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Framework for the Evolution
of Heuristics in Advanced
Manufacturing
This study works toward addressing a knowledge gap in understanding how heuristics are
developed, retrieved, employed, and modified by designers. Having a better awareness of
one’s own set of heuristics can be beneficial for relaying to other team members, improving
a team’s training processes, and aiding others on their path to design expertise. The ability
to understand and justify the use of a heuristic should lead to more effective decision-
making in systems design. To do this, the heuristics and their characteristics must be
extracted using a repeatable scientific research methodology. This study describes a
unique extraction and characterization process compared to prior literature. It includes
some of the first work towards documenting heuristics for both designers and operators
in a hybrid manufacturing setting. Eight participants performed a series of two design jour-
nals, two interviews, and one survey. Heuristics were extracted and refined between each
method and then verified by participants in the survey. The surveys produced novel statis-
tically significant findings in regard to heuristic characterizations, impacting how partici-
pants view how often a heuristic is used, the reliability of the heuristic, and the evolution of
the heuristic. Lastly, an alternate perspective of heuristics as an error management bias is
highlighted and discussed. [DOI: 10.1115/1.4055622]
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1 Introduction
Heuristics are context-dependent actions taken by designers in

hopes of reaching “satisfactory but not necessarily optimal” solu-
tions [1]. These actions range from general strategies that guide
the design process, down to detailed decisions about the artifact.
Koen emphasizes heuristics as decisions that are prone to error
and do not always produce one’s desired outcomes, emphasizing
their dependence on context for success [2]. Following the heuristic
representation format provided by Binder, the authors use a
context–action pairing to present heuristics in this study, as well
as in prior studies [3–5]. For example, “if the material is over/
under building (context), slow down/speed up the feed (action).”
Research toward understanding heuristics largely began with

Kahneman and Tversky, when they presented contexts where
humans do not approach decision-making in the same manner as
popular decision-making models, namely, utility theory [6–9]. In
an attempt to justify the use of heuristics, Gigerenzer later pushed
for heuristic research that described not only the heuristic being
used but the contexts in which they were successful or unsuccessful
[10]. From the perspective of human evolution, researchers have
also attempted to justify the use of heuristics through “adaptive
rationality” [11,12]. Adaptive rationality is based on the theory
that cognitive biases are derived from humans’ evolutionary will
to survive and are not weaknesses or errors, but rather efficient
adaptations of the mind to enable survival. This body of work
divides cognitive biases into three types: heuristics, error manage-
ment effects, and experimental artifacts. Error management refers
to making decisions toward less costly errors (preferring the cost
of a false-positive over the cost of a false-negative). Experimental
artifacts are the result of research strategies or designs that place

humans in unnatural settings or apply inappropriate norms. It is
noted that these types are not mutually exclusive, as biases may
fall into more than one category.
This study focuses on the knowledge gap in understanding how

heuristics are perceived by designers, as well as how they are devel-
oped through designers’ experiences. There is also an emphasis on
improving heuristic extraction and characterization methodology.
Most of the previous literature studied in design heuristics has
used artifact analysis as the primary method for heuristic extraction,
where an artifact is defined as any tangible object that can be pre-
sented physically or through images/sketching [13–23]. This form
of study typically begins with identifying features within a set of
artifacts/products and then hypothesizing the respective actions
resulting in those features. As a case study, data were collected
using in this research using multiple methods: document analysis,
interviews, and surveys. While some prior work has used these
methods before, this is the first known work that implements all
three methods in series [24–32]. Lastly, this study aims to expand
understanding of how these heuristics are implemented from an
error management perspective.
Accuracy in the documentation of heuristics is beneficial for

translating them to new team members and other training processes.
This accuracy is especially critical as a foundation for new manu-
facturing technology in current development. In regard to manufac-
turing, prior work has been produced in testing the implementation
of heuristics that guide a Design for Additive Manufacturing
(DfAM) context [33–35]. The methods in this study extract heuris-
tics from participants in positions requiring specific advanced man-
ufacturing technology still in development. The heuristics in this
study were labeled as applicable to many stages, ranging from
part design and build planning to machine setup and quality assess-
ment. As such, the heuristics may apply to both designers and
machine operators. Five participants were familiar with the
Mazak VC500, a hybrid machine combining additive manufactur-
ing and computerized numerical control (CNC) technology [36].
The additive process is a directed energy deposition (DED)
method, in which an energy source welds the deposited material
to a substrate [37]. Participants engaged in this study with respect
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to two versions of this technology: one that uses powder-fed deposi-
tion, and one that uses hot-wire deposition of metal. Three addi-
tional participants were familiar with the EOS M280 laser powder
bed fusion (LPBF) additive manufacturing machine [38,39].
While many of the heuristics presented are process focused, there

are examples of notes for understanding how hybrid manufacturing
can modify one’s approach to design for manufacturing. For
example, consider the DfAM heuristic, “if there is an overhang
on the part, ensure that the angle is smaller than 40 deg” [40].
With hybrid manufacturing, the ability to use additive and subtrac-
tive processes may eliminate this design constraint. Based on the
results of this study, a new heuristic may be, “to mitigate large over-
hangs, consider printing a vertical wall, then machining away the
extra material.” Another option may be, “to mitigate large over-
hangs, consider multi-axis rotation to produce the part.” Therefore,
it is beneficial to begin understanding how hybrid manufacturing is
currently operated on the road toward new design heuristics.
This study provides significance and originality in both the

extraction process and the characterization of heuristics. One goal
of this research is to move toward a more triangulated approach
to documenting heuristics. For this reason, the authors use three
methods in combination which have not been previously shown
in known prior literature and assess the benefits and limitations of
this combination. Second, it uses statistical significance to show
how certain characteristics of heuristics may correlate to their per-
ceived value, such as their perceived reliability. Lastly, it presents
the first known discussion on viewing heuristics in design from a
view of error management. This opens new avenues for studying
heuristic decision-making justification and rationale.
This work is impactful toward a successful prescriptive research

phase, as reliable extraction methodologies will lead to reliable
descriptions of how designers use heuristics. Moving forward, the
described heuristics and their attributes may be used to move
toward more normative decision-making, ensuring that the designer
chooses the heuristic that maximizes the value of their process.
Heuristic competence is necessary because it gives designers the
confidence needed to explore new problem spaces [41]. By under-
standing various aspects of how heuristics are developed and imple-
mented, this study ultimately contributes to advancing heuristic
competence within designers. To that end, with this study, the fol-
lowing research questions are addressed: How do designers per-
ceive their heuristics as they develop in advanced manufacturing?
What aspects of heuristics and design environments should be con-
sidered during documentation of heuristics for a repository? How
might the methodology improve for heuristic extraction and
characterization?

2 Material and Methods
The framework presented in this study is a methodology for

extracting and characterizing heuristics as they evolve in advanced
manufacturing. This framework is shown in Fig. 1 and discussed in

more detail throughout this section. There are several reasons for the
order of the methods followed in this framework. First, the journal
process allows participants to better reflect on their strategies before
entering an interview session. It allows them however long they
need to best put their process into words. This may make interview
sessions more effective compared to participants entering a timed
interview session with no preparation. The journal sessions also
allow for participants to reflect using familiar terminology. It is
likely that participants do not naturally use the term heuristic
when thinking about their process. With the first pass at heuristic
extraction, the interviewer may directly ask about specific heuristics
rather than having to develop them from scratch in the interview
setting. This may allow for better use of the semi-structured inter-
view format.

2.1 Participants. This study includes eight participants,
including seven graduate students in a manufacturing research lab
at a major university, and one recent graduate from this university
now employed at a national lab. There were seven men and one
woman who participated in this study. Six participants classified
themselves as white, with the other two classifying themselves as
Asian. Seven participants were aged 21–30 years old, with the
remaining participant aged 31–35 years old. Participants averaged
4.4± 1.6 years of design experience and 3.8± 1.85 years of manu-
facturing experience. For both categories, the highest amount of
experience was 6 years and the lowest was 2 years of experience.
At the time of the study, participants had been in their current posi-
tions an average of 2.4± 1.03 years, with a max of 4.5 years and a
minimum of 1.5 years. All participants had some form of graduate-
level education in mechanical engineering: two participants had
obtained their doctorate, and five had obtained at least a master’s
degree, with one participant still pursuing their master’s.
This was a valuable subject pool with which to study heuristic

development due to their need to create new heuristics and refine
their current heuristics to ensure successful builds and satisfactory
part quality. This includes everything from designing the part for
the machine, to planning the build, troubleshooting the build and
assessing the part quality post-build. This knowledge is crucial to
passing on to team members, novices, and for their own continuous
improvement in maximizing the value of their design process.
These heuristics serve as a foundation for translating design pro-
cesses to newer technologies as well, as the advanced manufactur-
ing technology evolves over time.
The methods for this study consisted of a series of two journal

entries, two interviews, and one survey for each participant. The
journals and interviews occurred over the course of several
months, as time was needed for both participants and researchers
to produce a successful study. This provided participants time to
think through each journal question without significant restrictions
on the time allotted for completion. After design journals were com-
pleted, time was needed for researchers to produce a preliminary
heuristic extraction and scheduling of the interviews based on the
availability of each participant. Additional time was needed after
interview completion for heuristic refinement and for surveys to
be customized for the heuristics of each participant.

2.2 Journal One. Journal responses were requested and deliv-
ered securely online. Participants were asked to document aspects
of their process through a set of prompted questions. Journal 1
asked for responses to a series of ten questions. The purpose of
this journal was to allow participants to provide how they perceive
their general process from beginning to end, regarding their interac-
tion with the manufacturing machine to produce their desired parts.
Questions 1–2 were meant as easy questions to get the partici-

pants thinking about their process [42]. Question 1 asked which
machine they would be doing the journal for, and Question 2
asked participants to list what they believe are the most important
parameters and settings for their machine.Fig. 1 Framework for heuristic extraction and characterization
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As it is possible that the participants did not normally describe
their actions as “heuristics,” the journal focused on using simple,
familiar language and avoiding more formal definitions of heuristics
[42]. For example, Questions 3–5 asked participants for the “pro-
cesses/strategies/actions” taken before using the machine, while
using the machine, and any exceptions where their listed steps
would not be followed. Question 7 asked for “lessons learned”
while using their respective machine and for the participant to
imagine if they were teaching someone else how to have success
with their machine. Lastly, Question 8 asked for “rules of thumb”
applied to their designs when considering their specific machine.
The journal was also set up to prompt the participants to view

their actions from multiple perspectives. For example, many of
the design “rules of thumb” (Question 8) may likely be applied
“before using the machine” (Question 3). Question 6 asked for
examples of troubleshooting, which may include actions that the
participants did not initially consider in the process or process
exceptions. Question 9 asked how they determine the part quality
and build success, and Question 10 asked participants to list what
rules of thumb they use that they have taken from experience
with previous machines.

2.3 Journal Two. After the first journal was complete, partici-
pants moved to Journal 2. Journal 2 asked about the participants’
most recent build in an additional set of ten questions. The importance
of this journal is to once again provide a different perspective for par-
ticipants to reflect on their process. Considering a very specific
machine use, as opposed to generalizing over many instances, may
provide new contexts or actions that were not previously considered
in Journal 1. This follows additional guidance from Krosnick and
Presser to begin asking general questions about a topic before
asking specific and targeted questions on the topic at hand [42].
Journal 2 began with five questions that assisted participants in

recalling information about their most recent build. These five ques-
tions asked for the overall objective, the material used, geometry
and rough dimensions, and the values for the key parameters and
settings for this build. Questions 6–7 asked participants if any strat-
egies used to plan or perform this build differed from what was doc-
umented in Journal 1. Question 8 asked participants to describe any
troubleshooting that took place. This was asked to understand if
potential troubleshooting issues were not documented fully in
Journal 1. Questions 9–10 asked for the results of the build and
any insights derived that may impact future builds. This question
hoped to find the knowledge that participants may be using to
develop heuristics for future builds.

2.4 Interviews. After both journals were submitted, a first pass
was taken at extracting the heuristics in context–action form. These
heuristics were taken into the interviews for additional refinement in
collaboration with the participants. Two interviews, one-hour each,
were performed virtually through Microsoft Teams format and
audio/video recorded, then transcribed. One researcher conducted
all interviews, using a script to prompt participants to talk about
their set of heuristics. Through the semi-structured interview
format, the interviewer was given the freedom to focus the question-
ing on aspects considered important to add more clarity to the heu-
ristic, how it was formed, or the justification for its use [43].
However, the format for each interview can be broken down into
the following three different sections.
The first section of the interview was dedicated to explaining the

purpose of the study and helping the participant understand why
they were completing these design journals. This was followed by
a more formal definition of a heuristic, as previously defined by
Fu et al. [1]. The purpose was to relay to the participant why the
information asked for in the design journals could be considered
heuristic information, which the researchers then rephrased into
context–action form.
The second section was the largest portion of the interview ses-

sions. At this point, the interviewer presented the participants

with their first pass at developing context–action heuristics from
the design journals. A series of questions were then asked to the par-
ticipant in an effort to get more insight into the heuristic and to
improve its presentation. The questions were asked the participant
to:

• Decide whether the heuristic is an accurate depiction of how
they perceive their process;

• Provide an explanation for choosing this heuristic in their
process;

• Provide how this heuristic came to be in their process;
• Provide any alternative actions that could have been taken; and
• Provide any key criteria that may be considered when choos-

ing this heuristic.

Several follow-up questions were asked as needed by the
researcher, using the semi-structured format. This was performed
for heuristics found across all design journal data, starting with
the processes before and during the use of the machine, and
moving on toward heuristics in regard to troubleshooting, lessons
learned, design rules, and part quality.
A final portion of the interview lasted about 15 min per partici-

pant at the end of the second interview. These questions asked par-
ticipants to speak more generally about other aspects that may have
an impact on how heuristics are formed or documented. Participants
were asked to:

• Describe how experience with other machines impacted their
process;

• Describe how they currently document their heuristic
knowledge;

• Describe the areas where they wished they had more strategies
or intuition; and

• Describe how their process has been impacted by: advisors/
supervisors, team members, formal education, and industry
standards.

2.5 Surveys. After interviews, heuristics were modified as
necessary for survey creation and distribution. Surveys were then
distributed online through Qualtrics and gathered through web-
based submission. The survey was broken into two sections. The
first section asked for demographic information, such as age,
gender, degrees earned, manufacturing/design experience, and
how long they have been in their current position. The second
section began with a Likert scale confirmation of heuristics taken
from each individual’s journal and interview data. Then, additional
characterizations of the heuristics were requested, such as:

• Origin of heuristic and the process stages in which they are
applicable;

• How often and how long each heuristic has been used;
• Reliability and evolution of the heuristic in their process;
• Additional factors contributing to whether they choose to

implement the heuristic;
• Reasons why the heuristic helps maximize the value of their

process;
• Additional descriptions of how they view their heuristics.

Several guidelines from Krosnick and Presser were followed in
the development of this survey [42]. For example, the survey
begins with questions of low difficulty. Participants were also
asked one question at a time, with similar aspects, such as origin
of the heuristic, applicable stages of their design process, etc.
grouped. Surveys used wording familiar to participants, and heuris-
tics were specific to each participant. Having processes tailored to
each individual should increase motivation to fill out the surveys
as accurately as possible. Lastly, it is possible that this method
has reduced some recall errors, as participants have already begun
reflecting on their process in the journal and interview process.
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2.6 Heuristic Extraction. With the qualitative data collected,
a process called coding is performed, where patterns are found in
the data for analysis [44]. Similar to previous studies, the coding
process began with matching context and actions together within
the design journals [4]. The interview process clarified or refined
those context-action pairings, or added new contexts and actions
to the set. For many aspects of the design journals, there was a
clear enough context–action pairing to set up a preliminary heuristic
for the interview sessions. An example of this extraction process is
shown as follows.

2.6.1 Example One. Journal Question #3:Document any plan-
ning processes/strategies/actions that you typically go through
before using this machine. Please be as thorough as possible.
Participant Response: “Most of the hybrid components we man-

ufacture at **** are done using a CAM software called Hyper-
MILL. The first thing to do is to import your CAD model into the
software (Or design it using HyperMILL’s native CAD).”
Extracted Heuristic: Before using the machine, first import your

CAD model into HyperMILL (or design it using HyperMILL’s
native CAD).
These heuristics formed through the journals were then discussed

in more detail in the interview session. The interviewer asked ques-
tions as they considered necessary to uncover more relevant infor-
mation about each action. In this example exchange shown below,
enough new insight was found to refine the preliminary heuristic,
while adding two new heuristics to the set.
Interviewer: “Is there any benefit to you for choosing to design it

in the native CAD versus doing it in another program yourself and
then importing it?”
Participant: “There is benefit to doing it in the native CAD/CAM

software. So, it kind of depends on how competent each user is. You
know, a lot of people know SolidWorks/Fusion, so they feel a lot
more comfortable drawing parts up there. But you do it in the
native CAD/CAM space when you’re using the same program to
design the part and do the toolpath planning. If you don’t need to
move the part, so you’re not trying to transcribe data, you don’t
have to import/export models. You keep track of features and sur-
faces and faces, so you know like when you take a stereolithography
(STL) model, if you if you start in SolidWorks, you may export
something as an STL. And STL is just a mesh file, so you lose
some of the native features that you designed in SolidWorks. You
can also just make changes on the fly. So, let’s say you’re designing
apart with a certain cylindrical feature. If you need to change the
diameter of that feature, you can just do it in the same program.
You don’t have to start over from scratch, change it, export it,
import it, do the toolpaths. That would be the main reason.”
Interviewer: “So ultimately, if you do it in a different place such

as SolidWorks or Fusion, you’re likely going to make some addi-
tional changes because things have gotten lost in translation.”
Participant: “Exactly. You have data loss.”
Interviewer: “…And do those other CAM packages typically

work well with the Mazak?”
Participant: “It depends on what you’re doing…In the world that

I deal with in hybrid manufacturing, not every CAM package offers
additive manufacturing. And each package kind of has a different
level of expertise. So, for example, Fusion: if I was doing a very
simple geometry that only requires three axes, you know very some-
thing very simple, I would use Fusion. I can do it quicker and easier.
But if I’m doing something very complex, I would want to go into
Hyper Mill. It’s a little more robust, but it’s not as user friendly.”
Refined Heuristics:

(1) When developing your CAD model, use the native CAD
package for ease of editing and to avoid data loss through
importing the model.

(2) When working with simple geometries, use Fusion to
develop the CAD model quicker/easier.

(3) When working with complex geometries, use Hyper Mill for
a more robust CAD model development.

2.6.2 Example Two. When the interviewer presented a heuris-
tic to the participant, the participant most often verbally agreed that
the heuristics were a part of their process. Therefore, most heuristics
were only modified through the additional lines of questioning.
However, in some instances, the participant realized that some
information was missing. In this example, the participant realized
that an “essential” step was not included in their design journal.
Journal Question #3: Document any planning processes/strate-

gies/actions that you typically go through before using this
machine. Please be as thorough as possible.
Participant Response: Mazak Hybrid System—The first step is

to set up a work coordinate system for the substrate, I would be
printing on.
Preliminary Heuristic: Before using the Mazak machine, the first

step is to set up a work coordinate system of the substrate used for
printing.
Interviewer: “So, the first thing you said was before using the

Mazak machine, the first step is to set up a work coordinate
system of the substrate used for printing. Does that sound like an
accurate depiction of how you perceive that part of your process?”
Participant: “Yeah, I did leave out one thing—I guess picking

out the workpiece as well would be an essential step as well. Like
cutting it to the proper size and selecting what material that
you’re wanting to use, but that’s going to depend on what you
want to print. So, like if you have this material, print on this work-
piece, for example.”
Interviewer: “Ok and that depends on the material that you are

going to use.”
Participant: “Correct.”
Interviewer: “Could you explain why it’s necessary from the

machine standpoint to set up with the work coordinate system
with your workpiece.”
Participant: “So the main importance is to make sure that you

align, and especially with hybrid, that you align your part with
your additive toolhead and your subtractive toolhead. The thing is
that the additive toolhead is actually offset with the machining tool-
head…you can potentially print in an entirely different area than
you wanted to if you just used someone else’s work coordinate
system. Worst case is you actually crash into the part. So, it’s
very important to do the work coordinate system first and set up
your workpiece into the system.”
Extracted Heuristics:

(1) Before using the Mazak machine, the first step is to set up a
work coordinate system of the substrate to align your tool
heads.

(2) When selecting the workpiece, choose the substrate material
based on the material being used for printing.

2.6.3 Example Three. The connection between contexts and
actions was not always clear in the design journals. In some
cases, the participant would write a phrase with no clear direction.
Consider the rule of thumb from one participant below, followed by
the interview exchange. The interviewer had to probe the participant
as necessary without an initial heuristic present.
Journal Question #8: List your most common rules of thumb that

you apply to your designs when designing parts for fabrication on
this machine.
Participant Response: Layer height of the beads.
Interviewer: “You wrote a line that I wanted a little more clarity

on, you just said ‘layer height of the beads.’ I wasn’t sure exactly
what you were referring to?”
Participant: “OK, so what layer height is, say this is one bead…

You’ll notice that usually the first layer actually has a different layer
height then the other heights as you build more…So what we do is
we just take an average and get the average layer height per bead.
So, this would be one layer, two layers and three layers.”
Interviewer: “Do you need that value as something critical to

produce the build?”
Participant: “It’s definitely necessary because as you build taller

you do not have the proper layer height. Say for example you have
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too low of a layer height, so it’s actually smaller than it should be…
What happens is as you build taller, this distance gets further and
further, so your parameters will actually change and vice versa.
So, you have too much of a layer height, so you predicted that if
it’s too tall, like say you have a very large layer height then actually
what will happen is this will grow taller. But if it’s like too small of a
layer height this will actually get closer and closer until you might
hit collision into your part. So ideally, if you can get a proper layer
height as you build it, you should have a consistent distance
between your laser and your printed bead.”

Interviewer: “Is that something that you can calculate before-
hand, or something that you need to run a few lines before you
know what that’s going to be?”
Participant: “Yeah, it’s not something you could calculate.”
Extracted Heuristic: When setting the layer height of the beads,

use an average of the first few layers to account for height
differences.

3 Results
The goal of the journal and interview process was to produce a

quality set of extracted heuristics which can then be characterized
through the survey method. The results section will focus on the
results and analysis of survey data. The discussion section will over-
view any other insight towards heuristics found during the inter-
views, as well as an assessment of the journal and interview
processes. The full set of heuristics can be found in the Appendix
in Tables 1 and 2.

3.1 Survey Results. After the journal and interview extraction
process, participants confirmed in the survey whether the resulting
heuristics were used in their own process. This was a Likert scale
response shown in Fig. 2. Of 126 heuristics, only four were listed
as “somewhat disagree,” and no heuristics were listed as “strongly
disagree.” These four heuristics have since been taken out of the
additional study survey analysis. It is unclear how these were
invalid heuristics, as there was no follow-up discussion as part of

Fig. 2 Confirmation of heuristics used in participant’s
processes

Fig. 3 Self-reported origins of heuristics for each participant

Fig. 4 Combination of experience with other origin sources for heuristics
(N = 122)
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the research study. It can be noted that three heuristics were taken
from journal responses that required additional information to
develop the heuristic, similar to “Example Three” in the previously
described heuristic extraction process.
Figure 3 shows participants overwhelmingly listed experience as

the main form of heuristic development, which strengthens our def-
inition of a heuristic. It is also not surprising that colleagues pro-
vided almost 40% of heuristics given, as these heuristics were
developed from the experiences of others in similar contexts. It is
also sensible that academic literature appeared in higher numbers
than a textbook or educational origins, as the participants use
these machines for research purposes, and new research is being
published consistently on the machine technology.
Because 75% of responses included originating from experience,

experience is broken down in relation to the other sources as well, as
shown in Fig. 4. It is shown that most heuristics were not listed as
just experience only, but from other sources as well. The largest of
these combinations was experience plus knowledge from a col-
league, followed by experience plus machine-specific training. It
is possible that while participants were initially given heuristics
from other people, they did not consider them part of their own
process until they saw the success of those heuristics in their own
experiences. For 91 heuristics where the experience was listed as
an origin, 60 (66%) were connected to “past failures” contributing
to their decision to implement that heuristic. Similarly, of 32 heuris-
tics where the experience was the only listed origin, 19 (59%) were

connected to “past failures” contributing to their decision to imple-
ment that heuristic.
Figure 5 shows the stages in which the participants labeled their

heuristics as applicable. These stages were given in the survey
based on the processes discussed in the journals and interviews. It
is reasonable that “during build” is the lowest category, as there
is little to do for most participants outside of listening and watching
for things out of the ordinary. Similarly, the action items after the
part have been removed from the machine (post-processing,
quality assessment) should be smaller compared to the amount of
planning, design, and setup required before machine use, which
sets the designer up for the best results on the other end of
machine use. Troubleshooting heuristics accounting for more than
20% of heuristics may show how much participants rely on experi-
ence to develop heuristics. It may also have implications for the
types of information that participants were able to easily recall; it
is possible that failures are easily retained or that participants
retain troubleshooting heuristics well due to the importance of
proper maintenance and function of the machines to avoid repair
costs. As shown in Fig. 6, most troubleshooting heuristics are
based on past failures.
Figure 7 shows how long heuristics have been used by their

respective users. No one put “unsure” for this question, although
one participant did skip this question for one heuristic. As stated
in the demographics section, participants averaged 4.4±1.6 years of
design experience and 3.8±1.85 years of manufacturing experience.

Fig. 5 Self-reported stages in which heuristics are applicable (N=122)

Fig. 6 Considerations for heuristics broken down by applicable stages (N = 122)
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Most of the heuristics presented here have been used for 1–2 years.
This falls closer to the duration that participants reported having
been in their current positions, an average of 2.4±1.03 years, with
a max of 4.5 years and a minimum of 1.5 years. It is possible that par-
ticipants started these positions with only a small set of heuristics that
translated and built their toolbox over time.
In Fig. 8, responses are shown for which participants checked the

ways in which the heuristic maximized their process. They were
able to choose from eight factors presented in the survey. The
results indicate that participants are more concerned about
meeting the requirements of the part than saving time and resources.
Another way of seeing this could be that participants see their effi-
ciency in terms of preventing machine failures, rather than success-
fully saving time, material, or other resources.
The contrast between process efficiency and part quality could

also potentially be explained across machine users. When compar-
ing EOS to Mazak, 56% of EOS heuristics (27 of 48 heuristics)
were characterized as “prevents machine failure,” compared to
43% of Mazak heuristics (32 of 74 heuristics). Only ten heuristics
were perceived as meeting both perspectives of efficiency: saving
the participant’s both time and material/resources. Nine of these
ten heuristics were delivered by the three EOS participants. This
may be interesting in terms of placing value on a “good” heuristic.
Being efficient on multiple levels may provide a safety net for using
the heuristic and still having success. For example, if the heuristic

does not save time during one build, it may still provide efficiency
in terms of the material used.
Figure 9 shows a set of seven factors participants could choose

from, which describe aspects contributing to the participant’s decision
to implement the heuristic. Half of the heuristics are associated with
input from team members before implementing those actions. Based
on interview responses in section three of the interview, all partici-
pants explain that they learned the most through guessing and check-
ing and would talk to team members, advisors, or supervisors to get
advice and a general understanding of the machine. Participants trust
these heuristics because of their background experience. As partici-
pant P8 explains, there is no reason to not trust strategies from
other team members because those members had more experience
in that area: “In the absence of any knowledge of it, I guess I have
no reason to suspect any of it…especially coming in here to
(redacted), I would definitely, you know, trust whatever anybody
said because I had no experience with it at all…it depends on
whether I know anything about the subject or not.”
Figure 10 shows more characteristics that participants were asked

to assign to their heuristics if applicable. Understandably, the proac-
tive description was associated with more heuristics than the reac-
tive description, as participants consistently implied wanting to
avoid crashes or failures that would restart the build or machining
process. Only six heuristics in total were characterized as risky,
and they were all from Mazak VC 500 users. Several of these

Fig. 7 Self-reported results for how long participants have used their heuristics
(N = 121)

Fig. 8 Reasons that the heuristics maximize the value of participants’ processes
(N = 122)
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“risky” heuristics were related to participants making intuitive judg-
ments in the middle of a build:

• For better part quality, run the nozzle closer to the part.
• If the material is over/under the building, slow down/speed up

the feed.
• If the build makes noise due to significant overbuilding, man-

ually slow down the feed rate and deposit more material in
lower areas to even out the part.

These may have been considered risky because they are relying
more on their own intuition on a case-by-case basis. They must
trust themselves to hear the right noise, manipulate the machine
to the right speed, sense where the nozzle works best, etc. This
may come with high rewards, but with the risk of failure that
requires a restart. This is interesting because one way of looking
at heuristics is that a “good” heuristic is also “safe” because it is
used to produce a satisfactory outcome. It is possible that the partic-
ipants using “risky” heuristics may not be aware of additional “safe”
heuristics to use at this point in their experience level.
Only around 40% of heuristics were noted as easy to recognize

the context to apply the heuristic. This visualizes the idea of design-
ers having a heuristic versus knowing when to use it. The partici-
pants of this study understand which heuristics they apply,
although they still find difficulty in understanding when to imple-
ment them. Lastly, as over half of the heuristics were described as

performed implicitly, it is possible that participants were able to
consider more implicit heuristics during the journal and interview
process. The journal method gave participants sufficient time to
consider their whole process and from multiple perspectives,
and the interview asked them to assess why they made those
decisions.

3.2 Statistical Correlations

3.2.1 Spearman’s Correlations. Figures 11–13 show how par-
ticipants described the heuristics in terms of reliability, frequency of
use, and evolution. There were no participants who put “unsure” to
“How often does this heuristic evolve?” However, one heuristic
failed to receive a completed survey response for each of the
three attributes. This certainty in responses may be due to the inter-
viewer constantly asking participants to reflect on how their actions
have evolved while using their respective machines. These three
survey questions were correlated using Spearman’s correlation,
with a discussion of them following the figures.
Figure 14 shows the combination of responses for heuristic reli-

ability and its frequency of use. There was a significant positive cor-
relation between the reliability of a heuristic and its frequency of use
(Spearman’s ρ= 0.538, p< 0.001, N= 121). This means that as the
perceived reliability of the heuristics increases, it tends to be used
more in the participant’s process. Consider the examples below.

Fig. 9 Factors contributing to the participant’s decision to use their heuristic (N=122)

Fig. 10 Additional characterizations of heuristics (N=122)
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One reason that increasing the layer size is considered low reliabil-
ity is because there may be better actions available for the specific
case, such as changing the recoater blade type. For a highly reliable
action, such as setting the build order from bottom left to top right,
this is driven by a machine phenomenon that will be consistent from
build to build.
Low Frequency, Low Reliability: If the recoater blade crashes,

consider increasing your layer size to decrease the chances of
another crash.
High Frequency, High Reliability: When setting the build order,

build from bottom left to top right to minimize the impact of metal
condensate.
Figure 15 shows the combination of responses for heuristic reli-

ability and its evolution. There was a significant negative correla-
tion between the reliability of a heuristic and its evolution
(Spearman’s ρ=−0.437, p< 0.001, and N= 121). This means that
heuristics considered to be more reliable are also perceived as
changing less often. Consider the examples below. It’s possible
that several factors contribute to the heuristic being less reliable
and changing often. These could include the participant modifying
which colors they believe have resulted in better parts, inconsis-
tency in color being a true correlation to material properties or the
criteria for the quality of specific parts fluctuating. For the more

reliable heuristic, the speed of a dry run depends less on the specif-
ics of the build and should likely stay consistent as machine technol-
ogy stays consistent.
Low Reliability, High Evolution: To determine design quality,

check the color of the build for dark burn marks or a rainbow-like
color, which can indicate weakened material properties.
High Reliability, Low Evolution: When performing the dry run,

avoid going full speed so that you can visually confirm the spots
being hit.
Figure 16 shows the combination of responses for heuristic evolution

and its frequency of use. There was a significant negative correlation
between the frequency of use of a heuristic and its evolution (Spear-
man’s ρ=−0.382, p<0.001, and N=120). This means the heuristics
that participants tend to use more are perceived as changing less. As
discussed in the previous correlation, the build order is likely used
for most interactions on the EOS M280, as the heuristic is the result
of machine-specific physics that occurs for every build. Consider the
set of heuristics listed for low frequency and high evolution. It is pos-
sible that over/underbuilding occurs often, but the action chosen to
address this is never consistent and is constantly being modified and
improved upon. This decision could depend on several factors, such
as surface quality requirements, machining availability, confidence in
oneself to fix the issue mid-build, or how quickly one notices the issue.

Fig. 11 Self-reported results for how often the heuristic is reliable (N=122)

Fig. 12 Self-reported results for how often the heuristic is used in their process
(N = 121)
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High Frequency, Low Evolution: When setting the build order,
build from bottom left to top right to minimize the impact of
metal condensate.
Low Frequency, High Evolution: If the material is over/under the

building, slow down/speed up the feed. If the material is over/under
the building, change the work offset. If the material is over/under
the building, and large unevenness of height occurs in the build,
machine a few layers, then print afterward.
For the origin of heuristics, because up to four sources were

chosen in some cases, the impact of the number of sources on reli-
ability, evolution, and frequency of use was investigated. Results
showed a significant negative relationship between reliability and
the number of sources listed for its origin (ρ=−0.210, p= 0.020,
and N= 122). This could be explained as if a heuristic is unreliable,
participants are likely to search out other people and resources to
help improve that heuristic. However, this is speculation and
would require more study of heuristics for which a larger number
of sources were listed.

3.2.2 Kruskal–Wallis Correlations. The Kruskal–Wallis test
was used to compare responses for evolution, reliability, and fre-
quency of use across the other survey response attributes. This is
similar to an ANOVA test but for nonparametric data. Therefore,
we can judge whether heuristics that obtained certain attributes

tend to have more or less reliability and evolution. The results
found several significant differences in the data, listed below.
Heuristics with the following attributes were more likely to

receive higher scores for evolution than those that did not receive
these attributes:

• Considered risky, but saves time or other resources (H(1)=
9.671, P= .002);

• Applicable during Mid-Build (H(1)= 12.286, P< 0.001) or
Quality Assessment (H(1)= 6.678, P= .010) stages;

• Originating from colleagues;
• Factors considered for implementation include input from

other team members (H(1)= 8.613, P= .003), or experience
with similar machines (H(1)= 4.026, P= .045).

Heuristics with the following attributes were more likely to
receive lower scores for evolution than those that did not receive
these attributes:

• Originating from industry or research standard (H(1)= 9.532,
P= 0.002);

• Being a standard form of practice is a considered factor for
implementation (H(1)= 20.225, P < .001);

• Listed as unsure of its origin (H(1)= 6.038, P= .014).

Fig. 13 Self-reported results for how often the heuristic is evolving in their process
(N =121)

Fig. 14 Combination of responses for heuristic reliability versus its frequency of
use (N=121)
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Heuristics with the following attributes were more likely to
receive lower scores for reliability than those that did not receive
these attributes:

• The context is easily recognized for application (H(1)= 5.515,
P= .019).

• Applicable during Mid-Build stage of your process (H(1)=
3.829, P= .050).

Heuristics with the following attributes were more likely to
receive higher scores for frequency of use than those that did not
receive these attributes:

• Heuristics characterized as performed implicitly (H(1)=
7.558, P= .006).

• Heuristics characterized as valuable because they maintain
safety (H(1)= 11.205, P= .001).

Heuristics with the following attributes were more likely to
receive lower scores for frequency of use than those that did not
receive these attributes:

• Literature was listed as an origin of the heuristic (H(1)= 6.250,
P= .012).

• Listed as unsure of its origin (H(1)= 3.909, P= .048).

The correlations show that heuristics that were considered risky
or applicable mid-build are constantly changing. This is possibly
because participants are still trying to figure out the best way to
attack those situations. As stated previously, decisions during
the build are more so based on how the build is performing and
is a case-by-case intuitive judgment. Therefore, it also makes
sense that decisions mid-build were considered significantly less
reliable as well. Heuristics originating from colleagues or depen-
dent on team member input are also changing more than other
heuristics. These changes may be due to the participant having
to adjust input from others to work within their process. Initial
advice may be from a colleague on experiences, but the partici-
pant’s experience may not line up to be exactly the same. There-
fore, the heuristics passed on could require a trial and error
process. The opposite seems to be true for heuristics originating

Fig. 15 Combination of responses for heuristic reliability versus its evolution
(N = 121)

Fig. 16 Combination of responses for heuristic frequency of use versus its evolu-
tion (N=120)
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from standards or implemented based on standards in place. It
makes sense that decisions that appear to be standardized across
the industry can be implemented without having to be modified
frequently.
Reliability correlations showed that heuristics are used signifi-

cantly less often when the participant believes the context to apply
them is easy to recognize. It is possible that participants remember
failures more than successes, and therefore, they can more easily
recall situations where decisions have failed or been inconsistent
in the past. The correlations with the frequency of use show that heu-
ristics considered to be performed implicitly are used more often
than others. This implies that participants do not typically explicitly
think about their process in terms of going from one heuristic to the
next. Safety-based heuristics are also used more often, showing that
participants think a considerable amount in terms of maintaining the
safety of themselves, their lab members, and the machines that are in
use. Lastly, it was found that heuristics originating from academic
literature are used significantly less often compared to other
sources. It’s possible that academic literature is turned to for very
specific scenarios and not general processes and therefore would
only be necessary in a few cases. However, this is speculation and
cannot be confirmed without additional studies.

4 Discussion
4.1 Methods Assessment

4.1.1 Journal One. Table 3 breaks down the heuristics
extracted for each participant based on where they originated in
the design journal questions. The visual moves from light to dark
gray as the number of heuristics from a question increases. Heuris-
tics were found successfully across questions asking for their
process “before using the machine” and “while using the
machine.” However, there were inconsistencies in how these ques-
tions were interpreted. On the EOS machine, the “build order” was
discussed by one participant as “before using the machine,” and
another participant “while using the machine.” Similar inconsis-
tency was found in the Mazak participants when discussing the
“dry run.” Three participants had heuristics discussing the dry run
“while using the machine,” but one participant included this as
“before using the machine.” Only one participant did not produce
a heuristic “while using this machine.” Their response showed
that they do nothing outside of troubleshooting besides ensuring
the hopper is feeding the powder properly.
Participants overwhelmingly presented no new actions for when

they would “not adhere” to the processes listed. The biggest expla-
nations were that all steps listed were necessary and required for
success. It was suggested that some steps could be relaxed if the
part had been printed before or if the machine was already up and
running by another user. Some information was simply reiterated.
For example, one EOS participant P1 pointed out that sieving (the
process of filtering out larger particles from excess powder recov-
ered from a previous build) was only performed when necessary,
but this was highlighted already in earlier portions of the journal.
One participant added a note about cleaning the substrates. Only
one participant presented information leading to a new heuristic.
This Mazak user (P6) noted that they have to re-probe the work
offset if the printed part is also going to be machined (the additive
and machining heads are offset from each other).
For troubleshooting, the biggest factor on the EOS machine was

to prevent recoater blade (the mechanism that spreads each layer of
powder for fusion) crashes. Even when documenting outside of the
“troubleshooting” journal question, a big purpose for many of
the heuristics seen was to prevent these types of collisions. For
the Mazak, obtaining proper powder flow was the target of many
heuristics. One unique perspective (Mazak P7) was not focused
on which actions to take to solve known issues, but rather on
how they attack understanding what the issue is in the first place.
For example, when the issue is not immediately clear, this partici-
pant focuses on narrowing down their problem to certain critical

areas: CNC movement, feedstock, feed rate, and treatment,
although these four areas were not defined in more detail during
the interview.
Only one participant did not successfully write their personal

rules of thumb in this section. They listed an example journal
article reference containing design guidelines for laser bed
powder fusion (LBPF) [45]. They did not specify which, if any,
of those guidelines they used.
All participants successfully listed ways in which they inspect

part quality. This includes knowing which methods to use to
inspect quality: sometimes, it is a technology-based assessment
(CMM, computed tomography (CT), etc.), and other times, it is a
visual inspection.

4.1.2 Journal Two. The main point of Journal 2 was to ask par-
ticipants about a recent, specific build, to help participants identify
certain strategies they did not catch when completing Journal 1. In
regard to this goal, not many new strategies were detected. Partici-
pants did not provide any significant changes to the strategies exist-
ing in Journal 1. For the EOS M280, all three participants explicitly
stated no differences before or during use with the machine. For the
Mazak machine, processes were mostly the same as well. Partici-
pant P7 relaxed some repetitive tasks based on their comfort
level, and participant P8 reused a previous work offset and
G-code, making some of their previous steps listed irrelevant. P4
noted they added a laser remelting strategy, but the participant con-
sidered the samples unusable and did not state any implications for
using this strategy in the future. Lastly, P5 used a different mainte-
nance process for this specific build because a new machine part had
been introduced.
Only one new heuristic was added to the set from Journal 2.

Participant P1 noted that a “soft” recoater brush might be necessary
for future builds with delicate components. While the build did not
produce a “failure,” some “struts” were damaged by the recoater
action. A soft recoater brush, one that is more like bristles than a
blade would allow the part to respond differently to brush contact.

4.1.3 Interviews. Outside of the heuristic extraction examples
presented in the methods section, several additional, noteworthy
interview situations occurred, which are presented below without
examples due to brevity. These include the following:

• The interviewer asked participants to be more direct regarding
vague descriptors in their design journals such as “large” or
“unusual.”

• The interviewer allowed participants to screen-share during
the virtual interviews to provide a visual explanation or justi-
fication of some heuristics, such as the build order. Participants
were not asked to do this, but rather it was done voluntarily by
participants who felt that the most adequate justification or
explanation would come through visuals.

• Participants provided the interviewer with the concept of learn-
ing heuristics by watching others, as shown by multiple Mazak
users. These participants both acknowledged that they watch a
fellow team member perform troubleshooting and picked
things up this way, rather than a verbal or written exchange
of information only.

The number of clarifications needed from the journals limited the
amount of interview time discussing other aspects with participants,
such as how the heuristics came to be. This led to more about
context and less about mental processes to reach that decision.
The amount of interview time needed per heuristic eliminated the
ability to explore more of Journal 2. While few heuristics could
be formed from Journal 2 alone, more time would have allowed
the interviewer to navigate conversations and probe whether addi-
tional heuristics were possible to uncover. This is more of a limita-
tion and tradeoff of the method chosen, as two hours is already a
significant amount of interview time and data. A similar sentiment
about interview time and method capabilities can be directed toward
the key parameters that participants listed in the design journals.
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While additional information about parameters could have also
been obtained through the survey, the survey was sufficiently
long enough due to the quantity of heuristics and the number of
questions devoted toward each heuristic. A comparison of process
parameters across participants may show how each participant
forms their perception of what is or is not valuable, although
more information from the interview or survey method would be
needed to relate this to heuristic value. Lastly, it would be valuable
to spend interview or survey time discussing how users perceived
the heuristics of other team members. This could help us evaluate
overlap in the perception of decisions made. This also falls to the
time and length limitations or interview/survey data and may be
the basis of future work.
The interviewer’s lack of familiarity with terminology in interact-

ing with the manufacturing technology may also be an influence on
the results of the study. An interviewer with more experience may
have saved time by not needing the participant to clarify certain
terms, but it is also possible that being too familiar with the
process leads to overlooking some necessary questions to uncover
key elements of the heuristics. The interviewer in such a situation
would be assuming knowledge that the interviewee is not verbaliz-
ing because of their own past experiences. An interviewer with
more experience in manufacturing may also know what areas to
probe during the discussion that an inexperienced person may
not. However, this influence could also be negative, as it biases
the conversation toward what the experienced interviewer considers
important rather than what the participant values. In either case, it is
possible that journal and interview assessments can lead to some
differences in the overall repository of heuristics generated. This
does not make the heuristics invalid but rather highlights the need
for an iterative process or series of studies to converge toward a
more complete and thorough heuristic set.

4.1.4 Heuristic Extraction Process. As discussed in Fig. 2,
when participants were asked to confirm that they use the extracted
heuristics, only 4 of 126 heuristics were listed as “somewhat dis-
agree,” and no heuristics were listed as “strongly disagree.” It is
unclear how these were invalid heuristics, as there was no follow-up
discussion as part of the research study. It can be noted that three
heuristics were taken from journal responses that required addi-
tional information to develop the heuristic, similar to “Example
Three” in the described heuristic extraction process. An example
is shown below:
Journal Question #9: Describe how you determine if your part

has been built successfully. What are the things you look for
when determining quality?
Participant Response: “…Depending on the requirements, this

could require inspection via hand tools or other metrological tech-
niques (XCT CMM, surface metrology, etc.).”
Interviewer: “You listed ways to inspect part quality, which was

CT, CMM, and surface metrology. Are there any of these that you
use more than others, or do use these at all for your work? Can you
give a rundown of when you would use one over another?”
Participant: “Yeah. So, I’ve used all of those in my research.

And each has their own benefits…The last one is computed tomog-
raphy… CT, however, is an extremely complicated measurement
procedure. And while it is able to give some pretty awesome
results, it is not technically like a traceable measurement technique.
So, like any dimensional measurements that you take on a CT have
to be taken with, sort of like a grain of salt. That, like we’re not actu-
ally sure how uncertain we are in this measurement. But that being
said, you can still do a number of analyses with it, which are mostly
at this point comparative, like you’re not able to take like an abso-
lute measurement of diameter or something like that. But what
we’ve used before is, like you know, comparison of like this
process to this process. This part to this part I’m looking at
comparisons…”
Extracted Heuristic: To assess quality through point comparison

relative to other parts or processes, use CT technology.

4.2 Error Management Assessment. As discussed in the
background section, Haselton presents three ways in which
humans rationally adapt for survival: heuristics (saving time and
resources in exchange for a potentially sub-optimal outcome),
error management (acting towards less costly error—false positives
are less costly than false negatives), and experimental artifacts (a
product of poor research design which produces unnatural or
unusual environments) [11,12]. It is possible to view the results
of this study in terms of error management—how participants
may have perceived the costs of using their heuristics as far less
than the costs of not adhering to them. This section presents
several extracted heuristics in many different contexts. The objec-
tive is to show the diverse ways in which participants give up
time or resources if it means ensuring part quality or machine
safety. Each example highlights how participants were willing to
sacrifice some costs to preserve their respective builds and
machines. This willingness to operate as if an error would occur oth-
erwise is the basis for each “false alarm” case or false-negative.
The previous presentation of results showed that only six heuris-

tics in total were characterized as risky, and many of these related to
participants making intuitive judgments in the middle of a build: “If
the build makes noise due to significant overbuilding, manually
slow down the feed rate and deposit more material in lower areas
to even out the part.” In this situation, the participant must decide
whether the costs associated with unnecessarily stopping and man-
ually controlling the build (false-positive) are less than the costs of
letting the build continue and resulting in undesirable part quality
(false-negative). The justification for stopping the build would be
that more false alarms are better than more misses.
Figure 8 shows the attributes that participants attached to heuris-

tics as reasons why the heuristic maximized the value of their
process. Near the bottom of the list of value-producing attributes
was improved efficiency in terms of time (24% of heuristics) and
material/resources (20%). At the top of the list, the attributes
attached to the most heuristics were to achieve desired part dimen-
sions (56%), achieve other aspects of part quality (50%), and
prevent machine failure (48%). From an error management perspec-
tive, a false-positive would be to spend extra time/material to ensure
there is no detriment to the part or machine quality, although the
resulting build session shows that the extra time/resources were
not necessary. A false-negative would be to save time/material
and have a situation occur where the machine or part quality dimin-
ishes. The data from Fig. 9 imply that participants likely consider
the costs of the false-positive to be far less than the costs of the
false-negative. In other words, their efficiency is seen through pre-
venting subpar machine or part quality, rather than preserving their
own time and resources.
Statistical correlations showed that heuristics characterized as

maintaining safety were applied significantly more than other heu-
ristics. From an error management perspective, participants may
believe that the costs of implementing a safety-based heuristic
without it being needed (false-positive) are less than the cost of
not implementing the heuristic and safety being compromised
(false-negative). In the false-positive, additional time and resources
may be used, but this cost does not compare to costs that may
threaten the health of the machine or its users.
It is possible to see some error management perspectives in how

the heuristics have been presented. For example, consider the heu-
ristic: “When setting the build order, build from bottom left to top
right to minimize the impact of metal condensate.” The action in
this heuristic is to set the build order from bottom left to top
right. However, the justification of this heuristic is to minimize
the impact of metal condensate on the part. The participant may
understand that taking the extra time to set up a build in this
order, no matter how much condensate may actually impact the
part, is much less of a cost than producing a separate build order
that produces an unreliable part due to contamination.
The interviews contained some conversations in which partici-

pants admitted some level of being risk averse. For example, partic-
ipant P2 agreed that they may have avoided the use of supports
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when they were not as familiar with them. Instead, they would
default to modifying the orientation or changing the part entirely.
In those situations, the costs associated with modifying the part or
orientation may have been less than the costs of choosing the
wrong support and having a failed build. Participant P7 admitted
to staying closer to the machine when they were afraid of collisions
because of past mistakes. In this situation, the cost of staying near
the machine and having a successful build (false-positive) is less
than the cost of leaving the machine and being unable to intervene
when necessary (false-negative).

5 Conclusion
This study provides the field of manufacturing with a framework

for obtaining and characterizing heuristics, which is beneficial as
new technology, such as hybrid manufacturing, continues to grow
and evolve. The results show statistically significant correlations
between heuristic reliability, evolution, and frequency of use.
This validates prior work in heuristics and adds these correlations
to the field of advanced manufacturing for both designers and
machine operators [4]. The survey results show which heuristic
attributes statistically significantly impact the perception of heuris-
tics as reliable, evolving, or frequently implemented into one’s
process. Lastly, a new perspective of heuristics in advanced manu-
facturing was shown in which participants’ progress toward heuris-
tics results in the least costly errors.
For the heuristics collected, translation outside of this study may

rely on machine quality and their current technology levels, the
experience of the user obtaining these heuristics, or the objectives
for the use of their respective manufacturing machine. As expected,
case study research generally comes with limited application of
results beyond the case being studied. However, these results
serve as a starting point for hypothesizing heuristic use across
other populations of designers, which can be tested by comparing
additional case studies or creating new controlled experiments to
test our findings. These findings can be used in future work
toward the original research questions:
How should the methodology for extracting heuristics be

improved such that we may assess the value a heuristic brings to
the design process?
Results showed that certain origins of heuristics correlate with

heuristic evolution, and a higher number of sources led to decreased
heuristic reliability. The methodology should include an iterative
process that includes additional interviews after the survey phase.
This will allow more understanding of what information was

taken from each source, and the lessons learned from participants
using that information. The iterative process may account for
addressing discrepancies where participants did not fully agree
with the final set of heuristics extracted.
What aspects of heuristics and design environments should be

considered during documentation of heuristics in a repository?
Results showed that some characteristics of heuristics (such as

origin, applicable process stages, user perceived characteristics,
and factors for implementation) imply more evolution over time.
This can impact the rate at which particular heuristics are or
should be reassessed and updated in a repository. Staggering the
rate at which certain sets of heuristics are updated could improve
the efficiency of maintaining heuristic knowledge.
How might heuristics be characterized and classified to under-

stand their impact on design processes?
Heuristics should be characterized not only as context-action, but

by their sources of origin, applicable process stages, and character-
izing descriptors based on perception from previous users. These
factors were found to have an influence on which heuristics may
be more/less reliable or applicable more/less often to the process.
Heuristics in context-action form should be assessed in comparison
to heuristics reframed in an error management-based form, which
may help determine which type of framing resonates more with
users.
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Appendix

Table 1 Set of heuristics from LBPF additive manufacturing participants

Heuristics—Laser Bed Powder Fusion (LBPF) Additive Manufacturing

Participant 1 Participant 2 Participant 3

If the part can be easily machined through simple
or no modifications, do not print the part.

Before building your part, first consider how to
print orientation, feature size, and part size will
influence your build.

When developing the building layout, determine
orientation before the use of supports, as orientation is
more critical for part functionality.

After loading powder into the machine hopper,
tamp and level the powder to ensure a uniform
spread layer

To avoid thermal warpage, use support
structures as a heat sink

When determining build orientation, consider build
failures due to thermal warpage or the surface angle to
the build direction

When loading powder into the hopper, load large
quantities and only sieve when necessary

If overhangs are present in your design, first try
to reorient the part for printing

If multiple orientations are possible, decide
orientation by evaluating part requirements such as
surface quality

If a post-build heat treatment is necessary,
consider overbuilding with machining allowances
to account for the treatment contaminating surface
layers

If overhangs are present and the design cannot
be reoriented, try using support structures

If you have non-self-supporting features such as
overhangs at less than a 45 deg to the build plane, use
support structures

When generating supports, first determine the
build removal method, such as electrical
discharge machining (EDM), band saw, or
manual removal

If overhangs are present and you cannot use
supports or reorient your design, modify the
design to remove the overhangs

If your goal is to reduce residual stress, use a support
structure to avoid warping and to keep the part
physically attached to the plate

When preparing the build layout, avoid recoater
jams by orienting components such that they do
not have edges parallel to the recoater blade

If a feature size is too small, increase its size to
avoid overbuilding.

When using supports, choose the support type based
on your method for removal: solid supports for EDM
removal, and support structures for band saw removal

When orienting surfaces, keep surface texture
requirements in mind

To prevent collisions from thermal warpage,
increase your layer size

If your part is simple enough to be obtained through
machining or another process, avoid unnecessary
costs and do not print the part

When orienting build to machine axis, consider
how orientation interacts with process strengths/
weaknesses such as pore size and fatigue life

To prevent collisions from thermal warpage,
use a brush recoater

For a typical build with a 20-µm layer height, use the
standard parameter sets for the EOS M280

When developing supports, use solid supports if
possible to avoid the costs and risks devoted to
designing complex support

When setting the build order, build from
bottom left to top right to minimize the impact
of metal condensate

When setting the build order, avoid part
contamination by building from the lower left to the
top right

To avoid difficulty with leveling build plate/
dialing in first layer thickness, machine build
plates to be flatter so that the first powder layer
thickness is uniform

If you are using recycled powder, it must first
be sieved to eliminate large powders that might
lead to porosity

When part quality is more important, place the part
closer to the build plate center for higher accuracy

When dialing in the first layer thickness, do not be
overly concerned with precision, as the first layer
will not be included in your final part

When filling the machine with powder, have
the powder level at least 2.5 times the height of
the bounding box of the build in the hopper

When sieving or adding the new powder to the
machine, have a second person vacuum to mitigate
powder plumes, which may cause contamination

If a component needs high fatigue resistance,
consider the build area density, gas flow, and
recoat directions to avoid splatter/large particles
that might negatively impact part quality

When preparing your part, avoid features
requiring high tolerances which would be
better served through machining

When the powder is at a sufficient level, the powder
must be then tamped/compacted to remove air
pockets

If you have a delicate build involving a lot of
thermal distortion, consider using a “soft”
recoater brush

To account for poor-surface roughness in
designs, consider reorientation, modification of
design, or post-processing methods

To assess quality through point comparison relative to
other parts or processes, use CT technology

If the recoater blade crashes, consider increasing
your layer size to decrease the chances of another
crash

To assess part quality through dimensional
accuracy, use CMM technology

To assess quality through dimensional accuracy, use
CMM technology

If the recoater blade crashes, consider changing
the recoater blade type

To assess part quality through internal pore
detection, use CT technology

To assess quality through characterizing the surface
texture, use surface metrology

To determine part quality, use a measurement
process to check for irregular surface textures
indicating poor build quality

If the amount of powder is double the height of the
planned build, no powder change is needed

To determine part quality, visually check for
colors that may indicate too much heat or lack of
heat sinking

If the amount of powder is not double the build
height, and there is powder in the collector, sieve the
powder and add it to the hopper
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Table 2 Set of heuristics from DED hybrid manufacturing participants

Heuristics—Directed Energy Deposition (DED) Hybrid Manufacturing

Participant 4 Participant 5 Participant 6 Participant 7 Participant 8

Before running the machine,
ensure the powder hopper has
spreader/suction units aligned
with the rotating disk, as this
is critical for flowrate.

Before using the Mazak
machine, the first step is to
set up a work coordinate
system of the substrate to
align your tool heads

When developing your
CAD model, use the native
CAD package for ease of
editing and to avoid data
loss through importing the
model

Before starting your build,
calibrate the initial work
offsets using g-code rather
than manually

When printing simple
shapes such as a circle,
generate G-code by hand or
MATLAB, rather than
programs such as
HyperMill or Fusion, to
avoid limitations of their
toolpath generation

At the beginning of your
build, wait 20–30 s before
depositing material so the
powder has time to reach a
consistent flowrate

When selecting the
workpiece, choose the
substrate material based on
the material being used for
printing

When working with simple
geometries, use Fusion to
develop the CAD model
quicker/easier

Before starting your build,
make sure the substrate is free
of any oxides

When developing G-code,
set print paths based on
where overbuilding may
occur, such as in corners or
other intersecting bead
areas

To obtain the preferred
powder quality, keep the
powder hopper temperature at
or above 60 °deg Covernight
before the build

After setting up a work
coordinate system of the
substrate, load the G-code
program

When working with
complex geometries, use
Hyper Mill for a more
robust CAD model
development

Before starting your build,
step through the first g-code
commands to ensure work
offsets are correct, which may
prevent collisions

Before running the
machine, perform a dry run
of the print path to verify
the print path and detect
work object errors or other
G-code typos that might
lead to crashes

If there is a powder hopper
malfunction, reset the
additive head back to its
original position, then re-run
the code

Before building, perform a
dry run to verify the work
offset and post-processor,
which will catch major errors
that might damage the
machine

If performing multi-axis
deposition for complexities
such as overhangs, consider
increasing the stock size to
account for less material
utilization (less efficiency)

If you have not run the
program a few times before,
perform a dry run and step
through the program with the
laser off

If machining a printed part,
re-probe the work object to
account for the printing and
machining heads being
offset

If a powder hopper
malfunction continues after
being reset, disassemble the
hopper unit and re-align the
spreader/suction and rotating
disk

To ensure there is no
moisture in the powder that
may lead to clumping, keep
the powder heated for at least
half a day before building

To mitigate large
overhangs, consider
printing a vertical wall,
then machining away the
extra material

Once the build begins,
observe the first few passes,
then rely on auditory cues to
determine if there are build
issues that require inspection

To prevent powder flow
failures, ensure dry powder
by keeping the heaters on
the hopper, and give humid
hoppers a full day to dry out
before building

If a powder hopper
malfunction continues after
the reset and re-alignment,
check the tubing

After inspecting the powder
level, gas flow, and powder
flow, the machine is ready for
use

To mitigate large
overhangs, consider
multi-axis rotation to
produce the part

When switching from
additive to subtractive
operations (or vice versa),
measure the deposited/
machined surface to
determine if any g-code edits
are required

When using G461 to probe
a work offset, do so while
the print tool is in the
spindle, and before
inserting the machine head,
to prevent a reset of the tool
length

If a powder hopper
malfunction continues after
the reset and re-alignment,
and tubing has been checked,
then try heating the powder at
90 ° C for 24 h

While the machine is in use,
visually inspect
intermittently if the laser
nozzle is not too high or too
low

When your part requires
holes, consider printing the
component solid, then
machining the holes
afterward

When switching from
additive to subtractive
operations (or vice versa), be
extremely conscious of your
additive and subtractive work
offsets

If machining a printed part,
probe the printed part
several times in different
spots, then average the
values for a more accurate
measurement

If a powder hopper
malfunction continues after
all known troubleshooting
steps have been taken, change
the powder

When building a part, use
bead-to-bead spacing (also
known as overlap/stepover)
to eliminate getting voids in
the material

If you have a large part size,
use rotations due to the
dimensional limitations of
the machine

If troubleshooting needs to
take place, first check the
opinion of a more
experienced user

For better part quality, run
the nozzle closer to the part

When performing the dry run,
avoid going full speed so that
you can visually confirm the
spots being hit

When setting the layer height
of the beads, use an average
of the first few layers to
account for height
differences

When defining process
parameters, keep
parameters constant and
only change one at a time as
needed

If troubleshooting needs to
take place, try to isolate the
problem into one of these
areas: CNC movement,
feedstock, feedrate, or
treatment

If the running nozzle is
close to the part, monitor
the build carefully to
prevent crashes

When performing the dry run,
increase the length of your
dry run as your build
increases in complexity

To check the laser nozzle
position, visually inspect the
brightness level of the laser

When defining laser power,
use a higher heat input for
thin parts and lower heat
input for dense parts

If the design has porosity
issues, tune your process
parameters in the next build

If overhangs are required on
your part, use 5-axis
positions

When using a new material,
start with simple geometries
to become familiar with the
proper parameters without the
risk of crashes

If the material is over/under
building, slow down/speed
up the feed

When defining laser power,
use a higher heat input for
the first layer and lower
heat input for each
consecutive layer

To determine design success
from a metallurgical
perspective, use
nondestructive testing like CT
to detect pores

To prevent overbuilding,
plan to swap directions as
much as possible, such as
reversing the direction for
each layer

When selecting a substrate,
consider that narrow
substrates are able to take less
energy and heat compared to
wider substrates

If the material is over/under
building, change the work
offset

For metal wire additive,
mirror each layer to avoid
starting in the same
position, which compounds

To determine design success,
look for your desired surface
finishes and geometry within
a certain degree of uncertainty

To ensure bead fusion,
design features to have a
thickness of at least 1.2 mm
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Table 2 Continued

Heuristics—Directed Energy Deposition (DED) Hybrid Manufacturing
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deformities in the same
location

When preparing your build,
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beads than wider substrates
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dimensions and toolpath
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When building thin/small
features, add pauses
between layers to prevent
overheating, and use the
laser power value to
determine the delay length

To assess build quality,
visually inspect the surface
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To determine part quality,
look for smooth and
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For additive processes, to
determine a successful
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during machining
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