ON THE CHOWLA AND TWIN PRIMES CONJECTURES
OVER F,[T]

WILL SAWIN AND MARK SHUSTERMAN

ABSTRACT. Using geometric methods, we improve on the function field
version of the Burgess bound, and show that, when restricted to certain
special subspaces, the Mobius function over Fq[T] can be mimicked by
Dirichlet characters. Combining these, we obtain a level of distribution
close to 1 for the Md&bius function in arithmetic progressions, and re-
solve Chowla’s k-point correlation conjecture with large uniformity in
the shifts. Using a function field variant of a result by Fouvry-Michel
on exponential sums involving the Mobius function, we obtain a level of
distribution beyond 1/2 for irreducible polynomials, and establish the
twin prime conjecture in a quantitative form. All these results hold for
finite fields satisfying a simple condition.

1. INTRODUCTION

Our main results are the resolutions of two open problems in number
theory, except with the ring of integers Z replaced by the ring of polynomials
F,[T] for a fixed prime power ¢, under suitable assumptions on g.

We first fix some notation. Define the norm of a nonzero f € F,[T] to be

(L.1) £ = ¢ = |F[T1/(f)]-

The degree of the zero polynomial is negative oo, so we set its norm to be 0.

1.1. The main result - twin primes. Our main result covers the twin
prime conjecture in its quantitative form. The latter is the 2-point prime
tuple conjecture of Hardy-Littlewood, predicting for a nonzero integer h that

(1.2) #{X <n <2X :nand n+h are prime} ~ 6(h)2i, X — o0,
log™(X)

where

(13) &) =[[0-p ) 20— p — p 1),

p

with 1,4 equals 1 if A is not divisible by p, and 0 otherwise.
For the function field analogue, we set

(1.4) Sy(h) =L (1~ 1P"Y) (1~ P~ |P| " 1py)
P
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where ¢ is a prime power, P ranges over all primes (monic irreducibles) of
F,[T], and h € F,[T] is nonzero.

Theorem 1.1. For an odd prime number p, and a power q of p satisfying
q > 685090p?, the following holds. For any nonzero h € F,[T] we have

X

(1.5)  #{f €F,T):|f|=X,f and f + h are prime} ~ Gq(h)m
q

as X — oo through powers of q. Moreover, we have a power saving (depend-
ing on q) in the asymptotic above.

For example, the 2-point Hardy-Littlewood conjecture holds over
(1.6) Fais, F511, Fro, Fuys, Fegso33-

For h a constant, the fact that the count above tends to oo was proven
in [Hal06, Corollary 14] for ¢ > 3 and in [Pol08, Theorem 1] for ¢ > 2.
This has been extended to monomial h (assuming ¢ > 105) in [CHLPTI15,
Theorem 1.4 (1)] using an idea of Entin. The latter work builds on the recent
dramatic progress on this problem over the integers, particularly [Mal5].
The strongest result known over the integers is [PM14, Theorem 16(i)],
which says that for any ‘admissible tuple’ of 50 integers, there exists at
least one difference h between two elements in the tuple such that there are
infinitely many pairs of primes separated by h.

Remark 1.2. Our proof of Theorem establishes also the analog of the
Goldbach problem over function fields, and can be modified to treat more
general linear forms in the primes.

The proof of Theorem passes through some intermediate results which
may be of independent interest. We will discuss these results in the re-
mainder of the introduction. Once (a uniform variant of) Theorem (for
k = 2) and Theorem [1.7|below are established, Theorem [1.1| will follow from
arguments similar to those in [MV17]. These involve a convolution identity
relating the von Mangoldt function, which can be used to count primes, to
the Mo6bius function.

1.2. The key ingredient - Chowla’s conjecture. The main ingredient
in the proof of Theorem is the removal of the ‘parity barrier’. More
precisely, we confirm Chowla’s k-point correlation conjecture over [T for
some prime powers ¢q. Over the integers, this conjecture predicts that for

any fixed distinct integers hq, ..., hi, one has
(1.7) > pu(n+ ha)p(n+ ho) - p(n + hy) = o(X), X — oo.
n<X

The only completely resolved case is k = 1 which is essentially equivalent to
the prime number theorem.
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For the function field analogue, we recall that the Mobius function of a
monic polynomial f is 0 if f is not squarefree, and is otherwise given by
1, #{P:P| f}=0mod 2
(1.8) (f) = _ _
—1, #{P: P | f} =1 mod 2.
We denote by F,[T]" the set of monic polynomials over F,, and Euler’s
number by e = exp(1) = 2.71828.. ..

Theorem 1.3. For an odd prime number p, an integer k > 1, and a power
q of p satisfying q > p°k*e2, the following holds. For every fized choice of k

distinct polynomials hy, ..., hy € Fy[T] we have
(1.9) > u(f +h)u(f +ho) - p(f +he) = o(X), X — oo
fER[T]
<X

For instance, the 2-point Chowla conjecture holds over

(110) F367F55,}F74,}F313.
In fact, in Theorem we obtain a power saving exponent inversely
proportional to p, and the sizes of the shifts |hi], ..., |hg| can be as large as

any fixed power of X (the corresponding assumption on ¢ becomes stronger
as this power grows larger). In Corollarywe also get cancellation in case
the sum is restricted to prime polynomials f.

Over the integers, the k = 2 case of the Chowla conjecture, with logarith-
mic averaging, was proven in [Taol6, Theorem 3|, building on earlier break-
through work of Matoméki and Radziwilt [MR16]. The k odd case, again
with logarithmic averaging, was handled by Tao and Terdvédinen [TT19).
Generalizations of some of these arguments to the function field setting
form a part of the work [KMT20].

In contrast to these works, which deal with any sufficiently general (i.e.
non-pretentious) multiplicative function, our result relies on special prop-
erties of the Mdobius function (in positive characteristic). Specifically, we
observe that for any fixed polynomial r, the function p(r + sP) essentially
equals x,(s+c¢,) where x, is a quadratic Dirichlet character and ¢, is a shift,
both depending only on r (and not on s).

This observation is very closely related to the properties of the Mobius
function described in [CCGO8], specifically [CCGO8, Theorem 4.8]. Conrad,
Conrad, and Gross prove a certain quasiperiodicity property in s for a gen-
eral class of expressions of the form r + sP, while we give a more precise
description via Dirichlet characters in a special case. Similar features of p,
or rather of u?, facilitate the counting of squarefrees in different contexts,
as can be seen from [Car21, [Lan15, [Poo03]

Our observation on u(r + sP) arises from the connection between the
parity of the number of prime factors of a squarefree f € [F,[T], and the sign
(inside the symmetric group) of the Frobenius automorphism acting on the
roots of f. In odd characteristic, this sign is determined by the value of the
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quadratic character of F; on the discriminant of f, i.e. the resultant of f
and its derivative f’. In characteristic p, the derivative of f = r+ sP is equal
to the derivative of r, so the aforementioned sign of Frobenius is determined
by the quadratic character of the resultant of f with the fixed polynomial
r’. The latter is a quadratic Dirichlet character of f, and thus equals an
additively shifted Dirichlet character of s.

To use our observation, we restrict the sum in Theorem to f of the
form r + sP for any fixed r, and obtain a short sum in s of a product of
additively shifted Dirichlet characters. As the conductors of these characters
are typically essentially coprime, using the Chinese remainder theorem we
arrive at a short sum of a single Dirichlet character.

Typically in analytic number theory, short character sums are handled by
the method of Burgess, who showed in [Bur63| that for a real number n >
1/4, a squarefree integer M, a real number X > |M|", and a nonprincipal
Dirichlet character x mod M, one has

(1.11) sup Z X(s+a)l =o(X), |M|— occ.
sEL la|<X

Refining the method of Burgess is the focus of several works, but the expo-
nent 1/4 has not yet been improved (even conditionally). However, in the
function field setting, we can do better by a geometric method, as long as ¢
is sufficiently large.

Theorem 1.4. Fiz n > 0. Then for a prime power q > €%/n? the follow-
ing holds. For a squarefree M € F,[T], a real number X > |M|", and a
nonprincipal Dirichlet character x mod M, we have

(1.12) sup | Y x(s+a)| =0(X), |M|— oo
s€F, [T la|<X

By further enlarging ¢, we get arbitrarily close to square root cancellation.
This is stated more precisely in Corollary

To prove Theorem [1.4] we express the problem geometrically, viewing
the short interval {s 4+ a : |a] < X} as an affine space over F,, and the
character y as arising from a sheaf on that space. Following a strategy from
[Hoo91| appendix by Katz], we use vanishing cycles theory to compare the
cohomology of this sheaf for the s = 0 short interval and its cohomology for
a general short interval. Vanishing cycles can only occur when the vanishing
locus of x is not (geometrically) a simple normal crossings divisor. Arguing
as in [Kat89], we split the modulus M of x into a product of distinct linear
terms over F,, which makes our vanishing locus a union of the hyperplanes
where the linear terms vanish, so we can check that this is a simple normal
crossings divisor away from some isolated points. This implies that the
cohomology groups vanish until almost the middle degree. Since we can
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precisely calculate the vanishing cycles at the isolated points, we get a very
good control of the dimensions of cohomology groups as well.

Remark 1.5. The relation between the Mobius function and multiplicative
characters is less powerful the larger p is, as then fewer polynomials share a
given derivative. On the other hand, our geometric character sum bounds
become stronger as g grows. Thus, to make this method of proving Chowla
work, we need ¢ to be sufficiently large with respect to p.

Remark 1.6. The study of the statistics of polynomial factorizations by ex-
amining Frobenius as an element of the symmetric group has been very fruit-
ful in the ‘large finite field limit’, where (in the notation of Theorem
X is kept fixed and ¢ is allowed to grow. We refer to [CaRuld], [Cal5],
[GS20] (and references therein) for the large finite field analogs of Theo-
rem [1.3] which save a fixed power of g. Our methods likely give an improved
savings in the large finite field limit when the characteristic is fixed, as long
as the degrees of the polynomials are sufficiently large with respect to the
characteristic, but we have not carefully calculated the resulting bounds in
this range.

1.3. Further ingredients - level of distribution estimates. Another
ingredient in the proof of Theorem is an improvement of the level of
distribution of the Md&bius and von Mangoldt functions in arithmetic pro-
gressions. Over the integers, assuming the Generalized Riemann Hypothesis
(GRH), this level of distribution is (at least) 1/2, which means that

L) Y u(n)=0<|XM)v 2 A("):go()lf@w(l]‘);!)

n<X n<X
n=a mod M n=a mod M

where M, a are coprime integers, and |M| < X3¢ (for any fixed € > 0 and
real X > 0 going to infinity).

The importance of level of distribution for the twin prime conjecture was
known for a long time, and is highlighted for instance in the groundbreak-
ing work |Zhal4] of Zhang, where attention is concentrated on (results on
average over) smooth moduli. Improvements of Zhang’s results on level of
distribution have been obtained in [PM14B]. For results that hold on aver-
age over all moduli, and have inspired Zhang’s work, we refer to [BFIR9].

For the M&bius function over Fy[T'], we obtain a level of distribution close
to 1.

Theorem 1.7. Fizn > 0. For an odd prime number p, and a power q of p
2
with ¢ > p?e? (% — 1) , the following holds. For coprime M,a € F,[T], and

a real number X with X'~ > |M| we have

X
(1.14) S ) =o <|M|) LM .
FEFT]T
[fI€X
f=a mod M
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As in the previous theorems, we obtain a power savings estimate. Here
however (as opposed to Theorem , every f in our sum may have a dif-
ferent derivative, so a somewhat more elaborate implementation of our ob-
servation on the Mobius function is required. We put f = Mg + a, and
wishfully write

(1.15) p(Mg +a) ~ p(M)p (g + - )

in order to create coincidences among the derivatives of the inputs to the
Mobius function. This is carried out more formally in Lemma [3.2] where we
show that for a power ¢ of an odd prime p, and coprime a, M € F,[T], the
function s — p(a + sP M) is essentially proportional to an additive shift of
a (quadratic) Dirichlet characters in s, with the modulus of the character
depending on a and M in an explicit way. To visualize the power of this
claim, we view F,[T] as a rank p lattice over its subring F,[T?]. Restricting
the Mobius function to any line in this lattice gives a Dirichlet character
whose modulus varies with the line.

In order to deduce from Theorem an improved level of distributions
for primes, we establish in the appendix a function field variant of [FM98,
Theorem 1.1] giving quasi-orthogonality of the Mobius function and ‘in-
verse additive characters’. While Fouvry-Michel work with characters to
prime moduli, in order to establish Theorem we need arbitrary square-
free moduli.

Theorem 1.8. Let g be a prime power, and let € > 0. Then for a squarefree
M e F,[T], and an additive character ¢ mod M, we have

(1.16) SouHe (F) < IMFXE, X, |M| oo

fER[T]H
[f1<X
(f,M)=1

where f denotes the inverse of f mod M, and the implied constant depends
only on q and €.

For nonzero M € Fy[T] we recall that Euler’s totient function is given by
(1.17) p(M) = |(Fq[T]/(M))*|,

and for f € Fy[T]", we recall that the von Mangoldt function is

(1.18) A(f) = {deg(P)’ f=p

0, otherwise.

Theorem 1.9. Fiz § < ﬁ. For an odd prime p and a power q of p with

51 — 266\ 2
1.1 202 (22— =20
(1.19) 4> e (1_1265) |
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the following holds. For a squarefree M € Fy[T|, a polynomial a € Fy[T]
coprime to M, and X a power of q¢ with X3+ > |M| we have

X X
(1.20) > A(f):(p(M)+o(‘M|), |M| = oo.

feFq[T]+
|fl=X
f=a mod M

1
126°
method cannot give anything above %, even if Theorem Ewould give square

root cancellation. Since our proof of Theorem is based on the ‘convo-
lutional” connection of the von Mangoldt and Mobius functions, it is not
surprising that a level of distribution of % = % + %, which is a longstanding
barrier for the divisor function over Z (perhaps the most basic convolution),
is a natural limit of our techniques. A large finite field variant of Theorem|[L.7]
and Theorem (1.9 was earlier proved in [BBSR15, Theorem 2.5].

We have not ventured too much into improving the constant as our

Remark 1.10. It would be interesting to see whether our results can be
extended to characteristic 2, perhaps in a manner similar to which [Calb]
extends the results of [CaRul4].

1.4. Additional results in small characteristic. Throughout this work,
we have not made every possible effort to reduce the least values of the prime
powers ¢ to which our theorems apply. Instead, we present some results that
hold for ¢ as small as 3.

The first concerns sign changes of the Mobius function in short intervals.
Improving on many previous works, Matomaki and Radziwilt have shown in
[MR16] that for any n > 1/2, and any large enough positive integer N, there
exist integers a, b with |a|, [b] < N such that u(N+a) =1, u(N+b) = —1.
In characteristic 3, we show that the exponent 1/2 can be improved to 3/7.

Theorem 1.11. Let q be a power of 3, and fix 3/7 < n < 1. Then for any
[ € F[T)T of large enough norm, there exist g, h € Fo[T] with |g|, |h] < |f]"
such that u(f +g) =1 and p(f +h) = —1.

We follow the same proof strategy relating the Mobius function to char-
acters, but since we allow small values of ¢, we cannot apply Theorem
anymore. Now however, once we are interested in sign change only (and not
cancellation), we can focus on just one of the derivatives appearing. It turns
out that if this derivative has a relatively large order of vanishing at 0, the
conductor of the associated character is relatively small, and we can apply a
function field version (see [Hsu99]) of the aforementioned result of Burgess.
For p > 3, the arising character sums are too short for the Burgess bound
to apply.

For ¢ a large enough power of 3, Theorem follows from Theorem
(since T+ 1/T allows one to think of short intervals as arithmetic progres-
sions), and also from the & = 1 case of Theorem |1.3| (as we have sufficient
uniformity in the shift).
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Our last result, in the spirit of |Gal72|, shows that the Mdbius function
enjoys cancellation in the arithmetic progression 1 mod a growing power of
a fixed prime P, no matter how slowly does the length of the progression
increase.

Theorem 1.12. Let q be a power of 3. Fix an irreducible P € Fy[T|. Then
for a positive integer n we have

X X
(1.21) o uwlf) =05, o — oo
Pl Pl
feRq[T]H
[fI<X
f=1 mod P"

An analog of [Gal72, Theorem 2] in our setting would be cancellation for
progressions whose length X/|P|" is at least | X|3/5+¢.

As before, we can obtain a power saving in Eq. (1.21]). Since the progres-
sions are so short, this result does not follow from the previous ones, even
if ¢ is large. On probabilistic grounds, one should not expect to obtain the
theorem for all residue classes.

1.5. Further directions. In future work, we hope to use some of the meth-
ods introduced here to address the following problems:

e Obtaining cancellation in ‘polynomial M6bius sums’ such as

Z p(f?+1T)
fEFG[T]T

If1<X
which is relevant for counting primes of the form f2? + 7. We refer
to our subsequent work [SS20] where this is carried out, culminating
in a nonsplit analog of Theorem and Theorem In that work
we also obtain analogs of Theorem |1.4{and Theorem [1.§ with certain
more general ‘trace functions’ replacing the multiplicative/additive
characters.

e Obtaining an asymptotic for the variance (and higher moments) of
the M&bius function in short intervals (and arithmetic progressions)
of length H for polynomials in Fy[T"] of norm X, with H as close
to X as possible. For sufficiently short intervals, namely with H a
sufficiently small power of X (depending on ¢), an asymptotic for the
variance follows from (a version with power savings of) Theorem
using the arguments of [MS04].

1.6. Notation. From this point on, it will be more convenient to work with
degrees of polynomials instead of absolute values. For g € Fy[T] we denote
its degree by d(g). By convention, the latter is —oo if ¢ = 0. The letter ¢
denotes a prime power, and is often suppressed from notation such as

(1.22) Mg ={g eFJT|" :d(g9) =d}.
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2. CHARACTER SUMS

We will make use of ¢-adic sheaves, see for instance [KR14]. Often we
apply the proper base change theorem, see [Mil, Theorem 17.10]. Another
tool we use is the theory of vanishing cycles, see [Saw20].

The main result of this section is the following.

Theorem 2.1. Let t < m be natural numbers, let f € F,[T], let g € My,
be squarefree, and let x : (Fy[T]/g)* — C* be a nontrivial character. Then

m—1 t
@1) Y )< <q1/2+1>( >qz.
t
heRy[T)
d(h)<t
ged(f+h,g)=1
To prove this theorem, we use the following geometric setup. View A’ as
a space parameterizing polynomials h of degree less than t via their coef-
ficients, namely a point (ag,...,a;—1) in A corresponds to the polynomial
h=ag+--+a_1T"'. Let (c1,co) be coordinates on A2, Let U C A? x A2
be the open set consisting of points (h, (¢1, c2)) where ¢1 f + h + coT" is co-
prime to g. Let j : U — P* x A% be the open immersion, embedding A’ into
P! in the usual way. Let 7 : P x A2 — A? be the projection.
Let 7 parametrize polynomials of degree less than m that are coprime to
g, namely 7 is the open affine subscheme

T ={(bo, ... ,bm_1): Res(bg + - + b 1T™ 1, g) # 0}

of m-dimensional affine space. Multiplication of polynomials followed by
reduction mod g endows T with the structure of a commutative algebraic
group over [Fy, since inversion mod g can be written as a rational function
of by, ..., bm—1 over F, whose denominator is the above resultant. For every

F,-algebra A, we therefore have 7 (A) = (A[T]/(g))*.
Let a1, ..., qm € Fy be the (distinct) roots of g. The evaluation map

bo+ -+ bm_lefl — (bo + -4 bm_lagn_l, e bo o+ bm_lazfl)
is an isomorphism between 7 and G, so T is a torus.
Fix a prime number /¢ different from the characteristic p of F,. Using
the Lang isogeny, see [SGA4%, p. 171], one associates to our character

x: T(Fy) — C* a Qg-‘character sheaf’ £, on T whose trace function is Y,
namely

(2.2) L (tr (Frobq, (EX)J;)) = x(f)

where f € T(F,) is a polynomial, the map ¢ is an isomorphism between Q,
and C (which will be tacitly used to identify the two fields in the sequel),
and (Ly) 7 1s the stalk of £, at a geometric point f over f. In what follows,
the passage to geometric points will at times not be explicit in our notation.

Let Ly (c1f+h+c2T") be the pullback of £, to U along the natural map
v from U to T that sends (h, (c1,c2)) to c1f + h + coTt. The extension by
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zero jily(cif +h+ coT") of Ly(c1f + h+ coT") is lisse on U and tamely
ramified along the complement of U in P! x A? since the monodromy of £,
is a finite group whose order is the order of y, a number not divisible by p.

We will prove using geometric properties of the (derived pushfor-
ward) complex Rm.jily(c1f + h + c2T?) of (constructible) sheaves on A2
The relevance of this complex to the sum in Eq. is explained in the
proof of Theorem (We write Rm,jy rather than the equivalent Rm be-
cause the key vanishing cycles steps of the argument use that factorization.)

Lemma 2.2. The complex R jily(c1f + h + c2T") is geometrically iso-
morphic to its pullback under the map My: A2 — A? given by

My(c1,c2) = (Aer, Aca)
for any X\ € EX.

Proof. Let M} : U — U be the map given by M} (h, (c1,¢2)) = (Ah, (Ac1, Ac2)).
Applying the smooth base change theorem [Mil, Theorem 20.1] to the Carte-
sian squares

IP’txAQMHP’txA2 ULU
A A A
A2 My g2 Pt A2 M a2

we see that it suffices to check that Ly (c1f + h + c2T") is geometrically
isomorphic to its pullback under M}. For the map Ty: 7 — T given by
Ty(bo+- - +bpm1T™ ) = Abg+- - -+ Aby,_1 T we have the commutative
diagram

Ut T

b o

U——=T
so it is sufficient that £, on 7T is geometrically isomorphic to its pullback
under T, which follows from its construction as a character sheaf. O

Lemma 2.3. The stalk of Rm.jily(c1f + h+ coT") at the point (0,1) is

supported in degree t, where it has rank (mt_l).

Proof. When ¢; = 0, c3 = 1, the polynomial ¢; f +h+coT? = T+ h is monic
and has degree t. By the proper base change theorem, our stalk is thus
isomorphic to the compactly supported cohomology of the space of degree ¢
monic polynomials that are prime to g, with coefficients in £, (7" + h). We
may view this space as the quotient C?/S; where C' = SpecF,[z, g(x)!],
and denote by

(2.3) p: Ot —= C'/S;
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the quotient map. For any sheaf F on C*/S;, there is a natural action of S;
on p.p*F. We define the S;-invariants (ps p*]:fi by taking the S;-invariants
of the sections on each open set. Then (p.p*Qy)> = Qy, so

(2.4) (pup™ L (T" + 1)) = Ly(T" + )
and thus
H} (C')Sy, Ly(T" + h)) =

H; (Ct/St, (psp* Ly (T + h))St) =
HY (CY) St pup™ Ly (T + 1)) ™ =
H (CF, p* Ly (T + 1)) ™ .

For the second equality, note that taking S;-invariants commutes with
pushforward by definition. Thus their derived functors commute, but since
we work with Qg-sheaves, taking derived S;-invariants is the same as taking
Si-invariants. Similarly Si-invariants commute with extension by zero and
thus with compactly-supported cohomology.

Now p is the map defined by factorizing a polynomial into linear terms,
0 p*Ly (Tt +h) = (L, (T — ))®. By the Kiinneth formula [SGA4-3, XVII,
Theorem 5.4.3], it follows that the stalk of Rm,jiLy(c1f+h+coT") at (0,1)
is

(2:6) ((HZ (C,L(T = )))™)
Because x is nontrivial, £, (T — x) has nontrivial monodromy, so

(2.7) H; (C,L (T —x))

(2.5)

St

vanishes in degrees other than 1. Because it arises from a character sheaf
on a torus, £, has tame local monodromy, so the rank of this cohomology
group in degree 1 is the Euler characteristic of SpecF,[x, g(z)™1], which is
m — 1 [Ray66, Theorem 1]. Thus

(2.8) (H (C, Ly (T — 2)))

is supported in degree ¢, where it equals the t-th tensor power of an (m —1)-
dimensional vector space, with S; acting the usual way, twisted by the sign
character because of the Koszul sign in the tensor product of a derived cat-
egory. (In other words, because the isomorphism with the tensor product
arises, after extension by zero, by pulling back classes along the different
projections to C' and taking the cup product. The pullback map is compati-
ble with permuting the factors of C', but the cup product is multiplied by —1
each time we swap the order of two factors in degree 1 because cup produt
is graded-commutative. This makes the isomorphism Si-equivariant up to
twisting by the sign representation.) Thus taking S;-invariants is equivalent
to taking the t-th wedge power of this (m — 1)-dimensional vector space,

which has dimension (mt_l) O
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Lemma 2.4. The complement of U in Pt x A® is a divisor with simple
normal crossings relative to A% away from

(2.9) {(h, (c1,¢2)) € At x A? 1 d (ged(er f + b+ 2T, g)) > t}.

Proof. Because this is a purely geometric question, we may assume that g
splits completely, and let aq, ..., a,, be its roots. Then the complement of
U is the union of the hyperplane H,, at co in P! with the hyperplanes

(2.10) H; = {(h, (c1,¢2)) € APxA? : ¢y f(a;)+h(ai)+eal =0}, 1 < i < m.

This union has simple normal crossings if the intersection of each k distinct
hyperplanes from {Hi, ..., Hy,, Hsx} has codimension k.

We first consider the case of a subset not including the hyperplane H.
For any S C {1,...,m} with |S| = k, we have

(211) () Hi= {(h, (c1,2) € AT x A% (T — ) | erf +h+ Cth} .
€S i€S
Since [[;c¢(T — o) is a polynomial of degree k, the above has codimension

k for any c1,co as long as k < t, because in this case

dim{h €A :h=—cf —cT" mod H(T—ozi)} =t—k.
1€S

On the other hand, when k > ¢ we get that

(2.12) d(ged(erf +h+ Tt g)) > k > t,

so removing these points, we obtain simple normal crossings.

Now we consider the case where we have a k-element set of (distinct)
hyperplanes indexed by S C {1,...,m} and also H,,. We can take coordi-
nates on Hy to be (h, (c1,c2)), with h a nonzero polynomial of degree less
than ¢, well-defined up to scaling. In these coordinates, the equation for
the intersection of any hyperplane with H., is its original equation with all
terms having degree zero in h removed. Thus the equation for H; N Hy is
simply h(a;) = 0, so the intersection of Hy, with the hyperplanes indexed
by S consists of those (h, (c1,c2)) where h is a multiple of [[;.q(7" — ).
Such an h exists only if k < t, as k is the degree of this polynomial and
d(h) < t, but then our intersection always has codimension k in Ho, hence
codimension k + 1 overall, so we have simple normal crossings. (]

Lemma 2.5. Away from a finite union of lines through the origin, the
complex R, jily(c1f + h+ coT") is supported in degree t with rank (mt_l) .

Proof. Let l1: P! x Al — P! x A? be the direct product of the identity map
on P! and the map sending ¢ € Al to (c,1) € A2, We consider the vanishing
cycles at zero R®.I}j1L, (c1f+h+caT?) of the pullback of 51, (c1 f+h+cT?)
under [;. Let us first check that the complement of U is a simple normal
crossings divisor everywhere in the fiber over zero in A'. To do this, we apply
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Lemma and observe that we cannot have d(ged(ci f + h + T, g)) > t
in this fiber as ¢y = 0,c0 = 1 and

(2.13) d(ged(h+T" g)) <d(h+T" <t

Since the complement of U is a simple normal crossings divisor in the
fiber over zero, and jiLy (c1f + h+ coT") is lisse on U and tamely ramified
along the complement of U, it follows from [SGAT-II, XIIT Lemma 2.1.11]
that the vanishing cycles

(2.14) RO 5Ly (crf + R+ coTh)

vanish everywhere. Hence the cohomology of the nearby fiber is isomorphic
to the cohomology of the general fiber. Using Lemma to compute the
cohomology of the special fiber, it follows that the cohomology of the general
fiber is supported in degree t with rank (mgl) By constructibility, the stalk
cohomology must have the same description at every point in some nonempty
open set. By Lemma the same description holds for the stalks in the
G-orbit of this open set, which is the complement of finitely many lines. [

Let lo: P* x Al — P! x A? be the direct product of the identity map on
P! and the map sending ¢ € A! to (1,c) € A2

Lemma 2.6. Taking vanishing cycles at zero, the complex
(2.15) K = R®L55 Ly (crf +h+ 2T
has the following properties:
e it is supported on C = {(h,0) € A® x Al : d(ged(f + h,g)) > t};

e it is supported in degree t;
e the rank of its stalk at (h,0) € C is (d(ng(f—:h’g))_l).

Proof. The first property follows immediately from [SGAT7-II, XIII Lemma
2.1.11] and Lemma [2.4]

We note that I551L,(c1f + h + cT?)[t + 1] is the extension by zero of a
lisse sheaf in degree —(t + 1) on a variety of dimension ¢ + 1 and is thus
semiperverse. The dual complex is the pushforward of a lisse sheaf in degree
—(t+1) on a variety of dimension ¢+ 1 along an affine open immersion and
thus is semiperverse by Artin’s affine theorem [BBD82, Theorem 4.1.1]. We
conclude that

(2.16) BaLly(erf +h+eaThH[t +1]

is a perverse sheaf. By [I1194, Corollary 4.6], the vanishing cycles of a per-
verse sheaf are perverse up to a shift by one, so

(2.17) K[t] = RO Lo (o f + h+ exTH[1]

is perverse.

The support of K[t] is the closed set C. Because C' does not intersect
the divisor at oo, C' is finite. A perverse sheaf supported on a finite set
is necessarily a sum of skyscraper sheaves supported in degree zero, so we
obtain the second property in the statement of this lemma.
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It remains to calculate the rank of the stalk at a particular point (hg,0) €
C. We do that by working locally in an étale neighborhood.
We set

(2.18) g =ged(f + ho,g9), ¢ =g/d,

and factor T as the product of the torus 7’ of residue classes mod ¢’ and
the torus 7" of residue classes mod g*. This lets us factor £, as the tensor
product of L£,, (the pullback of a character sheaf from 7”) and Ly~ (the
pullback of a character sheaf from 7). Because f+ hy is relatively prime to
g*, the map U — T — T* extends to a well-defined map in a neighborhood
of the point (hg,0), so Ly«(c1f + h + c2T") extends to a lisse sheaf in a
neighborhood of (hg,0). Because tensoring with a lisse rank one sheaf does
not affect vanishing cycles, it suffices to calculate

(2.19) R®I351 Ly (ci f + h+ T,

where j’ is the inclusion of the open set where ged(eif +h + 2Tt ¢') = 1.
By changing variables, we may replace (f, h) with f’, A’ where f' = f+hg
and h' = h — hg. We are then tasked with calculating the vanishing cycles
RO L35 Ly(crf + B + coT") at zero. Having done this, we observe that f’
is a multiple of ¢, so translation by f’ does not affect £,/(c1f'+ h' + coT"),
thus these vanishing cycles are the same as R® 155 L, (0 + coT").
As d(W + coT?) < t, we can only have

(2.20) d (ged(h' + 2T, ¢')) > t

if B’ + coT? = 0. Hence, by Lemma the complement of the image of j’
is a simple normal crossings divisor way from the point (0,0). Therefore,
by [SGAT7-II, XIIT Lemma 2.1.11], the vanishing cycles are supported at this
point.

For a geometric generic point 7 of A! we have a vanishing cycles long
exact sequence

(Rmoji Lo (W + 2T"))(0,0) = (Rmadi Lo (B + €2T*)) (0,
— H*(P', RO 55/ Lo (W + c2T")).

Therefore the Euler characteristic of the vanishing cycles complex is the
difference between the Euler characteristic of the generic fiber and the Euler
characteristic of the special fiber. Because the vanishing cycles complex is
supported at a single point in a single degree, its Euler characteristic is (—1)*
times its rank at that point. We will calculate these Euler characteristics
and thereby calculate the rank.

By Lemma the Euler characteristic of the generic fiber is (—1)? (d(glt)*l).
So it remains to check the Fuler characteristic at the special point is zero.
Because L, is lisse of rank one and tame, the Euler characteristic of the
special fiber is the Euler characteristic of the space of polynomials of degree
less than ¢ and prime to ¢’. Because this admits a free action of G,, by
scaling, its Euler characteristic is zero in view of [BB73, Corollary 2]. O
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We can now prove Theorem
Proof. In view of Eq. we have
> x(F+h) = > tr(Froby, (£y)s4n) -

heFy[T) heF, [T
d(h)<t d(h)<t
ged(f+h,g)=1 ged(f+h,g)=1

From the definition of the maps j and m we get

Z tr (Froby, (Ly) f4n) = Z tr (Frobg, (Ly(c1f + h+ coT"))y)
heF(T] ueU(Fq)
d(h)<t w(u)=(1,0)
ged(f+h,g)=1
= Y tr(Frobg, (ily(crf + h+ e2Th)z) .
ze (Pt xA2)(Fy)
()=(1,0)
Abusing notation, we denote the fiber of 7 over (1,0) also by P!. The
Grothendieck—Lefschetz fixed point formula [SGA4%, Rapport, Theorem 3.2]
then gives

Z tr (Frobq, (WLy(arf+h+ CQTt))I) =

z€Pt(Fy)

2t

> (=1)"tr (Frobg, H/(P', Ly (c1 f + h+ c2T1))) .

i=0
By Deligne’s Riemann hypothesis [Del80, Corollary 3.3.4], the absolute val-
ues of the eigenvalues of Frob, on the i-th cohomology group are bounded
from above by ¢%/2 so

2t
> (=1)"tr (Froby, H(P', Ly (cLf + h+ c2T")))
=0
2t ‘ 4
Z ¢"? dim H (P!, Ly (er f + h + eoTY)).
=0

<

Applying the proper base change theorem to the Cartesian square

Pt P! x A2

SpecE — A2
where the upper horizontal map is the immersion of the fiber of 7 over (1, 0),

and the lower horizontal map corresponds to the point (1,0) € A% we get
that H*(P*, jiLy(c1f +h+ coT")) = (RmjiLy(cif + h+ caT"))1.,0)-
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For a geometric generic point 1 of A we have a vanishing cycles long
exact sequence

(RmjiLy(erf +h+ c2T)) 1,0y = (RmajiLy(erf +h+ caT"))
— H*(P', RO 55 Ly (crf + b+ caTh)).

By Lemma (R jily(cif 4+ b+ e2T")) 1,y is supported in degree t
with rank (™). By Lemma the complex R®.I551 Ly (c1f +h+coT?) is
supported in degree ¢t and at finitely many points, so the third term above
is also supported in degree t and is simply the sum of the stalks at those
points, and thus has rank

e srgn- Y (TEEROD)

t
heF, [T
d(h)<t
d(ged(f+h,g))>t

again using Lemma [2.6
We conclude that, upon suppressing c; f + h + coT* for brevity, the van-
ishing cycles long exact sequence becomes

0= (R'mgiLy) 1,0y = (R'mediLy) 1)

2.22
(2:22) — H'(P', RO I35 Ly) = (R mejily)(1,0) = 0.

Thus (Rm.jiLy(c1f 4+ h+caT)) (1 ) is supported in degrees ¢ and ¢+ 1, with

rank at most (mt_l) in degree t and rank bounded by r(f, g,t) in degree t+1.
We thus have

(2.23)
2t

. . —1 t
Z ql/Q dim Hl(Ptvj!ﬁx(le +h+ C2Tt)) < <m ¢ >q; + r(f?.ga t)q#
i=0

Finally, we check that r(f, g,t) < (mt_l). To do this fix a root « of g, and

note that (d(ng(f Jgh’g))_l) does not exceed the number of degree t divisors of
g, prime to T' — «, that divide f + h. Each such divisor of g prime to T'— «
contributes at most once to the sum in Eq. , so this sum is bounded
by the number of such divisors, which is (") O

Corollary 2.7. Fizn > 0 and 0 < 8 < 1/2. Then for a prime power

q > (en_l)ﬁ the following holds. For a monprincipal character x to a
squarefree modulus g € Fy[T], f € F4[T], and t > n-d(g), we have

(2.24) Z Y(f + h) < g=o)
d(h)<t

with the implied constant depending only on q.
Furthermore, if we have t < n-d(g) <t', then we still have
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(2.25) ST x(f+h) < 10
d(h)<t

Proof. If n > 1, the left hand side vanishes and the bound is trivial. Other-
wise, we apply Theorem to the left side, taking m = d(g), to obtain

ST () < (@2 (mt‘ 1)qt/2

(2.26) d(h)<t
(=) ()

where the last inequality follows from

=l =R 06 ()
() )

From the Taylor series we can see that —log(l —z) < z/(1 —xz) if x > 0
so (1 —xz)~ =2/ < e Applying this to = = t/m, we get

(2.27)

m —t t—m
(2.28) () <e
m
so we obtain
—t
2.29 +h) < BY gt
(2:29) > x(f q
d(h)<t m
Because ¢ > (en™1)1 25 and t/m > n, we have
1
t
(2.30) e <m> <enl<qr?
hence
—t
t
(2.31) <m) elqt/? < =Pt
as desired.

To handle the case where t < 7n-d(g) < t, first note that we may assume
t" < m. We observe that the left hand side of Eq. (2.31) is an increasing
function of ¢ because its logarithm

(2.32) tlogm — tlogt +t + t(logq)/2
has derivative
(2.33) logm — logt + (logq)/2

which is positive in the range ¢ < m. Thus we can get a bound for the
shorter sum which is at least as good as our bound for the longer sum. [
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3. THE MOBIUS FUNCTION

From now on, we will assume that the characteristic p of IF, is odd. Be-
cause of this, Fy' admits a unique quadratic character, which we denote 9.
We use freely the basic properties of resultants (see [Jan07]) and the Jacobi
symbol (see [Ros02, Chapter 3]). For example, the quadratic reciprocity law

(5)(2) = 0= oan s,

where a (respectively, b) is a nonzero polynomial in [Fy[T] of degree m (re-
spectively, n) and leading coefficient a,, (respectively, by,).

The following lemma recalls the relation between the (real valued) Jacobi
symbol and the quadratic character of a resultant.

Lemma 3.1. Let f € F,[T], g = a,T" + ---+ aop of degree n > 1. Then

(3.1) (g) = (an) ™0y (Res(g, f)) .-

Proof. Fix f # 0, and note that both sides above are completely multiplica-
tive in g, so we may assume that ¢ is irreducible. For a root 6 of g we
have

d(g)—1 d(g)—1

(32) Res(g, f) = al? [ £(07) =t [[ O =l o) 57
i=0 i=0
so we get the mod p congruence
qd(9>71
6 Restg. 1) = v(an) "0 (50)°FF)
(3.3) ae) s s
= () f0)77 = (an)™ <g>
which implies the lemma. O

Given a D € F,[T] we write rad(D) for the product of the primes that
appear in the factorization of D, and rad; (D) for the product of the primes
that appear with odd multiplicity in the factorization of D. The derivative
of D (with respect to T') is denoted by D’.

The next lemma interprets the Mobius function (on an arithmetic pro-
gression) as a Dirichlet character that ‘depends only on the derivative’.

Lemma 3.2. Let m,k > 0, d > 1 be integers with k # d+m. For M € M,,,
g € My, and a € My, coprime to M, define the polynomials

_ a\' . rad(D) _ rady(D)
(34) D = M? <g+ M) , B= gcd(M’rad(D))’ B = ng(Maradl(D)).

Then
(3.5) pwla+gM) =S x(w+g)
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where w = wa g € Fg[T], X = Xa,Mm,g 5 @ (real) multiplicative character
mod E with conductor Ev, and

(36) S = Sd,a,M,g’ € {07 17 _1}

with S = 0 if and only if D = 0.

Proof. Pellet’s formula (see [Con05, Lemma 4.1]) gives
(3.7) pwla+gM) = (=1)"@ 9"y (Disc(a + gM))

and since d(a + gM) = max{k,d + m}, we see that (—1)4*+t9M) can be
absorbed into S. Our assumption that k& # d + m implies a + gM is monic,
so 1 (Disc(a + gM)) equals, up to a sign that S absorbs,

(3.8) ¥ (Res(a+ gM,d' + ¢'M + gM'")).
By Lemma and the fact that a + gM is monic, the above equals
/ /M Ml
(3.9) (a +9M+g >
a-+gM

and since ged(a, M) = 1 by multiplicativity, this equals

d M+ g M2+ gMM' M \!
a+gM a—+gM ’

(3.10)

m +A;[M) into S. Subtracting

M'(a 4+ gM) from the numerator of the first Jacobi symbol above, we get
(in the notation of equation ([3.4]))

(3.11) (HDQM)

and set w = 0, S = 0 in case D = 0. Otherwise (if D # 0) we apply
quadratic reciprocity once again to obtain

(3.12) <a+57M)

up to a sign that goes into S.

We write {(a + gM) for the Jacobi symbol above, so that £ is a multi-
plicative character mod rad(D) with conductor rad;(D). Since rad(D) is
squarefree, we see that M is coprime to E (from equation ) There-
fore, by the Chinese remainder theorem, there exists a unique factorization
¢ = {p&n to characters mod F and N = ged (M, rad(D)) respectively. In
this notation, our Jacobi symbol equals {g(a + gM)En(a + gM) and the
second factor is simply £y(a), so we immerse it in S. Taking M € F,[T]
with MM =1 (E) we can write

(3.13) §p(a+gM) = Ep(aM + g)ép(M)
and conclude by setting w = aM, x = £, and dumping {g(M) into S. O

Using quadratic reciprocity, we can absorb <
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Remark 3.3. With notation as in Lemma |3.2] suppose that x is principal.
We can then write D = AB? for some A, B € F,[T] with A | M, simply by
taking A = rad; (D) since principality gives E; = 1.

4. LINEAR FORMS IN THE MOBIUS FUNCTION

Proposition 4.1. Let p be a prime, let q be a power of p, let m,d be non-
negative integers, let M € M., be squarefree, and let a € Fy[T]. Then

#{h:h=g forsomege My, h=amod My _ _minfon 52}
#1{g g€ My} =1 .

Proof. Let 0 < 7 < p — 1 be the unique integer congruent to d mod p. Any
g € My can then be uniquely expressed as

p—1 .
. d—1 .,
(4.1) g= g T'¢?, gj € May, d(g)< {pJ for i # j.
i=0 !

For the derivative we then have
p—1
42) g =Sy
i=1
so we set a; = i7" ! for 1 <4 < p— 1, and consider the congruence
p—1
(4.3) Zaigf = a mod M.
i=1
Since a1 = 1, we have ¢} = a — Zf:}l aig? = a mod M, and thus the
value of g§ mod M is uniquely determined by ga,...,gp—1. Since M is
squarefree, the pth power map mod M is injective, and thus g7 mod M is
uniquely determined by ga,...,gp—1.

This implies the bound: If m > Vp%lJ then a fraction of qu of values of

g1 satisfy this congruence, and if m < {%J then at most one, meaning a

fraction Ldl,l ] of all values, satisfies it.
q

P

O

The following technical proposition follows from the arguments of [BGP92,
Page 371] or [CGO7, Section 9], which obtain stronger statements over Z in
place of Fy[T7.

Proposition 4.2. Fiz a,e > 0, and a prime power q. Then for integers
d,m,k >0 withd > e(m+k), and M € M,,, A€ My, a € Fy[T], we have

#{g € Fy[T): d(g) < d, a+gM = AB?, A€F,, BeF,[T]} < ¢t

as d — oo, with the implied constant depending only on €, a and q.
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This proposition is also a special case of the remark following [BSE21,
Theorem 1.1].

We can now prove Theorem We first prove the “generic” special case
where the derivatives of certain parameters are distinct, and then prove the
general case.

Denote by dy the binary divisor function on F,[T]. Namely for a nonzero
polynomial M € F,[T] we denote by da(M) the number of distinct monic
polynomials dividing M, that is

do(M) = #{h € F,[T)" : h | M}.

Proposition 4.3. Fize,§ >0, 0 < 5 < 1/2, and a positive integer n. Let
q be a power of an odd prime p such that

1—253
ne
(4.4) q> P .
s € €
n { 2 e }
Then for nonnegative integers d, my, ..., My, k1, ..., k, with

(4.5) d>max{emq,...,emy,0ky,...,0k,}, ki#d+m; 1<i<n,

and pairs (a;, M;) € Mg, X My, for 1 < i < n such that the derivatives
/
(;&) are all distinct, we have

(4.6) S Tl wtas + 90 < Mg

geEMyi=1
as d — oo, with the implied constant depending only on B,¢,0,n and q.

Remark 4.4. Note that the statement of this proposition remains meaningful
even if € and § are very large, though it is at its strongest when € and § are
small.

Proof. Let us first assume that for every 1 < i < n we have ged(a;, M;) = 1.

We say that g1, g2 € Mg are equivalent if i = g5, and let R be a complete
set of representatives of equivalence classes. So for each g € My there exists
a unique r € R such that (¢ —r)" = 0, and therefore also a unique s € Fy[T]
such that g —r = sP. We can thus write our sum as

d
(4.7) Z Z Hu a; + (r+sP)M;), t=-—.
reR d(s)<ti=1 p

By Lemma (the notation of which is used throughout), our sum equals

(4 SITs0 Y T () +9)

reRi=1 d(s)<ti=1
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with Xﬁi) a character to a squarefree modulus Y (defined in Lemma

using D,(j)). Hence, there exist fﬁi) € F,[T] with

(4.9) F9O% = w® mod BV, 1<i<n,
(i)

so using the fact that y,’ is real, we see that our inner sum equals

(4.10) Z HX ( ’)+s>

s)<ti=1

For1§i<j§nvveset
(411) GO = ged (E@, Eﬁﬁ) . Uy =lemg (G,@%ﬂ) .4 =d(U,),
and claim that, for every integer ¢ > 0 and ~ > 0, we have

~10) Cmin(d=1
(4.12) lreR: > 0 < 03t mm(5h) g
To prove this, first note that, for any 1 <i < j < n , since Gg’j ) divides
E,gl), and divides E,gj ), it also divides D7(~Z), and divides Dq(nj ) so therefore it
divides the polynomial

/ !/
2 (4 21G) _ a2ag2 [ W 272 [
(4.13) M?DY) — M2DY) = M?M: <M> — M?M: <MJ)
which is nonzero by our initial assumption. The degree of the above poly-
nomial is at most d/d + 3d/e, so by the divisor bound (see [IK04, Equation
1.81]), the polynomial Ggw) attains < ¢2Y%((=1) yalues, for any v > 0.
Hence, the tuple <G7(}:J)) attains < ¢ values. For each possible
N 1<i<j<n N

tuple GSf’] ), we can recover the residue class of " mod GS’J )
gruence

(4.14) M?*' = Mja; — a;M; mod G,

from the con-

and the fact that Gg’j ) is prime to M; (because Eﬁj ) is prime to Mj, by
definition). Combining these for all i, 7 we can also recover the residue class

(i)

of ' mod the least common multiple U, of G,
Proposition tells us that for any a € Fy[T'] we have

#{reR:r=amod U,} <q mm{d U) V IJ}#R <q ( %)_min<%’z)

since d(U,) > ¥, so our claim is established.
Next, we observe from Eq. (4.12) that the contribution of those r € R

with ¢, > ¢ to Eq. 1) is < q ( 75+7> and thus can be ignored as we
can choose v small enough that 1 — 5 +v<1— % So we may assume that
0 < %.
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We further set

. : . (@)
(4.15) E{ = ged (Eff% Ur) L EO=E icicn,
EY

and note that gcd(E@, Eﬁl)) =1as Eﬁi) is squarefree. The Chinese remain-
der theorem then gives a unique decomposition

(4.16) X =399, 1<i<n,

to characters mod E(i) and E(i) respectively. In this notation, our sum reads

(4.17) Z H ( + s) Hx (fﬁi) + s)

d(s)<ti=1

so splitting according to the residue class u of s mod U, we get

(4.18) 3 Hx,, (fr +u> 3 HXr <f(Z +u+hU>
d(u)<ty 1=1 d(h)<t—£, =1
Since gcd(Ey),Eﬁl)) = 1, we get that gcd(UT,Eﬁl)) =1forl <3 <n.
Hence, there exist Vr(l) € F,[T] with UTVTZ) = 1mod Eﬁl). Summing trivially
over u, we may thus consider

(4.19) [IxVw Z H X (f“ ) a4 h)
=1

h)<t—t,1=1

(i

From gcd(Erl), Eﬁl)) = 1 we moreover conclude that {Eﬁi)}?zl are pairwise
coprime. The Chinese remainder theorem then gives an f,,, € Fy[T| with
(4.20) fraw= VD L4V mod EW, 1<i<n,

so defining the character x, = )’57(0 ) X&”) , mod E, = Eﬁl) e Eﬁn), the sum
above becomes

(4.21) > xelfruth).

d(h)<t—Ly
We have
. e e
(4.22) N ! _ min et s —q
' d(E;) — nmax{d+ 2d/e,d/§ + d/e} pn

so if x, is nonprincipal, Corollary bounds the sum above by < ¢(1=5)¢,

for some 8’ > 3 + pvy, with v > 0 arbitrarily small. Because we have

_2
1—28
pne

(4.23) q> .
min { €+27 e+ }
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by assumption, using our definition of 1 this can be writeen as

2
(4.24) q> (en~')T%7
and therefore

2
(4.25) q> (en~ 1)

for any sufficiently small choice of ~.
Hence, those r € R for which ¢, = ¢ and Y, is nonprincipal, contribute
< q(lfﬁ/)tqé individually, so the total contribution to our initial sum is <
, _1 N\ _1 , _8 /
J-8ere d(1=5) = a-pr d(1-3) na-@-gye _ 4(1-5) do—'-p)/p)

The increase from summing over the possible values of £ is linear in d and
thus can be bounded by the exponential ¢%((#'=8)/P=7) g0 the contribution

_B
of all the terms where x is nonprincipal is < qd(1 p).

Let » € R for which x, is principal. Pairwise coprimality implies that

A7(n1) is principal as well, so the conductor of Xﬁl) divides that of )Z,(ﬂl), and

the latter divides U,.. Thus, for some A € F; and monic B € F,[T"] we have

M2 4 d\ My — ay M, = DO = rad; (DS)) AB2 = MAAB?, A| My, A| U,

where A is the greatest common divisor of M; and radl(Dﬁl)), and A is the

conductor of anl). Since U, divides the nonzero polynomial ) defined to be

!/ /
2712 @i aj
(420 e |(5) - (7)) |
1<i<j<n
it follows that A | Q as well, so Proposition ensures that the number of
r for which the equation above holds is
(4.27) < day (M Q) g /#+9),
The divisor bound then allows us to neglect those r for which . is principal,
as long as %—FC—I—% < 1—%, which is alright as g < % §p<%—%> SO we

can choose ¢ small enough that this inequality holds.
Let us now handle the case when a; and M; are not coprime. Set

(4.28) H; = ged(a;, M;), 1<i<n.
If some H; is not squarefree, the sum vanishes and the bound is trivial.

Otherwise, we have the identity

w (o) n(H) it ged (§ + g4t Hi) =1

(3 (3

if ged (4 + g4, Hi) # 1.

(4.29) p(a;i + gM;) =

Thus we can write the sum as the constant factor [[ ; u(H;) times a
similar sum, except that the degrees of a; and M; are reduced and the terms

where ged (% + g%, Hz) = 1 are removed. The degree reduction preserves
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the system of inequalities and so is no trouble. Removing the terms
with ged (% + g%, Hz) # 1 amounts to removing those g which lie in a
particular residue class modulo each prime factor of H;, for a total of at
most I' = Y7 | w(H;) residue classes.

We perform the same argument to this restricted sum. The only change
that occurs is when we write ¢ = r + sP, we must assume that s avoids
a corresponding set of residue classes modulo these primes. By inclusion-
exclusion, we can write a Dirichlet character sum avoiding I' residue classes
as an alternating sum of Dirichlet character sums in at most 2' residue
classes, and hence as an alternating sum of at most 2' shorter Dirichlet
character sums. Because the sums over each residue class are shorter, we
can get the same bound for them by Corollary Thus our final bound
for this case is worse by a factor of

(4.30) of — iy o(d(Hy) _ gold).

We can absorb this into our bound by slightly increasing 3 so that it still
satisfies the strict inequality (4.4). O

Theorem 4.5. Fize,d >0, 0< 8 < 1/2, and a positive integer n. Let q
be a power of an odd prime p such that

1—22[3
ne
(4.31) q> T
3 € €
min { €+27 e+ }
Then for nonnegative integers d,mi, ..., My, k1, ..., ky, with

(4.32) dZmax{eml,...,emn,dkl,...,ékn}, ki#d—i—mi, 1<1<n,

and pairs (a;, M;) € My, X My, for 1 < i <n with a;/M; distinct, we have

(4.33) > [ ke +gM;) < [Mqal' >

geEMyi=1
as d — oo, with the implied constant depending only on €,6, B,n and q.

Proof. Our initial assumption is that there are no coincidences among (a;/M;),
for 1 <1i < n, so we can find a prime P not dividing

(434) HM H azMj - ajMi),
1<i<j<n

with d(P) = o(d). Let ' = d(P). Splitting our initial sum according to the
residue class z of g mod P we get

(4.35) Z > HM (a; + zM; + fM;P).

2)<t! fEMy_y i=1
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We can bound the sums over residue classes by applying Proposition 4.3
Indeed, suppose toward a contradiction that for some 1 < ¢ < j < n we have

(4.36) a; + zM,; ! _ aj + zM; /‘
M;P M;P
The left hand side above equals
alM;P + 2’ M?P + zM!M;P — a;M!P — a;M;P' — zM; M!P — zM?P’
M?2Pp?
K3

so equating it with the right hand side and clearing denominators, we get
that

M (a;M;P + ' M7 P + 2M{M; P — a; M{P — a; M;P' — zM;M]P — zM}P")
equals
MP(a;M;P 4 2' M7 P+ 2MjM; P — a;M;P — a;M; P' — zM;M;P — zM3 P").

Reducing mod P and multiplying by —1 we get the congruence

M3 (a; MiP' + M7 P') = M7 (a;M;P' + zM3?P") mod P
from which we deduce that
M7 a;M; P' = M?a;M;P' mod P.
Since P does not divide M;M; by assumption, we get that
MjaiP' = MiajP' mod P.

The primality of P implies that P’ is coprime to P so we conclude that P
divides the polynomial a;M; — a;jM;. This contradicts our choice of P.
Because the length of the sum in this case is ¢*~*', we obtain a savings in
each term of ¢(@)8/2P from Proposition To obtain our desired savings
of ¢%/2P we must choose 3 + o(1) instead of S in the statement of Proposi-
tion . Similarly to ensure that d —t' > max{emq,...,emy,0ki,...,0kn}
we must choose € — o(1) and § — o(1). However because the inequality from
Eq. is strict, we may increase 3 by o(1) and reduce € and § by o(1)
in such a way that this inequality is still satisfied. ([l

We prove two corollaries that give weaker results under conditions that
are simpler to state.

Corollary 4.6. Fiz e,0 > 0 and a positive integer n. Let q be a power of
an odd prime p such that

21 1)°
(4.37) q > p*n?e® max (1—1—,4—5) )
€ e

Then for nonnegative integers d,my, ..., My, ki, ..., k, with

(4.38) d>max{emy,...,emy,d0ki,...,0ky}, ki#d+m; 1<i<nmn,
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and distinct coprime pairs (a;, M;) € My, X My, for 1 <i <mn, we have

(4.39) > T w (e +gMi) = o (IMal)

geEMy1=1
as d — oo for fized €,6,n,q.

Proof. The assumed lower bound on ¢ is equivalent to

2
pne

: € 34
min { e+27 e+6}

If ¢ satisfies this inequality, we can take 8 small enough that the inequality

(4.40) q>

=
(4.41) q> pne .
3 € €
i {ﬂ eTé}
holds, and then apply Theorem O

Corollary 4.7. Let q be a power of an odd prime p such that
(4.42) q > p°nie?,
and let (ai, M;) € My, x My, be distinct coprime pairs for 1 <i <n. Then
n
(4.43) > [ w(ai+gMi) = o (M)
geEMy41=1
as d — oo for fized q,n,a;, M;.
Proof. We can take €, large enough that
21 1)\?
(4.44) q > p*n?e® max (1 + -, -+ > .
e e 0
For this € and J, the inequalities
(4.45) dZmax{eml,...,emn,ékl,...,(Skn}, ki#d—i—mi, 1<1<n,

will be satisfied for all d sufficiently large. We can then apply Corollary
to deduce the claim. (]

5. LEVEL OF DISTRIBUTION

The following will be obtained using the techniques of [FM98] and [FKM14]
in the appendix. For coprime polynomials g, M we denote by g the residue
class of the (multiplicative) inverse of g mod M.
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Theorem 5.1. Fiz an odd prime power q. Then for any 6 > 0, for non-
negative integers d,m with d < m, squarefree M € M,,, and an additive
character v mod M, we have

2

(5.1) S ulg)v(g) < glisto)m
geEMy
(g7M):1

as d — oo, with the implied constant depending only on q and 0.

The following proposition allows us to identify the main term in sums of
von Mangoldt in arithmetic progressions.

Proposition 5.2. Fix a prime power q. For nonnegative integers d, m, and
a squarefree M € M,, we have

d m
— _ q o(m+d)—d
(5.2) kg YT wA) = —— 4 gt
k=1 AeMy SO(M)
(A,M)=1

Proof. The left hand side above is the sum of the first d coefficients of the
power series

d ~—~ d _
udu;q Fuk Z /L(A):u% (1—ud(P)]P] 1)

AEMy, PtM
(A4,M)=1

d -1
=u— [ (1—w) [] (12— PP
du PM( )

Summing all the coefficients of a power series, evaluates it at u = 1.
Hence, the main term comes from the equality

d 1
(vg0 (=P} ) =-F@), P =T (1= ®p1 )
P|M
The coeflicients of degree greater than d contribute to the error term. To
bound the sum of these coefficients, we can write the degree k coefficient as

(5.3) k f d-wFw),,

kL

|u|=r
for r < g, getting a bound of
(5.4) k(1 +r)r~F L max F(u).

ul=r
As long as the above maximum is subexponential in m for all r < ¢, the
expression above will be ¢°™ k(1 4 r)r~%=1, so the sum of the coefficients
of degree greater than d is

(5.5) "™ k(14 ) = g (e — o(1) 7
k>d
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Taking r arbitrarily close to g, the above is ¢°™) (g — o(1))~¢ = gom+d)—d,
The value of F'(u) is indeed subexponential in m, because M has o(m)
prime divisors and each contributes at most

o () 6D

The proof above is written using asymptotic notation for m (and d),
namely it gives uniformity in M. Clearly the same argument also applies to
the case of a fixed polynomial M (or a fixed value of m), and d — oc.

In the following we deduce, from our results on the Mobius function, a
level of distribution beyond 1/2 for primes in every individual arithmetic
progression to a squarefree modulus. We shall use the convolution identity
A = —1x (pu - deg) which for f € Fy[T]" of degree d > 0 says that

d
(5.7) AD==SkS S ulA.
k=1 AeMy BEMy_;
AB=f

O

Corollary 5.3. For any 0 < w < 1/32, for any odd prime p and power q

of p such that q > p*e? (1 + 175:?%)2, the following holds. For nonnegative
integers d,m with d > (1 —w)m, squarefree M € M,,, and a € F,[T] with
d(a) < d+ m and coprime to M, we have

d+m

g
(5.8) gEZMd Aa+gM) = 0D

L0 (q(l—d)d)

as d — oo, for some § > 0 depending only on q,w (a power savings error
term).

Proof. We can assume d(a) = m, and use Eq. (5.7) to write our sum as

d+m
(5.9) Yo AN=-Dk D> o Y1
feEMpmta k=1 AeM, BeMpta—k
f=a mod M (A,M)=1 AB=a mod M

so by Proposition the range k < d contributes the main term.
The (absolute value of the) contribution of any k > d is

k'S () > ¥ () YT TIR)| <
AeMy, P Fg[T]/M—C*
(A,M)=1 »(f)=0 if d(f)<m+d—k

kg > | X waw(aa)

¥ Fy[T]/M—C* AEM,,
»(£)=0 if d(f)<m+d—k (A,M)=1
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so by Theorem we get
(5.11) < kqd k _k— dq(l%-&-@)m—&—g—gk - ]{jq(16+9)m+25k

which gives a power saving as long as
3 25
12 2 — .
(5.12) (16+ 9)m+32k<d

The (absolute value of the) contribution of any other k is at most

(5.13) k> ‘ 3 ‘_k 3 ‘Z (b + gM)

BeM1a—k AeM, BeMptda—r 9EMig_m
(B,M)=1 AB=a mod M (B,M)=1

where b is the unique monic polynomial of degree m congruent to aB~*
modulo m. We apply Theorem [4.5] with some fixed 8 > 0 and with

32
(5.14) e=0= 25<—w—29>

Then because ([5.12)) does not hold, we have

32 31 32 31
k—m > 5F <d <32 +29> > 2 o <(1 w)m — <32 +29> ) em

so the conditions of Theorem are satisfied as long as

2

25 1 -2

1 1 S .
(5.15) q>< <+16_ _20>>

Because we may take [ and 6 arbitrarily small, it suffices to have

2 2
25 1 50
5.16 221+ = =p%? (1
(5.16) Q>p6<+16312—w> e\ T 3,

Summation over k gives only an extra logarithmic factor, so it preserves
our power savings. O

6. THE TWIN PRIMES CONJECTURE

6.1. Chowla sums over primes. We establish cancellation in M6bius au-
tocorrelation over primes.

Corollary 6.1. Fiz 6£0>0,0<a< 1,0 < B < 1/2, and a positive integer
n. Let g be a power of an odd prime p such that

_2
2+ 2 +461 1+a+28 142571\ %
q> [ p(n+1)emax |1+ ’ .

11—« 1-a
Take nonnegative integers d, m1,...,mnp, k1, ..., k, with
(6.1)  d>max{émy,...,émp,0ki,...,0ky}, ki#d+m; 1<i<n,
and distinct coprime pairs (a;, M;) € My, X My, for1 <i<mn.
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Furthermore let m, k be nonnegative integers with m < ad, k < m +d,
let M € M,,, and let a € My, with (a, M) distinct from (a;, M;) for every
1<i<n. Then

1 B0

(6.2) Z Aa+gM)H (a; + gM;) < |[My|
geEMy =1

as d — oo, with the implied constant depending only on €, 5, a,n, B and q.

Proof. We can assume (a, M) =1, set z = Ld+mJ and use Eq. 1’ to write

d+m—z—1
Ala+gM) = Zb Z wu(B)— Z (d+m—c) Z M(a%—gM).

b=1 BeM, c=0 CeM,
Bla+gM Cla+gM

For every B above, taking a monic N = N(B) € F,[T| with
(63) MN=—-amod B, d(N)#ki—mi, d(N)<b+n,

and writing ¢ = N + hB with h € My_p, we see that the sum over b
contributes

N

(6.4) b Z w(B) Z ﬁ,u(az‘ + NM; + hBM;)

b=1 BeM, heMg_p i=1

so we can apply Theorem to the innermost sum, taking

l-a d—m d—Hm g —p
(6.5) €= — < = <
1+a+21 —d+m+2m; CZJFTm-|-mZ- b+ m;
and
(l—a 1-a«a _(d—b d—b
S G Traree ) S R
(6.6) ' ’

<in (420 b +o(1)
- dega;’ deg N M; '

To obtain the condition on ¢, note that, when calculating max(l—k%, %—k%),
we can treat § as ng_fi, because if the other term is smaller, then % + % is

dominated by 1+ % anyways.
Taking L € F,[T]" with

(6.7) ML= —amod C, d(L)#ki—mi, d(L)#d, d(L)<c+n+]1,

and writing ¢ = L + hC with h € My_., we see that the sum over ¢
contributes

d+m—z—1

Yo (dim—c) Y > <a+LM+hM)ﬁu(ai+LMi+hCMi)

=0 CeMe heMy_, i=1



32 WILL SAWIN AND MARK SHUSTERMAN

and we again apply Theorem [4.5]to the innermost sum, with the same values
of ¢ and §. Everything is the same as before, with ¢ replaced by b, except
for two things.
(1) We can no longer use the inequality b < mT*'d, but rather the slightly
weaker inequality ¢ < %‘”1 .

(2) The term g (# + hM ) appears, which means we must check that
LM
(6.8) (d—c)>em,(d—c)>ed (“+0> .

However (1) is no difficulty as we may assume d sufficiently large and
perturb the parameters € and § slightly to insure the inequalities of Theo-
rem ﬁ still hold. For this reason we will assume ¢ < mT‘*'d while handling
(2) as well.

To check that (d—c) > em we observe that, because ¢ < ™4 and d < am,
wehaved—ch_Tm,andthus%212_—;‘2};—326.

To check that

LM
d <“ ki

(6.9) =

>§max(m+d—c,m+n)§61(d—c)

we observe

l—a 2(d—m) 1 1 d—c
1+« d+m W—Fl %4‘1 m+d—c

6.2. Singular series. For nonzero a € F,[T] define
1y -1 _
610 & =[Ta-1P) I (1-0r-17).
Pla Pta

The following propositon allows us to identify the main term in our twin
prime number theorem. An analogous result over the integers is proved in
[GY03] Lemma 2.1].

Proposition 6.2. Fiz a prime power q. Then for an integer n > 1 and a
nonzero a € Fy[T] we have

(611) Z k /,L]]\\j) _6q(a) + (q _ 1)0(n+d(a))—n

= siewn (M)
(M,a)=

Proof. We are interested in the sum of the first n coefficients of

duz > W wge L (1= P = 1))

(6.12) (s Pla
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where G(u) is
g (1—u®p ) }1;[ (1@ ) (1™ (P 1))

The sum of all coefficients equals

(6.13) Z(1) = —G(1) = —G,(a)
because
619 (- PY) (=P -7 =1- (P -7

As in Proposition to prove the bound for the error term it suffices
to prove that G(u) is bounded subexponentially in a for u on each circle of
radius < g — 1.

Note that

—1
(1 - ud(P)|P\_1) (1 —dP)(|P| - 1)—1) -
(6.15) 4 d(P)
1 _
[PI(|P| = 1) (1 - ud®P)|P|~1)

so G(u) can be rewritten as

uD d(P) 1\t
H (1— \P|(|P|-1) (1ud(P)‘p’1)> H(l—u (|P| - 1) )

P Pla

The first product above is independent of @ and converges on the disc where
|u| < g. On a circle of radius 7, the value of each term in the second product
is at most

-1
rd(P) P\t
(6.16) (1—qd(P)_1 g(l—q_l>

and thus is bounded, and the number of terms is o(d(a)), so the product is
subexponential in a.

O

6.3. Hardy-Littlewood conjecture for pairs.
Theorem 6.3. For every odd prime number p, and power q of p with
(6.17) q > 685090p2,

there exists A > 0 such that the following holds. For nonnegative integers
d> /¥, and a € My we have

(6.18) > ANAY +a) = y(a)g” + 0 (4"
JeMq

as d — oo, with the implied constant depending only on q.
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Proof. Using Eq. (5.7) our sum becomes

d
(6.19) =Dk > uM) D> Aa+NM).

k=0 MeMy NeMg—

The appearance of the factor u(M) allows us to consider only squarefree M,
so by Corollary the contribution of the range 0 < k < d/(2 —w) is

d/(gz_w) 3 (M) ( a >
(6.20) —q° k +0 (dg==E,
k=0 MeMy SO(M)
(a,M)=1
which equals by Proposition [6.2] to
_d_ d
(6.21) ¢"S4(a) + 0O (quiiw E, + qu(’] (2—w>> .

The error term is of power savings size.
In the other range, we need to prove a power savings bound for

d

(6.22) Sk Y > AMa+MN)u(M)

k>d/(2—w) NeMg_ MeM;

and this is done by applying Corollary [6.1] to the innermost sum with

= d—k
(6.23) n=1, €é=o00, 0§=o00, azl—w>T

and 8 > 0 but very small. This requires

6.24)  ¢> <2p€<1+w>>2:<2pe<i_l>>2

and Corollary requires

(6.25) s p2e? (14 —22 2
' =p 1— 32w
so the optimal bound is obtained by solving
4 50
2 2 ——-1)=1
(6-26) <w > * 1—-32w

whose solution is

103 — 30803
(6.27) w=— Y % 021...

64
which satisfies

(6.28) <26 <i - 1>>2 < 685090.
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7. RESULTS FOR SMALL ¢

We prove Theorem [1.11

Proof. Set d(f) = d. We need to show that by suitably changing the coeffi-
cients of f in degree at most nd, one can arrive at a polynomial with a given
(nonzero) Mobius value.

Let ¢ < nd be the largest even integer not divisible by 3. Note that

(7.1) c>nd—4.

We take the coefficient of 7¢ in f to be 1, and the coefficient of T% to be 0
for every k < c that is not divisible by 3. Hence, it is enough to show that

(7.2) L—1e{u(f+b*):beM}.
By Lemmawith M =1, a= f, and g = b?, our set equals
(7.3) {S'X(w+b3) :bEMLC/gj}

and since the highest power of T that divides (f + b®) = f’ is T, we
conclude that S = 4+1 and from Remark that y is a nonprincipal char-
acter (to a squarefree modulus E). Arguing as in Eq. to ’extract third
roots’, we are thus led to consider

(7.4) {X({E—}-b) :bEMLC/gJ}

where @ is the unique residue class modulo E with @° = w mod E.
From Lemma [3.2l we further conclude that

(7.5) dE)<d—c+1<(1-n)d+5,
and on the other hand

c nd —4
(7.6) lc/3| > 3~ 1> 5

so combining the two we get

le/3] S 4d -3 .

dlE) — (1—-m)d+5

Since we have assumed that 3/7 < n < 1, the right hand side of the above
tends to a quantity greater than 1/4 as d — oo. Consequently, we can use
the (function field version of the) Burgess bound (as stated for instance in

[Bur63, Theorem 2]) to show that 1 and —1 belong to the set above. Such
a version is obtained in [Hsu99]. O

n
1> 2q 3,
=3

(7.7)

Now we prove Theorem [1.12.

Proof. Set k = d(P). For positive integers d,n, we seek cancellation in

(7.8) > wa+gPm)

geEMy



36 WILL SAWIN AND MARK SHUSTERMAN

where a € F,[T]* satisfies d(a) < nk and a = 1 mod P" 2. We assume first
that 3 | n, and follow the proof of Proposition up to Eq. (4.21)) getting

(7.9) > xlf+h)

d(h)<t
with x, a character mod E,.. If y, is principal, then by Remark [3.3] we have
(710)  P¥™' +dP"=DM = AB?, A BeF,T], A|P", P{B

and since P"3 | @/, we conclude that

l
(7.11) P34+ —— B - =AB% A,BeF,T], A|P.
There are < ¢%2 choices of r € R satisfying the above, so those can be
neglected.
For r € R with x, nonprincipal, we note that

/
(7.12) d(E,) < d(rad (P*"r' +d'P")) <d <P3r’ + Bn= 3> +k

so for large enough d we have t/d(E,) > 1/4, hence cancellation in Eq. ([7.9)
is guaranteed by Burgess.
Suppose now that 3 | n + 3 for some 5 € {1,2}, and write

(7.13) Sop+gPy= Y > p(l+geP"+ g P

geEMy d(go)<Bk g1€EMa_gk

for d > . We have thus reduced to the previous case with a = 14+goP". [

Remark 7.1. We see from the proof that 1 is not the only residue class for
which the argument works. Also, the modulus does not have to be a power
of a fixed prime, but it has to be ‘multiplicatively close’ to a cube.

APPENDIX A. ORTHOGONALITY OF THE MOBIUS FUNCTION AND
INVERSE ADDITIVE CHARACTERS

We explain how a variant of the results of [FM98] carries over to function
fields and gives Theorem

A standard strategy in the treatment of sums such as those from Eq.
is to use a combinatorial identity for the Mobius function. Following [FM98],
we use Vaughan’s identity, which for f € Fy[T]" gives

A1) P IPILICED WPy

g)<ad(h)<p d(g)>a d(h)>8
ghlf ghlf

where summation is over monic polynomials, and «, 3 are nonnegative in-
tegers with max{c, 8} < d(f). For a proof (that is also valid for function
fields) see [IK04, Proposition 13.5].
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By applying Vaughan’s identity as in [FM98, Section 6], we reduce our
task to bounding sums of type I:

(A2) Ser= 2 > (T
feMk gGMr
(fg.M)=1
where k < 2d(M) + &d, k+r <d, |v¢| <1 and sums of type II:
(A3) S0 = SN va,0(Fe)
feMk QGMT
(fg:.M)=1

with k > 2d(M) + &d, r > =d — 2d(M), k+r < d, |64 < 1. For every
€ > 0, we need the bounds

(A.4) EI(CIL < q(%-i-e)d(M)—&-g—gd’ (H) < qd—&-ed(M)—g Jrqd+(i+e)d(z\4)_§

that are analogous to [FMO98, Equatlon 6.4]. The bounds (A.4) then imply
(5.1) by the argument of [FMO98, Section 6].

A.1l. Sums of type I. Following first the bilinear shifting trick argument
of [FM98, §4], we obtain the inequality

a5 es ¥ S Y| Y w(adwgin)

aEMdA fEM) geM, bGMdB

(a,M)=1 (a=1g+b,M)=1
where, in analogy with the variables A, B from [FM98, (4.8)],
3r—k k
(A.6) dy = r4 , dp = Zr—l

and
(A7) V=%#{ab:ae My,,be Mg, (a, M) =1} > qlatdp—edM),

The parameter ¢ and the term e(—bt) from [FM98] do not appear here,
as they arise from the failure of an archimedean interval to be perfectly
invariant under a shift.

Put M = F,[T]/(M). Following the Hélder’s inequality argument from
[FM98, §4.a], we get as in [FM98, Equation 4.6], the bound

(X X Y| ¥ vy <
a€My, feEMy geEMr  bEMay
(a,M)=1 a~g4+beMX

(A.8)
o ktr+da)ted(m) Z ’ Z Z b (Ap(h, S))‘
bi...by€My,  REM  d(s)<k+da
h+b; eEM* (s,M)=1
h+b,eM*
where

(Ag) b = (bl’anbc}? / /Qabé) € FQ[T]ﬁ’
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and the function Ap(h,s) is defined by

> 1 1
(4.10) Ab(h,5) = 2; [(h+bi)s (h+0))s
Because of our conditions h + b; € M*, h + b, € M*, and (s, M) = 1, the
function Ay, is never evaluated where it is undefined. The Holder’s inequality
argument is slightly more involved because the invertibility assumptions are
more complex in case M is not prime, but the idea is essentially the same.
As in [FMO98], we complete the right hand side of Eq. and get

Y Y (Ap(he) =

heM  d(s) <k+dA
h+b; €M™ (s, M)=
h4-b] EM*

gFtda—dM) Z Z Z Y (Ap(h,s) + zs).

z€F4[T] heM  seMX
d(z)<d(M ) k—d 4 h+b;eM*
h+b]

X

(A.11)

In order to treat the innermost sum on the right hand side, we note that
3

1 1 1
A12 Ap(h,
( ) b(h,s) +zs = Z[(h+b) (h+bi/)]+zs
so the aforementioned innermost sum over s is a Kloosterman sum. We put
(A.13) Mp ={zeM: (x+by) - (z+by) e M},
define a function Ry: M — M by
LA 1
A4 R = -
(A.14) b() ;(:c—i-bi x+bg)’
and a Kloosterman sum
(A.15) S(z,z) = Z P (Lvy_1 +2y), xeM, z € F,T).
yeMX

In this notation, for any z € Fy[T] we have

(A.16) Z Z¢Abh5 + 23) ZSRb

heMly, seM X €My,
and the following claim.

Proposition A.1. For o € S3 and
(A.17) MP = god (M, by = by, b2 = .5 = by )
we have if p > 3 the bound

(A.18) 3" S(Ry (@), 2)| < [M|da(M ‘lcmgessgcd( z)‘
xEMp
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with the implied constant depending only on q. As before, we write do(M)
for the number of monic divisors of M.
If p =3, with

(A.19) MR = ged (M, by — ba, by — bs, by — by, by — b)) ,

we have the bound

(A20) | S S(Ru(a), 2)| < [MIda(M)* [lemges,ogay sed (M2, 2)
rEMy,

with the implied constant depending only on q.

Proof. Since both the bound and the sum are multiplicative in M, it suffices
to handle the case when M is prime, where we show that

(A.21) > S(Ru(x),m)| < 16/M]
zeM\{b1,...,b% }
unless z = 0 and either
e for some o € S3 we have b; = b;(i) for all 1 <i < 3;
e or p=3, by =by = b3, and b} = b, = 15;

in which case we have the trivial bound

(A.22) > S(Ru(x),0)] < M.
2EM\{b1,...,b5}

The relevance of these conditions is that the residue of the pole of Ry, at
a point x equals

(A.23) #{1<i<3:bj=—-a}—#{1<i<3:b,=—x}

So it is nonzero whenever these two numbers are not equal, except when
p = 3, one of these numbers is 3, and the other is zero. Hence, Ry has a
pole unless each b; is equal to some b, (;)r, or p = 3, all the b; are equal, and
the b} are also all equal.

Excluding these ‘trivial’ values of b for z = 0, we get that the rational
function Ry is nonconstant and at most 6 to 1. Hence, if Ry(x) # 0 we get
S(Rp(x),0) = —1, while for the values of = with Ryp(x) = 0, at most 6 in
number, we have

(A.24) S(0,0) = M| — 1.
In total, we get

(A.25) > S(Ru(x),0)| < M|+ 6M]| = 7[M].
zeM\{b1,...,b% }
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Suppose from now on that z # 0. Note that if the rational function Ry,
is constant then it necessarily vanishes identically, so we get

(A.26) > S(0,2)] < M.
2€M\{b1,....b3}

We can thus assume that Ry, is nonconstant, and let K¢y be the Kloosterman
sheaf, as in [Ka88]. With this notation, our sum can be written as

— 3 tr (Frobpg, (K) gy )-) =
zeM\{b1,...,b5}

- ) tr(Frobpy, ([2Rp]*Kla),) =

(A-27) zeM\{b1,...,b4}

- 22:(—”" fr (Frob‘w, o (A;qu\ (“by,...,—bL), [sz]*/cez))
=0

by the Grothendieck-Lefschetz fixed point formula. By [Ka88| Theorem 11.1]
the geometric monodromy group of K/ is SLy, which is connected, so the
geometric monodromy group of the pullback of Kfs by any finite covering
map is SLs, whose standard representation has no nontrivial monodromy
coinvariants, so the cohomology groups in degree 0 and 2 vanish. As /s is
pure of weight 1, its pullback by a finite covering map is mixed of weight
at most 1, so by Deligne’s Riemann Hypothesis, the eigenvalues of Frobpy
on Hcl(Allqu\ {=b1,..., b5}, [2Rp]*Kly) have absolute value at most |M].

Hence, in order to bound our sum by 16|M]|, it suffices to prove that the
dimension of the above cohomology group is at most 16.

By the aforementioned vanishing of cohomology in degrees 0 and 2, the
dimension of our cohomology group equals minus the Euler characteristic.

Since [zRp]*Kl; is lisse of rank 2 on A]%\ {=b1,..., =4}, its Euler char-
q
acteristic is twice the Euler characteristic of AIIT\ {=b1,..., =5}, which
q
is
(A.28) 2(1—#{=b1,...,—b3}),

minus the sum of the Swan conductors at each singular point, in view of
[SGA5, X, Theorem 7.1]. Because the rational function mR), has a zero at
oo and a pole of order at most 1 at each b; or b}, the Swan conductor of
[mRy|*Kly at oo vanishes and the Swan conductor of [zRy|*K/l2 at b; or b
is at most 1, so the total Euler characteristic is at least

(A.29) 2 —3#{=b1,...,—b3} >2—-3-6=—16.
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Corollary A.2. Keeping the same notation, we have if p > 3

S X v (An(hs) < (M) (M] g7

heMp  seMX
d(s)<k+da

lchGSS Mo’

b)),

and, if p = 3, the same bound but with MR also included in the lem.

Proof. Using Eq. (A.11), Eq. (A.16), and Proposition we get a bound
of

(A.30) < ¢Ftady (M)t > llcmaesg ged (Mf ; Z) ‘
z€F4[T]
d(z)<d(M)—k—d4

for the left hand side above. Summing over the possible values of the least
common multiple, we get

(r+k)
<q Ot Y Y 1

Lllemye s, MP z€F4[T]
d(z)<d(M)— 3R
(A.31) Ll 4

<& qB(rZrk) d2(M)4 Z ’L‘ max {qd(M)73(TZrk) 7d(L)7 1} .

L‘lcm0653 Mol?

3(r+k)
The contribution of ¢“M)- Tl—d(L) (respectively, of 1) is the first (respec-

tively, the second) summand of the right hand side in our corollary. ([

Corollary A.3. Notation unchanged, we have

(A.32) > ‘Z > ¢(Ab(h,3))’<< | M|y (M) 125 +7),

bi,..,b3€EMay h€EMp  seMX*
d(s)<k-+da

Proof. By Corollary we have a bound of

3(r+k)

(A.33) < 3 d2(M)5(\M\+q i
bl,...,bgGMdB

b)),

lemges, M,

Summing first over tuples M, of divisors of M we get

(A3 33 Y ) (M +a" T flemoes, Mol ).

0ES3 Mo |M bl,...,ngMdB
Yo My=MP

For each such tuple, the conditions
(A.35) M, =MP, ocS;
imply the congruences

(A.36) b; = b;(i) mod M,, 1<i<3, c€S;
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which determine b}, b5, b5 mod lem,eg, M, once by, ba, bg are chosen. Hence,
for each tuple of divisors of M, the number of possible values of b is at most

(A.37) max {q6d5 lemgeg, My |2 ,q3d5} :

If p = 3, we need a slightly more complicated argument. There are at most
MZ ways to choose the congruence classes of b modulo M, and then choos-
ing b1, b2, b3 arbitrarily now determines b, b5, b3 mod lem,cg,u(a} Mo Be-
cause the number of ways to choose b modulo M, and then choose b1, by, by
is

M2 3dp M3 < 3dp if Ma < dp

q2dB S q3dB lf MA > qu

in either case the number of possible values of b is at most

(A.39) max {quB }1cm0653U{A}M0’_3 , quB} .

Setting 7 = d(lemyes, M) (or adding A if p = 3), and taking the maximal
possible contribution for every tuple of divisors of M, we get the bound

_3r 3(r+k) r
(A.40) 0<£2%}((M) do (M55 H1 <q6dB 87 | q3ds) do (M)’ (\M| T ) .

Expanding the brackets above, we see that each exponent is a linear function
of 7, hence maximized either at 7 = 0 or at 7 = d(M). Using Eq. (A.6), one

r+k)
observes that the maximal terms ¢8¢5T4M) and q3db+3( (M) agree and
arrives at the right hand side of Eq. (A.32). O

It then follows from Eq. (A.8), Eq. (A.32), and the divisor bound that

Z Z Z Z ¥ (af(a”'g+0)) < gkt (G ad(M)

aEMdA fEMY geM, bGMdB
(a,M)=1

and thus (matching the ¢ = 3 case of [FM98, (1.2.3)]) we get
(A.41) E}(j) < q%r+gk+(%+e)d(M)

using Eq. 1} Using the fact that k& < %d(M) + %d and k +7r < d we
arrive at the first bound in Eq. (A.4).

A.2. Sums of type II. Keeping the same notation, we follow the proof of
[FKM14, Theorem 1.17]. Applying Cauchy’s inequality and Polya-Vinogradov
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completion as in [FKMM, Section 3], we get

S Y G, Y e - Ta)
91,92€EMy fEM,;
(A.42) (fg1,M)=(fg2,M)=1
<d* Y DN Ci-mh).
g1,92€ Mo heF [T
d(h)<d(M)—k
where
(A.43) Clg.h) =3 wlgZ)e, (Trgi(hz)), g, h € F[T).

zeMX
We have the following analog of [FKMI14, Proposition 3.1].

Proposition A.4. For g,h € Fy[T]| and My}, = ged(M, g, h) we have

(A.44) IC(g,h)| < do(M)~/|M]y/|Mg,p|-

Proof. Since both C(g, h) and our putative bound are multiplicative in M,
it suffices to show that for a prime P we have

(A.45) IC(g,h)| < 2V/|P]

unless ¢ = h = 0 mod P. To demonstrate that, take f € F,[T|/(P) with
(A.46) W(z) = e, (TP (f2))

and note that

(A.47) Clgh)= Y (Tr]FQ[T]/ Plgfa + hz)) .

2€(F[T]/(P))*

We have a Weil bound of 24/|P| for this exponential sum unless the rational
function gfz~!'+hz is an Artin-Schreier polynomial, which can only happen
if it is constant, as all its poles have order at most 1. The latter happens

only if ¢ = h = 0, as desired. (]
By Eq. (A.42) we have
) |2 . .
(ads) |5 <00y S S @b
LIM  heFy[T] g1,92E€EM

d(h)<d(M)—k Mg, —g,,n=L
so from Proposition and the divisor bound, this is at most

(A.49) q2k—@+ed(M) Z q@ Z Z N

LM heFq[T] 91,92€Mr
d(h)<d(M)—k Mgy —g9,n=L

Since Mg, _g4,.» = L implies that go = g1, h = 0 mod L, the above is at most
(A.50) 2k ed(M) Z g "5 Frrmax(r—d(L) 0)+max(d(M) ~k—d(L).0)
LM
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so setting £ = d(L) and applying the divisor bound once again, we arrive at

(A51) max q2k+%+r+max{r—f,0}+max{d(M)—k—f,()}—w-l—ed(M)
0<g<d(M)

As a function of &, the exponent above is convex, so its values do not
exceed those at £ = 0 and & = d(M), which are

(A.52) G ed(M) 420k r2kered(M)

in view of our assumption that r < d < d(M). Taking a square root and

using the fact that k& +r < d we get the second bound in (A.4]).

Remark A.5. There are (at least) two other potential approaches for bound-
ing our type II sums. The first is to follow the proof of [FM98, Proposi-
tion 1.3] that uses Bombieri’s bound on complete exponential sums [FM98,
Lemma 4.3]. One then argues as in [FM98, Section 5|. The second is to
follow the proof of [FM98, Theorem 1.4] given in [FM98, Section 7].

REFERENCES

[BBSR15] E. Bank, L. Bary-Soroker, L. Rosenzweig, Prime polynomials in short intervals
and in arithmetic progressions, Duke Math. J. 164.2 (2015): 277-295.

[BSE21] L. Bary-Soroker, A. Entin, Ezplicit Hilbert’s irreducibility theorem in function
fields, Contemp. Math. 767 (2021), 125-134.

[BBD82] A. A. Beilinson, J. Bernstein, P. Deligne, Faisceauz Pervers, Asterisque 100
(1982).

[BB73] A. Bialynicki-Birula, On fized point schemes of actions of multiplicative and ad-
ditive groups, Topology 12 (1973), 99-103.

[BGP92] E. Bombieri, A. Granville, J. Pintz, Squares in arithmetic progressions, Duke
Math. J. 66.3 (1992): 369-385.

[BFI89] E. Bombieri, J. Friedlander, H. Iwaniec, (1989). Primes in arithmetic progressions
to large moduli III, JAMS, 2(2), 215-224.

[Bur63] D. A. Burgess (1963), On Character Sums and L-Series II, Proc. Lond. Math.
Soc. 3(1), 524-536.

[Cal5] D. Carmon, The autocorrelation of the Mébius function and Chowla’s conjecture
for the rational function field in characteristic 2, Phil. Trans. R. Soc. A 2015.

[Car21] D. Carmon, On square-free values of large polynomials over the rational function
field, with an appendix by A. Entin, Mathematical Proceedings of the Cambridge
Philosophical Society. Vol. 170. No. 2. Cambridge University Press, 2021.

[CaRul4] D. Carmon, Z. Rudnick, The autocorrelation of the Mébius function and
Chowla’s conjecture for the rational function field, Q. J. Math. (2014) 65 (1):53—61.

[CHLPT15] A. Castillo, C. Hall, R. Lemke Oliver, P. Pollack, L. Thompson, (2015)
Bounded gaps between primes in number fields and function fields, Proc. Amer. Math.
Soc.143(7), 2841-2856.

[CGO7] J. Cilleruelo, A. Granville, Lattice points on circles, squares in arithmetic progres-
stons and sumsets of squares, Additive combinatorics, 43, 241-262, Amer. Math. Soc.
Providence, RI, 2007.

[CCGO8] B. Conrad, K. Conrad, and R. Gross (2008) Prime specialization in genus 0,
Transactions of the AMS, 360(6), 2867-2908.

[Con05] K. Conrad (2005), Irreducible values of polynomials: a non-analogy, Number
Fields and Function Fields: Two Parallel Worlds, 71-85, Progress in Mathematics,
239, Birkhauser, Basel.



ON THE CHOWLA AND TWIN PRIMES CONJECTURES OVER F,[T] 45

[Del80] P. Deligne (1980), La Conjecture De Weil II, Publications Mathématiques de
I'THES, 52. 137-252.

[FM98] E. Fouvry, P. Michel, Sur certaines sommes d’exponentielles sur les nombres pre-
miers, Ann. scient. Ec. Norm. Sup., 4e serie, t. 31, 1998, 93-130.

[FKM14] E. Fouvry, E. Kowalski, P. Michel (2014), Algebraic trace functions over the
primes, Duke Math. J. 163(9), 1683-1736.

[Gal72] P. X. Gallagher (1972), Primes in progressions to prime-power modulus, Invent.
math. 16(3), 191-201.

[GY03] D. Goldston, C. Yildirim, Higher correlations of divisor sums related to primes I:
Triple correlations, Integers 3 (2003) Ab5.

[GS20] O. Gorodetsky, W. Sawin, Correlation of Arithmetic Functions over Fq[T'], Math-
ematische Annalen, 376, 1059-1106, 2020.

[Hal06] C. Hall (2006), L-functions of twisted Legendre curves, J. of Number Theory, 119,
128-147.

[Hoo91] C. Hooley, On the number of points on a complete intersection over a finite field,
J. of Number Theory, 38.3 (1991), 338-358.

[Hsu99] C. N. Hsu (1999), Estimates for Coefficients of L-Functions for Function Fields,
Fin. Fields App. 5(1), 76-88.

[11194] L. Ilusie (1994) Autour du théoréme de monodromie locale, Astérisque 223 (1994)
9-57..

[IK04] H. Iwaniec, E. Kowalski, Analytic number theory, Vol. 53. Amer. Math. Soc. 2004.

[Jan07] S. Janson (2007), Resultant and discriminant of polynomials, Note N5. http:
//www2.math.uu.se/~svante/papers/sjN5.pdf.

[Ka88] N. Katz, (1988). Gauss Sums, Kloosterman Sums, and Monodromy Groups,
Princeton university press.

[Kat89] N. Katz (1989), An Estimate for Character Sums, JAMS, 2, 2, 197-200.

[KR14] L. Kindler, K. Riilling, (2014). Introductory course on £-adic sheaves and their
ramification theory on curves, arXiv preprint, 1409.6899.

[KMT20] O. Klurman, A. Mangerel, J. Teraviinen, (2020). Correlations of multiplicative
functions in function fields, preprint, arXiv:2009.13497.

[Lanl5] G. Lando (2015), Square-free values of polynomials evaluated at primes over a
function field, The Quarterly Journal of Mathematics, 66, 3, 905-924.

[Mal5] J. Maynard (2015), Small gaps between primes, Ann. Math. 181, 1-31.

[Mil] J. Milne, Lectures on Etale Cohomology, https://www.jmilne.org/math/
CourseNotes/LEC.pdf.

[MR16] K. Matoméaki, M. Radziwill (2016), Multiplicative functions in short intervals,
Ann. Math. 183, 1015-1056.

[MS04] H. Montgomery, K. Soundararajan, (2004). Primes in Short Intervals, Comm.
Math. Phys. 252, 1-3, 589-617.

[MV17] R. Murty, A. Vatwani (2017), Twin primes and the parity problem, J. Number
Theory, 180, 643-659.

[Pol08] P. Pollack, An explicit approach to Hypothesis H for polynomials over a finite field,
in Anatomy of integers, CRM Proc. Lecture Notes 46, 259-273. Amer. Math. Soc.,
Providence, RI, 2008.

[PM14] Polymath, D. H. J. (2014), Variants of the Selberg sieve, and bounded intervals
containing many primes, Res. Math. sci. 1(1), 12.

[PM14B] Polymath, D. H. J. (2014), New equidistribution estimates of Zhang type, Alge-
bra & Number Theory 8.9, 2067-2199.

[Poo03] B. Poonen (2003), Squarefree values of multivariable polynomials, Duke Math. J.
118, 2, 353-373.

[Ray66] M. Raynaud (1966), Caractristique d’Euler-Poincaré d’un faisceau et cohomologie
des variétés abéliennes, Séminaire N. Bourbaki, exp. no 286, p. 129-147.


http://www2.math.uu.se/~svante/papers/sjN5.pdf
http://www2.math.uu.se/~svante/papers/sjN5.pdf
https://www.jmilne.org/math/CourseNotes/LEC.pdf
https://www.jmilne.org/math/CourseNotes/LEC.pdf

46 WILL SAWIN AND MARK SHUSTERMAN

[Ros02] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics Vol.
210. Springer Science & Business Media, 2002.

[Saw20] W. Sawin, Singularities and vanishing cycles in number theory over function
fields, arXiv preprint, 2020.

[SS20] W. Sawin, M. Shusterman, (2020). Mdbius cancellation on polynomial se-
quences and the quadratic Bateman—Horn conjecture over function fields, preprint,
arXiv:2008.09905.

[SGA4-3] M. Artin, A. Grothendieck. J.-L. Verdier, eds, Séminaire de Géométrie
Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des
schémas - (SGA 4) - wol. 3, Lecture Notes in Mathematics 305 Springer-Verlag,
1972.

[SGA4%} P. Deligne, ed, Séminaire de Géométrie Algébrique du Bois Marie - Cohomologie
étale - (SGA 4% ), Lecture Notes in Mathematics 569 Springer-Verlag, 1977.

[SGA5] A. Grothendieck, (1977), Séminaire de Géométrie Algébrique du Bois Marie —
1965-66 — Cohomologie £-adique et Fonctions L — (SGA 5), Lecture notes in mathe-
matics, 589, Berlin; New York: Springer-Verlag.

[SGAT-II] P. Deligne, N. Katz, eds. Séminaire de Géométrie Algébrique du Bois Marie -
1967-69 - Groupes de monodromie en géométrie algébrique - (SGA 7) - vol. 2, Lecture
Notes in Mathematics (in French), Vol. 340. Springer-Verlag.

[Taol6] T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point
correlations, Forum of Mathematics, Pi, Vol 4, 2016, €8, Cambridge University Press.

[TT19] T. Tao, J. Terdvainen (2019), The structure of logarithmically averaged correla-
tions of multiplicative functions, with applications to the Chowla and FElliott conjec-
tures, Duke Math. J. 168(11), 1977-2077.

[Zhald] Y. Zhang (2014), Bounded gaps between primes, Ann. Math. 179, 1121-1174.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY 10027,
USA

Email address: sawin@math.columbia.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, 480 LINCOLN
Drive, MaDIsoN, WI 53706, USA
Email address: mshusterman@wisc.edu



	1. Introduction
	1.1. The main result - twin primes
	1.2.  The key ingredient - Chowla's conjecture
	1.3. Further ingredients - level of distribution estimates
	1.4. Additional results in small characteristic
	1.5. Further directions
	1.6. Notation

	2. Character sums
	3. The Möbius Function
	4. Linear forms in the Möbius function
	5. Level of distribution
	6. The twin primes conjecture
	6.1. Chowla sums over primes
	6.2. Singular series
	6.3. Hardy-Littlewood conjecture for pairs

	7. Results for Small q
	Appendix A. Orthogonality of the Möbius function and  inverse additive characters
	A.1. Sums of type I
	A.2. Sums of type II

	References

