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Abstract. Using geometric methods, we improve on the function field
version of the Burgess bound, and show that, when restricted to certain
special subspaces, the Möbius function over Fq[T ] can be mimicked by
Dirichlet characters. Combining these, we obtain a level of distribution
close to 1 for the Möbius function in arithmetic progressions, and re-
solve Chowla’s k-point correlation conjecture with large uniformity in
the shifts. Using a function field variant of a result by Fouvry-Michel
on exponential sums involving the Möbius function, we obtain a level of
distribution beyond 1/2 for irreducible polynomials, and establish the
twin prime conjecture in a quantitative form. All these results hold for
finite fields satisfying a simple condition.

1. Introduction

Our main results are the resolutions of two open problems in number
theory, except with the ring of integers Z replaced by the ring of polynomials
Fq[T ] for a fixed prime power q, under suitable assumptions on q.

We first fix some notation. Define the norm of a nonzero f 2 Fq[T ] to be

(1.1) |f | = qdeg(f) = |Fq[T ]/(f)|.
The degree of the zero polynomial is negative 1, so we set its norm to be 0.

1.1. The main result - twin primes. Our main result covers the twin
prime conjecture in its quantitative form. The latter is the 2-point prime
tuple conjecture of Hardy-Littlewood, predicting for a nonzero integer h that

(1.2) #{X  n  2X : n and n+h are prime} ⇠ S(h)
X

log2(X)
, X ! 1,

where

(1.3) S(h) =
Y

p

(1� p�1)�2(1� p�1 � p�11p-h),

with 1p-h equals 1 if h is not divisible by p, and 0 otherwise.
For the function field analogue, we set

(1.4) Sq(h) =
Y

P

�
1� |P |�1

��2 �
1� |P |�1 � |P |�11P -h

�
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where q is a prime power, P ranges over all primes (monic irreducibles) of
Fq[T ], and h 2 Fq[T ] is nonzero.

Theorem 1.1. For an odd prime number p, and a power q of p satisfying
q > 685090p2, the following holds. For any nonzero h 2 Fq[T ] we have

(1.5) #{f 2 Fq[T ] : |f | = X, f and f + h are prime} ⇠ Sq(h)
X

log2q(X)

as X ! 1 through powers of q. Moreover, we have a power saving (depend-
ing on q) in the asymptotic above.

For example, the 2-point Hardy-Littlewood conjecture holds over

(1.6) F315 ,F511 ,F79 ,F118 ,F6850933 .

For h a constant, the fact that the count above tends to 1 was proven
in [Hal06, Corollary 14] for q > 3 and in [Pol08, Theorem 1] for q > 2.
This has been extended to monomial h (assuming q > 105) in [CHLPT15,
Theorem 1.4 (1)] using an idea of Entin. The latter work builds on the recent
dramatic progress on this problem over the integers, particularly [Ma15].
The strongest result known over the integers is [PM14, Theorem 16(i)],
which says that for any ‘admissible tuple’ of 50 integers, there exists at
least one di↵erence h between two elements in the tuple such that there are
infinitely many pairs of primes separated by h.

Remark 1.2. Our proof of Theorem 1.1 establishes also the analog of the
Goldbach problem over function fields, and can be modified to treat more
general linear forms in the primes.

The proof of Theorem 1.1 passes through some intermediate results which
may be of independent interest. We will discuss these results in the re-
mainder of the introduction. Once (a uniform variant of) Theorem 1.3 (for
k = 2) and Theorem 1.7 below are established, Theorem 1.1 will follow from
arguments similar to those in [MV17]. These involve a convolution identity
relating the von Mangoldt function, which can be used to count primes, to
the Möbius function.

1.2. The key ingredient - Chowla’s conjecture. The main ingredient
in the proof of Theorem 1.1 is the removal of the ‘parity barrier’. More
precisely, we confirm Chowla’s k-point correlation conjecture over Fq[T ] for
some prime powers q. Over the integers, this conjecture predicts that for
any fixed distinct integers h1, . . . , hk, one has

(1.7)
X

nX

µ(n+ h1)µ(n+ h2) · · ·µ(n+ hk) = o(X), X ! 1.

The only completely resolved case is k = 1 which is essentially equivalent to
the prime number theorem.
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For the function field analogue, we recall that the Möbius function of a
monic polynomial f is 0 if f is not squarefree, and is otherwise given by

(1.8) µ(f) =

(
1, #{P : P | f} ⌘ 0 mod 2

�1, #{P : P | f} ⌘ 1 mod 2.

We denote by Fq[T ]+ the set of monic polynomials over Fq, and Euler’s
number by e = exp(1) = 2.71828 . . . .

Theorem 1.3. For an odd prime number p, an integer k � 1, and a power
q of p satisfying q > p2k2e2, the following holds. For every fixed choice of k
distinct polynomials h1, . . . , hk 2 Fq[T ] we have

(1.9)
X

f2Fq [T ]+

|f |X

µ(f + h1)µ(f + h2) · · ·µ(f + hk) = o(X), X ! 1.

For instance, the 2-point Chowla conjecture holds over

(1.10) F36 ,F55 ,F74 ,F313 .

In fact, in Theorem 1.3 we obtain a power saving exponent inversely
proportional to p, and the sizes of the shifts |h1|, . . . , |hk| can be as large as
any fixed power of X (the corresponding assumption on q becomes stronger
as this power grows larger). In Corollary 6.1 we also get cancellation in case
the sum is restricted to prime polynomials f .

Over the integers, the k = 2 case of the Chowla conjecture, with logarith-
mic averaging, was proven in [Tao16, Theorem 3], building on earlier break-
through work of Matomäki and Radziwi l l [MR16]. The k odd case, again
with logarithmic averaging, was handled by Tao and Teräväinen [TT19].
Generalizations of some of these arguments to the function field setting
form a part of the work [KMT20].

In contrast to these works, which deal with any su�ciently general (i.e.
non-pretentious) multiplicative function, our result relies on special prop-
erties of the Möbius function (in positive characteristic). Specifically, we
observe that for any fixed polynomial r, the function µ(r + sp) essentially
equals �r(s+cr) where �r is a quadratic Dirichlet character and cr is a shift,
both depending only on r (and not on s).

This observation is very closely related to the properties of the Möbius
function described in [CCG08], specifically [CCG08, Theorem 4.8]. Conrad,
Conrad, and Gross prove a certain quasiperiodicity property in s for a gen-
eral class of expressions of the form r + sp, while we give a more precise
description via Dirichlet characters in a special case. Similar features of µ,
or rather of µ2, facilitate the counting of squarefrees in di↵erent contexts,
as can be seen from [Car21, Lan15, Poo03]

Our observation on µ(r + sp) arises from the connection between the
parity of the number of prime factors of a squarefree f 2 Fq[T ], and the sign
(inside the symmetric group) of the Frobenius automorphism acting on the
roots of f . In odd characteristic, this sign is determined by the value of the
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quadratic character of F⇥
q on the discriminant of f , i.e. the resultant of f

and its derivative f 0. In characteristic p, the derivative of f = r+sp is equal
to the derivative of r, so the aforementioned sign of Frobenius is determined
by the quadratic character of the resultant of f with the fixed polynomial
r0. The latter is a quadratic Dirichlet character of f , and thus equals an
additively shifted Dirichlet character of s.

To use our observation, we restrict the sum in Theorem 1.3 to f of the
form r + sp for any fixed r, and obtain a short sum in s of a product of
additively shifted Dirichlet characters. As the conductors of these characters
are typically essentially coprime, using the Chinese remainder theorem we
arrive at a short sum of a single Dirichlet character.

Typically in analytic number theory, short character sums are handled by
the method of Burgess, who showed in [Bur63] that for a real number ⌘ >
1/4, a squarefree integer M , a real number X � |M |⌘, and a nonprincipal
Dirichlet character � mod M , one has

(1.11) sup
s2Z

������

X

|a|X

�(s+ a)

������
= o(X), |M | ! 1.

Refining the method of Burgess is the focus of several works, but the expo-
nent 1/4 has not yet been improved (even conditionally). However, in the
function field setting, we can do better by a geometric method, as long as q
is su�ciently large.

Theorem 1.4. Fix ⌘ > 0. Then for a prime power q > e2/⌘2 the follow-
ing holds. For a squarefree M 2 Fq[T ], a real number X � |M |⌘, and a
nonprincipal Dirichlet character � mod M , we have

(1.12) sup
s2Fq [T ]

������

X

|a|X

�(s+ a)

������
= o(X), |M | ! 1.

By further enlarging q, we get arbitrarily close to square root cancellation.
This is stated more precisely in Corollary 2.7.

To prove Theorem 1.4, we express the problem geometrically, viewing
the short interval {s + a : |a|  X} as an a�ne space over Fq, and the
character � as arising from a sheaf on that space. Following a strategy from
[Hoo91, appendix by Katz], we use vanishing cycles theory to compare the
cohomology of this sheaf for the s = 0 short interval and its cohomology for
a general short interval. Vanishing cycles can only occur when the vanishing
locus of � is not (geometrically) a simple normal crossings divisor. Arguing
as in [Kat89], we split the modulus M of � into a product of distinct linear
terms over Fq, which makes our vanishing locus a union of the hyperplanes
where the linear terms vanish, so we can check that this is a simple normal
crossings divisor away from some isolated points. This implies that the
cohomology groups vanish until almost the middle degree. Since we can
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precisely calculate the vanishing cycles at the isolated points, we get a very
good control of the dimensions of cohomology groups as well.

Remark 1.5. The relation between the Möbius function and multiplicative
characters is less powerful the larger p is, as then fewer polynomials share a
given derivative. On the other hand, our geometric character sum bounds
become stronger as q grows. Thus, to make this method of proving Chowla
work, we need q to be su�ciently large with respect to p.

Remark 1.6. The study of the statistics of polynomial factorizations by ex-
amining Frobenius as an element of the symmetric group has been very fruit-
ful in the ‘large finite field limit’, where (in the notation of Theorem 1.3)
X is kept fixed and q is allowed to grow. We refer to [CaRu14], [Ca15],
[GS20] (and references therein) for the large finite field analogs of Theo-
rem 1.3 which save a fixed power of q. Our methods likely give an improved
savings in the large finite field limit when the characteristic is fixed, as long
as the degrees of the polynomials are su�ciently large with respect to the
characteristic, but we have not carefully calculated the resulting bounds in
this range.

1.3. Further ingredients - level of distribution estimates. Another
ingredient in the proof of Theorem 1.1 is an improvement of the level of
distribution of the Möbius and von Mangoldt functions in arithmetic pro-
gressions. Over the integers, assuming the Generalized Riemann Hypothesis
(GRH), this level of distribution is (at least) 1/2, which means that

(1.13)
X

nX

n⌘a mod M

µ(n) = o

✓
X

|M |

◆
,

X

nX

n⌘a mod M

⇤(n) =
X

'(M)
+o

✓
X

|M |

◆

where M,a are coprime integers, and |M |  X
1
2�✏ (for any fixed ✏ > 0 and

real X � 0 going to infinity).
The importance of level of distribution for the twin prime conjecture was

known for a long time, and is highlighted for instance in the groundbreak-
ing work [Zha14] of Zhang, where attention is concentrated on (results on
average over) smooth moduli. Improvements of Zhang’s results on level of
distribution have been obtained in [PM14B]. For results that hold on aver-
age over all moduli, and have inspired Zhang’s work, we refer to [BFI89].

For the Möbius function over Fq[T ], we obtain a level of distribution close
to 1.

Theorem 1.7. Fix ⌘ > 0. For an odd prime number p, and a power q of p

with q > p2e2
⇣
2
⌘
� 1
⌘2

, the following holds. For coprime M,a 2 Fq[T ], and

a real number X with X1�⌘ � |M | we have

(1.14)
X

f2Fq [T ]+

|f |X

f⌘a mod M

µ(f) = o

✓
X

|M |

◆
, |M | ! 1.
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As in the previous theorems, we obtain a power savings estimate. Here
however (as opposed to Theorem 1.3), every f in our sum may have a dif-
ferent derivative, so a somewhat more elaborate implementation of our ob-
servation on the Möbius function is required. We put f = Mg + a, and
wishfully write

(1.15) µ(Mg + a) ⇡ µ(M)µ
⇣
g +

a

M

⌘

in order to create coincidences among the derivatives of the inputs to the
Möbius function. This is carried out more formally in Lemma 3.2, where we
show that for a power q of an odd prime p, and coprime a,M 2 Fq[T ], the
function s 7! µ(a + spM) is essentially proportional to an additive shift of
a (quadratic) Dirichlet characters in s, with the modulus of the character
depending on a and M in an explicit way. To visualize the power of this
claim, we view Fq[T ] as a rank p lattice over its subring Fq[T p]. Restricting
the Möbius function to any line in this lattice gives a Dirichlet character
whose modulus varies with the line.

In order to deduce from Theorem 1.7 an improved level of distributions
for primes, we establish in the appendix a function field variant of [FM98,
Theorem 1.1] giving quasi-orthogonality of the Möbius function and ‘in-
verse additive characters’. While Fouvry-Michel work with characters to
prime moduli, in order to establish Theorem 1.1 we need arbitrary square-
free moduli.

Theorem 1.8. Let q be a prime power, and let ✏ > 0. Then for a squarefree
M 2 Fq[T ], and an additive character  mod M , we have

(1.16)
X

f2Fq [T ]+

|f |X

(f,M)=1

µ(f) 
�
f
�
⌧ |M |

3
16+✏X

25
32 , X, |M | ! 1

where f denotes the inverse of f mod M , and the implied constant depends
only on q and ✏.

For nonzero M 2 Fq[T ] we recall that Euler’s totient function is given by

(1.17) '(M) =
��(Fq[T ]/(M))⇥

�� ,

and for f 2 Fq[T ]+, we recall that the von Mangoldt function is

(1.18) ⇤(f) =

(
deg(P ), f = Pn

0, otherwise.

Theorem 1.9. Fix � < 1
126 . For an odd prime p and a power q of p with

(1.19) q > p2e2
✓
51� 26�

1� 126�

◆2

,
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the following holds. For a squarefree M 2 Fq[T ], a polynomial a 2 Fq[T ]

coprime to M , and X a power of q with X
1
2+� � |M | we have

(1.20)
X

f2Fq [T ]+

|f |=X

f⌘a mod M

⇤(f) =
X

'(M)
+ o

✓
X

|M |

◆
, |M | ! 1.

We have not ventured too much into improving the constant 1
126 , as our

method cannot give anything above 1
6 , even if Theorem 1.8 would give square

root cancellation. Since our proof of Theorem 1.9 is based on the ‘convo-
lutional’ connection of the von Mangoldt and Möbius functions, it is not
surprising that a level of distribution of 2

3 = 1
2 + 1

6 , which is a longstanding
barrier for the divisor function over Z (perhaps the most basic convolution),
is a natural limit of our techniques. A large finite field variant of Theorem 1.7
and Theorem 1.9 was earlier proved in [BBSR15, Theorem 2.5].

Remark 1.10. It would be interesting to see whether our results can be
extended to characteristic 2, perhaps in a manner similar to which [Ca15]
extends the results of [CaRu14].

1.4. Additional results in small characteristic. Throughout this work,
we have not made every possible e↵ort to reduce the least values of the prime
powers q to which our theorems apply. Instead, we present some results that
hold for q as small as 3.

The first concerns sign changes of the Möbius function in short intervals.
Improving on many previous works, Matömaki and Radziwi l l have shown in
[MR16] that for any ⌘ > 1/2, and any large enough positive integer N , there
exist integers a, b with |a|, |b|  N⌘ such that µ(N +a) = 1, µ(N + b) = �1.
In characteristic 3, we show that the exponent 1/2 can be improved to 3/7.

Theorem 1.11. Let q be a power of 3, and fix 3/7 < ⌘ < 1. Then for any
f 2 Fq[T ]+ of large enough norm, there exist g, h 2 Fq[T ] with |g|, |h|  |f |⌘
such that µ(f + g) = 1 and µ(f + h) = �1.

We follow the same proof strategy relating the Möbius function to char-
acters, but since we allow small values of q, we cannot apply Theorem 1.4
anymore. Now however, once we are interested in sign change only (and not
cancellation), we can focus on just one of the derivatives appearing. It turns
out that if this derivative has a relatively large order of vanishing at 0, the
conductor of the associated character is relatively small, and we can apply a
function field version (see [Hsu99]) of the aforementioned result of Burgess.
For p > 3, the arising character sums are too short for the Burgess bound
to apply.

For q a large enough power of 3, Theorem 1.11 follows from Theorem 1.7
(since T 7! 1/T allows one to think of short intervals as arithmetic progres-
sions), and also from the k = 1 case of Theorem 1.3 (as we have su�cient
uniformity in the shift).
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Our last result, in the spirit of [Gal72], shows that the Möbius function
enjoys cancellation in the arithmetic progression 1 mod a growing power of
a fixed prime P , no matter how slowly does the length of the progression
increase.

Theorem 1.12. Let q be a power of 3. Fix an irreducible P 2 Fq[T ]. Then
for a positive integer n we have

(1.21)
X

f2Fq [T ]+

|f |X

f⌘1 mod P
n

µ(f) = o

✓
X

|P |n

◆
,

X

|P |n ! 1.

An analog of [Gal72, Theorem 2] in our setting would be cancellation for
progressions whose length X/|P |n is at least |X|3/5+✏.

As before, we can obtain a power saving in Eq. (1.21). Since the progres-
sions are so short, this result does not follow from the previous ones, even
if q is large. On probabilistic grounds, one should not expect to obtain the
theorem for all residue classes.

1.5. Further directions. In future work, we hope to use some of the meth-
ods introduced here to address the following problems:

• Obtaining cancellation in ‘polynomial Möbius sums’ such as
X

f2Fq [T ]+

|f |X

µ
�
f2 + T

�

which is relevant for counting primes of the form f2 + T . We refer
to our subsequent work [SS20] where this is carried out, culminating
in a nonsplit analog of Theorem 1.1 and Theorem 1.3. In that work
we also obtain analogs of Theorem 1.4 and Theorem 1.8 with certain
more general ‘trace functions’ replacing the multiplicative/additive
characters.

• Obtaining an asymptotic for the variance (and higher moments) of
the Möbius function in short intervals (and arithmetic progressions)
of length H for polynomials in Fq[T ] of norm X, with H as close
to X as possible. For su�ciently short intervals, namely with H a
su�ciently small power of X (depending on q), an asymptotic for the
variance follows from (a version with power savings of) Theorem 1.3
using the arguments of [MS04].

1.6. Notation. From this point on, it will be more convenient to work with
degrees of polynomials instead of absolute values. For g 2 Fq[T ] we denote
its degree by d(g). By convention, the latter is �1 if g = 0. The letter q
denotes a prime power, and is often suppressed from notation such as

(1.22) Md =
�
g 2 Fq[T ]

+ : d(g) = d
 
.
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2. Character sums

We will make use of `-adic sheaves, see for instance [KR14]. Often we
apply the proper base change theorem, see [Mil, Theorem 17.10]. Another
tool we use is the theory of vanishing cycles, see [Saw20].

The main result of this section is the following.

Theorem 2.1. Let t  m be natural numbers, let f 2 Fq[T ], let g 2 Mm

be squarefree, and let � : (Fq[T ]/g)
⇥ ! C⇥ be a nontrivial character. Then

(2.1)
���

X

h2Fq [T ]
d(h)<t

gcd(f+h,g)=1

�(f + h)
���  (q1/2 + 1)

✓
m� 1

t

◆
q

t
2 .

To prove this theorem, we use the following geometric setup. View At as
a space parameterizing polynomials h of degree less than t via their coef-
ficients, namely a point (a0, . . . , at�1) in At corresponds to the polynomial
h = a0+ · · ·+ at�1T t�1. Let (c1, c2) be coordinates on A2. Let U ✓ At⇥A2

be the open set consisting of points (h, (c1, c2)) where c1f + h+ c2T t is co-
prime to g. Let j : U ! Pt ⇥A2 be the open immersion, embedding At into
Pt in the usual way. Let ⇡ : Pt ⇥ A2 ! A2 be the projection.

Let T parametrize polynomials of degree less than m that are coprime to
g, namely T is the open a�ne subscheme

T = {(b0, . . . , bm�1) : Res(b0 + · · ·+ bm�1T
m�1, g) 6= 0}

of m-dimensional a�ne space. Multiplication of polynomials followed by
reduction mod g endows T with the structure of a commutative algebraic
group over Fq, since inversion mod g can be written as a rational function
of b0, . . . , bm�1 over Fq whose denominator is the above resultant. For every
Fq-algebra A, we therefore have T (A) = (A[T ]/(g))⇥.

Let ↵1, . . . ,↵m 2 Fq be the (distinct) roots of g. The evaluation map

b0 + · · ·+ bm�1T
m�1 7! (b0 + · · ·+ bm�1↵

m�1
1 , . . . , b0 + · · ·+ bm�1↵

m�1
m )

is an isomorphism between T and Gm
m, so T is a torus.

Fix a prime number ` di↵erent from the characteristic p of Fq. Using
the Lang isogeny, see [SGA41

2 , p. 171], one associates to our character
� : T (Fq) ! C⇥ a Q`-‘character sheaf’ L� on T whose trace function is �,
namely

(2.2) ◆
�
tr
�
Frobq, (L�)f̄

��
= �(f)

where f 2 T (Fq) is a polynomial, the map ◆ is an isomorphism between Q`

and C (which will be tacitly used to identify the two fields in the sequel),
and (L�)f̄ is the stalk of L� at a geometric point f̄ over f . In what follows,
the passage to geometric points will at times not be explicit in our notation.

Let L�(c1f +h+ c2T t) be the pullback of L� to U along the natural map
⌫ from U to T that sends (h, (c1, c2)) to c1f + h + c2T t. The extension by
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zero j!L�(c1f + h + c2T t) of L�(c1f + h + c2T t) is lisse on U and tamely
ramified along the complement of U in Pt ⇥A2 since the monodromy of L�
is a finite group whose order is the order of �, a number not divisible by p.

We will prove (2.1) using geometric properties of the (derived pushfor-
ward) complex R⇡⇤j!L�(c1f + h + c2T t) of (constructible) sheaves on A2.
The relevance of this complex to the sum in Eq. (2.1) is explained in the
proof of Theorem 2.1. (We write R⇡⇤j! rather than the equivalent R⇡! be-
cause the key vanishing cycles steps of the argument use that factorization.)

Lemma 2.2. The complex R⇡⇤j!L�(c1f + h + c2T t) is geometrically iso-
morphic to its pullback under the map M� : A2 ! A2 given by

M�(c1, c2) = (�c1,�c2)

for any � 2 Fq

⇥
.

Proof. LetM 0
�
: U ! U be the map given byM 0

�
(h, (c1, c2)) = (�h, (�c1,�c2)).

Applying the smooth base change theorem [Mil, Theorem 20.1] to the Carte-
sian squares

Pt ⇥ A2 Pt ⇥ A2

A2 A2

⇡

idPt ⇥M�

⇡

M�

U U

Pt ⇥ A2 Pt ⇥ A2

j

M
0
�

j

idPt ⇥M�

we see that it su�ces to check that L�(c1f + h + c2T t) is geometrically
isomorphic to its pullback under M 0

�
. For the map T� : T ! T given by

T�(b0+ · · ·+bm�1Tm�1) = �b0+ · · ·+�bm�1Tm�1 we have the commutative
diagram

U T

U T

M
0
�

⌫

T�

⌫

so it is su�cient that L� on T is geometrically isomorphic to its pullback
under T�, which follows from its construction as a character sheaf. ⇤
Lemma 2.3. The stalk of R⇡⇤j!L�(c1f + h + c2T t) at the point (0, 1) is
supported in degree t, where it has rank

�
m�1
t

�
.

Proof. When c1 = 0, c2 = 1, the polynomial c1f+h+c2T t = T t+h is monic
and has degree t. By the proper base change theorem, our stalk is thus
isomorphic to the compactly supported cohomology of the space of degree t
monic polynomials that are prime to g, with coe�cients in L�(T t + h). We
may view this space as the quotient Ct/St where C = SpecFq[x, g(x)�1],
and denote by

(2.3) ⇢ : Ct ! Ct/St
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the quotient map. For any sheaf F on Ct/St, there is a natural action of St

on ⇢⇤⇢⇤F . We define the St-invariants (⇢⇤⇢⇤F)St by taking the St-invariants
of the sections on each open set. Then (⇢⇤⇢⇤Q`)St = Q`, so

(2.4)
�
⇢⇤⇢

⇤L�(T t + h)
�St = L�(T t + h)

and thus

H⇤
c

�
Ct/St,L�(T t + h)

�
=

H⇤
c

⇣
Ct/St,

�
⇢⇤⇢

⇤L�(T t + h)
�St
⌘
=

H⇤
c

�
Ct/St, ⇢⇤⇢

⇤L�(T t + h)
�St =

H⇤
c

�
Ct, ⇢⇤L�(T t + h)

�St .

(2.5)

For the second equality, note that taking St-invariants commutes with
pushforward by definition. Thus their derived functors commute, but since
we work with Q`-sheaves, taking derived St-invariants is the same as taking
St-invariants. Similarly St-invariants commute with extension by zero and
thus with compactly-supported cohomology.

Now ⇢ is the map defined by factorizing a polynomial into linear terms,
so ⇢⇤L�(T t + h) = (L�(T � x))⇥t. By the Künneth formula [SGA4-3, XVII,
Theorem 5.4.3], it follows that the stalk of R⇡⇤j!L�(c1f +h+ c2T t) at (0, 1)
is

(2.6)
�
(H⇤

c (C,L�(T � x)))⌦t
�St

.

Because � is nontrivial, L�(T � x) has nontrivial monodromy, so

(2.7) H⇤
c (C,L�(T � x))

vanishes in degrees other than 1. Because it arises from a character sheaf
on a torus, L� has tame local monodromy, so the rank of this cohomology
group in degree 1 is the Euler characteristic of SpecFq[x, g(x)�1], which is
m� 1 [Ray66, Theorem 1]. Thus

(2.8) (H⇤
c (C,L�(T � x)))⌦t

is supported in degree t, where it equals the t-th tensor power of an (m�1)-
dimensional vector space, with St acting the usual way, twisted by the sign
character because of the Koszul sign in the tensor product of a derived cat-
egory. (In other words, because the isomorphism with the tensor product
arises, after extension by zero, by pulling back classes along the di↵erent
projections to C and taking the cup product. The pullback map is compati-
ble with permuting the factors of C, but the cup product is multiplied by �1
each time we swap the order of two factors in degree 1 because cup produt
is graded-commutative. This makes the isomorphism St-equivariant up to
twisting by the sign representation.) Thus taking St-invariants is equivalent
to taking the t-th wedge power of this (m � 1)-dimensional vector space,
which has dimension

�
m�1
t

�
. ⇤
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Lemma 2.4. The complement of U in Pt ⇥ A2 is a divisor with simple
normal crossings relative to A2 away from

(2.9)
�
(h, (c1, c2)) 2 At ⇥ A2 : d

�
gcd(c1f + h+ c2T

t, g)
�
> t
 
.

Proof. Because this is a purely geometric question, we may assume that g
splits completely, and let ↵1, . . . ,↵m be its roots. Then the complement of
U is the union of the hyperplane H1 at 1 in Pt with the hyperplanes

(2.10) Hi = {(h, (c1, c2)) 2 At⇥A2 : c1f(↵i)+h(↵i)+c2↵
t

i = 0}, 1  i  m.

This union has simple normal crossings if the intersection of each k distinct
hyperplanes from {H1, . . . , Hm, H1} has codimension k.

We first consider the case of a subset not including the hyperplane H1.
For any S ✓ {1, . . . ,m} with |S| = k, we have

(2.11)
\

i2S
Hi =

(
(h, (c1, c2)) 2 At ⇥ A2 :

Y

i2S
(T � ↵i)

��� c1f + h+ c2T
t

)
.

Since
Q

i2S(T � ↵i) is a polynomial of degree k, the above has codimension
k for any c1, c2 as long as k  t, because in this case

dim

(
h 2 At : h ⌘ �c1f � c2T

t mod
Y

i2S
(T � ↵i)

)
= t� k.

On the other hand, when k > t we get that

(2.12) d
�
gcd(c1f + h+ c2T

t, g)
�
� k > t,

so removing these points, we obtain simple normal crossings.
Now we consider the case where we have a k-element set of (distinct)

hyperplanes indexed by S ✓ {1, . . . ,m} and also H1. We can take coordi-
nates on H1 to be (h, (c1, c2)), with h a nonzero polynomial of degree less
than t, well-defined up to scaling. In these coordinates, the equation for
the intersection of any hyperplane with H1 is its original equation with all
terms having degree zero in h removed. Thus the equation for Hi \H1 is
simply h(↵i) = 0, so the intersection of H1 with the hyperplanes indexed
by S consists of those (h, (c1, c2)) where h is a multiple of

Q
i2S(T � ↵i).

Such an h exists only if k < t, as k is the degree of this polynomial and
d(h) < t, but then our intersection always has codimension k in H1 hence
codimension k + 1 overall, so we have simple normal crossings. ⇤
Lemma 2.5. Away from a finite union of lines through the origin, the
complex R⇡⇤j!L�(c1f + h+ c2T t) is supported in degree t with rank

�
m�1
t

�
.

Proof. Let l1 : Pt ⇥A1 ! Pt ⇥A2 be the direct product of the identity map
on Pt and the map sending c 2 A1 to (c, 1) 2 A2. We consider the vanishing
cycles at zero R�cl⇤1j!L�(c1f+h+c2T t) of the pullback of j!L�(c1f+h+c2T t)
under l1. Let us first check that the complement of U is a simple normal
crossings divisor everywhere in the fiber over zero in A1. To do this, we apply
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Lemma 2.4 and observe that we cannot have d(gcd(c1f + h + c2T t, g)) > t
in this fiber as c1 = 0, c2 = 1 and

(2.13) d
�
gcd(h+ T t, g)

�
 d(h+ T t)  t.

Since the complement of U is a simple normal crossings divisor in the
fiber over zero, and j!L�(c1f + h + c2T t) is lisse on U and tamely ramified
along the complement of U , it follows from [SGA7-II, XIII Lemma 2.1.11]
that the vanishing cycles

(2.14) R�cl
⇤
1j!L�(c1f + h+ c2T

t)

vanish everywhere. Hence the cohomology of the nearby fiber is isomorphic
to the cohomology of the general fiber. Using Lemma 2.3 to compute the
cohomology of the special fiber, it follows that the cohomology of the general
fiber is supported in degree t with rank

�
m�1
t

�
. By constructibility, the stalk

cohomology must have the same description at every point in some nonempty
open set. By Lemma 2.2, the same description holds for the stalks in the
Gm-orbit of this open set, which is the complement of finitely many lines. ⇤

Let l2 : Pt ⇥ A1 ! Pt ⇥ A2 be the direct product of the identity map on
Pt and the map sending c 2 A1 to (1, c) 2 A2.

Lemma 2.6. Taking vanishing cycles at zero, the complex

(2.15) K = R�cl
⇤
2j!L�(c1f + h+ c2T

t)

has the following properties:

• it is supported on C =
�
(h, 0) 2 At ⇥ A1 : d (gcd(f + h, g)) > t

 
;

• it is supported in degree t;
• the rank of its stalk at (h, 0) 2 C is

�
d(gcd(f+h,g))�1

t

�
.

Proof. The first property follows immediately from [SGA7-II, XIII Lemma
2.1.11] and Lemma 2.4.

We note that l⇤2j!L�(c1f + h + c2T t)[t + 1] is the extension by zero of a
lisse sheaf in degree �(t + 1) on a variety of dimension t + 1 and is thus
semiperverse. The dual complex is the pushforward of a lisse sheaf in degree
�(t+1) on a variety of dimension t+1 along an a�ne open immersion and
thus is semiperverse by Artin’s a�ne theorem [BBD82, Theorem 4.1.1]. We
conclude that

(2.16) l⇤2j!L�(c1f + h+ c2T
t)[t+ 1]

is a perverse sheaf. By [Ill94, Corollary 4.6], the vanishing cycles of a per-
verse sheaf are perverse up to a shift by one, so

(2.17) K[t] = R�cl
⇤
2j!L�(c1f + h+ c2T

t)[t]

is perverse.
The support of K[t] is the closed set C. Because C does not intersect

the divisor at 1, C is finite. A perverse sheaf supported on a finite set
is necessarily a sum of skyscraper sheaves supported in degree zero, so we
obtain the second property in the statement of this lemma.
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It remains to calculate the rank of the stalk at a particular point (h0, 0) 2
C. We do that by working locally in an étale neighborhood.

We set

(2.18) g0 = gcd(f + h0, g), g⇤ = g/g0,

and factor T as the product of the torus T 0 of residue classes mod g0 and
the torus T ⇤ of residue classes mod g⇤. This lets us factor L� as the tensor
product of L�0 (the pullback of a character sheaf from T 0) and L�⇤ (the
pullback of a character sheaf from T ⇤). Because f+h0 is relatively prime to
g⇤, the map U ! T ! T ⇤ extends to a well-defined map in a neighborhood
of the point (h0, 0), so L�⇤(c1f + h + c2T t) extends to a lisse sheaf in a
neighborhood of (h0, 0). Because tensoring with a lisse rank one sheaf does
not a↵ect vanishing cycles, it su�ces to calculate

(2.19) R�cl
⇤
2j

0
!L�0(c1f + h+ c2T

t),

where j0 is the inclusion of the open set where gcd(c1f + h+ c2T t, g0) = 1.
By changing variables, we may replace (f, h) with f 0, h0 where f 0 = f+h0

and h0 = h � h0. We are then tasked with calculating the vanishing cycles
R�cl⇤2j

0
!L�0(c1f 0 + h0 + c2T t) at zero. Having done this, we observe that f 0

is a multiple of g0, so translation by f 0 does not a↵ect L�0(c1f 0 + h0 + c2T t),
thus these vanishing cycles are the same as R�cl⇤2j

0
!L�0(h0 + c2T t).

As d(h0 + c2T t)  t, we can only have

(2.20) d
�
gcd(h0 + c2T

t, g0)
�
> t

if h0 + c2T t = 0. Hence, by Lemma 2.4, the complement of the image of j0

is a simple normal crossings divisor way from the point (0, 0). Therefore,
by [SGA7-II, XIII Lemma 2.1.11], the vanishing cycles are supported at this
point.

For a geometric generic point ⌘ of A1 we have a vanishing cycles long
exact sequence

(R⇡⇤j
0
!L�0(h0 + c2T

t))(0,0) ! (R⇡⇤j
0
!L�0(h0 + c2T

t))(0,⌘)

! H⇤(Pt, R�cl
⇤
2j

0
!L�0(h0 + c2T

t)).

Therefore the Euler characteristic of the vanishing cycles complex is the
di↵erence between the Euler characteristic of the generic fiber and the Euler
characteristic of the special fiber. Because the vanishing cycles complex is
supported at a single point in a single degree, its Euler characteristic is (�1)t

times its rank at that point. We will calculate these Euler characteristics
and thereby calculate the rank.

By Lemma 2.5, the Euler characteristic of the generic fiber is (�1)t
�
d(g0)�1

t

�
.

So it remains to check the Euler characteristic at the special point is zero.
Because L� is lisse of rank one and tame, the Euler characteristic of the
special fiber is the Euler characteristic of the space of polynomials of degree
less than t and prime to g0. Because this admits a free action of Gm by
scaling, its Euler characteristic is zero in view of [BB73, Corollary 2]. ⇤
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We can now prove Theorem 2.1.

Proof. In view of Eq. (2.2) we have
X

h2Fq [T ]
d(h)<t

gcd(f+h,g)=1

�(f + h) =
X

h2Fq [T ]
d(h)<t

gcd(f+h,g)=1

tr (Frobq, (L�)f+h) .

From the definition of the maps j and ⇡ we get
X

h2Fq [T ]
d(h)<t

gcd(f+h,g)=1

tr (Frobq, (L�)f+h) =
X

u2U(Fq)
⇡(u)=(1,0)

tr
�
Frobq, (L�(c1f + h+ c2T

t))u
�

=
X

x2(Pt⇥A2)(Fq)
⇡(x)=(1,0)

tr
�
Frobq, (j!L�(c1f + h+ c2T

t))x
�
.

Abusing notation, we denote the fiber of ⇡ over (1, 0) also by Pt. The
Grothendieck–Lefschetz fixed point formula [SGA41

2 , Rapport, Theorem 3.2]
then gives

X

x2Pt(Fq)

tr
�
Frobq, (j!L�(c1f + h+ c2T

t))x
�
=

2tX

i=0

(�1)i tr
�
Frobq, H

i(Pt, j!L�(c1f + h+ c2T
t))
�
.

By Deligne’s Riemann hypothesis [Del80, Corollary 3.3.4], the absolute val-
ues of the eigenvalues of Frobq on the i-th cohomology group are bounded
from above by qi/2 so

�����

2tX

i=0

(�1)i tr
�
Frobq, H

i(Pt, j!L�(c1f + h+ c2T
t))
�
����� 

2tX

i=0

qi/2 dimH i(Pt, j!L�(c1f + h+ c2T
t)).

Applying the proper base change theorem to the Cartesian square

Pt Pt ⇥ A2

SpecFq A2

⇡

where the upper horizontal map is the immersion of the fiber of ⇡ over (1, 0),
and the lower horizontal map corresponds to the point (1, 0) 2 A2, we get
that H i(Pt, j!L�(c1f + h+ c2T t)) ⇠= (R⇡⇤j!L�(c1f + h+ c2T t))(1,0).
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For a geometric generic point ⌘ of A1 we have a vanishing cycles long
exact sequence

(R⇡⇤j!L�(c1f + h+ c2T
t))(1,0) ! (R⇡⇤j!L�(c1f + h+ c2T

t))(1,⌘)

! H⇤(Pt, R�cl
⇤
2j!L�(c1f + h+ c2T

t)).

By Lemma 2.5, (R⇡⇤j!L�(c1f + h + c2T t))(1,⌘) is supported in degree t

with rank
�
m�1
t

�
. By Lemma 2.6, the complex R�cl⇤2j!L�(c1f + h+ c2T t) is

supported in degree t and at finitely many points, so the third term above
is also supported in degree t and is simply the sum of the stalks at those
points, and thus has rank

(2.21) r(f, g, t) =
X

h2Fq [T ]
d(h)<t

d(gcd(f+h,g))>t

✓
d (gcd(f + h, g))� 1

t

◆
,

again using Lemma 2.6.
We conclude that, upon suppressing c1f + h+ c2T t for brevity, the van-

ishing cycles long exact sequence becomes

0 ! (Rt⇡⇤j!L�)(1,0) ! (Rt⇡⇤j!L�)(1,⌘)
! Ht(Pt, R�cl

⇤
2j!L�) ! (Rt+1⇡⇤j!L�)(1,0) ! 0.

(2.22)

Thus (R⇡⇤j!L�(c1f +h+ c2T t))(1,0) is supported in degrees t and t+1, with

rank at most
�
m�1
t

�
in degree t and rank bounded by r(f, g, t) in degree t+1.

We thus have
(2.23)

2tX

i=0

qi/2 dimH i(Pt, j!L�(c1f + h+ c2T
t)) 

✓
m� 1

t

◆
q

t
2 + r(f, g, t)q

t+1
2 .

Finally, we check that r(f, g, t) 
�
m�1
t

�
. To do this fix a root ↵ of g, and

note that
�
d(gcd(f+h,g))�1

t

�
does not exceed the number of degree t divisors of

g, prime to T �↵, that divide f + h. Each such divisor of g prime to T �↵
contributes at most once to the sum in Eq. (2.21), so this sum is bounded
by the number of such divisors, which is

�
m�1
t

�
. ⇤

Corollary 2.7. Fix ⌘ > 0 and 0 < � < 1/2. Then for a prime power

q � (e⌘�1)
2

1�2� the following holds. For a nonprincipal character � to a
squarefree modulus g 2 Fq[T ], f 2 Fq[T ], and t � ⌘ · d(g), we have

(2.24)
X

d(h)<t

�(f + h) ⌧ q(1��)t

with the implied constant depending only on q.
Furthermore, if we have t  ⌘ · d(g)  t0, then we still have
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(2.25)
X

d(h)<t

�(f + h) ⌧ q(1��)t
0
.

Proof. If ⌘ � 1, the left hand side vanishes and the bound is trivial. Other-
wise, we apply Theorem 2.1 to the left side, taking m = d(g), to obtain

X

d(h)<t

�(f + h)  (q1/2+1)

✓
m� 1

t

◆
qt/2

⌧
✓
m

t

◆
qt/2 

✓
t

m

◆�t
✓
m� t

m

◆
t�m

qt/2

(2.26)

where the last inequality follows from

1 =

✓
t

m
+

m� t

m

◆
m

=
mX

k=0

✓
m

k

◆✓
t

m

◆
k
✓
m� t

m

◆
m�k

�
✓
m

t

◆✓
t

m

◆
t
✓
m� t

m

◆
m�t

.

(2.27)

From the Taylor series we can see that � log(1� x)  x/(1� x) if x > 0
so (1� x)�(1�x)/x  e. Applying this to x = t/m, we get

(2.28)

✓
m� t

m

◆
t�m

 et

so we obtain

(2.29)
X

d(h)<t

�(f + h) ⌧
✓

t

m

◆�t

etqt/2.

Because q � (e⌘�1)
2

1�2� and t/m � ⌘, we have

(2.30) e ·
✓

t

m

◆�1

 e⌘�1  q
1
2��

hence

(2.31)

✓
t

m

◆�t

etqt/2  q(1��)t,

as desired.
To handle the case where t  ⌘ · d(g)  t0, first note that we may assume

t0  m. We observe that the left hand side of Eq. (2.31) is an increasing
function of t because its logarithm

(2.32) t logm� t log t+ t+ t(log q)/2

has derivative

(2.33) logm� log t+ (log q)/2

which is positive in the range t  m. Thus we can get a bound for the
shorter sum which is at least as good as our bound for the longer sum. ⇤
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3. The Möbius Function

From now on, we will assume that the characteristic p of Fq is odd. Be-
cause of this, F⇥

q admits a unique quadratic character, which we denote  .
We use freely the basic properties of resultants (see [Jan07]) and the Jacobi
symbol (see [Ros02, Chapter 3]). For example, the quadratic reciprocity law

✓
a

b

◆✓
b

a

◆
= (�1)

q�1
2 mn (am)d(b) (bn)

d(a)

where a (respectively, b) is a nonzero polynomial in Fq[T ] of degree m (re-
spectively, n) and leading coe�cient am (respectively, bn).

The following lemma recalls the relation between the (real valued) Jacobi
symbol and the quadratic character of a resultant.

Lemma 3.1. Let f 2 Fq[T ], g = anTn + · · ·+ a0 of degree n � 1. Then

(3.1)

✓
f

g

◆
=  (an)

max{d(f),0} (Res(g, f)) .

Proof. Fix f 6= 0, and note that both sides above are completely multiplica-
tive in g, so we may assume that g is irreducible. For a root ✓ of g we
have

(3.2) Res(g, f) = ad(f)n

d(g)�1Y

i=0

f
�
✓q

i�
= ad(f)n

d(g)�1Y

i=0

f(✓)q
i
= ad(f)n f(✓)

qd(g)�1
q�1

so we get the mod p congruence

 (Res(g, f)) =  (an)
d(f) 

✓
f(✓)

qd(g)�1
q�1

◆

⌘  (an)
d(f)f(✓)

qd(g)�1
2 ⌘  (an)

d(f)

✓
f

g

◆(3.3)

which implies the lemma. ⇤
Given a D 2 Fq[T ] we write rad(D) for the product of the primes that

appear in the factorization of D, and rad1(D) for the product of the primes
that appear with odd multiplicity in the factorization of D. The derivative
of D (with respect to T ) is denoted by D0.

The next lemma interprets the Möbius function (on an arithmetic pro-
gression) as a Dirichlet character that ‘depends only on the derivative’.

Lemma 3.2. Let m, k � 0, d � 1 be integers with k 6= d+m. For M 2 Mm,
g 2 Md, and a 2 Mk coprime to M , define the polynomials

(3.4) D = M2
⇣
g +

a

M

⌘0
, E =

rad(D)

gcd (M, rad(D))
, E1 =

rad1(D)

gcd (M, rad1(D))
.

Then

(3.5) µ(a+ gM) = S · �(w + g)
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where w = wa,M,g0 2 Fq[T ], � = �a,M,g0 is a (real) multiplicative character
mod E with conductor E1, and

(3.6) S = Sd,a,M,g0 2 {0, 1,�1}

with S = 0 if and only if D = 0.

Proof. Pellet’s formula (see [Con05, Lemma 4.1]) gives

(3.7) µ(a+ gM) = (�1)d(a+gM) (Disc(a+ gM))

and since d(a + gM) = max{k, d + m}, we see that (�1)d(a+gM) can be
absorbed into S. Our assumption that k 6= d+m implies a+ gM is monic,
so  (Disc(a+ gM)) equals, up to a sign that S absorbs,

(3.8)  
�
Res(a+ gM, a0 + g0M + gM 0)

�
.

By Lemma 3.1, and the fact that a+ gM is monic, the above equals

(3.9)

✓
a0 + g0M + gM 0

a+ gM

◆

and since gcd(a,M) = 1 by multiplicativity, this equals

(3.10)

✓
a0M + g0M2 + gMM 0

a+ gM

◆ ✓
M

a+ gM

◆�1

.

Using quadratic reciprocity, we can absorb
⇣

M

a+gM

⌘
into S. Subtracting

M 0(a + gM) from the numerator of the first Jacobi symbol above, we get
(in the notation of equation (3.4))

(3.11)

✓
D

a+ gM

◆

and set w = 0, S = 0 in case D = 0. Otherwise (if D 6= 0) we apply
quadratic reciprocity once again to obtain

(3.12)

✓
a+ gM

D

◆

up to a sign that goes into S.
We write ⇠(a + gM) for the Jacobi symbol above, so that ⇠ is a multi-

plicative character mod rad(D) with conductor rad1(D). Since rad(D) is
squarefree, we see that M is coprime to E (from equation (3.4)). There-
fore, by the Chinese remainder theorem, there exists a unique factorization
⇠ = ⇠E⇠N to characters mod E and N = gcd (M, rad(D)) respectively. In
this notation, our Jacobi symbol equals ⇠E(a + gM)⇠N (a + gM) and the
second factor is simply ⇠N (a), so we immerse it in S. Taking M 2 Fq[T ]
with MM ⌘ 1 (E) we can write

(3.13) ⇠E(a+ gM) = ⇠E(aM + g)⇠E(M)

and conclude by setting w = aM, � = ⇠E , and dumping ⇠E(M) into S. ⇤
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Remark 3.3. With notation as in Lemma 3.2, suppose that � is principal.
We can then write D = AB2 for some A,B 2 Fq[T ] with A | M , simply by
taking A = rad1(D) since principality gives E1 = 1.

4. Linear forms in the Möbius function

Proposition 4.1. Let p be a prime, let q be a power of p, let m, d be non-
negative integers, let M 2 Mm be squarefree, and let a 2 Fq[T ]. Then

# {h : h = g0 for some g 2 Md, h ⌘ a mod M}
# {g0 : g 2 Md}

 q
�min

n
m,

j
d�1
p

ko

.

Proof. Let 0  j  p� 1 be the unique integer congruent to d mod p. Any
g 2 Md can then be uniquely expressed as

(4.1) g =
p�1X

i=0

T igp
i
, gj 2 M d�j

p
, d(gi) 

�
d� i

p

⌫
for i 6= j.

For the derivative we then have

(4.2) g0 =
p�1X

i=1

iT i�1gp
i

so we set ai = iT i�1 for 1  i  p� 1, and consider the congruence

(4.3)
p�1X

i=1

aig
p

i
⌘ a mod M.

Since a1 = 1, we have gp1 ⌘ a �
P

p�1
i=2 aig

p

i
⌘ a mod M , and thus the

value of gp1 mod M is uniquely determined by g2, . . . , gp�1. Since M is
squarefree, the pth power map mod M is injective, and thus g1 mod M is
uniquely determined by g2, . . . , gp�1.

This implies the bound: If m �
j
d�1
p

k
then a fraction of 1

qm
of values of

g1 satisfy this congruence, and if m <
j
d�1
p

k
then at most one, meaning a

fraction 1

q
b d�1

p c of all values, satisfies it.

⇤

The following technical proposition follows from the arguments of [BGP92,
Page 371] or [CG07, Section 9], which obtain stronger statements over Z in
place of Fq[T ].

Proposition 4.2. Fix ↵, ✏ > 0, and a prime power q. Then for integers
d,m, k � 0 with d � ✏(m+ k), and M 2 Mm, A 2 Mk, a 2 Fq[T ], we have

#
�
g 2 Fq[T ] : d(g) < d, a+ gM = �AB2, � 2 Fq, B 2 Fq[T ]

 
⌧ q(

1
2+↵)d

as d ! 1, with the implied constant depending only on ✏,↵ and q.
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This proposition is also a special case of the remark following [BSE21,
Theorem 1.1].

We can now prove Theorem 1.3. We first prove the “generic” special case
where the derivatives of certain parameters are distinct, and then prove the
general case.

Denote by d2 the binary divisor function on Fq[T ]. Namely for a nonzero
polynomial M 2 Fq[T ] we denote by d2(M) the number of distinct monic
polynomials dividing M , that is

d2(M) = #{h 2 Fq[T ]
+ : h | M}.

Proposition 4.3. Fix ✏, � > 0, 0 < � < 1/2, and a positive integer n. Let
q be a power of an odd prime p such that

(4.4) q >

0

@ pne

min
n

✏

✏+2 ,
✏�

✏+�

o

1

A

2
1�2�

.

Then for nonnegative integers d,m1, . . . ,mn, k1, . . . , kn with

(4.5) d � max{✏m1, . . . , ✏mn, �k1, . . . , �kn}, ki 6= d+mi, 1  i  n,

and pairs (ai,Mi) 2 Mki ⇥ Mmi for 1  i  n such that the derivatives⇣
ai
Mi

⌘0
are all distinct, we have

(4.6)
X

g2Md

nY

i=1

µ (ai + gMi) ⌧ |Md|1�
�
p

as d ! 1, with the implied constant depending only on �, ✏, �, n and q.

Remark 4.4. Note that the statement of this proposition remains meaningful
even if ✏ and � are very large, though it is at its strongest when ✏ and � are
small.

Proof. Let us first assume that for every 1  i  n we have gcd(ai,Mi) = 1.
We say that g1, g2 2 Md are equivalent if g01 = g02, and let R be a complete

set of representatives of equivalence classes. So for each g 2 Md there exists
a unique r 2 R such that (g� r)0 = 0, and therefore also a unique s 2 Fq[T ]
such that g � r = sp. We can thus write our sum as

(4.7)
X

r2R

X

d(s)<t

nY

i=1

µ (ai + (r + sp)Mi) , t =
d

p
.

By Lemma 3.2 (the notation of which is used throughout), our sum equals

(4.8)
X

r2R

nY

i=1

S(i)
r

X

d(s)<t

nY

i=1

�(i)
r

⇣
w(i)
r + sp

⌘
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with �(i)
r a character to a squarefree modulus E(i)

r (defined in Lemma 3.2

using D(i)
r ). Hence, there exist f (i)

r 2 Fq[T ] with

(4.9) f (i)
r

p ⌘ w(i)
r mod E(i)

r , 1  i  n,

so using the fact that �(i)
r is real, we see that our inner sum equals

(4.10)
X

d(s)<t

nY

i=1

�(i)
r

⇣
f (i)
r + s

⌘
.

For 1  i < j  n we set

(4.11) G(i,j)
r = gcd

⇣
E(i)

r , E(j)
r

⌘
, Ur = lcmi,j

⇣
G(i,j)

r

⌘
, `r = d(Ur),

and claim that, for every integer ` � 0 and � > 0, we have

(4.12) # {r 2 R : `r � `} ⌧ q
d

⇣
1� 1

p+�
⌘
�min

⇣
d�1
p ,`

⌘

, d ! 1.

To prove this, first note that, for any 1  i < j  n , since G(i,j)
r divides

E(i)
r , and divides E(j)

r , it also divides D(i)
r , and divides D(j)

r so therefore it
divides the polynomial

(4.13) M2
j D

(i)
r �M2

i D
(j)
r = M2

i M
2
j

✓
ai
Mi

◆0
�M2

i M
2
j

✓
aj
Mj

◆0

which is nonzero by our initial assumption. The degree of the above poly-
nomial is at most d/� + 3d/✏, so by the divisor bound (see [IK04, Equation

1.81]), the polynomial G(i,j)
r attains ⌧ q2�d/(n(n�1)) values, for any � > 0.

Hence, the tuple
⇣
G(i,j)

r

⌘

1i<jn

attains ⌧ q�d values. For each possible

tuple G(i,j)
⇤ , we can recover the residue class of r0 mod G(i,j)

⇤ from the con-
gruence

(4.14) M2
j r

0 ⌘ M 0
jaj � a0jMj mod G(i,j)

r .

and the fact that G(i,j)
r is prime to Mj (because E(j)

r is prime to Mj , by
definition). Combining these for all i, j we can also recover the residue class

of r0 mod the least common multiple U⇤ of G(i,j)
⇤ .

Proposition 4.1 tells us that for any ↵ 2 Fq[T ] we have

#{r 2 R : r0 ⌘ ↵ mod U⇤}  q
�min

n
d(U⇤),

j
d�1
p

ko

#R ⌧ q
d

⇣
1� 1

p

⌘
�min

⇣
d�1
p ,`

⌘

since d(U⇤) � `, so our claim is established.
Next, we observe from Eq. (4.12) that the contribution of those r 2 R

with `r � d�1
p

to Eq. (4.7) is ⌧ q
d

⇣
1� 1

p+�
⌘

and thus can be ignored as we

can choose � small enough that 1� 1
p
+ �  1� �

p
. So we may assume that

`r <
d�1
p

.
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We further set

(4.15) eE(i)
r = gcd

⇣
E(i)

r , Ur

⌘
, bE(i)

r =
E(i)

r

eE(i)
r

, 1  i  n,

and note that gcd( eE(i)
r , bE(i)

r ) = 1 as E(i)
r is squarefree. The Chinese remain-

der theorem then gives a unique decomposition

(4.16) �(i)
r = e�(i)

r b�(i)
r , 1  i  n,

to characters mod eE(i)
r and bE(i)

r respectively. In this notation, our sum reads

(4.17)
X

d(s)<t

nY

i=1

e�(i)
r

⇣
f (i)
r + s

⌘ nY

i=1

b�(i)
r

⇣
f (i)
r + s

⌘

so splitting according to the residue class u of s mod Ur we get

(4.18)
X

d(u)<`r

nY

i=1

e�(i)
r

⇣
f (i)
r + u

⌘ X

d(h)<t�`r

nY

i=1

b�(i)
r

⇣
f (i)
r + u+ hUr

⌘
.

Since gcd( eE(i)
r , bE(i)

r ) = 1, we get that gcd(Ur, bE(i)
r ) = 1 for 1  i  n.

Hence, there exist V (i)
r 2 Fq[T ] with UrV

(i)
r ⌘ 1 mod bE(i)

r . Summing trivially
over u, we may thus consider

(4.19)
nY

i=1

b�(i)
r (Ur)

X

d(h)<t�`r

nY

i=1

b�(i)
r

⇣
f (i)
r V (i)

r + uV (i)
r + h

⌘
.

From gcd( eE(i)
r , bE(i)

r ) = 1 we moreover conclude that { bE(i)
r }n

i=1 are pairwise
coprime. The Chinese remainder theorem then gives an fr,u 2 Fq[T ] with

(4.20) fr,u ⌘ f (i)
r V (i)

r + uV (i)
r mod bE(i)

r , 1  i  n,

so defining the character �r = b�(1)
r · · · b�(n)

r , mod Er = bE(1)
r · · · bE(n)

r , the sum
above becomes

(4.21)
X

d(h)<t�`r

�r(fr,u + h).

We have

(4.22)
t

d(Er)
� t

nmax{d+ 2d/✏, d/� + d/✏} =
min

n
✏

✏+2 ,
✏�

✏+�

o

pn
=·· ⌘

so if �r is nonprincipal, Corollary 2.7 bounds the sum above by ⌧ q(1��
0)t,

for some �0 > � + p�, with � > 0 arbitrarily small. Because we have

(4.23) q >

0

@ pne

min
n

✏

✏+2 ,
✏�

✏+�

o

1

A

2
1�2�
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by assumption, using our definition of ⌘ this can be writeen as

(4.24) q >
�
e⌘�1

� 2
1�2�

and therefore

(4.25) q >
�
e⌘�1

� 2
1�2�0

for any su�ciently small choice of �.
Hence, those r 2 R for which `r = ` and �r is nonprincipal, contribute

⌧ q(1��
0)tq` individually, so the total contribution to our initial sum is ⌧

q(1��
0)t+`q

d

⇣
1� 1

p+�
⌘
�`

= q(1��)tq
d

⇣
1� 1

p

⌘

q�d�(�0��)t = q
d

⇣
1��

p

⌘

qd(��(�0��)/p).

The increase from summing over the possible values of ` is linear in d and
thus can be bounded by the exponential qd((�

0��)/p��), so the contribution

of all the terms where � is nonprincipal is ⌧ q
d

⇣
1��

p

⌘

.
Let r 2 R for which �r is principal. Pairwise coprimality implies that

b�(1)
r is principal as well, so the conductor of �(1)

r divides that of e�(1)
r , and

the latter divides Ur. Thus, for some � 2 Fq and monic B 2 Fq[T ] we have

M2
1 r

0 + a01M1 � a1M
0
1 = D(1)

r = rad1
⇣
D(1)

r

⌘
�B2 = �AAB2, A | M1, A | Ur

where A is the greatest common divisor of M1 and rad1(D
(1)
r ), and A is the

conductor of �(1)
r . Since Ur divides the nonzero polynomial Q defined to be

(4.26)
Y

1i<jn

M2
i M

2
j

✓
ai
Mi

◆0
�
✓

aj
Mj

◆0 �
,

it follows that A | Q as well, so Proposition 4.2 ensures that the number of
r for which the equation above holds is

(4.27) ⌧ d2(M1Q)q(1/2+⇣)d.

The divisor bound then allows us to neglect those r for which �r is principal,

as long as 1
2 + ⇣ + 1

p
< 1 � �

p
, which is alright as � < 1

2  p
⇣
1
2 � 1

p

⌘
so we

can choose ⇣ small enough that this inequality holds.
Let us now handle the case when ai and Mi are not coprime. Set

(4.28) Hi = gcd(ai,Mi), 1  i  n.

If some Hi is not squarefree, the sum vanishes and the bound is trivial.
Otherwise, we have the identity

(4.29) µ(ai + gMi) =

8
<

:
µ
⇣

ai
Hi

+ gMi
Hi

⌘
µ(Hi) if gcd

⇣
ai
Hi

+ gMi
Hi

, Hi

⌘
= 1

0 if gcd
⇣

ai
Hi

+ gMi
Hi

, Hi

⌘
6= 1.

Thus we can write the sum as the constant factor
Q

n

i=1 µ(Hi) times a
similar sum, except that the degrees of ai and Mi are reduced and the terms

where gcd
⇣

ai
Hi

+ gMi
Hi

, Hi

⌘
6= 1 are removed. The degree reduction preserves
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the system of inequalities (4.5) and so is no trouble. Removing the terms

with gcd
⇣

ai
Hi

+ gMi
Hi

, Hi

⌘
6= 1 amounts to removing those g which lie in a

particular residue class modulo each prime factor of Hi, for a total of at
most � =

P
n

i=1 !(Hi) residue classes.
We perform the same argument to this restricted sum. The only change

that occurs is when we write g = r + sp, we must assume that s avoids
a corresponding set of residue classes modulo these primes. By inclusion-
exclusion, we can write a Dirichlet character sum avoiding � residue classes
as an alternating sum of Dirichlet character sums in at most 2� residue
classes, and hence as an alternating sum of at most 2� shorter Dirichlet
character sums. Because the sums over each residue class are shorter, we
can get the same bound for them by Corollary 2.7. Thus our final bound
for this case is worse by a factor of

(4.30) 2� = q
Pn

i=1 o(d(Hi)) = qo(d).

We can absorb this into our bound by slightly increasing � so that it still
satisfies the strict inequality (4.4). ⇤

Theorem 4.5. Fix ✏, � > 0, 0 < � < 1/2, and a positive integer n. Let q
be a power of an odd prime p such that

(4.31) q >

0

@ pne

min
n

✏

✏+2 ,
✏�

✏+�

o

1

A

2
1�2�

.

Then for nonnegative integers d,m1, . . . ,mn, k1, . . . , kn with

(4.32) d � max{✏m1, . . . , ✏mn, �k1, . . . , �kn}, ki 6= d+mi, 1  i  n,

and pairs (ai,Mi) 2 Mki ⇥Mmi for 1  i  n with ai/Mi distinct, we have

(4.33)
X

g2Md

nY

i=1

µ (ai + gMi) ⌧ |Md|1�
�
p

as d ! 1, with the implied constant depending only on ✏, �,�, n and q.

Proof. Our initial assumption is that there are no coincidences among (ai/Mi),
for 1  i  n, so we can find a prime P not dividing

(4.34)
nY

i=1

Mi

Y

1i<jn

(aiMj � ajMi),

with d(P ) = o(d). Let t0 = d(P ). Splitting our initial sum according to the
residue class z of g mod P we get

(4.35)
X

d(z)<t0

X

f2Md�t0

nY

i=1

µ (ai + zMi + fMiP ) .
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We can bound the sums over residue classes by applying Proposition 4.3.
Indeed, suppose toward a contradiction that for some 1  i < j  n we have

(4.36)

✓
ai + zMi

MiP

◆0
=

✓
aj + zMj

MjP

◆0
.

The left hand side above equals

a0
i
MiP + z0M2

i
P + zM 0

i
MiP � aiM 0

i
P � aiMiP 0 � zMiM 0

i
P � zM2

i
P 0

M2
i
P 2

so equating it with the right hand side and clearing denominators, we get
that

M2
j (a

0
iMiP + z0M2

i P + zM 0
iMiP � aiM

0
iP � aiMiP

0 � zMiM
0
iP � zM2

i P
0)

equals

M2
i (a

0
jMjP + z0M2

j P + zM 0
jMjP � ajM

0
jP � ajMjP

0� zMjM
0
jP � zM2

j P
0).

Reducing mod P and multiplying by �1 we get the congruence

M2
j (aiMiP

0 + zM2
i P

0) ⌘ M2
i (ajMjP

0 + zM2
j P

0) mod P

from which we deduce that

M2
j aiMiP

0 ⌘ M2
i ajMjP

0 mod P.

Since P does not divide MiMj by assumption, we get that

MjaiP
0 ⌘ MiajP

0 mod P.

The primality of P implies that P 0 is coprime to P so we conclude that P
divides the polynomial aiMj � ajMi. This contradicts our choice of P .

Because the length of the sum in this case is qd�t
0
, we obtain a savings in

each term of q(d�t
0)�/2p from Proposition 4.3. To obtain our desired savings

of qd�/2p, we must choose �+ o(1) instead of � in the statement of Proposi-
tion 4.3 . Similarly to ensure that d� t0 � max{✏m1, . . . , ✏mn, �k1, . . . , �kn}
we must choose ✏� o(1) and � � o(1). However because the inequality from
Eq. (4.31) is strict, we may increase � by o(1) and reduce ✏ and � by o(1)
in such a way that this inequality is still satisfied. ⇤

We prove two corollaries that give weaker results under conditions that
are simpler to state.

Corollary 4.6. Fix ✏, � > 0 and a positive integer n. Let q be a power of
an odd prime p such that

(4.37) q > p2n2e2max

✓
1 +

2

✏
,
1

✏
+

1

�

◆2

.

Then for nonnegative integers d,m1, . . . ,mn, k1, . . . , kn with

(4.38) d � max{✏m1, . . . , ✏mn, �k1, . . . , �kn}, ki 6= d+mi, 1  i  n,
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and distinct coprime pairs (ai,Mi) 2 Mki ⇥Mmi for 1  i  n, we have

(4.39)
X

g2Md

nY

i=1

µ (ai + gMi) = o (|Md|)

as d ! 1 for fixed ✏, �, n, q.

Proof. The assumed lower bound on q is equivalent to

(4.40) q >

0

@ pne

min
n

✏

✏+2 ,
✏�

✏+�

o

1

A
2

.

If q satisfies this inequality, we can take � small enough that the inequality

(4.41) q >

0

@ pne

min
n

✏

✏+2 ,
✏�

✏+�

o

1

A

2
1�2�

holds, and then apply Theorem 4.5. ⇤

Corollary 4.7. Let q be a power of an odd prime p such that

(4.42) q > p2n2e2,

and let (ai,Mi) 2 Mki ⇥Mmi be distinct coprime pairs for 1  i  n. Then

(4.43)
X

g2Md

nY

i=1

µ (ai + gMi) = o (|Md|)

as d ! 1 for fixed q, n, ai,Mi.

Proof. We can take ✏, � large enough that

(4.44) q > p2n2e2max

✓
1 +

2

✏
,
1

✏
+

1

�

◆2

.

For this ✏ and �, the inequalities

(4.45) d � max{✏m1, . . . , ✏mn, �k1, . . . , �kn}, ki 6= d+mi, 1  i  n,

will be satisfied for all d su�ciently large. We can then apply Corollary 4.6
to deduce the claim. ⇤

5. Level of distribution

The following will be obtained using the techniques of [FM98] and [FKM14]
in the appendix. For coprime polynomials g,M we denote by g the residue
class of the (multiplicative) inverse of g mod M .
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Theorem 5.1. Fix an odd prime power q. Then for any ✓ > 0, for non-
negative integers d,m with d  m, squarefree M 2 Mm, and an additive
character  mod M , we have

(5.1)
X

g2Md
(g,M)=1

µ(g) (g) ⌧ q(
3
16+✓)m+ 25

32d

as d ! 1, with the implied constant depending only on q and ✓.

The following proposition allows us to identify the main term in sums of
von Mangoldt in arithmetic progressions.

Proposition 5.2. Fix a prime power q. For nonnegative integers d,m, and
a squarefree M 2 Mm we have

(5.2)
dX

k=1

kq�k
X

A2Mk
(A,M)=1

µ(A) = � qm

'(M)
+ qo(m+d)�d.

Proof. The left hand side above is the sum of the first d coe�cients of the
power series

u
d

du

1X

k=1

q�kuk
X

A2Mk
(A,M)=1

µ(A) = u
d

du

Y

P -M

⇣
1� ud(P )|P |�1

⌘

= u
d

du

0

@(1� u)
Y

P |M

⇣
1� ud(P )|P |�1

⌘�1

1

A .

Summing all the coe�cients of a power series, evaluates it at u = 1.
Hence, the main term comes from the equality
✓
u
d

du
((1� u)F (u))

◆
(1) = �F (1), F (u) =

Y

P |M

⇣
1� ud(P )|P |�1

⌘�1
.

The coe�cients of degree greater than d contribute to the error term. To
bound the sum of these coe�cients, we can write the degree k coe�cient as

(5.3) k

I

|u|=r

(1� u)F (u)

uk+1
du

for r < q, getting a bound of

(5.4) k(1 + r)r�k�1max
|u|=r

F (u).

As long as the above maximum is subexponential in m for all r < q, the
expression above will be qo(m)k(1 + r)r�k�1, so the sum of the coe�cients
of degree greater than d is

(5.5) qo(m)
X

k>d

k(1 + r)r�k�1 = qo(m)(r � o(1))�d.
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Taking r arbitrarily close to q, the above is qo(m)(q � o(1))�d = qo(m+d)�d.
The value of F (u) is indeed subexponential in m, because M has o(m)

prime divisors and each contributes at most

(5.6)

 
1�

✓
r

q

◆
d(P )

!�1


✓
1� r

q

◆�1

.

⇤

The proof above is written using asymptotic notation for m (and d),
namely it gives uniformity in M . Clearly the same argument also applies to
the case of a fixed polynomial M (or a fixed value of m), and d ! 1.

In the following we deduce, from our results on the Möbius function, a
level of distribution beyond 1/2 for primes in every individual arithmetic
progression to a squarefree modulus. We shall use the convolution identity
⇤ = �1 ⇤ (µ · deg) which for f 2 Fq[T ]+ of degree d � 0 says that

(5.7) ⇤(f) = �
dX

k=1

k
X

A2Mk

X

B2Md�k

AB=f

µ(A).

Corollary 5.3. For any 0 < ! < 1/32, for any odd prime p and power q

of p such that q > p2e2
⇣
1 + 50

1�32!

⌘2
, the following holds. For nonnegative

integers d,m with d � (1 � !)m, squarefree M 2 Mm, and a 2 Fq[T ] with
d(a) < d+m and coprime to M , we have

(5.8)
X

g2Md

⇤(a+ gM) =
qd+m

'(M)
+O

⇣
q(1��)d

⌘

as d ! 1, for some � > 0 depending only on q,! (a power savings error
term).

Proof. We can assume d(a) = m, and use Eq. (5.7) to write our sum as

(5.9)
X

f2Mm+d
f⌘a mod M

⇤(f) = �
d+mX

k=1

k
X

A2Mk
(A,M)=1

µ(A)
X

B2Mm+d�k
AB⌘a mod M

1

so by Proposition 5.2 the range k  d contributes the main term.
The (absolute value of the) contribution of any k > d is

kqd�k

���
X

A2Mk
(A,M)=1

µ(A)
X

 : Fq [T ]/M!C⇥

 (f)=0 if d(f)<m+d�k

 
�
aA
�
 (Tm+d�k)

��� 

kqd�k
X

 : Fq [T ]/M!C⇥

 (f)=0 if d(f)<m+d�k

���
X

A2Mk
(A,M)=1

µ(A) 
�
aA
����

(5.10)
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so by Theorem 5.1 we get

(5.11) ⌧ kqd�kqk�dq(
3
16+✓)m+ 25

32k = kq(
3
16+✓)m+ 25

32k

which gives a power saving as long as

(5.12)

✓
3

16
+ 2✓

◆
m+

25

32
k < d.

The (absolute value of the) contribution of any other k is at most

(5.13) k
X

B2Mm+d�k
(B,M)=1

���
X

A2Mk
AB⌘a mod M

µ(A)
��� = k

X

B2Mm+d�k
(B,M)=1

���
X

g2Mk�m

µ(b+ gM)
���

where b is the unique monic polynomial of degree m congruent to aB�1

modulo m. We apply Theorem 4.5 with some fixed � > 0 and with

(5.14) ✏ = � =
32

25

✓
1

32
� ! � 2✓

◆
.

Then because (5.12) does not hold, we have

k �m � 32

25

✓
d�

✓
31

32
+ 2✓

◆
m

◆
� 32

25

✓
(1� !)m�

✓
31

32
+ 2✓

◆
m

◆
= ✏m

so the conditions of Theorem 4.5 are satisfied as long as

(5.15) q >

 
pe

 
1 +

25

16

1
1
32 � ! � 2✓

!! 2
1�2�

.

Because we may take � and ✓ arbitrarily small, it su�ces to have

(5.16) q > p2e2
 
1 +

25

16

1
1
32 � !

!2

= p2e2
✓
1 +

50

1� 32!

◆2

Summation over k gives only an extra logarithmic factor, so it preserves
our power savings. ⇤

6. The twin primes conjecture

6.1. Chowla sums over primes. We establish cancellation in Möbius au-
tocorrelation over primes.

Corollary 6.1. Fix ✏̃, �̃ > 0, 0 < ↵ < 1, 0 < � < 1/2, and a positive integer
n. Let q be a power of an odd prime p such that

q >

 
p(n+ 1)emax

 
1 +

2 + 2↵+ 4✏̃�1

1� ↵
,
1 + ↵+ 2✏̃�1 + 2�̃�1

1� ↵

!! 2
1�2�

.

Take nonnegative integers d,m1, . . . ,mn, k1, . . . , kn with

(6.1) d � max{✏̃m1, . . . , ✏̃mn, �̃k1, . . . , �̃kn}, ki 6= d+mi, 1  i  n,

and distinct coprime pairs (ai,Mi) 2 Mki ⇥Mmi for 1  i  n.
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Furthermore let m, k be nonnegative integers with m  ↵d, k < m + d,
let M 2 Mm, and let a 2 Mk with (a,M) distinct from (ai,Mi) for every
1  i  n. Then

(6.2)
X

g2Md

⇤(a+ gM)
nY

i=1

µ (ai + gMi) ⌧ |Md|1�
�(1�↵)

2p

as d ! 1, with the implied constant depending only on ✏̃, �̃,↵, n,� and q.

Proof. We can assume (a,M) = 1, set z =
⌅
d+m

2

⇧
, and use Eq. (5.7) to write

⇤(a+gM) = �
zX

b=1

b
X

B2Mb
B|a+gM

µ(B)�
d+m�z�1X

c=0

(d+m�c)
X

C2Mc
C|a+gM

µ

✓
a+ gM

C

◆
.

For every B above, taking a monic N = N(B) 2 Fq[T ] with

(6.3) MN ⌘ �a mod B, d(N) 6= ki �mi, d(N)  b+ n,

and writing g = N + hB with h 2 Md�b, we see that the sum over b
contributes

(6.4)

b d+m
2 cX

b=1

b
X

B2Mb

µ(B)
X

h2Md�b

nY

i=1

µ (ai +NMi + hBMi)

so we can apply Theorem 4.5 to the innermost sum, taking

(6.5) ✏ =
1� ↵

1 + ↵+ 2✏̃�1
 d�m

d+m+ 2mi

=
d� d+m

2
d+m

2 +mi

 d� b

b+mi

and

� = min

✓
1� ↵

2�̃�1
,

1� ↵

1 + ↵+ 2✏̃�1

◆
 min

✓
d� b

ki
,
d� b

b+mi

◆

 min

✓
d� b

deg ai
,

d� b

degNMi

+ o(1)

◆
.

(6.6)

To obtain the condition on q, note that, when calculating max(1+ 2
✏
, 1
✏
+ 1
�
),

we can treat � as 1�↵
2�̃�1 , because if the other term is smaller, then 1

✏
+ 1

�
is

dominated by 1 + 2
✏
anyways.

Taking L 2 Fq[T ]+ with

(6.7) ML ⌘ �a mod C, d(L) 6= ki�mi, d(L) 6= d, d(L)  c+n+1,

and writing g = L + hC with h 2 Md�c, we see that the sum over c
contributes
d+m�z�1X

c=0

(d+m�c)
X

C2Mc

X

h2Md�c

µ

✓
a+ LM

C
+ hM

◆ nY

i=1

µ (ai + LMi + hCMi)



32 WILL SAWIN AND MARK SHUSTERMAN

and we again apply Theorem 4.5 to the innermost sum, with the same values
of ✏ and �. Everything is the same as before, with c replaced by b, except
for two things.

(1) We can no longer use the inequality b  m+d

2 , but rather the slightly

weaker inequality c  m+d+1
2 .

(2) The term µ
�
a+LM

C
+ hM

�
appears, which means we must check that

(6.8) (d� c) � ✏m, (d� c) � ✏d

✓
a+ LM

C

◆
.

However (1) is no di�culty as we may assume d su�ciently large and
perturb the parameters ✏ and � slightly to insure the inequalities of Theo-
rem 4.5 still hold. For this reason we will assume c  m+d

2 while handling
(2) as well.

To check that (d�c) � ✏m we observe that, because c  m+d

2 and d < ↵m,

we have d� c � d�m

2 , and thus d�c

m
� 1�↵

2↵ � 1�↵
1+↵ � ✏.

To check that

(6.9) d

✓
a+ LM

C

◆
 max(m+ d� c,m+ n)  ��1(d� c)

we observe

�  1� ↵

1 + ↵
=

2(d�m)

d+m
=

1
m

(d�m)/2 + 1
 1

m

d�c
+ 1

=
d� c

m+ d� c
.

⇤

6.2. Singular series. For nonzero a 2 Fq[T ] define

(6.10) Sq(a) =
Y

P |a

�
1� |P |�1

��1Y

P -a

⇣
1� (|P |� 1)�2

⌘
.

The following propositon allows us to identify the main term in our twin
prime number theorem. An analogous result over the integers is proved in
[GY03, Lemma 2.1].

Proposition 6.2. Fix a prime power q. Then for an integer n � 1 and a
nonzero a 2 Fq[T ] we have

(6.11)
nX

k=1

k
X

M2Mk
(M,a)=1

µ(M)

'(M)
= �Sq(a) + (q � 1)o(n+d(a))�n.

Proof. We are interested in the sum of the first n coe�cients of

Z(u) = u
d

du

1X

k=1

uk
X

M2Mk
(M,a)=1

µ(M)

'(M)
= u

d

du

Y

P -a

⇣
1� ud(P ) (|P |� 1)�1

⌘

= u
d

du
((1� u)G(u))

(6.12)
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where G(u) is
Y

P |a

⇣
1� ud(P )|P |�1

⌘�1Y

P -a

⇣
1� ud(P )|P |�1

⌘�1 ⇣
1� ud(P ) (|P |� 1)�1

⌘
.

The sum of all coe�cients equals

(6.13) Z(1) = �G(1) = �Sq(a)

because

(6.14)
�
1� |P |�1

��1
⇣
1� (|P |� 1)�1

⌘
= 1� (|P |� 1)�2 .

As in Proposition 5.2, to prove the bound for the error term it su�ces
to prove that G(u) is bounded subexponentially in a for u on each circle of
radius < q � 1.

Note that
⇣
1� ud(P )|P |�1

⌘�1 ⇣
1� ud(P ) (|P |� 1)�1

⌘
=

1� ud(P )

|P | (|P |� 1)
�
1� ud(P )|P |�1

�
(6.15)

so G(u) can be rewritten as

Y

P

 
1� ud(P )

|P | (|P |� 1)
�
1� ud(P )|P |�1

�
!
Y

P |a

⇣
1� ud(P ) (|P |� 1)�1

⌘�1
.

The first product above is independent of a and converges on the disc where
|u| < q. On a circle of radius r, the value of each term in the second product
is at most

(6.16)

 
1� rd(P )

qd(P ) � 1

!�1


✓
1� r

q � 1

◆�1

and thus is bounded, and the number of terms is o(d(a)), so the product is
subexponential in a.

⇤

6.3. Hardy-Littlewood conjecture for pairs.

Theorem 6.3. For every odd prime number p, and power q of p with

(6.17) q > 685090p2,

there exists � > 0 such that the following holds. For nonnegative integers
d > `, and a 2 M` we have

(6.18)
X

f2Md

⇤(f)⇤(f + a) = Sq(a)q
d +O

⇣
q(1��)d

⌘

as d ! 1, with the implied constant depending only on q.
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Proof. Using Eq. (5.7) our sum becomes

(6.19) �
dX

k=0

k
X

M2Mk

µ(M)
X

N2Md�k

⇤(a+NM).

The appearance of the factor µ(M) allows us to consider only squarefree M ,
so by Corollary 5.3, the contribution of the range 0  k  d/(2� !) is

(6.20) � qd
d/(2�!)X

k=0

k
X

M2Mk
(a,M)=1

µ(M)

'(M)
+O

⇣
dq

d
2�!Eq

⌘

which equals by Proposition 6.2 to

(6.21) qdSq(a) +O

✓
dq

d
2�!Eq + qdE0

q

✓
d

2� !

◆◆
.

The error term is of power savings size.
In the other range, we need to prove a power savings bound for

(6.22)
dX

k>d/(2�!)

k
X

N2Md�k

X

M2Mk

⇤(a+MN)µ(M)

and this is done by applying Corollary 6.1 to the innermost sum with

(6.23) n = 1, ✏̃ = 1, �̃ = 1, ↵ = 1� ! >
d� k

k

and � > 0 but very small. This requires

(6.24) q >

✓
2pe

✓
1 +

2 + 2� 2!

!

◆◆2

=

✓
2pe

✓
4

!
� 1

◆◆2

and Corollary 5.3 requires

(6.25) q > p2e2
✓
1 +

50

1� 32!

◆2

so the optimal bound is obtained by solving

(6.26) 2

✓
4

!
� 1

◆
= 1 +

50

1� 32!

whose solution is

(6.27) ! =
103�

q
30803

3

64
= .0261 . . .

which satisfies

(6.28)

✓
2e

✓
4

!
� 1

◆◆2

< 685090.

⇤



ON THE CHOWLA AND TWIN PRIMES CONJECTURES OVER Fq [T ] 35

7. Results for Small q

We prove Theorem 1.11.

Proof. Set d(f) = d. We need to show that by suitably changing the coe�-
cients of f in degree at most ⌘d, one can arrive at a polynomial with a given
(nonzero) Möbius value.

Let c < ⌘d be the largest even integer not divisible by 3. Note that

(7.1) c � ⌘d� 4.

We take the coe�cient of T c in f to be 1, and the coe�cient of T k to be 0
for every k < c that is not divisible by 3. Hence, it is enough to show that

(7.2) 1,�1 2
�
µ(f + b3) : b 2 Mbc/3c

 
.

By Lemma 3.2 with M = 1, a = f , and g = b3, our set equals

(7.3)
�
S · �(w + b3) : b 2 Mbc/3c

 

and since the highest power of T that divides (f + b3)0 = f 0 is T c�1, we
conclude that S = ±1 and from Remark 3.3 that � is a nonprincipal char-
acter (to a squarefree modulus E). Arguing as in Eq. (4.9) to ’extract third
roots’, we are thus led to consider

(7.4)
�
�( ew + b) : b 2 Mbc/3c

 

where ew is the unique residue class modulo E with ew3 ⌘ w mod E.
From Lemma 3.2 we further conclude that

(7.5) d(E)  d� c+ 1  (1� ⌘)d+ 5,

and on the other hand

(7.6) bc/3c � c

3
� 1 � ⌘d� 4

3
� 1 � ⌘

3
d� 3,

so combining the two we get

(7.7)
bc/3c
d(E)

�
⌘

3d� 3

(1� ⌘)d+ 5
.

Since we have assumed that 3/7 < ⌘ < 1, the right hand side of the above
tends to a quantity greater than 1/4 as d ! 1. Consequently, we can use
the (function field version of the) Burgess bound (as stated for instance in
[Bur63, Theorem 2]) to show that 1 and �1 belong to the set above. Such
a version is obtained in [Hsu99]. ⇤

Now we prove Theorem 1.12.

Proof. Set k = d(P ). For positive integers d, n, we seek cancellation in

(7.8)
X

g2Md

µ(a+ gPn)
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where a 2 Fq[T ]+ satisfies d(a) < nk and a ⌘ 1 mod Pn�2. We assume first
that 3 | n, and follow the proof of Proposition 4.3 up to Eq. (4.21) getting

(7.9)
X

d(h)<t

�r(f + h)

with �r a character mod Er. If �r is principal, then by Remark 3.3 we have

(7.10) P 2nr0 + a0Pn = D(1)
r = AB2, A,B 2 Fq[T ], A | Pn, P - B

and since Pn�3 | a0, we conclude that

(7.11) P 3r0 +
a0

Pn�3
= eA eB2, eA, eB 2 Fq[T ], eA | P.

There are ⌧ qd/2 choices of r 2 R satisfying the above, so those can be
neglected.

For r 2 R with �r nonprincipal, we note that

(7.12) d(Er)  d
�
rad

�
P 2nr0 + a0Pn

��
 d

✓
P 3r0 +

a0

Pn�3

◆
+ k

so for large enough d we have t/d(Er) > 1/4, hence cancellation in Eq. (7.9)
is guaranteed by Burgess.

Suppose now that 3 | n+ � for some � 2 {1, 2}, and write

(7.13)
X

g2Md

µ(1 + gPn) =
X

d(g0)<�k

X

g12Md��k

µ(1 + g0P
n + g1P

n+�)

for d � �. We have thus reduced to the previous case with a = 1+g0Pn. ⇤

Remark 7.1. We see from the proof that 1 is not the only residue class for
which the argument works. Also, the modulus does not have to be a power
of a fixed prime, but it has to be ‘multiplicatively close’ to a cube.

Appendix A. Orthogonality of the Möbius function and

inverse additive characters

We explain how a variant of the results of [FM98] carries over to function
fields and gives Theorem 5.1.

A standard strategy in the treatment of sums such as those from Eq. (5.1)
is to use a combinatorial identity for the Möbius function. Following [FM98],
we use Vaughan’s identity, which for f 2 Fq[T ]+ gives

(A.1) µ(f) = �
X

d(g)↵

X

d(h)�
gh|f

µ(g)µ(h) +
X

d(g)>↵

X

d(h)>�

gh|f

µ(g)µ(h)

where summation is over monic polynomials, and ↵,� are nonnegative in-
tegers with max{↵,�} < d(f). For a proof (that is also valid for function
fields) see [IK04, Proposition 13.5].
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By applying Vaughan’s identity as in [FM98, Section 6], we reduce our
task to bounding sums of type I:

(A.2) ⌃(I)
k,r

=
X

f2Mk

X

g2Mr

(fg,M)=1

�f (fg)

where k  1
8d(M) + 7

16d, k + r  d, |�f |  1 and sums of type II:

(A.3) ⌃(II)
k,r

=
X

f2Mk

X

g2Mr

(fg,M)=1

�f�g (fg)

with k � 1
8d(M) + 7

16d, r � 7
16d � 3

8d(M), k + r  d, |�g|  1. For every
✏ > 0, we need the bounds

(A.4) ⌃(I)
k,r

⌧ q(
3
16+✏)d(M)+ 25

32d, ⌃(II)
k,r

⌧ qd+✏d(M)� r
2 + qd+(

1
4+✏)d(M)� k

2

that are analogous to [FM98, Equation 6.4]. The bounds (A.4) then imply
(5.1) by the argument of [FM98, Section 6].

A.1. Sums of type I. Following first the bilinear shifting trick argument
of [FM98, §4], we obtain the inequality

(A.5) ⌃(I)
k,r

⌧ 1

V

X

a2MdA
(a,M)=1

X

f2Mk

X

g2Mr

���
X

b2MdB
(a�1

g+b,M)=1

 
⇣
af(a�1g + b)

⌘���

where, in analogy with the variables A,B from [FM98, (4.8)],

(A.6) dA =
3r � k

4
, dB =

k + r

4
� 1

and

(A.7) V = # {ab : a 2 MdA , b 2 MdB , (a,M) = 1} � qdA+dB�✏d(M).

The parameter t and the term e(�bt) from [FM98] do not appear here,
as they arise from the failure of an archimedean interval to be perfectly
invariant under a shift.

Put M = Fq[T ]/(M). Following the Hölder’s inequality argument from
[FM98, §4.a], we get as in [FM98, Equation 4.6], the bound

⇣ X

a2MdA
(a,M)=1

X

f2Mk

X

g2Mr

���
X

b2MdB
a
�1

g+b2M⇥

 (af(a�1g + b))
���
⌘6

⌧

q5(k+r+dA)+✏d(m)
X

b1,...,b
0
32MdB

���
X

h2M
h+bi2M⇥

h+b
0
i2M⇥

X

d(s)k+dA
(s,M)=1

 (�b(h, s))
���

(A.8)

where

(A.9) b = (b1, b2, b3, b
0
1, b

0
2, b

0
3) 2 Fq[T ]

6,
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and the function �b(h, s) is defined by

(A.10) �b(h, s) =
3X

i=1


1

(h+ bi)s
� 1

(h+ b0
i
)s

�
.

Because of our conditions h+ bi 2 M⇥, h+ b0
i
2 M⇥, and (s,M) = 1, the

function �b is never evaluated where it is undefined. The Hölder’s inequality
argument is slightly more involved because the invertibility assumptions are
more complex in case M is not prime, but the idea is essentially the same.

As in [FM98], we complete the right hand side of Eq. (A.8) and get
X

h2M
h+bi2M⇥

h+b
0
i2M⇥

X

d(s)k+dA
(s,M)=1

 (�b(h, s)) =

qk+dA�d(M)
X

z2Fq [T ]
d(z)<d(M)�k�dA

X

h2M
h+bi2M⇥

h+b
0
i2M⇥

X

s2M⇥

 (�b(h, s) + zs) .
(A.11)

In order to treat the innermost sum on the right hand side, we note that

(A.12) �b(h, s) + zs =
1

s

3X

i=1


1

(h+ bi)
� 1

(h+ bi0)

�
+ zs

so the aforementioned innermost sum over s is a Kloosterman sum. We put

(A.13) Mb =
�
x 2 M : (x+ b1) · · · (x+ b03) 2 M⇥ ,

define a function Rb : Mb ! M by

(A.14) Rb(x) =
3X

i=1

✓
1

x+ bi
� 1

x+ b0
i

◆
,

and a Kloosterman sum

(A.15) S(x, z) =
X

y2M⇥

 
�
xy�1 + zy

�
, x 2 M, z 2 Fq[T ].

In this notation, for any z 2 Fq[T ] we have

(A.16)
X

h2Mb

X

s2M⇥

 (�b(h, s) + zs) =
X

x2Mb

S(Rb(x), z)

and the following claim.

Proposition A.1. For � 2 S3 and

(A.17) Mb
� = gcd

⇣
M, b1 � b0

�(1), b2 � b0
�(2), b3 � b0

�(3)

⌘

we have if p > 3 the bound

(A.18)

������

X

x2Mb

S(Rb(x), z)

������
⌧ |M |d2(M)4

���lcm�2S3 gcd(M
b
� , z)

���
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with the implied constant depending only on q. As before, we write d2(M)
for the number of monic divisors of M .

If p = 3, with

(A.19) Mb
4 = gcd

�
M, b1 � b2, b2 � b3, b

0
1 � b02, b

0
2 � b03

�
,

we have the bound

(A.20)

������

X

x2Mb

S(Rb(x), z)

������
⌧ |M |d2(M)4

���lcm�2S3[{4} gcd(M
b
� , z)

���

with the implied constant depending only on q.

Proof. Since both the bound and the sum are multiplicative in M , it su�ces
to handle the case when M is prime, where we show that

(A.21)

������

X

x2M\{b1,...,b03}

S(Rb(x),m)

������
 16|M|

unless z = 0 and either

• for some � 2 S3 we have bi = b0
�(i) for all 1  i  3;

• or p = 3, b1 = b2 = b3, and b01 = b02 = b03;

in which case we have the trivial bound

(A.22)

������

X

x2M\{b1,...,b03}

S(Rb(x), 0)

������
 |M|2.

The relevance of these conditions is that the residue of the pole of Rb at
a point x equals

(A.23) #{1  i  3 : bi = �x}�#{1  i  3 : b0i = �x}

so it is nonzero whenever these two numbers are not equal, except when
p = 3, one of these numbers is 3, and the other is zero. Hence, Rb has a
pole unless each bi is equal to some b�(i)0 , or p = 3, all the bi are equal, and
the b0

i
are also all equal.

Excluding these ‘trivial’ values of b for z = 0, we get that the rational
function Rb is nonconstant and at most 6 to 1. Hence, if Rb(x) 6= 0 we get
S(Rb(x), 0) = �1, while for the values of x with Rb(x) = 0, at most 6 in
number, we have

(A.24) S(0, 0) = |M|� 1.

In total, we get

(A.25)

������

X

x2M\{b1,...,b03}

S(Rb(x), 0)

������
 |M|+ 6|M| = 7|M|.
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Suppose from now on that z 6= 0. Note that if the rational function Rb

is constant then it necessarily vanishes identically, so we get

(A.26)

������

X

x2M\{b1,...,b03}

S(0, z)

������
 |M|.

We can thus assume that Rb is nonconstant, and let K`2 be the Kloosterman
sheaf, as in [Ka88]. With this notation, our sum can be written as

�
X

x2M\{b1,...,b03}

tr
�
Frob|M|, (K`2)Rb(x)z

�
=

�
X

x2M\{b1,...,b03}

tr
�
Frob|M|, ([zRb]

⇤K`2)x
�
=

�
2X

i=0

(�1)i tr
⇣
Frob|M|, H

i

c

⇣
A1
Fq

\ {�b1, . . . ,�b03}, [zRb]
⇤K`2

⌘⌘

(A.27)

by the Grothendieck-Lefschetz fixed point formula. By [Ka88, Theorem 11.1]
the geometric monodromy group of K`2 is SL2, which is connected, so the
geometric monodromy group of the pullback of K`2 by any finite covering
map is SL2, whose standard representation has no nontrivial monodromy
coinvariants, so the cohomology groups in degree 0 and 2 vanish. As K`2 is
pure of weight 1, its pullback by a finite covering map is mixed of weight
at most 1, so by Deligne’s Riemann Hypothesis, the eigenvalues of Frob|M|
on H1

c (A1
Fq

\ {�b1, . . . ,�b03}, [zRb]⇤K`2) have absolute value at most |M|.
Hence, in order to bound our sum by 16|M|, it su�ces to prove that the
dimension of the above cohomology group is at most 16.

By the aforementioned vanishing of cohomology in degrees 0 and 2, the
dimension of our cohomology group equals minus the Euler characteristic.
Since [zRb]⇤K`2 is lisse of rank 2 on A1

Fq
\ {�b1, . . . ,�b03}, its Euler char-

acteristic is twice the Euler characteristic of A1
Fq

\ {�b1, . . . ,�b03}, which

is

(A.28) 2
�
1�#{�b1, . . . ,�b03}

�
,

minus the sum of the Swan conductors at each singular point, in view of
[SGA5, X, Theorem 7.1]. Because the rational function mRb has a zero at
1 and a pole of order at most 1 at each bi or b0

i
, the Swan conductor of

[mRb]⇤K`2 at 1 vanishes and the Swan conductor of [zRb]⇤K`2 at bi or b0i
is at most 1, so the total Euler characteristic is at least

(A.29) 2� 3#{�b1, . . . ,�b03} � 2� 3 · 6 = �16.

⇤
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Corollary A.2. Keeping the same notation, we have if p > 3
X

h2Mb

X

s2M⇥
d(s)k+dA

 (�b(h, s)) ⌧ d2(M)5
⇣
|M |+ q

3(r+k)
4

���lcm�2S3 M
b
�

���
⌘
.

and, if p = 3, the same bound but with Mb
4 also included in the lcm.

Proof. Using Eq. (A.11), Eq. (A.16), and Proposition A.1 we get a bound
of

(A.30) ⌧ qk+dAd2(M)4
X

z2Fq [T ]
d(z)<d(M)�k�dA

���lcm�2S3 gcd
⇣
Mb
� , z

⌘���

for the left hand side above. Summing over the possible values of the least
common multiple, we get

⌧ q
3(r+k)

4 d2(M)4
X

L|lcm�2S3M
b
�

|L|
X

z2Fq [T ]

d(z)<d(M)� 3(r+k)
4

L|z

1

⌧ q
3(r+k)

4 d2(M)4
X

L|lcm�2S3M
b
�

|L|max
n
qd(M)� 3(r+k)

4 �d(L), 1
o
.

(A.31)

The contribution of qd(M)� 3(r+k)
4 �d(L) (respectively, of 1) is the first (respec-

tively, the second) summand of the right hand side in our corollary. ⇤
Corollary A.3. Notation unchanged, we have

(A.32)
X

b1,...,b
0
32MdB

���
X

h2Mb

X

s2M⇥
d(s)k+dA

 (�b(h, s))
���⌧ |M |d2(M)12q

6
4 (k+r).

Proof. By Corollary A.2 we have a bound of

(A.33) ⌧
X

b1,...,b
0
32MdB

d2(M)5
⇣
|M |+ q

3(r+k)
4

���lcm�2S3 M
b
�

���
⌘
.

Summing first over tuples M� of divisors of M we get

(A.34)
X

�2S3

X

M� |M

X

b1,...,b
0
32MdB

8� M�=M
b
�

d2(M)5
⇣
|M |+ q

3(r+k)
4 |lcm�2S3 M�|

⌘
.

For each such tuple, the conditions

(A.35) M� = Mb
� , � 2 S3

imply the congruences

(A.36) bi ⌘ b0
�(i) mod M�, 1  i  3, � 2 S3
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which determine b01, b
0
2, b

0
3 mod lcm�2S3M� once b1, b2, b3 are chosen. Hence,

for each tuple of divisors of M , the number of possible values of b is at most

(A.37) max
n
q6dB |lcm�2S3M�|�3 , q3dB

o
.

If p = 3, we need a slightly more complicated argument. There are at most
M2

4 ways to choose the congruence classes of b modulo M4, and then choos-
ing b1, b2, b3 arbitrarily now determines b01, b

0
2, b

0
3 mod lcm�2S3[{4}M�. Be-

cause the number of ways to choose b modulo M� and then choose b1, b2, b3
is

(A.38)

(
M2

4(q3dB/M3
4)  q3dB if M4  qdB

q2dB  q3dB if M4 > qdB

in either case the number of possible values of b is at most

(A.39) max
n
q6dB

��lcm�2S3[{4}M�

���3
, q3dB

o
.

Setting ⌧ = d(lcm�2S3M�) (or adding4 if p = 3), and taking the maximal
possible contribution for every tuple of divisors of M , we get the bound

(A.40) max
0⌧d(M)

d2(M)|S3|+1
⇣
q6dB�3⌧ + q3dB

⌘
d2(M)5

⇣
|M |+ q

3(r+k)
4 +⌧

⌘
.

Expanding the brackets above, we see that each exponent is a linear function
of ⌧ , hence maximized either at ⌧ = 0 or at ⌧ = d(M). Using Eq. (A.6), one

observes that the maximal terms q6dB+d(M) and q3db+
3(r+k)

4 +d(M) agree and
arrives at the right hand side of Eq. (A.32). ⇤

It then follows from Eq. (A.8), Eq. (A.32), and the divisor bound that

X

a2MdA
(a,M)=1

X

f2Mk

X

g2Mr

������

X

b2MdB

 
�
af(a�1g + b)

�
������
⌧ q

41
24 r+

21
24k+( 16+✏)d(M)

and thus (matching the ` = 3 case of [FM98, (1.2.3)]) we get

(A.41) ⌃(I)
k,r

⌧ q
17
24 r+

7
8k+( 16+✏)d(M)

using Eq. (A.5). Using the fact that k  1
8d(M) + 7

16d and k + r  d we
arrive at the first bound in Eq. (A.4).

A.2. Sums of type II. Keeping the same notation, we follow the proof of
[FKM14, Theorem 1.17]. Applying Cauchy’s inequality and Polya-Vinogradov
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completion as in [FKM14, Section 3], we get
���⌃(II)

k,r

���
2
 qk

X

g1,g22Mr

�g1�g2
X

f2Mk
(fg1,M)=(fg2,M)=1

 (fg1 � fg2)

 qk
X

g1,g22Mr

qk�d(M)
X

h2Fq [T ]
d(h)<d(M)�k

C(g1 � g2, h).
(A.42)

where

(A.43) C(g, h) =
X

z2M⇥

 (gz)ep
⇣
TrMFp

(hz)
⌘
, g, h 2 Fq[T ].

We have the following analog of [FKM14, Proposition 3.1].

Proposition A.4. For g, h 2 Fq[T ] and Mg,h = gcd(M, g, h) we have

(A.44) |C(g, h)|  d2(M)
p
|M |

q
|Mg,h|.

Proof. Since both C(g, h) and our putative bound are multiplicative in M ,
it su�ces to show that for a prime P we have

(A.45) |C(g, h)|  2
p
|P |

unless g ⌘ h ⌘ 0 mod P . To demonstrate that, take f 2 Fq[T ]/(P ) with

(A.46)  (z) = ep
⇣
Tr

Fq [T ]/(P )
Fp

(fz)
⌘

and note that

(A.47) C(g, h) =
X

z2(Fq [T ]/(P ))⇥

ep
⇣
Tr

Fq [T ]/(P )
Fp

(gfz�1 + hz)
⌘
.

We have a Weil bound of 2
p
|P | for this exponential sum unless the rational

function gfz�1+hz is an Artin-Schreier polynomial, which can only happen
if it is constant, as all its poles have order at most 1. The latter happens
only if g = h = 0, as desired. ⇤

By Eq. (A.42) we have

(A.48)
���⌃(II)

k,r

���
2
 q2k�d(M)

X

L|M

X

h2Fq [T ]
d(h)<d(M)�k

X

g1,g22Mr
Mg1�g2,h

=L

C(g1 � g2, h)

so from Proposition A.4 and the divisor bound, this is at most

(A.49) q2k�
d(M)

2 +✏d(M)
X

L|M

q
d(L)
2

X

h2Fq [T ]
d(h)<d(M)�k

X

g1,g22Mr
Mg1�g2,h

=L

1.

Since Mg1�g2,h = L implies that g2 ⌘ g1, h ⌘ 0 mod L, the above is at most

(A.50) q2k�
d(M)

2 +✏d(M)
X

L|M

q
d(L)
2 +r+max(r�d(L),0)+max(d(M)�k�d(L),0)
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so setting ⇠ = d(L) and applying the divisor bound once again, we arrive at

(A.51) max
0⇠d(M)

q2k+
⇠
2+r+max{r�⇠,0}+max{d(M)�k�⇠,0}� d(M)

2 +✏d(M).

As a function of ⇠, the exponent above is convex, so its values do not
exceed those at ⇠ = 0 and ⇠ = d(M), which are

(A.52) q
d(M)

2 +✏d(M)+2r+k, qr+2k+✏d(M)

in view of our assumption that r  d  d(M). Taking a square root and
using the fact that k + r  d we get the second bound in (A.4).

Remark A.5. There are (at least) two other potential approaches for bound-
ing our type II sums. The first is to follow the proof of [FM98, Proposi-
tion 1.3] that uses Bombieri’s bound on complete exponential sums [FM98,
Lemma 4.3]. One then argues as in [FM98, Section 5]. The second is to
follow the proof of [FM98, Theorem 1.4] given in [FM98, Section 7].
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9-57..

[IK04] H. Iwaniec, E. Kowalski, Analytic number theory, Vol. 53. Amer. Math. Soc. 2004.
[Jan07] S. Janson (2007), Resultant and discriminant of polynomials, Note N5. http:

//www2.math.uu.se/~svante/papers/sjN5.pdf.
[Ka88] N. Katz, (1988). Gauss Sums, Kloosterman Sums, and Monodromy Groups,

Princeton university press.
[Kat89] N. Katz (1989), An Estimate for Character Sums, JAMS, 2, 2, 197-200.
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