, we use in Lemma |3.5| our assumption that
the local monodromy of these sheaves at infinity is tame, and employ prop-
erties of sheaves with tame ramification (ultimately, Abhyankar’s Lemma)
to separate variables locally.

The argument in Lemma showing that F has the necessary perversity
property, requires a similar separation-of-variables argument but fewer ex-
plicit calculations. At this point we have all the local properties needed to
complete the global argument in Corollary which relies on the excision
long exact sequence from Lemma(3.3|and properties of semiperverse sheaves.

The bound for dimensions of cohomology groups (that is, Betti num-
bers) in Lemma follows a strategy loosely inspired by the Betti num-
ber bounds for cohomological transforms proved by Fouvry, Kowalski, and
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Michel in [FKM21]. The basis of this strategy is to take as much advantage
as possible of our understanding of Betti numbers of sheaves on curves, see
for instance the proof of Lemma [3.11] This understanding comes from the
facts that all but one cohomology group of a sheaf on a curve has a simple
global representation-theoretic description, and this remaining group can
be controlled in terms of the Euler characteristic which can be expressed
via local representation-theoretic information using the Grothendieck-Ogg-
Shafarevich formula in Lemma [2.9] and Lemma [2.10l

At the heart of our strategy lies a procedure, introduced in the proof of
Lemma that replaces a sheaf F in the construction of F with much
simpler sheaves - skyscraper sheaves and Artin-Schreier sheaves, whose trace
functions are indicators and additive characters. We are able to bound the
change in the sum of Betti numbers caused by such a replacement, in terms
of the rank and conductor of ;. Applying this procedure to F, for each
prime 7 dividing g, we eventually arrive at a sheaf cohomology problem
that corresponds to a (possibly shorter) additive character sum. Such sums
can be evaluated explicitly, and indeed, we solve the corresponding sheaf
cohomology problem by an explicit computation using Lemma [3.12

The aforementioned procedure starts by applying the projection formula
which expresses the cohomology of the tensor product F of the pullback
of m sheaves from m curves as the cohomology of one sheaf (in our case,
Fr) on one of these curves (in our case, Al) tensored with the pushfor-
ward to that curve of the tensor product (of the pullbacks) of the remaining
sheaves. Our procedure then bounds in Lemma [3.11 the sum of Betti num-
bers for this tensor product in terms of the Betti numbers of the factors
twisted by skyscraper and Artin-Schreier sheaves. This is done by calculat-
ing the tensor product sheaf cohomology on the curve in degrees 0 and 2 from
the coinvariants of the global Galois representation associated to the sheaf,
applying the Grothendieck-Ogg-Shafarevich formula, producing in Corol-
lary an upper bound for the Swan conductor of a tensor product in
terms of information available from the factors in the product, and applying
the Grothendieck-Ogg-Shafarevich formula once again in Lemma @(5)
The procedure culminates with invoking the projection formula as in the
first step, and observing that the entire process is almost involutary in the
sense that the final expression is reminiscent of the original one, with the
sheaf F replaced by simpler sheaves.

Using this argument, we are able to obtain Betti number bounds that are
almost as strong as those obtained by [SS19] in a much more specialized
situation, namely the one where t; is a Dirichlet trace function for every
prime 7 dividing g.

Thanks to the power and generality of Deligne’s Riemann hypothesis and
theory of weights, the main difficulty left to convert these cohomology van-
ishing and Betti number bounds into a bound for the exponential sum is to
verify that the trace function of the descent of the sheaf F to A{FLQ agrees
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with the original function ¢, see Eq. . This can be done using the
results of [RL20].

For the cohomology vanishing part of the argument, a strategy similar in
some respects was taken by Cohen, Dimca, and Orlik in [CDO03]. They gave
a general method to show cohomology vanishing for sheaves on projective
space, lisse away from an arrangement of hyperplanes in characteristic zero.
We adopt from them the strategy of choosing one of these hyperplanes to
play the role of the hyperplane at infinity, and showing vanishing of the
pushforward.

However, for them the greatest interest was to show vanishing of coho-
mology in every degree except the middle degree. For our purposes, it’s
just as good to show vanishing of cohomology in every degree except the
middle two degrees. We could even allow more degrees, but this would not
be helpful for the argument. This means that it is sufficient to show that
the support of the pushforward is zero-dimensional, rather than empty as
in [CDOO03]. The pushforward having empty support is a stronger condition
that would not hold in our setting without additional assumptions.

The second difference is that we work in characteristic p, where wild
ramification can occur, while [CDOO03] works in characteristic zero, where it
does not. This is one reason why it is so helpful for us that the sheaf F arises
from a certain explicit construction with tensor products of sheaves pulled
back from curves. This allows us to control what types of wild ramification
occur. Unlike in the characteristic zero setting, it would be difficult to come
up with a formulation of the cohomology vanishing statement that applies
to an arbitrary lisse sheaf on the complement of a hyperplane arrangement
and is suitable for our purpose.

The third, related, difference is that [CDOO03] uses an explicit resolution
of singularities - this is an iterated blow-up of the projective space such that
the inverse image of A (the hyperplane arrangement in question) is a simple
normal crossings divisor. This enables them to avoid working with perverse
sheaves, because lisse sheaves with tame ramification on the complement of
a normal crossings divisor have all the good properties of perverse sheaves
(because they are, in fact, a special case of perverse sheaves). For sheaves
with wild ramification, this description is not available, so we resort to the
machinery of perverse sheaves.

We can also compare to the strategy of [SS19], where we proved our
cohomology vanishing statement in the special case where all the sheaves
Fr are shifts of character sheaves, instead of just one. In that work, we
considered a family of hyperplane arrangements, and studied the support of
the vanishing cycles sheaf, rather than fixing a hyperplane at infinity and
studying the support of the pushforward. The arguments needed to calculate
the vanishing cycles and the pushforward are closely related. In both cases,
the problem is entirely local at a given point, and a key strategy to study a
sheaf constructed in a certain way, is to find a simpler construction which
produces an equivalent sheaf locally (but not globally).
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The advantage of the pushforward over the vanishing cycles for our pur-
poses is that we only need to do this local analysis for points on a single
hyperplane. Namely we need to consider only points on H; and not every
point in P". Indeed, vanishing cycles could appear at any singular point,
i.e. on any hyperplane, unless an étale local study of the family of sheaves
(for which one takes the vanishing cycles) gives a compelling reason for the
vanishing cycles not to appear. The fact that we only need to do difficult
local calculations at a single hyperplane means that we need to make strong
assumptions about only a single sheaf F,. However, abandoning the van-
ishing cycles method requires us to have an alternative strategy for Betti
number bounds, because the same vanishing cycles method that proved co-
homology vanishing statements in [SS19] was simultaneously used there to
prove Betti number bounds. In this paper, it does not seem possible to
derive Betti number bounds directly from considering the pushforward, so
we instead obtain them from a separate argument.

1.4.2. Trace functions vs Arithmetic functions. Inspired by [FKMI14] and
other works on orthogonality of trace functions and arithmetic functions
over the integers, we consider here the correlation between trace functions
and von Mangoldt/Mdbius functions over function fields. We shall use the
notation

(1.30) M, ={f € Fylu] : deg(f) =n, f is monic}
where n is a nonnegative integer.

Theorem 1.13. Let p be an odd prime, and let g > 4e’p? be a power of p.
For a prime m € Fylu], an infinitame trace function t: Fqlu]/(7) — C, and
a nonnegative integer n we have

)

logg (2ep) 1), c®)
1310 Y wulf) < Mol e (0 (1435) 5
feEMy,

as n,|w| — oo, with the implied constant depending only on q.

Theorem improves on the savings obtained in [SS19, Theorem 1.8]
for the Kloosterman fraction t(f) = e(f/n), in case p is small enough and
q is large but fixed. For larger p, the savings here are smaller, but apply to
lengths of summation as short as | M| ~ || for any € > 0, once ¢ is chosen
appropriately. As opposed to [SS19], here we do not pursue the possible
applications of a bound as in Theorem to the level of distribution of
primes in arithmetic progressions. Over the integers, different arguments
have been given to obtain cancellation for sums longer than ]7r|% for more
general trace functions, see [FKMI14, Theorem 1.7, Remark 1.9]. Using
Theorem we are able to prove the following.
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Corollary 1.14. Let p be an odd prime, let ¢ > 4e?p? be a power of p, let
6 >0, and set

(1.32) ¢ = 2 (1+1 1%(2@1)))—1.

1420 % B P

Take a prime m € Fylu], an integer n > (1 + &) deg(r), and an infinitame
trace function t: Fylu]/(m) — C arising from a sheaf F whose geometric
momnodromy representation does not admit the trivial representation Qg as a
quotient. Then for any € > 0 we have

og,(r RO} n 1+e
S UMW) =0 (wnwﬁw*“w w055 4 o) + c<t>)'M’1)
fEMn |m|2
with the implied constant depending only on q and €.

This result gives very modest savings, and applies to fewer trace functions
compared to [FKM14, Theorem 1.5]. Nevertheless, Corollary @ guaran-
tees cancellation in intervals shorter than those treated over the integers,
see for instance [Irv14]. We obtain savings as long as deg(m) > en and

(2p + 1) log (r(t) (1 " ﬁ) n 2%))

o (k)
so in particular we can take § — 0 as ¢ — oo with fixed characteristic, rank,
and conductor. The results of [FKM14], [Irv14] give savings only when (in
our notation) § > I, though [Irv14] can handle any § with an additional
average over the modulus 7.

We have another application for Theorem |1.13| concerning very short

sums over primes of shifted multiplicative characters.

(1.33) 5>

Y

Corollary 1.15. Let p be an odd prime, let ¢ > 4e*p® be a power of p, set

-1
1 log, (4e?p?

(1.34) c=<1+—gq(p)> <1,
P p

and let € > 0. Then for a prime © € Fy[u], a nontrivial Dirichlet character
x: (Fglu]/(m))* — C*, a polynomial h € F4[u], and a nonnegative integer
n we have

14¢

(135) 3 x(f + WA = O (IMo] 5[5 4 [ M| 5|
JeEMn
as |w|,n — oo, with the implied constant depending only on q and €.
As in Theorem the strength of the result is in the shortness of the

range of summation, the power saving being quite small. Corollary
provides savings as long as

logs (747 )

(1.36) en < deg(m) < 59 12

)
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which as ¢ — oo with fixed p allows us to take deg(w) an arbitrarily large
multiple of n. For the state of the art on the analogous problem over the
integers we refer to [Rakh18] and references therein. In this result, and the
previous two, we have worked for simplicity with trace functions to prime
moduli only, but these results can be extended to trace functions (satisfying
the assumptions in the previous three results) with an arbitrary squarefree
period.

2. SHEAVES

One can speak of sheaves and trace functions not only on A', as we did
so far, but also on other curves and on more general varieties. Most of the
notions from Definition admit natural generalizations to this setting.
We start here by constructing the sheaves giving rise to the trace func-
tions we have encountered, and their high-dimensional counterparts. These
constructions are standard [SGA4l, Sommes trig.], but we provide here a
detailed explanation including all the properties we need, for the reader’s
convenience.

2.1. Kummer sheaves.

Notation 2.1. Let k be a finite field of characteristic p, let x: K* — @X be
a multiplicative character, and let w € k[T] be a nonzero polynomial. We
extend y to a function on x by setting x(0) = 0, and construct a Q-sheaf
L, (w), on the affine line AL = Spec s[T], whose trace function is x, as
follows.

Denote by |#| the number of elements in x. Then the cover of Al defined
by the equation

(2.1) Y IRl — ()
is finite étale (see [Mill3, Example 2.5]) away from the set
(2.2) S={zcAl :w(z) =0}

The group k* acts on our cover (by automorphisms) via multiplication
on Y, since every ¢ € xk* satisfies ("I71 = 1. As all ¢ € & with ¢lfl=1 =1
lie in x, we get a simply transitive action of k* on the (geometric) fiber of
any geometric point Z lying over a (not necessarily closed) point = of

(2.3) U=Al-8.

From the definition of the étale fundamental group as the automorphism
group of the fiber functor (e.g. [Sz09, Theorem 5.4.2(2)]), we get a continu-
ous action of 7t(U,Z) on the fiber of T in our étale cover of U, commuting
with the action of k™. Since the latter acts simply transitively, by pick-
ing a point f in the fiber over 7, to each g € 7¢*(U,Z) we can associate
a unique A € k* satisfying A(f) = ¢(¢). This association is a continuous
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homomorphism as, if to g1, g2 € 7(U,Z) we have associated i, Ay € K%,
then

9192(t) = g91(92(1)) = 91(A2(t)) = A2(91(2)) = A2 (A(E)) = A2 Aa () = Arda().

Therefore, by composition with y, we get a continuous homomorphism
Wft(U, ) — @X. This gives rise to a continuous one-dimensional repre-
sentation of m¢'(U,T) over Qy, hence a rank one lisse sheaf on U via the
equivalence in [Ka88| 2.0.2]. We define £, (w) to be the extension by zero
of this lisse sheaf from U to AL. We call £, (w) a Kummer sheaf.

As suggested by the notation, the construction is independent of the
choice of Z. Indeed if h is another geometric point in the fiber over Z,
then by transitivity there exists v € X with () = h, so we have

g(h) = g(v(1)) = 7(9(t)) = v(A(#)) = yAE) = Ay (f) = A(y(2)) = A(h),
where \ € k* is associated to g € 7$*(U, Z). Moreover, by [Sz09, Proposition
5.5.1] the fiber functors for different geometric points on the connected curve
U are isomorphic, so our construction is also independent of the choice of
the point = € U (or the geometric point above it).

In case T is a geometric generic point of U, its fiber can be identified with
the set of all homomorphisms of #(T)-algebras from x(T)[Y]/(Y!*=1 —w(T))
to #x(T)*P. The group n{"(Z) = Gal(k(T)*P/k(T)) acts on this set by
postcomposition, and this action factors through the aforementioned action
of (U, T) on the fiber of T (via the map on fundamental groups induced
from the inclusion of T in U).

In the following lemma, among other things, we will see that the trace
function t. (., arising from the sheaf £, (w) is infinitame, and calculate its
invariants.

Lemma 2.2. The sheaf L, (w) on AL has the following properties.

(1) For every x € k we have tz, () (z) = x(w(z));

(2) the sheaf Ly (w) is lisse on U, and vanishes on its complement S;

(3) the sheaf Ly(w) has tame local monodromy at every closed point
x € PL, or in other words, it is tamely ramified (everywhere);

(4) the sheaf Ly (w) is mized of nonpositive weights;

(5) the sheaf Ly (w) has no finitely supported sections;

(6) the rank and conductor are given by

r(Ly(w)) =1, c(Ly(w)) = H{a € : w(a) = 0}| < deg(w);

(7) the sheaf L (w) is the extension by zero to AL of some one-dimensional
representation of the tame arithmetic fundamental group of AL —{z}
for some z € K if and only if there exists ¢ € k* and a positive integer
d such that
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If this is the case, let v > 1 be the (multiplicative) order of x. Then
the representation is trivial on the geometric fundamental group of
ALl — {2} if and only if v divides d.

Proof. Visibly, (2) is immediate from our construction.
To verify (1), first note that because the sheaf is zero on S, its trace
function is zero, which matches our convention

(2.4) x(w(z)) =x(0)=0, =xe€b.

For x € k\ S, we get from Eq. (2.1) that g = Frob, , € n{*(U,Z) acts on
the geometric fiber over x by

(2.5) g(z,y) = (@, yI") = (z,y1*) = (2, w(z)y).

Hence, by our definition of the representation giving rise to the sheaf £, (w),
the element A = w(x) € K™ is associated to g, so g is mapped to x(w(x)) as
desired.

For (3), note that since the monodromy (i.e. image) of the representation
giving rise to £, (w) is isomorphic to a quotient of x*, it has order prime to
p. Therefore, by Lagrange’s theorem, the image of an inertia group of any
closed point & € PL is of order prime to p as well. It follows that Ly (w) has
tame local monodromy at x.

To get (4), note that for a closed point x € Al every eigenvalue of
Frob, .(,) is a value of the finite order character x, hence a root of unity

whose norm is thus 1 = |#(z)|%/2. This shows that £, (w) is punctually pure
of weight 0, so in particular it is mixed of nonpositive weights.

Observe that (5) is immediate from (2). Indeed, £, (w) is lisse on U,
so it has no finitely supported sections there, and it has no sections at all
supported on S as all of its stalks vanish there.

To get the first part of (6), recall from (2) that Ly (w) is lisse on U,
hence it is lisse at a geometric generic point 7j of U (and of A}l). Hence
the dimension of £, (w), is the rank of the representation giving rise to it,
which is 1. For the second part of (6), we get from (3) that £, (w) has
tame ramification everywhere so all the Swan conductors vanish. By the
definition in Eq. we therefore have

e(Ly(w)) = Y [k(x) : £](1 — dim £, (w)z)

z€|AL]
= k@) Rl =1)+ Y [k(@): k](1-0) = |{a € &:w(a) = 0}
z€|U]| z€|S]|

because the dimension of the stalk at every point where the sheaf is lisse
equals the generic rank.

For (7), if £, (w) is the extension by zero of a one-dimensional representa-
tion of 7{*(AL —{21), then it is lisse away from z and vanishes at z, making 2
the unique root of w by (2). The uniqueness of the root z allows us to write
w(T) = ¢(T — 2)? for a scalar ¢ € k* and a positive integer d. Conversely,
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if z is the unique root of w, then by construction £, (w) is the extension by
zero of a one-dimensional representation, which is tame by (3).

Our representation is geometrically trivial if and only if the image of the
map from the geometric fundamental group to x* is contained in Ker(x).
Since k* is cyclic of order |k| — 1, and x is of order v, we see that

X X n ’KJ| -1
(2.6) Ker(x) ={¢":Cer™}={Cer”: (" =1}, =—.

Therefore, the aforementioned image is contained in the kernel above if
and only if the geometric fundamental group acts on the (geometric) generic
fiber via multiplication by n-th roots of unity. This is equivalent to the

geometric fundamental group acting trivially on the generic fiber of the
finite étale subcover

(2.7) Y'=wl)=cT—-2)9 Y=Y"

v

of AL Since the action of the fundamental group on the generic fiber is
that of Gal(r(T)*P/R(T")), the triviality of the action is tantamount to the
existence of an v-th root for w(T') in ®(T'). Such a root exists if and only if
d is a multiple of v, so we have finished the verification of (7). O

2.2. Change of variable for sheaves. For future use, we record some
simple transformation rules of sheaves and their trace functions.

Proposition 2.3. Let g € Fy[u] be a squarefree polynomial, let
(2.8) t: Fylul/(g) = C

be an infinitame trace function, and let P,C € Fylu|. Then the function
defined by

(2.9) t'(z) = t(Pz + C)
is an infinitame trace function with rank and conductor satisfying
(2.10) r(t') <r(t), ct') <ct).

Notation 2.4. For a finite field k of characteristic p and r € k, we define the
map

(2.11) E.: Al — Al E.(z)=r+aP.

Proposition 2.5. Let F be an infinitame sheaf on AL. Then the sheaf E}F
and its trace function enjoy the following properties.

1) If F has no finitely supported sections, then neither does E}F.
2) If F is tamely ramified at infinity then so is EfF.
3) If F is mized of nonpositive weights then so is EXF.
4) We have ¢(E}F) = c(F) and r(E'F) = r(F).
5) We have tg:r(x) = tF(r + 2P).

6) If tr is a Dirichlet trace function then so is tp: .

(
(
(
(
(
(



24 WILL SAWIN AND MARK SHUSTERMAN

Proof. The map = + r+xP induces an autoequivalence of the étale site of A},
hence pullback under it preserves étale topological invariants such as generic
rank and conductor. This establishes (1) — (4), and (5) is a consequence of
the fact that (EfF), = Fp, () for x € AL For (6) we assume, following

Example that there exist y: k* — @X, a € k%, and b € k such that

br(z) = {X(aaz +b) z# —bat

0 x = —ba"!

for every k-valued point x on AL. We then get from (5) and the multiplica-
tivity of x that

x(az? +ar +b) 2P # —bal -7

0 P = —ba~l —r

tper(z) =tr(r+af) = {

_ xP@Pr + (ar + 0)VYP) 2 #£ —(ar + b)YPa /P
N O €Tr = —(a/)" =+ b)l/pa_l/p

where for A € k we denote by AP the unique element of x whose pth
power is A, and by A~Y/? the multiplicative inverse of that element. Since
A — AP ig an automorphism of x, the equality above is justified. As xP
is also a character of k¥, and a'/? € k*, we conclude that tpxr(z) is a
Dirichlet trace function as required for (6). O

2.3. Local invariants. Here we take a closer look at the local invariants
of a sheaf F on a curve C over a perfect field s of characteristic p. Some of
these invariants (and their analogs) were mentioned in passing earlier.

2.3.1. Drop, Slope, Swan.

Definition 2.6. For a sheaf F on a smooth curve C'/k and a closed point
x of C, define the drop

(2.12) d,(F) = r(F) — dim(F,).

This is the drop in the rank of F as we pass from a generic point to x.
If F has no sections supported at z, then d,(F) > 0. If F is a middle
extension sheaf at x in the sense that F is the (non-derived) pushforward
from C' — {z} to C of some sheaf, then F, is equal to the invariants of F,
under the inertia group I,, and then d,(F) is the codimension of the inertia
invariants.

Next we introduce the ‘slope’ of an irreducible inertia representation,
which is sometimes also called ‘break’ or ‘jump’, see [Ka88, Chapter 1]. For
that we use the upper numbering filtration on an inertia group I indexed
by nonnegative real numbers. That is, for s > 0 we denote by I° what
is sometimes denoted by Gal(L%P/L)*, where L is the completion of the
function field of C' at z, see for instance [KR14, Definition 3.54].
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Definition 2.7. Let g be an open subset of a smooth proper curve C/k, let
z be a closed point of C'. For an irreducible (finite-dimensional, continuous)
representation V' of I, over Qy define

(2.13) slope(V) = inf{s > 0 : I acts trivially on V'}.

Let V be a representation of I, over Qp, and let Vi,...,V, be the (irre-
ducible) Jordan-Holder factors of V, listed with multiplicity. One defines
the Swan conductor of V' by

(2.14) sw(V) = dim(V;) slope(V3),
=1

and the slopes of V' to be
(2.15) slopes(V) = {slope(V;) : 1 <i < n}.

For a sheaf 7 on C, we can view the stalk J, at the generic point as a
representation of I, and define the Swan conductor of F at x by

(2.16) swy(F) =sw(Fy) =sw(l, v Fy).

Here I, ~ F; means that I, acts on J,, namely we emphasize that F, is
viewed as a representation of I,. Similarly, if I, acts irreducibly on F,, we
set

(2.17) slope, (F) = slope(F,) = slope(I, ~ Fy)
and in general

(2.18) slopes,. (F) = slopes(F,) = slopes(I, ~ F).
We further define the local conductor of F at x as

(2.19) cz(F) = dg(F) + swy(F).

Note that F is tamely ramified at x if and only if slopes,(F) = {0}, or
equivalently sw,(F) = 0. By our earlier remarks, if F is a middle extension
sheaf at = (pushforward of a sheaf from C' — {z} to C) then c,(F) is the
Swan conductor of the inertia representation of F at x plus the codimension
of the inertia invariants. By definition, this is the Artin conductor of the
inertia representation. Thus, c;(F) is an adaptation of the Artin conductor
to the setting of sheaves.

For an alternative definition of the Swan conductor see [KR14 Definition
4.72, Definition 4.82, Theorem 4.86].

2.3.2. FEuler characteristic.

Definition 2.8. One defines the Euler characteristic of a sheaf F on a
smooth curve C'/R by

2
(2.20) X(C,F) => (-1)! dim H}(C, F).
=0
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For the constant sheaf on a proper smooth curve C' = C of genus g we
have

2
(221) \(C) = X(C. Q) = 3 (~1) dim HI(C, Q) = 1 — 29+ 1 = 2 - 29,
i=0
while in the affine case C C C we have
X(C) = x(C, Q) = dim H(C, Q) — dim H, (C, Q)

2 =1~ (g +10-C-1)=x@) - [T~}

Lemma 2.9. For a sheaf F on a proper smooth curve C /&, we have
(2.23) X(C, F) = x(O);e(F) = > cal F).
z€|C|

Note that sw,(F) and d,(F) both vanish at every point z € |C| where
F 1is lisse, so the sum above is finite.

Proof. This is the Grothendieck-Ogg-Shafarevich formula [SGA5, X, Theo-
rem 7.1], specialized to the case of sheaves (instead of complexes of sheaves).
O

Lemma 2.10. For a sheaf F on an open subset C' of a smooth proper curve
C/R, we have

(2.24) X(C,F) =X(Ox(F) = Y calF) = D swu(F)
z€|C]| zeC—-C

Proof. Let j: C — C be the open immersion. By Definition Lemma
and the definition of compactly supported étale cohomology we have

(2.25) X(C, F) = x(C, jiF) = x(C)r(hF) = > cul(itF).
z€|C|

Extension by zero preserves all local invariants at points of C, so we have

(2.26) r(jF) =1(F), cu(ihF) =co(F), z€]C].
For z € C — C, we have (jiF), = 0 so from Definition we get
(2.27) d. ()i F) =r(jiF) — dim(j1F)s = r(F)
and by Definition [2.7] we have
(2.28) sw(j1F) = sw(jiF), = sw(F,) = swy(F)

so by definition of the local conductor in Eq. (2.19)
(2.29) () F) =r(F) + swy(F).
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Combining Eq. (2.22), Eq. (2.25), Eq. (2.26), and Eq. (2.29) we get
X(C, F) = x(C)r(iF) = Y ca(itF)

z€|C|
=(X(O)+[C=CDr(F) = D calF) = D (x(F) +swa(F))
z€|C] zeC—-C
—XOrF) - Y P = Y swalF)
z€|C] xeC—-C
as desired. O

2.3.3. Local invariants of tensor products.

Proposition 2.11. For irreducible representations Vi, Vo of an inertia group
I we have

(2.30) max slopes(V; ® V5) < max{slope(V1), slope(V3)}.
Moreover, in case dim Vo = 1, the representation Vi @ Vo is irreducible, and
(2.31) slope(V1 ® Va) = max{slope(V;), slope(V2)}

unless slope(V1) = slope(Va) and for every g € I59P°(V1) there exists \ € Q;
such that for every vi € Vi and vy € Vo we have

(2.32) g(v1) = My,  g(v2) = A s,

Proof. In order to establish Eq. (2.30), take s > max{slope(V4),slope(V2)}.
By the definition in Eq. , the subgroup I° acts trivially on both V}
and Vb, so it acts trivially on V; ® V5, hence on all its Jordan-Hoélder factors.
It follows that maxslopes(V; ® V3) < s, therefore Eq. holds.

That Vi ® Vo is irreducible if dimV, = 1 is a general fact about rep-
resentations, because a subspace of Vi3 ® V5 is invariant if and only if the

corresponding subspace of V7 is invariant.
For the proof of Eq. (2.31), assume first that slope(V;) # slope(V2). For

(2.33) min{slope(V1), slope(V2)} < s < max{slope(V7), slope(V2)},

the subgroup I° of I acts trivially on one of Vi, V5 and nontrivially on the
other, so it acts nontrivially on their tensor product. Since I° C [ Sifs> ¢,
we conclude that I® acts nontrivially on V; ® V5 for any

(2.34) s < max{slope(V1),slope(12)},

hence slope(V; ® V2) > max{slope(V}), slope(V2)}. Using Eq. and the
irreducibility of V1 ® Vs, we arrive at Eq. .

Suppose now that slope(V;) = slope(V3) = s but slope(V; ® V3) < s, so
I acts trivially on Vi3 ® V5. As I® acts by scalars on the one-dimensional

representation Vs, it must act by the inverses of these scalars on V; for the
action on V; ® V4 to be trivial. In other words, Eq. (2.32) holds. O
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Corollary 2.12. For representations Vi, Vs of an inertia group we have
(2.35) sw(V1 ® V) < sw(V})dim(V2) + sw(V2) dim(V1).

Proof. By Definition the Swan conductor is additive in short exact se-
quences, so we are reduced to the case V] is irreducible, and then also to the
case V4 is irreducible. If W1, ... W, are the Jordan-Hé6lder factors of Vi ® Vo,
then by Proposition [2.11] we have

w(V; ® V3) Z dim (W;) slope(W;) < Z dim(W;) max slopes(V; ® V)

< Z dim(W;) max{slope(V1), slope(V2)}

< (slope(Vl) + slope(12)) dim(V; ® V32)

= sw(V1) dim(V3) + sw(V2) dim(V;)
as required. O
Lemma 2.13. Let F; and Fo be sheaves on Ai. Then the tensor product
F1 ® Fa has the following properties.

(1) For every x € k we have

LFioF, (33) =tr (:E)th ($),

(2) if F1 and Fo have no finitely supported sections, then neither does
F1® Fo;

(3) if F1 and Fy are tamely ramified at oo, then so is F1 @ Fa;

(4) if F1 and Fa are mized of nonpositive weights, then so is Fi @ Fa;

(5) the rank of the tensor product is given by r(F; ® Fa) = r(F1)r(F2);

(6) if F1 and Fo are infinitame, then so is their tensor product, and its
conductor satisfies

c(F1 @ Fa) < c(Fi)r(Fa) + r(Fi)e(Fa).

Proof. To verify (1), note that for every closed point z € Al we have a
Frob, .(,)-equivariant isomorphism

(2.36) (Fi®F); =2 Fiz @ Foz
so in case z is k-valued, from Eq. we get
trier (x) = tr(Frobg ., (F1 ® Fa)z) = tr(Frobg ., Fiz ® Foz)
= tr(Frob, x, Fi1z) tr(Froby .., Foz) = tr (z)tF, (x)
so (1) is established.

We further see from Eq. (2.36)) that the eigenvalues of Frob, ., on the
stalk of the tensor product are products of the eigenvalues on F1 7z and Fa 7.

Since the product of complex numbers of norm at most |/<a\% has norm at
most \/ﬁ;|g, this verifies (4).
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To check (3), let n € Al be the generic point, and note that (as in
Eq. (2.36)) we have an isomorphism

(2.37) (]:1 X fg)ﬁ = .7:17ﬁ X .7:2@
of representations of Gal(x(T")*P/k(T)). In particular this is an isomor-
phism of representations of the wild inertia subgroup P,,. By the tameness

assumption, the latter subgroup acts trivially on each of the factors in the

right hand side of Eq. , so it acts trivially on their tensor product,
hence it also acts trivially on the left hand side of Eq. (2.37). This triviality
of the action of P, is the desired tameness of the sheaf F; ® Fo at oo.

Let ¢ € {1,2}. If F; has no finitely supported sections, then the natural
map F;z — .7-"21% is injective for every closed point x € AL. Since the tensor
product of two injective maps of vector spaces is injective, we get from

Eq. (2.36) and Eq. (2.37) that the mappings
(F1© Fo)p = Fig @ Fog — Fi5 ® Foty = (Fig ® Fag) ' = (Fi© Fo)y!
are all injective, hence F1 ® F3 has no finitely supported sections, so (2) is

established.
For (5), we use Eq. (2.37) to conclude that

r(F1 ® Fz) =dim (F1 ® fg)ﬁ = dim(F1 5 ® Fa5)
= dim(]:lﬂ) dim(]:gyﬁ) = I‘(fl)r(fz).
Now we check (6). For any closed point x € A, we have by Corollary
(2.39) SWx(fl & ]:2) < wa(fl)r(fg) + r(]:l)swz(]:g).
By definition of the conductor in Eq. (1.17) we have
(18 F2) = Z [k(z) : K)(r(F1 @ F2) — dim(F1 @ Fo)z +swu(F1 @ F2))
ze|AL]
which in view of Eq. (2.36), Eq. (2.38)), and Eq. (2.39), is at most
(2.40)
Z [k(x) : k](x(F1)r(Fo)—dim Fi z dim Fo z +sw(F1)r(Fo)+r(Fi)swy(F2)).
zelAL
On the other hand
c(Fr)r(Fo) +r(Fi)e(Fa) =
> ()« 6] (0(F1) — dim Fr 5 + swa(F1)1(Fo) + r(F1) (x(Fo) — dim Foz + swa(F2)))
zelAL
which comparing term-by-term, is larger than Eq. (2.40) by
Z [k(z) @ £](r(F1) — dim(F1 2))(r(F2) — dim(Fa,)) > 0

z€|AL]

(2.38)

since J7 and J» have no finitely supported sections. ([l

2.4. Artin-Schreier sheaves.
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2.4.1. Residues, exponentiation, additive characters. A variant of some of
the material presented here can also be found in [Hay66].
Each rational function a € F,(u) has a unique expansion

(2.41) aw) =Y a ui

1=—00

as a Laurent series with a; € [Fy, such that a; = 0 for all but finitely many
negative ¢ € Z. Using the ¢ = 1 coeflicient a1, we set

(2.42) e(a) = exp <2m ' TTI;q/Fp(al)>

where we have identified F, with {0,1,...,p — 1} C Z. An alternative
definition of aq in terms of the residue at infinity is

(2.43) a1 = —Resso(a).

To get an explicit expression (or yet another equivalent definition) for
a1 write a = M/N with M, N € F,[u], and let M be the reduction of M
mod N (represented by a unique polynomial of degree less than deg(V)).
Then a; equals the coefficient of ud°s()=1 in M (this is O if there is no
such coefficient) divided by the leading coefficient of N. In particular, for a
polynomial a € Fy[u] we have a; = 0 and thus e(a) = 1. One also readily
checks, either using Eq. or the latter description, that

e(a+b) = e(a)e(b)

for any a,b € Fy(u).
We say that a function ¢ : Fy[u]/(N) — C* is an additive character if

(2.44) O(f+9) =v()blg),  frg € Fylul/(N).

Using the nondegeneracy of the bilinear map (x,y) — Trp, /r,(zy), We see
that the additive characters are given by

(2.45) o0 =e (") neF /W)

2.4.2. Construction and Properties. Our construction of Artin-Schreier sheaves
will be analogous to that of Kummer sheaves. Both constructions are special
cases of the Lang isogeny construction.

Notation 2.14. Let k be a finite field of characteristic p, let ©¥: k — @X
be a nontrivial additive character, and let w € k(X)) be a rational function.
We construct an f-adic sheaf £, (w), on the affine line Al = Spec £[X], as
follows.

Write w = § with a,b € k[X] coprime, and b # 0. Let

(2.46) U={xecAl:bx)#0}
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be the complement of the set S of poles of w, and consider the finite étale
cover of U defined by the equation

(2.47) Yy —y = w(X).

The additive group of x acts on our cover (by automorphisms) via translation
on Y, since for every A €  we have (Y + A\l — (Y + \) = Y| =V in the
polynomial ring x[Y]. We thus get a simply transitive action of x on the
fiber of any geometric point T lying over any point x € U.

Arguing as in the construction of Kummer sheaves, we get a continuous
homomorphism 7{'(U,Z) — &, so composing with 1) gives rise to a lisse (-
adic sheaf of rank one on U. We define Ly (w) to be the extension by zero
of this sheaf from U to Al.

We shall now establish some properties of Artin-Schreier sheaves. For
the study of local invariants, we will use not only the upper numbering
ramification filtration used so far, but also the lower numbering filtration,
as defined for instance in [KR14, Definition 3.31]. For a comparison of these
filtrations see [KR14, Definition 3.52]

Lemma 2.15. The sheaf Ly(w) on AL has the following properties.
(1) For every x € k with b(x) # 0, we have tz, () (z) = Y(w(x)).
(2) The sheaf Ly(w) is lisse on U, and vanishes on S = AL —U.
(3) Unless deg(a) — deg(b) is a positive multiple of p, we have

slope, (Ly(w)) = max{deg(a) — deg(b),0}.

In particular, if deg(a) < deg(b), then the sheaf Ly(w) is tamely
ramified at co.

(4) The sheaf Ly(w) is mized of nonpositive weights.

(5) The sheaf Ly(w) has no finitely supported sections.

(6) We have r(Ly ) = 1. In case deg(a) < deg(b) and the multiplicity
of every root of b is prime to p, we also have

c(Lyw)) = Hx € 7 : b(x) = 0}] + deg(b).

(7) There exists a unique o € kK such that ¥ (2P) = ¢(ax) for every
x € K, and the sheaf Ly(w) is geometrically trivial on U if and only
if there exists an f € k(X) such that w = fP — af.

Proof. Property (2) is immediate from our construction. As in Lemma
(5) is immediate from (2).

To verify (1), note first that x € U. We get from Eq. that the
Frobenius element Frob, , € n*(U,Z) acts on the geometric fiber over x by

(2.48) Frob, . (z,y) = (x|, y*!) = (z,y1") = (z, w(z) + ).

Hence, by our definition of the representation giving rise to the sheaf Ly (w),
the element w(z) € & is associated to Frob, ,, so Frob,, is mapped to
Y(w(x)) as desired.
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For (3), first consider the case when deg(a) < deg(b). Then w = 7 lies in
the étale local ring of P! at oo, so by the Henselian property all roots of
a(X)
b(X)
lie in that ring. Hence, the extension adjoining such a root is unramified,
thus invariant under I3, for all s > 0, and in particular has slope 0.

Next consider the case when deg(a) — deg(b) is positive and prime to p,

for which we use the argument of [La81, Example 1.1.7]. The completion at
oo of the function field of P! admits a valuation v satisfying

(2.50) v(X)=-1, v (Zgg) = deg(b) — deg(a).

Adjoining a root y of Eq. (2.47), we can extend our valuation by setting

(2.51) o(y) = deg(b) ‘;’deg(a)

(2.49) vy —y =

Since deg(b) — deg(a) is prime to ||, there exist integers ji, j2 such that

. deg(b) — deg(a . 1
(2.52) J1 5(b) — deg(a) —jo=—.
|| ||
Consequently v(y/1 X72) = ﬁ so y/1X72 is a uniformizer. Every nontrivial

element o of the Galois group G of our local extension sends y to y + ¢ for
some ¢ € K* S0

o m(
. . . . . . I8
(2.53) oy X7?) = (y + )1 X2 =yt X2 (1 + § : y&m)) .

m=1

Therefore

) . . . ) ) J1 cm (]1)
v(o(yt X92) — yt X72) = p [ 471 X2 Z m
Y

) _ 1 deg(b) — deg(a)

2. Al Al

so by the definition of the lower numbering, o lies in Ggeg(a)—deg(v) but not
in Ggeg(a)—deg(b)+1- 1t follows that the slope is deg(a) — deg(b).

To get (4), note that for a closed point = € U, every eigenvalue of
Frob, .(») is a value of the finite order character ¢, hence a root of unity
whose norm is thus 1 = |s(z)|%2, and for = ¢ U, there are no Frobenius
eigenvalues at all. Hence Ly(w) is punctually pure of weight 0 and thus
mixed of nonpositive weights.

To get the first part of (6), recall from (2) that Ly(w) is lisse on U,
hence it is lisse at a geometric generic point 7 of U (and of AL). Therefore
the dimension of Ly (w)z is the rank of the representation giving rise to it,
which is 1. For the second part of (6), because deg(a) < deg(b), the sheaf
Ly (w) is infinitame by (3), (4) and (5). Because L (w) has rank 1, its Swan
conductor at each point is equal to its slope.
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To calculate slope, (L, (w)) for a closed point x € AL, we choose a F-point
T lying over z, and perform a change of variable that sends co to Z, replacing
X with T + % The degree in X of the rational function

a(Z + %)
b(T + %)
is equal to the order of vanishing of b at T minus the order of vanishing of
a at Z. By (3), the slope of Ly(w) at x is the maximum of this degree and

0, which is the order of vanishing of b at T since a and b are coprime.

By the definition in Eq. we therefore have
c(Ly(w)) = Z [k(x) : k](1 — dim Ly (w)z + ordz(D))

(2.54)

z€|AL]
(2.55) = > [k(z) k1= 1) + > [(x) : 6](1 + ordz(b))
z€|U| z€|S|
= |{zT € k: b(T) = 0}| 4 deg(b)
where ordz(b) denotes the order of vanishing of b at T. O

Notation 2.16. For a nonzero polynomial g € F,[u] and a polynomial z in
F,[u] coprime to g, we denote by T € F4[u] the unique polynomial of degree
less than deg(g) satisfying

(2.56) 2T =1 mod g.

Proposition 2.17. Let g € Fyu| be squarefree, and let h € Fyu]. Then
there exists an infinitame g-periodic trace function t: Fylu] — C with

(2.57) r(t) <1, c(t) <2,
and

hx
(2.58) t(z)=e <g>

or every x € F,lul that is coprime to g.
Y q P g

Proof. We induct on the number of distinct prime factors of g. In the base
case, where ¢ is prime, by Eq. (2.45) and Lemma [2.15(1) we have

(2.59) e <hgx> = i(ha™h) =t (hx-1)(2).

The fact that this is an infinitame trace function, and the requisite bounds
on the rank and conductor follow from Lemma [2.15(3,4,5,6).

Suppose now that g = g1 g2 is a nontrivial factorization. Since g is square-
free, the polynomials g1, g» are coprime, so there exist a,b € F,[u] with
(2.60) agi + bga = 1.

We then have

hx hx bhz ahzx bhzx ahT
(261) e|l—)=e|l—|=e|l—+—)=¢e|—)e|— .
g 9192 g1 g2 g1 g2
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By the induction hypothesis, we have a product of an infinitame ¢;-periodic
trace function and an infinitame gs-periodic trace function with ranks at
most 1 and conductors at most 2. By Definition |[1.8] we get an infinitame
g-periodic trace function satisfying the rank and conductor bounds. O

2.5. Abhyankar’s Lemma. The following version of Abhyankar’s lemma,
which follows from [SGA1][XIII 5.2], will be of use to us.

Lemma 2.18. Let X be a smooth scheme over an algebraically closed field
K of characteirstic p, let D be a smooth divisor on X, let F be a lisse sheaf
on X — D with tame monodromy around D, let f: X — Al be a map whose
zero locus is D with restriction fo: X — D — Gy, and let x € D. Suppose
that f vanishes to order one on D.

Then there exists a lisse sheaf L on Gy, such that F and fiL become iso-
morphic upon restriction to some punctured étale neighborhood of x (namely
an étale neighborhood of x with the point over x removed).

Proof. Let R be the étale local ring of X at x, which contains the function f.
We can pull F back to Spec R[f 1], where it becomes a representation of the
tame fundamental group of Spec R[f~!]. By [SGA1][XIII 5.3], the tame fun-
damental group of Spec R[f~1] is ], _p L, With the isomorphism obtained
from the covers taking prime-to-p power roots of f. On the other hand,
the tame fundamental group of G,, is also H#p Zy, with the isomorphism
obtained from the covers taking prime-to-p power roots of the coordinate.
So we can view this representation of [], “p Zy as a lisse sheaf £ on Gy,
whose pullback to Spec R[f~!] is isomorphic to the pullback of F. This
isomorphism must then be witnessed on some particular étale cover. [l

3. SHORT SUMS OF TRACE FUNCTIONS

This section is devoted to proving Theorem [1.10

3.1. Vanishing of cohomology. Here we obtain a vanishing of cohomol-
ogy result, which is a key input to the Grothendieck-Lefschetz trace formula.

Notation 3.1. For a variety (that is, a separated geometrically integral
scheme of finite type over a field) X we will be working with the bounded
derived category D2(X, Q). We use notation such as f., f*, for the derived
pushforward and pullback, never the operations on individual sheaves. This
is to avoid continually writing Rf., Rf*, Rfi, etc. to refer to these opera-
tions.

Note that f* always sends sheaves to sheaves, as does ®, and f, sends
sheaves to sheaves if f is an open immersion, so when only these operations
have been applied, we will be working with usual sheaves (as opposed to
complexes). For brevity of notation, we also occasionally denote the stalk
of a sheaf F at a geometric point = lying over a point = by F;.
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Notation 3.2. Let k be an algebraically closed field of characteristic p. Let
g € k[u] be a squarefree polynomial of degree m > 1, and let =1, ..., 2, € K
be the roots of g. For each 1 < i < m, let F; be a sheaf on Al = A}i. Our
interest here is in infinitame trace functions, so we assume for all ¢ that

e the sheaf F; has no finitely supported sections;
e the sheaf F; has tame local monodromy at oo, or in other words, it
is tamely ramified at infinity.
For one of the sheaves, say JFi, we make a more stringent assumption.
Assume that Fj is the extension by zero of some nontrivial (continuous)
one-dimensional Q,-representation of the tame étale fundamental group

(3.1) mime (A = {z}) =[] Z
L#p

for some z € k. This is a geometric form of the assumption in Theorem
that for some prime we have a Dirichlet trace function. The formulation of
this assumption is motivated in part by Lemma 7).

Let n < m be a nonnegative integer, view A™ = A7 as the space of
polynomials over k of degree less than n, and for every 1 <7 < m let
(3.2) e;r A" — Al ei(ag,...,an—1) :a0+a1xi+-~+an,1x?71,

be the (linear) map that evaluates a polynomial at x;. We set

F = éef]—}
i=1

and for a subset S C {1,...,m} we use the notation
75 == ®6;‘fi, ?5 = ® ejﬂ
ics 1<i<m
idS

Our first goal is to prove (in Corollary [3.7) a vanishing statement for
the compactly supported cohomology groups Hg (A”,.f). To do this, view

A" as the complement of a hyperplane Hy, in P* = P?. Let H; be the
hyperplane in P™ obtained as the closure of the hyperplane el_l(z) in A™.
Let

(3.3) w: P — (HiUHy) > P"— Hoo = A", v:P"—H —P"
’ u:P"— (HiUHy) —» P" — Hy

be the natural open immersions and

(3.4) d: HH —P"

the closed immersion.

Finally we put
(3.5) F =ww*F.
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Since F; is an extension by zero from Al — {2}, its stalk at z vanishes, so
the stalk of e]F; vanishes for every = € efl(z) C A™. Hence

(3.6) F = ww*F.

The above implies that for every nonnegative integer j we have

(3.7) HI (A”,?) = HJ (JP’” — (H U Hoo),w*?) =’ <IP’” - Hl,?).
Our strategy will be focused on the following excision long exact sequence.

Lemma 3.3. We have the following long exact sequence indexed by j € Z.
s HI (IP" - H1,7°> — HY (P" ~H,F) = H (Hl,d*uj") ..

Proof. By [SGA4-3| XVII, (5.1.16.2)] we have a long exact sequence
(3.8)

cee— H* (IP’”, vw*v*?o> — H* (]P’”,v*?o) — H* (IP’”, d*d*v*?o) — ...

Each term can be simplified in this special case. For the first term, we
use the identity v*v, = id, and then functoriality of compactly supported
pushforward in the derived category tells us that

H*(P", 0, F) = H(P" — Hy, F).

For the second identity, we use functoriality of pushforward in the derived
category to obtain H*(P" v, F ) = H*(P" — Hy, F ). For the third iden-
tity, we use functoriality of pushforward in the derived category to get
H*(P", dyd* v, F) = H*(Hy, d* v, F ). O

In order to gain an insight into the cohomology groups in the exact se-
quence above, our first order of business will be understanding the complex
d*v*.fo of sheaves on Hj.

Given a sheaf F on a variety X, and a point x € X, we say that F is
lisse at z if there is a neighborhood N of z such that the restriction F|y is
a lisse sheaf. If F is not lisse at z, we say that x is a singular point of F.

Lemma 3.4. Let Z C A™ be the set of those polynomials f for which
(3.9) H1 <i<m: f(x;) is a singular point of F;}| > n.

The set Z is finite, and the restriction of the complex v, F to Hy—(HxNHy)
vanishes away from Z.

Proof. There are only finitely many subsets of {1,...,m} of size at least n,
and for each subset, only finitely many choices of a singular point of each
F;. Since there is at most one polynomial of degree less than n that takes
prescribed values for (at least) n given points x; € k, it follows that the set
Z is finite.
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Let j: P" — Hy, — P™ be the open immersion. The Cartesian square

P" — (H; U Hy) —— P" — Ho,

K }4

Pr—H — 5 pn

gives j*v, = w,u* by the base change theorem [SGA4%, Exp. V, Theorem
3.2] for the smooth morphism j, and u is an open immersion so u*uy is the
identity, therefore

(3.10) Franw” = weufuw® = wew®.
Thus it suffices to show that the stalk of the complex w,w*F vanishes for
every point in H; which is neither in H., nor in Z.

Fix a point fy € H; which is not in H, and not in Z. Since fy ¢ Hy, we
have fo € P" — Hoo = A", and fo(x1) = z as fy € Hy. Since fy ¢ Z, the set

(3.11) S={1<i<m: fo(x;) is a singular point of F;}

satisfies |S| < n. We show that the stalk of the complex w,w*F at fo
vanishes. For each 1 < i < m that is not in S, the sheaf F; is lisse in a
neighborhood of the point fo(z;) = e;(fo) € Al, so the sheaf e} F; is lisse in
a neighborhood of fy. Because the pushforward and pullback along an open
immersion can be computed locally, and both commute with tensoring by a
lisse sheaf, it suffices to prove that the complex

(3.12) wiw* Fg = wyw* ® e; Fi
€S
vanishes at fj.
Since |S| < n, the maps {e;}ies are linearly independent, so we can
identify A™ with AlSl x A?~IS| by using the {f(x;)}ics as the coordinates of
A8l Using this identification we can write

(3.13) Fs = (&'es]‘"fi) X Q¢

where Qy stands for a constant rank one sheaf on A" 15l Tt follows from
our assumptions that 1 € S, so we make a further identification of A™ with
Al x AISI=1 5 An=181 giving

(3.14) Fs= AKX (&ies\{l}}}) = Q.

Taking w: A! — {z} — A! to be the open immersion, our identifications
give w = W X g\ « id, so by Eq. 1} the complex from Eq. lb can
be expressed as
(3.15)

wow Fs = (@ x id\ W xid) (@ xia\W xid) (AR(Ries oy ) KT ).

*
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By the Kiinneth formula, the above equals
(wx i xid) (0" F 8 (Ries\ () BQ) = 00" F1 K (Ries\ (1) F ) B Q.

As Fj has rank one with nontrivial monodromy around z, the stalk of
ww* Fy vanishes at z, so the stalk of our external tensor product vanishes
at any f € A" with f(z1) = z. In particular, it vanishes at fy, so the stalk
of w,w*Fg also vanishes at fo, as required. O

Lemma 3.5. The restriction of the complex v . to Hoo N Hy vanishes.

Proof. We view the points of P as pairs (f : t) of a polynomial f over x of
degree less than n and a scalar ¢ € k, not both zero, up to scaling. Then

(3.16)  Heo={(f:t)eP" |t=0}, Hi={(f,t): flz1) — 2t =0},

and the map e; is given by the formula

(3.17) ei(f:t)= f(fi), t#0.
Let (fo:0) € Hx N Hy, put
(3.18) S={1<i<m]| fo(x;) =0},

note that 1 € S, and that |S| < n since fy # 0.

Since our goal is to establish the vanishing of the stalk of the complex v, F
at (fo,0), we are free to restrict to an étale neighborhood of ( fy,0). We will
first restrict to a Zariski open neighborhood with a convenient coordinate
system, and then further restrict to an étale neighborhood where the sheaves
e; F; for i ¢ S become simpler.

Since n < m there exists a subset

(3.19) SCTCA{L,...,m}, |T|=n.

Any polynomial of degree less than n is uniquely determined by its values at
n distinct points. More precisely, Lagrange’s interpolation (or the nonsin-
gularity of the Vandermonde matrix) allows us to write the coefficients of a
polynomial f of degree less than n as an invertible linear transformation of
the values {f(z;)}ier. Therefore, the set { f(z;)}ier U{t} forms a projective
coordinate system for P".

Fix j € T'\ S, and define the coordinates

flxy) — 2t ot ~ fla)
— N ¢ = , G = )

f () f ) f(zj)
This system of coordinates is obtained from the previous one by dividing
all the coordinates by the coordinate f(z;) and then applying the linear

translation ¢; — ¢1 — z¢;. Since fo(x;) # 0, it follows that {c¢;}icr forms a
coordinate system for the affine neighborhood

(3.21) U={(f:1) €B" | f(a;) #0)
of (fo,0) in P*. We let v: U — P" be the open immersion.

(3.20) ¢ = ieT\{1,5}.
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In our new coordinates,

(3.22) 1= 42 e=2 e\ {15}

Gy Gy
Let Uy ; be the locus in U where ¢; and ¢; are nonzero, and let
(323) & Ul,j — P" — (Hl U Hoo)

be the open immersion, well-defined because v~!(Hj) is the vanishing locus
of ¢; and v1(Hy) is the vanishing locus of ¢;. We can write

(3.24) Upj= (A" —{0}) x (A"t —A"2) CU = A"

where the coordinate in the first factor is ¢;, and the coordinates in the
second factor are {Ci}ieT\{l}- We will now express the restriction of the
sheaf £*w*F to a certain punctured étale neighborhood of (fy : 0) as the
restriction to that neighborhood of the external tensor product of sheaves on
each of the two factors of Uy ; in Eq. , see Eq. for this expression.
We do this for each 1 < ¢ < m separately, distinguishing between the three
cases i € S\ {1},7¢ S, and i = 1.

In the first case, following Eq. (3.22), for i € S\ {1} we define the (re-
stricted) map
(325) €;: APt A2 Al, e; ((Ck)kET\{l}) = %,

J

so that we have

(3.26) Cw'elFi = QRefF, ieS\{1}.

In the second case, we take 1 < ¢ < m which is not in S. Let Z; be
the intersection of H, with the vanishing locus of f(z;). Then, following

Eq. we can extend e; to a map

(3.27) G:P"—Zi P, E(fit) = f(fl).

Geometrically, we can see that H., is a pole of ¢&;, the vanishing locus of
f(z;) is the zero locus of é;, and the intersection Z; is the indeterminacy
locus.

By our definition of S and choice of i, the point (fy : 0) € P" — Z; lies
in the pole and not in the indeterminacy locus, so the map ¢; is defined at
that point, and we have &(fp : 0) = oo € P!. On some punctured Zariski
neighborhood of 0o in P! the sheaf F; is lisse and tamely ramified around
00, so it follows that there exists a Zariski open neighborhood U* C U of
(f0,0) in P™ such that on the punctured Zariski open neighborhood

U =U"—(U"Nég (o)) =U*— (U*NHy)

of (fo,0) in P" the sheaf e} F; is lisse and tamely ramified along Hu,. There-
fore, on the punctured neighborhood U’ of (fy,0) in P" the sheaf

(3.29) Fy— Qe
i¢S
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is lisse and tamely ramified at Hy.

We let a: U’ — P* — H., be the inclusion, let §: U* — A! be the restric-
tion of ¢; to U*, and let dp : U" — Gy, be the restriction of ¢; to U’. Note
that U* N Hy is a smooth divisor where § vanishes to order one. We now
apply Abhyankar’s lemma, as stated in Lemma to the scheme U*, the
divisor U* N H, the sheaf a*?g on U’, and the map §. We conclude that
there exists an étale neighborhood V' — U* of (fp,0), giving rise to a map
B:V xy« U — U’, and a lisse sheaf Lg on G,,, such that

(3.29) B*a*Fg = B*0LLs.

Let 7: V' — U be the map induced by the composition V. — U* — U,
and let

(3.30) C: VXUUL]' — Ul,j, v VXUUL]' — VXU(U—HOO) = VXU* U,

be maps obtained via projections from the fibered product, and via the
natural open immersion of Uy ; into U — Hy,. We then have

(3.31) VB " Fg = 3" 5Ly
and
(3.32) wolo(=aofon.

We further define
(3.33) T AV A2 5 G =A {0}, 7 ((ciier\q13) = ¢,

and let pry: Uy ; — A"1 — A"=2 be the projection on the second factor in

Eq. (3.24). Then
(3.34) dpofoy=mopryo(

because both compositions are given by the coordinate c;. It follows from

Eq. (3.28), Eq. (3.32)), Eq. (3.31), and Eq. (3.34) that
(3.35) (*&'w Fg=7"B"a"Fg 2y B 6Ly = CpramLg =2 ((QiRT*Lg).

We turn now to the third case, namely i = 1. Let £, be the sheaf on G,,
obtained by translating /7 by z. Then the sheaf {*w*e]F; is the pullback
of L, by the map % By the multiplicative properties of tame rank one lisse

sheaves on Gy, this is the tensor product of the pullback of £, by ¢; with
the pullback of its dual LY by ¢;, so

(3.36) Cw*elF1 = Ly R L),
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Combining Eq. (3.35), and ¢* applied to Eq. (3.26) and Eq. (3.36), we see
that

(3.37)

CEWwTFEC QR Q) e F | @ C( QR Ly) @ (LB LY)
1€S\{1}

=~ | LK <7T*£>v< 1 Ly® ) éjﬂ)
ieS\{1}
Let
(3.38) 7: Al — {0} — Al m AP AT 5 AT

be the inclusions of the locus where ¢, respectively c;, does not vanish. We
have the commutative diagram

P" — Hy, < P" — (H; U Hy,) P" — H, P

f¢ f g

(Al _ {0}) % (Anfl _Aan) id x @ (Al _ {0}) x Anfl le Al % A”_l

I ~ ! .

VxyUy ——"——Vxy(U-v'IH) ——

where all morphisms are étale (hence smooth) and all squares are Cartesian.
We claim that we can make the following series of identifications

m m
— s
v F =T v rauw® ® e Fi = 0 w* ® e;Fi =
i=1 i=1

(330) el (LB (CLleriye @ €F)) =
ies\{1}
(B (e e @ 7).
ies\{1}

The second equality requires base change over all four squares of the above
commutative diagram. For the top-right and bottom-right squares, we are
base-changing a pushforward by a smooth map, and so we may apply the
smooth base change theorem. For the top-left and bottom-left, we are base-
chaning a compactly supported pushforward (also by a smooth map), and
so we may apply the proper base change theorem. The third equality follows
from Eq. . The fourth equality requires base change along the bottom-
left and bottom-right squares, which again uses the smooth and proper base
change theorems.
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Since the pullbacks 7* and v* are compatible with stalks, it follows from
Eq. (3.39) that the stalk of v, F_ at (fo, 0) is isomorphic to the stalk of

(3.40) (@ x id).(id x @), (L‘,X X (w*ﬁ; oLy X ejﬂ))
ies\{1}

at (f0,0). To show that the latter stalk vanishes, we invoke the Kiinneth
formula to get

(U x id),(id x H)!(L'X X (”*£>v< R Lg ® ® é;‘_ﬁ)) =

ies\{1}
(3.41) (U x id)« (ﬁx X (w"/:)V< R Lg ® ® é;!‘]-“i» =
ies\{1}
T.L, ¥, (W*EZ 1Ly (X) éjﬂ).
1€S\{1}

Since we assumed that F; has nontrivial local monodromy at z, the rank
one sheaf £, has nontrivial local monodromy at 0, so the stalk of v,.£, at 0
vanishes. We conclude that the stalk of the external tensor product above
vanishes at every point U with ¢; = 0. In particular, it vanishes at (fp : 0).

O

Lemma 3.6. The shifted sheaf F[n] is a perverse sheaf.

Proof. Perversity is an étale-local condition, so it suffices to show that each
polynomial f € A" has an étale neighborhood v: U — A" such that (v*F)[n]
is perverse. For each 1 < i < m, we will choose a suitable étale neighborhood

U; of e;(f) in A! and then take
(3.42) U= (((An X Al Ul) XAl UQ) .. ) XAl Um,

which will be an étale neighborhood of f.
Fix 1 < i < m. By definition, every section of the stalk of F; at e;(f) is
defined over an étale neighborhood of e;(f) € Al. By constructibility,

(3.43) T, = dim(}})ei(f) < o0

so there exists an étale neighborhood U/ of €;(f) in Al over which all the
sections of F; at e;(f) are defined. We then have a natural map

(3.44) b Q" = Filu

from a constant sheaf on U/ of some rank r; inducing an isomorphism on
the stalks at e;(f). We denote the cokernel of ¥ by Q;, and note that its
stalk at e;(f) vanishes.

Observe that 1 is injective. Indeed if any nontrivial section of Q; " has
image vanishing on some Zariski open set containing e;(f), then the cor-
responding nontrivial section of F; is supported in the finite complement
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of that open set, contradicting the assumption that J; has no finitely sup-
ported sections. It follows that the restriction of F; to U/ is an extension of
Q; by Q,".

Let U; be the union with {e;(f)} of the largest open subset of U] where Q;
is lisse. Restricted to U;, the sheaf Q; is lisse on U; —{e;(f)} and extended by
zero to U;. We define U using Eq. , andlet ¢;: U - U; for 1 <i<m
and v: U — A" be the projections.

As F; restricted to U; is an extension of Q; by @“, the sheaf v*F is an
iterated extension of 2" sheaves, each of the form

(3.45) Qe e SC{l,...,m}
i€S i€s

Since an extension of perverse sheaves is perverse, it suffices to prove that

(3.46) & @ Qe | [n]
igS €S
is perverse for any S C {1,...,m}. Tensoring a sheaf M with the pullback

of Q" is equivalent to taking a direct sum of r; copies of M, so it suffices
to show that

(3.47) <® é;-*QZ) [n]
€S
is perverse.
Since each Q; is the extension by zero from U; — {e;(f)} to U; of a lisse
sheaf, the sheaf &*Q; is the extension by zero from U — & *{e;(f)} to U of
a lisse sheaf, and thus the sheaf

(3.48) e
1€S
is the extension by zero of a lisse sheaf from the complement in U of

(3.49) D=J& YHelf)}

i€S
to U.
We claim that the inclusion of the complement of D in U is an affine
open immersion. Since Uy,...,U,, are affine schemes, U is affine as well,

so it suffices to show that the complement of & '{e;(f)} is affine as the
intersection of affine open subsets of U is an open affine set. Since U; is
étale over Al it is a curve so the complement in U; of (the point over) e;(f)
is affine. The map ¢; is affine, so the inverse image of the aforementioned
affine complement is affine, hence our claim is established.

Lisse sheaves shifted by dim(U) = dim(A™) = n are perverse, and by
[BBD82, Corollary 4.1.3], extensions by zero along affine open immersions
of perverse sheaves are perverse, so indeed the complex in Eq. is
perverse. We can thus conclude that F[n] is perverse. O
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Corollary 3.7. We have
(3.50) HI(A",F)=0
for every integer j ¢ {n,n + 1}.

Proof. The vanishing for j < n follows from Artin’s affine theorem [BBD82,
Corollaire 4.1.2] and the fact, from Lemma that F[n] is perverse.
By the excision long exact sequence

N Hg'(IP” —Hl,?") = Hj<]P’” —Hl,?°) = Hj(Hl,d*vj") S

from Lemma and Eq. (3.7)), to prove vanishing for j > n + 1, it suffices
to show that for j > n we have

(3.51) i (IP" - Hl,f’) =0, HI (Hl, d*v*?") = 0.

For the first, note that P” — H; is an affine variety of dimension n, and
F’ is a sheaf, so we can invoke Artin’s affine theorem again.

We shall now prove the second vanishing statement in Eq. . Since
F° is a sheaf on an n-dimensional variety, the complex F [n] is semiperverse,
s0 (v.F )[n] is semiperverse by [BBD82, Corollaire 4.1.3] as v is affine, and

(3.52) (d*v*?’) [n]

is semiperverse by [BBDS82| 4.2.4] because d is a closed immersion. It follows
that the stalks of this complex are supported in nonpositive degrees, hence
the stalks of the complex d*v, F_ are supported in degrees not exceeding n.

We know from Lemma and Lemma that the complex d*v*?O 18
supported at only finitely many points, so its cohomology is simply the direct
sum of its stalks. We have seen that these stalks are supported in degrees
not exceeding n, so the cohomology indeed vanishes in degrees greater than
n, as required for the second part of Eq. . O

3.2. Betti numbers bound. Here we bound the dimension of the coho-
mology groups that are not known to vanish by our previous arguments. We
let x be a perfect field of characteristic p.

Definition 3.8. For K € D’%(AL, Q) define the rank

(3.53) r(K) = i dim H? (K),

j=—o00
where 7 is a geometric generic point of A', and the Fourier conductor
e .
(3.54) cp(K)= ) dimH] (A}T, K ® Ly(ax))

. @)
j=—o0

where k() is the field of rational functions over s in a variable a, 1 is an
additive character of F),, and Ly (ax) is the Artin-Schreier sheaf.
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Note that the rank agrees with the usual notion of the generic rank when
K is a sheaf or a perverse sheaf. We call ¢y the Fourier conductor because
it is equal (by the proper base change theorem) to the rank of the Fourier
transform [KL85, Definition 2.1.1]. However, we will not use the character-
ization in terms of Fourier transform here. The Fourier conductor can also
be expressed in terms of local invariants, see Lemma [3.10(5). In order to
write this expression, we need the following ad-hoc modification of the Swan
conductor.

Definition 3.9. As in Definition 2.7} let V be a representation of an inertia
group over Qy, and let Vi,...,V,, be the Jordan-Holder factors of V. We set

n n
sw/(V) = Zmax{sw(Vi) —dimV;,0} = Zmax{slope(%) —1,0}dim V;.
i=1 =1
For ajheaf F on an open subset C of a proper curve C'/x and a closed point
x of C, put
(3.55) swh(F) = sw'(F,)
with F;, viewed as a representation of I,.
Every complex K € DY(AL Q) has a filtration into its truncations 7P K
taken with respect to the perverse t-structure [BBD82, Proposition 1.3.3(i)1],

whose associated graded objects are shifts of {PH’(K)}jez, which are per-
verse sheaves. We call this the perverse filtration.

Lemma 3.10. (1) For K € Db(AL, Q) we have

[e.o] o0

r(K)= Y r(H/(K)), cr(K)= Y cr(PH/(K)).
j=—00 j=—o0
(2) For a short exact sequence of perverse sheaves
0— P — P,— P3—0,
on Al

K

I‘(PQ) = I‘(P1> + I‘(Pg), CF(PQ) = CF(Pl) + CF(Pg).
1

r(K)=0, cp(K)=1.
(4) For any B € R, we have
r(Ly(Bz)) =1, cr(Ly(Bz)) =0.
(5) For a sheaf F on AL with no finitely supported sections, we have
cr(F)= Y culF)+swi(F).
z€|AL]

(6) Suppose that k is finite. Then for an infinitame sheaf F on AL we
have cp(F) = c(F).

we have

(3) For a skyscraper sheaf K on A,,, we have
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Proof. For (1) and (2), the key point will be that for a perverse sheaf P on
AL, the stalk H!(P), vanishes for i # —1 and

(3.56) Hi (Aiw, P® Lw(aaz)) —0, i#0.

The vanishing of H'(P), is due to the fact that perverse sheaves on a
curve are lisse and supported in degree —1 on an open set. The vanishing
in Eq. follows from the fact that P ® Ly (o) is perverse on a curve,
hence has compactly-supported cohomology in degrees 0 and 1 only, and the
cohomology in degree 1 equals the monodromy coinvariants, which vanish
for a generic since the representation Ly(ax)Y = Ly(—axz) can occur as
a quotient of the monodromy representation of P for only finitely many
specializations of «.

Write P; = PHI(K). Associated to the perverse filtration, there is a
spectral sequence whose first page is

EP? = HPTU(P_,),

converging to HPT9(K),. Similarly, there is a spectral sequence whose first
page is EP! = HCQPH(A}{(T), P_, ® Ly(ox)) converging to

Hg’ﬂ(Ai(T), K @ Ly(az)).
Because of the vanishing above, in both spectral sequences we have E'? =
0 unless ¢ = —2p. Since the differential on the rth page sends EP? to
EPTHa+t1l=r and 1 —r = —2r only if r = —1, the differentials on the rth page
for every r > 1 vanish, and so the spectral sequence degenerates on the first
page, giving (1).

We also deduce from the vanishing above that the functors on perverse
sheaves P +— H~1(P), and P HE(A,li(T)v P® Ly(ax)) are exact, and that

composing these functors with dimension gives r(P) and cg(P) respectively.
This proves (2).

For a skyscraper sheaf, its stalk at the generic point vanishes, while its
twist by an Artin-Schreier sheaf is again a skyscraper sheaf, so has one-
dimensional cohomology in degree zero and no cohomology in all other de-
grees, verifying (3).

For an Artin-Schreier sheaf, its stalk at the generic point has rank one in
degree 0 and none in all other degrees, while its cohomology twisted by any
Artin-Schreier sheaf but its dual vanishes, verifying (4).

Now we check (5). Certainly the stalk of F at the generic point has rank
r(F) in degree 0 and rank zero in other degrees. Since F has no finitely
supported sections, we get that F[1] is perverse, so F ® Ly(ax) has no
cohomology in degrees other than 1, hence
(3.57) cr(F) = —x(AL— F & Ly(ax)).

K(a)
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From Lemma [2.10| we get that

YA~ FoLy(ar)) = x(ADr(FRLy(az))— Z Cy(FRLy(ax))—sWoo (FRLy (ax))

k(a)’

velA Sl
so to establish (5), it suffices to check that for all y € ‘Ai(ia) , we have
(3.58) cy(F @ Ly(ax)) = cy(F)
and that
(3.59) SWoo(F @ Ly (ax)) — X (AN (F @ Ly(az)) = swh (F).

Eq. (3.58) is straightforward from Eq. (2.19) since neither the Swan con-
ductor at y nor the drop at y can be changed by tensoring with a lisse sheaf
of rank one in a neighborhood of y.

For Eq. (3.59) note that y(A') = 1 by Eq. (2.22)), and that tensoring with
a lisse sheaf of rank one does not affect the rank, so it suffices to prove that

(3.60) SWoo (F @ Ly(ax)) — r(F) = swi (F).

Every term above can be expressed in terms of the representation V = F,
of I, so it suffices to show that

(3.61) sw(V ® Ly(az)) — dim(V) = sw'(V)

where we have abused notation by using Ly (ax) for both a sheaf and its
inertia representation at oo.

Since all terms above are additive in extensions of irreducible represen-
tations, we may assume V is irreducible, in which case it suffices by Defini-
tion [2.7] and Definition [3.9] to prove that

(3.62) slope(V®Ly(ax))dim(V)—dim(V') = max{slope(V)—1,0} dim(V)
or, equivalently, that
(3.63) slope(V @ Ly(ax)) = max{slope(V), 1}.

The above follows from Proposition once we check that Il does not
act on V by scalars via the character L, (—ax). If it were to act by scalars,
the character defined by those scalars would be unique, but Ly (—ax) gives
distinct characters of I, for different specializations of a, so such an action
by scalars is impossible for generic a.

At last we deduce (6) from (5). Since F has no finitely supported sec-
tions and is tamely ramified at infinity, it follows from (5), Definition

Definition Definition and the definition in Eq. that
(3:64) cr(F)= > colF)= > [1(x): 6](da(F) + sWa(F)) = c(F)

z€|AL] z€|AL]

as required for (6). O
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3.2.1. Betti bounds for tensor products.

Lemma 3.11. For K; € D%(AL,Qy) and a sheaf Ko on AL with no finitely
supported sections, we have
(3.65)

Z dim H (AL K1 ® Ky) < cp(K))r(Ka) + r(K1)ep(Ks) + r(K)r(Ks).

j=—o0

Proof. First, let us reduce to the case when K is perverse. The perverse
filtration on K7, whose jth associated graded by definition is PH/ (K1), in-
duces a filtration on K7 ® Ko whose jth associated graded is p’Hj(Kl) ® Ko
and thus a filtration on H*(AL, K; ® K2) whose jth associated graded is
H} (AL PHI (K1) ® K3). The spectral sequence associated to this filtration
converges to HYT1(AL, K ® Ky) with first page HePTY(AL PHP(K)) © K»).
This spectral sequence gives the inequality

(3.66)  dim HJAL K1 ® Kp) < Y dim H} /(AL PH/ (K1) © Ky)

j=—o0

which implies

(3.67) ZdlmHZ L K1®K,) < Z ZdlmH’ (AL PHI (K1) ® K>).

1=—00 1=—00 _]—700

Thus the left hand side of Eq. (3.65) is subadditive when we pass to
perverse cohomology. By Lemma [3.10(1), the right hand side of Eq. (3.65)

is additive when we pass to perverse cohomology. It is therefore sufficient to
handle the case when K is perverse. By the same argument, except using
Lemma [3.10(2), it suffices to handle the case when K; is an irreducible
perverse sheaf.

As K, is an irreducible perverse sheaf, it is either a skyscraper sheaf or the
shift of a middle extension sheaf [BBD82| 5.2.2 (a),(b)], which in particular
will have no finitely supported sections. Since both sides of Eq. are
invariant under shifts, it suffices to handle the case when K is either a
skyscraper sheaf or a sheaf with no finitely supported sections.

If K1 = 0, for some x € Al is a skyscraper sheaf then by Lemma (3)
we have c¢p(K7) =1 and

. , K i=0
(3.68) HI(AL Ky @ K3) = Hi(Ka)o =9 0%
0 i#£0
so since K9 has no finitely supported sections, we get
[e.e]
(3.69) Y HUAL K ® Ky) = dim Ky, < 1(Ky) = cp(K:)r(Ka)
1=—00

so the required inequality in Eq. (3.65)) is satisfied.
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Finally, we must check the case when K; and K5 are sheaves with no
finitely supported sections. Thus K; ® Ko has no finitely supported sections
either, so H)(AL K; ® Ks) = 0. Hence we have

o0
> dim Hi(AL Ky ® Ky) = dim H) (AL, K1 © K») + dim HZ (AL K ® K)
1=—00

= 2dim H?(AL, K1 ® Ky) — x(AL K ® K>).

By [Ka88| 2.0.6], we can identify H2(AL, K1 ® K3) with the coinvariants
of K1, ® Ka, under the action of 7$*(U), for some open U in Al where
K1, Ky are lisse. By Lemma we have

X(A%a K ® KQ) =
I'(Kl & KQ) — Z (r(K1 ® KQ) — dim(K1 &® KQ);(; + SWx(Kl ® KQ)) — SWOO(Kl & Kz).
z€|AL]
We will check that
(3.70)
r(Ki®@Ky)—dim(K; @ Ko)p+sw, (K1 @ Ky) < ¢ (Kp)r(K2)+r(K1)c, (K2)
for every z € |AL], and that
SWOO(Kl ® KQ) — I‘(K1 &® KQ) + 2dim(K1777 ® KQ’n)ﬂ_i’,\t(U) <
SWéo(Kl)I‘(KQ) + I'(Kl)SWéO(KQ) + I'(Kl)r(Kg).
The bound in Eq. (3.65) will then follow upon summing Eq. (3.70) over all
z € |AL], adding Eq. (3.71), and using Lemma ).
For Eq. (3.70)), first observe that
(372) d1m(K1 & Kg)z = dim(KLz & KQ@) = dlm(Klw) dlm(KQJ)
so that
r(K; ® Kp) —dim(K; ® Ka), = r(K)r(K2) — dim(K; ;) dim(Ky ;) <
r(Ki)r(Ks) — dim(Ky z) dim(Ky ) + (r(K) — dim (K 2))(r(K2) — dim(Ksy,)) =
I'(Kl)(r(Kg) — dim(KQ@)) + (I'(Kl) — dim(KLw))I‘(Kg).
Next we apply Corollary [2.12 to obtain
(3.73) sw, (K1 ® Ko) < sw,(K1)r(Ks3) + r(Kq)sw,(Ka).

Eq. (3.70) now follows from the definition of ¢, (K7) and c;(K?2).
We turn to Eq. (3.71). As every global monodromy coinvariant is a coin-
variant of the local monodromy at oo, it suffices to prove that

SWoo (K1®K2)+2 dim(K7 QK2 ) 1., < swh (K1)r(K2)+r(Ky)swh, (Ka)+2r(K;)r(Ky).

Both sides above depend only on Vi = K, and V3 = K, viewed as rep-
resentations of I,. Writing V7 and V5 as iterated extensions of irreducible
representations, the swan conductor, rank, and sw’ are all additive, while
the dimension of the inertia coinvariants is subadditive, so it suffices to
handle the case when V; and V5 are irreducible.

(3.71)
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In case V4 and V4 are irreducible, by Definition [3.9) we must prove that
sw(V1 ® Va) + 2dim(Vi ® V2)1,, <
dim(V4) dim(V2)(max{slope(V;) — 1,0} + max{slope(V2) — 1,0} + 2).
Since trivial representations have Swan conductor zero, and
dim(V; ® Vo)1, = dimHom;__ (V] ® Va,Qy) = dim Homy_ (V4,Vy') < 1
in view of irreducibility, it follows from Proposition [2.11(1) that
sw(V1 ® V2) < (dim(V1) dim(V2) — dim(Vy ® V2)y,. ) max{slope(V1), slope(V2)}
< (dim(V3) dim(V) — dim(Vi @ V3) ..) max{slope(Vi), slope(Va), 2)
< dim(V7) dim(Va) max{slope(V1), slope(V3),2} — 2dim(V; @ Vo)1,
and this is at most
dim(V}) dim(Va) (max{slope(V1)—1, 0} +max{slope(V2)—1,0}+2)—2dim(V;&V2) 1,
so Eq. is established. [l

We shall need an auxiliary vanishing statement for the cohomology of
Artin-Schreier sheaves.

Lemma 3.12. Let n,m be a positive integers, let A™ be the affine space over
K, leteq, ..., em: A" — Al be affine maps, and let a1, ...,y € K be scalars
such that the map

(3.74) e= Z a;e;
i=1
s nonconstant. Then
(3.75) H? (AZ, ®ef£¢(ai:}:)> =0.
i=1

Proof. We start with the special case n = m =1, a; = 1, e; = id, where
we need to show that

(3.76) HY(Ag, Ly(2)) = Hi(Ag, Ly(x)) = HE(Ag, Ly(x)) = 0.
Vanishing in degree 0 follows from Lemma 5). For degree 2 we have
(3.77) H (A, Ly(x) = (Ly(@)7) pe o)

for some open U C Al where £, (z) is lisse as in Lemma 2). Since
dim Ly (x)7 = 1 by Lemma M(G) and 7{'(U) acts nontrivially, the dimen-
sion of the coinvariants is less than 1, so we have the desired vanishing of
cohomology in degree 2. In view of the vanishing in degrees 0 and 2, we get

from Lemma Lemma [2.15(2,6), and Eq. that
dim Hy (Ag, Ly(2)) = —x(Ag, Ly(@)) = sWeoLy(z) — X(Ax)r(Ly(2))
—1-1-1=0.
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For the general case, we shall begin by checking that

m
(3.78) ®ef£¢(ai:z) = e Ly(x).

i=1
Both sheaves are lisse of rank 1 on A", so it suffices to check that each o in
7t (A") acts on their generic fibers by the same scalar. For each 1 < i < m,
the action of o on the generic fiber of €L, (a;x) arises from its action on
the finite étale cover yf —y; = a;e; of A" (by translation on y;) composed
with 1, so the action of ¢ on the generic fiber of the tensor product arises
from its action on the product of all these covers, composed with v, and
multiplying. That is, o acts by the scalar

[T¥(ew) —v) =2 (Z(U(yi) - ?Ji)) =1 <0’ <Z yz) - Z%) :
-1 i=1 i=1

i=1
Setting y = > 1", y;, we see that

m m m
(3.79) Poy=> =Y yi=Y aei=e,
=1 =1 =1

so o acts by the same scalar on the generic fiber of e*Ly(x).
If e is nonconstant, we can use it as a coordinate of A", namely write
A" = Al x A" ! with e projecting onto the first factor. From the Kiinneth

formula and Eq. (3.76) we get that
H; (A 034 e:c¢<aix>> = H} (AR e* Ly(x)) = H (AL x AZY Ly (x) Q)
i=1

— H(AL L)) © B2 (A2, Q)
=06 HI (A, Q) = 0.
O

Lemma 3.13. Let k be an algebraically closed field of characteristic p, let
T1,...,Tm € K be distinct elements, and let K1, ..., K,, be sheaves on Al
with no finitely supported sections. For a nonnegative integer n < m, view
A7 as the space of polynomials of degree less than n, and for 1 < i < m let
ei: A" — Al be the map that evaluates a polynomial at x;. We then have

(3.80) Y dimHY (A”,(g)e;‘m) < (H(r(Ki)(l—i—Z) —|—cF(Ki)Z)>[Z”]
j=—o0 i=1 i=1

where Z is a formal variable and [Z"] is the operator extracting the coeffi-
cient of Z™ from a polynomial.

Proof. We will prove this by inductively replacing each K; with either a
skyscraper sheaf 0, or an Artin-Schreier sheaf £, (a;x). To that end, let us
formulate a more general statement, depending on a parameter d, which we
will prove by induction.
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Fix 0 < d < m. Let k(ags1,--.,qn) be the field of rational functions
in m — d variables. Let S C {d+ 1,...,m} be a subset, and denote its
complement by 5S¢ Our more general statement is that

i dlmH] (A:(adH, = <® e*K) ® (® ef(sai) ® (® 6?131@(0%96)))
P €S i€5¢

is at most
(3.81) <Z|S| H Y1+ Z) + ep(K; )Z)) Z".

Our lemma follows by taking d = m.

We prove the above by induction on d. Let us first check the base case,
when d = 0, so no K; appear, and Eq. is simply 1 if [S| = n and 0
otherwise. In this case, observe that (), g €;da, is the constant sheaf on

(3.82) L={fecA": f(z;) =a;, 1 € S}.

As the «o; are independent transcendentals, L is empty in case |S| > n,
and then the sheaf @Q;.ge;0q, is zero, so the cohomology is vanishing in
all degrees hence the zero bound in Eq. is confirmed. In case |S| <
n, the locus L is an affine space of dimension n — |S|. By Lemma @,
the cohomology of this affine space with coefficients in @), g €f Ly ()
vanishes as long as Zie ge aiie; is nonconstant. Since the «; are independent
transcendentals this sum is nonconstant as soon as one of the e; (i.e. f —
f(a;)) is nonconstant on L. If |\S| < n then all of these forms are nonconstant
on L, and because n < m by assumption, the set S¢ parametrizing these
forms is nonempty, so indeed at least one is nonconstant, and the zero bound
in Eq. is valid also in case |S| < n. If |S| = n, we are taking the
cohomology of a point with coefficients in a (constant) sheaf of rank 1,
hence the cohomology is 1-dimensional (concentrated in degree j = 0). This
verifies the base case.
For the induction step, we first introduce the simplifying notation

d
Rd = /i(Oéd+1, e ,Ctm), Fd = ®€Z<KZ', ZS = ®€;k(5ai, ZSC = ® e;-kﬁd,(aix)

i=1 €S €8¢

In this notation, the inductive statement is that

oo
> dimH] (A7, Kq® Ag @ Age)

j=—o00

is bounded by Eq. (3.81). We assume that the statement is known for d — 1;
we will verify it for d. By the projection formula and the definition of Ky,
for every integer j we have

HI (A7 Kg®Asg® Age) = HI (AL, Kq®eq) (Kgo1 ® Ag ® Age)) .
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It follows from Lemma [3.11] that

o0
Y dimH] (A}, Kq® Ag® Age) <

I‘(Kd)CF (edJ (Fd—l & Zs X Zsc)) + (I‘(Kd) + CF(Kd))I‘ (€d7g (Fd—l & ZS X Zsc)) .

Using the fact that k41 is an algebraic closure of k4(ay), we get from
Definition the projection formula, and the inductive hypothesis that

CF (6dl (Fd—l ®ZS ®Zsc)) =

Z dlmH] < rg 1,£¢(Oéd.%') X eq,) (Fdfl ®ZS ®ZSC)> =

]—700

Z dlmH]( Kd— 17Kd71 ®ZS®ZSCU{d}> <

j=—o00

( ISIH Y1+ 2) +CF(K)Z))[Z"]-

We make a similar argument for the rank. To do so, observe that taking
the stalk at the generic point is equivalent to taking the stalk, over the field
extension of the base field adjoining a new variable a4, at the point ag, and
this is equivalent to taking the tensor product with the skyscraper sheaf d,,
and taking cohomology in degree zero. This gives

r(eq) (K1 ® Ag @ Age)) = Z dim H} ( ry 12 0ag ®eqy (Ka—1 ®AS®A5c)) =

j=—o00
Z dlmH]( o K ®Zsu{d}®ZSC> <
j=—00
(Z|5|+1 H Y1+ 2) +cF(K)Z)>[Z"].

Comblmng all the bounds above, we obtain

i dim H] (A7, K4® Ag® Age) <
j=—00
d—1
(29 (Ka) + (2 (Ka) + er(K)2) [T (1 + 2) + er(K)2) ) [27) =
=1

(Z\S\H )1+ 2) +CF(K)Z)>[Z”L

completing the induction step. O
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3.2.2. Short trace sum bound.

Corollary 3.14. Let m be a positive integer, let g € Fqlu] be a squarefree
polynomaial of degree m, and let

(3.83) t: Folul/(g) = C

be an infinitame trace function, such that for some prime factor T of g, the
function t; is a Dirichlet trace function. Then for n < m we have

| > | ([T 0+ 2) + (k) 2)75 ) [27)
JEF[u] g
deg(f)<n

while for n > m we have

> ot =o.

S
deg(f)<n
Proof. Suppose first that n < m.

Let z1,. .., 2, € Fy be the roots of g ordered in such a way that 7(z1) = 0.
For each prime factor w of g, let F; be a sheaf on A%Fq[u} /() giving rise to
the trace function ¢,.

Since t, is a Dirichlet trace function, in view of Example and Nota-
tion we can take

(3.84) Fr =Ly (c(T - 2))
where ¢ € (Fylu]/(7))*, z € Fqlu]/(7), and x: (F4lu]/(1))* — C* is a
character of order greater than 1.

Fix 1 < i < m. Since g is squarefree, there exists a unique prime factor =
of g such that 7(z;) = 0. We define a sheaf F; on A%F— to be the base change of
q

Fr along the embedding F,[u]/(7) < F, mapping u to x;. Since 7(z1) = 0,
for the case ¢ = 1 we have m = 7, hence F; is geometrically isomorphic to
the Kummer sheaf £, (¢(T —z2)), so we conclude from Lemma [2.2)(7), that all
the assumptions made in Notation[3.2] are satisfied here. From that notation
we borrow the evaluation maps e;: A” — Al defined in Eq. .

Let

(3.85) F = (§) el F.

1
We will construct a sheaf F on Ay such that for every f € Fy[u] with
deg(f) < n we have

(3.86) tr(f) =t(f)
and the base change of F to Ag— is isomorphic to F.
q
To do this, fix a prime factor m of g. Let e,: Aﬁq[u]/(w) — Aﬂl?q[u]/(

™)
be the map sending a polynomial f of degree less than n to f(u) mod

w. Let 6™: qu[u] Jr) qu be the map arising from the field embedding
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F, — F4[u]/(7). The map 6™ is a finite étale Galois cover. Antonio Rojas-
Leén has associated to such a cover in [RL20] a tensor direct image functor
&, from sheaves on the source to sheaves on the target. Using this, we take

F =) .- Fr.

7lg
To prove Eq. (3.86), we note that

tr(f) = tr(Froby, Ff) = tr (Frobq, (6% v€5Fr) ) Htr (Frobq, (6% exFr) )

g g
= Htr (Frob degr, (€xF7r) ) Htr (Frob deg s ( ) Ht
g g g

Here the first two equalities are by definition of ¢t and F, the third is a
basic property of tensor products, the key fourth equality is a consequence
of [RL20, Proposition 7], the fifth is a basic property of stalks, and the last
two are by definition of F; and t.

We now prove that the base change of F to A is isomorphic to F. It
follows from [RL20), Definition 1] that the pullback of 6g.exFr to AR

under 67 is

(3.87) (09 ek Fr.

TEGal(Fq[u]/<ﬂ.) /Fq)

Fqlul/(m)

After making a further pullback (of the sheaf above) to F,, each choice of
7 € Gal(Fypy /(m )/Fq) induces a different embedding ¢, : Fy[u]/(w) — Fy. The
pullback of e} ]-" along such an embedding ¢, is the pullback of (X F, along
the map obtained from e, by applying ¢ to its coordinates.

For each embedding ¢;, the element ¢-(u) is the root x;, of 7 for some
1 <. < m. Since e, sends f to f(u) and ¢, sends u to z;_, the map obtained
from e, by applying ¢, to its coordinates sends f to f(x;_), namely this map
is e;,. Similarly, since 7 is the embedding F,[u]/(7) — F, sending u to ;_,
the sheaf (X F; is by definition F;, .

It follows that the base change Of 0&enFr, or equivalently of the sheaf in

n
Eq. 1} to AE is
® e; Fi, = ® er Fi.
TEG&I(Fq[u]/(W) /Fq) 1<i<m
m(xz;)=0
Taking the tensor product over all primes 7 dividing g, we conclude from the
definitions of F and F that the base change of F to A]’FL— is indeed isomorphic

. q
to F.

Since Fi is mixed of nonpositive weights, a property that is preserved
under pullback and tensor product, the sheaf in Eq. (3.87) is mixed of non-
positive weights. Thus 05,e; F; is mixed of nonposmve Welghts and hence
F is mixed of nonpositive weights.
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It follows from Eq. (3.86) and the Grothendieck-Lefschetz trace formula
that

(3.88) ‘ 3 t(f)‘:‘ ot ‘ Z ‘tr (Froby, HI (AL, F))| .

FEF[u] xGA"(]Fq) Jj=—00
deg f<n

Since F is mixed of nonpositive weights, Deligne’s Riemann Hypothesis and
Eq. (3.85) bound the above by

(3.89) i ¢/ dim HI (A%, éef}}).
=1

j=—o0

Corollary allows us to bound the sum above by
(3.90) "% dim H (2, Q) eiFi) +q"F dim HH (AL, Q) ei F).
i=1 i=1

Since the sheaves F; have no finitely supported sections, and n < m, we
get from Lemma that the above is at most

(3.91) ¢'F (H(r(}})(l +2)+ CF(E)Z)> [Z"]
i=1
and since each F; occurs with multiplicity deg(m) among the F;, we get
(3.92) g3+e (H (r(F)(1+ 2Z) + cF(}})Z)deg(”)) (Z").
7lg

By Definition we have r(F;) = r(tr), and since the sheaves F, are
infinitame, we get from Lemma 6) and Eq. (1.17) that cp(Fr) = c(tr),
so the above equals

(3.93) g3+3 (H (r(tx)(1+ Z) + c(t,,)Z)deg(”)> [Z"]

g

as required.

Suppose now that n > m. By the Chinese Remainder Theorem, and the
fact that each residue class mod g contains ¢~ polynomials of degree less
than n, we have

o= > J[t=h=a""T] D ta(f)

f€Fq[u] f€Fq[u]/(9) g nlg fE€Fq[u]/(m)
deg(f)<n

For m = 7 we are summing a Dirichlet trace function over all residue classes,
so this sum vanishes, hence the product is zero. O
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We deduce Theorem [1.10. Namely for a squarefree g € F,[u], and an
infinitame g-periodic trace function ¢ for which there exists a prime 7 | g
with ¢, a Dirichlet trace function, we show that

Z t(f) < X2 |g[loga@r®)+e(®)

feFq[u]
Ifl<X

Proof of Theorem[1.10. Applying Corollary with n = [log,(X)], and
recalling Definition we get the bound

S Hf) < gt (H (r(tn) (1 + Z) + cp(tn) 2) 150 | [27]
lg

<Xz | [I @@+ 2) +ct)2)*=™ | (2.
g

The coefficients of the polynomial above are nonnegative, so the coefficient
of Z™ is bounded by the sum of all the coefficients. This sum is the value of
the polynomial at Z = 1 which equals

H (2r(t) + C(t))dog(w) = (2r(t) + C(t))zﬂlg deg(n)
7lg
= (2r(t) + C(t))deg(g) - |g|10gq(2r(t)+c(t))

so we get the result after multiplying by the factor X > from Eq. |i ([

4. MOBIUS FUNCTION, DISCRIMINANTS, RESULTANTS

Notation 4.1. Define an interval Z in Fy[u] to be a set of the form

(4.1) Tya={f+g:9€F,ul,deg(g) <d}

for some f € F,[u] and some nonnegative integer d. Define the dimension,
length, and degree of the interval Z = Zy 4 to be

(4.2) dim(Z) =d, len(Z) =q% deg(Z) = max{d,deg(f)}.

While f is not uniquely determined by the interval Z, it is easy to see that
the dimension, length, and degree are.

As an example, the set of monic polynomials of degree d is an interval of
dimension d, which we can see by taking f = u?.

Associated to an interval 7 = Ty 4, we have the subset Zg of F,[u], simi-
larly defined as

(4.3) Ty = {f +9: g € Fyful, deg(g) < d}.
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For f+g € IE’ let 6;(f + g) be the coefficient of v’ in f + g. Then writing
f=mu’+ -+ Tdeg(f)udeg(f), we get that

deg(f

d—1 )
(4.4) fg=> 0w+ > mul,
=0 j=d

and so g is uniquely determined by 8g,...,04_1. We say that {91-}?;& are
the coordinates of IE' We call 6y the lowest coordinate of IE' Note that
the number of coordinates of Zg is dim(Z).

We say an interval Z is F-adapted for F' € F4fu,T] if the degree of
F(u, g(u)) is independent of g(u) € T, and nonnegative. For an F-adapted
interval Z, call the degree of F/(u, g(u)) for g(u) € Iy, the F-degree.

The next proposition shows that F-adapted intervals satisfy a property
that is seemingly slightly stronger.

Proposition 4.2. Keep Notation and Notation [4.11. Let T be an F-
adapted interval in Fylu]. Then the leading term of F(u,g(u)) is also inde-
pendent of g(u) € Iy

Proof. The coefficient of the highest power u? of u in F(u, g(u)) is a poly-
nomial function P of the coordinates of g(u) € Iy,. Since the degree d of
F(u, g(u)) is independent of g(u) € Zg, this polynomial function P vanishes
nowhere, so by the Nullstellensatz, it is constant. ([l

4.1. Relating the Mobius function to Dirichlet characters. The main
goal of this section, generalizing [SS19, Section 3], is to prove Corollary @,
which gives a formula for the quantity pu(F (u, f(u)) from Theorem|1.3| when
restricted to special subsets of the form f(u) = r(u)+s(u)? for fixed r(u) and
varying s(u). Later, we will use this to control the average of pu(F'(u, f(u)))
by averaging over each special subset separately.

4.1.1. Zeuthen’s rule. We recall Zeuthen’s rule from [CCGO8, Lemma 4.6]
in a slightly generalized form.

Notation 4.3. Let fi(u,T') and f2(u,T) be two polynomials in F,[u, T]. Set
(4.5) Zs = {(a,b) € Ty« fia,b) =0}, i€ {1,2}.

In case Zy, N Zy, is finite, for any

=2
(4.6) = (ug,ty) € Fy

we denote by

(4'7) Z.df(Zflﬂ Zfz) = dimEFq[u’ T](U*u:z,T*tz)/(z}Li? f2)

the intersection number of Z; and Zy, at . One readily checks that the
quantity above is positive if and only if x € Zy N Zy,.
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Let d, d’ be nonnegative integers. As in [CCGO08, Section 3|, we denote by
(4.8) Ry (a(u), B(u)) € Fy

the resultant defined by the universal formula for a polynomial a(u) € Fy[u]
of degree at most d, and a polynomial §(u) € F4[u| of degree at most d’ in
terms of the coefficients of these polynomials (this universal formula is the
determinant of the Sylvester matrix associated to a and ). Omitting d, d’
we set

(49) R(a(u)wB(u)) :Rdeg( ),deg(B ( ( )MB( ))

In this work, every time we write Rqq (o (u),B(u)) we will in fact have
d = deg(«), in which case |[CCGOS, (3. 2)} says that

(4.10) R (o(u). f(w) = ay 7 Ra(u), ()
where aq is the coefficient of u? in a(u). We conclude that
(4.11) Ryar(a(u), B(w) = af Ry (a(w), B(u))
for any integer d” > deg(3). We also recall from [CCGO& (3.1)] that
(4.12) R(a(u), B(w) = ay™? ] 68
z€Fq
a(z)=0

Occasionally, we will think of f1, fo € Fy[u][T] as polynomials in 7" with
coefficients from Fy[u]. For example, the leading coefficient of f; is the
coefficient of the highest power of T'. Moreover, we use the notation R(f1, f2)
for the resultant of f; and fo, always to be taken with respect to the variable
T, producing a polynomial in Fy[u].

For « € Fy[u] and ug € F,, we denote by

(4.13) ordy—y,y(u) =sup{m > 0: (u —up)™ | y(u)}

the order of vanishing of v(u) at u = ug. All of the above is in fact valid for
an arbitrary field in place of F,.

Lemma 4.4. Keep Notation[{.3, and suppose that Zy, 0 Zy, is finite. Then
(4.14) Orduzuy R(f1, f2) = D i(ug) (f1: f2)

CE]FT]

for every ug € E, with equality if the leading coefficient of one of the poly-
nomials f1, fo does not vanish at ug.

Proof. The case where one leading coefficient does not vanish is [CCGOS,
Lemma 4.6], so we only prove the inequality above.

Since Zy, N Zy, is finite, we can find A € F, with (ug,\) ¢ Zp N Zy,.
Making the change of variable T' +— T+ X\, which preserves both sides of the
inequality above, we can assume that (ug,0) ¢ Zy N Zy,. In other words,
the constant term of one of the polynomials f;, fo does not vanish at wy.
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Let di and dsy be the degrees of f; and fo respectively, and set
(4.15) filu,T) = filu, THT, fy(u,T) = folu, T~HT"

exchanging the constant and leading terms. Then

(4.16) R(f1, f3) = (1) R(f1, fo)
SO
(4.17) ordu—u, R(f1, f2) = ordu—u, R(f], f3)-

Since the leading coefficient of one of the polynomials f{, f; does not
vanish at ug, by the previous case we have equality in Eq. (4.14), namely

(4.18) ordu—uo R(f1, £5) = ) ituo,e) (1. f2)-
CGE

Removing ¢ = 0, we get
(4.19) D o) (F1 1) = oo (f1 £3)-

c€Fq CQEX

For every c € EX, mapping T to Y ! induces an isomorphism

(420) E[ua T] (u—up,T—c—1) = E[ua Y] (u—up,Y —c)
hence also the isomorphisms
q[u7 T] (u—uo,T—cfl)/(fl (U, T)7 f2(u7 T)) =
q[u7 T] (u—uo,T—c)/(fl (u’ Tﬁl)’ fQ(u7 Tﬁl)) =
q[uv T] (u—uo,T—c)/(f{ (U, T)a fé(ua T))
Therefore, by definition of intersection numbers in Eq. (4.7, we get

(422) i(uo,c—l)(fla f2) = i(uo,c) (f{v fé)

SPFs

(4.21)

=

Inverting c € IFTIX, we get

(4.23) D it (15 = D e (F1s f2) = D uge) (frs f2)

ceFy~ ceFy~ ceFq
where the last equality holds because the constant term of one of the poly-

nomials fi, fo does not vanish at ug 80 iy, 0)(f1, f2) vanishes. Combining
Egs. (4.17) to (4.19) and (4.23), we get Eq. (4.14). O

Remark 4.5. The proof above is valid for every algebraically closed field in
place of [F,.
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4.1.2. Resultant formula. Using Zeuthen’s rule, we prove a formula for a
resultant, which we later apply to the resultant of a polynomial and its
derivative, namely the discriminant. The latter is related to the value of
Mobius by Pellet’s formula. Our formula is a variant of [CCGO08, Theorem
4.5], with our condition on the interval Z replacing the assumption on the
degree therein.

Lemma 4.6. Keep Notation [4.1] and Notation [4.3, Suppose that Zy N Z,
is finite, and let T be an fi-adapted interval in Fqlu]. Let d be the fi-degree
of Z, and let d’ be an integer satisfying

(4.24) deg(f2(u, g(u))) < d
for g e IE' Then there exists c € Fy (depending on I, f1, f2) such that

(4.25)  Raa(filu.g(w), folu,g)) =c [ (9(us) - t)=(Zn2)

xGZfl ﬂZf2

for any g(u) € IE, using the convention x = (uy,t;) from Notation .

Proof. We assume first that dim(Z) > 2, namely that I, has at least two
coordinates 6y, 0.

As in the proof of [CCGO8, Theorem 4.5], the first step is to prove that
there exists ¢ € Fy and an assignment of a positive integer e, to each
x € Zy, N Zy, such that

(426) Rd,d/(fl(u,g),fQ(U,g)) = H (g(um) _tw)ez

xEZfl I'WZf2

for every g € IE‘ In the proof of this factorization we essentially follow
the proof of [CCGO8, Lemma 4.4], and the first paragraph in the proof of
[CCGO8, Theorem 4.5], with some modifications to account for the fact that
we range over all polynomials g in a base-changed interval (over F,) rather
than over all monic polynomials of a given degree.

Note that the left hand side of Eq. is a polynomial in the coordinates
of g, and that for every x € Zy N Zy,, the polynomial g(u,) — t; is linear
in the coordinates of g, and thus geometrically irreducible. Moreover, using
our assumption that g has at least two coordinates, one readily checks that
for any y € Zy, N Zy, different from x, the polynomial g(u,) — ¢, in the
coordinates of g, is not a multiple of g(u,) — ¢, by a scalar from F,. Hence,
by the Nullstellensatz, in order to establish Eq. @ with some ¢ € EX,

it suffices to show that our resultant Ry g (f1(u,g), f2(u,g)) vanishes if and
only if

(4.27) glug) —tz =0

for some x € Zy, N Zy,.
Our resultant vanishes if and only if fi(u,g(u)) and fa(u, g(u))) share a
root ug € Fy, or the coefficients of u in f1(u, g(u)) and of u® in fo(u, g(u))
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both vanish. The latter possibility is excluded by our definition of d, and
the former is equivalent to the existence of an

(4.28) x = (uo,9(uo)) € Zy, N Zy,

for which Eq. is satisfied. Hence, Eq. is established with ¢ €

To check that c is in F (and not merely in EX), we note that (each
linear factor, and thus) the product on the right hand side of Eq. is
monic when viewed as a polynomial in the lowest coordinate 6y of ¢, so ¢
is a coefficient of the polynomial on the left hand side of Eq. . The
latter is clearly a polynomial over F,, so indeed c € IF;.

Next, in order to establish Eq. , we fix y € Zy, N Zy,, and check
that e, = i,(Z¢,, Z4,). Since dim(Z) > 2, we can find gy € I, such that

(4.29) {z € Zp N2y, - go(uz) =tz } = {y}.
This choice of gg is such that

(4.30) ord.—o(go(ug) + 2 — t) = {gf’ ;j’

for any x € Zy, N Zy,. We conclude from Eq. @) and Eq. that
(4.31) ord.—oRaa (f1(u, g0 + 2), f2(u, g0 + 2)) = ey

and set

(432)  fiw2) = filugo+2), falu2) = falugo + 2).

Since the degree d of fi(u,g) is independent of g € IE by the fi-

adaptedness assumption, we see that the coefficient of ud in j?l does not
vanish for any z € F,, in particular for z = 0. We therefore get from

Eq. that
(4.33)  ord,—oRgq (ﬁ(u, 2), fa(u, z)) = ord,—oR (ﬁ(u, 2), fa(u, z)) .

We apply the case of equality in Lemma to the above. This requires
checking that

(4.34) ‘Zﬁ N Zf?‘ < o0,

and that the coefficients of the highest powers of u in ]71 and fg do not have
a common zero at z = 0. The former follows from our assumption that
Zs, N Zy, is finite, and the latter was deduced above from our assumption
that the degree fi(u, g) is independent of g. It then follows from Lemma[4.4]

Eq. (4.31), and Eq. (4.33)) that

(4.35) ey=>_ in0) (25, Z3,)-
AeF,



MOBIUS ON POLYNOMIAL SEQUENCES AND QUADRATIC BATEMAN-HORN 63
Using the definition of ]71, fg in Eq. 1} we get from the above that
(4.36) ey =Y g (Z Zp)-
AeF,

By construction of gg in Eq. , the summands with (X, go(\)) # y van-
ish, so our sum reduces to i,(Zy,, Zy,), and it follows that e, = i,(Zy,, Zy,)
as required.

Assume now that dim(Z) = 1, so that there exists some h € F4[u] such
that

(4.37) Iy ={h+z:z eF,}.

Recall that we need to establish Eq. (4.25), which in this case can be rewrit-
ten as

(4.38) Ry (f1(u, h(u) + 2), fa(u, h(u) + 2)) = ¢ [ (=)™
CXGE
where
(4.39) Mo = Z ie(Zf1, 2f,)-
xEZflﬂZfQ
te—h(uz)=a
As in the previous case, applying Eq. (4.10) and Lemma we get that
(440) Ordz:oz Rd,d/(fl (u7 h + Z)7 f2(ua h + Z))
equals
ord,—q R(f1(u,h+ 2), fo(u,h +2)) = Z Z.(A,Oé) (Zf1(u,h+z)v ng(u,h+z))
AeF,
= igvasno (Zrs Zp).
AeF,

We can restrict the sum above to those \ € E with
(4.41) e+ h(N) = (uasta)

for some x € Zy, N Zjy,, since the other terms vanish. We then see that our

sum equals mg, so Eq. 1} holds with some ¢ € EX. To show that in fact
ce F;, one can argue as in the previous case.

Suppose at last that dim(Z) = 0, or equivalently that len(Z) = 1. Note
that the left hand side of Eq. is in F,, and by invariance under the
action of Gal(F,/F,), the same is true for the product on the right hand side
of Eq. . Hence, Eq. boils down to the fact, proven earlier, that
our resultant vanishes if and only if g(u,)—t, = 0 for some x € Zy NZy,. O

Remark 4.7. Tt is possible to extract from the proof an explicit expression
for the constant c.



64 WILL SAWIN AND MARK SHUSTERMAN

Notation 4.8. Keep Notation Define the polynomial
(4.42) R(fi, o) =rad(R(f1. )= [ =

7| R(f1,f2)
in Fy[u], and let

(4.43) L(f1, f2) € Fo[u]

be the greatest common divisor of the leading coefficients of f; and fs.
Assume from now on that ¢ is odd, and denote the unique multiplicative
quadratic character of F; by x2. For every x € F, we have

1 xEIqu2
(4.44) Xo(@) =4 —1 zeF\F
0 x = 0.

For a € Fy[u] and a nonzero b € F,[u] we denote by

a5 (0)-0)

the Jacobi symbol (quadratic residue symbol) in Fy[u], studied for instance
in [Ros02, Chapter 3]. For a nonzero M € Fy[u], we denote by

T
(4.46) NF:[u]/(M) : Fq[u]/(M) — ]Fq

the norm map defined by
F
(4.47) N]F:[u]/(M)(f> = H f(a)

LLEE
M(a)=0

where f(a) stands for the image of f € Fyu]/(M) in F, under the map
sending u to a. This map is surjective, and we have

(4.48) X2 <N£:[u]/(M)(f)> = (1{14) :

The following proposition, whose proof builds on Lemma [4.6] is the key
to deducing Corollary It is the generalization of [SS19, Lemma 3.1]
needed here.

Proposition 4.9. Keep Notation[{.8, and the assumptions of Lemma 4.6
Suppose that degp(f1) > 1. Then there exists a polynomial
(4.49) W (u,T) € (Fy[ul/(R'(f1, f2)))IT]
that satisfies the following two properties.
e For each root a € F, of R°(f1, f2), the image W(a,T) of W(u,T) in
Fo[T] under the map sending u to a satisfies

(4.50) ordr—yW(a,T) =i(an)(Zf, Z,)
for every b € Fy;
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e for all g € T we have

(4.51) x2(Raa (f1(u, g(w)), fa(u, g(u)))) = < St >

Rb(fh f?)
the right hand side being the Jacobi symbol.

Remark 4.10. The first property above satisfied by W (u,T') determines it
up to multiplication by an element of (F,[u]/(R’(f1, f2)))*.
Proof. Fix a prime 7 | R’(f1, f2). For a root a € F, of 7 define the polyno-
mial
(4.52) Wm(T) = T (T - to)=Pr?r) € Fy[T).

:EE@Q

That the above is indeed a polynomial follows from the assumption, made
in Lemma that Zy N Zy, is finite.
We claim that W (™% (T') belongs to F jace(x [T, and that its pullback

(4.53) W (u, T) € (Fylul/(r))[T]

under the isomorphism from Fg[u]/(7) to F jaes(r) sending u to a, is indepen-
dent of the root a.

To prove the claim, note that the function = + i,(Zy,, Zy,) is constant
on each orbit of the natural action

(4.54) Gal(F,/F,) ~ Ty,

so it is also constant on orbits of the stabilizer of a in Gal(F,/F,), namely
the subgroup

(4.55) Gal(Fy /Fy(a)) = Gal(Fy/F yaesir).

It follows that W (™) (T) is invariant under Gal(F,/ F jace(r) ), hence

(4.56) W(T) € Fyaesn [T]-

We also conclude that for every o € Gal(FF,/F,) we have
(4.57) o (W<m> (T)) _ Wime@) (),

Since the isomorphism from Fy[u]/(7) to F acar sending u to o(a) is
the composition of ¢ with the isomorphism sending u to a, we get that
Wo(ﬂ’a) (u,T) is indeed independent of the chosen root a of m. We denote
this polynomial by Wéﬂ) (u,T), and use the Chinese Remainder Theorem to
define a polynomial

(4.58) Wo(u,T) € (Fylul/(R*(f1, f2))T]

that reduces mod 7 to I/Véﬂ)(u7 T) for every 7 | R’(f1, f2).
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Next we claim that

]Fq — _ iz(Zf 7Zf )
(459) NFq[u]/(Rb(fl,fg))(WO(u’g)) H <g<uz) tﬂ?) ! 2
CCEZflﬂZf2
for any g € Z. By definition of the norm map from Eq. (4.47), we have

Fq .
Nty (. gy Wolus 9)) = l_L Wo(a, g(a)).
a€clFy
R°(f1,f2)(a)=0

(4.60)

By definition of Wy(u,T'), and independence of a, the above equals

(4.61) I II w&“@e@y= T T w™(a).

m|R*(f1,f2) a€Fq m|R*(f1,f2) a€Fq
n(a)=0 7(a)=0
From the definition of W (™) (T") in Eq. (4.52), we get
Fq — — Y2552 55)
(4-62)  Np™/rogy gy (Wo(u:.9)) T (glua) = ta)=Zn 7).
xGZflﬂZfQ

R*(f1,f2)(uz)=0

For every « € Zy, N Zy,, the polynomials fi(usz,T'), fo(ug,T) vanish at

ty. Hence R(f1(uz, T), fa(uz, T)) = 0, so R(f1, f2) vanishes at u,. From the
definition of R*(f1, f2) in Eq. @ we conclude that R’(f1, f2)(uz) = 0, so
Eq. coincides with the right hand side of Eq. (4.59) as required for
our claim.

Finally, we take ¢ € F7 from Lemma that satisfies

63) ¢ ] (9(us) —to)=(ZrnZ0) = Ry y(fi(u, g(w)). fo(u, g(w)))

:EGZfl ﬂZf2

F
and choose ¢ € (Fyu]/(R’(f1, f2)))* such that NF:[UV(Rb(ﬁ’h))(c’) = c.

Define W (u,T) = ¢ Wy(u,T), so that from Eq. (4.59) and Eq. (4.63) we get
]F(I
(4.64) NFq[u}/Rb(fl,fg)(W(u’ 9)) = Rd,d/(fl(ua g(u)), f2(u, g(u))).

Applying x2 to the above, it follows from Eq. (4.48) that

W (u, g) ; _
(02 ) =3 (N g (7 00:90)) = xR (), o)

so Eq. 1} holds. For a,b € F, we have

ordr—yW(a,T) = ordr_,Wy(a,T) = ordT:bWO(ﬂ) (a,T)
= OI‘dT:bWOW’a) (a, T) = OrdT:bW(ﬂ’a) (T) = ’i(a7b)(Zf1, ZfQ)
so Eq. (4.50) holds. O
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4.1.3. Mébius function formula. We set up much of the notation needed to
state, prove, and apply Corollary

Notation 4.11. Keep Notation@ Let k > 1 be an integer, let

(4.65) Zal )T € Fylu, T), ax(u) # 0,

and let ¢1,co € R such that

(4.66) 1 >0, <0, deg(aj(u)) <eci+4ci, 0<i<k.
We introduce the auxiliary function

(4.67) E(c1,co,2) = 2key + kmax{0, ¢y + 2} — k + k?, z €R.

Let F,(u) be an algebraic closure of F(u), and let a1, ..., a € Fy(u) be
such that

(4.68) F(u,T) = akH — ).
We assume that F'is separable as a polynomlal in T namely that the roots
ai, .. .,ap are distinct. Equivalently the derivative 2 3T L of F with respect to
the Varlable T, which we also denote by drF', does not vanish at T' = «; for
any 1 <7 <k.

Set
(4.69) Fy = 0y F +vOorF € Fylu, T, v].

For a polynomial r € Fy[u] we denote its derivative by Vr, and put

(4.70) Fy, = Zb )T € Fylu, T

where

(4.71) bj =Va;j+ (j+1)aj1Vr, 1<j<k-1, by=Va.
Following Eq. , in case Fy, # 0, we further set

(4.72) k' = degp(Fvy), Lry = L(F, Foy) = ged(ag, bir) € Fylul.

Denote by

(4.73) R(F,F,) € Fyu,v], R(F,Fy,) € F4u]

the resultants in the variable T'. By Eq. (4.12) and Eq. (4.69), we have

k
R(F,F,) = a,*" ™ [] Fu(u, )
=1
d F, i
= akegT v H (OuF (u, ;) + vOrF(u, o)) .
=1

(4.74)
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Following Eq. (4.42), define

(4.75) Mp, = R'(F,Fy,) =rad(R(F, Fy,)) =  [[ =
w|R(F,Fy,)

Let Z be an interval in Fy[u] such that for some r € 7 the assumptions
of Proposition are satisfied for fi = F, fo = Fy,, with d’ the least even
integer satisfying Eq. (4.24). We can then fix a polynomial

(4.76) Wi (u, T) € (Fg[u]/(Mp,))[T]

such that for each root a € Fy of Mg, and b € F, we have
(4.77) ordr—yWr(a, T) = i(qp)(ZF, ZFg, ),
and for all g € Z we have

(4.78) x2(Raa (F(u,9), Fyr(u,g))) = (W> '

MF,?"
For a prime 7 | Mfg,, we denote by
(4.79) WEN(T) € (Fy[ul /(m))[T]

the reduction of Wg, mod 7.
For a polynomial f € F,[u] we define its discriminant, following [CCGOS,
(2.3)], to be

(4.80) A =TT0n =™
1<J
where 71, ..., Ydeg(s) are the roots of f in F,. Denoting the leading coefficient

of f by fo, and the degree of f by d, we learn from [CCGO8, (3.3)] that

d(d—1)
(4.81) A(f):(_l) : ]jj;dfl(f’vf).
0

If we want to emphasize that the discriminant is taken with respect to the
variable u, we write A, (f). For instance,

(4.82) Ay(R(F, Fy)) € Fylu]

stands for the discriminant with respect to v of the resultant in the variable
T of the polynomials F' and F,, as above.

The following corollary is the generalization of [SS19, Lemma 3.2] needed
to prove Theorem[1.3] The proof mainly rests on Proposition[4.9]and Pellet’s
formula

(4.83) p(f) = (195D (A(f)), | € Fylu]
as given in |[CCGO8, (2.5)].
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Corollary 4.12. Keep Notation and Notation [{.11. Let T be an F-
adapted interval in Fqlu], and fix r € . Suppose that Zp N Zpg,. is finite.

Then for any s € Fq[u] with deg(s) < dimT(I) we have

(480 p(F(ur+57) = (=) a(-1) T xa(a)’ <W> .

Proof. By Proposition the leading term of F'(u,g(u)) is independent of
g(u) € IE‘ Let au? be this fixed leading term.
By Pellet’s formula above, we have

(4.85) P(F (u,r + 7)) = (=1) Do (A(F (u,r + s7))),

so applying Eq. (4.81), we see that the above equals
d(d—1)

(=1)%2(=1)" 2 xa(a)x2 (Rag—1 (F(u,r + s7), VE(u,r + sP))) .
Using the Leibniz derivative product rule, the chain rule, and the fact that
derivatives of p-th powers vanish, we arrive at

d(d—1)
(4.86)  (—=1)"x2(=1)" 7 x2(a)x2 (Raa—1 (F(u,r + s"), For(u,r + 7)) .
Applying Eq. (4.11), the above becomes
d(d—1) _
(4.87) (—1)dX2(—1) 2 Xg(a)d d X2 (Rd,d’ (F(u,r + sP), Fy,(u,r + Sp)))
with d’ defined in Notation so using Eq. (4.78) we get

(4.88) (1) (~1) T xal@)™ (W(%j Sp)) '

Since d’ is even we have yo(a)* ¢ = y2(a)?, so we arrive at the right hand

side of Eq. (4.84). O

4.2. Tools for applying the Mobius function formula. Here we prove
several claims that help verify the hypotheses of Corollary [4.12] deal with the
cases when these fail, make the application of Corollary [4.12 more effective,
and relate it to the trace function bounds we proved earlier.

4.2.1. Infinite intersection. We show that on special subsets for which the
finite intersection condition in Corollary fails, the Mobius function van-
ishes almost everywhere.

Proposition 4.13. Keep Notation|j.11. Let r € Fy[u] for which Zp N Zp,
is infinite. Then

(4.89) [{s € Folu] : p(F(u,r+ ")) # 0} < k(g —1).

Proof. Since the two zero loci have infinite intersection, it follows from Be-
zout’s Theorem that F' and Fy, share a common irreducible factor P(u,T).

From the chain rule, and the fact that derivatives of pth powers vanish in
characteristic p, we get that

(4.90) Fo,(u,r+s?) = VF(u,r + sP).
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We conclude that both F(u,r 4+ sP) and its derivative VF(u,r + sP) are
divisible by P(u,r + s), hence pu(F(u,r + s¥)) = 0 once P(u,r + sP) ¢ F*.
Because P(u,r + sP) is a polynomial in sP of degree at most k, there are at
most (¢ — 1)k choices of s € Fy(u) for which

(4.91) P(u,r+sP) € F .

The proposition follows since in a field of characteristic p, the map s + sP
is injective. O

4.2.2. Partitioning an interval. In order to prove (a generalized form of)
Theorem we need to control suns of the form > .7 u(F(u,g)). For
the Mobius function formula from Corollary to apply, we need the
leading term of F'(u,g) to be independent of g. Since this is not always
the case, we introduce the following lemma partitioning Z into well-behaved
subintervals. This will allow us to avoid unnecessary monicity conditions
and certain inequalities on degrees as in [SS19, Theorem 4.5].

Lemma 4.14. Keep Notation [{.1] and Notation[{.11. For every interval T
in Fqlu], there exists a collection P of intervals in Fylu] such that

(1) every J € P is contained in T.

for every f € T there exists J € P with f € J;

for every two distinct intervals J,K € P we have J N K = (;

Each J € P, is either F-adapted or has length 1.

for each 0 < j < dim(Z) — 1, we have |{J € P : dim(J) = j}| < kq.

— — — —

(2
(3
(4
(5

Proof. Fix an extension z +— |z| of the norm on Fy[u| to F,(u), and denote
by

(4.92) w(z) = —log, |2|

the associated valuation of z € Fy(u). Note that if 2 € F,[u], then
(4.93) w(z) = — deg(z).

For feZ,if f ¢ {a1,...,ar}, let
(4.94) jf:{zeI:z—f|< min ]f—ai|},

1<i<k
and for f € TN {ai,...,ax} set Jp = {f}. Put
(4.95) P={Js: [T},

and note that (1) and (2) above are satisfied.

To check (3), suppose that J; N J, # 0 for some f,g € Z. Since our
intervals are nonarchimedean, this implies (without loss of generality) that
Jy € Ty, so in particular g € Jf. If g € {ou, ..., a;}, we see from Eq. @)
that g € Jr implies f € {a,...,a}. It follows that len(Jy) = len(Jy) =1
and thus that J; = Jy as required. If g ¢ {a1,...,a;}, then this is also the
case for f, so from Eq. we get that |[g— f| < |f—a4| forall 1 <i < k.
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Our norm is nonarchimedean, so |g — ;| = | f — ;| by the above. It follows
from Eq. @) that dim J, = dim J; so J; = J as required.

To check (4) for some J € P, by definition, it suffices to check that
deg(F'(u,g(u))) is independent of g(u) € Jg,» since deg(F(u,g(u)) can be
negative for only finitely many values of g. Equivalently, by Eq. , we
need to check the independence of w(F'(u,g)) on g € Jg,- For that, pick
an f € I\ {ai,...,ax} with J = Jy. For g € ‘7@ we get as in the above
paragraph that w(g — o;) = w(f — ;) so Eq. implies that

k k
(496)  w(F(u,g)) =w(ar) + Y wlg— ;) =wl(ar) + Y w(f — )
i=1 i=1
is indeed independent of g.

At last we check (5). For that, fix 0 < j < dim(Z) —1, and let f € 7 with
dim(J. f) = j. It follows from our definition of J; that there exists some
1 < < k such that w(f — «;) > —j. Therefore, it suffices to check that for
a given ¢ we have

To establish the above inequality we show that J, (as in Eq. (4.97)) is
determined by the coefficient of u! in g. Let J4, Jy be two intervals from
the set in Eq. (4.97). We have w(g — o;),w(¢’ — «;) > —j, so we get from

Eq. (4.93) that
(4.98) deg(g —g') = —w(g—9g) <
since w is nonarchimedean. Hence, if the coefficient of u/ in g coincides with

the coefficient of u/ in ¢’, we get that deg(g — ¢’) < j — 1 and thus J, = J
since dim(J,) = dim(Jy) = j. O

4.2.3. Sheaf-theoretic setup. We set up some of the notation needed to prove
Theorem [L.3] and to state its ‘trace-twisted’ variant.

Notation 4.15. Keep Notation [4.11] Notation and Notation [2.4, Let
r € Fy[u] be a polynomial for which Zp N Zp,, is finite. Let g € Fy[u] be a
squarefree polynomial, let

(4.99) t: Fylul/(g) = C

be an infinitame trace function, let F; be a sheaf giving rise to the trace
function ¢,, and set

(4.100) gry = lem(g, Mp,).

Fix a prime factor 7 of gp,, let K = Fy[u]/(7), and let x: k* — Q" be the
unique quadratic character. In other words, the character y is the Legendre
symbol mod 7, that is

(4,101 n=(1). rew =@l



72 WILL SAWIN AND MARK SHUSTERMAN

We reduce r mod m, and recall from Notation the map

(4.102) E.: AL = Al E.(x) =17+
Using this map, we define a sheaf on Al by

Ly <Wg}> wtg, ©| Mp,
(4.103) Frrm=Er ¢ Fr wlg, 71 Mg,

L (W) e Fe wlg m| Mg,

and use the shorthand notation ¢z, » for the associated trace function ¢ Frrn-
At last, define the trace function

(4.104) ter =[] trrs
ﬂ‘gF,'r

By Lemma [2.2] and Lemma [2.13(6), this is an infinitame trace function.
For a positive v € R, we set

B(t;y) = [[(r(t=) (1 +7) + c(ta)y)des™
g
so in particular we have
B(tFﬂ"; 'Y) = H (T(tpﬂnﬂr)(l + 'Y) + C(tF,rJr)’)’)deg(ﬂ-).
7T|gF,r

In the proof of Theorem and its variants, we will be tasked with

applying Corollary to gr, and tp,. In order to make Corollary
a useful bound, we need to have some control on the rank and conductor.

The notation B(t;~) will help with keeping track of an upper bound for the
coefficient of the polynomial of Corollary [3.14 given as a product.

4.2.4. Bounding rank and conductor. In order to control |Mp,| and |gF|,

we recall from Eq. (4.75) that [Mp,| is bounded by |R(F, Fy,)|, so it suffices
to control the latter. The following is the variant of [SS19, (4.24)] needed
here.

Proposition 4.16. Keep Notation|4.11. For r € Fy[u] we have
(4.105) deg(R(F, Fy,)) < E(c1,ca,deg(r)).
Proof. The quasi-homogeneity of the resultant from |[GKZO08| p. 399, (1.6)],

and Sylvester’s formula as given in [GKZ08, p. 400, (1.12)], imply that
R(F, Fy,) is a linear combination (over Fy) of subproducts of

(4.106) a;, (u) ... a; (Wbj, (W) ... b (w), i1+ +ig+ 1+ + e = k%
By Eq. , we have the bound
deg(b;) < max{deg(a;) — 1,deg(r) + deg(a;+1) — 1}
(4.107) <max{ci — 1+ coi,deg(r) —1+c1 +c2(i + 1)}
= max{0,cy + deg(r)} +c1 — 1 + cai
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for the degrees of the coefficients of Fy,. As a result we get that

deg(R(F, Fivr)) < “max _deg(aj, ...a;bj, ... bj)
i1 L=k
(4.108) k
= max deg(a;,) + deg(bj,)) .
i1+---+ik+j1+---+jk=k2;( glair) &(bse))

Using Eq. (4.66) and Eq. (4.107) we see that the above is at most

k
(4.109) 2kcy+kmax{0, co+deg(r)} —k+ S max Z@(ig +7¢)
i1 i1 =k?
which evaluates to
(4.110) 2key + kmax{0, co + deg(r)} — k + cok?.
By the notation in Eq. , the above equals F(cq, ca,deg(r)). O

Proposition 4.17. Keep Notation[{.15. For any positive v € R we have
B(tF,TS fy) < (1 + 2,.}/)E(c1,cz,deg(r))B(t; 7)'

Proof. Let 7 be a prime dividing gr,. In case w divides g and does not divide
Mp,, from the definition of Fp, » in Eq. (4.103))(2), and the invariance of
rank and conductor in Proposition (4)7 we get

r(Frrn)(1+7) + (Frre)y = (B Fr) (L4 7) + c(Ef Fr )y
=r(Fr)(1+7) + c(Fr)y-

In case 7 divides both g and Mp,, from Eq. (4.103))(3), Proposition (4),
and Lemma [2.13(5) we get

(4.112)
r(Free) =1 (B (£ (W) @ Fr) ) =1 (L (W) @ Fr ) = x(Fa).
Similarly, by Eq. (4.103))(3), Proposition[2.5(4), Lemma[2.13(6), and Lemma/[2.2{6),

we have
(4.113)

(Frrm) = (Br (£ (W) 2 Fr)) = (£ (W) @ F2)
< o(Fa) e (Lo (W) ) 1(Fn) < o(Fe) + deg (WD) ) v(F).

(4.111)

Let a € F, be a root of 7. From the definition of Wl(;? after Eq. (4.79),
the information on multiplicities in Eq. (4.77), and Lemma |4.4| we obtain

(4.114)
deg (W}T}) = deg(Wr,(a,T)) = Y ordr—y Wi, (a, T)
beF,

= Y ir(Zp, Zry,) < ordu—e R(F, Fy,) = vr(R(F, Fy,))

reEZR mZFVr
uz=a
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where v is the m-adic valuation on Fg[u]. From Eq. (4.113) and Eq. (4.114))
we conclude that
(4.115) (Frrqx) < co(Fr) + vr(R(F, Fy,))r(Fr).

Combining Eq. (4.112f) with Eq. (4.115)), and using Bernoulli’s inequality,
we get
(4.116)
r(Frra)(14+7) + c(Frea)y S v(Fr)(1+7) + c(Fr)y + o (R(F, For))r(Fr)y

)

<
< (14 v (R(F, Fyr))v)(x(Fr) (L +7) + (Fr)y)
< (14 ) EEE) (0 (F) (14 7) + o Fr 7).

In case m divides M, and does not divide g, by Eq. m , Proposi-
tion [2.5(4), and Lemma [2.2{6) we have

(4.117) r(Frra) = H(EL (W) = r(Ly (W) = 1.
Similarly, from Eq. (4.103))(1), Proposition[2.5(4), Lemma[2.2(6), and Eq. (4.114)
we get

(Frr) —c(E*E (W()))
=c (EX (W}WT))) < deg (Wf;?) < v (R(F, Fy,)).

Since 7 divides M., it follows from the definition of the latter in Eq. (4.75)
that 7 divides R(F, Fy,), or equivalently v, (R(F, Fy,)) > 1. Therefore,
from Eq. (4.117)), Eq. (4.118)), and Bernoulli’s inequality we have
(4.119)
r(}—F,rﬂr)(l + '7) + C(fF,r,Tr)'V <1l+ v+ UTI'(R(F7 FVT))’V

At last, combmlng Definition u 1.4 Eq. ( m, Eq m, Eq. ( m,

and Propos1t10n we get
B(tF,r; ’Y) = H (r(fF,r,Tr)(l + ’7) + C(IF,T,W)V)deg(W)

Tr‘gF,’l’

= I CFrrm) (@ +9) + c(Frrm)n) ™ T @ (Frm) (1 +7) + e(Frpm)y) ™

w|Mp,, 7|g
g

< B(t;7) H (1 4 2)des(mvr(R(F For)) H(l + 2)des(mvn (R(F For))

7| Mp . g
g

= B(t;v) H (1 +2,Y)deg(7r)v7r(R(F,FvT)) = B(t;7)(1 _‘_27)277\1%1,)7, deg(m)vr (R(F,Fy,))
| MFp,»
= B(t;7)(1 + 29) 1) < Bt )(1 + 2y) Pleneadeslr)),

(4.118)
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4.2.5. Finding a good prime. Our goal here is to give a sufficient condition
for the existence of a prime 7 as in Corollary [3.14 for the trace function tp,
from Notation [4.15]

Proposition 4.18. Keep Notation|{.11. Suppose that a € IETq 18 not a root
of the polynomial

(4.120) AW(R(F, F,))

introduced in Eq. (4.82). Then for any r € Fylu] for which Zp N Zpg, is
finite, there exists at most one b € F, such that (a,b) € Zp N Zp,.

Proof. Suppose toward a contradiction that there exist distinct by, by € Fy

with (a,b1), (a,b2) € ZrNZp,, and let m € Fy[u] be the minimal polynomial

of a over F,. We will arrive at a contradiction to a not being a root of

Ay (R(F, F,)) by showing that 7 divides A, (R(F, F})) in the ring Fy[u].
Denote by vg the residue class of Vr in Fy[u]/(7). To check that

(4.121) Ay(R(F,F,)) =0 mod T,
it suffices to prove that

(4.122) ordy—y, (R(F, F,) mod m) > 2.
By Eq. , we have

k
(4.123) R(F, Fy) = ap® ™ T (0uF (u, 01) + vOrF (u, ).
i=1
Suppose first that degy(Fy,) = 0. Then
(4.124) degr(Fy, mod m) < degy(Fy,) < degr(Fy) =0,

and since m(a) = 0, the polynomial Fy, mod 7 has a zero, so it is the zero
polynomial. It follows from finiteness of Zp N Zp,, that F' mod 7 is not
zero, and since m(a) = 0, we conclude that F' mod 7 has at least two zeros
SO

(4.125) k = degp(F) > degyp(F mod ) > 2.

Our assumption that F), is constant as a polynomial in 7', the separability
of F which implies that deg,(F,) = 1, and the fact that k& > 2 established
above, imply that
(4.126) Au(R(F.F)) = A,(FE) =0
so Eq. holds in this case.

Suppose now that degs(F,) > 1. We see from Eq. that if 7 | ay,
then Eq. is satisfied, so we assume from now on that 7 { ax. Since the
«; are roots of a polynomial with leading coefficient not divisible by 7, we
can reduce Eq. mod a prime of (the ring of F,[u]-integral elements
of) Fy(u) lying over m. Since w(a) = 0, it follows that after the reduction,
at least two of the factors on the right hand side of Eq. vanish at
v = vg. Hence, Eq. holds. O
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The following is the generalization of [SS19, Remark 3.3] needed here.

Proposition 4.19. Keep Notation |4.15. Suppose that R(F, Fy,) is not
of the form A%B for any A € F,lu] and any B € Fyu] that divides the
polynomial

(4.127) g-ap - Ay(R(F, Fy)) € Fylul.

Then there ezists a prime 7 € Fylu] dividing gr, such that tg, » is a Dirich-
let trace function.

Proof. Our assumption on R(F, Fy,) is equivalent to the existence of a prime
m not dividing the polynomial in Eq. such that v, (R(F, Fy,)) is odd.
Since the latter valuation is nonzero, our prime 7 divides R(F, Fy,), so by
the definition in Eq. , m divides MF,. We conclude from the definition

of gr, in Eq. (4.100), and from Eq. (4.127), that 7 divides gr, and does
not divide g. By Eq. (4.103))(1) we have

(4.128) Frns = EiLy (W)

In order to show that the associated trace function ¢,  is a Dirichlet
trace function, by the permanence property in Proposition [2.5(6), it suffices
to show that the function

(1129) 1 ) @) =x (WE@), @ € Folul/(7),

is a Dirichlet trace function. Recall from Eq. (4.101) that the character x
is quadratic, so by the definition in Eq. (1.21)) it is enough to show that

qu) is an odd power of a monic linear polynomial, up to a constant from

(Fq[u]/(m))*. In other words, we want to show that Wg? vanishes at no

more than one point in F,[u]/(7), and its order of vanishing there is odd.

Fix a root a € F, of m. We are tasked with showing that W, (a,T) has
a unique zero in E, and the multiplicity of this zero is odd. Since m does
not divide the polynomial in Eq. , it does not divide A,(R(F, F,)),
so Ay(R(F, Fy))(a) # 0. The desired uniqueness of the zero of Wg,(a,T)
follows from Eq. (4.77) and Proposition m From Eq. we moreover
conclude that the order of vanishing of Wg,(a,T') at its unique vanishing
point is
(4.130) > w2, Zrg,).

beF,
Since 7 does not divide the polynomial in Eq. , it does not divide

the leading coefficient of F'. In other words, the leading coefficient of F' does
not vanish at a, so by Lemma [4.4] the sum above equals

(4.131) ordy—q R(F, Fy,).

This order of vanishing equals v, (R(F, Fy,)) which is odd by assumption.
O
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Proposition is not useful in case A, (R(F, F,)) = 0. The next propo-
sition characterizes the cases in which this vanishing occurs. The condition
that arises is our generalization of the ‘distinct derivatives’ assumption in
[SS19, Proposition 4.3].

Proposition 4.20. Keep Notation|4.11. In Fy(u) we have

OuF OuF
OrF orF

if and only if Ay(R(F, F,)) is not the zero polynomial.

(4.132)

(u7 ai) 7é

(u,a), 1<i<j<k,

Proof. Our discriminant is nonzero if and only if R(F, F,) does not have a
(4.74)

double root in Fy(u) as a polynomial in v. By Eq. , we have

k
(4.133) R(F, F,) = ap® ™ T (0uF (u, 01) + vOrF (u, o))

i=1

so the nonexistence of a double root among the k roots

ouF .
(4.134) v = —8;‘17(%%), 1<i<k,
of R(F, F,) in Fy(u) is equivalent to our assumption in Eq. (4.132). O

Using Proposition 4.20] we show in the next proposition that we can
always arrive at a situation where A,(R(F, F,)) # 0 by performing a linear
change of variable. This is our generalization of the main argument in the
proof of [SS19, Theorem 4.5].

Proposition 4.21. Keep Notation [{.11. There exists a monic polynomial
P(u) € Fylu] with |P(u)| < q(g) such that for all c(u) € Fq[u], the polynomial

(4.135) G(u,T) = F(u, P(u)T + c¢(u))

is separable in T and satisfies

(4.136) A, (R(G,Gy)) # 0.

Proof. In view of Eq. (4.68), for any choice of a monic P(u) € Fglu] we have

(4.137) G (u O‘P_(;g“)> —0, 1<i<Ek,

so these are all the roots of G in Fy(u) since degy(G) = degp(F) = k. By
Proposition [4.20] it suffices to choose P(u) in such a way that

(4.138) g;fg <u i = (ng“) > v g;g <u & ];(5;“)) L 1<i<j<k
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Using the chain rule, we get

0.G [ a—c(u)) OuF(u,0i) + 58 TP OpF(u, ;) + Ve - 0rF (u, o)
0rG (“ P(u) > - P(w)0rF(u, o)
 OuF(u, ) (o; — c(u))VP Ve
P(u)0rF (u, o) P(u)? P(u)

Hence, Eq. holds unless for some 1 <1 < j < k we have
O F a; —c(w)VP 9, F a; —c(u))VP

BF CECOIL LI RO
Since a; — aj # 0 by separability, the above is equivalent to

VP . g;fﬁ (’LL, aj) - g;? (U,Oéi)

P(u) ; —
so Eq. (4.138) holds if (and only if)

VP

P(u)

(4.139) (u, ;) +

(4.140)

(4.141)

does not belong to a specific set of at most (g) elements of F,(u).
The ‘logarithmic derivation’” map

VP
sends monic polynomials P, Q) to the same rational function if and only if
their quotient g is a p-th power in Fy(u). In particular, the restriction of
the logarithmic derivation map to monic squarefree polynomials is injective.
By |[Ros02, Proposition 2.3], and the formula for the sum of a geometric
progression, the number of such polynomials of degree at most d exceeds ¢,

so we need that ¢¢ > (g) We thus take

(4.143) d= [logq (’;ﬂ < log, (;) +1

so we can choose P satisfying Eq. (4.138) with |P| < ¢? < q(g) O

In order to bound the number of possible B in Proposition |4.19, we bound
the degree of the polynomial A,(R(F, Fy)).

Proposition 4.22. Keep Notation[{.11. Then
(4.144) deg(Ay(R(F, Fy))) < 4k(k — 1)(c1 + kmax{cz,0}).

Proof. Since degp(F'),degyr(Fy) < k, it follows from Sylvester’s formula as
given in [GKZO08| p. 400, (1.12)] that R(F, F,) is a linear combination (over
[F,) of products of at most k coefficients of F' and at most k coefficients of
F,. By Eq. , the degree of every coefficient a; of F'is at most

(4.145) c1 + c2t < ¢ + kmax{cy, 0}
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thus the degree in u of (every coefficient of ) F,, is also bounded by the right
hand side of Eq. (4.145). We conclude that

(4.146) deg,(R(F, F,)) < 2k(c1 + kmax{cg,0}).
Since F' is separable in T', it follows from Eq. (4.74) that
(4.147) deg,(R(F, Fy,))) = k.

We then infer from [GKZO08, p. 404] that A,(R(F,F,)) is a linear combi-
nation (over Fy) of products of 2(k — 1) coefficients of R(F, F,). Using the
bound on the degree of a coefficient from Eq. (4.146)), we get that

(4.148) deg(Ay(R(F, Fy))) < 2(k—1) - 2k(c1 + kmax{c,0})
and the right hand side above matches the right hand side of Eq. (4.144)),
which gives the desired result. ([

Now that we have control over the number of possible B, we need to
know how often R(F, Fy,) = A%B for a particular B. For that, we have the
following lemma which is a consequence of Cohen’s quantitative Hilbert’s ir-
reducibility theorem as stated in [Coh81, Theorem 2.3]. We refer to [BSE21]
of Bary-Soroker—Entin extending Cohen’s work to function fields.

Lemma 4.23. Let H(u,v) € Fyu][v] be a polynomial which is not a perfect

square in Fy(u)[v], and let B € Fy[u]. Then for X > max{deg, (H),deg(B)}*
we have

(4.149) {g € Fylu] : lg| < X, H(u,g(u)) = B-0} < vVXlog X

as X — oo, with the implied constant depending only on deg,(H). Here the
symbol O stands for the square of a polynomial in Fqlu].

The lemma above is the generalization of [SS19, Proposition 4.2] needed
here. A proof can also be obtained by a standard sieve theoretic argument,
as in Heath-Brown’s square sieve for example. More specifically, we need
the following corollary.

Corollary 4.24. Keep Notation[{.1, Notation[{.11, and suppose that

(4.150) Ay (R(F, F,)) #0.

Let B € Fyul], and let T be an interval in Fy[u] with

(4.151) len(Z) > max{FE(ci, ¢z, deg(T)), deg(ak B)}*.

Take R C T such that for every f € I there exists a unique r € R with
(4.152) Vf=Vr

Then as len(Z) — oo we have

(4.153) {r € R: R(F, Fy,) = B -0} < v/len(Z) loglen(Z)

with the implied constant depending only on k.
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Proof. Fix f € Z, and note that
{r € R: R(F.Fe,) = B-00}| = [{g € Fy[u] : |g| <len(Z), R(F,Fosiv,) =B -0}
< l{g € Fyful : gl < len(Z), R(F, Fypyg) = B-0}].

Put j = degr (Fy4v). By Eq. (4.10), the above is at most

i
{9 € Fylu] : lg] <len(Z), Ri;(F, Fysyg) = aiB-0}
=0

so setting
(4.154) H(u,v) = Ry, j(F, Fyf1),
and noting that j < k, we get the bound

k
(4.155) > g € Fylul : |g| <len(Z), H(u,g) = ajB - O}|.
i=0

Therefore, in order to conclude by applying Lemma [4.23] one thing we
need to check is that len(Z) > max{deg, (H),deg(a¥B)}*. By our assump-
tion in Eq. (4.151)), this amounts to showing that

(4.156) deg,(H) < E(cy,c2,deg(Z)).
We claim that there exists A € IETq for which
(4.157) deg, (H) = deg R(F, Fy(f4xu))-

Since F' is separable, the coefficient of the highest power of u in H(u,v) is
a nonzero polynomial P € Fy[v], and the coefficient of the highest power of

T in Fy 4, is a nonzero polynomial @ € Fy[u,v]. Hence, there exists A € F,
such that P(\) # 0 and Q(u, A) # 0. It follows that

deg, (H(u,v)) = deg(H (u, \)) = deg(Ry. ;(F, Fysi)) = deg R(F, Fy (1))

so our claim from Eq. (4.157)) is established. From Proposition Nota-
tion and the fact that len(Z) > 1, we get that

(4.158)  deg(R(F, Fy(s1au)) < Elc1, ca,deg(f + ) < E(er, ¢z, deg(T))

so the two equations above imply Eq. (4.156)).
The other thing we need to check is that Ry, ;(F, Fys4,) is not a perfect

square in F,(u)[v]. For that we use Eq. (4.74) to write

k
Ry j(F, Fysy,) = al, H (OuF(u, ) + (Vf +v) OrF (u, o)) .
=1

Viewed as a polynomial in v, the roots in F,(u) of the polynomial above are

O F

(u,0) = Vf, 1<i<k.
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Since A, (R(F, F,)) # 0 by assumption, it follows from Proposition
that the roots above are pairwise distinct, so Ry, ;j(F, Fyf4) is not a square

of a polynomial in v over Fy(u). O

5. TRACE FUNCTIONS VS MOBIUS FUNCTION

This section is devoted to proving Theorem [1.3| and its twisted variants.
The most general form is the following theorem. We give an essentially
self-contained statement, recalling some of Notation and Notation |4.15.

Theorem 5.1. Fiz an odd prime p, a power q of p, and a positive integer
k. Let 0 <~v <1 and

1 lo
(5.1) 0<a<—+-57 _ plog (1+27)
2p 7
be real numbers, and set § = (1 + 2v)*. Take a separable polynomial
k
(5.2) F(u,T) =Y ai(u)T’ € Fylu,T)
i=0

of degree k in T. Pick c1,co € R with ¢y > 0 > co such that
(5.3) deg(ai(u)) <ci+e2i, 0<i<k.

Let g € Fy[u] be a squarefree polynomial, let t be an infinitame g-periodic
trace function, and let T be an interval in Fylu] as in Notation . Then

(5.4)
D u(F(u, L) <

fez
m(D)(1~0) g2er+(k+1)e2 (ﬂ—cg—dim(I) i /3deg(I)—dim(I)> H(r(tﬁ)(l +7) + c(tg)y)des™
g

as dim(Z) — oo, with the implied constant depending only on q,k, o, 7.

The trivial bound here is ¢@™(®) [Ty 7(tr), where q™@) = len(Z) is the
length of the sum and Hﬂgr(tﬂ) is a bound for each term. If we think
of c1,c9,t, and deg(Z) — dim(Z) as fixed, then the bound in the theorem
describes a power savings of «, with the other terms describing the quality
of the uniformity in F,t and Z. Our proof builds on the strategy of proving
[SS19, Proposition 4.3]. The statement could be simplified by restricting to
the case co = 0, in which case ¢; would be deg,(F), but this would lead
some of our later results, including Bateman-Horn, to be valid for larger
values of ¢ only.

Proof. We first reduce to the case of a polynomial F' with
(5.5) Ay(R(F, Fy)) # 0.
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By Proposition there exists a (nonzero) polynomial P € F,u] with
|P| < 1 such that for every ¢ € Fyu] with deg(c) < deg(P) the polynomial
G(u,T) = F(u, PT + c) is separable in T, and satisfies

(5.6) Ay(R(G,Gy)) # 0.

Define the intervals

(5.7) I. = {f; ‘. f€Z, f=cmod P}, c € Fylu], deg(c) < deg(P),

and note that

YouF, = D > wlGuh)t(Ph+c)

fex c€Fy[u] h€eZ.

(58) deg(c)<deg(P)

< |P|

> w(Gu, h))t(Ph+ c)

heJ

where J = Z. for some ¢ as above (for which the maximum is achieved). In
view of Proposition the change of the trace function increases neither
r(tz) nor c(t;), and the change of the polynomial F' can be handled by
increasing ¢ by kdeg(P). The overall loss in the change of variable T' —
PT + ¢ is therefore a factor of O(1), so we can assume throughout that
Eq. is satisfied.

By Lemma there exists a partition P of 7 into subintervals 7 which
are F-adapted (except possibly for those of dimension 0) and the number of
J € P of any given dimension is O(1). As a result, for

(5.9) § = 4log, max{F(c1, ca,deg(Z)), deg(g - af™t AL (R(F,F,)))}

we have

(5.10)
D ulF(u, M) =D D> wlF(u, )
Jez JEP feg

= > Do uFu M) +0 | ¢ []rite)
JEP  feJ 7lg
dim(J)2¢
We will check later (around Eq. (5.37)) that the contribution of the error
term O(q* [1:,7(tx)) in Eq. is indeed dominated by our final bound
from Eq. . Similarly, we will defer a few other elementary computations
comparing two different bounds until we have completed the more funda-
mental work of splitting the sum into different ranges and explaining the
bound we will use for each range.
Fix an interval J € P with dim(J) > &, and set n = din;(‘y). Pick a
subset R C J in a way that for every f € J there exists a unique r € R
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and a unique s € F,[u] with deg(s) < n such that f =+ sP. We can then
write

(5.11) DonF, ) =D Y w(F(ur + s))i(r + 57).

feg r€R s€Fq[u]
deg(s)<n

Our choice of R is such that for each f € J there is a unique r € R with
(5.12) Vf=Vr

Fix r € R, and suppose first that Zp N Zpg, is infinite. Then from
Proposition we get that

(5.13) > wlFu,r + M)+ s7) < [ rte)
s€F[u] mlg
deg(s)<n
Therefore, the contribution of such r to Eq. m is
(5.14) < R Hr < gm0 ») Hr
g g

We will check later (around Eq. (5.25)) that the contribution of Eq. (5.14)
to Eq. (5.10) is bounded by Eq. (5.4
From now on we assume that Zr N Zpg, is finite, so that we can use

Notation [.15] By Corollary we have

ST uF@ur+ N+ ) < |y <W) t(r + sP)|.

MF,T
s€F [u] s€F [u]
deg(s)<n deg(s)<n

By definition of the Jacobi symbol, and the definition of a trace function in
Eq. (1.24), the above equals

(5.15) > 11 Ht (r + sP).

s€Fq[u] ©|Mp, '|g
deg(s)<n

Using Proposition 2.5(5) and Lemma [2.2(1) we can rewrite the above as

(5.16) Z H Bec W(7r) HtE*]-‘,

s€Fq[u] 7|MF,, w'|g
deg(s)<n

With Lemma 1), the notation of Eq. (4.103)), and Eq. (4.104)) we arrive
at

(5.17) ST trees) = D trels).

s€Fq[u] 7lgp,r s€Fq[u]
deg(s)<n deg(s)<n

Wl(fr) (r + P
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For all those r € R for which tf, » is not a Dirichlet trace function for
any 7 | gr,, we bound the sum above trivially. Since Zr N Zp, is finite,
Proposition tells us that for every such r there exist A, B € F,[u] such
that

(5.18) R(F,Fy,) = A’B, B|g-ap-A,(R(F,F)).

Let us now check that Corollary applies here.
First, recall that we have A, (R(F, F,)) # 0. Second, we use Notation [4.1]

Eq. (5.9), and Eq. (5.18) to get that that
len(7) = qdim(J) > qg = max{E(c1, c3,deg(Z)), deg(a],g g ap - Ay(R(F, Fv)))}4
> max{E(cy, cz, deg(J)), deg(aj B) }*.

This verifies the assumption made in Eq. (4.151]), so we can indeed invoke

Corollary

It follows from Corollary applied to each B in Eq. , and the
function field version of the divisor bound in [IK04, Eq. (1.81)] that the
number of » € R for which ¢z, » is not a Dirichlet trace function for any

™ | gF,r is

(5.19) < len(J)27 g - ay, - Ay(R(F, F,))|°

for any € > 0. Now we use Proposition [4.22] and conclude that the contri-

bution of these r to Eq. (5.17) is

(5:20) < len(J)2*|g|" - |ay|* - g' k- DertkmaxdetDin T gy, o).
71—‘gF,'r

For all those r € R for which there exists a prime 7 dividing gr, such
that tg, » is a Dirichlet trace function, we bound the sum on the right hand

side of Eq. (5.17)) by invoking Corollary |3.14 and get

S tres) < a3 | [ rltrra) A+ 2) + cltpre) Z)* T | [27].

SGIFQ['U“} 7T|gF,T
deg(s)<n

As the coefficients of powers of Z in the polynomial above are nonnegative,
for any v > 0 the coeflicient of Z" is at most
(5.21)

2y | I Ctres) @ +79) + cltrra)n) ™ | = ¢2y " B(tpr;v)

ﬂ'IgF,r
which, by Proposition is bounded from above by
(5.22) q%f}/*n(l 4 QV)E(Cl,C%deg(T))B(t; 7).

Using the definition of E in Eq. (4.67), and the inequalities
(5.23) deg(r) < deg(J) < deg(Z),
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we see that Eq. (5.22) is at most
no _ _ 2
g2y n(l + 2,7)2kc1+kmax{O,cg—&-deg(I)} k+cok B(t;’}/).

We can ignore the factor (1 4 2v)7* as it is at most 1. Summing trivially
over R in Eq. (5.11), the above is multiplied by |R| < ¢@#™(7)=" 5o recalling
that n = W, we obtain

(524) qdim(J) (1—%)77 dim;J) (1 + 2,}/)2kc1+kmax{0,02+deg(I)}+czk2B(t; "Y)

This is the main contribution to the error term and responsible for the
form of Eq. (5.4). All other contributions (we shall soon see), are secondary,
and our estimates for them can be somewhat wasteful.

We are now ready to show that each of the four contributions Eq. ,

Eq. (5.20), Eq. (5.24), and the error term in Eq. (5.10), are each bounded
by the right side of Eq. (5.4), proving Eq. (5.4)).

First, we show that the contribution of those r for which Zp N Zp,. is

. 1
infinite, bounded in Eq. (5.14) by ¢ [L:),7(tx) for each interval
K € P, is dominated by Eq. (5.4).
. 1

Summing qdlm(J) (1=3) 11 xlg r(tz) over the intervals J that partition Z, we

get a contribution of

(5.25) < ¢ DO T r(t)-

wlg

Using our assumption that 0 < v < 1, we get that

1 log,~ 1 1
5.26 a< —+ —2 _Eklog,(1+2y)< — <=
(5.26) 2 p ol ) 2p " p
and that 8 = (1 + 27)* > 1. From Notation we recall that deg(Z) is at
least dim(Z), and from Eq. (5.3) we deduce that

(5.27) 2c1+ (k+1)ca = (c1 + ¢2) + (c1 + kea) > deg(ar) + deg(ax) > 0.

It is now visible that the quantity in Eq. (5.25) is smaller than the right
hand side of Eq. ((5.4).
We next handle the terms described in Eq. (5.20) and Eq. (5.24), by

first checking that the contribution from Eq. (5.20) is smaller than that of

Eq. (5.24), and then bounding Eq. (5.24). For the first step, observe that
Eq. :5.24 is at least

(5.28) ") (1 gy sersassDItent® T (r(t)(1 4 7))
g

since conductors are nonnegative, and v < 1. As g is squarefree, its degree
is the sum of the degrees of its prime factors, so the above is at least

qdim(J)(l—%) 1+ 27)2kc1+(k—%) deg(I)—i—czk(k—i-l)(l 1 y)ee(@) H (£, B

mlg
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Since deg(m) > 1 and n = dimffj)

, the above is at least
1 dlm J)+n HT ) < dlm(J)(%) (1 4 2’Y)2k61+(k_%) deg(I)+02k(k+1)(1 i ’)/)deg(g)> .

mlg

By Eq. (4.103), Lemma [2.2(6), Lemma [2.13(5), and Proposition [2.5(4)

for primes 7 dividing gz, but not dividing g, we have r(tz, ) = 1, and for
primes 7 | g we have r(tg, ) = 7(tx). Therefore, Eq. (5.20) equals

(529) q? 1 dim(J)+n H r(t <len )|g| ’CL ’q4k (k=1)(c1+k max{cz,O})>
7lg

so it suffices to show that
(len(7)lglaplq - Derthma{es 0D )" < il (557) (1) 2t (k=5) dea@tesk(b1) 1 | dea(a)

By assumption, v > 0 and p > 3, so by taking logarithms to base ¢, we
see that the above reduces to

dim(J) + deg(g) + deg(ax) + 4k(k — 1)(c1 + kmax{c2,0}) <«

(5.30) okey + <k _ ;) deg(Z) + cak(k + 1) + deg(g).

By Notation and Eq. we have
(5.31) dim(J) < dim(Z) < deg(Z), deg(ar) < c1 + 2k
so Eq. would follow once we check that
(5.32) c1 + kea + 4k(k — 1)(e1 + kmax{cg,0}) < 2key + k(k + 1)co
If £ = 1 the above is obvious. Otherwise, because
c1 >0, ci+kea > degag >0, 2ker+k(k+1)ca = (k+1)(c1+kea)+(k—1)cy,

we have

2key + k(k‘ + 1)02’ 0<e < 2kecy + k‘(k’ + 1)027
E+1 k—1

so any linear combination of ¢; and ¢y is O(2key + k(k + 1)cz2), which estab-
lishes Eq. and thus concludes the argument that Eq. (5.20) is smaller
than Eq. ((5.24).

Since Eq. is exponential in dim(7), and there are O(1) intervals J
of any given dimension in our partition of Z, summing Eq. (5.24) over the
intervals J that make up Z, we get a bound for the sum in Eq. of

qdim(Z)(l *),y dim(7)

2p

(5.33) 0<cp+key <

(5.34)

because the highest possible value of dim(7) is dim(J) = dim(Z).
After exponentiating, the second inequality in Eq. (5.1)) translates to

(1 + 2,}/)2kc1+k max{0,c2+deg(T) }+cak? B(t; ,Y)

(5.35) ¢ < qryr(L+2y)7F
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so multiplying both sides by g and rearranging we get

1-+ -1 11— —k
(5.36) qg Py r<qg *(1+27)
Raising to power dim(Z) gives

im _ 1) _ dim(2) . B o .
qd (Z)<1 2p>7 p < qdlm(Z)(l a)(1+2,}/) kdim(Z) _ qdlm( )(1— a)(1+2,y) k(co+dim(T))+c2k

which implies that Eq. (5.34) is
< qdim(Z)(lfa)(l + 2,}/)2kcl+k max{fcg7dim(I),deg(Z)7dim(I)}+czk(k+1)B(t; ,}/)
Recalling that 8 = (1 + 2v)*, and bounding the maximum of powers of 3

by their sum, we arrive at Eq. (5.4]).
All that remains is to control the error term in Eq. (5.10), which is

(5.37)  max{FE(c1,ce,deg(Z)),deg(g - akﬂ Ay( (F,Fv)))}4Hr(t,r).
g
For every € > 0 we have
deg(g - ap - A N L r(tn) < lgllar| | Au(R(E, E))I [ r(te)
mlg g

so by Proposition [4.22] the above is bounded by Eq. (5.29). We have seen
that the latter is bounded by Eq. (5.24) which led us to Eq. (5.4)), so this

term is controlled.
By the definition of F in Eq. (4.67) m we have

(5.38) E(ci,co,deg(Z H ) < q“Zertmax{0.cotdeg(I)}+ezk) Hr(t”)
7lg 7lg
for every € > 0. In case the maximum is attained at 0, we have
(5.39) 2 +dim(Z) < ca+deg(Z) <0
so by Eq. , the right hand side of Eq. m 5.38) is
¢ 2ert (k1)) —ecy Hr(tw) — ¢ dm(@) ge(2er+(kt1)e) pe(—co—dim(Z)) Hr
7lg 7lg
« q(1=0) dim(Z) g2e1+(k+1)ez g—eo—dim(T) H r(ty)
7lg
which is bounded by Eq. (5.4).
If the maximum in Eq. (5.38) is attained at co + deg(Z), then the right
hand side of Eq. is
¢ (D) ge(2er-+ea(k+1) ye(deg(T)~dim(T)) H r(ty) <

(5.40) . o
q(lfa) dlm(I)lB2C1+02(k+1)ﬁdeg(I)fd1m(I) H T’(tﬂ)
7lg

again bounded by Eq. (5.4]). O
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Corollary 5.2. Let p be an odd prime, let k be a positive integer, and let
(5.41) q > 4e*k*p?

be a power of p. Take a nonnegative integer n, a scalar A € Fy, and define
the interval

(5.42) T = {fou" + faru" ™+ + fou® € Fylu] : fr = A}

Then for a separable polynomial F(T') € Fy[u][T] with degr(F) = k, and an
infinitame trace function t to a squarefree modulus g € Fy[u] we have

1, logg(2ekp . deg ()
S utri) < "0 H I (v (1450 ) + )

2k 2k
fez mlg p p

as n — 0o, with the implied constant depending only on q and F'.

Proof. We invoke Theorem with

1 1 log,(2¢ekp)
o g = ea sl
2kp’ 2p P ’

and note that the positivity of « follows from Eq. (5.41) by taking logarithms
and dividing by 2p. Moreover we have

(5.43) v = c1 =deg,(F), c2=0,

log (1 + i)kp
i + logq(r}/) N logq(e) < i + logq(’y) _ q kp

(5.44) 2p p P 2p P P
1 log,(v)
=—+ 27 _klog, (1+2
% + » og, (14 2v)

so the assumptions on v and « in Theorem hold. The result follows by
absorbing into the implied constant all the factors in Eq. (5.4) that depend
only on ¢, F', and checking that dim(Z) = n = deg(Z). O

Now we deduce Theorem [1.3l
Proof of Theorem[1.5. We invoke Corollary [5.2] with

(5.45) n=log,(X)|+1, A=0, g=1, t=1,
and since ¢ > 4e?k%p?, get that
log, (2ekp)
(5.46) S () < XTEE T = o(X)
JEFq[y]
If1<X
as required. O

We similarly deduce Theorem [1.13]

Proof of Theorem[1.15. We invoke Corollary with
(5.47) k=1, X=1, FuT)=T, g=m,
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and get that

> uHuf) < M| (T(t) <1 + 1) N c(t)>deg<w>

fEMn

log, (2ep) t)
_ ]Mn\lfiJr osq (2cr ‘ﬂ_’logq<r(t)(1+ﬁ)+027)'

We will need the following consequence of Theorem in the proof of
Theorem [1.21

Corollary 5.3. Keep Notation[2.16 and Notation[{.1l Fiz an odd prime p,
and a power q of p. Let 0 < v <1 and « be real numbers satisfying
(5.48)

.1 log, v
O<a<mln{2—1010gq(1—|—2fy)—|—logq(1+37) 087

1
,%—i- —210gq(1+2'y)}.
Set B = (1+2v)2.

Let n be a nonnegative integer, pick c1,ca,c3 € R with ¢ > 0 > co, and

let a,b,c € Fqlu] be polynomials satisfying

b —4dac #0, deg(a) < c1 + 2c9, deg(b) < ¢ + ¢z —n, deg(c) < ¢ — 2n.
For every nonzero polynomial y € Fy[u] of degree at most n put

(5.49) Fy(T) = aT? + byT + cy? € Ty [u][T]

and let T,, be an interval in Fqlu] of degree at most c3. Then for h € Fq[u]
we have

(5.50)

WE
Yoo D nE@)e (””) < grrelmegiatie (gema 1) (14 3y)"
yeF,[u\(0} | w€Z, Y
deg(y)<n lged(z,y)=1
as n — oo, with the implied constant depending only on q, c,7y.

Proof. Every monic polynomial y € Fy[u] can be decomposed uniquely as
Yy = y1y2 with y1 a squareful monic polynomial, and 9 a squarefree monic
polynomial coprime to y;. Explicitly, the polynomial yo is the product of
all those primes m € F[u] for which 7 divides y, but 72 does not divide y.
We can therefore bound our sum by

Gsy Y Y% 3 u(Fm(x))e(hx)

192
m=0y1ESm Y2EHn-m €Ly, yo b1y
ged(y1,y2)=1 |gcd(z,y192)=1
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where Sy, Hp—m C F4lu] are the sets of squareful polynomials of degree
m and squarefree polynomials of degree n — m respectively. Since every
polynomial in S, is the product of a square and a cube, we have

(5.52) |Sml < q7,

see [RG17, (2.7)].
For every two coprime polynomials y1,y2 € Fg[u], we can find polynomials
A, B € Fy[u] with Ay; + Bys = 1, so we can rewrite the above as

Bhz Ahz
559 3 S X | X utmaene (2F) e (A7),
m=0y1ESm Y2€EHn—m TE€Ly, yy 1 2
ged(y1,y2)=1 |ged(z,y192)=1
We use the trivial bound for those pairs (y1,y2) with deg(yi) > dim(Zy,, ),
which is

Zn: Z Z qdim(IylyQ) < Zn: Z Z qmin{deg(fylyg)vdeg(yl)} <

m=0y1ESm Y2EHn—m m=0y1ESm y2€Hn—m
ged(y1,y2)=1

i Z Z 53;”” < Z q2 q" 2 < nqn+ 2 < (14 3y)"q n+(l—a)cs

m=0 Y1 eSm Y2 EHn—m

and that is bounded by the right hand side of Eq. (5.50]).
For the other pairs (y1,y2) in Eq. (5.53), those with dim(Z,,,,) > deg(y1),
we define the intervals

—r
I;lyZ = {fyl S Ly ys, J =7 mod y1}7 (S Fq[u]’ deg(r) < deg(yl),

so that the sum over those (y1,y2) can be bounded, using the triangle in-
equality, by

3D ID SR S I

m=0y1E€Sm reFyu] Y2EHn—m ZEZy1y2
deg(r)<m  ged(y1,y2)=1 |gcd(yiz-+ry2)=1
ged(r,y1)=1 dim(Zy, y, ) >m
where z = y12 + .
Since ys is squarefree, from Proposition we get that the above is at
most

DD DD Y il(Fpge iz )tz + 1)

m=0 Y1 ESm TE]Fq [u] Y2 EHn—m ZEIyl o
deg(r)<m dim(Zy; y5) >m | ged(y1 241,y2)=1
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where ¢ is an infinitame trace function with
(5.54) r(t) <1, c(t) <2
We have
(T + 1) = a1 T +1)* + byrya(n T +7) + cyiys
= ayiT* + (2arys + byiy2)T + ar® + bryys + cyiys.

It follows from our initial assumptions on a, b, ¢, and co that the degrees
of the coefficients of Fy, ,,(y17 + r) satisfy

deg(ar2+bry1yg+cy%y§) < max{ci+2ca+2m, c1+ca—n+m+n, c;—2n+2n} < c1+2m,

deg(2ary1+by%y2) < max{ci+2co+m+m, c1+co—n+2m+n—m} < c;+co+2m,
and
deg(ay?) < ¢1 + 2¢9 + 2m.

We can drop the condition ged(y12+7,y2) = 1 in the sum above since for
any nonconstant common divisor D € Fy[u] of y1z + 7 and ys, we see that
D? divides Fy,y,(y12 + 1) 80 pu(Fyy (12 + 1)) = 0. Since b — dac # 0, the
polynomial F,, (y1T + r) is separable, so we can invoke Theorem [5.1| with

(555) D, q, k=2, Y, @, €1+ 2m, ¢, g =Yy2, t,
and get from Eq. (5.54) that the sum above is
(5.56)

<Y Y Y T

m=0 Y1 ESm TEJFq [u] Y2 EHn—m
deg(r)<m dim(Zy, y5)>m

G (T, 1) (1=0) g2er +4m+3cz (B—cz—dim(z;1y2) n 5deg(zgly2)_dim@§1y2)) H(l + 3ry)des(m),

m|y2

Since ys is squarefree we have

(5.57) H(l + 3y)des(™) — (1 4 37)277\3/2 deg(m) _ (1 + 3y)des(v2),
mly2
By our assumptions we have v < 1 hence
1 lo

(5.58) a < %4—& —2log,(1+2v) <1 —2log,(1+ 27)
so from our choice of 8 we get
(5.59) log, 8 =2log,(1+27) <1—«
or equivalently 8 < ¢'=2.

Since dim(Z,,y,) > m we have
(5.60) dim(Zy, ) = dim(Zy,y,) —m < deg(Zy,y,) —m < c3 —m

SO
(5.61) qdim(I.Zl vp)(1=@) B —dim(Zy, ) < q(c3 —m)(1—a) B —(cz—m)
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because 3 < ¢'=¢, and similarly
(562) qdim(ZglyQ)(l—a)ﬁdeg(lzlyz)—dim(ZglyQ) < q(037m)(17a)6037(037m)'
It follows from Eq. (5.52)), Eq. (5.57), Eq. (5.61), and Eq. (5.62) that
Eq. (5.56) is
(5.63)

n

< Z q%qmqn—mq(03—m)(1—a)5201+4m+302 (ﬁm—cz—@, + ﬁm)(l + 37)n—m
m=0

which simplifies to

n a—L1 5 m
(5.64)  grelTelgiatia(graTa 1)1 439"y (q 25)

= 1+ 3y
so to obtain the bound in Eq. (5.50), it suffices to check that
1
qa7555
5.65 <1
( ) 143y

After taking logarithms in the above, rearranging, and recalling that by
definition 3 = (1 + 2v)2, the above becomes

1
(5.66) a<g - 10log, (1 + 27) + log, (1 + 37)
which is part of our initial assumptions. U

6. QUADRATIC CONGRUENCES

Notation 6.1. Let N € F,[u] be a nonzero polynomial, and set n = deg(N).
We identify F,[u]/(N) with the set of representatives

(6.1) Pen ={f € Fylu] : deg(f) < n}
for the residue classes. As in Section for a polynomial M € F,[u] we
denote by M the unique representative of its residue class in P.,,.

Proposition 6.2. For an integer 0 < d < n, the indicator function of the
degree of the reduction of M mod N being less than d can be expressed as

hM
(6'2) 1deg(M)<d - qd ! Z ¢ <N> ’
heF [u]

deg(h)<n—d
Proof. We claim first that the indicator function of the F,-subspace P-4
of Fylu]/(IN) equals the average over all additive characters of Fg[u]/(IV)
that are identically 1 on P.4. Clearly, this average is 1 on P-4, so the
claim follows in case d = n. In case d < n, we restrict to the (nonempty)
complementof Pg in Fylu]/(N), and view our average as the average over
all characters of the nontrivial quotient group

(63) Qu= "),
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By orthogonality of characters, this average vanishes, so our claim is verified.
The number of characters we are averaging over is

(6.4) Q4| = Folu]/(N)|  [Fqlu]l/(N)|  ¢"  ,_4

P<a Pl

so by Section these characters are

65 won—e ("

N

hence the proposition follows. [l

>, h € Fylu], deg(h)<n—d,

Notation 6.3. Let D in F4[u] be a polynomial for which the polynomial
(6.6) F(T) =T%*+ D € F,[u][T]

is irreducible over F,[u]. For nonnegative integers d, k, and A € My, we set
(6.7)  pa(A;F)=|{f € Ma: F(f) =0mod A}|, p(A;F) = pp(A; F).
In case d > k we clearly have

(6.8) pa(A; F) = ¢""p(A; F).

Corollary 6.4. Suppose that d < k. Then

pa(AF) =g Fp(A4F)+ 7% Y e <_Ij4ud) Yoo (};{) :

heFq[u]\{0} fEFq[u]/(A)
deg(h)<k—d F(f)=0 mod A
Proof. We have
(6.9) pa(AF) = > lremy= Y. Lagg(fout)<d
feFq[u]/(A) fEFq[u]/(A)
F(f)=0 mod A F(f)=0 mod A

which by Proposition [6.2] equals

(6.10) @y e<_ZUd> 3 e@{).

heF,[u] fER[u]/(A)
deg(h)<k—d F(f)=0 mod A
Separating the contribution of h = 0 gives the corollary. O
Proposition 6.5. For every positive integer k and every € > 0 we have
(6.11) Y A F) < | Myl DI
AeEMy,

with the implied constant depending only on q and €.
Proof. We can decompose uniquely D = D;D? where
(6.12) Dy = I -

w|D
vr(D)=1 mod 2
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is squarefree. We define a (completely multiplicative) function by

(6.13) W) = (‘f) . f e\ {0}

If m € Fyu] is a prime that does not divide D, for every positive integer
r we can use Legendre symbols to write

(6.14) p(x"s F) =1+ (f) =1+ (_D;Dg) =1+ x(n)

in view of Hensel’s Lemma.
If 7 € Fy[u] is a prime that divides Dy, for every integer r > 1 we have

7|15 < v (D)

(6.15) plrs F) = {0 r > vp(D).

Indeed, when D = 0 mod 7", we are counting the elements in Fg[u]/(7")
which square to zero, or equivalently are zero mod Ha, so their number is

LN TES
(6.16) — = |w|" 7zl = ||tz
|| 2]
Since v, (D) is odd by our definition of D; in Eq. (6.12), no element of
F,u]/(7") has square congruent to —D mod 7" for r > v, (D).
Finally, if m divides Do and does not divide Dy, for r > 1 we have

N It r < vr(D)
(6.17) Pl ’F)_{(1+x(7r))|7f|v”(D2) r > vn(D).

Indeed, the first case is established as in Eq. . For the second case we
note that every element in Fy[u]/(n") is of the form m'a for a unique choice
of 0 < i <rand a€ (Fyfu]/(7"~"))*. The elements whose square is —D
are those that have

ve(D)  vr(D1D3)  vr(Dy) + 2v.(D2)

(6.18) =t =T = 5 = vy (Dy)
and
(6.19) o? = —Dn (D) = _p, D2r=2n(D2) nod g7 2on(D2),

The number of such a € (Fy [u]/(w"“_”’f(D?)))X is

-D D27T72U7T(D2) ervﬂ(Dg) .
(620 (”( - o = (L Xl

™

as stated in the second case of Eq. (6.17).
Let us now define the formal power series

Ht)=>_t" Y p(4F).

k=0 AeMy

For compactness of notation, we will write d, for deg(m).
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The function A — p(A, F) is multiplicative so in view of Eq. (6.14)),
Eq. (6.15), and Eq. (6.17)), we have the formal Euler product

=> " > R =]] (Ztrd“p(ﬂr;F)> =

k=0 AeMy T r=0

o0 vr (D)
11 (1 +(1 —l—x(ﬂ))Ztrd’“) T DS Imtederes
r=1

wtD 7Dy \ 7=0

2vr(D2)
IT @+ xnie=@ 3wty 3 e
7Dy 7207 (D2) r=0

mtD1
We will now express the above as the product of

(6.21) L(t; X)CIFq[u] (t) = H 1 _ Xl(ﬂ)tdﬂ ' H 1 _ltdw

mtD1

with a rapidly converging Euler product. To do this, note that for primes =
not dividing D we have

(1 — x(m)t%) (1 — 1) <1+ 1+ x(7 Zt’"d’f) =

(1= ()Y (L 4+ X (m)t07) = 1= ()2 =1 — ¢
Similarly, for primes 7 dividing Ds but not D1 we get

2vx(D2)
X)) (=P 3D e 3 i)
r>2v;(D2)
207 (D2)—1
= o (P22 (D2) (1 g2 (1 () (1 — )Y [l
r=0
Combining these, we obtain
(6.22)
vr (D)
H(t) = L{t: )G, () TT (1= 2%) TT (@ =1%) D2 Imltelerd)
D w| D1 r=0
2ur(D2)—1
[T (IrloeP2eteoe P — g2y 4 (1= y(mper) (1= a0) 37 L),
7| D2 r=0
mD1

A priori this is only a formal identity, but L(¢, x) and (g, [,)(t) are absolutely
convergent for [t| < ¢! and admit meromorphic continuation to the whole
complex plane. We will next show that the remaining Euler product terms
converge absolutely for |t| < ¢~3/* and in fact are < |D|¢ (any cutoff strictly
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between and 1 in place of § 3 would work equally well for our purposes here).
It will follow that H(t) is absolutely convergent for |t| < ¢~! and admits

meromorphic continuation to the disc |t < ¢~3/4, and that the identity
Eq. (6.22) holds on that disc.

We have
I (1) <H<1+w2 ) < H — L <1
D 1—- |7T| 1 —q 2
The contribution of each prime 7 dividing D1 is
vr (D)
(1= t0m) 3 f| Ehgrde| < (14| Z w5~ % = (1+|a|” )|17T|1 < Infe
r=0

for all but finitely many primes m in F,[u]. Similarly, every prime 7 dividing
Dy but not D; gives

2ux(D2)—1
[w|vn (P2)g2dnvn(D2) (1 — g2dm) (1 — x(m)td) (1 —td) Y |m|l3)erde) <
r=0
1 3 3 > 3r
|~ 3P (L 4 7|7 2) + (L + x|~ 1)2 Y |wE7T <
r=0
1
772 (1 7| 72) + (1 + || 3)2———— < |7
1—|m|71

for all but finitely many 7. Combining these, we obtain
H(t) _3

—— < ID[% | <q7d,

L(t; x)Cr ) (1) DF, 1t

and recall that (g, ,)(t) = (1 —qt)~!

We now split into two cases. In the first case, Dy is nonconstant, so L(t; x)
is a polynomial in ¢ which satisfies

(6.23)

(6.24) L{t;x) < D, |t <q7,

by Weil’s Riemann Hypothesis, see for instance [Flo17, Corollary 8.2]. There-

1

fore, the only pole of H with |t| < qu isat t = ¢+, and this pole is simple.

By Cauchy’s residue theorem, we thus have

H(t)
> (A F) < 7{ = ‘quRest B H()‘
AeM,, ‘t|
D|¢|1 —qt -1 _
<f -t Ww’““wrmest:qlu—qw 1
tl=q 4

-1 3k
¢+ +¢"|D|° < ¢*|DJ.

e
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In the second case D is constant, so
o0 [o.¢] 1
(6.25) L) =) ¢ > x(h) =) " (-1 =
k=0 feMy k=0

Therefore, the only poles of H with |¢| < qu are t = +¢~ !, and these poles
are simple. From Cauchy’s residue theorem we similarly get

H(t
Z pAF) < 7{5 3 tk-(‘rl

AeMy

D617q15711+qt*1 _

< % ) | ‘ | |t||]€+1’ | + qk+1]D|€ ‘ReSt:iq—l(l F qt) 1’
t|l=q 4

‘quRest o H(t )’

—1
g% +q"|D|° < ¢"|D|".

O
Notation 6.6. Keep Notation For a prime 7 € Fy[u] set

Xe(7) = (i F) = 1= [{f € Foful/ () F(f) = 0mod 7] 1= (=)
and define the singular series

(626)  &(F) =[] (1= +xe@) ™) (1=l

™

Define also the L-function of xz (in the variable t = ¢~*) to be

1
(6.27) L(tQ XF) = H 1 _— XF(ﬂ.)tdeg(Tr) ’

Proposition 6.7. For a positive integer n we have

(6.28) qu > wlA)p(A; F) = —&(F) + ¢ 2™, n— oo,
AeMy

as soon as degu(F) <L n.
Proof. We define

(6.29) = t— Ztk > uw(A)p(A;F)

k:() AeMy

and use the multiplicativity in A of p(A) and p(A; F) to write the above as
an Euler product, getting an equality of formal power series

©30) 20 =t T (1= 0nr() e50) =155 (01— anG(0)

where

(6.31) G(t) = H (1 — (14 xr(7)) tdeg(fr)> (1 _ tdeg(ﬂ)>—1

™
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An alternative expression for G(t) is

(6.32) G(t) = L(t;XF)il H (1 B theg(W)XF(ﬂ-) ) '

(1= %) (1 — e (m)75)

By the derivative product rule and Eq. (6.26)), we have

(6.33) z (;) e (;) — _&(F).

By Cauchy’s differentiation formula, the left hand side of Eq. (6.28)) differs
from the above by

- G(t _1_, 1
(6.34) <> kg y{tk(ﬂ) , r=q < —
k>n ~
[t|l=r
where we take € = €(n) > 0 to satisfy
(6.35) e=o0(1), € =o(logn).

To bound the integral in Eq. , we prove a pointwise bound on G.
We first handle the case where D is not a constant (an element of Fy') times
a square in Fy[u]. To do that, (assuming none of the factors in Eq. is
7ero) we write

XF(ﬂ)tdeg(w)

(6.36) log |G(t)] = Z log |1 - 1 — ¢deg(m)

and using the bound log|1 — z| = Flog|1 — 2|> < log(1 — z — Z + |2|?) get

(G () + 2r (R — () (100 + 7o)
zﬂ:log 1+ T

Since log(1 + ) < z for any real z > —1, and |1 — t98(™|=2 « 1, the
above is

deg(m)
2 deg(m) xr(m)t
(6.37) <Y or |21 et
s K
so summing separately over each degree we get at most
0p20 XF 1 = xr(m)tt
(6.38) Zq Z Z tfP :1_qr2+z =P
£=1 deg(m E £=1 deg(m

Using the triangle inequality, and the bound |1 — t¢|~2

(6.39) qu 24—{—27“4 Z xr(m)]| -
(=1

deg(m)=¢

< 1, we arrive at
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For the second sum we use a trivial bound for ¢ < 2log, deg(D), and invoke
Weil’s Riemann Hypothesis (see [Rud10, (2.5)]) for all other ¢ to get

1 . ¢ L
1= g2 + Z r g+ Z deg(D)r"qz.

£<2log, deg(D) £>2log, deg(D)

(6.40) <

Evaluating the geometric series, and using the bound (1 — ¢72¢)7! <« ¢!
we finally get

(6.41) log |G(t)| < e deg(D)! 2.
It follows from our assumption that deg(D) < n, Eq. (6.34) and Eq. (6.41)

that our error term is

(6.42) eOldeg(D)! 7% ™h) Z kg FrF < qo(nl_Zee_l)nq_%er-
k>n
In view of Eq. li the above is < ¢~ 21°" ag required.
Now we handle the case where D = ADZ, with A € F, and Dy € F,[u].

Since F'is irreducible by assumption, we get that —\ € Fy \IE?qX2 and Dy # 0
S0)

(6.43) L(t,xr) = !

— TI0- (-pm).
14 qt D

Therefore, for any ¢ € C with |t| < qfé we have

1
(6.44) |L(t, xp)| " = (1+qt) [[ 1= (—0)%=™ | <« [ ——— < D"
D Ap1— w2

In order to obtain a pointwise bound for G in this case, we shall bound
the Euler product in Eq. (6.32)). Setting r = |t| as in Eq. (6.34), we have

2 deg(7) 2 deg(m)
10 t xr(m) <I] (1 e : rdeg(w>)2> _

1—
(1= 75 (1 = xr ()90

™

) 3deg(m) 1 1 2 3deg(m)
1 + " = 1 + — r
II 1 — pdeg(m) | 1 — y2deg(m) 1— q7"2 lﬂ_l 1 — pdeg(m)

™

in which the final Euler product converges for r < q_% and is uniformly
bounded for r < ¢~1/2, so Eq. 1) defines a holomorphic function in this
disc.

By Eq. (6.34) we have
1 1
6.45 — -1
(6.45) T T <€
so the error term is bounded by
-1
(6.46) > kgt 6k+1 =<'y kglem )DL g 5ten
k>n r k>n
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which is < ¢~ 27" in view of Eq. (6.35). O

7. QUADRATIC FORMS
We establish here analogs over F,[u] of several facts mentioned in [Hoo63].

Proposition 7.1. For every (binary) quadratic form

(7.1) Q(X,Y) = aX?+ bXY + cY?
over Fylu] there exists a unique symmetric 2 x 2 matriz K over Fy[u] with
(7:2) QYY) = (X, Y)K(X,Y)".
Proof. For the existence of K as above, just note that
5 bY bX
) (5 2) e’ = (ax+ 5 o) vy = @y,
2

For uniqueness, let K be a symmetric matrix satisfying Eq. . Then
(7.3)  Kii=(1,00K(1,0)" = Q(1,0), Kz =(0,1)K(0,1)" =Q(0,1)
and since K is symmetric, we get from Eq. that

2K19 = K19 + Ko1 = (1, 1)K (1,1)T — (1,0)K(1,0)" — (0,1)K (0, 1)
=Q(1,1) - Q(1,0) — Q(0,1)
so K is indeed uniquely determined by Q. O
Definition 7.2. Keep the notation of the above proposition. We say that

the symmetric 2 x 2 matrix K is the matrix corresponding to the quadratic
form @, and define the discriminant D of Q) to be the determinant

2
(7.4) D =det(K) = ac — bz

In case the polynomial
(7.5) F(T)=T?+ D € F,[u][T)

is reducible over F[u], that is, negative D is a square in Fy[u], we say that
Q is degenerate, and otherwise we say that it is nondegenerate.

Remark 7.3. For a nondegenerate form Q(X,Y) = aX? 4+ bXY + cY?, the
polynomial a = Q(1,0) is nonzero. For if a = 0 then

(7.6) _D:If_acz<g>2—0-c:(g>2

contrary to our assumption that @) is nondegenerate.

Definition 7.4. Let the group SLa(F4[u]) act from the right on row vectors
in F[u]? via the dual of the usual action by multiplication. This means that
for a matrix of polynomials

My Mo

(7.7) M € SLa(Fg[u]), M = <M21 Moo

) , Mi1Mag — MioMo =1,
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and (z,y) € F,[u]?, the action is given by

M- —M
_ =T _ 22 21
(.’E,y)*M - ([E,y)M - (xay) <_M12 Mll )

= (Maax — Mgy, —Mo1x 4+ My1y).

(7.8)

It is straightforward to check that the stabilizer of the vector (1,0) is
_ 1
(7.9)  {M € SLy(Fy[u]) : (1,0)M T = (1,0)} = {(0 ’{{) 1g € Fq[u]} .
Notation 7.5. A vector (z,y) € Fy[u]? is called primitive if ged(z,y) = 1, or

equivalently, if the ideal of [F,[u] generated by = and y contains 1. For such
a vector, we denote by Z € F,[u] the polynomial of least degree for which

(7.10) Zr =1 mod y,

and let y, € Fy[u] be the polynomial of least degree satisfying
(7.11) Tr — Yy = 1.

Put

(7.12) M,y = (g ?if) € SLy(F,[u))

and note that

(7.13) (1,0) = (x,y)M(;g).

In particular, the primitive vectors form an orbit under the action of SLa(F,[u]).

Definition 7.6. The group SLy(F,[u]) also acts from the right on quadratic
forms by

(714) Q(X, Y)*M = Q((X, Y)MT) = Q<M11X+M12Y7 M21X+M22Y)

We say that two quadratic forms are equivalent if they belong to the same
orbit in this action.

For instance, if

(7.15)  Q(X,Y)=aX2+bXY +c¥V2 M= <(1) {) € SLy(F, [u])

then we have
(7.16)
QUX,Y)MT) = Q(X +gY,Y) = a(X + gY)?2 +b(X + gY)Y + Y2
=aX?+ (b+2a9)XY + (ag® + bg + )Y
We show that equivalent quadratic forms have the same discriminant.
Proposition 7.7. Let Q be a quadratic form, and let M € SLa(F4[u]). Then

the discriminant of the quadratic form Q'(X,Y) = Q((X,Y)MT) equals the
discriminant of Q.
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Proof. For the symmetric 2x2 matrix K corresponding to () in Definition (7.2
we have

(7.17) QX,Y)=Q((X, VY M) =(X,YYMTKM(X,Y)"

so Q" and MTK M satisfy the assumptions of Proposition as the latter
matrix is symmetric. We conclude that M7 K M is the matrix corresponding
to @', so the discriminant of @’ is

(7.18) det(MTKM) = det(M7T) det(K)det(M) =1 -det(K) - 1 = det(K)
which is the discriminant of Q. O

Definition 7.8. A representation of a polynomial A € F,[u] by a quadratic
form is an ordered pair (@, (z,y)) where (z,y) € F,[u]?, Q is a quadratic
form, and Q(x,y) = A. The representation is said to be primitive if (z,y)
is primitive and @ is nondegenerate. One checks that the actions defined
in Definition [Z.4] and Definition [7.6] combine to a coordinatewise action of
SLy(F4[u]) from the right on (primitive) representations of A. We call two
representations equivalent if they belong to the same orbit in this action.

Next we show that the action of SLa(F4[u]) on primitive representations
is free, namely that the stabilizer of any primitive representation is trivial.

Proposition 7.9. Let QQ be a nondegenerate quadratic form over Fylu|, and
let v € Fyu]® be a primitive vector. Then the only matriz M € SLa(F4u])
that satisfies

(7.19) QUXY)MT) =Q(XY), vM ™" =u,

is the identity matriz.

Proof. Write Q(X,Y) = aX?4+bXY +cY?, and suppose first that v = (1,0).
In this case, we know that (1,0)M 7 = (1,0) so by Eq. (7.9), there exists a
polynomial g € F,[u| such that

_ (1 g
- (3 9).
Using our assumption that M stabilizes @ and Eq. (7.16]) we get

aX? 4+ bXY +¢Y? =Q(X,Y) = Q((X,Y)MT)
= aX?+ (b+2a9)XY + (ag® + bg + )Y

Since @ is nondegenerate, we get from Deﬁnitionthat dac—b> £0. Tt
follows that either a # 0 or b # 0 (or both). In case a # 0, from comparing
the coefficients of XY above, we get that 2ag = 0 so g = 0. If a = 0 then
b # 0, so from equating the coefficients of Y2 above, we deduce that bg = 0
hence g = 0. We have thus shown that M is indeed the identity matrix in
case v = (1,0).

Assume now that v is an arbitrary primitive vector. In Eq. we have
written a matrix M, € SLa(F,[u]) such that v = (1,0)M. We set

(7.22) Q'(X.Y) = QUX,Y) M),

(7.21)
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infer from Proposition that @’ is a nondegenerate quadratic form, and
note that Q(X,Y) = Q'((X,Y)M,T). Now if M € SLy(F,[u]) is a matrix
satisfying Eq. (7.19) then

QX Y)MTM;™) = Q((X,Y)M; "), (1,0)M;M™" = (1,0)M,
SO

Q((X,Y) (M MM,)T) = Q((X,Y),  (1,0) (M; ' MM,) "

= (1,0).
From the previous special case where the primitive vector was (1,0) we

conclude that M, ! M M, is the identity, so M is the identity as well. ([l

Definition 7.10. If ) is a nondegenerate quadratic form of discriminant D
as in Definition and (@, (1,0)) represents a polynomial A, then we can
write

(7.23) Q(X,Y) = AX? + bXY + cY?
so from the definition of the discriminant in Eq. (7.4) we get
b\> b? b?

We say that f = % € Fylu]/(A) is the solution of the equation
(7.25) F(T)=T?+D=0 mod A

associated to the primitive representation (@, (1,0)) of A. Note that A # 0
by Remark

Proposition 7.11. Let (Q,(1,0)) and (Q',(1,0)) be representations of a
polynomial A € Fy[u] by nondegenerate quadratic forms of discriminant D.
Then the solutions to Eq. ((7.25) associated to the representations (@, (1,0))

and (@', (1,0)) coincide if and only if these representations are equivalent.

Proof. Suppose first that the representations (@, (1,0)) and (@', (1,0)) are
equivalent. By the definitions in Eq. (7.8)) and Eq. (7.14), equivalence means
that there exists a matrix M € SLy(F,[u]) such that

(7.26) (1,)M " =(1,0), Q'(X,Y)=Q(X,Y)M").

We have checked in Eq. (7.9) that the first equality above implies
_(l g

(7.27) M = <0 1)

for some g € Fy[u].
Since Q(1,0) = A, we can write

(7.28) Q(X,Y) = AX? + bXY + cY?
and get from the second equality in Eq. (7.26) and Eq. (7.16) that
(7.29) Q'(X,Y) = Q((X,Y)MT) = AX?+(b+29A) XY + (Ag® +bg+c)Y?
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so the coefficient of XY in Q' is
(7.30) 29A+b=b mod A.

Hence the solution of Eq. associated to (@', (1,0)) via Eq. is
f= %, which is also the solution associated to (@, (1,0)).

Suppose now that the representations (Q, (1,0)) and (@', (1,0)) of A give
rise to the same solution of Eq. . We can therefore write

(7.31) Q(X,Y)=AX2+bXY +cY? Q(X,Y)=AX?>+VXY +Y?

with o' congruent to b mod A. Since @Q and Q' are of discriminant D, using
Definition we see that 4Ac = b? + 4D and that 4Ac = b'? + 4D. By
Remark A is nonzero so we can rewrite our forms as

(7.32)

2
Q(X,Y) = AX24bxy 42D

4A

In order to exhibit the equivalence of our representations, we take

b2 4+ 4D
4A

Y2 Q(X,Y) = AX?+V XY + Y2,

(7.33) M= <(1) b?l;‘b> € SLy(Fq[u])

and note that (1,0) = (1,0)M 7. Using Eq. (7.32) and Eq. (7.16) we get
QUX,Y)M") =

Y —b V¥ —b\2 ¥ —b b2+4D
2 . ) 2 _
AX+<b+2A 2A)XY+<A<2A>+I) st Y

b2 — 206 + 0% 2 — 20 b2 44D
2 / 2 _
AX+bXY+< 1A + 1A + A >Y—
b2 4+ 4D
AX?2 + VXY + (;) Y2 =Q'(X,Y)
so our representations are indeed equivalent. O

Definition 7.12. To a primitive representation (Q, (x,y)) of a polynomial
A € Fy[u] by a quadratic form

(7.34) Q(X,Y) = aX? + bXY + cY?

of discriminant D, using Notation [7.5] we associate the solution
b

(7.35) f=aysx+ 5(@1‘ + ypy) + cxy € Fylu]/(A)

of the congruence T2 = —D mod A from Eq. (7.25). Note that this agrees
with our previous definition f = % for the case (x,y) = (1,0).
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Now we check that Eq. (7.35)) is indeed a solution for Eq. (7.25). We use
Notation to associate with (@, (x,y)) the quadratic form

(7.36)
Quy(X.Y) = Q ((X.Y)M], )} = QX +y,Y,yX +7Y)
=a(xX + 4, Y)? + b2 X + y.Y)(yX +TY) + c(yX +TY)?

and use Eq. (7.13) to conclude that (Q, (x,)) is equivalent to (Qgy, (1,0)).
One readily checks that dividing the coefficient of XY above by 2 gives the
right hand side of Eq. , so the latter is indeed a solution of Eq. .
In other words, the solution of Eq. associated to (@, (x,y)) is the so-
lution of Eq. associated to the equivalent representation (Qg.y, (1,0))
in Definition At last note that by Remark we have

Corollary 7.13. Primitive representations (Q, (x,y)) and (Q', (2',y")) of a
polynomial A by quadratic forms of discriminant D are equivalent if and only
if their associated solutions to the equation T? + D =0 mod A coincide.

Proof. The representations (Q, (z,y)) and (Q’, (¢/,y)) are equivalent if and
only if (Qqy. (1,0)) and (Q, . (1,0)) are equivalent. From Proposition
applied to Quy and Q}, . we get that (Quy, (1,0)) and (Q}, ,(1,0)) are
equivalent if and only if they give rise to the same solution for the congruence
T2+ D =0 mod A. Our corollary now follows because the solution asso-
ciated to (@, (z,y)) is the one associated to (Qq,y,(1,0)), and the solution
associated to (@', (2',y')) is also associated to (Q, . (1,0)). O

Proposition 7.14. Let A € Fyu] be a nonzero polynomial, and let D €
F,lu] be a polynomial with —D not a square. Then every solution f €

Fqlu]/(A) of
(7.38) T4+ D=0 mod A

arises from a primitive representation of A by a quadratic form of discrim-
inant D.

Proof. We lift f to a polynomial in F,[u], which by an abuse of notation, we

continue to denote by f. Consider the quadratic form

f?+D
A

(7.39) Q(X,Y)=AX? +2fXY + V2 € F,[u][X,Y]

that satisfies Q(1,0) = A. By Definition the discriminant of @ is
fP+D (2f)?
A 4

By Eq. 1D f= % is associated to the primitive representation (@, (1,0))
of A, as required. O

(7.40) A =f2+D—-f>=D.
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Proposition 7.15. As in Definition|7.12, let (Q, (z,y)) be a primitive rep-
resentation of a polynomial A € Fylu] by a quadratic form

(7.41) Q(X,Y) =aX? +bXY +cY?
of discriminant D, and let
b
(7.42) f = ayar + (T + o) + Ty € Fyful/(4)

be the associated solution to the equation T?> +D =0 mod A. Suppose that
y# 0. Then

(7.43) c (Z{) —e (’j)

for any polynomial h € Fq[u] satisfying

(7.44) deg(h) < deg(A) — deg(b) — 1
and
(7.45) deg(h) < deg(A) + deg(y) — deg(a) — deg(x) — 1.

Proof. We have an equality of rational functions

cxy? + ax(Tx — 1) + gy(2fx -1) N ar + gy B

(7.46) yA yA
Z(az? + bzy + cy?)  TQ(w,y) TA T
yA yA yA y

By Eq. (7.11), we have To — 1 = y,y and thus 2Zz — 1 = Zx + y,y, so
plugging these in the first term of Eq. (7.46]) we get

_ 9 b =

cxy® + axy.y + 3y(Tr + yy)
(7.47) J A2 =7 mwod Fylu
from the definition of the associated solution f in Eq. (7.42). We conclude
from the above and Eq. (7.46) that

(7.48) =+

Multiplying the above by a polynomial h and exponentiating, we obtain

hz\  (hf haz + Shy
The second factor in the right hand side above equals 1 provided
b
(7.50) deg <ha:c + 2hy> < deg(yA) — 1.

The latter holds in case the two inequalities
deg(h) < deg(A)+deg(y) —deg(a) —deg(z)—1, deg(h) < deg(A)—deg(b)—1
are satisfied. O
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Definition 7.16. Let D € F,[u| be a polynomial for which
(7.51) F(T)=T?*+ D € Fy(u)[T]

is irreducible over F,(u), that is —D is not a square of a polynomial. We say
that D is indefinite if the infinite place of F,(u) splits in the splitting field of
F. By [Ros02, Proposition 14.6], this is equivalent to the degree of D being
even and the leading coefficient of —D being a square in F;. Otherwise
(if the infinite place of F,(u) is ramified or inert in the splitting field of
F) we say that D is definite. A nondegenerate quadratic form is called
definite (respectively, indefinite) if its discriminant is definite (respectively,
indefinite).

7.1. Definite quadratic forms.

Definition 7.17. We say that a definite quadratic form
(7.52) Q(X,Y) =aX? +bXY + Y2 € F,[u][X,Y]
is standard if degc > dega > degb.
Remark 7.18. For the discriminant D of a standard @ we have
(7.53) deg(a) + deg(c) = deg(D).
Indeed, otherwise deg(ac) = deg(a) + deg(c) # deg(D), and thus
2deg(b) = deg(b®) = deg(4ac — 4D) = max{deg(ac), deg(D)}
> deg(ac) = deg(a) + deg(c) > deg(b) + deg(b) = 2 deg(b),

a contradiction. We infer that
_ deg(a) + deg(a) < deg(a) + deg(c) _ deg(D).

2 - 2 2
Proposition 7.19. For a standard definite quadratic form, and x,y € F,[u]
we have

deg(Q(z,y)) = max(deg(a) + 2 deg(z), deg(c) + 2deg(y)) > deg(bzy).
Proof. We have
(7.56)  deg(ax?) = deg(a) +2deg(z), deg(cy®) = deg(c) + 2deg(y),
so since deg(c),deg(a) > deg(b) by Definition we get
(7.57)

(7.54)

(7.55) deg(a)

deg(a) + deg(c)
2

deg(bxy) = deg(b) + deg(x) + deg(y) < + deg(z) + deg(y)

B deg(ax?) + deg(cy?)
B 2
Suppose toward a contradiction that the leading terms of axz? and —cy?

are equal. Then the leading terms of ¢ and —c are equal up to multiplica-
tion by the square of a monomial, so the leading term of —ac is a square.

< max(deg(az?), deg(cy?)).
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Since deg(ac) > deg(b?), we conclude that the leading term of the negated
discriminant

(7.58) - D= 4 %

of () is a square, which contradicts the assumption that @ is definite.

We infer that the leading terms of az? and cy? do not cancel each other
out, so Eq. implies that deg(bwy) < deg(az? + cy?) and thus the
desired statement. O

Definition 7.20. We say that a primitive vector (z,y) € F,[u]? is a short
vector of a definite quadratic form Q if
(7.59) deg(Q(z,y)) = min{deg(Q(v)) | v € Fy[u]?, v is primitive}.

By Eq. (7.37), the degrees of polynomials primitively represented by @ form
a (nonempty) subset of the nonnegative integers. Such a subset necessarily
has a least element, so ) admits short vectors.

Proposition 7.21. Let Q(X,Y) = aX2+bXY +cY? be a standard definite
quadratic form over Fylu]. Then the short vectors of QQ are

Fx x {0} deg(a) < deg(c)
Fy xFy\ {(0,0)} deg(a) = deg(c).

Proof. We first determine the minimum in the right hand side of Eq. ((7.59).
Invoke Proposition and note that the minimum value of

(7.61) deg(Q(z,y)) = max(deg(a) + 2 deg(z), deg(c) + 2 deg(y))

over all primitive vectors (z,y) € F,[u]? is attained (at least) whenever
deg(z) and deg(y) are as small as possible, subject to ged(z,y) = 1. That
is, the minimum occurs (at least) in case

(7.62) {deg(z), deg(y)} = {0, —o0},
so this minimum is min(deg(a), deg(c)) which is deg(a) since the form @ is
standard.

To determine all short vectors, let (z,y) € Fy[u]? be a primitive vector.
If deg(c) > deg(a), then we have

(7.63) max(deg(a) + 2deg(z), deg(c) + 2deg(y)) = deg(a)

if and only if y = 0 and z is a nonzero constant polynomial. Otherwise,
since @ is standard we have deg(c) = deg(a) so Eq. (7.63) is satisfied if and
only if  and y are both constant polynomials (but not both zero). ([

(7.60)

The following proposition shows that the action of SLy(F,[u]) on represen-
tations restricts to an action on representations by short vectors of definite
quadratic forms.

Proposition 7.22. Let v be a short vector of a definite quadratic form Q
over Fy[u], and let M € SLy(F,[u]). Then the primitive vector v’ = vM~T
is a short vector of the definite quadratic form Q'(X,Y) = Q((X,Y)MT).
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Proof. The form @’ is definite since its discriminant is the discriminant of
Q by Proposition Since Q(X,Y) = Q'((X,Y)M~T), and v is a short
vector of @, for any primitive vector vy € F,[u]? we have
deg(Q'(v9)) = deg(Q(uoM™)) > deg(Q(v))

= deg(Q'(vM™T)) = deg(Q'(v"))

so v’ is indeed a short vector of @Q’. O

(7.64)

Definition 7.23. Let @) be a definite quadratic form over Fg[u], and let
v be a short vector of ). A standardizing matrix of () at v is a matrix
M € SLy(Fy[u]) for which vM~T = (1,0) and Q((X,Y)MT) is a standard
definite quadratic form.

Proposition 7.24. There exists a unique standardizing matriz of Q at v.

Proof. We start by proving existence. By Definition [7.20, the vector v is
primitive, so as in Eq. there exists a matrix M, € SLa(F,[u]) with
oM, T = (1,0). By Proposition the vector (1,0) is then a short vector
of the definite quadratic form

(7.65) Q(X,Y)=Q((X,Y)MI) = aX? +bXY + Y2

By Remark a is nonzero so division with remainder (Euclidean divi-
sion) provides us with a polynomial g € F,[u| for which deg(b—ag) < deg(a).
Setting

9
(7.66) N= (é 12) € SLy(Fy[u])
and applying Eq. (7.16), we get the quadratic form
(7.67) S(X,Y)=Q((X,Y)NT) =aX?+ (b—ag) XY + ¢gY?

for some ¢y € Fylu].
Applying Proposition again, we find that the vector (1,0) = (1,0)N~7T
is a short vector of the definite quadratic form S. Therefore

(7.68) deg(cg) = deg(S(0,1)) > deg(S(1,0)) = deg(a)

so S is standard by Definition [7.17] The existence part of our proposition
then follows by taking M = M, N as

(7.69) oM™ = o(M,N) T =oM;TN"T = (1,00N~T = (1,0)
and
(7.70)  QUX,Y)MT) = Q((X,Y)N"M) = Q'((X,Y)NT) = 5(X,Y).

To demonstrate uniqueness, let My, My € SLa(F,[u]) be standardizing
matrices of @ at v. Then we have vM;? = (1,0) = vM, * so

(7.71) (1,0)(M; ' Mz)™" = (1,0)



110 WILL SAWIN AND MARK SHUSTERMAN

and the quadratic forms
(7.72)
S1(X,Y) = QUX,Y)M{) = aX? + bXY +cY?, 53(X,Y) = Q((X,Y)M;)

are standard definite. From Eq. (7.71) and Eq. (7.9) we get that
_ 1 g
(7.73) M My = <0 1)

for some g € Fgylu], so from Eq. (7.72) and Eq. (7.16) we get that
So(X,Y) = QUX,Y)M3 ) = S1((X,Y)My My ") = Si((X, V) (M; ' My)")
= aX? 4 (b+2a9)XY + (ag® + bg + c)Y>.

Suppose toward a contradiction that g # 0. As the form S is standard
definite we know that deg(a) > deg(b), so since S is also standard definite,
we get from the above that

(7.74) deg(a) > deg(b + 2ag) = deg(2ag) > deg(a)

which is an absurdity. We conclude that ¢ = 0 and thus M LM, is the
identity in view of Eq. (7.73), so M1 = M> as required. O

Definition 7.25. Let ) be a definite quadratic form, let v be a short vector
of @, let M be the standardizing matrix of @ at v, and let w € F,[u]? be a
primitive vector. We say that the standard quadratic form Q((X,Y)M7) is
the standardization of @ at v, and that the representation

(7.75) (QUX,Y)MT),wM™T)

is the standardization at v of the representation (Q,w). A primitive rep-
resentation (S,w) by a definite quadratic form is called standard if S is
standard.

Theorem 7.26. Let (Q,w) be a primitive representation of a polynomial
A by a quadratic form Q of definite discriminant D. Then the function
that maps a short vector v of Q to the standardization of (Q,w) at v is a
bijection between the set of short vectors of () and the set of those standard
representations of A that are equivalent to (Q,w).

Proof. To show that our function is injective, let v1,v9 be short vectors of
Q, let My, My € SLa(F,4[u]) be the standardizing matrices of @) at v; and v
respectively, and suppose that the standardization of (Q,w) at v1 coincides
with the standardization of (Q,w) at ve, namely

(7.76) wMy " =wMyT, QUX,Y)MT) = Q((X,Y)M]).
We can rewrite the above as

(7.77) w=wMM )™, QX)Y)=QUX,Y) MM
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so from the freeness of the action of SLy(F,[u]) on primitive representations
established in Proposition we conclude that MM, Lis the identity
matrix. We therefore have M7 = My and thus

(7.78) v = (L,0)M{" = (1,0) My = vy

so injectivity is proven.
To obtain surjectivity, let (S, z) be a standard representation of A which
is equivalent to (@), w). We can therefore find a matrix M € SLy(F,[u]) with

(7.79) S(X,YYMT)=Q(X,Y), 2MT=uw.

The qudratic form S is standard, so by Proposition the vector (1,0) is
a short vector of §. We conclude from Proposition hat v=(1,00)M~ T
is a short vector of @, hence M ! is the standardizing matrix of Q at v, and
(S, z) is the standardization of (Q,w) at v. O

Corollary 7.27. Let D € Fy[u] be definite. Consider the function

b
(aX? +bXY +cY?, (2,9)) = (a2 + bay + ey, ayew + 5 (72 + ) + CTy)

which maps a standard representation (S, w) by a quadratic form of discrim-
inant D to the represented polynomial A = S(w) and the associated solution
f to the congruence T> 4+ D =0 mod A. Then the image of this function is

(7.80)  {(A,f): AeF,ul\{0}, f€F,[ul/(A), 2+ D=0 mod A}.

Moreover, the preimage of any (f, A) as above is either a set of ¢ — 1 repre-
sentations, all satisfying deg(a) < deg(c), or a set of ¢> — 1 representations,
all satisfying deg(a) = deg(c).

Proof. The fact that the image of our function is contained in Eq. ([7.80) is
immediate from Definition Taking (A, f) from the set in Eq. (7.80),
Proposition provides us with a primitive representation (@, w) of A by
a quadratic form of discriminant D such that f is the associated solution to
this representation. Standardizing (Q,w) at a short vector of @), we obtain
a standard representation

(7.81) (S(X,Y) =aX?+bXY +cY? w')

of A, which is equivalent to (Q,w). It follows from Corollary @ that f is
also the solution associated to (.S, w’), so our function maps (S, w’) to (4, f),
hence its image is indeed given by Eq. (7.80).

By the other implication in Corollary [7.13, the preimage of (A, f) under
our function consists of all those standard representations of A that are
equivalent to (S,w’). These representation are in bijection with the short
vectors of S in view of Theorem[7.26. Since S is a standard definite quadratic
form, it follows from Proposition that this set has ¢ — 1 elements in case
deg(a) < deg(c) and ¢? — 1 elements in case deg(a) = deg(c).

Now if

(7.82) (8'(X,Y)=d X?+ VXY + Y2 w")
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is any other representation (of A) in the preimage of (A, f), then it is equiv-
alent to (S,w’). It follows from Proposition @ that the number of short
vectors of (S’,w”) equals the number of short vectors of (S,w’), so since
q—1# ¢*> — 1, we conclude from Proposition that deg(a’) < deg(¢’) in
case deg(a) < deg(c) and that deg(a’) = deg(c’) if deg(a) = deg(c). O

Notation 7.28. For a definite polynomial D € F,[u] we denote by

b2
S(D) = {(a, b,c) € Fy[u]® : deg(c) > deg(a) > deg(b), ac — il D}

the set of all standard quadratic forms of discriminant D.

Corollary 7.29. For every e > 0 we have |S(D)| < \D]%J“.
Proof. For i € {0,1} set

(7.83) S(D;i) ={(a,b,c) € S(D) : deg(c) =4 mod 2}
and note that S(D) = S(D;0) U S(D;1) so it suffices to show that
(7.84) 1S(D;i)| < |D|2*, i€ {0,1}.

Fix i € {0,1}, let (a,b,c) € S(D;i), and let n > deg(D) be an integer
with

(7.85) n =i mod 2.

It follows from Proposition @ that for coprime polynomials =,y € Fgu]
with

n d;g(a)7 deg(y) = n c;eg(c)7

the polynomial A = ax? + bry + cy? has degree n. From the count of pairs
of coprime polynomials (z,y) in [ABSR15, Proof of Lemma 7.3], and Re-
mark it follows that the number of standard representations of degree
n polynomials by quadratic forms of discriminant D is

(7.86) deg(x) <

n—deg(a) , n—deg(c) eg(D)
(7.87) > |S(Dsi)lg"F T = S(Dsi)lgn S
On the other hand, using Notation this number is
(7.88) < > plAsF)
AeMy

in view of Corollary By Proposition [6.5| the above is < ¢"|D| so

1S(D;i)| < ¢ |D| = | D|3*¢

as desired. O

Remark 7.30. Keeping track of all the constants in the proofs of Corol-
lary [7.29 and Proposition would give a precise estimate for the number
of standard quadratic forms, weighted by the inverse of their number of
short vectors, in terms of a special value of the L-function. This would be
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an analogue of a classical proof of the class number formula, though we have
here avoided the relationship between quadratic forms and ideal classes.

7.2. Indefinite quadratic forms.

Definition 7.31. We say that a primitive representation (Q, (z,y)) of a
polynomial A € F,[u] by a quadratic form Q(X,Y) = aX? +bXY +cY? of
indefinite discriminant D is standard if there exists a nonnegative integer s
such that

deg(D deg(D deg(D
(7.89) deg(a) < eg2( ) s deg(b) < eg2( ) deg(c) < egQ( ) 4
and
deg(A) deg(D) s deg(A) deg(D) s
. < — 2 < - -
Define the weight of a standard representation as above to be
L s=0
(7.91) w(@, (z,y)) =ws =977
W s > 0.

We show that the weight is well-defined.

Proposition 7.32. At least one of the inequalities in Eq. s an equal-
ity, and at least one of the inequalities in Eq. is an equality, so the
integer s is uniquely determined by the standard representation (Q,(x,y))
of the polynomial A and satisfies

(7.92) s = ngQ(D) —deg(A) mod 2, s<

deg(D)
-

Proof. For the first claim note that if all inequalities in Eq. ((7.89) were strict,

we would have
2

deg(D) = deg (ac - Z) < max{deg(a) + deg(c),2deg(b)} < deg(D).

which is contradictory.
We turn to the second claim. Since Q(z,y) = A we have
(7.93)
deg(A) = deg(Q(z,y)) = deg(ax? + bxy + cy?)
< max{deg(a) + 2 deg(z), deg(b) + deg(z) + deg(y), deg(c) + 2 deg(y)}.

We assume that the maximum is attained by the first element above. Then

from Eq. (7.89) and Eq. (7.90) we get

(7.94) deg(a) + 2deg(x) < deg2@ — s+deg(A) — deg2(D) + s =deg(A)

so lest we arrive using Eq. (7.93) and the above at deg(A) < deg(A), all our
inequalities must be equalities. In particular
_ deg(A) deg(D) s

_i_f

(7.95) deg(z) 5 1 5
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A calculation similar to that in Eq. (7.94), using Eq. (7.89)) and Eq. ([7.90)),
shows that in case the maximum in Eq. (7.93) is attained by the second

element, Eq. (7.95) still holds. In case the maximum is attained by the
third element in Eq. (7.93), we get that

_ deg(A) deg(D) s
(7.96) deg(y) = 5 1 7
In all three cases s is uniquely determined by (@, (z,y)) and
deg(D
(7.97) + s+ deg(A) — %2() € {2deg(x),2deg(y)} C 2Z

for an appropriate choice of sign (namely either + or — depending on which
of the three cases is being considered), so the congruence in Eq. ([7.92)) holds.
At last note that

deg(D
(7.98) 0 < deg(a) < es(D) _ s
in view of Eq. (7.89) and Remark so the inequality in Eq. (7.92) holds.

([
Definition 7.33. A valuation on F,[u]? is a function
(7.99) v: Fy[u)? = Z U {—oc}

satisfying the following three conditions.

(1) For every a,z,y € Fy[u] we have
v(ax,ay) = deg(a) + v(z,y);
(2) For all z1,x2,y1,y2 € Fyu] we have
v(z1 + 22,91 +y2) < max{v(z1, y1),v(22, ¥2) 13
(3) The values of v on nonzero vectors are bounded below, i.e.

inf  w(z,y) > —o0.
(z,)#(0,0) (=9)

For v a valuation, let

my, = inf ov(x,y).
(Izy)¢(070) ( y)

Because m,, is the infimum of a set of integers bounded below, m,, is attained
by some x, y.

Notation 7.34. For integers v and § one readily checks that the function
(7.100) vy.5(2,y) = max{y + deg(x), 8 + deg(y)}

is a valuation. We say that a valuation v is standard if there exist integers
v < 6 such that v = v, 5. In this case m, = v(1,0) = 1.
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Definition 7.35. We have an action of SLy(IF,[u]) from the right on valu-
ations by

(7101)  (vx M)(z,y) = v((z.)MT), M € SLo(F,[u)), z.y € F,[ul.
Valuations in the same orbit will be called equivalent.
We calculate the order of the stabilizer of a standard valuation.

Proposition 7.36. For a standard valuation v, s define the subgroup

(7.102) Gys ={M € SLa(Fy[u]) : vy5 % M = vy 5}.

Then
_Ji—a v=20
(g— 1D+ y <.

Proof. For each integer s > 0, we define a subgroup of SLy(F,[u]) by

(7.103) [e*

SL2(Fq) s=0
(7.104) ~ H = {(())\ )\Jj1> 1)\61[?57 [ € Fylu], deg(f) SS} s> 1

and claim that G5 = Hs_,. The asserted number of elements in G, ;5 is
immediate from this claim.

To prove one inclusion let M € G 5. We have
v = 0y5(1,0) = vy,5((1,00MT) = v, 5(Mi1, Ma1)

7.105
( ) = max{~y + deg(Mi1),0 + deg(Ma1)}.

We deduce that deg(Mi1) and deg(Ma;) are nonpositive, and in case 7 < &
we can moreover say that Mo = 0. Similarly we have

6 =vy,5(0,1) = vy,5((0, M) = Vy,5(Mi2, Ma2)

= max{7y + deg(Mj2), 0 + deg(Ma2)}
so deg(Mz2) < 0. In case v = ¢ we infer that deg(Miz2) < 0 as well,
while in case 7 < § we get that deg(Mj2) < 6 — . Since our matrices have
determinant 1, this establishes the inclusion G s < Hs_., towards our claim.

For the other inclusion pick M € Hs_,. In case v = J this is a matrix of
polynomials of nonpositive degree, so we have

vy 5((2, y)MT) = Uy, 5(M112 + Mgy, Moy + Maoy)
=5+ max{deg(MH:): + Mlgy), deg(MgliL' + Mggy)}
< v + max{degx,degy} = vy 5(x,y).

(7.106)

In case v < § we have

(7.107) deg(My1) =0, deg(Mi2) < J—7, deg(Ma1) = —o0, deg(Maz) =0
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so in this case we have the similar inequality
Oy (2, ) MT) = vy s(Muiz + Mioy, Moz + Maoy)
= max{y + deg(Mi1z + Mi2y), o + deg(Ma1x + Maoy)}
< max{7y + max{deg(Miix),deg(Mi2y)}, + deg(y)}
< max{y+degz,d +degy} = vy 5(x,y).
Since Mt € Hs_., we can plug M~! in place of M and then plug
(z,y)MT in place of (z,y), getting the inequality v, (2, y) < vy s((z,y)MT).

In conjunction with the above we have v, 5((z,y)MT) = v, 5(x,y) so M is in
G, s and thus Hs_, < G, 5. This concludes the proof that G, s = Hs_,. [

Proposition 7.37. Every valuation v on Fq[u}Q is equivalent to a unique
standard valuation.

Proof. Let (z,y) # (0,0) be a vector attaining the minimal valuation, namely
(7.108) v(z,y) = my.
From Definition |7.33(1) and the minimality of (x,y) we get that

— v ( ged(z, y) ——— ged(2, y) ———
v(z,y) = (g d( ’y)gcd(x,y)’g d ’y)gcd(a:,y)>

(7.109)

x Yy
= deg(ged(z,y)) +v <gcd(x, y) ged(z, y))

> deg(ged(z,y)) + v(z,y)
so deg(ged(z,y)) < 0, hence x and y are coprime.
We can therefore take M, ) € SLa(IFy[u]) to be the matrix from Eq. (7.12)

satisfying (1,0) = (z, y)M(;z;). For the valuation v" = vx M, .y we then have

U/(va) = U((Z,U})M(ja;y)) > my, (2,w) # (0,0), UI(LO) =v(z,y) =my

s0 v'(1,0) = myy.
Let (z,1) € Fy[u]? be a vector with

(7.110) v'(2,1) = min{ov'(z,1) : x € Fylu]}.
Let
(7.111) M = <(1) i) € SLy(F,[u))

and note that (1,0)M7T = (1,0). For the valuation v” = v'x M we then have
" (t,w) = ' (t, w)MT) > my, (t,w)#(0,0), v"(1,0) =2'(1,0) = my
so v”(1,0) = my». Moreover
min{v”(x,1) : x € Fy[u]} = min{v'((z, )M7T) : x € Fy[u]}
=min{v'(z + 2,1) : @ € F,[u]}
=min{v'(z,1) : # € Fy[u]} = '(2,1) = 2"(0,1).
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Set v = v"(1,0) = my» and 6 = v”(0,1) so that v < §. We claim that
(7.112) v =y,

and thus v is equivalent to the standard valuation v”. To prove the claim,
note first that by Definition [7.33(2) and Definition [7.33(1) we have

(7.113) V(2. y) = v"(2(1,0) + y(0,1)) < max{v”((1,0)),v"(y(0,1))}
= max{deg(z) + v"(1,0),deg(y) + v"(0,1)} = v, 5(z, y).
Suppose toward a contradiction that there exists a vector (x,y) with

(7.114) V" (2, y) < vys(z,Yy)
so in particular (z,y) # (0,0). If v + deg(x) > 0 + deg(y) then we have
Y + deg(x) = v(1,0) + deg(w) = " (2(1,0)) = v"((z,9) + (0, ~y))

< max{v"(z,), 0" (=y(0, 1))} = max{v"(z,),v"(0, 1) + deg(y)}

= max{v/(,y),6 + deg(y)} < max{v, 5(z,y),7 + deg(x)} = 7 + deg(a),
a contradiction. Similarly, if § 4+ degy > v + deg z, we have

5+ deg(y) = v (y(0, 1)) < max{v” (z,y), " (~2(1,0))}

— max{v”(z, ), 7 + deg(x)} < & + deg(y),

a contradiction.
Finally, if v + deg(z) = 6 + deg(y), so in particular

(7.115) deg(z) = 0 — 7 + deg(y) > deg(y) > 0,
we can use division with remainder in Fy[u] to write
(7.116) = = wy+r, deg(r) < deg(y) < deg(z), deg(w) = deg(z)—deg(y).
Since v"(0,1) = min{v"(z,1) : z € Fy[u]} we have
0 + deg(y) = v"(0,1) + deg(y) < v"(w,1) + deg(y) = v" (wy,y) = v"(z —1,y)
< max{v"(z,y),v" (-r(1,0))} = max{v"(z,y),v" (1,0) + deg(r)}
= max{v"(2,y),7 + deg(r)} < max{v,s(z,y),7 + deg(z)} = 6 + deg(y),

the final contradiction.

We have seen that v is equivalent to the standard valuation v, 5. To prove
uniqueness, assume that v is also equivalent to some standard valuation
vy 5. We conclude that v, 5 is equivalent to v, 5 so
(7.117) v =0y5(1,0) =my s =My, = vy s(1,0) =7
Since the valuations v, 5 and v 5 belong to the same orbit under the action
of SLy(IF,[u]), their stabilizers are conjugate subgroups of SLa(F[u]), so they
have the same cardinality. We conclude from Proposition that

3 3 !
¢ —q Y=0_ Ja®—q =9
7.118 = ,
( ) {(q_ 1)q6—'y+1 < ) {(q_ 1)q6 —y+1 v < 5.
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As ¢ — ¢ is not equal to ¢ — 1 times a power of ¢, we infer that & = ¢ and
thus v, s = vy ¢ as required for uniqueness. O

Proposition 7.38. For every indefinite quadratic form Q(X,Y") over Fylu]
there exist linear forms L1(X,Y) and Lo(X,Y) over F, ((u™')) such that

(7.119) Q(X,Y) = Li(X,Y)Ly(X,Y).

This factorization is unique up to scaling L1 by an element of Fy((u™1))*
and Lo by its inverse, and up to changing the order of the factors.

Proof. The discriminant D = ac — b%/4 of Q(X,Y) = aX? +bXY +cY? is
indefinite, namely the infinite place of Fy(u) splits in the splitting field of
F(T) = T? + D over F,(u), or equivalently —D is a square in the comple-
tion F,((u™1)) of F,(u) at infinity. This means that there exists a unique
(unordered) pair of scalars Aj, Ay € Fy((u™!)) such that

Q(X,Y)=Y? <a (;()2 + b% —|—c> =Y?% <§f - Al) (‘;( — /\2>

=a(X — MY)(X — \Y).
O
Notation 7.39. Using the notation of Proposition for a primitive rep-

resentation (Q, (r,y)) we define a function on F,[u]? by

U(Qxyy) (z,w) = max{deg(L1(z,w))—deg(Li(x,y)),deg(La(z, w))—deg(La(x,y))}

where the degree of a nonzero element of F,((u™!)) is the degree of its
highest-order term in w. It follows from the uniqueness part of Proposi-
tion |7.38|that the function v(Q is well-defined.

z,y)

Lemma 7.40. The function vg y)(z,fw) is a valuation, and it satisfies

5 deg(Q(z,w)) — deg(Q(z,y))
- 2
Proof. To check Definition (1), we just need to note that for every poly-
nomial a € F,[u] we have
deg(Li(az,aw)) = deg(a) + deg(L;(z,w)), i€ {1,2}.

For Definition 2), one has to observe that for ¢ € 1,2 we have
deg(L;(z+r,w+s)) = deg(L;(z,w)+L;i(r,s)) < max{deg(L;(z,w)),deg(L;(r,s))}.

To verify Definition 3) note that twice the value of the function equals
2max{deg(L1(z,w)) — deg(L1(z,y)), deg(L2(z, w)) — deg(La(z,y))} >
deg(L1(z,w)) — deg(L1(z,y)) + deg(La(z, w)) — deg(La(z,y)) =
deg(L1(z,w)La(z, w)) — deg(L(z,y)La(z,y)) = deg(Q(z, w)) — deg(Q(z,y))

(7.120) 08 y)(z, w)

)
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and Q(z,w) # 0 for (z,w) # (0,0) by the homogeneity of @ and Eq. (7.37),
so the above is at least —deg(Q(z,y)). This concludes the verification of
Eq. (7.120) and of all the conditions a valuation must satisfy. O

Associating a valuation to a representation is an SLg(F,[u])-equivariant
operation, as we shall now see.

Proposition 7.41. Let (Q,(x,y)) be a representation by an indefinite qua-
dratic form, and let M € SLa(FF4[u]) be a matriz. Then

QxM . Q
(7.121) U(a:y)*M =Yy * M.

Proof. Since Q(X,Y) = L1(X,Y)L2(X,Y), we get from Definition |7.6| that
(7.122) (Q+ M)(X,Y) = Q(X,Y)MT) = L (X,¥)MT) L((X, V) MT)
and from Definition [7.4| that (x,y) * M = (z,y)M 1. Therefore

s (2210) = e {deg(Lil(z w)M")) — deg(Li((w,y) M~ M)

= max {deg(Li((=, w)M™)) — deg(Li(w,y))} = (v ) * M)(z,w)

for every vector (z,w) € Fy[u]?, in view of Definition [7.35. O

Remark 7.42. We can think of the set of valuations on F,[u]? as an analogue
of the upper half-plane, on which SLy(F,[u]) acts, and our set of (standard)
representatives of each SLg(F,[u])-orbit as an analog of the usual funda-
mental domain for the action of SLg(Z) on the upper half-plane. To each
indefinite quadratic form (Q one associates a geodesic in the upper half-plane,
which for us consists of the valuations v(ciyy) for the various vectors (x,y).
We will show that the standard representations correspond to points on this
geodesic that lie in the fundamental domain.

Lemma 7.43. Let (Q, (z,y)) be a primitive representation of A € Fylu] by
an indefinite quadratic form. If the associated valuation is standard, namely

(7123) U(Ci y) Vy,5, Y <49,
then (Q, (x,y)) is a standard representation of weight

1 _
¢3—q =29

v < 4.

(7'124) w(Qv ($7 y)) = Wi—y = {

Proof. Tt follows from Lemma and our assumptions that
(7.125)
deg(az® + bzw + cw?) = deg(Q(z,w)) < QU(Ci’y)(z, w) + deg(Q(x,y)) =
20y 5(2,w) + deg(A) = max{2y + 2deg(2),20 + 2deg(w)} + deg(A).
Taking w = 0, z = 1 above, we see that

(7.126) deg(a) < 27 + deg(A),
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taking z = 0, w = 1, we see that
(7.127) deg(c) <2 + deg(A),

taking z = u®~7, w = 1 in Eq. , and using Eq. (]7.126[), Eq. (]7.127[)
we see that

deg(b) + 6 — v = deg(bu’ ™) = deg(Q(u’7,1) — au® =2 —¢) <
max{deg(Q(u’"7, 1)), deg(au®~?7), deg(c)} < 26 + deg(A)

SO
(7.128) deg(b) < v+ 0 + deg(A).

From Eq. (7.37) we get that Q(x,y) # 0 so for the linear forms L; and
Lo from Proposition we have that deg(L1(x,y)) and deg(Lo(x,y)) are
finite, hence

(7129)  0=102  (,9) = vys(z,y) = max{y + deg(),d + deg(y)}.
Therefore
(7.130) deg(z) < —v, deg(y) < —0.

Set s = § — 7. Our proposition reduces to showing that the discriminant
D = ac — b%/4 of Q satisfies

(7.131) deg(D) = 2y + 2 + 2deg(A).
Indeed it follows from s = § — v and Eq. (7.131]) that

_ deg(D) deg(4) s deg(D) deg(4) LS
1Ty 2 2 T4 2 2

so Eq. (7.89) and Eq. (7.90) follow from Eq. (7.126)), Eq. (7.128)), Eq. (7.127]),
and Eq. (7.130)

To check Eq. , write
Li(X,Y) = a1 X + 1Y, Lo(X,Y) = axX + BoY, a1, B1, a9, B2 € Fy((u™))
so that
Q(X,Y) = (1 X+B1Y) (a2 X +2Y) = ar02 X+ (a1 fo+S1a) XY +51 B2
and thus

(7.132)

(o182 + Bra)? (12 — 51062)2.

(7.133) - D= 1 — OqOQﬁlﬁQ = 4
Therefore, it suffices to show that
(7.134) deg(a1 82 — frag) = v+ + deg(A).

For i € {1,2} we have
v =1v,5(1,0) = v (1,0) > deg(Li(1,0)) — deg(L;(x,y))

(7.135) (e0)
= deg(a;) — deg(Li(z,y))
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and similarly

(7.136) 5 =vy5(0,1) =07

(o) (0, 1) = deg(B;) — deg(Li(z,y))

SO
(7.137) deg(a;) < v+ deg(Li(z,y)), deg(Bi) <d+ deg(Li(x,y)).
We conclude that
deg(ai1fy — Praz) < max{deg(a1) + deg(f2), deg(f1) + deg(az)} <
v+ 0 + deg(Li(z,y) L2(7,y)) = v + 6 + deg(Q(z,y)) = v + 0 + deg(A)

so we have established one inequality towards Eq. (|7.134)).
Assume for contradiction that the inequality above is strict. Denoting by

az(»o) the coefficient of «; in degree v + deg(L;(x,y)) for i € {1,2}, and by

650) the coefficient of 3; in degree ¢ + deg(L;(z,y)), we can interpret our
assumption for contradiction as

(0) (0
(7.138) det (a%m a%m) = ol - (% = 0.
1 2

Let (r,t) € Fg be a nonzero vector in the kernel of the matrix above. By
examining the coefficients in degree ¢ + deg(L;(z,y)) we see that

deg(Li(ru’ 7, 1)) = deg(ru’a; + t8;) < 6 + deg(Li(z,y)), i € {1,2}.
Since (at least) one of the scalars r, ¢ is nonzero, we get that
0 = max{deg(r) + 0,deg(t) + 0} = v%(s(ru‘;_v, t)

= vf? J(ru®7 1) = max {deg(Li(ru’~7, 1)) — deg(Li(z,y))} < 6
Yy i€{1,2}

which is a contradiction. This verifies Eq. (7.134)), completing the proof. [

Lemma 7.44. For every standard representation (Q, (x,y)) of a polynomial
A by an indefinite quadratic form, there exist integers v < § such that

(7.139) Ve ) = Uy

Proof. Following Definition [7.31, and Eq. (7.132)) we define

deg(D) deg(A) s deg(D) deg(A) s

14 = — — = = — 2
(T140) v == 2 T2 0T > 3
and note that v, are indeed integers by Proposition Our assumption

that (@, (x,y)) is standard then gives

D
(7141) deg(z) < 7, deg(y) < 6. 07 =5, 7 +5= B _ deg(4),

By Proposition @, for i € {1,2} there exist linear forms
(7.142) Li(X,Y) = ;X + B;Y, ;B € Fg((u™))
such that
QX,Y) = Li(X,Y)Lo(X,Y) = a1aa X? + (182 + Bra2) XY + B1 Y2



122 WILL SAWIN AND MARK SHUSTERMAN

and

(o182 — Bran)?
4

(7.143) _ D=

as in Eq. (7.133).

It follows from our expression for @, Eq. (7.89)), and Eq. (7.143) that

de
(7.144) deg(an B2 + Praz), deg(an B2 — Braz) < g2( )
and therefore that
deg(D
(7.145) deg(af2), deg(fraz) < g2( )
We further infer from our expression for @, Eq. (7.89), and Eq. (7.141) that
de de
(7.146)  deg(aras) < % ) 5t dea(BiBs) < “ ) 5.

By Eq. (7.141)), for ¢ € {1,2} we have
deg(Li(z,y)) < max{deg(a;) + deg(x),deg(8;) + deg(y) }

< max{deg(;) — 7, deg(f;) — 6}
which either gives a lower bound on the degree of «; or a lower bound on the
degree of 3; (or both). Combined with the upper bounds on deg(a;a3—;) and
deg(B;a3—;) in the first case, or deg(a;/f3—;) and deg(3;33—;) in the second
case, we obtain using Eq. (7.141)) that

deglan) < j:g%D; § 47 — deg(as_;) Sdeg(D)
B — deg(B3—:) 2

= deg(A) + v — deg(L3—i(z,y)) = deg(Li(x,y)) + v

(7.147)

—§— deg(Lgfi(fEa y))

and
deeD) _ deg(az_;) deg(D)

deg(Bi) < { deat < — v — deg(Ls—i(z,y))
{dgéD)M v — deg(s-s) 2

= deg(A) + 0 — deg(Lz—i(x,y)) = deg(Li(z,y)) + 4.
The bounds on deg(«;), deg(3;) imply that for (z,w) € Fy[u]? we have

09 (z,w) = max {deg(z + Bw) — deg(Li(z,y))}
() ic{1,2}

< Zg'{l%g}{max{deg(az) + deg(z), deg(;) + deg(w)} — deg(Li(z,y))}

< max{y + deg(z),0 + deg(w)} = v, 5(2, w).
We must prove that this inequality is in fact an equality.

Assume toward a contradiction that for some (nonzero) vector (z,w) the
inequality above is strict, namely

(7.148) 'n%?)é:}{deg(aiz + Biw) — deg(Li(z,y))} < vy5(z,w).
€11,



MOBIUS ON POLYNOMIAL SEQUENCES AND QUADRATIC BATEMAN-HORN 123

For i € {1,2} let 041(»0) be the coefficient of «; in degree deg(L;(x,y)) + 7,
and let ,Bi(o) be the coefficient of f3; in degree deg(L;(x,y))+ 9. Let moreover
29 be the coefficient of z in degree vy,5(z,w) — 7, and let w® be the
coefficient of w in degree v, 5(z,w) — 0. Note that all the coefficients in

degrees higher than these are necessarily zero, and that (z(9, w(®) £ (0,0)
because (z,w) # (0,0).
In the notation above, Eq. (7.148)) translates to

0 0 0‘50) ago)
1 2

so the determinant of the matrix above vanishes, that is

(7.150) 80 — a8 = 0.

We conclude, using Eq. (7.141)), that

deg(an B2 — azf) < deg(Li(z,y)) + deg(La(z,y)) + v+ = deg(A) + v+
_ deg(D)
2

which contradicts Eq. ([7.143)). ([

Corollary 7.45. Let D € Fy[u] be indefinite. Consider the function

b
(aX? +bXY +cY?, (2,y)) — (az® + bry + cy?, ay.x + i(fa: + y2y) + CTy)

which maps a standard representation (Q,v) by a quadratic form of discrim-
inant D to the represented polynomial A = Q(v) and the associated solution
f to the congruence T>+ D =0 mod A. Then the image of this function is

(7.151)  {(A, f): A€ Fy[u]\ {0}, f€F,ul/(A), f*+ D=0 mod A}.
Moreover the number of elements in the preimage of any (A, f) from Eq. (7.151)
equals the inverse of the weight of any representation in this preimage.

Proof. It is immediate from Definition that the image of our function is

contained in Eq. . For (A, f) in this set, Proposition gives us a
primitive representation (@, (x,y)) of A by a quadratic form of discriminant
D such that the associated solution is f. By Proposition there exist
integers v < § and a matrix M € SLy(F,[u]) such that

(7.152) vy * M = vy,
Proposition then implies that

QxM
(7.153) Uyt = V10

Lemmal|7.43|tells us that the representation (Q', (z',/)) = (QxM, (z,y)xM)
is a standard representation of A with weight

31 =0
(7.154) w(@, (2, y)) = {" 7 !

DT v <o.
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It follows from Corollary that our function maps (Q', (z/,y')) to (4, f)
so its image is indeed given by Eq. (7.151)).

By Corollary @, the preimage of (A, f) under our function consists of
the standard representations of A that are equivalent to (@', (z,y’)). These
are parametrized by matrices N € SLa(IF,[u]) for which the representation

(7.155) (@ x N, (2, y') % N)
is standard. By Lemma [7.43 and Lemma this is equivalent to the
valuation
Q'*N
(7.156) v(x,fy,)*N

being standard. In view of Proposition and Eq. (7.153)), we are looking
for the set of all N € SLy(F,[u]) for which the valuation
(7.157) vy * N =1y 5% N
is standard.

Using the uniqueness part of Proposition [7.37, we see that the valuation
above is standard if and only if

(7.158) Uy, 5 * N = Vy,5-

We conclude from Proposition|7.36/that the number of elements in the preim-
age of (A, f) is

¢’ —q v=20

(7.159)  {NN € SLa(Fglu]) : vy, * N = vy 5} = {(q —1)gf 4 <6

At last, note that the above is the inverse of the weight of the representation
(Q', (2',y)) given in Eq. (7.154]). O

Notation 7.46. Following Definition [7.31, for an indefinite polynomial D in
F,u] we set

deg(D)

S(D) = {(s,a,b, c) €L x Fq[u]3 :deg(a) < —y s, deg(b) < deg(D)

2

deg(D b?
deg(c)S%%—s, ac—Z:D, 820}.

For (s,a,b,c) € S(D) let a(gy, by, c(o) be the coefficients of a, b, c in degrees

deg(D deg(D)  deg(D
(7.160) eg2( ) s, eg2( ), eg; ) 4

For a standard representation az? + bxy + cy? of a degree n polynomial, we
denote by x(g), y(0) the coefficients of z,y in degrees
n  deg(D) L5m deg(D) s

.161 - .
(7.161) 2 4 27 2 4 2
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Corollary 7.47. For every € > 0 we have

(7.162) S we< Dt
(s,a,b,c)eS(D)

Proof. For i € Z/2Z set S(D;i) = {(s,a,b,c) € S(D) : s =i mod 2}, and
note that it is enough to obtain the bound
(7.163) S w< Dt

Fix i € Z/2Z, and let (s,a,b,c) € S(D;i). Arguing as in the proof of the
first claim in Proposition [7.32] we find that (at least) one of the coefficients
a(0)s b(0); ¢(0) is nonzero. Therefore choosing zo, yo € F, via

(1,0) aq) #0

(7.164) (z0,0) = 4 (0,1) ag) =0, () #0
(1, 1) ag) = 0, C0) = 07 b(O) 7é 0

we see that

(7.165) a(o)xg + b(o)xoyo + C(O)y(z] #0.
Let n > degT(D) + s be an integer with
deg(D
(7.166) n= eg2( ) +4 mod 2,
and let z,y € F,[u| be coprime polynomials with
n deg(D S n  deg(D S
deg(z) < 5~ 4() + 5 deg(y) < 3~ 4<) — 5 (0) = %0 Y(0) = Yo-

It follows from our choices that the polynomial A = az? + bxy + cy? has
degree n, so this representation is standard. From the count of coprime
pairs (z,y) in [ABSR15, Proof of Lemma 7.3], it follows that the weighted
number of standard representations of degree n polynomials by forms of
discriminant D is

S T e I g S SN
(s,a,b,c)eS(D;i) (s,a,b,c)eS(D;i)

On the other hand, using Notation|[6.3] the number of such representations
is
(7.167) < Y plAF)

AeEMn
in view of Corollary By Proposition [6.5| the above is < ¢"|D| so
deg(D) 1
Y. we<g 7 DI =D
(s,a,b,c)€S(Dsi)

as desired. g
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8. PRIMES IN QUADRATIC SEQUENCES
We state and prove a uniform version of Theorem
Theorem 8.1. Fiz 0 < § < 1. Let p be an odd prime, let
(8.1) q > max{(16p65_1)3 , (96ep25_1)2}

be a power of p, and let

1
(82) y=1- ,—
12p—1 2p D

1 25—1
min {2 —6log, (16pe(5_1) _ % (96€p i ) } .

Let d be a nonnegative integer and D a polynomial in Fyu] with

(8.3) deg(D) < 2d(1 —9).
Let F(T) = T? 4+ D, and assume that F is irreducible in (Fq[u])[T]. Then
(8.4) > AP+ D) =6(F)g"+0(q"%), d— o,

feMgq

with the implied constant depending only on 6 and q.

Note that v < 1 in view of Eq. , so Eq. always gives a power
saving. If ¢ > (96ep?)? = max{(16pe)3, (96ep?)?} we can choose § < 1
satisfying Eq. , and in this way obtain a power saving bound for d suf-
ficiently large depending on deg(D). Specifically, we obtain a power savings

of m (1 — 2log, (966p2)) as this term always dominates in Eq. 1'

Proof. The identity A = —1x (- deg) expressing the von Mangoldt function
in terms of the Mobius function gives

2d
(8.5) AME(f) ==k > > w4
k=1 AeMy BEMoq_i
AB=F(f)
for any polynomial f € M. Summing Eq. (8.5) over all degree d monic
polynomials f € Fy[u] we get

2d
56 Y AFED=-XEY Y Y A
feMy k=1 feMqgAeM BEMog_i
AB=F(f)
Fix e = €(q) € (0,6/4). The contribution of the range (1 + ¢)d < k < 2d
is

2
+D
CRAREEE D Y S 3 “(fB >
(1+e)d<k<2d BeMaa_  g€Fylu] Femy
deg(g)<2d—k [=g mod B

F(g)=0 mod B
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Writing f = g + CB we get

( +€)d<k<2d BEM 2d—k ge]Fq u CEMkfd

deg(g)<2d—k
F(g)=0 mod B

We note that the quadratic polynomials

2
D
(8.8) G(T) = BT? + 297 + L+

€ Fylu][T]

(appearing in the Mdbius function above) are separable in the variable T'
for every B, g. Indeed the discriminant of G in T is

g~|—D

(8.9) (29)% —4BZ—— = 4¢g® — 4(g> + D) = —4D # 0.

We can therefore apply Theorem with
C1 = maX{2d_k7deg(D)_(2d_k)}7 c2=0,9=11= Mk—da Bl = (1_‘_271)2

obtaining

2 D maxq2d—k,de —(2d—
Y <BC2 Log0 1 Y ; ) « ql—d)(1-an) g2max{2d—tdeg(D)—(2d—1)}
CeMy_gq

_ gD (i—a) <(1 I 2%)4(251%) T (1 2,)/1)4deg(D)f4(2dfk)>
for any a7 and 0 < 1 < 1 satisfying Eq. (5.1]), namely
log, m

< q(kf—d)(l_al) (ﬁ (2d—k) +B2deg (2d—k)>

1
(8.10) 0<a < » + — 2log, (1 +271).

By Proposition the contribution of each & with (1 +¢€)d < k < 2d to
Eq. (8.7) is then

< gh=d(1-a1) ((1+2,71)4(2d—k:)+(1+2,yl)4deg(D)—4(2d—k)> Z Z 1

BeMaq—r  g€Fq[u]
deg(g)<2d—k
F(9)=0 mod B

_ q(kfd)(lfoq) ((1 + 2,)/1)4(2d7k) + (1 + 2,}/1)4deg(D)74(2d7k)) . |D’o(1)q2d7k
’D‘O d —al( )(1 + 271 ) 4(2d—k) + ’D‘O(l)qdq_al(k_d)(l + 2,)/1)4deg(D)—4(2d—k)_

The first term is exponentially decreasing as a function of k. Hence for
k> (1 + €)d it is bounded from above by

(8.11) | DI glqored(1 4 2470179,
Therefore, in order to obtain power savings, we need

(8.12) g (1 +291)1079 < 1.
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If we assume for the moment that Eq. (8.12) holds, using our assumptions
that € < g < %, we get

(8.13) ¢ (1+2m)" <1

so the second term | D] gdg—1(k=d) (14.2+, )4 dea(D)=4(2d=F) i5 exponentially
decreasing as a function of k, and thus is bounded from above by

(8.14) ‘D’O(l d —aled(l + 271)4deg(D)—4(1—5)d
which is also bounded by Eq. (8.11) since
(8.15) deg(D) < 2(1 —6)d < 2(1 —¢€)d.

Consequently, the contribution of the range (1+¢€)d < k < 2d to Eq.
is at most

(816) d2|D|o d —aled(l + 2,)/1)4(1—6)61
as long as we have Eq. (8.10) and Eq. (8.12). We now specialize
5 € 6 i logq 71 . 471

6:1210—1’71:2(4—26)]9:2]9(41839—41—25)’&1:2p P log q

which satisfies the second inequality in Eq. (8.10) because

i + lqu 71 4’}/1 1 4 lo gq 71

2p p logq ~ 2p
and satisfies Eq. (8.12), and thus the first inequality in Eq. (8.10]), because

(8.17) o) = — 210gq(1 +2v1)

q—oqe(l _{_271)4(1—6) < q—alee&q(l—e) _ q—ﬁ,yl_ie4ev1+8(1—e)%

(8.18) e o ~p
=4q 2”7
2pe(48p — 4 — 26)

which is < 1 since g > (96ep?6—1)2 > (2pe(48p — 4 — 26)6~1)2 by Eq. .
Applying Eq. @, and using our assumption |D| < qu(1 %) which

guarantees that d?|D|°") is bounded by any exponential in d, we conclude

that the total contribution of the range (1 + €)d < k < 2d to Eq. (8.6) is

(8.19)
d<
2pe(48p — 4 —26) \ 7 1 ey (12 log, (LESE=A=200))
< qd ( pe( p; )) _ (qd> 2p(12p—1) q 5
q20
This is bounded by ¢?¢, for our choice of v in Eq. 1'
The contribution of the range k < (1 + e)d to Eq. (8.6)) is
(8.20) = Y kY u(A)pa(A;F)
1<k<(l4+e)d AEM,
so by Eq. from k < d we get

(8.21) —qud S "

AeMy,




MOBIUS ON POLYNOMIAL SEQUENCES AND QUADRATIC BATEMAN-HORN 129

By Corollary from d < k < (14 €)d we have

(8.22)

S —kg™F > u(A)p(A; F)+
d<k<(l+e)d AeMy

—hu hf
d—k

Z —kq Z e( I ) Z wu(A) Z e(A).

d<k<(1+e)d heFq[u]\{0} AEM,, FEF,[u)/(A)
deg(h)<k—d F(f)=0 mod A

Uniting the first term in Eq. (8.22) with Eq. (8.21)), and applying Propo-
sition we get

(823) = 3 k" Y (A4 F) = 6(F)g + o (df)

1<k<(1+€)d AEM,,

which gives us our main term and an admissible error term. The second

term in Eq. (8.22) is

(8.24) < d*  sup sup Z w(A) Z e <Z{) .
(4)

d<k<(14+e)d heFq4u] AEM, FEF,[ul/
F(f)=0 mod A

By Corollary and Proposition [7.15, the sum in absolute value above,

in the definite case, equals

(8.25)
1+¢g-1 hx
Z Qdef(clbdeg(a) Z u(ax2+bmy+cy2)e <>
a,b,c€Fq[u] 1 z,y€lq[u] Y
deg(c)>deg(a)>deg(b) ged(z,y)=1, y7#0
4ac—b2=4D az?4-bry+cy? M,

where we have excluded y = 0 because then we have a factor of u(ax?) which
is zero. Indeed if it were nonzero, then x would be a nonzero constant, so
from Eq. (7.55) and our initial assumption on deg, (F') we would get

k = deg(A) = deg(az?® + bry + cy?) = deg(az?)

(8.26) - deg(D) _ deg,(F) _2d(1-0) _

_d d
eg(a) 2 2 ~ 2

which is impossible because we are in the range d < k < (1 + €)d.

Let us now check that the assumptions of Proposition[7.15]are indeed met
here, namely that Eq. and Eq. hold. Using the second line in
Eq. (8.26), and the fact that deg(b) < deg(a) we get

(8.27) deg(h) < k—d = deg(A)—d < deg(A)—deg(a) < deg(A)—deg(b)—1
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so Eq. (7.44) is verified. By Proposition and Eq. (8.26) we have
deg(A) + deg(y) — deg(a) — deg(z) =
max{deg(a) + 2deg(z), deg(c) + 2deg(y)} + deg(y) — deg(a) — deg(z) >
max{deg(z) + deg(y), des(c) — d(1 - §) — dea(x)}.
If toward a contradiction Eq. (7.45) fails, then the above is at most

deg(h) + 1 which is bounded by k — d. The latter does not exceed ed,
o)

(8.28) deg(x),deg(y) < ed, deg(c) < d(1 —9) + deg(x) + ed
and thus
k = deg(A) = deg(az? + bry + cy?)
= max{deg(a) + 2deg(x),deg(c) + 2deg(y)}
< max{d(l —0) + 2ed,d(1 — J) + 4ed} = d(1 — § + 4e) < k(1 — 0 + 4e)
a contradiction since € < d/4. Our invocation of Proposition [7.15 is thus
justified.

We then apply the triangle inequality to the sum over a, b, ¢, y in Eq. (8.25),
to get

(8.29)
WE
< ¥ S | T st mrare ()
a,b,ceF ¢ [u] yEF [u] TESq e,y y
deg(c)>deg(a)>deg(b) y7#0 ged(z,y)=1
4ac—b%?=4D deg(y) < E=deel)
where
(8.30) Sabey = {x € Fylu] : az® + bxy + cy* € My}

We claim that for a,b, ¢,y as above, the set S, ., is a disjoint union of at
most two intervals in F,[u], the degree of which is at most (k—deg(a))/2. To
show this, recall from Proposition that since D = ac — b?/4 is definite,
we have

k = deg(az? + bry + cy?)

(8.31) = max{deg(a) + 2 deg(z), deg(c) + 2deg(y)} > deg(bxy).

In case deg(c) + 2deg(y) < k, the leading coefficient 1 of the monic poly-
nomial ax? 4 bxy + cy? is the leading coefficient of az?, that is the leading
coefficient of a times the square of the leading coefficient of x. Hence, if
the leading coefficient of a is not a square in F, the set Sy, is empty.
Otherwise, if the leading coefficient of a is A2, for some \ € F, then

(8.32) Sabey = A1 Micdes@) U (=A71) - Mi—deg(a) -
2 2
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Suppose now deg(c) + 2deg(y) = k. If cy? is monic, we have

k — deg(a) } |

(8.33) Sabey = {x € Fylu] : deg(x) < 5

If cy2 is not monic, then the set Sg ., is empty in case k # deg(a) mod 2,
while in case k = deg(a) mod 2, denoting by fy the leading coefficient of a
polynomial f € Fg[u], we get
2
(8.34) Sapey = {w € Fylu] : deg(z) = kd;g@)’ z2 = 160%}
ao

which is a disjoint union of two (possibly empty) intervals corresponding
to polynomials with leading coefficient equal to one of the square roots of
(1—coyg)/ao in F. This concludes the verification of our claim in all cases.

We use Corollary [7.29 to bound the number of triples (a, b, ¢) in the outer
sum of Eq. (8.29), and recall from Remark that deg(c) < deg(D), so it
suffices to control
(8.35)

; hT
|D|3+o) o 3 3 /%w9+bmr+@%e<y>
4(;CLb2=q4D yEIFq [u} ajeI{L,b,c,y
deg(b)<deg(a)<deg(c)<deg(D) y70 ged(w,y)=1
deg(y)< t=dez(c)

where Z,p ., is an interval in Fy[u] with

k—d
(8.36) deg(Ta pey) < ;g@
for all a, b, c,y.

Fixing a, b, ¢, we define the polynomial
(8.37) F,(T) = aT? + byT + cy? € F,[u][T]
for any y € Fy[u] \ {0}, and note that its discriminant in the variable T is
(8.38) (by)? — dacy® = y*(b* — 4ac) = (2y)* - (D) #0

so I is a separable polynomial in T'.
Setting

k—d - -

_ eg(c)7 o=k o= kK deg(a)’ o — k — deg(a)

2 2 2
we see that the coefficient of T* in F,(T') has degree at most c1 + icy for
i € {0,1,2}. Therefore, Corollary 5.3 allows us to bound Eq. (8.35) by
(8.39)
|D|%+0(1) max q
a,b,c€Fq[u]

4ac—b*>=4D
deg(b)<deg(a)<deg(c)<deg(D)

n

2]9_3%%(‘1) k—deg(c)

By (14372) 2

k—d k—d
Qeg(C) q ;g(a) (1—az)
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where ag and 0 < 2 < 1 satisfy Eq. (5.48]), namely

(8.40)
1 logq 72

. 1
0 < ag < min {2 — 101og, (1 + 27v2) +log, (1 + 372), - +

o —2logq(1+2fyg)}

and B2 = (14 2v2)%.
We can separate the terms involving k from those involving a,b,c, in
Eq. (8.39), rewriting the latter as

1 _ deg(D) , deg(a)  ~ 3dce(a) _ deg(e) _agy k k
| D|z o) max ¢ 2 Tz 28 2 (143y)" 2 ¢FTE)BR (14 3y)0.
a,b,c€eF ¢ [u]
4ac—b2=4D

deg(b)<deg(a)<deg(c)<deg(D)

Observe that the terms depending on deg(a) are increasing, and those de-
pending on deg( ) are decreasing. We may therefore replace deg(a) by its

upper bound ¢ ( ) and deg(c) by its lower bound deg( ) , obtaining
(8.41)
ea(D) , deg(D)  ~ 39e&(D) deg(D) k
< qlato(V)des(D) (=S558 a2 g T (] 4 g )= ST - F) 82 (1 4 By,) 8

-

s 3 deg(D) , 1 L k
= <q4+0(1)524(1+3f}/2)4> < 2522(1+372)2>
deg(D k
) ( -7 1+2’Y2)(1+372)%>
2d(1—6) d(1+e)
) ( 177(1+272)(1+3’72)%>

[CERIL Sde d
_ (ql—i-e—%—‘ro(l)(l_1_272)(44-5—36)(1_’_3,}/2)%) )

(NI
»N»—t

- (q%?“(l)(l +299)3 (1 + 372)”

3
2

N

< (q%ﬂ(l)(l +272)2 (1 + 372) "

We now specialize to
J 30 1 loggyve 4y
fry 7,’)/2 pry 70{2 = — _—
12p—1 4(12p— 1) — (15p — 4)6 2p P log g
which satisfies the third inequality in Eq. (8.40) because

1 loggye Ay 1 loggne

2p P logg  2p
To check that the second inequality in Eq. (8.40) m ) holds, we first note that

ay = — 2log, (1 + 272).

84 42 2p
(8.42) g>3.57... = et > B D = T DT D1,

As a result, since 0 < 9 < 1 we have
% (1 + 272)8 —1

< (142 T < M2 — paiazp- 1) (15p 05 < eM12p- 1) (15p 9 < 2p )
T 30) = (1+272)" < q
Taking logarithms to base ¢ gives

log, 72 —1
(8.43) =212 4 8log, (1 4 2y2) — log, (1 +372) < 2

2p
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or equivalently

i + logq Y2
2p
which implies that the second inequality in Eq. (8.40) holds as the third
does.

Multiplying Eq. (8.41) by the factor d? from Eq. (8.24), we absorb it,
together with ¢°D . into an exponential savings in d, so we get

— 2log, (14 272) < 5 — 10log, (1 + 272) + log, (1 + 372)

1
2

6pdag 36p—4 6pd

’ (q”mg-l‘w—l*“(”(l +290) 4 (14 ?m)”p‘l)

d
S 6pdag _ 36p—4 6pd
It 45, =7 —T3p—1 6272 (4 12p—15>+372 12p—1)

35 68 24pvo 8 6pd

d
5 3 — 36p—4
1+ Top—1  Top—1 ~ T2p—1 o 12p—1 +272 (47 Top T 5) +372 Top—1 )

2

8(12p—1)—(30p—8)5 ) d

65
- <q T2p—1 72_ 12p—1 .72 12p—1

d

25— -09 65
q1712p71f}/2 12p-1 612pl>
d)l—lﬁfl(l—Slogq(e/’yg))

4(12p—1)—(15p—4)¢
)

d 1—#5_1(1—310&1(6
= ()
In particular, by our definition of v in Eq. , this is bounded by ¢
This also verifies the first inequality in Eq. (8.40).

In case D is indefinite, we get from Notation [7.46, Corollary and
Proposition that the sum in absolute value in Eq. equals

(8.44) Z Ws Z p(az? + bry + cy?)e (?) .

(S,a,b,C)GSD xvyeFlI [u]
ged(z,y)=1,y7#0

deg(z)<k - deeD) 4 s

az?+bry+cy? M,

The condition y # 0 is justified here in the same way as in the definite case,

only that here we need to refer to Eq. ([7.89)) instead of Eq. (7.55).
We check that the assumptions of Proposition [7.15| are satisfied in this

case. From our initial assumption on deg, (F') we get that

deg(h) < k—d—1 = deg(A)—d—1 < deg(A)—degQ(D)—l < deg(A)—deg(b)—1
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so Eq. (7.44) is satisfied. Moreover we have

deg(D k  deg(D
deg(h) + deg(a) + deg(z) — deg(A) < k—d+eg2<) —stg - eg4( ) - % —k=
deg(D) s kE _ d(1-29) (1+¢e)d d(e—0)
— 2 d+s <=2 g = <-1<d —1
4 2 T L g S-lsdesly)
so Eq. (7.45) is satisfied as well.
Arguing as in the definite case, we arrive at
(8.45)
Z Wy Z Z wulazx® + by + cy“le | —
(s.0b0ESp YR \{0)  [2€Sasey Y
deg(y)gg—idci(D) -£ ged(z,y)=1
where
k  deg(D
Ssabey =12 € Fylu] : deg(x) < 5~ eg4( ) + %, az’® 4+ bry + cy® € My}
We can rewrite the set above as
k deg(D) s
Ssabey = {2 € Fylu] : deg(z) < 2—4()+2, a(0) o) +b(0) T(0)¥(0) +¢(0)¥{o) = 1}

where (for instance) (o), (o) are the coefficients of =,y in degrees

k deg(D) s k deg(D) s

2 4 27 2 4 2

as in Notation Therefore the set Sy, is a disjoint union of at most
two intervals in F,[u], corresponding to the solutions of the (possibly degen-
erate) quadratic equation in Z(0)-

As in the definite case it is thus enough to control

(8.46)

hx
Ea) Y e Y > ur e (%)
(s,a,b,c)eSD yqu [“]\{O} IEZSaaﬁb«C’y

d D =
deg(y)<k—deaD) s |ged(z,y)=1

where Fyy(T) is the separable polynomial aT? +byT + cy?, and Ls.apcy 1S an
interval in Fy[u] with

(8.48) AeB (Lo ey) < o — SE) 12
Applying Corollary [5.3| with
po b desD) s o _des(D) s K k_deg(D) s
2 4 2’ ’ 4 2 2’ 2 4 2

q<§_degf<m_%)+(§_degT(D)+§)(1—a2)ﬁ2k+3<degT(D)_§_g
2
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for the sum over y in Eq. (8.47). The above can be rewritten as
deg(D) ay 3 D\ 8
) <q252 ge +3'Y2)2>

deg(D)

PN
w

2-ap 1 1 g _2-ap 3 -
2(q 2 B3 (1+3y2)2 ¢ 7 By (1+4392)

2= 1 N\ e 3 _1
<L lqg 2 /82(1+3'72)2 q ¢ /82(1+3'72) 4

since s > 0 and the term being raised to the power s is a product of factors
that are individually at most 1, hence is bounded by 1.
Summing over Sp we get from Corollary that

k Coeay B . deg(D)
) (q 53 (14 3) ) Y e

(s,a,b,)€5D

N

2-ap 1
<q 2 B3 (14 372)

1 x2 1 1 k ag 1 3 1 deg(D)
(q T (L 372)?) (q4+°( B3 (1+ 372)—4> :

This is identical to the bound obtained in the definite case, more specifically
on the second line of Eq. (8.41). We may thus give the same argument
(choosing the same ¢, as,¥2), and again obtain a bound which is < ¢*¢. O

Remark 8.2. The optimal value of € depends on ¢, p,d. As § becomes smaller,
the contribution of the range d < k < (1 + €)d becomes more difficult to
bound, forcing us to lower e. As g grows, this contribution becomes easier
to bound (even compared to the contribution from k > (1 + €)d), allowing
us to raise e.

There is likely no closed-form formula for the exact optimal value of e,
and if there was it would make our formulas distressingly complicated, so
we have chosen to approximate. Specifically, we have chosen € to roughly
optimize the range of ¢, in which we have some savings, rather than to
optimize the amount of savings when ¢ is large and § ~ 1. (This would

require a much larger value of €, close to T{H’ obtaining power savings

tending to m as ¢ — oo and 6 — 1 with p fixed. )

The specific nature of our choice of € is that it makes the first lower bound
in Eq. proportional to 3. We have chosen € this way because making
that lower bound proportional to 62 is impossible, requiring e = 0. We
could choose an intermediate growth rate (the optimum should be roughly

6~ 21og(671)), but this would again give a messier formula, for a mild gain.

9. TRACE FUNCTIONS VS PRIMES

Lemma 9.1. For a prime m € Fyu] and an integer k > deg(m) we have

—1 k=0 mod deg(m)

(9.1) Z w(A)=<q k=1 mod deg(m)

AEMy, 0 otherwise.
w|A
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Proof. We rewrite our sum as

> wBr) = > wBr)=px) Y. wu(B)

BeMkfdeg(w) BEMkJ(deeg(ﬂ) BeMk)(deeg(w)
s s
(9.2)
oD L N ()
BEMkfdeg(ﬂ) CeMkfdeg(ﬂ')
w|B

and argue by induction on k. For the base case k < 2deg(w), the last sum
over B above is empty, so we are only left with minus the sum over C' which
equals —1 in case k = deg(m), equals ¢ in case k = deg(m)+ 1, and otherwise
vanishes by [Ros02, Exercise 2.12]. This matches the right hand side of
Eq. , so the base case is established. If k > 2deg(w) then the sum over
C vanishes, and the lemma follows from the induction hypothesis. O

We shall now deduce Corollary from Lemma [9.1} Theorem and
Theorem Our task is to show that for a Dirichlet character x of prime
conductor m € Fy[u], where ¢ is a power of a prime number p satisfying
q > 4e*p?, we have

1+4¢

S XU WA = O (1M 55 ]2 - |y 14|~
feM,

_ log,(4e’p?) > -1

foranthIF‘q[u],e>0,andC:(1—1—% -

Proof of Corollary[1.15. The identity A = (u - deg) * (—1) gives

(9.3) STXUHRAN ==k > uA) > x(AB+h).

feMy, k=1 AeMy BeM,

For any k < {n and any A € M that is not divisible by 7, the contribu-

tion to Eq. (9.3)) is

(9.4) <n > x(AC+AT"* +h)
CeFqu]
deg(C)<n—k
where C' = B — T" %, Since 7 { A, we are in the situation of Example
so we can invoke Theorem and get that the above is < nanik |7 [108a(3),
The contribution from all such £ and A is thus
(9.5)
n(14+¢)

n- n(1+C+2¢)
< iréacxn2|Mk‘qu|7r‘logq(3) < an 5 |7T|10gq(3) < q%
<(n

|7r‘logq(3)

for any € > 0.
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The contribution to Eq. (9.3 of all deg(n) < k < (n and all A € M
that are divisible by 7 is

< max n*| Y p(A) Y x(h)| = max ¢ Flx(h)]| Y u(A)

k>d k>d
>deg(m) A€|-AA/[k Bery s >deg(m) Aei/l\:k
T ™
< max annfk < n2qn7deg(7r)
k>deg(m)

in view of Lemma [9.1]
The contribution of all k£ > (n to Eq. (9.3)) is

2 2 n—k
< maxn > ) wAxAB+h)| < max n’q > wA)X(AB + 1)
BEM,,_j, A€M, BeM, . AEMy
and by Theorem this is

1, logq(2ep) £+ kloggy(2ep)

<< max n2qnik’Mk‘liﬂ+ P ‘71-’1qu(3) < max qn72p f‘i’ﬂl’?ﬂlogq(?ﬂ
k>(n k>(n

for any € > 0. Since ¢ > 4e?p? by assumption, the above is largest once k is
as small as possible, so we put £k = (n and get
(96) qn(l—%+wg+}2em+€)’7r|logq(3)'

One readily checks that our choice of ¢ in Eq. (1.34) (recalled before the
proof) is such that the bounds in Eq. (9.5) and Eq. coincide, giving
the final bound

w—i—en log,(3) n(1l4€)—deg(m)
(9.7) q || +q .
([

Proposition 9.2. Let m € Fylu] be a prime, and let t: Fylu]/(m) — C be
an infinitame trace function arising from a sheaf F whose geometric mon-
odromy representation does not admit the trivial representation Qg as a quo-
tient. For an integer n > deg(m) and a polynomial h € Fy[u] we then have

(9.8) > e (if) < c(t)g"|n| 3.
J€Fq[u]
deg(f)<n

Proof. In every residue class mod 7 there are ¢~ 4¢8(7)

less than n, so

polynomials of degree

n

(9.9 > wne(M) =5 X wne (M)

fE€Fq[u] J€Fqlu]/(m)
deg(f)<n
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Setting Fj, = F ® Ly (hx), and using the Grothendieck-Lefschetz trace for-
mula, we get
(9.10)

> owne(M)= T ot sz;

fEFq[u]/(m) yeA! (Fq[ul/(m))

tr(Fl"Ob‘ﬂ, Hé(A

where F, is the base change of F}, to the algebraic closure of Fy[u]/(7).

For ¢ = 0 there is no cohomology by the fact that F has no finitely
supported sections, Lemma (5), and Lemma 2). For ¢ = 2 the
cohomology equals the geometric monodromy coinvariants of Fp. These
vanish for A = 0 in view of our assumption that the geometric monodromy
representation of F = Fy does not admit trivial quotients, and also vanish for
h # 0 because F is infinitame hence its geometric monodromy representation
does not have Artin-Schreier quotients.

Consequently, using Lemma and Eq. (2.22) we get

,Fn) = —x(A Fn) = sWoo(Fi)—r(Fn)+ > €alFn).

. 1 1 1
dim H (A Folul/(m)’
z€|Al]

Fqlul/(m)

From Lemma [2.13|(5) and Lemma 5) we get that the above equals
(9.11) SWoo(Fp) — t(F) + cp(Fr) — swho (Fr).

In case h = 0 the above reduces to c(t) — r(t) because F is infinitame. In
case h # 0 we still have cp(Fp,) = cp(F) in view of Definition and since
F is infinitame, the local monodromy at co of Fj, is a direct sum of r(F)
copies of the local monodromy of Ly (hx), so Eq. @) equals

cr(F) + r(F)slope, (Ly(hx)) — r(F) max{slope,, (Ly(hx)) — 1,0} — r(F)

where the slopes are taken with respect to the representation of the inertia
group I, on the generic fiber. Since slope,, (Ly(hx)) = 1 by Lemmal[2.15(3),
the above equals ¢(t).

Since F}, is mixed of nonpositive weights by Lemma 4), each eigen-

value of Frob,, acting on H, CI(AW, F) is of absolute value at most |7|2
by Deligne’s bound, so Eq. (9.10)) is bounded by

(9.12) dim HX (AL Fp)|n|2 < c(t)||2.
Fo[ul/(m)

It follows from Eq. that our original sum is bounded by

(9.13) ¢"|r|te(®)|n|2 = e(t)q" x|

as required. O

. .
MW@VH»
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Corollary 9.3. With assumptions as above, for an integer 0 < d < deg(m)
we have

(9.14) S| <)l
f€Fg[u]
deg(f)<d

Proof. By Proposition [6.2] and Proposition [9.2] we have

> o=t % > wne(*)

f€Fq[u] h€Fq[u] fEFq[u]
deg(f)<d deg(h)<deg(m)—d deg(f)<deg(m)
hf deg(m) | |—% _ i
< swp S e ()] < ety @t = cqoyin .
heF,[u] u T
dog(h)<deg(m)—d |4, T f)]iche.]g(ﬂ)

We shall now deduce Corollary
Proof of Corollary|[1.1f. The identity A = (u - deg) x (—1) gives

(9.15) SHHAS ==D_k > wA) Y HAB).

feMy, k=1 AeMy BeM,,

For any k < {n and any A € M that is not divisible by 7, the contribu-

tion to Eq. (9.15) is

(9.16) <n Y tAC+ AT"F)

CEFg[u]
deg(C)<n—k

where C = B — T"*. Since m { A, the function C' ~ t(AC + AT"F)
satisfies the hypothesis of Proposition [9.2] and Corollary so the above is
bounded by

1 qnfk
(9.17) ne(t)|n|2 <1 + ] > .
The contribution from all such k and A is thus
(9.18)
n—k n(1+e)
< el Ml (1+ ) < et (600 + 0
k<(n ’7T| |7r‘

for any € > 0.
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The contribution to Eq. (9.15)) of all deg(w) < k < (n and all A € My
that are divisible by 7 is

< max n’ >ou4) D o) = Juax_n’g"~F|H(0)] > (A
2deg Aelfj\:k BEM,_i =aee Aelﬁftk

< max n2¢"Fr(t) < nq"dee™r(t)
k>deg(m)

in view of Lemma [9.1]
The contribution of all k& > (n to Eq. (9.15) is

2 2 n—k
< maxn YD wAHAB)| < max n’q > uA)AB)
BeM,, _ Ae My, BeM,,_ AeMy
and by Theorem this is

log, (2ep) 1 c(t)
< n2 g%ﬁqn—k’Mk‘l—i# o ‘ﬂ_’logq<r(t)<1+2p>+ o)

for any € > 0. The above is largest once kK = (n so we have the bound

(9.19)

_ k| Flogg(ep) log  (r(#) (14 L)+
<<£§Zﬁqn gt — +en’7_r’ gq<()( Qp) T

(9.20) qn—%+%@+mwlogq <r(t)(1+%)+c2(;))

It follows from the choice of ¢ in Eq. (1.32), and our assumption on n
that

c() || qMCEHO) = () g CHI+F des(m) < o(p)qn(TE O
(9.21)

< qn(l_%_i_Clogg)(er) +5)|ﬂ_’10gq <T(t) (1+%)+%;)>

so the bound in Eq. (9.20) dominates the first summand in Eq. (9.18]), hence

we can use

¢Clogg(2ep) c(t) n(1l+e)
(0.22) e (O () 5) 4 o) 4 ()]

Gk

as a final bound. O
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